WorldWideScience

Sample records for computer-based surgical simulation

  1. Validation study of a computer-based open surgical trainer: SimPraxis(®) simulation platform.

    Science.gov (United States)

    Tran, Linh N; Gupta, Priyanka; Poniatowski, Lauren H; Alanee, Shaheen; Dall'era, Marc A; Sweet, Robert M

    2013-01-01

    Technological advances have dramatically changed medical education, particularly in the era of work-hour restrictions, which increasingly highlights a need for novel methods to teach surgical skills. The purpose of this study was to evaluate the validity of a novel, computer-based, interactive, cognitive simulator for training surgeons to perform pelvic lymph node dissection (PLND). Eight prostate cancer experts evaluated the content of the simulator. Contextual aspects of the simulator were rated on a five-point Likert scale. The experts and nine first-year residents completed a simulated PLND. Time and deviations were logged, and the results were compared between experts and novices using the Mann-Whitney test. Before training, 88% of the experts felt that a validated simulator would be useful for PLND training. After testing, 100% of the experts felt that it would be more useful than standard video training. Eighty-eight percent stated that they would like to see the simulator in the curriculum of residency programs and 56% thought it would be useful for accreditation purposes. The experts felt that the simulator aided in overall understanding, training indications, concepts and steps of the procedure, training how to use an assistant, and enhanced the knowledge of anatomy. Median performance times taken by experts and interns to complete a PLND procedure on the simulator were 12.62 and 23.97 minutes, respectively. Median deviation from the incorporated procedure pathway for experts was 24.5 and was 89 for novices. We describe an interactive, computer-based simulator designed to assist in mastery of the cognitive steps of an open surgical procedure. This platform is intuitive and flexible, and could be applied to any stepwise medical procedure. Overall, experts outperformed novices in their performance on the trainer. Experts agreed that the content was acceptable, accurate, and representative.

  2. Validation study of a computer-based open surgical trainer: SimPraxis® simulation platform

    Directory of Open Access Journals (Sweden)

    Tran LN

    2013-03-01

    Full Text Available Linh N Tran,1 Priyanka Gupta,2 Lauren H Poniatowski,2 Shaheen Alanee,3 Marc A Dall’Era,4 Robert M Sweet21Department of Internal Medicine, Loma Linda University, Loma Linda, CA, 2Department of Urology, University of Minnesota, Minneapolis, MN, 3Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, 4Department of Urology, University of California, Davis, CA, USABackground: Technological advances have dramatically changed medical education, particularly in the era of work-hour restrictions, which increasingly highlights a need for novel methods to teach surgical skills. The purpose of this study was to evaluate the validity of a novel, computer-based, interactive, cognitive simulator for training surgeons to perform pelvic lymph node dissection (PLND.Methods: Eight prostate cancer experts evaluated the content of the simulator. Contextual aspects of the simulator were rated on a five-point Likert scale. The experts and nine first-year residents completed a simulated PLND. Time and deviations were logged, and the results were compared between experts and novices using the Mann–Whitney test.Results: Before training, 88% of the experts felt that a validated simulator would be useful for PLND training. After testing, 100% of the experts felt that it would be more useful than standard video training. Eighty-eight percent stated that they would like to see the simulator in the curriculum of residency programs and 56% thought it would be useful for accreditation purposes. The experts felt that the simulator aided in overall understanding, training indications, concepts and steps of the procedure, training how to use an assistant, and enhanced the knowledge of anatomy. Median performance times taken by experts and interns to complete a PLND procedure on the simulator were 12.62 and 23.97 minutes, respectively. Median deviation from the incorporated procedure pathway for experts was 24.5 and was 89 for novices

  3. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users.

    Science.gov (United States)

    Lin, David W; Romanelli, John R; Kuhn, Jay N; Thompson, Renee E; Bush, Ron W; Seymour, Neal E

    2009-01-01

    This study aimed to define perceptions of the need and the value of new simulation devices for laparoscopic and robot-assisted surgery. The initial experience of surgeons using both robotic and nonrobotic laparoscopic simulators to perform an advanced laparoscopic skill was evaluated. At the 2006 Society of American Gastroesophageal Surgeons (SAGES) meeting, 63 Learning Center attendees used a new virtual reality robotic surgery simulator (SEP Robot) and either a computer-enhanced laparoscopic simulator (ProMIS) or a virtual reality simulator (SurgicalSIM). Demographic and training data were collected by an intake survey. Subjects then were assessed during one iteration of laparoscopic suturing and knot-tying on the SEP Robot and either the ProMIS or the SurgicalSIM. A posttask survey determined users' impressions of task realism, interface quality, and educational value. Performance data were collected and comparisons made between user-defined groups, different simulation platforms, and posttask survey responses. The task completion rate was significantly greater for experts than for nonexperts on the virtual reality platforms (SurgicalSIM: 100% vs 36%; SEP Robot: 93% vs 63%; p platforms, whereas simulator metrics best discriminated expertise for the videoscopic platform. Similar comparisons for the virtual reality platforms were not feasible because of the low task completion rate for nonexperts. The added degrees of freedom associated with the robotic surgical simulator instruments facilitated completion of the task by nonexperts. All platforms were perceived as effective training tools.

  4. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Computer Based ... universities, and later did system analysis, ... sonal computers (PC) and low cost software packages and tools. They can serve as useful learning experience through student projects. Models are .... Let us consider a numerical example: to calculate the velocity of a trainer aircraft ...

  6. Computer-Based Simulation Games in Public Administration Education

    OpenAIRE

    Kutergina Evgeniia

    2017-01-01

    Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently...

  7. Computer-Based Simulation Games in Public Administration Education

    Directory of Open Access Journals (Sweden)

    Kutergina Evgeniia

    2017-12-01

    Full Text Available Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently in Russia the use of computer-based simulation games in Master of Public Administration (MPA curricula is quite limited. Th is paper focuses on computer- based simulation games for students of MPA programmes. Our aim was to analyze outcomes of implementing such games in MPA curricula. We have done so by (1 developing three computer-based simulation games about allocating public finances, (2 testing the games in the learning process, and (3 conducting a posttest examination to evaluate the effect of simulation games on students’ knowledge of municipal finances. Th is study was conducted in the National Research University Higher School of Economics (HSE and in the Russian Presidential Academy of National Economy and Public Administration (RANEPA during the period of September to December 2015, in Saint Petersburg, Russia. Two groups of students were randomly selected in each university and then randomly allocated either to the experimental or the control group. In control groups (n=12 in HSE, n=13 in RANEPA students had traditional lectures. In experimental groups (n=12 in HSE, n=13 in RANEPA students played three simulation games apart from traditional lectures. Th is exploratory research shows that the use of computer-based simulation games in MPA curricula can improve students’ outcomes by 38 %. In general, the experimental groups had better performances on the post-test examination (Figure 2. Students in the HSE experimental group had 27.5 % better

  8. Computer-Based Training Methods for Surgical Training

    Science.gov (United States)

    2009-10-07

    said surgical procedure. 32. The rm:thod of daim 30. whcn.:in st~id linul dm ;~.:­ dimcnsional model is used to evaluate pcrKwmancc charac...of Environmental Aging Upon the Load Bearing Properties and Polyurethane Foams. Noble PC; Goode B; Krouskop TA; and Crisp B. Journal Rehab. Res. and...Surgery 77A: 513-523, 1995. 32. Partial Tears of the Anterior Cruciate Ligament. Are They Clinically Detectable? Lintner DM , Kamaric E, Moseley JB

  9. A review of computer-based simulators for ultrasound training.

    Science.gov (United States)

    Blum, Tobias; Rieger, Andreas; Navab, Nassir; Friess, Helmut; Martignoni, Marc

    2013-04-01

    Computer-based simulators for ultrasound training are a topic of recent interest. During the last 15 years, many different systems and methods have been proposed. This article provides an overview and classification of systems in this domain and a discussion of their advantages. Systems are classified and discussed according to the image simulation method, user interactions and medical applications. Computer simulation of ultrasound has one key advantage over traditional training. It enables novel training concepts, for example, through advanced visualization, case databases, and automatically generated feedback. Qualitative evaluations have mainly shown positive learning effects. However, few quantitative evaluations have been performed and long-term effects have to be examined.

  10. Simulators and virtual reality in surgical education.

    Science.gov (United States)

    Chou, Betty; Handa, Victoria L

    2006-06-01

    This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.

  11. [Simulation in surgical training].

    Science.gov (United States)

    Nabavi, A; Schipper, J

    2017-01-01

    Patient safety during operations hinges on the surgeon's skills and abilities. However, surgical training has come under a variety of restrictions. To acquire dexterity with decreasingly "simple" cases, within the legislative time constraints and increasing expectations for surgical results is the future challenge. Are there alternatives to traditional master-apprentice learning? A literature review and analysis of the development, implementation, and evaluation of surgical simulation are presented. Simulation, using a variety of methods, most important physical and virtual (computer-generated) models, provides a safe environment to practice basic and advanced skills without endangering patients. These environments have specific strengths and weaknesses. Simulations can only serve to decrease the slope of learning curves, but cannot be a substitute for the real situation. Thus, they have to be an integral part of a comprehensive training curriculum. Our surgical societies have to take up that challenge to ensure the training of future generations.

  12. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  13. Digitalized design of extraforaminal lumbar interbody fusion: a computer-based simulation and cadaveric study.

    Directory of Open Access Journals (Sweden)

    Mingjie Yang

    Full Text Available PURPOSE: This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF, a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. METHODS: The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the superior articular process, dilation of the vertebral foramen, and placement of pedicle screws and a cage. ELIF anatomical measures were documented using a digitalized technique and subsequently validated on fresh cadavers. RESULTS: The use of the Mimics allowed for the vivid simulation of ELIF surgical procedures, while the cadaveric study proved the feasibility of this novel approach. ELIF had a relatively lateral access approach that was located 8-9 cm lateral to the median line with an access depth of approximately 9 cm through the intermuscular space. Dissection of the superior articular processes could fully expose the target intervertebral discs and facilitate a more inclined placement of the pedicle screws and cage with robust enhancement. CONCLUSIONS: According to the computer-based simulation and cadaveric study, it is feasible to perform ELIF. Further research including biomechanical study is needed to prove ELIF has a superior ability to preserve the posterior tension bands of the spinal column, with similar effects on spinal decompression, fixation, and fusion, and if it can enhance post-fusion spinal stability and expedites postoperative recovery.

  14. Digitalized design of extraforaminal lumbar interbody fusion: a computer-based simulation and cadaveric study.

    Science.gov (United States)

    Yang, Mingjie; Zeng, Cheng; Guo, Song; Pan, Jie; Han, Yingchao; Li, Zeqing; Li, Lijun; Tan, Jun

    2014-01-01

    This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF), a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the superior articular process, dilation of the vertebral foramen, and placement of pedicle screws and a cage. ELIF anatomical measures were documented using a digitalized technique and subsequently validated on fresh cadavers. The use of the Mimics allowed for the vivid simulation of ELIF surgical procedures, while the cadaveric study proved the feasibility of this novel approach. ELIF had a relatively lateral access approach that was located 8-9 cm lateral to the median line with an access depth of approximately 9 cm through the intermuscular space. Dissection of the superior articular processes could fully expose the target intervertebral discs and facilitate a more inclined placement of the pedicle screws and cage with robust enhancement. According to the computer-based simulation and cadaveric study, it is feasible to perform ELIF. Further research including biomechanical study is needed to prove ELIF has a superior ability to preserve the posterior tension bands of the spinal column, with similar effects on spinal decompression, fixation, and fusion, and if it can enhance post-fusion spinal stability and expedites postoperative recovery.

  15. Discovery Learning, Representation, and Explanation within a Computer-Based Simulation: Finding the Right Mix

    Science.gov (United States)

    Rieber, Lloyd P.; Tzeng, Shyh-Chii; Tribble, Kelly

    2004-01-01

    The purpose of this research was to explore how adult users interact and learn during an interactive computer-based simulation supplemented with brief multimedia explanations of the content. A total of 52 college students interacted with a computer-based simulation of Newton's laws of motion in which they had control over the motion of a simple…

  16. Computer-Based Simulations for Maintenance Training: Current ARI Research. Technical Report 544.

    Science.gov (United States)

    Knerr, Bruce W.; And Others

    Three research efforts that used computer-based simulations for maintenance training were in progress when this report was written: Game-Based Learning, which investigated the use of computer-based games to train electronics diagnostic skills; Human Performance in Fault Diagnosis Tasks, which evaluated the use of context-free tasks to train…

  17. Patient-specific surgical simulation.

    Science.gov (United States)

    Soler, Luc; Marescaux, Jacques

    2008-02-01

    Technological innovations of the twentieth century have provided medicine and surgery with new tools for education and therapy definition. Thus, by combining Medical Imaging and Virtual Reality, patient-specific applications providing preoperative surgical simulation have become possible.

  18. An Investigation of Computer-based Simulations for School Crises Management.

    Science.gov (United States)

    Degnan, Edward; Bozeman, William

    2001-01-01

    Describes development of a computer-based simulation program for training school personnel in crisis management. Addresses the data collection and analysis involved in developing a simulated event, the systems requirements for simulation, and a case study of application and use of the completed simulation. (Contains 21 references.) (Authors/PKP)

  19. Computer based training simulator for Hunterston Nuclear Power Station

    International Nuclear Information System (INIS)

    Bowden, R.S.M.; Hacking, D.

    1978-01-01

    For reasons which are stated, the Hunterston-B nuclear power station automatic control system includes a manual over-ride facility. It is therefore essential for the station engineers to be trained to recognise and control all feasible modes of plant and logic malfunction. A training simulator has been built which consists of a replica of the shutdown monitoring panel in the Central Control Room and is controlled by a mini-computer. This paper highlights the computer aspects of the simulator and relevant derived experience, under the following headings: engineering background; shutdown sequence equipment; simulator equipment; features; software; testing; maintenance. (U.K.)

  20. Criteria for Appraising Computer-Based Simulations for Teaching Arabic as a Foreign Language

    National Research Council Canada - National Science Library

    Dabrowski, Richard

    2005-01-01

    This was an exploratory study aimed at defining more sharply the pedagogical and practical challenges entailed in designing and creating computer-based game-types simulations for learning Arabic as a foreign language...

  1. Simulation-based surgical education.

    Science.gov (United States)

    Evgeniou, Evgenios; Loizou, Peter

    2013-09-01

    The reduction in time for training at the workplace has created a challenge for the traditional apprenticeship model of training. Simulation offers the opportunity for repeated practice in a safe and controlled environment, focusing on trainees and tailored to their needs. Recent technological advances have led to the development of various simulators, which have already been introduced in surgical training. The complexity and fidelity of the available simulators vary, therefore depending on our recourses we should select the appropriate simulator for the task or skill we want to teach. Educational theory informs us about the importance of context in professional learning. Simulation should therefore recreate the clinical environment and its complexity. Contemporary approaches to simulation have introduced novel ideas for teaching teamwork, communication skills and professionalism. In order for simulation-based training to be successful, simulators have to be validated appropriately and integrated in a training curriculum. Within a surgical curriculum, trainees should have protected time for simulation-based training, under appropriate supervision. Simulation-based surgical education should allow the appropriate practice of technical skills without ignoring the clinical context and must strike an adequate balance between the simulation environment and simulators. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  2. Xinyinqin: a computer-based heart sound simulator.

    Science.gov (United States)

    Zhan, X X; Pei, J H; Xiao, Y H

    1995-01-01

    "Xinyinqin" is the Chinese phoneticized name of the Heart Sound Simulator (HSS). The "qin" in "Xinyinqin" is the Chinese name of a category of musical instruments, which means that the operation of HSS is very convenient--like playing an electric piano with the keys. HSS is connected to the GAME I/O of an Apple microcomputer. The generation of sound is controlled by a program. Xinyinqin is used as a teaching aid of Diagnostics. It has been applied in teaching for three years. In this demonstration we will introduce the following functions of HSS: 1) The main program has two modules. The first one is the heart auscultation training module. HSS can output a heart sound selected by the student. Another program module is used to test the student's learning condition. The computer can randomly simulate a certain heart sound and ask the student to name it. The computer gives the student's answer an assessment: "correct" or "incorrect." When the answer is incorrect, the computer will output that heart sound again for the student to listen to; this process is repeated until she correctly identifies it. 2) The program is convenient to use and easy to control. By pressing the S key, it is able to output a slow heart rate until the student can clearly identify the rhythm. The heart rate, like the actual rate of a patient, can then be restored by hitting any key. By pressing the SPACE BAR, the heart sound output can be stopped to allow the teacher to explain something to the student. The teacher can resume playing the heart sound again by hitting any key; she can also change the content of the training by hitting RETURN key. In the future, we plan to simulate more heart sounds and incorporate relevant graphs.

  3. 3D Surgical Simulation

    OpenAIRE

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive ...

  4. Three-dimensional surgical simulation.

    Science.gov (United States)

    Cevidanes, Lucia H C; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-09-01

    In this article, we discuss the development of methods for computer-aided jaw surgery, which allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3-dimensional surface models from cone-beam computed tomography, dynamic cephalometry, semiautomatic mirroring, interactive cutting of bone, and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with a computer display showing jaw positions and 3-dimensional positioning guides updated in real time during the surgical procedure. The computer-aided surgery system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training, and assessing the difficulties of the surgical procedures before the surgery. Computer-aided surgery can make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Practice Makes Perfect: Using a Computer-Based Business Simulation in Entrepreneurship Education

    Science.gov (United States)

    Armer, Gina R. M.

    2011-01-01

    This article explains the use of a specific computer-based simulation program as a successful experiential learning model and as a way to increase student motivation while augmenting conventional methods of business instruction. This model is based on established adult learning principles.

  6. Designing and Introducing Ethical Dilemmas into Computer-Based Business Simulations

    Science.gov (United States)

    Schumann, Paul L.; Scott, Timothy W.; Anderson, Philip H.

    2006-01-01

    This article makes two contributions to the teaching of business ethics literature. First, it describes the steps involved in developing effective ethical dilemmas to incorporate into a computer-based business simulation. Second, it illustrates these steps by presenting two ethical dilemmas that an instructor can incorporate into any business…

  7. Accomplishments and challenges of surgical simulation.

    Science.gov (United States)

    Satava, R M

    2001-03-01

    For nearly a decade, advanced computer technologies have created extraordinary educational tools using three-dimensional (3D) visualization and virtual reality. Pioneering efforts in surgical simulation with these tools have resulted in a first generation of simulators for surgical technical skills. Accomplishments include simulations with 3D models of anatomy for practice of surgical tasks, initial assessment of student performance in technical skills, and awareness by professional societies of potential in surgical education and certification. However, enormous challenges remain, which include improvement of technical fidelity, standardization of accurate metrics for performance evaluation, integration of simulators into a robust educational curriculum, stringent evaluation of simulators for effectiveness and value added to surgical training, determination of simulation application to certification of surgical technical skills, and a business model to implement and disseminate simulation successfully throughout the medical education community. This review looks at the historical progress of surgical simulators, their accomplishments, and the challenges that remain.

  8. Open surgical simulation--a review.

    Science.gov (United States)

    Davies, Jennifer; Khatib, Manaf; Bello, Fernando

    2013-01-01

    Surgical simulation has benefited from a surge in interest over the last decade as a result of the increasing need for a change in the traditional apprentice model of teaching surgery. However, despite the recent interest in surgical simulation as an adjunct to surgical training, most of the literature focuses on laparoscopic, endovascular, and endoscopic surgical simulation with very few studies scrutinizing open surgical simulation and its benefit to surgical trainees. The aim of this review is to summarize the current standard of available open surgical simulators and to review the literature on the benefits of open surgical simulation. Open surgical simulators currently used include live animals, cadavers, bench models, virtual reality, and software-based computer simulators. In the current literature, there are 18 different studies (including 6 randomized controlled trials and 12 cohort studies) investigating the efficacy of open surgical simulation using live animal, bench, and cadaveric models in many surgical specialties including general, cardiac, trauma, vascular, urologic, and gynecologic surgery. The current open surgical simulation studies show, in general, a significant benefit of open surgical simulation in developing the surgical skills of surgical trainees. However, these studies have their limitations including a low number of participants, variable assessment standards, and a focus on short-term results often with no follow-up assessment. The skills needed for open surgical procedures are the essential basis that a surgical trainee needs to grasp before attempting more technical procedures such as laparoscopic procedures. In this current climate of medical practice with reduced hours of surgical exposure for trainees and where the patient's safety and outcome is key, open surgical simulation is a promising adjunct to modern surgical training, filling the void between surgeons being trained in a technique and a surgeon achieving fluency in that

  9. Introduction of the computer-based operation training tools in classrooms to support simulator training

    International Nuclear Information System (INIS)

    Noji, K.; Suzuki, K.; Kobayashi, A.

    1997-01-01

    Operation training with full-scope simulators is effective to improve trainees operation competency. To obtain more effective results of simulator training, roles of the ''classroom operation training'' closely cooperated to simulator training are important. The ''classroom operation training'' is aimed at pre- and post-studies for operation knowledge related to operation training using full-scope simulators. We have been developing computer-based operation training tools which are used in classroom training sessions. As the first step, we developed the Simulator Training Replay System. This is an aiding tool in the classroom used to enhance trainees operation performance. This system can synchronously replay plant behavior on CRT display with operators action on a video monitor in the simulator training sessions. This system is used to review plant behavior - trainees response after simulator training sessions and to understand plant behavior - operation procedure before operation training. (author)

  10. Pain Assessment and Management in Nursing Education Using Computer-based Simulations.

    Science.gov (United States)

    Romero-Hall, Enilda

    2015-08-01

    It is very important for nurses to have a clear understanding of the patient's pain experience and of management strategies. However, a review of the nursing literature shows that one of the main barriers to proper pain management practice is lack of knowledge. Nursing schools are in a unique position to address the gap in pain management knowledge by facilitating the acquisition and use of knowledge by the next generation of nurses. The purpose of this article is to discuss the role of computer-based simulations as a reliable educational technology strategy that can enhance the learning experience of nursing students acquiring pain management knowledge and practice. Computer-based simulations provide a significant number of learning affordances that can help change nursing students' attitudes and behaviors toward and practice of pain assessment and management. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  11. A web-based repository of surgical simulator projects.

    Science.gov (United States)

    Leskovský, Peter; Harders, Matthias; Székely, Gábor

    2006-01-01

    The use of computer-based surgical simulators for training of prospective surgeons has been a topic of research for more than a decade. As a result, a large number of academic projects have been carried out, and a growing number of commercial products are available on the market. Keeping track of all these endeavors for established groups as well as for newly started projects can be quite arduous. Gathering information on existing methods, already traveled research paths, and problems encountered is a time consuming task. To alleviate this situation, we have established a modifiable online repository of existing projects. It contains detailed information about a large number of simulator projects gathered from web pages, papers and personal communication. The database is modifiable (with password protected sections) and also allows for a simple statistical analysis of the collected data. For further information, the surgical repository web page can be found at www.virtualsurgery.vision.ee.ethz.ch.

  12. The effect of metacognitive monitoring feedback on performance in a computer-based training simulation.

    Science.gov (United States)

    Kim, Jung Hyup

    2018-02-01

    This laboratory experiment was designed to study the effect of metacognitive monitoring feedback on performance in a computer-based training simulation. According to prior research on metacognition, the accurate checking of learning is a critical part of improving the quality of human performance. However, only rarely have researchers studied the learning effects of the accurate checking of retrospective confidence judgments (RCJs) during a computer-based military training simulation. In this study, we provided participants feedback screens after they had completed a warning task and identification task in a radar monitoring simulation. There were two groups in this experiment. One group (group A) viewed the feedback screens with the flight path of all target aircraft and the triangular graphs of both RCJ scores and human performance together. The other group (group B) only watched the feedback screens with the flight path of all target aircraft. There was no significant difference in performance improvement between groups A and B for the warning task (Day 1: group A - 0.347, group B - 0.305; Day 2: group A - 0.488, group B - 0.413). However, the identification task yielded a significant difference in performance improvement between these groups (Day 1: group A - 0.174, group B - 0.1555; Day 2: group A - 0.324, group B - 0.199). The results show that debiasing self-judgment of the identification task produces a positive training effect on learners. The findings of this study will be beneficial for designing an advanced instructional strategy in a simulation-based training environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Real-time inextensible surgical thread simulation.

    Science.gov (United States)

    Xu, Lang; Liu, Qian

    2018-03-27

    This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.

  14. Upgrade of the computer-based information systems on USNRC simulators

    International Nuclear Information System (INIS)

    Griffin, J.I.

    1998-01-01

    In late 1995, the U.S. Nuclear Regulatory Commission (USNRC) began a project to upgrade the computer-based information systems on its BWR/6 and BandW Simulators. The existing display generation hardware was very old and in need of replacement due to difficulty in obtaining spare parts and technical support. In addition, the display systems used currently each require a SEL 32/55 computer system, which is also obsolete, running the Real Time Monitor (RTM) operating system. An upgrade of the display hardware and display generation systems not only solves the problem of obsolescence of that equipment but also allows removal of the 32/55 systems. These computers are used only to support the existing display generation systems. Shortly after purchase of the replacement equipment, it was learned that the vendor was no longer going to support the methodology. Instead of implementing an unsupported concept, it was decided to implement the display systems upgrades using the Picasso-3 UIMS (User Interface Management System) and the purchased hardware. This paper describes the upgraded display systems for the BWR/6 and BandW Simulators, including the design concept, display development, hardware requirements, the simulator interface software, and problems encountered. (author)

  15. Surgical simulators in cataract surgery training.

    Science.gov (United States)

    Sikder, Shameema; Tuwairqi, Khaled; Al-Kahtani, Eman; Myers, William G; Banerjee, Pat

    2014-02-01

    Virtual simulators have been widely implemented in medical and surgical training, including ophthalmology. The increasing number of published articles in this field mandates a review of the available results to assess current technology and explore future opportunities. A PubMed search was conducted and a total of 10 articles were reviewed. Virtual simulators have shown construct validity in many modules, successfully differentiating user experience levels during simulated phacoemulsification surgery. Simulators have also shown improvements in wet-lab performance. The implementation of simulators in the residency training has been associated with a decrease in cataract surgery complication rates. Virtual reality simulators are an effective tool in measuring performance and differentiating trainee skill level. Additionally, they may be useful in improving surgical skill and patient outcomes in cataract surgery. Future opportunities rely on taking advantage of technical improvements in simulators for education and research.

  16. Simulation for ward processes of surgical care.

    Science.gov (United States)

    Pucher, Philip H; Darzi, Ara; Aggarwal, Rajesh

    2013-07-01

    The role of simulation in surgical education, initially confined to technical skills and procedural tasks, increasingly includes training nontechnical skills including communication, crisis management, and teamwork. Research suggests that many preventable adverse events can be attributed to nontechnical error occurring within a ward context. Ward rounds represent the primary point of interaction between patient and physician but take place without formalized training or assessment. The simulated ward should provide an environment in which processes of perioperative care can be performed safely and realistically, allowing multidisciplinary assessment and training of full ward rounds. We review existing literature and describe our experience in setting up our ward simulator. We examine the facilities, equipment, cost, and personnel required for establishing a surgical ward simulator and consider the scenario development, assessment, and feedback tools necessary to integrate it into a surgical curriculum. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Stanford Workshop on Surgical Simulation

    National Research Council Canada - National Science Library

    Salisbury, Kenneth

    2001-01-01

    .... The goal of this workshop was to bring together researchers and developers from around the world who focus on modeling and simulation of deformable materials for applications requiring real-time interaction...

  18. Stanford Workshop on Surgical Simulation

    National Research Council Canada - National Science Library

    Salisbury, Kenneth

    2001-01-01

    .... We were particularly interested in medical applications including simulation-based training, skills assessment and planning, as well as other non-medical domains where real-time interactivity is needed...

  19. Assessment of surgeon fatigue by surgical simulators

    Directory of Open Access Journals (Sweden)

    Tuwairqi K

    2015-04-01

    Full Text Available Khaled Tuwairqi,1 Jessica H Selter,2 Shameema Sikder3 1College of Medicine, University of Utah, Salt Lake City, UT, 2Johns Hopkins School of Medicine, 3Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA Background: The impact of fatigue on surgical performance and its implications for patient care is a growing concern. While investigators have employed a number of different tools to measure the effect of fatigue on surgical performance, the use of the surgical simulator has been increasingly implemented for this purpose. The goal of this paper is to review the published literature to achieve a better understanding of evaluation of fatigue on performance as studied with surgical simulators. Methods: A PubMed and Cochrane search was conducted using the search terms “simulator”, “surgery”, and “fatigue”. In total, 50 papers were evaluated, and 20 studies were selected after application of exclusion criteria. Articles were excluded if they did not use the simulator to assess the impact of fatigue on surgeon performance. Systematic reviews and case reports were also excluded. Results: Surgeon fatigue led to a consistent decline in cognitive function in six studies. Technical skills were evaluated in 18 studies, and a detrimental impact was reported in nine studies, while the remaining nine studies showed either no change or positive results with regard to surgical skills after experience of fatigue. Two pharmacological intervention studies reversed the detrimental impact of fatigue on cognitive function, but no change or a worsening effect was recognized for technical skills. Conclusion: Simulators are increasingly being used to evaluate the impact of fatigue on the surgeon's performance. With regard to the impact of fatigue in this regard, studies have demonstrated a consistent decline in cognitive function and mixed outcomes for technical skills. Larger studies that relate the simulator's results to real surgical

  20. Surgical simulation in orthopaedic skills training.

    Science.gov (United States)

    Atesok, Kivanc; Mabrey, Jay D; Jazrawi, Laith M; Egol, Kenneth A

    2012-07-01

    Mastering rapidly evolving orthopaedic surgical techniques requires a lengthy period of training. Current work-hour restrictions and cost pressures force trainees to face the challenge of acquiring more complex surgical skills in a shorter amount of time. As a result, alternative methods to improve the surgical skills of orthopaedic trainees outside the operating room have been developed. These methods include hands-on training in a laboratory setting using synthetic bones or cadaver models as well as software tools and computerized simulators that enable trainees to plan and simulate orthopaedic operations in a three-dimensional virtual environment. Laboratory-based training offers potential benefits in the development of basic surgical skills, such as using surgical tools and implants appropriately, achieving competency in procedures that have a steep learning curve, and assessing already acquired skills while minimizing concerns for patient safety, operating room time, and financial constraints. Current evidence supporting the educational advantages of surgical simulation in orthopaedic skills training is limited. Despite this, positive effects on the overall education of orthopaedic residents, and on maintaining the proficiency of practicing orthopaedic surgeons, are anticipated.

  1. Using Just-in-Time Information to Support Scientific Discovery Learning in a Computer-Based Simulation

    Science.gov (United States)

    Hulshof, Casper D.; de Jong, Ton

    2006-01-01

    Students encounter many obstacles during scientific discovery learning with computer-based simulations. It is hypothesized that an effective type of support, that does not interfere with the scientific discovery learning process, should be delivered on a "just-in-time" base. This study explores the effect of facilitating access to…

  2. The Role and Validity of Surgical Simulation

    OpenAIRE

    Agha, Riaz A.; Fowler, Alexander J.

    2015-01-01

    In the last three decades, simulation has become a key tool in the training of doctors and the maintenance of patient safety. Simulation offers an immersive, realistic way of learning technical skills. Recent changes to the training schemes in many surgical specialities mean that the hours spent working between senior house officer and consultant have been reduced. This, combined with other pressures (such as reduced operating hours), means that surgery has moved away from its traditional app...

  3. Virtual reality simulation in endovascular surgical training.

    LENUS (Irish Health Repository)

    Tsang, J S

    2008-08-01

    Shortened trainingtimes duetothe European Working Time Directive (EWTD) and increased public scrutiny of surgical competency have led to a move away from the traditional apprenticeship model of training. Virtual reality (VR) simulation is a fascinating innovation allowing surgeons to develop without the need to practice on real patients and it may be a solution to achieve competency within a shortened training period.

  4. An advanced simulator for orthopedic surgical training.

    Science.gov (United States)

    Cecil, J; Gupta, Avinash; Pirela-Cruz, Miguel

    2018-02-01

    The purpose of creating the virtual reality (VR) simulator is to facilitate and supplement the training opportunities provided to orthopedic residents. The use of VR simulators has increased rapidly in the field of medical surgery for training purposes. This paper discusses the creation of the virtual surgical environment (VSE) for training residents in an orthopedic surgical process called less invasive stabilization system (LISS) surgery which is used to address fractures of the femur. The overall methodology included first obtaining an understanding of the LISS plating process through interactions with expert orthopedic surgeons and developing the information centric models. The information centric models provided a structured basis to design and build the simulator. Subsequently, the haptic-based simulator was built. Finally, the learning assessments were conducted in a medical school. The results from the learning assessments confirm the effectiveness of the VSE for teaching medical residents and students. The scope of the assessment was to ensure (1) the correctness and (2) the usefulness of the VSE. Out of 37 residents/students who participated in the test, 32 showed improvements in their understanding of the LISS plating surgical process. A majority of participants were satisfied with the use of teaching Avatars and haptic technology. A paired t test was conducted to test the statistical significance of the assessment data which showed that the data were statistically significant. This paper demonstrates the usefulness of adopting information centric modeling approach in the design and development of the simulator. The assessment results underscore the potential of using VR-based simulators in medical education especially in orthopedic surgery.

  5. Incorporating simulation into gynecologic surgical training.

    Science.gov (United States)

    Wohlrab, Kyle; Jelovsek, J Eric; Myers, Deborah

    2017-11-01

    Today's educational environment has made it more difficult to rely on the Halstedian model of "see one, do one, teach one" in gynecologic surgical training. There is decreased surgical volume, but an increased number of surgical modalities. Fortunately, surgical simulation has evolved to fill the educational void. Whether it is through skill generalization or skill transfer, surgical simulation has shifted learning from the operating room back to the classroom. This article explores the principles of surgical education and ways to introduce simulation as an adjunct to residency training. We review high- and low-fidelity surgical simulators, discuss the progression of surgical skills, and provide options for skills competency assessment. Time and money are major hurdles when designing a simulation curriculum, but low-fidelity models, intradepartmental cost sharing, and utilizing local experts for simulation proctoring can aid in developing a simulation program. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study].

    Science.gov (United States)

    Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A

    The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights

  7. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    Full Text Available Abstract Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents.

  8. Simulation as a surgical teaching model.

    Science.gov (United States)

    Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos

    2018-01-01

    Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    Science.gov (United States)

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Computer-Based Simulation of an Acid-Base Titration

    Science.gov (United States)

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  11. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    Science.gov (United States)

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  12. Comparison of meaningful learning characteristics in simulated nursing practice after traditional versus computer-based simulation method: a qualitative videography study.

    Science.gov (United States)

    Poikela, Paula; Ruokamo, Heli; Teräs, Marianne

    2015-02-01

    Nursing educators must ensure that nursing students acquire the necessary competencies; finding the most purposeful teaching methods and encouraging learning through meaningful learning opportunities is necessary to meet this goal. We investigated student learning in a simulated nursing practice using videography. The purpose of this paper is to examine how two different teaching methods presented students' meaningful learning in a simulated nursing experience. The 6-hour study was divided into three parts: part I, general information; part II, training; and part III, simulated nursing practice. Part II was delivered by two different methods: a computer-based simulation and a lecture. The study was carried out in the simulated nursing practice in two universities of applied sciences, in Northern Finland. The participants in parts II and I were 40 first year nursing students; 12 student volunteers continued to part III. Qualitative analysis method was used. The data were collected using video recordings and analyzed by videography. The students who used a computer-based simulation program were more likely to report meaningful learning themes than those who were first exposed to lecture method. Educators should be encouraged to use computer-based simulation teaching in conjunction with other teaching methods to ensure that nursing students are able to receive the greatest educational benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. simEye: computer-based simulation of visual perception under various eye defects using Zernike polynomials

    OpenAIRE

    Fink, Wolfgang; Micol, Daniel

    2006-01-01

    We describe a computer eye model that allows for aspheric surfaces and a three-dimensional computer-based ray-tracing technique to simulate optical properties of the human eye and visual perception under various eye defects. Eye surfaces, such as the cornea, eye lens, and retina, are modeled or approximated by a set of Zernike polynomials that are fitted to input data for the respective surfaces. A ray-tracing procedure propagates light rays using Snell’s law of refraction from an input objec...

  14. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Carolyn L., E-mail: wangcl@uw.edu [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Schopp, Jennifer G.; Kani, Kimia [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Petscavage-Thomas, Jonelle M. [Penn State Hershey Medical Center, Department of Radiology, 500 University Drive, Hershey, PA 17033 (United States); Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H. [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States)

    2013-12-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation.

  15. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    International Nuclear Information System (INIS)

    Wang, Carolyn L.; Schopp, Jennifer G.; Kani, Kimia; Petscavage-Thomas, Jonelle M.; Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H.

    2013-01-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation

  16. [Simulation training in surgical education - application of virtual reality laparoscopic simulators in a surgical skills course].

    Science.gov (United States)

    Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J

    2012-04-01

    Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the

  17. Design and development of a computer based simulator to support learning of radiographic image quality

    Energy Technology Data Exchange (ETDEWEB)

    Costaridou, L; Pitoura, T; Panayiotakis, G; Pallikarakis, N [Department of Medical Physics, School of Medicine, University of Patras, 265 00 Patras (Greece); Hatzis, K [Institute of Biomedical Technology, Ellinos Stratiotou 50A, 264 41 Patras (Greece)

    1994-12-31

    A training simulator has been developed to offer a structured and functional approach to radiographic imaging procedures and comprehensive understanding of interrelations between physical and technical input parameters of a radiographic imaging system and characteristics of image quality. The system addresses training needs of radiographers and radiology clinicians. The simulator is based on procedural simulation enhanced by a hypertextual model of information organization. It is supported by an image data base, which supplies and enriches the simulator. The simulation is controlled by a browsing facility which corresponds to several hierachical levels of use of the underlying multimodal data base, organized as imaging tasks. Representative tasks are : production of a single radiograph or production of functional sets of radiographs exhibiting parameter effects on image characteristics. System parameters such as patient positioning, focus to patient distance, magnification, field dimensions, focal spot size, tube voltage, tube current and exposure time are under user control. (authors). 7 refs, 2 figs.

  18. Design and development of a computer based simulator to support learning of radiographic image quality

    International Nuclear Information System (INIS)

    Costaridou, L.; Pitoura, T.; Panayiotakis, G.; Pallikarakis, N.; Hatzis, K.

    1994-01-01

    A training simulator has been developed to offer a structured and functional approach to radiographic imaging procedures and comprehensive understanding of interrelations between physical and technical input parameters of a radiographic imaging system and characteristics of image quality. The system addresses training needs of radiographers and radiology clinicians. The simulator is based on procedural simulation enhanced by a hypertextual model of information organization. It is supported by an image data base, which supplies and enriches the simulator. The simulation is controlled by a browsing facility which corresponds to several hierachical levels of use of the underlying multimodal data base, organized as imaging tasks. Representative tasks are : production of a single radiograph or production of functional sets of radiographs exhibiting parameter effects on image characteristics. System parameters such as patient positioning, focus to patient distance, magnification, field dimensions, focal spot size, tube voltage, tube current and exposure time are under user control. (authors)

  19. A Personal Computer-Based Simulator for Nuclear-Heating Reactors

    International Nuclear Information System (INIS)

    Liu Jie; Zhang Zuoyi; Lu Dongsen; Shi Zhengang; Chen Xiaoming; Dong Yujie

    2000-01-01

    A personal computer (PC)-based simulator for nuclear-heating reactors (NHRs), PC-NHR, has been developed to provide an educational tool for understanding the design and operational characteristics of an NHR system. A general description of the reactor system as well as the technical basis for the design and operation of the heating reactor is provided. The basic models and equations for the NHR simulation are then given, which include models of the reactor core, the reactor coolant system, the containment, and the control system. The graphical user interface is described in detail to provide a manual for the user to operate the simulator properly. Steady state and several transients have been simulated. The results of PC-NHR are in good agreement with design data and the results of RETRAN-02. The real-time capability is also confirmed

  20. The Simulation Computer Based Learning (SCBL) for Short Circuit Multi Machine Power System Analysis

    Science.gov (United States)

    Rahmaniar; Putri, Maharani

    2018-03-01

    Strengthening Competitiveness of human resources become the reply of college as a conductor of high fomal education. Electrical Engineering Program UNPAB (Prodi TE UNPAB) as one of the department of electrical engineering that manages the field of electrical engineering expertise has a very important part in preparing human resources (HR), Which is required by where graduates are produced by DE UNPAB, Is expected to be able to compete globally, especially related to the implementation of Asean Economic Community (AEC) which requires the active participation of graduates with competence and quality of human resource competitiveness. Preparation of HR formation Competitive is done with the various strategies contained in the Seven (7) Higher Education Standard, one part of which is the implementation of teaching and learning process in Electrical system analysis with short circuit analysis (SCA) This course is a course The core of which is the basis for the competencies of other subjects in the advanced semester at Development of Computer Based Learning model (CBL) is done in the learning of interference analysis of multi-machine short circuit which includes: (a) Short-circuit One phase, (B) Two-phase Short Circuit Disruption, (c) Ground Short Circuit Disruption, (d) Short Circuit Disruption One Ground Floor Development of CBL learning model for Electrical System Analysis course provides space for students to be more active In learning in solving complex (complicated) problems, so it is thrilling Ilkan flexibility of student learning how to actively solve the problem of short-circuit analysis and to form the active participation of students in learning (Student Center Learning, in the course of electrical power system analysis.

  1. A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem

    Science.gov (United States)

    Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.

    2010-01-01

    To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…

  2. Data Entry Skills in a Computer-based Spread Sheet Amongst Postgraduate Medical Students: A Simulation Based Descriptive Assessment.

    Science.gov (United States)

    Khan, Amir Maroof; Shah, Dheeraj; Chatterjee, Pranab

    2014-07-01

    In India, research work in the form of a thesis is a mandatory requirement for the postgraduate (PG) medical students. Data entry in a computer-based spread sheet is one of the important basic skills for research, which has not yet been studied. This study was conducted to assess the data entry skills of the 2(nd) year PG medical students of a medical college of North India. A cross-sectional, descriptive study was conducted among 111 second year PG students by using four simulated filled case record forms and a computer-based spread sheet in which data entry was to be carried out. On a scale of 0-10, only 17.1% of the students scored more than seven. The specific sub-skills that were found to be lacking in more than half of the respondents were as follows: Inappropriate coding (93.7%), long variable names (51.4%), coding not being done for all the variables (76.6%), missing values entered in a non-uniform manner (84.7%) and two variables entered in the same column in the case of blood pressure reading (80.2%). PG medical students were not found to be proficient in data entry skill and this can act as a barrier to do research. This being a first of its kind study in India, more research is needed to understand this issue and then include this yet neglected aspect in teaching research methodology to the medical students.

  3. Computer-Based CPR Simulation Towards Validation of AHA/ERC Guidelines.

    Science.gov (United States)

    John, Alka Rachel; Manivannan, M; Ramakrishnan, T V

    2017-06-01

    As per the AHA 2015 and ERC 2015 guidelines for resuscitation, chest compression depth should be between 5 and 6 cm with a rate of 100-120 compressions per minute. Theoretical validation of these guidelines is still elusive. We developed a computer model of the cardiopulmonary resuscitation (CPR) system to validate these guidelines. A lumped element computer model of the cardiovascular system was developed to simulate cardiac arrest and CPR. Cardiac output was compared for a range of compression pressures and frequencies. It was observed from our investigation that there is an optimum compression pressure and rate. The maximum cardiac output occurred at 100 mmHg, which is approximately 5.7 cm, and in the range of 100 to 120 compressions per minute with an optimum value at 110 compressions per minute, validating the guidelines. Increasing the pressure or the depth of compression beyond the optimum, limits the blood flow by depleting the volume in the cardiac chambers and not allowing for an effective stroke volume. Similarly increasing the compression rate beyond the optimum degrades the ability of the chambers to pump blood. The results also bring out the importance of complete recoil of the chest after each compression with more than 400% increase in cardiac output from 90% recoil to 100% recoil. Our simulation predicts that the recommendation to compress harder and faster is not the best counsel as there is an optimum compression pressure and rate for high-quality CPR.

  4. Data entry skills in a computer-based spread sheet amongst postgraduate medical students: A simulation based descriptive assessment

    Directory of Open Access Journals (Sweden)

    Amir Maroof Khan

    2014-01-01

    Full Text Available Background: In India, research work in the form of a thesis is a mandatory requirement for the postgraduate (PG medical students. Data entry in a computer-based spread sheet is one of the important basic skills for research, which has not yet been studied. This study was conducted to assess the data entry skills of the 2 nd year PG medical students of a medical college of North India. Materials and Methods: A cross-sectional, descriptive study was conducted among 111 second year PG students by using four simulated filled case record forms and a computer-based spread sheet in which data entry was to be carried out. Results: On a scale of 0-10, only 17.1% of the students scored more than seven. The specific sub-skills that were found to be lacking in more than half of the respondents were as follows: Inappropriate coding (93.7%, long variable names (51.4%, coding not being done for all the variables (76.6%, missing values entered in a non-uniform manner (84.7% and two variables entered in the same column in the case of blood pressure reading (80.2%. Conclusion: PG medical students were not found to be proficient in data entry skill and this can act as a barrier to do research. This being a first of its kind study in India, more research is needed to understand this issue and then include this yet neglected aspect in teaching research methodology to the medical students.

  5. Virtual Reality Surgical Simulation: Implications for Resection of Intracranial Gliomas.

    Science.gov (United States)

    Dakson, Ayoub; Hong, Murray; Clarke, David B

    2018-01-01

    Surgical simulation has the potential to play important roles in surgical training and preoperative planning. The advent of virtual reality (VR) with tactile haptic feedback has revolutionized surgical simulation, creating a novel environment for residents to learn manual skills without compromising patient safety. This concept is particularly relevant in neurosurgical training where the acquired skill set demands performance of technically challenging tasks under pressure and where the consequences of error are significant. The evolution of VR simulation is discussed here within the context of neurosurgical training and its implications for resection of intracranial gliomas. VR holds the promise of providing a useful educational tool for neurosurgical residents to hone their surgical skills and for neurosurgeons to rehearse specific segments of the surgery prior to the actual operation. Also discussed are several important issues related to simulation and simulation-based training that will need to be addressed before widespread adoption of VR simulation as a useful technology. © 2018 S. Karger AG, Basel.

  6. LR-Spring Mass Model for Cardiac Surgical Simulation

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination with a d......The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination...

  7. Introduction of a computer-based method for automated planning of reduction paths under consideration of simulated muscular forces.

    Science.gov (United States)

    Buschbaum, Jan; Fremd, Rainer; Pohlemann, Tim; Kristen, Alexander

    2017-08-01

    Reduction is a crucial step in the surgical treatment of bone fractures. Finding an optimal path for restoring anatomical alignment is considered technically demanding because collisions as well as high forces caused by surrounding soft tissues can avoid desired reduction movements. The repetition of reduction movements leads to a trial-and-error process which causes a prolonged duration of surgery. By planning an appropriate reduction path-an optimal sequence of target-directed movements-these problems should be overcome. For this purpose, a computer-based method has been developed. Using the example of simple femoral shaft fractures, 3D models are generated out of CT images. A reposition algorithm aligns both fragments by reconstructing their broken edges. According to the criteria of a deduced planning strategy, a modified A*-algorithm searches collision-free route of minimal force from the dislocated into the computed target position. Muscular forces are considered using a musculoskeletal reduction model (OpenSim model), and bone collisions are detected by an appropriate method. Five femoral SYNBONE models were broken into different fracture classification types and were automatically reduced from ten randomly selected displaced positions. Highest mean translational and rotational error for achieving target alignment is [Formula: see text] and [Formula: see text]. Mean value and standard deviation of occurring forces are [Formula: see text] for M. tensor fasciae latae and [Formula: see text] for M. semitendinosus over all trials. These pathways are precise, collision-free, required forces are minimized, and thus regarded as optimal paths. A novel method for planning reduction paths under consideration of collisions and muscular forces is introduced. The results deliver additional knowledge for an appropriate tactical reduction procedure and can provide a basis for further navigated or robotic-assisted developments.

  8. Do medical students’ scores using different assessment instruments predict their scores in clinical reasoning using a computer-based simulation?

    Directory of Open Access Journals (Sweden)

    Fida M

    2015-02-01

    Full Text Available Mariam Fida,1 Salah Eldin Kassab2 1Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain; 2Department of Medical Education, Faculty of Medicine, Suez Canal University, Ismailia, Egypt Purpose: The development of clinical problem-solving skills evolves over time and requires structured training and background knowledge. Computer-based case simulations (CCS have been used for teaching and assessment of clinical reasoning skills. However, previous studies examining the psychometric properties of CCS as an assessment tool have been controversial. Furthermore, studies reporting the integration of CCS into problem-based medical curricula have been limited. Methods: This study examined the psychometric properties of using CCS software (DxR Clinician for assessment of medical students (n=130 studying in a problem-based, integrated multisystem module (Unit IX during the academic year 2011–2012. Internal consistency reliability of CCS scores was calculated using Cronbach's alpha statistics. The relationships between students' scores in CCS components (clinical reasoning, diagnostic performance, and patient management and their scores in other examination tools at the end of the unit including multiple-choice questions, short-answer questions, objective structured clinical examination (OSCE, and real patient encounters were analyzed using stepwise hierarchical linear regression. Results: Internal consistency reliability of CCS scores was high (α=0.862. Inter-item correlations between students' scores in different CCS components and their scores in CCS and other test items were statistically significant. Regression analysis indicated that OSCE scores predicted 32.7% and 35.1% of the variance in clinical reasoning and patient management scores, respectively (P<0.01. Multiple-choice question scores, however, predicted only 15.4% of the variance in diagnostic performance scores (P<0.01, while

  9. Making eco-friendly transportation safer: developing computer-based simulations to assess of the impacts of bicycle accident prevention interventions on healthcare utilization.

    Science.gov (United States)

    Juhra, Christian; Borycki, Elizabeth M; Kushniruk, Andre W; Anderson, Jim; Anderson, Marilyn

    2011-01-01

    Computer-based modeling and simulations are becoming increasingly used for applications in health and safety. In this paper we describe a multi-phase project aimed at modeling bicycle accidents in Munster, Germany. The work involved a first phase of collecting empirical data on accident rates and severity. In the second phase a computer-based simulation model of bicycle accidents was created, using data from phase one to identify relevant parameters in the model. Finally, initial results from running the model are described that will be used to inform decision making regarding safety initiatives.

  10. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    2018-05-01

    Full Text Available Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects’ performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Resumo: Introdução: O objetivo prim

  11. Virtual Reality Simulator Systems in Robotic Surgical Training.

    Science.gov (United States)

    Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo

    2018-06-01

    The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.

  12. Creation and Global Deployment of a Mobile, Application-Based Cognitive Simulator for Cardiac Surgical Procedures.

    Science.gov (United States)

    Brewer, Zachary E; Ogden, William David; Fann, James I; Burdon, Thomas A; Sheikh, Ahmad Y

    Several modern learning frameworks (eg, cognitive apprenticeship, anchored instruction, and situated cognition) posit the utility of nontraditional methods for effective experiential learning. Thus, development of novel educational tools emphasizing the cognitive framework of operative sequences may be of benefit to surgical trainees. We propose the development and global deployment of an effective, mobile cognitive cardiac surgical simulator. In methods, 16 preclinical medical students were assessed. Overall, 4 separate surgical modules (sternotomy, cannulation, decannulation, and sternal closure) were created utilizing the Touch Surgery (London, UK) platform. Modules were made available to download free of charge for use on mobile devices. Usage data were collected over a 6-month period. Educational efficacy of the modules was evaluated by randomizing a cohort of medical students to either module usage or traditional, reading-based self-study, followed by a multiple-choice learning assessment tool. In results, downloads of the simulator achieved global penetrance, with highest usage in the USA, Brazil, Italy, UK, and India. Overall, 5368 unique users conducted a total of 1971 hours of simulation. Evaluation of the medical student cohort revealed significantly higher assessment scores in those randomized to module use versus traditional reading (75% ± 9% vs 61% ± 7%, respectively; P < 0.05). In conclusion, this study represents the first effort to create a mobile, interactive cognitive simulator for cardiac surgery. Simulators of this type may be effective for the training and assessment of surgical students. We investigated whether an interactive, mobile-computing-based cognitive task simulator for cardiac surgery could be developed, deployed, and validated. Our findings suggest that such simulators may be a useful learning tool. Copyright © 2016. Published by Elsevier Inc.

  13. A medical platform for simulation of surgical procedures.

    Science.gov (United States)

    Thurfjell, L; Lundin, A; McLaughlin, J

    2001-01-01

    Surgery simulation is a promising technique for training of surgical procedures. The overall goal for any surgical simulator is to allow for efficient training of the skills required and to improve learning by giving the user proper feedback. This goal is easier achieved if the training is performed in a realistic environment. Therefore functionality such as soft tissue deformation, tearing and cutting, penetration of soft tissue etc. is necessary. Furthermore, a realistic simulator must provide haptic feedback so that all senses match, that is, there should be a correspondence between what you see and what you feel with your hands. In this paper we describe a medical platform that provides all this functionality. It is based on the Reachln Magma API, which has been extended for surgery simulation. We describe the development of the platform and illustrate the use of it for the development of two different types of surgical simulators, both of which represents work in progress.

  14. Surgical simulation training in orthopedics: current insights.

    Science.gov (United States)

    Kalun, Portia; Wagner, Natalie; Yan, James; Nousiainen, Markku T; Sonnadara, Ranil R

    2018-01-01

    While the knowledge required of residents training in orthopedic surgery continues to increase, various factors, including reductions in work hours, have resulted in decreased clinical learning opportunities. Recent work suggests residents graduate from their training programs without sufficient exposure to key procedures. In response, simulation is increasingly being incorporated into training programs to supplement clinical learning. This paper reviews the literature to explore whether skills learned in simulation-based settings results in improved clinical performance in orthopedic surgery trainees. A scoping review of the literature was conducted to identify papers discussing simulation training in orthopedic surgery. We focused on exploring whether skills learned in simulation transferred effectively to a clinical setting. Experimental studies, systematic reviews, and narrative reviews were included. A total of 15 studies were included, with 11 review papers and four experimental studies. The review articles reported little evidence regarding the transfer of skills from simulation to the clinical setting, strong evidence that simulator models discriminate among different levels of experience, varied outcome measures among studies, and a need to define competent performance in both simulated and clinical settings. Furthermore, while three out of the four experimental studies demonstrated transfer between the simulated and clinical environments, methodological study design issues were identified. Our review identifies weak evidence as to whether skills learned in simulation transfer effectively to clinical practice for orthopedic surgery trainees. Given the increased reliance on simulation, there is an immediate need for comprehensive studies that focus on skill transfer, which will allow simulation to be incorporated effectively into orthopedic surgery training programs.

  15. [Simulation-based robot-assisted surgical training].

    Science.gov (United States)

    Kolontarev, K B; Govorov, A V; Rasner, P I; Sheptunov, S A; Prilepskaya, E A; Maltsev, E G; Pushkar, D Yu

    2015-12-01

    Since the first use of robotic surgical system in 2000, the robot-assisted technology has gained wide popularity throughout the world. Robot-assisted surgical training is a complex issue that requires significant efforts from students and teacher. During the last two decades, simulation-based training had received active development due to wide-spread occurrence and popularization of laparoscopic and robot-assisted surgical techniques. We performed a systematic review to identify the currently available simulators for robot-assisted surgery. We searched the Medline and Pubmed, English sources of literature data, using the following key words and phrases: "robotics", "robotic surgery", "computer assisted surgery", "simulation", "computer simulation", "virtual reality", "surgical training", and "surgical education". There were identified 565 publications, which meet the key words and phrases; 19 publications were selected for the final analysis. It was established that simulation-based training is the most promising teaching tool that can be used in the training of the next generation robotic surgeons. Today the use of simulators to train surgeons is validated. Price of devices is an obvious barrier for inclusion in the program for training of robotic surgeons, but the lack of this tool will result in a sharp increase in the duration of specialists training.

  16. Progress in virtual reality simulators for surgical training and certification.

    Science.gov (United States)

    de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D

    2011-02-21

    There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.

  17. Haptic Feedback for the GPU-based Surgical Simulator

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Mosegaard, Jesper

    2006-01-01

    The GPU has proven to be a powerful processor to compute spring-mass based surgical simulations. It has not previously been shown however, how to effectively implement haptic interaction with a simulation running entirely on the GPU. This paper describes a method to calculate haptic feedback...... with limited performance cost. It allows easy balancing of the GPU workload between calculations of simulation, visualisation, and the haptic feedback....

  18. Challenges to the development of complex virtual reality surgical simulations.

    Science.gov (United States)

    Seymour, N E; Røtnes, J S

    2006-11-01

    Virtual reality simulation in surgical training has become more widely used and intensely investigated in an effort to develop safer, more efficient, measurable training processes. The development of virtual reality simulation of surgical procedures has begun, but well-described technical obstacles must be overcome to permit varied training in a clinically realistic computer-generated environment. These challenges include development of realistic surgical interfaces and physical objects within the computer-generated environment, modeling of realistic interactions between objects, rendering of the surgical field, and development of signal processing for complex events associated with surgery. Of these, the realistic modeling of tissue objects that are fully responsive to surgical manipulations is the most challenging. Threats to early success include relatively limited resources for development and procurement, as well as smaller potential for return on investment than in other simulation industries that face similar problems. Despite these difficulties, steady progress continues to be made in these areas. If executed properly, virtual reality offers inherent advantages over other training systems in creating a realistic surgical environment and facilitating measurement of surgeon performance. Once developed, complex new virtual reality training devices must be validated for their usefulness in formative training and assessment of skill to be established.

  19. GPU Accelerated Surgical Simulators for Complex Morhpology

    DEFF Research Database (Denmark)

    Mosegaard, Jesper; Sørensen, Thomas Sangild

    2005-01-01

    a springmass system in order to simulate a complex organ such as the heart. Computations are accelerated by taking advantage of modern graphics processing units (GPUs). Two GPU implementations are presented. They vary in their generality of spring connections and in the speedup factor they achieve...

  20. Facilitating Integration of Electron Beam Lithography Devices with Interactive Videodisc, Computer-Based Simulation and Job Aids.

    Science.gov (United States)

    Von Der Linn, Robert Christopher

    A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…

  1. [Animal experimentation, computer simulation and surgical research].

    Science.gov (United States)

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  2. Visuospatial Aptitude Testing Differentially Predicts Simulated Surgical Skill.

    Science.gov (United States)

    Hinchcliff, Emily; Green, Isabel; Destephano, Christopher; Cox, Mary; Smink, Douglas; Kumar, Amanika; Hokenstad, Erik; Bengtson, Joan; Cohen, Sarah

    2018-02-05

    To determine if visuospatial perception (VSP) testing is correlated to simulated or intraoperative surgical performance as rated by the American College of Graduate Medical Education (ACGME) milestones. Classification II-2 SETTING: Two academic training institutions PARTICIPANTS: 41 residents, including 19 Brigham and Women's Hospital and 22 Mayo Clinic residents from three different specialties (OBGYN, general surgery, urology). Participants underwent three different tests: visuospatial perception testing (VSP), Fundamentals of Laparoscopic Surgery (FLS®) peg transfer, and DaVinci robotic simulation peg transfer. Surgical grading from the ACGME milestones tool was obtained for each participant. Demographic and subject background information was also collected including specialty, year of training, prior experience with simulated skills, and surgical interest. Standard statistical analysis using Student's t test were performed, and correlations were determined using adjusted linear regression models. In univariate analysis, BWH and Mayo training programs differed in both times and overall scores for both FLS® peg transfer and DaVinci robotic simulation peg transfer (p<0.05 for all). Additionally, type of residency training impacted time and overall score on robotic peg transfer. Familiarity with tasks correlated with higher score and faster task completion (p= 0.05 for all except VSP score). There was no difference in VSP scores by program, specialty, or year of training. In adjusted linear regression modeling, VSP testing was correlated only to robotic peg transfer skills (average time p=0.006, overall score p=0.001). Milestones did not correlate to either VSP or surgical simulation testing. VSP score was correlated with robotic simulation skills but not with FLS skills or ACGME milestones. This suggests that the ability of VSP score to predict competence differs between tasks. Therefore, further investigation is required into aptitude testing, especially prior

  3. A GPU Accelerated Spring Mass System for Surgical Simulation

    DEFF Research Database (Denmark)

    Mosegaard, Jesper; Sørensen, Thomas Sangild

    2005-01-01

    There is a growing demand for surgical simulators to dofast and precise calculations of tissue deformation to simulateincreasingly complex morphology in real-time. Unfortunately, evenfast spring-mass based systems have slow convergence rates for largemodels. This paper presents a method to accele...... to accelerate computation of aspring-mass system in order to simulate a complex organ such as theheart. This acceleration is achieved by taking advantage of moderngraphics processing units (GPU)....

  4. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Surgical resource utilization in urban terrorist bombing: a computer simulation.

    Science.gov (United States)

    Hirshberg, A; Stein, M; Walden, R

    1999-09-01

    The objective of this study was to analyze the utilization of surgical staff and facilities during an urban terrorist bombing incident. A discrete-event computer model of the emergency room and related hospital facilities was constructed and implemented, based on cumulated data from 12 urban terrorist bombing incidents in Israel. The simulation predicts that the admitting capacity of the hospital depends primarily on the number of available surgeons and defines an optimal staff profile for surgeons, residents, and trauma nurses. The major bottlenecks in the flow of critical casualties are the shock rooms and the computed tomographic scanner but not the operating rooms. The simulation also defines the number of reinforcement staff needed to treat noncritical casualties and shows that radiology is the major obstacle to the flow of these patients. Computer simulation is an important new tool for the optimization of surgical service elements for a multiple-casualty situation.

  6. Effect of music on surgical skill during simulated intraocular surgery.

    Science.gov (United States)

    Kyrillos, Ralph; Caissie, Mathieu

    2017-12-01

    To evaluate the effect of Mozart music compared to silence on anterior segment surgical skill in the context of simulated intraocular surgery. Prospective stratified and randomized noninferiority trial. Fourteen ophthalmologists and 12 residents in ophthalmology. All participants were asked to perform 4 sets of predetermined tasks on the EyeSI surgical simulator (VRmagic, Mannheim, Germany). The participants completed 1 Capsulorhexis task and 1 Anti-Tremor task during 3 separate visits. The first 2 sets determined the basic level on day 1. Then, the participants were stratified by surgical experience and randomized to be exposed to music (Mozart sonata for 2 pianos in D-K448) during either the third or the fourth set of tasks (day 2 or 3). Surgical skill was evaluated using the parameters recorded by the simulator such as "Total score" and "Time" for both tasks and task-specific parameters such as "Out of tolerance percentage" for the Anti-Tremor task and "Deviation of rhexis radius from 2.5 mm," "Roundness," and "Centering" for the Capsulorhexis task. The data were analyzed using the Wilcoxon signed-rank test. No statistically significant differences were noted between exposure and nonexposure for all the Anti-Tremor task parameters as well as most parameters for the Capsulorhexis task. Two parameters for the Capsulorhexis task showed a strong trend for improvement with exposure to music ("Total score" +23.3%, p = 0.025; "Roundness" +33.0%, p = 0.037). Exposure to music did not negatively impact surgical skills. Moreover, a trend for improvement was shown while listening to Mozart music. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  7. Team play in surgical education: a simulation-based study.

    Science.gov (United States)

    Marr, Mollie; Hemmert, Keith; Nguyen, Andrew H; Combs, Ronnie; Annamalai, Alagappan; Miller, George; Pachter, H Leon; Turner, James; Rifkind, Kenneth; Cohen, Steven M

    2012-01-01

    Simulation-based training provides a low-stress learning environment where real-life emergencies can be practiced. Simulation can improve surgical education and patient care in crisis situations through a team approach emphasizing interpersonal and communication skills. This study assessed the effects of simulation-based training in the context of trauma resuscitation in teams of trainees. In a New York State-certified level I trauma center, trauma alerts were assessed by a standardized video review process. Simulation training was provided in various trauma situations followed by a debriefing period. The outcomes measured included the number of healthcare workers involved in the resuscitation, the percentage of healthcare workers in role position, time to intubation, time to intubation from paralysis, time to obtain first imaging study, time to leave trauma bay for computed tomography scan or the operating room, presence of team leader, and presence of spinal stabilization. Thirty cases were video analyzed presimulation and postsimulation training. The two data sets were compared via a 1-sided t test for significance (p role positions increased from 57.8% to 83.6% (p = 0.46). The time to intubation from paralysis decreased from 3.9 to 2.8 minutes (p team leader increased from 64% to 90% (p team interaction and educational competencies. Providing simulation training as a tool for surgical education may enhance patient care. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  8. Advanced computer-based training

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H D; Martin, H D

    1987-05-01

    The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment.

  9. Advanced computer-based training

    International Nuclear Information System (INIS)

    Fischer, H.D.; Martin, H.D.

    1987-01-01

    The paper presents new techniques of computer-based training for personnel of nuclear power plants. Training on full-scope simulators is further increased by use of dedicated computer-based equipment. An interactive communication system runs on a personal computer linked to a video disc; a part-task simulator runs on 32 bit process computers and shows two versions: as functional trainer or as on-line predictor with an interactive learning system (OPAL), which may be well-tailored to a specific nuclear power plant. The common goal of both develoments is the optimization of the cost-benefit ratio for training and equipment. (orig.) [de

  10. Surgical skills simulation in trauma and orthopaedic training.

    Science.gov (United States)

    Stirling, Euan R B; Lewis, Thomas L; Ferran, Nicholas A

    2014-12-19

    Changing patterns of health care delivery and the rapid evolution of orthopaedic surgical techniques have made it increasingly difficult for trainees to develop expertise in their craft. Working hour restrictions and a drive towards senior led care demands that proficiency be gained in a shorter period of time whilst requiring a greater skill set than that in the past. The resulting conflict between service provision and training has necessitated the development of alternative methods in order to compensate for the reduction in 'hands-on' experience. Simulation training provides the opportunity to develop surgical skills in a controlled environment whilst minimising risks to patient safety, operating theatre usage and financial expenditure. Many options for simulation exist within orthopaedics from cadaveric or prosthetic models, to arthroscopic simulators, to advanced virtual reality and three-dimensional software tools. There are limitations to this form of training, but it has significant potential for trainees to achieve competence in procedures prior to real-life practice. The evidence for its direct transferability to operating theatre performance is limited but there are clear benefits such as increasing trainee confidence and familiarity with equipment. With progressively improving methods of simulation available, it is likely to become more important in the ongoing and future training and assessment of orthopaedic surgeons.

  11. Simulation based planning of surgical interventions in pediatric cardiology

    Science.gov (United States)

    Marsden, Alison L.

    2013-10-01

    Hemodynamics plays an essential role in the progression and treatment of cardiovascular disease. However, while medical imaging provides increasingly detailed anatomical information, clinicians often have limited access to hemodynamic data that may be crucial to patient risk assessment and treatment planning. Computational simulations can now provide detailed hemodynamic data to augment clinical knowledge in both adult and pediatric applications. There is a particular need for simulation tools in pediatric cardiology, due to the wide variation in anatomy and physiology in congenital heart disease patients, necessitating individualized treatment plans. Despite great strides in medical imaging, enabling extraction of flow information from magnetic resonance and ultrasound imaging, simulations offer predictive capabilities that imaging alone cannot provide. Patient specific simulations can be used for in silico testing of new surgical designs, treatment planning, device testing, and patient risk stratification. Furthermore, simulations can be performed at no direct risk to the patient. In this paper, we outline the current state of the art in methods for cardiovascular blood flow simulation and virtual surgery. We then step through pressing challenges in the field, including multiscale modeling, boundary condition selection, optimization, and uncertainty quantification. Finally, we summarize simulation results of two representative examples from pediatric cardiology: single ventricle physiology, and coronary aneurysms caused by Kawasaki disease. These examples illustrate the potential impact of computational modeling tools in the clinical setting.

  12. The role of simulation in developing surgical skills.

    Science.gov (United States)

    Akhtar, K S N; Chen, Alvin; Standfield, N J; Gupte, C M

    2014-06-01

    Surgical training has followed the master-apprentice model for centuries but is currently undergoing a paradigm shift. The traditional model is inefficient with no guarantee of case mix, quality, or quantity. There is a growing focus on competency-based medical education in response to restrictions on doctors' working hours and the traditional mantra of "see one, do one, teach one" is being increasingly questioned. The medical profession is subject to more scrutiny than ever before and is facing mounting financial, clinical, and political pressures. Simulation may be a means of addressing these challenges. It provides a way for trainees to practice technical tasks in a protected environment without putting patients at risk and helps to shorten the learning curve. The evidence for simulation-based training in orthopedic surgery using synthetic models, cadavers, and virtual reality simulators is constantly developing, though further work is needed to ensure the transfer of skills to the operating theatre.

  13. Visualization and simulation techniques for surgical simulators using actual patient's data.

    Science.gov (United States)

    Radetzky, Arne; Nürnberger, Andreas

    2002-11-01

    Because of the increasing complexity of surgical interventions research in surgical simulation became more and more important over the last years. However, the simulation of tissue deformation is still a challenging problem, mainly due to the short response times that are required for real-time interaction. The demands to hard and software are even larger if not only the modeled human anatomy is used but the anatomy of actual patients. This is required if the surgical simulator should be used as training medium for expert surgeons rather than students. In this article, suitable visualization and simulation methods for surgical simulation utilizing actual patient's datasets are described. Therefore, the advantages and disadvantages of direct and indirect volume rendering for the visualization are discussed and a neuro-fuzzy system is described, which can be used for the simulation of interactive tissue deformations. The neuro-fuzzy system makes it possible to define the deformation behavior based on a linguistic description of the tissue characteristics or to learn the dynamics by using measured data of real tissue. Furthermore, a simulator for minimally-invasive neurosurgical interventions is presented that utilizes the described visualization and simulation methods. The structure of the simulator is described in detail and the results of a system evaluation by an experienced neurosurgeon--a quantitative comparison between different methods of virtual endoscopy as well as a comparison between real brain images and virtual endoscopies--are given. The evaluation proved that the simulator provides a higher realism of the visualization and simulation then other currently available simulators. Copyright 2002 Elsevier Science B.V.

  14. Multidisciplinary crisis simulations: the way forward for training surgical teams.

    Science.gov (United States)

    Undre, Shabnam; Koutantji, Maria; Sevdalis, Nick; Gautama, Sanjay; Selvapatt, Nowlan; Williams, Samantha; Sains, Parvinderpal; McCulloch, Peter; Darzi, Ara; Vincent, Charles

    2007-09-01

    High-reliability organizations have stressed the importance of non-technical skills for safety and of regularly providing such training to their teams. Recently safety skills training has been applied in the practice of medicine. In this study, we developed and piloted a module using multidisciplinary crisis scenarios in a simulated operating theatre to train entire surgical teams. Twenty teams participated (n = 80); each consisted of a trainee surgeon, anesthetist, operating department practitioner (ODP), and scrub nurse. Crisis scenarios such as difficult intubation, hemorrhage, or cardiac arrest were simulated. Technical and non-technical skills (leadership, communication, team skills, decision making, and vigilance), were assessed by clinical experts and by two psychologists using relevant technical and human factors rating scales. Participants received technical and non-technical feedback, and the whole team received feedback on teamwork. Trainees assessed the training favorably. For technical skills there were no differences between surgical trainees' assessment scores and the assessment scores of the trainers. However, nurses overrated their technical skill. Regarding non-technical skills, leadership and decision making were scored lower than the other three non-technical skills (communication, team skills, and vigilance). Surgeons scored lower than nurses on communication and teamwork skills. Surgeons and anesthetists scored lower than nurses on leadership. Multidisciplinary simulation-based team training is feasible and well received by surgical teams. Non-technical skills can be assessed alongside technical skills, and differences in performance indicate where there is a need for further training. Future work should focus on developing team performance measures for training and on the development and evaluation of systematic training for technical and non-technical skills to enhance team performance and safety in surgery.

  15. Evaluating Computer-Based Simulations, Multimedia and Animations that Help Integrate Blended Learning with Lectures in First Year Statistics

    Science.gov (United States)

    Neumann, David L.; Neumann, Michelle M.; Hood, Michelle

    2011-01-01

    The discipline of statistics seems well suited to the integration of technology in a lecture as a means to enhance student learning and engagement. Technology can be used to simulate statistical concepts, create interactive learning exercises, and illustrate real world applications of statistics. The present study aimed to better understand the…

  16. Implementation of full patient simulation training in surgical residency.

    Science.gov (United States)

    Fernandez, Gladys L; Lee, Patrick C; Page, David W; D'Amour, Elizabeth M; Wait, Richard B; Seymour, Neal E

    2010-01-01

    Simulated patient care has gained acceptance as a medical education tool but is underused in surgical training. To improve resident clinical management in critical situations relevant to the surgical patient, high-fidelity full patient simulation training was instituted at Baystate Medical Center in 2005 and developed during successive years. We define surgical patient simulation as clinical management performed in a high fidelity environment using a manikin simulator. This technique is intended to be specifically modeled experiential learning related to the knowledge, skills, and behaviors that are fundamental to patient care. We report 3 academic years' use of a patient simulation curriculum. Learners were PGY 1-3 residents; 26 simulated patient care experiences were developed based on (1) designation as a critical management problem that would otherwise be difficult to practice, (2) ability to represent the specific problem in simulation, (3) relevance to the American Board of Surgery (ABS) certifying examination, and/or (4) relevance to institutional quality or morbidity and mortality reports. Although training started in 2005, data are drawn from the period of systematic and mandatory training spanning from July 2006 to June 2009. Training occurred during 1-hour sessions using a computer-driven manikin simulator (METI, Sarasota, Florida). Educational content was provided either before or during presimulation briefing sessions. Scenario areas included shock states, trauma and critical care case management, preoperative processes, and postoperative conditions and complications. All sessions were followed by facilitated debriefing. Likert scale-based multi-item assessments of core competency in medical knowledge, patient care, diagnosis, management, communication, and professionalism were used to generate a performance score for each resident for each simulation (percentage of best possible score). Performance was compared across PGYs by repeated

  17. Product Costing in FMT: Comparing Deterministic and Stochastic Models Using Computer-Based Simulation for an Actual Case Study

    DEFF Research Database (Denmark)

    Nielsen, Steen

    2000-01-01

    This paper expands the traditional product costing technique be including a stochastic form in a complex production process for product costing. The stochastic phenomenon in flesbile manufacturing technologies is seen as an important phenomenon that companies try to decreas og eliminate. DFM has...... been used for evaluating the appropriateness of the firm's production capability. In this paper a simulation model is developed to analyze the relevant cost behaviour with respect to DFM and to develop a more streamlined process in the layout of the manufacturing process....

  18. A report on the piloting of a novel computer-based medical case simulation for teaching and formative assessment of diagnostic laboratory testing

    Directory of Open Access Journals (Sweden)

    Clarence D. Kreiter

    2011-01-01

    Full Text Available Objectives: Insufficient attention has been given to how information from computer-based clinical case simulations is presented, collected, and scored. Research is needed on how best to design such simulations to acquire valid performance assessment data that can act as useful feedback for educational applications. This report describes a study of a new simulation format with design features aimed at improving both its formative assessment feedback and educational function. Methods: Case simulation software (LabCAPS was developed to target a highly focused and well-defined measurement goal with a response format that allowed objective scoring. Data from an eight-case computer-based performance assessment administered in a pilot study to 13 second-year medical students was analyzed using classical test theory and generalizability analysis. In addition, a similar analysis was conducted on an administration in a less controlled setting, but to a much large sample (n=143, within a clinical course that utilized two random case subsets from a library of 18 cases. Results: Classical test theory case-level item analysis of the pilot assessment yielded an average case discrimination of 0.37, and all eight cases were positively discriminating (range=0.11–0.56. Classical test theory coefficient alpha and the decision study showed the eight-case performance assessment to have an observed reliability of σ=G=0.70. The decision study further demonstrated that a G=0.80 could be attained with approximately 3 h and 15 min of testing. The less-controlled educational application within a large medical class produced a somewhat lower reliability for eight cases (G=0.53. Students gave high ratings to the logic of the simulation interface, its educational value, and to the fidelity of the tasks. Conclusions: LabCAPS software shows the potential to provide formative assessment of medical students’ skill at diagnostic test ordering and to provide valid feedback to

  19. Validation of the da Vinci Surgical Skill Simulator across three surgical disciplines: A pilot study

    Science.gov (United States)

    Alzahrani, Tarek; Haddad, Richard; Alkhayal, Abdullah; Delisle, Josée; Drudi, Laura; Gotlieb, Walter; Fraser, Shannon; Bergman, Simon; Bladou, Frank; Andonian, Sero; Anidjar, Maurice

    2013-01-01

    Objective: In this paper, we evaluate face, content and construct validity of the da Vinci Surgical Skills Simulator (dVSSS) across 3 surgical disciplines. Methods: In total, 48 participants from urology, gynecology and general surgery participated in the study as novices (0 robotic cases performed), intermediates (1–74) or experts (≥75). Each participant completed 9 tasks (Peg board level 2, match board level 2, needle targeting, ring and rail level 2, dots and needles level 1, suture sponge level 2, energy dissection level 1, ring walk level 3 and tubes). The Mimic Technologies software scored each task from 0 (worst) to 100 (best) using several predetermined metrics. Face and content validity were evaluated by a questionnaire administered after task completion. Wilcoxon test was used to perform pair wise comparisons. Results: The expert group comprised of 6 attending surgeons. The intermediate group included 4 attending surgeons, 3 fellows and 5 residents. The novices included 1 attending surgeon, 1 fellow, 13 residents, 13 medical students and 2 research assistants. The median number of robotic cases performed by experts and intermediates were 250 and 9, respectively. The median overall realistic score (face validity) was 8/10. Experts rated the usefulness of the simulator as a training tool for residents (content validity) as 8.5/10. For construct validity, experts outperformed novices in all 9 tasks (p < 0.05). Intermediates outperformed novices in 7 of 9 tasks (p < 0.05); there were no significant differences in the energy dissection and ring walk tasks. Finally, experts scored significantly better than intermediates in only 3 of 9 tasks (matchboard, dots and needles and energy dissection) (p < 0.05). Conclusions: This study confirms the face, content and construct validities of the dVSSS across urology, gynecology and general surgery. Larger sample size and more complex tasks are needed to further differentiate intermediates from experts. PMID:23914275

  20. Simulation-based planning of surgical interventions in pediatric cardiology

    Science.gov (United States)

    Marsden, Alison

    2012-11-01

    Hemodynamics plays an essential role in the progression and treatment of cardiovascular disease. This is particularly true in pediatric cardiology, due to the wide variation in anatomy observed in congenital heart disease patients. While medical imaging provides increasingly detailed anatomical information, clinicians currently have limited knowledge of important fluid mechanical parameters. Treatment decisions are therefore often made using anatomical information alone, despite the known links between fluid mechanics and disease progression. Patient-specific simulations now offer the means to provide this missing information, and, more importantly, to perform in-silico testing of new surgical designs at no risk to the patient. In this talk, we will outline the current state of the art in methods for cardiovascular blood flow simulation and virtual surgery. We will then present new methodology for coupling optimization with simulation and uncertainty quantification to customize treatments for individual patients. Finally, we will present examples in pediatric cardiology that illustrate the potential impact of these tools in the clinical setting.

  1. Assessing suturing techniques using a virtual reality surgical simulator.

    Science.gov (United States)

    Kazemi, Hamed; Rappel, James K; Poston, Timothy; Hai Lim, Beng; Burdet, Etienne; Leong Teo, Chee

    2010-09-01

    Advantages of virtual-reality simulators surgical skill assessment and training include more training time, no risk to patient, repeatable difficulty level, reliable feedback, without the resource demands, and ethical issues of animal-based training. We tested this for a key subtask and showed a strong link between skill in the simulator and in reality. Suturing performance was assessed for four groups of participants, including experienced surgeons and naive subjects, on a custom-made virtual-reality simulator. Each subject tried the experiment 30 times using five different types of needles to perform a standardized suture placement task. Traditional metrics of performance as well as new metrics enabled by our system were proposed, and the data indicate difference between trained and untrained performance. In all traditional parameters such as time, number of attempts, and motion quantity, the medical surgeons outperformed the other three groups, though differences were not significant. However, motion smoothness, penetration and exit angles, tear size areas, and orientation change were statistically significant in the trained group when compared with untrained group. This suggests that these parameters can be used in virtual microsurgery training.

  2. The SEP "Robot": A Valid Virtual Reality Robotic Simulator for the Da Vinci Surgical System?

    NARCIS (Netherlands)

    van der Meijden, O. A. J.; Broeders, I. A. M. J.; Schijven, M. P.

    2010-01-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's

  3. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    where x increases from zero to N, the saturation value. Box 1. Matrix Meth- ... such as Laplace transforms and non-linear differential equa- tions with .... atomic bomb project in the. US in the early ... his work on game theory and computers.

  4. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.

    Science.gov (United States)

    Wong, Julielynn Y; Pfahnl, Andreas C

    2016-09-01

    The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.

  5. 3D-Printed Craniosynostosis Model: New Simulation Surgical Tool.

    Science.gov (United States)

    Ghizoni, Enrico; de Souza, João Paulo Sant Ana Santos; Raposo-Amaral, Cassio Eduardo; Denadai, Rafael; de Aquino, Humberto Belém; Raposo-Amaral, Cesar Augusto; Joaquim, Andrei Fernandes; Tedeschi, Helder; Bernardes, Luís Fernando; Jardini, André Luiz

    2018-01-01

    Craniosynostosis is a complex disease once it involves deep anatomic perception, and a minor mistake during surgery can be fatal. The objective of this report is to present novel 3-dimensional-printed polyamide craniosynostosis models that can improve the understanding and treatment complex pathologies. The software InVesalius was used for segmentation of the anatomy image (from 3 patients between 6 and 9 months old). Afterward, the file was transferred to a 3-dimensional printing system and, with the use of an infrared laser, slices of powder PA 2200 were consecutively added to build a polyamide model of cranial bone. The 3 craniosynostosis models allowed fronto-orbital advancement, Pi procedure, and posterior distraction in the operating room environment. All aspects of the craniofacial anatomy could be shown on the models, as well as the most common craniosynostosis pathologic variations (sphenoid wing elevation, shallow orbits, jugular foramen stenosis). Another advantage of our model is its low cost, about 100 U.S. dollars or even less when several models are produced. Simulation is becoming an essential part of medical education for surgical training and for improving surgical safety with adequate planning. This new polyamide craniosynostosis model allowed the surgeons to have realistic tactile feedback on manipulating a child's bone and permitted execution of the main procedures for anatomic correction. It is a low-cost model. Therefore our model is an excellent option for training purposes and is potentially a new important tool to improve the quality of the management of patients with craniosynostosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Konishi, Kozo; Kakeji, Yoshihiro; Hashizume, Makoto

    2005-01-01

    Preoperative simulation and planning of surgical robot setup should accompany advanced robotic surgery if their advantages are to be further pursued. Feedback from the planning system will plays an essential role in computer-aided robotic surgery in addition to preoperative detailed geometric information from patient CT/MRI images. Surgical robot setup simulation systems for appropriate trocar site placement have been developed especially for abdominal surgery. The motion of the surgical robot can be simulated and rehearsed with kinematic constraints at the trocar site, and the inverse-kinematics of the robot. Results from simulation using clinical patient data verify the effectiveness of the proposed system.

  7. Computer-Based Technologies in Dentistry: Types and Applications

    Directory of Open Access Journals (Sweden)

    Rajaa Mahdi Musawi

    2016-10-01

    Full Text Available During dental education, dental students learn how to examine patients, make diagnosis, plan treatment and perform dental procedures perfectly and efficiently. However, progresses in computer-based technologies including virtual reality (VR simulators, augmented reality (AR and computer aided design/computer aided manufacturing (CAD/CAM systems have resulted in new modalities for instruction and practice of dentistry. Virtual reality dental simulators enable repeated, objective and assessable practice in various controlled situations. Superimposition of three-dimensional (3D virtual images on actual images in AR allows surgeons to simultaneously visualize the surgical site and superimpose informative 3D images of invisible regions on the surgical site to serve as a guide. The use of CAD/CAM systems for designing and manufacturing of dental appliances and prostheses has been well established.This article reviews computer-based technologies, their application in dentistry and their potentials and limitations in promoting dental education, training and practice. Practitioners will be able to choose from a broader spectrum of options in their field of practice by becoming familiar with new modalities of training and practice.Keywords: Virtual Reality Exposure Therapy; Immersion; Computer-Aided Design; Dentistry; Education

  8. Arthroscopic Shoulder Surgical Simulation Training Curriculum: Transfer Reliability and Maintenance of Skill Over Time.

    Science.gov (United States)

    Dunn, John C; Belmont, Philip J; Lanzi, Joseph; Martin, Kevin; Bader, Julia; Owens, Brett; Waterman, Brian R

    2015-01-01

    Surgical education is evolving as work hour constraints limit the exposure of residents to the operating room. Potential consequences may include erosion of resident education and decreased quality of patient care. Surgical simulation training has become a focus of study in an effort to counter these challenges. Previous studies have validated the use of arthroscopic surgical simulation programs both in vitro and in vivo. However, no study has examined if the gains made by residents after a simulation program are retained after a period away from training. In all, 17 orthopedic surgery residents were randomized into simulation or standard practice groups. All subjects were oriented to the arthroscopic simulator, a 14-point anatomic checklist, and Arthroscopic Surgery Skill Evaluation Tool (ASSET). The experimental group received 1 hour of simulation training whereas the control group had no additional training. All subjects performed a recorded, diagnostic arthroscopy intraoperatively. These videos were scored by 2 blinded, fellowship-trained orthopedic surgeons and outcome measures were compared within and between the groups. After 1 year in which neither group had exposure to surgical simulation training, all residents were retested intraoperatively and scored in the exact same fashion. Individual surgical case logs were reviewed and surgical case volume was documented. There was no difference between the 2 groups after initial simulation testing and there was no correlation between case volume and initial scores. After training, the simulation group improved as compared with baseline in mean ASSET (p = 0.023) and mean time to completion (p = 0.01). After 1 year, there was no difference between the groups in any outcome measurements. Although individual technical skills can be cultivated with surgical simulation training, these advancements can be lost without continued education. It is imperative that residency programs implement a simulation curriculum and

  9. Development and Evaluation of a Novel Pan-Specialty Virtual Reality Surgical Simulator for Smartphones.

    Science.gov (United States)

    Nehme, Jean; Bahsoun, Ali N; Chow, Andre

    2016-01-01

    Touch Surgery is a novel simulator that allows cognitive task simulation and rehearsal of surgical procedures. Touch Surgery is designed for Apple and Android smartphones and tablets. This allows a global community of surgical professionals to review the steps of a procedure and test their competence. Content on Touch Surgery is developed with expert surgeons in the field from world leading institutions. Here we describe the development of Touch Surgery, its adoption by the global training community.

  10. Medical Visualization and Simulation for Customizable Surgical Guides

    NARCIS (Netherlands)

    Kroes, T.

    2015-01-01

    This thesis revolves around the development of medical visualization tools for the planning of CSG-based surgery. To this end, we performed an extensive computerassisted surgery (CAS) literature study, developed a novel optimization technique for customizable surgical guides (CSG), and introduce

  11. American College of Surgeons/Association for Surgical Education medical student simulation-based surgical skills curriculum needs assessment.

    Science.gov (United States)

    Glass, Charity C; Acton, Robert D; Blair, Patrice G; Campbell, Andre R; Deutsch, Ellen S; Jones, Daniel B; Liscum, Kathleen R; Sachdeva, Ajit K; Scott, Daniel J; Yang, Stephen C

    2014-02-01

    Simulation can enhance learning effectiveness, efficiency, and patient safety and is engaging for learners. A survey was conducted of surgical clerkship directors nationally and medical students at 5 medical schools to rank and stratify simulation-based educational topics. Students applying to surgery were compared with others using Wilcoxon's rank-sum tests. Seventy-three of 163 clerkship directors (45%) and 231 of 872 students (26.5%) completed the survey. Of students, 28.6% were applying for surgical residency training. Clerkship directors and students generally agreed on the importance and timing of specific educational topics. Clerkship directors tended to rank basic skills, such as examination skills, higher than medical students. Students ranked procedural skills, such as lumbar puncture, more highly than clerkship directors. Surgery clerkship directors and 4th-year medical students agree substantially about the content of a simulation-based curriculum, although 4th-year medical students recommended that some topics be taught earlier than the clerkship directors recommended. Students planning to apply to surgical residencies did not differ significantly in their scoring from students pursuing nonsurgical specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Surgical skills simulation in trauma and orthopaedic training

    OpenAIRE

    Stirling, Euan RB; Lewis, Thomas L; Ferran, Nicholas A

    2014-01-01

    Changing patterns of health care delivery and the rapid evolution of orthopaedic surgical techniques have made it increasingly difficult for trainees to develop expertise in their craft. Working hour restrictions and a drive towards senior led care demands that proficiency be gained in a shorter period of time whilst requiring a greater skill set than that in the past. The resulting conflict between service provision and training has necessitated the development of alternative methods in orde...

  13. Can surgical simulation be used to train detection and classification of neural networks?

    Science.gov (United States)

    Zisimopoulos, Odysseas; Flouty, Evangello; Stacey, Mark; Muscroft, Sam; Giataganas, Petros; Nehme, Jean; Chow, Andre; Stoyanov, Danail

    2017-10-01

    Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors' knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced classification methods for CAI systems.

  14. Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education.

    Science.gov (United States)

    Ryu, Won Hyung A; Dharampal, Navjit; Mostafa, Ahmed E; Sharlin, Ehud; Kopp, Gail; Jacobs, William Bradley; Hurlbert, Robin John; Chan, Sonny; Sutherland, Garnette R

    Simulation-based education has been shown to be an effective tool to teach foundational technical skills in various surgical specialties. However, most of the current simulations are limited to generic scenarios and do not allow continuation of the learning curve beyond basic technical skills to prepare for more advanced expertise, such as patient-specific surgical planning. The objective of this study was to evaluate the current medical literature with respect to the utilization and educational value of patient-specific simulations for surgical training. We performed a systematic review of the literature using Pubmed, Embase, and Scopus focusing on themes of simulation, patient-specific, surgical procedure, and education. The study included randomized controlled trials, cohort studies, and case-control studies published between 2005 and 2016. Two independent reviewers (W.H.R. and N.D) conducted the study appraisal, data abstraction, and quality assessment of the studies. The search identified 13 studies that met the inclusion criteria; 7 studies employed computer simulations and 6 studies used 3-dimensional (3D) synthetic models. A number of surgical specialties evaluated patient-specific simulation, including neurosurgery, vascular surgery, orthopedic surgery, and interventional radiology. However, most studies were small in size and primarily aimed at feasibility assessments and early validation. Early evidence has shown feasibility and utility of patient-specific simulation for surgical education. With further development of this technology, simulation-based education may be able to support training of higher-level competencies outside the clinical settingto aid learners in their development of surgical skills. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Surgical simulators in urological training--views of UK Training Programme Directors.

    Science.gov (United States)

    Forster, James A; Browning, Anthony J; Paul, Alan B; Biyani, C Shekhar

    2012-09-01

    What's known on the subject? and What does the study add? The role of surgical simulators is currently being debated in urological and other surgical specialties. Simulators are not presently implemented in the UK urology training curriculum. The availability of simulators and the opinions of Training Programme Directors' (TPD) on their role have not been described. In the present questionnaire-based survey, the trainees of most, but not all, UK TPDs had access to laparoscopic simulators, and that all responding TPDs thought that simulators improved laparoscopic training. We hope that the present study will be a positive step towards making an agreement to formally introduce simulators into the UK urology training curriculum. To discuss the current situation on the use of simulators in surgical training. To determine the views of UK Urology Training Programme Directors (TPDs) on the availability and use of simulators in Urology at present, and to discuss the role that simulators may have in future training. An online-questionnaire survey was distributed to all UK Urology TPDs. In all, 16 of 21 TPDs responded. All 16 thought that laparoscopic simulators improved the quality of laparoscopic training. The trainees of 13 TPDs had access to a laparoscopic simulator (either in their own hospital or another hospital in the deanery). Most TPDs thought that trainees should use simulators in their free time, in quiet time during work hours, or in teaching sessions (rather than incorporated into the weekly timetable). We feel that the current apprentice-style method of training in urological surgery is out-dated. We think that all TPDs and trainees should have access to a simulator, and that a formal competency based simulation training programme should be incorporated into the urology training curriculum, with trainees reaching a minimum proficiency on a simulator before undertaking surgical procedures. © 2012 THE AUTHORS. BJU INTERNATIONAL © 2012 BJU INTERNATIONAL.

  16. Virtual Reality Simulation as a Tool to Monitor Surgical Performance Indicators: VIRESI Observational Study.

    Science.gov (United States)

    Muralha, Nuno; Oliveira, Manuel; Ferreira, Maria Amélia; Costa-Maia, José

    2017-05-31

    Virtual reality simulation is a topic of discussion as a complementary tool to traditional laparoscopic surgical training in the operating room. However, it is unclear whether virtual reality training can have an impact on the surgical performance of advanced laparoscopic procedures. Our objective was to assess the ability of the virtual reality simulator LAP Mentor to identify and quantify changes in surgical performance indicators, after LAP Mentor training for digestive anastomosis. Twelve surgeons from Centro Hospitalar de São João in Porto (Portugal) performed two sessions of advanced task 5: anastomosis in LAP Mentor, before and after completing the tutorial, and were evaluated on 34 surgical performance indicators. The results show that six surgical performance indicators significantly changed after LAP Mentor training. The surgeons performed the task significantly faster as the median 'total time' significantly reduced (p virtual reality training simulation as a benchmark tool to assess the surgical performance of Portuguese surgeons. LAP Mentor is able to identify variations in surgical performance indicators of digestive anastomosis.

  17. Surgical construction of a novel simulated carotid siphon in canines

    International Nuclear Information System (INIS)

    Tan Huaqiao; Li Minghua; Zhu Yueqi; Fang Chun; Wang Jue; Wu Chungen; Cheng Yingsheng; Xie Jian; Zhang He

    2008-01-01

    Objective: To develop in vivo carotid siphon models by surgical method using the shaped devices for testing the performance of covered stent specially designed for intracranial vascular diseases. Methods: Six carotid siphon-shaped devices were established using stereolithographic biomodeling and the lost-wax technique. Six canines underwent surgery to expose and isolate bilateral CCA. The right CCA origin was ligated and incised distal to the ligation point after the distal right CCA was temporarily closed. The distal left CCA was ligated and incised proximal to the ligation point after the left CCA origin was closed. The proximal isolated left CCA was passed through the shaped device. The distal isolated right CCA and the proximal isolated left CCA were anastomosed end-to-end. Finally, the shaped device of carotid siphon was fixed with suture and embedded in the left neck. The intraarterial DSA was performed on postprocedural 7 days, 2 weeks and 1 month. The morphological characteristics of carotid siphon models were visually evaluated by two observers. The patency of siphon model and the stenosis of anastomotic stoma were followed-up. Results: All animals tolerated the surgical procedure well with mean model time construction of 90 minutes. The morphological characteristics of siphon models were similar to those in human. The anastomotic stoma stenosis occurred in 2 siphon models, and thrombosis of anastomotic stoma in 1, but all siphons of these models were patent on post-procedural follow-up angiography. Conclusion: Surgical construction of an in vivo carotid siphon model of canine with shaped device is practically feasible. This model can be used for testing neurovascular devices. (authors)

  18. Best practices across surgical specialties relating to simulation-based training.

    Science.gov (United States)

    Gardner, Aimee K; Scott, Daniel J; Pedowitz, Robert A; Sweet, Robert M; Feins, Richard H; Deutsch, Ellen S; Sachdeva, Ajit K

    2015-11-01

    Simulation-based training is playing an increasingly important role in surgery. However, there is insufficient discussion among the surgical specialties regarding how simulation may best be leveraged for training. There is much to be learned from one another as we all strive to meet new requirements within the context of Undergraduate Medical Education, Graduate Medical Education, and Continuing Medical Education. To address this need, a panel was convened at the 6th Annual Meeting of the Consortium of the American College of Surgeons-Accredited Education Institutes consisting of key leaders in the field of simulation from 4 surgical subspecialties, namely, general surgery, orthopedic surgery, cardiothoracic surgery, urology, and otolaryngology. An overview of how the 5 surgical specialties are using simulation-based training to meet a wide array of educational needs for all levels of learners is presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Virtual reality simulators: valuable surgical skills trainers or video games?

    Science.gov (United States)

    Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R

    2014-01-01

    Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  20. Good experiences with interactive temporal bone surgical simulator

    DEFF Research Database (Denmark)

    Andersen, Steven A W; Mikkelsen, Peter Trier; Noe, Karsten Ostergaard

    2014-01-01

    time. In a multilingual user interface the integrated tutor function provides stepwise instructions during drilling through an intuitive, volumetric approach. A censor function draws on metrics derived from the simulator to provide instant and summary feedback for the user. The VES can be downloaded...

  1. Embedding a Virtual Patient Simulator in an Interactive Surgical lecture.

    Science.gov (United States)

    Kleinert, Robert; Plum, Patrick; Heiermann, Nadine; Wahba, Roger; Chang, De-Huan; Hölscher, Arnulf H; Stippel, Dirk L

    2016-01-01

    Lectures are traditionally used for teaching declarative knowledge. One established tool for clinical education is the demonstration of a real patient. The use of real patients in the daily clinical environment is increasingly difficult. The use of a virtual patient simulator (VPS) can potentially circumvent these problems. Unlimited availability and the opportunity of an electronic feedback system could possibly enrich traditional lectures by enabling more interactivity that meets the expectations of the current student generation. As students face the consequences of their own decisions they take a more active role in the lecture. VPS links declarative knowledge with visual perception that is known to influence students' motivation. Until now, there have been no reports covering the usage and validation of interactive VPS for supporting traditional lectures. In this study, we (1) described the development of a custom-made three-dimensional (3D) VPS for supporting the traditional lecture and (2) performed a feasibility study including an initial assessment of this novel educational concept. Conceptualization included definition of curricular content, technical realization and validation. A custom-made simulator was validated with 68 students. The degree of student acceptance was evaluated. Furthermore, the effect on knowledge gain was determined by testing prelecture and postlecture performance. A custom-made simulator prototype that displays a 3D virtual clinic environment was developed and linked to a PowerPoint presentation. Students were able to connect to the simulator via electronic devices (smartphones and tablets) and to control the simulator via majority vote. The simulator was used in 6 lectures and validated in 2 lectures with 68 students each. Student acceptance and their opinion about effectiveness and applicability were determined. Students showed a high level of motivation when using the simulator as most of them had fun using it. Effect on

  2. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    Science.gov (United States)

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  3. 3D-printed pediatric endoscopic ear surgery simulator for surgical training.

    Science.gov (United States)

    Barber, Samuel R; Kozin, Elliott D; Dedmon, Matthew; Lin, Brian M; Lee, Kyuwon; Sinha, Sumi; Black, Nicole; Remenschneider, Aaron K; Lee, Daniel J

    2016-11-01

    Surgical simulators are designed to improve operative skills and patient safety. Transcanal Endoscopic Ear Surgery (TEES) is a relatively new surgical approach with a slow learning curve due to one-handed dissection. A reusable and customizable 3-dimensional (3D)-printed endoscopic ear surgery simulator may facilitate the development of surgical skills with high fidelity and low cost. Herein, we aim to design, fabricate, and test a low-cost and reusable 3D-printed TEES simulator. The TEES simulator was designed in computer-aided design (CAD) software using anatomic measurements taken from anthropometric studies. Cross sections from external auditory canal samples were traced as vectors and serially combined into a mesh construct. A modified tympanic cavity with a modular testing platform for simulator tasks was incorporated. Components were fabricated using calcium sulfate hemihydrate powder and multiple colored infiltrants via a commercial inkjet 3D-printing service. All components of a left-sided ear were printed to scale. Six right-handed trainees completed three trials each. Mean trial time (n = 3) ranged from 23.03 to 62.77 s using the dominant hand for all dissection. Statistically significant differences between first and last completion time with the dominant hand (p 3D-printed simulator is feasible for TEES simulation. Otolaryngology training programs with access to a 3D printer may readily fabricate a TEES simulator, resulting in inexpensive yet high-fidelity surgical simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Evaluation of an antimicrobial surgical glove to inactivate live human immunodeficiency virus following simulated glove puncture.

    Science.gov (United States)

    Edmiston, Charles E; Zhou, S Steve; Hoerner, Pierre; Krikorian, Raffi; Krepel, Candace J; Lewis, Brian D; Brown, Kellie R; Rossi, Peter J; Graham, Mary Beth; Seabrook, Gary R

    2013-02-01

    Percutaneous injuries associated with cutting instruments, needles, and other sharps (eg, metallic meshes, bone fragments, etc) occur commonly during surgical procedures, exposing members of surgical teams to the risk for contamination by blood-borne pathogens. This study evaluated the efficacy of an innovative integrated antimicrobial glove to reduce transmission of the human immunodeficiency virus (HIV) following a simulated surgical-glove puncture injury. A pneumatically activated puncturing apparatus was used in a surgical-glove perforation model to evaluate the passage of live HIV-1 virus transferred via a contaminated blood-laden needle, using a reference (standard double-layer glove) and an antimicrobial benzalkonium chloride (BKC) surgical glove. The study used 2 experimental designs. In method A, 10 replicates were used in 2 cycles to compare the mean viral load following passage through standard and antimicrobial gloves. In method B, 10 replicates were pooled into 3 aliquots and were used to assess viral passage though standard and antimicrobial test gloves. In both methods, viral viability was assessed by observing the cytopathic effects in human lymphocytic C8166 T-cell tissue culture. Concurrent viral and cell culture viability controls were run in parallel with the experiment's studies. All controls involving tissue culture and viral viability were performed according to study design. Mean HIV viral loads (log(10)TCID(50)) were significantly reduced (P reduction (log reduction and percent viral reduction) of the HIV virus ranged from 1.96 to 2.4 and from 98.9% to 99.6%, respectively, following simulated surgical-glove perforation. Sharps injuries in the operating room pose a significant occupational risk for surgical practitioners. The findings of this study suggest that an innovative antimicrobial glove was effective at significantly (P < .01) reducing the risk for blood-borne virus transfer in a model of simulated glove perforation. Copyright

  5. Perceptions, training experiences, and preferences of surgical residents toward laparoscopic simulation training: a resident survey.

    Science.gov (United States)

    Shetty, Shohan; Zevin, Boris; Grantcharov, Teodor P; Roberts, Kurt E; Duffy, Andrew J

    2014-01-01

    Simulation training for surgical residents can shorten learning curves, improve technical skills, and expedite competency. Several studies have shown that skills learned in the simulated environment are transferable to the operating room. Residency programs are trying to incorporate simulation into the resident training curriculum to supplement the hands-on experience gained in the operating room. Despite the availability and proven utility of surgical simulators and simulation laboratories, they are still widely underutilized by surgical trainees. Studies have shown that voluntary use leads to minimal participation in a training curriculum. Although there are several simulation tools, there is no clear evidence of the superiority of one tool over the other in skill acquisition. The purpose of this study was to explore resident perceptions, training experiences, and preferences regarding laparoscopic simulation training. Our goal was to profile resident participation in surgical skills simulation, recognize potential barriers to voluntary simulator use, and identify simulation tools and tasks preferred by residents. Furthermore, this study may help to inform whether mandatory/protected training time, as part of the residents' curriculum is essential to enhance participation in the simulation laboratory. A cross-sectional study on general surgery residents (postgraduate years 1-5) at Yale University School of Medicine and the University of Toronto via an online questionnaire was conducted. Overall, 67 residents completed the survey. The institutional review board approved the methods of the study. Overall, 95.5% of the participants believed that simulation training improved their laparoscopic skills. Most respondents (92.5%) perceived that skills learned during simulation training were transferrable to the operating room. Overall, 56.7% of participants agreed that proficiency in a simulation curriculum should be mandatory before operating room experience. The

  6. Step-based cognitive virtual surgery simulation: an innovative approach to surgical education.

    Science.gov (United States)

    Oliker, Aaron; Napier, Zachary; Deluccia, Nicolette; Qualter, John; Sculli, Frank; Smith, Brandon; Stern, Carrie; Flores, Roberto; Hazen, Alexes; McCarthy, Joseph

    2012-01-01

    BioDigital Systems, LLC in collaboration with New York University Langone Medical Center Department of Reconstructive Plastic Surgery has created a complex, real-time, step-based simulation platform for plastic surgery education. These simulators combine live surgical footage, interactive 3D visualization, text labels, and voiceover as well as a high-yield, expert-approved testing mode to create a comprehensive virtual educational environment for the plastic surgery resident or physician.

  7. Virtual reality simulators: current status in acquisition and assessment of surgical skills.

    Science.gov (United States)

    Cosman, Peter H; Cregan, Patrick C; Martin, Christopher J; Cartmill, John A

    2002-01-01

    Medical technology is currently evolving so rapidly that its impact cannot be analysed. Robotics and telesurgery loom on the horizon, and the technology used to drive these advances has serendipitous side-effects for the education and training arena. The graphical and haptic interfaces used to provide remote feedback to the operator--by passing control to a computer--may be used to generate simulations of the operative environment that are useful for training candidates in surgical procedures. One additional advantage is that the metrics calculated inherently in the controlling software in order to run the simulation may be used to provide performance feedback to individual trainees and mentors. New interfaces will be required to undergo evaluation of the simulation fidelity before being deemed acceptable. The potential benefits fall into one of two general categories: those benefits related to skill acquisition, and those related to skill assessment. The educational value of the simulation will require assessment, and comparison to currently available methods of training in any given procedure. It is also necessary to determine--by repeated trials--whether a given simulation actually measures the performance parameters it purports to measure. This trains the spotlight on what constitutes good surgical skill, and how it is to be objectively measured. Early results suggest that virtual reality simulators have an important role to play in this aspect of surgical training.

  8. The effectiveness of and satisfaction with high-fidelity simulation to teach cardiac surgical resuscitation skills to nurses.

    Science.gov (United States)

    McRae, Marion E; Chan, Alice; Hulett, Renee; Lee, Ai Jin; Coleman, Bernice

    2017-06-01

    There are few reports of the effectiveness or satisfaction with simulation to learn cardiac surgical resuscitation skills. To test the effect of simulation on the self-confidence of nurses to perform cardiac surgical resuscitation simulation and nurses' satisfaction with the simulation experience. A convenience sample of sixty nurses rated their self-confidence to perform cardiac surgical resuscitation skills before and after two simulations. Simulation performance was assessed. Subjects completed the Satisfaction with Simulation Experience scale and demographics. Self-confidence scores to perform all cardiac surgical skills as measured by paired t-tests were significantly increased after the simulation (d=-0.50 to 1.78). Self-confidence and cardiac surgical work experience were not correlated with time to performance. Total satisfaction scores were high (mean 80.2, SD 1.06) indicating satisfaction with the simulation. There was no correlation of the satisfaction scores with cardiac surgical work experience (τ=-0.05, ns). Self-confidence scores to perform cardiac surgical resuscitation procedures were higher after the simulation. Nurses were highly satisfied with the simulation experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Surgeons' and surgical trainees' acute stress in real operations or simulation: A systematic review.

    Science.gov (United States)

    Georgiou, Konstantinos; Larentzakis, Andreas; Papavassiliou, Athanasios G

    2017-12-01

    Acute stress in surgery is ubiquitous and has an immediate impact on surgical performance and patient safety. Surgeons react with several coping strategies; however, they recognise the necessity of formal stress management training. Thus, stress assessment is a direct need. Surgical simulation is a validated standardised training milieu designed to replicate real-life situations. It replicates stress, prevents biases, and provides objective metrics. The complexity of stress mechanisms makes stress measurement difficult to quantify and interpret. This systematic review aims to identify studies that have used acute stress estimation measurements in surgeons or surgical trainees during real operations or surgical simulation, and to collectively present the rationale of these tools, with special emphasis in salivary markers. A search strategy was implemented to retrieve relevant articles from MEDLINE and SCOPUS databases. The 738 articles retrieved were reviewed for further evaluation according to the predetermined inclusion/exclusion criteria. Thirty-three studies were included in this systematic review. The methods for acute stress assessment varied greatly among studies with the non-invasive techniques being the most commonly used. Subjective and objective tests for surgeons' acute stress assessment are being presented. There is a broad spectrum of acute mental stress assessment tools in the surgical field and simulation and salivary biomarkers have recently gained popularity. There is a need to maintain a consistent methodology in future research, towards a deeper understanding of acute stress in the surgical field. Copyright © 2017 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  10. Surgical model-view-controller simulation software framework for local and collaborative applications.

    Science.gov (United States)

    Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2011-07-01

    Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.

  11. 3D Printed Surgical Simulation Models as educational tool by maxillofacial surgeons.

    Science.gov (United States)

    Werz, S M; Zeichner, S J; Berg, B-I; Zeilhofer, H-F; Thieringer, F

    2018-02-26

    The aim of this study was to evaluate whether inexpensive 3D models can be suitable to train surgical skills to dental students or oral and maxillofacial surgery residents. Furthermore, we wanted to know which of the most common filament materials, acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA), can better simulate human bone according to surgeons' subjective perceptions. Upper and lower jaw models were produced with common 3D desktop printers, ABS and PLA filament and silicon rubber for soft tissue simulation. Those models were given to 10 blinded, experienced maxillofacial surgeons to perform sinus lift and wisdom teeth extraction. Evaluation was made using a questionnaire. Because of slightly different density and filament prices, each silicon-covered model costs between 1.40-1.60 USD (ABS) and 1.80-2.00 USD (PLA) based on 2017 material costs. Ten experienced raters took part in the study. All raters deemed the models suitable for surgical education. No significant differences between ABS and PLA were found, with both having distinct advantages. The study demonstrated that 3D printing with inexpensive printing filaments is a promising method for training oral and maxillofacial surgery residents or dental students in selected surgical procedures. With a simple and cost-efficient manufacturing process, models of actual patient cases can be produced on a small scale, simulating many kinds of surgical procedures. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Computer-Based 3D Simulation: A Study of Communication Practices in a Trauma Team Performing Patient Examination and Diagnostic Work

    Science.gov (United States)

    Krange, Ingeborg; Moen, Anne; Ludvigsen, Sten

    2012-01-01

    Diagnostic work in trauma teams is critical for the patient's condition and for the possibility of survival. It is a difficult situation to train due to the inherently unpredictable and time-critical practice when an injured patient presents in the Emergency Room (ER). Different types of simulations have been developed for specialized training of…

  13. Developing a Systematic Education and Training Approach Using Personal Computer Based Simulators for Nuclear Power Programmes. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2018-01-01

    This publication compiles the output and findings of a technical meeting organized by the IAEA. The use of personal computer (PC) based basic principle simulators in education and training is aimed at enhancing understanding of nuclear technologies through “learning by doing”. This hands-on experiential training is highly suitable for operators, maintenance technicians, suppliers, regulators, students and engineers. Experts from 21 Member States, together with IAEA staff, presented the current status of the PC based basic principle simulators, their applications in education and training and identified relevant gaps and needs for improvements and/or new development. The resultant publication includes summaries of the presentations, follow-up discussions as well as conclusions and recommendations for possible future activities.

  14. The SEP "robot": a valid virtual reality robotic simulator for the Da Vinci Surgical System?

    Science.gov (United States)

    van der Meijden, O A J; Broeders, I A M J; Schijven, M P

    2010-04-01

    The aim of the study was to determine if the concept of face and construct validity may apply to the SurgicalSim Educational Platform (SEP) "robot" simulator. The SEP robot simulator is a virtual reality (VR) simulator aiming to train users on the Da Vinci Surgical System. To determine the SEP's face validity, two questionnaires were constructed. First, a questionnaire was sent to users of the Da Vinci system (reference group) to determine a focused user-group opinion and their recommendations concerning VR-based training applications for robotic surgery. Next, clinical specialists were requested to complete a pre-tested face validity questionnaire after performing a suturing task on the SEP robot simulator. To determine the SEP's construct validity, outcome parameters of the suturing task were compared, for example, relative to participants' endoscopic experience. Correlations between endoscopic experience and outcome parameters of the performed suturing task were tested for significance. On an ordinal five-point, scale the average score for the quality of the simulator software was 3.4; for its hardware, 3.0. Over 80% agreed that it is important to train surgeons and surgical trainees to use the Da Vinci. There was a significant but marginal difference in tool tip trajectory (p = 0.050) and a nonsignificant difference in total procedure time (p = 0.138) in favor of the experienced group. In conclusion, the results of this study reflect a uniform positive opinion using VR training in robotic surgery. Concepts of face and construct validity of the SEP robotic simulator are present; however, these are not strong and need to be improved before implementation of the SEP robotic simulator in its present state for a validated training curriculum to be successful .

  15. Comparing Pre- and Post-Operative Fontan Hemodynamic Simulations: Implications for the Reliability of Surgical Planning

    Science.gov (United States)

    Haggerty, Christopher M.; de Zélicourt, Diane A.; Restrepo, Maria; Rossignac, Jarek; Spray, Thomas L.; Kanter, Kirk R.; Fogel, Mark A.; Yoganathan, Ajit P.

    2012-01-01

    Background Virtual modeling of cardiothoracic surgery is a new paradigm that allows for systematic exploration of various operative strategies and uses engineering principles to predict the optimal patient-specific plan. This study investigates the predictive accuracy of such methods for the surgical palliation of single ventricle heart defects. Methods Computational fluid dynamics (CFD)-based surgical planning was used to model the Fontan procedure for four patients prior to surgery. The objective for each was to identify the operative strategy that best distributed hepatic blood flow to the pulmonary arteries. Post-operative magnetic resonance data were acquired to compare (via CFD) the post-operative hemodynamics with predictions. Results Despite variations in physiologic boundary conditions (e.g., cardiac output, venous flows) and the exact geometry of the surgical baffle, sufficient agreement was observed with respect to hepatic flow distribution (90% confidence interval-14 ± 4.3% difference). There was also good agreement of flow-normalized energetic efficiency predictions (19 ± 4.8% error). Conclusions The hemodynamic outcomes of prospective patient-specific surgical planning of the Fontan procedure are described for the first time with good quantitative comparisons between preoperatively predicted and postoperative simulations. These results demonstrate that surgical planning can be a useful tool for single ventricle cardiothoracic surgery with the ability to deliver significant clinical impact. PMID:22777126

  16. Does previous open surgical experience have any influence on robotic surgery simulation exercises?

    Science.gov (United States)

    Cumpanas, Alin Adrian; Bardan, Razvan; Ferician, Ovidiu Catalin; Latcu, Silviu Constantin; Duta, Ciprian; Lazar, Fulger Octavian

    2017-12-01

    Within the last years, there has been a trend in many hospitals to switch their surgical activity from open/laparoscopic procedures to robotic surgery. Some open surgeons have been shifting their activity to robotic surgery. It is still unclear whether there is a transfer of open surgical skills to robotic ones. To evaluate whether such transfer of skills occurs and to identify which specific skills are more significantly transferred from the operative table to the console. Twenty-five volunteers were included in the study, divided into 2 groups: group A (15 participants) - medical students (without any surgical experience in open, laparoscopic or robotic surgery); and group B (10 participants) - surgeons with exclusively open surgical experience, without any previous laparoscopic or robotic experience. Participants were asked to complete 3 robotic simulator console exercises structured from the easiest one (Peg Board) to the toughest one (Sponge Suture). Overall scores for each exercise as well as specific metrics were compared between the two groups. There were no significant differences between overall scores of the two groups for the easiest task. Overall scores were better for group B as the exercises got more complex. For the intermediate and high-difficulty level exercises, most of the specific metrics were better for group B, with the exception of the working master space item. Our results suggest that the open surgical skills transfer to robotic skills, at least for the very beginning of the training process.

  17. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

    2011-11-01

    The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Virtual vitreoretinal surgery: construction of a training programme on the Eyesi Surgical Simulator

    DEFF Research Database (Denmark)

    Vergmann, Anna Stage; Vestergaard, Anders Højslet; Grauslund, Jakob

    Purpose: The purpose of this study was to test the construct validity of a full virtual reality vitreoretinal training program at the Eyesi Surgical simulator. Design and methods: A virtual vitreoretinal training program was composed on the Eyesi Surgical simulator, software version 2.9.2 (VRmagic...... GmbH, Manheim, Germany). It was completed twice by three groups: Group 1: Twenty medical students Group 2: Ten ophthalmology residents Group 3: Five vitreoretinal surgeons The program consisted of six training modules (Figure 1): Navigation level 2 (Nav2) Forceps Training level 5 (ForT5) Bimanual...... developed a training program in virtual vitreoretinal surgery with construct validity for four out of six modules and for overall score. This makes the program a useful tool in the training of future vitreoretinal surgeons....

  19. An Evaluation of the Role of Simulation Training for Teaching Surgical Skills in Sub-Saharan Africa.

    Science.gov (United States)

    Campain, Nicholas J; Kailavasan, Mithun; Chalwe, Mumba; Gobeze, Aberra A; Teferi, Getaneh; Lane, Robert; Biyani, Chandra Shekhar

    2018-04-01

    An estimated 5 billion people worldwide lack access to any surgical care, whilst surgical conditions account for 11-30% of the global burden of disease. Maximizing the effectiveness of surgical training is imperative to improve access to safe and essential surgical care on a global scale. Innovative methods of surgical training have been used in sub-Saharan Africa to attempt to improve the efficiency of training healthcare workers in surgery. Simulation training may have an important role in up-scaling and improving the efficiency of surgical training and has been widely used in SSA. Though not intended to be a systematic review, the role of simulation for teaching surgical skills in Sub-Saharan Africa was reviewed to assess the evidence for use and outcomes. A systematic search strategy was used to retrieve relevant studies from electronic databases PubMed, Ovid, Medline for pertinent articles published until August 2016. Studies that reported the use of simulation-based training for surgery in Africa were included. In all, 19 articles were included. A variety of innovative surgical training methods using simulation techniques were identified. Few studies reported any outcome data. Compared to the volume of surgical training initiatives that are known to take place in SSA, there is very limited good quality published evidence for the use of simulation training in this context. Simulation training presents an excellent modality to enhance and improve both volume and access to high quality surgical skills training, alongside other learning domains. There is a desperate need to meticulously evaluate the appropriateness and effectiveness of simulation training in SSA, where simulation training could have a large potential beneficial impact. Training programs should attempt to assess and report learner outcomes.

  20. An adaptive transmission protocol for managing dynamic shared states in collaborative surgical simulation.

    Science.gov (United States)

    Qin, J; Choi, K S; Ho, Simon S M; Heng, P A

    2008-01-01

    A force prediction algorithm is proposed to facilitate virtual-reality (VR) based collaborative surgical simulation by reducing the effect of network latencies. State regeneration is used to correct the estimated prediction. This algorithm is incorporated into an adaptive transmission protocol in which auxiliary features such as view synchronization and coupling control are equipped to ensure the system consistency. We implemented this protocol using multi-threaded technique on a cluster-based network architecture.

  1. Identification of New Tools to Predict Surgical Performance of Novices using a Plastic Surgery Simulator.

    Science.gov (United States)

    Kazan, Roy; Viezel-Mathieu, Alex; Cyr, Shantale; Hemmerling, Thomas M; Lin, Samuel J; Gilardino, Mirko S

    2018-04-09

    To identify new tools capable of predicting surgical performance of novices on an augmentation mammoplasty simulator. The pace of technical skills acquisition varies between residents and may necessitate more time than that allotted by residency training before reaching competence. Identifying applicants with superior innate technical abilities might shorten learning curves and the time to reach competence. The objective of this study is to identify new tools that could predict surgical performance of novices on a mammoplasty simulator. We recruited 14 medical students and recorded their performance in 2 skill-games: Mikado and Perplexus Epic, and in 2 video games: Star War Racer (Sony Playstation 3) and Super Monkey Ball 2 (Nintendo Wii). Then, each participant performed an augmentation mammoplasty procedure on a Mammoplasty Part-task Trainer, which allows the simulation of the essential steps of the procedure. The average age of participants was 25.4 years. Correlation studies showed significant association between Perplexus Epic, Star Wars Racer, Super Monkey Ball scores and the modified OSATS score with r s = 0.8491 (p 41 (p = 0.005), and r s = 0.7309 (p < 0.003), but not with the Mikado score r s = -0.0255 (p = 0.9). Linear regressions were strongest for Perplexus Epic and Super Monkey Ball scores with coefficients of determination of 0.59 and 0.55, respectively. A combined score (Perplexus/Super-Monkey-Ball) was computed and showed a significant correlation with the modified OSATS score having an r s = 0.8107 (p < 0.001) and R 2 = 0.75, respectively. This study identified a combination of skill games that correlated to better performance of novices on a surgical simulator. With refinement, such tools could serve to help screen plastic surgery applicants and identify those with higher surgical performance predictors. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Differentiating levels of surgical experience on a virtual reality temporal bone simulator.

    Science.gov (United States)

    Zhao, Yi C; Kennedy, Gregor; Hall, Richard; O'Leary, Stephen

    2010-11-01

    Virtual reality simulation is increasingly being incorporated into surgical training and may have a role in temporal bone surgical education. Here we test whether metrics generated by a virtual reality surgical simulation can differentiate between three levels of experience, namely novices, otolaryngology residents, and experienced qualified surgeons. Cohort study. Royal Victorian Eye and Ear Hospital. Twenty-seven participants were recruited. There were 12 experts, six residents, and nine novices. After orientation, participants were asked to perform a modified radical mastoidectomy on the simulator. Comparisons of time taken, injury to structures, and forces exerted were made between the groups to determine which specific metrics would discriminate experience levels. Experts completed the simulated task in significantly shorter time than the other two groups (experts 22 minutes, residents 36 minutes, and novices 46 minutes; P = 0.001). Novices exerted significantly higher average forces when dissecting close to vital structures compared with experts (0.24 Newton [N] vs 0.13 N, P = 0.002). Novices were also more likely to injure structures such as dura compared to experts (23 injuries vs 3 injuries, P = 0.001). Compared with residents, the experts modulated their force between initial cortex dissection and dissection close to vital structures. Using the combination of these metrics, we were able to correctly classify the participants' level of experience 90 percent of the time. This preliminary study shows that measurements of performance obtained from within a virtual reality simulator can differentiate between levels of users' experience. These results suggest that simulator training may have a role in temporal bone training beyond foundational training. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  3. Surgical simulation: Current practices and future perspectives for technical skills training.

    Science.gov (United States)

    Bjerrum, Flemming; Thomsen, Ann Sofia Skou; Nayahangan, Leizl Joy; Konge, Lars

    2018-06-17

    Simulation-based training (SBT) has become a standard component of modern surgical education, yet successful implementation of evidence-based training programs remains challenging. In this narrative review, we use Kern's framework for curriculum development to describe where we are now and what lies ahead for SBT within surgery with a focus on technical skills in operative procedures. Despite principles for optimal SBT (proficiency-based, distributed, and deliberate practice) having been identified, massed training with fixed time intervals or a fixed number of repetitions is still being extensively used, and simulators are generally underutilized. SBT should be part of surgical training curricula, including theoretical, technical, and non-technical skills, and be based on relevant needs assessments. Furthermore, training should follow evidence-based theoretical principles for optimal training, and the effect of training needs to be evaluated using relevant outcomes. There is a larger, still unrealized potential of surgical SBT, which may be realized in the near future as simulator technologies evolve, more evidence-based training programs are implemented, and cost-effectiveness and impact on patient safety is clearly demonstrated.

  4. Systematic review of the implementation of simulation training in surgical residency curriculum.

    Science.gov (United States)

    Kurashima, Yo; Hirano, Satoshi

    2017-07-01

    We reviewed the literature regarding the specific methods and strategies for implementing simulation-based training into the modern surgical residency curriculum. Residency programs are still struggling with how best to implement it into their curricula from a practical viewpoint. A systematic review was performed using Ovid MEDLINE, EMBASE, PubMed, PsycINFO, Web of Science, and other resources for studies involving the use of simulation for technical skills training in the surgical residency curriculum. Studies were selected based on the integration of simulation into the curriculum and/or a description of the details of implementation and the resources required. In total, 2533 unique citations were retrieved based on this search, and 31 articles met the inclusion criteria. Most simulators were focused on laparoscopic procedures, and training occurred most often in a skills lab. The assessment of skills consisted mostly of speed of task completion. Only 4 studies addressed issues of cost, and 6 programs mentioned human resources without any mention of skills center personnel or administrative support. All of the studies described the nature of the simulation training, but very few commented on how it was actually implemented and what was needed from organizational, administrative and logistical perspectives.

  5. Exploring Surgeons' Perceptions of the Role of Simulation in Surgical Education: A Needs Assessment

    Directory of Open Access Journals (Sweden)

    Marcia Clark

    2011-11-01

    Full Text Available Introduction: The last two decades have seen the adoption of simulation-based surgical education in various disciplines. The current study’s goal was to perform a needs assessment using the results to inform future curricular planning and needs of surgeons and learners. Methods: A survey was distributed to 26 surgeon educators and interviews were conducted with 8 of these surgeons.  Analysis of survey results included reliability and descriptive statistics. Interviews were analyzed for thematic content with a constant comparison technique, developing coding and categorization of themes. Results: The survey response rate was 81%. The inter-item reliability, according to Cronbach’s alpha was 0.81 with strongest agreement for statements related to learning new skills, training new residents and the positive impact on patient safety and learning.   There was less strong agreement for maintenance of skills, improving team functioning and reducing teaching in the operating room. Interview results confirmed those themes from the survey and highlighted inconsistencies for identified perceived barriers and a focus on acquisition of skills only.  Interview responses specified concerns with integrating simulation into existing curricula and the need for more evaluation as a robust educational strategy. Conclusion: The findings were summarized in four themes: 1 use of simulation, 2 integration into curriculum, 3 leadership, and 4 understanding gaps in simulation use. This study exemplifies a mixed-methods approach to planning a surgical simulation program through a general needs assessment.

  6. SIM Life: a new surgical simulation device using a human perfused cadaver.

    Science.gov (United States)

    Faure, J P; Breque, C; Danion, J; Delpech, P O; Oriot, D; Richer, J P

    2017-02-01

    In primary and continuing medical education, simulation is becoming a mandatory technique. In surgery, simulation spreading is slowed down by the distance which exists between the devices currently available on the market and the reality, in particular anatomical, of an operating room. We propose a new model for surgical simulation with the use of cadavers in a circulation model mimicking pulse and artificial respiration available for both open and laparoscopic surgery. The model was a task trainer designed by four experts in our simulation laboratory combining plastic, electronic, and biologic material. The cost of supplies needed for the construction was evaluated. The model was used and tested over 24 months on 35 participants, of whom 20 were surveyed regarding the realism of the model. The model involved a cadaver, connected to a specific device that permits beating circulation and artificial respiration. The demonstration contributed to teaching small groups of up to four participants and was reproducible over 24 months of courses. Anatomic correlation, realism, and learning experience were highly rated by users CONCLUSION: This model for surgical simulation in both open and laparoscopic surgery was found to be realistic, available to assessed objectively performance in a pedagogic program.

  7. Factors associated with simulator-assessed laparoscopic surgical skills of veterinary students.

    Science.gov (United States)

    Kilkenny, Jessica J; Singh, Ameet; Kerr, Carolyn L; Khosa, Deep K; Fransson, Boel A

    2017-06-01

    OBJECTIVE To determine whether simulator-assessed laparoscopic skills of veterinary students were associated with training level and prior experience performing nonlaparoscopic veterinary surgery and other activities requiring hand-eye coordination and manual dexterity. DESIGN Experiment. SAMPLE 145 students without any prior laparoscopic surgical or fundamentals of laparoscopic surgery (FLS) simulator experience in years 1 (n = 39), 2 (34), 3 (39), and 4 (33) at a veterinary college. PROCEDURES A questionnaire was used to collect data from participants regarding experience performing veterinary surgery, playing video games, and participating in other activities. Participants performed a peg transfer, pattern cutting, and ligature loop-placement task on an FLS simulator, and FLS scores were assigned by an observer. Scores were compared among academic years, and correlations between amounts of veterinary surgical experience and FLS scores were assessed. A general linear model was used to identify predictors of FLS scores. RESULTS Participants were predominantly female (75%), right-hand dominant (92%), and between 20 and 29 years of age (98%). No significant differences were identified among academic years in FLS scores for individual tasks or total FLS score. Scores were not significantly associated with prior surgical or video game experience. Participants reporting no handicraft experience had significantly lower total FLS scores and FLS scores for task 2 than did participants reporting a lot of handicraft experience. CONCLUSIONS AND CLINICAL RELEVANCE Prior veterinary surgical and video game experience had no influence on FLS scores in this group of veterinary students, suggesting that proficiency of veterinary students in FLS may require specific training.

  8. Comparative assessment of surgeons' task performance and surgical ergonomics associated with conventional and modified flank positions: a simulation study.

    Science.gov (United States)

    Fan, Yu; Kong, Gaiqing; Meng, Yisen; Tan, Shutao; Wei, Kunlin; Zhang, Qian; Jin, Jie

    2014-11-01

    Flank position is extensively used in retroperitoneoscopic urological practice. Most surgeons follow the patients' position in open approaches. However, surgical ergonomics of the conventional position in the retroperitoneoscopic surgery is poor. We introduce a modified position and evaluated task performance and surgical ergonomics of both positions with simulated surgical tasks. Twenty-one novice surgeons were recruited to perform four tasks: bead transfer, ring transfer, continuous suturing, and cutting a circle. The conventional position was simulated by setting an endo-surgical simulator parallel to the long axis of a surgical desk. The modified position was simulated by rotating the simulator 30° with respect to the long axis of the desk. The outcome measurements include task performance measures, kinematic measures for body alignment, surface electromyography, relative loading between feet, and subjective ratings of fatigue. We observed significant improvements in both task performance and surgical ergonomics parameters under the modified position. For all four tasks, subjects finished tasks faster with higher accuracy (p ergonomics part: (1) The angle between the upper body and the head was decreased by 7.4 ± 1.7°; (2) The EMG amplitude collected from shoulders and left lumber was significantly lower (p ergonomics. With a simulated surgery, we demonstrated that our modified position could significantly improve task performance and surgical ergonomics. Further studies are still warranted to validate these benefits for both patients and surgeons.

  9. A review of training research and virtual reality simulators for the da Vinci surgical system.

    Science.gov (United States)

    Liu, May; Curet, Myriam

    2015-01-01

    PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.

  10. Surgical ergonomics. Analysis of technical skills, simulation models and assessment methods.

    Science.gov (United States)

    Papaspyros, Sotiris C; Kar, Ashok; O'Regan, David

    2015-06-01

    Over the past two centuries the surgical profession has undergone a profound evolution in terms of efficiency and outcomes. Societal concerns in relation to quality assurance, patient safety and cost reduction have highlighted the issue of training expert surgeons. The core elements of a training model build on the basic foundations of gross and fine motor skills. In this paper we provide an analysis of the ergonomic principles involved and propose relevant training techniques. We have endeavored to provide both the trainer and trainee perspectives. This paper is structured into four sections: 1) Pre-operative preparation issues, 2) technical skills and instrument handling, 3) low fidelity simulation models and 4) discussion of current concepts in crew resource management, deliberate practice and assessment. Rehearsal, warm-up and motivation-enhancing techniques aid concentration and focus. Appropriate posture, comprehension of ergonomic principles in relation to surgical instruments and utilisation of the non-dominant hand are essential skills to master. Low fidelity models can be used to achieve significant progress through the early stages of the learning curve. Deliberate practice and innate ability are complementary to each other and may be considered useful adjuncts to surgical skills development. Safe medical care requires that complex patient interventions be performed by highly skilled operators supported by reliable teams. Surgical ergonomics lie at the heart of any training model that aims to produce professionals able to function as leaders of a patient safety oriented culture. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  11. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training.

    Science.gov (United States)

    Gallagher, Anthony G; Ritter, E Matt; Champion, Howard; Higgins, Gerald; Fried, Marvin P; Moses, Gerald; Smith, C Daniel; Satava, Richard M

    2005-02-01

    To inform surgeons about the practical issues to be considered for successful integration of virtual reality simulation into a surgical training program. The learning and practice of minimally invasive surgery (MIS) makes unique demands on surgical training programs. A decade ago Satava proposed virtual reality (VR) surgical simulation as a solution for this problem. Only recently have robust scientific studies supported that vision A review of the surgical education, human-factor, and psychology literature to identify important factors which will impinge on the successful integration of VR training into a surgical training program. VR is more likely to be successful if it is systematically integrated into a well-thought-out education and training program which objectively assesses technical skills improvement proximate to the learning experience. Validated performance metrics should be relevant to the surgical task being trained but in general will require trainees to reach an objectively determined proficiency criterion, based on tightly defined metrics and perform at this level consistently. VR training is more likely to be successful if the training schedule takes place on an interval basis rather than massed into a short period of extensive practice. High-fidelity VR simulations will confer the greatest skills transfer to the in vivo surgical situation, but less expensive VR trainers will also lead to considerably improved skills generalizations. VR for improved performance of MIS is now a reality. However, VR is only a training tool that must be thoughtfully introduced into a surgical training curriculum for it to successfully improve surgical technical skills.

  12. [3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].

    Science.gov (United States)

    Kneist, W; Huber, T; Paschold, M; Lang, H

    2016-06-01

    The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.

  13. Effects of vacuum suctioning and strategic drape tenting on oxygen concentration in a simulated surgical field.

    Science.gov (United States)

    Kung, Theodore A; Kong, Sarah W; Aliu, Oluseyi; Azizi, Jahan; Kai, Salim; Cederna, Paul S

    2016-02-01

    To investigate the isolated and combined effects of vacuum suctioning and strategic drape tenting on oxygen concentration in an experimental setting. Experimental. Clinical simulation center of a university-affiliated hospital. Mannequin simulation of a patient undergoing facial surgery under sedation anesthesia. Supplemental oxygen was delivered via nasal cannula. Vacuum suctioning and strategic drape tenting. The experimental trials entailed measuring oxygen concentration around the nasal cannula continuously either in the presence or absence of a standard operating room vacuum suction system and strategic tenting of surgical drapes. The primary outcome was the time required for oxygen concentration to reach 21%. In the control group (without suction or strategic tenting), a mean time of 180 seconds elapsed until the measured oxygen concentration reached 21% after cessation of oxygen delivery. Use of a vacuum suction device alone (110 seconds; P strategic tenting (110 seconds; P strategic tenting of surgical drapes has a theoretical benefit to decreasing the pooling of oxygen around the surgical site, further investigation is necessary before its routine use is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    Science.gov (United States)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  15. Preoperative surgical planning and simulation of complex cranial base tumors in virtual reality

    Institute of Scientific and Technical Information of China (English)

    YI Zhi-qiang; LI Liang; MO Da-peng; ZHANG Jia-yong; ZHANG Yang; BAO Sheng-de

    2008-01-01

    @@ The extremely complex anatomic relationships among bone,tumor,blood vessels and cranial nerves remains a big challenge for cranial base tumor surgery.Therefore.a good understanding of the patient specific anatomy and a preoperative planning are helpful and crocial for the neurosurgeons.Three dimensional (3-D) visualization of various imaging techniques have been widely explored to enhance the comprehension of volumetric data for surgical planning.1 We used the Destroscope Virtual Reality (VR) System (Singapore,Volume Interaction Pte Ltd,software:RadioDexterTM 1.0) to optimize preoperative plan in the complex cranial base tumors.This system uses patient-specific,coregistered,fused radiology data sets that may be viewed stereoscopically and can be manipulated in a virtual reality environment.This article describes our experience with the Destroscope VR system in preoperative surgical planning and simulation for 5 patients with complex cranial base tumors and evaluates the clinical usefulness of this system.

  16. Crowd-sourced assessment of technical skills: an adjunct to urology resident surgical simulation training.

    Science.gov (United States)

    Holst, Daniel; Kowalewski, Timothy M; White, Lee W; Brand, Timothy C; Harper, Jonathan D; Sorenson, Mathew D; Kirsch, Sarah; Lendvay, Thomas S

    2015-05-01

    Crowdsourcing is the practice of obtaining services from a large group of people, typically an online community. Validated methods of evaluating surgical video are time-intensive, expensive, and involve participation of multiple expert surgeons. We sought to obtain valid performance scores of urologic trainees and faculty on a dry-laboratory robotic surgery task module by using crowdsourcing through a web-based grading tool called Crowd Sourced Assessment of Technical Skill (CSATS). IRB approval was granted to test the technical skills grading accuracy of Amazon.com Mechanical Turk™ crowd-workers compared to three expert faculty surgeon graders. The two groups assessed dry-laboratory robotic surgical suturing performances of three urology residents (PGY-2, -4, -5) and two faculty using three performance domains from the validated Global Evaluative Assessment of Robotic Skills assessment tool. After an average of 2 hours 50 minutes, each of the five videos received 50 crowd-worker assessments. The inter-rater reliability (IRR) between the surgeons and crowd was 0.91 using Cronbach's alpha statistic (confidence intervals=0.20-0.92), indicating an agreement level between the two groups of "excellent." The crowds were able to discriminate the surgical level, and both the crowds and the expert faculty surgeon graders scored one senior trainee's performance above a faculty's performance. Surgery-naive crowd-workers can rapidly assess varying levels of surgical skill accurately relative to a panel of faculty raters. The crowds provided rapid feedback and were inexpensive. CSATS may be a valuable adjunct to surgical simulation training as requirements for more granular and iterative performance tracking of trainees become mandated and commonplace.

  17. Simulation-based education: understanding the socio-cultural complexity of a surgical training 'boot camp'.

    Science.gov (United States)

    Cleland, Jennifer; Walker, Kenneth G; Gale, Michael; Nicol, Laura G

    2016-08-01

    The focus of simulation-based education (SBE) research has been limited to outcome and effectiveness studies. The effect of social and cultural influences on SBE is unclear and empirical work is lacking. Our objective in this study was to explore and understand the complexity of context and social factors at a surgical boot camp (BC). A rapid ethnographic study, employing the theoretical lenses of complexity and activity theory and Bourdieu's concept of 'capital', to better understand the socio-cultural influences acting upon, and during, two surgical BCs, and their implications for SBE. Over two 4-day BCs held in Scotland, UK, an observer and two preceptors conducted 81 hours of observations, 14 field interviews and 11 formal interviews with faculty members (n = 10, including the lead faculty member, session leaders and junior faculty members) and participants (n = 19 core surgical trainees and early-stage residents). Data collection and inductive analysis for emergent themes proceeded iteratively. This paper focuses on three analytical themes. First, the complexity of the surgical training system and wider health care education context, and how this influenced the development of the BC. Second, participants' views of the BC as a vehicle not just for learning skills but for gaining 'insider information' on how best to progress in surgical training. Finally, the explicit aim of faculty members to use the Scottish Surgical Bootcamp to welcome trainees and residents into the world of surgery, and how this occurred. To the best of our knowledge, this is the first empirical study of a surgical BC that takes a socio-cultural approach to exploring and understanding context, complexities, uncertainties and learning associated with one example of SBE. Our findings suggest that a BC is as much about social and cultural processes as it is about individual, cognitive and acquisitive learning. Acknowledging this explicitly will help those planning similar enterprises and

  18. Applied Research on Laparoscopic Simulator in the Resident Surgical Laparoscopic Operation Technical Training.

    Science.gov (United States)

    Fu, Shangxi; Liu, Xiao; Zhou, Li; Zhou, Meisheng; Wang, Liming

    2017-08-01

    The purpose of this study was to estimate the effects of surgical laparoscopic operation course on laparoscopic operation skills after the simulated training for medical students with relatively objective results via data gained before and after the practice course of laparoscopic simulator of the resident standardized trainees. Experiment 1: 20 resident standardized trainees with no experience in laparoscopic surgery were included in the inexperienced group and finished simulated cholecystectomy according to simulator videos. Simulator data was collected (total operation time, path length, average speed of instrument movement, movement efficiency, number of perforations, the time cautery is applied without appropriate contact with adhesions, number of serious complications). Ten attending doctors were included in the experienced group and conducted the operation of simulated cholecystectomy directly. Data was collected with simulator. Data of two groups was compared. Experiment 2: Participants in inexperienced group were assigned to basic group (receiving 8 items of basic operation training) and special group (receiving 8 items of basic operation training and 4 items of specialized training), and 10 persons for each group. They received training course designed by us respectively. After training level had reached the expected target, simulated cholecystectomy was performed, and data was collected. Experimental data between basic group and special group was compared and then data between special group and experienced group was compared. Results of experiment 1 showed that there is significant difference between data in inexperienced group in which participants operated simulated cholecystectomy only according to instructors' teaching and operation video and data in experienced group. Result of experiment 2 suggested that, total operation time, number of perforations, number of serious complications, number of non-cauterized bleeding and the time cautery is applied

  19. Teaching surgical skills in obstetrics using a cesarean section simulator – bringing simulation to life

    Directory of Open Access Journals (Sweden)

    Venkata Sujatha Vellanki

    2010-12-01

    Full Text Available Venkata Sujatha Vellanki1, Sarath Babu Gillellamudi21Department of Obstetrics and Gynaecology 2Department of General Surgery Kamineni Institute of Medical Sciences, Sreepuram, Narketpally, Nalgonda, Andhra Pradesh, IndiaPurpose: Cesarean section is the most common surgery performed in obstetrics. Incorporating a simulation model into training provides a safe, low-stress environment in which students can gain skills and receive feedback. The purpose of this study was to determine the effectiveness of obstetrics simulator training for medical students doing their internship.Methods: Twenty-five students posted in the Department of Obstetrics and Gynecology received a formal lecture on cesarean section and demonstration of the procedure on a mannequin in the first week of their internship, The study group (n = 12 practiced their skills on an obstetrics simulator under the direct supervision of a faculty member. The control group received no simulator-based training (n = 13 or further instruction. All students were asked to complete a prevalidated questionnaire to assess their level of confidence in performing the procedure after the educational session.Results: Compared with their peers in the study, students in the simulator group were significantly more likely to define the steps of cesarean section (91% vs 61.5%, and were comfortable in assisting cesarean section (100% vs 46.15% as they were able to identify the layers of abdomen opened during cesarean section. All 12 students reported this as an excellent experience.Conclusion: We were able to construct an inexpensive cesarean section trainer that facilitates instruction in cesarean section technique in a low-stress environment.Keywords: simulation, obstetrics, medical students

  20. Design, development, and validation of a take-home simulator for fundamental laparoscopic skills: using Nintendo Wii for surgical training.

    Science.gov (United States)

    Bokhari, Ravia; Bollman-McGregor, Jyoti; Kahoi, Kanav; Smith, Marshall; Feinstein, Ara; Ferrara, John

    2010-06-01

    Assuring quality surgical trainees within the confines of reduced work hours mandates reassessment of educational paradigms. Surgical simulators have been shown to be effective in teaching surgical residents, but their use is limited by cost and time constraints. The Nintendo Wii gaming console is inexpensive and allows natural hand movements similar to those performed in laparoscopy to guide game play. We hypothesize that surgical skills can be improved through take-home simulators adapted from affordable off-the-shelf gaming consoles. A total of 21 surgical residents participated in a prospective, controlled study. An experimental group of 14 surgical residents was assigned to play Marble Mania on the Nintendo Wii using a unique physical controller that interfaces with the WiiMote controller followed by a simulated electrocautery task. Seven residents assigned to the control group performed the electrocautery task without playing the game first. When compared with the control group, the experimental group performed the task with fewer errors and superior movement proficiency (P Nintendo Wii gaming device along with Marble Mania serves as an effective take-home surgical simulator.

  1. Computer based training: Technology and trends

    International Nuclear Information System (INIS)

    O'Neal, A.F.

    1986-01-01

    Computer Based Training (CBT) offers great potential for revolutionizing the training environment. Tremendous advances in computer cost performance, instructional design science, and authoring systems have combined to put CBT within the reach of all. The ability of today's CBT systems to implement powerful training strategies, simulate complex processes and systems, and individualize and control the training process make it certain that CBT will now, at long last, live up to its potential. This paper reviews the major technologies and trends involved and offers some suggestions for getting started in CBT

  2. Simulation-Based Learning Strategies to Teach Undergraduate Students Basic Surgical Skills: A Systematic Review.

    Science.gov (United States)

    Theodoulou, Iakovos; Nicolaides, Marios; Athanasiou, Thanos; Papalois, Apostolos; Sideris, Michail

    2018-02-16

    We aimed to identify and critically appraise all literature surrounding simulation-based learning (SBL) courses, to assess their relevance as tools for undergraduate surgical education, and create a design framework targeted at standardizing future SBL. We performed a systematic review of the literature using a specific keyword strategy to search at MEDLINE database. Of the 2371 potentially eligible titles, 472 were shortlisted and only 40 explored active interventions in undergraduate medical education. Of those, 20 were conducted in the United States, 9 in Europe and 11 in the rest of the world. Nineteen studies assessed the effectiveness of SBL by comparing students' attributes before and after interventions, 1 study assessed a new tool of surgical assessment and 16 studies evaluated SBL courses from the students' perspectives. Of those 40 studies, 12 used dry laboratory, 7 wet laboratory, 12 mixed, and 9 cadaveric SBL interventions. The extent to which positive results were obtained from dry, wet, mixed, and cadaveric laboratories were 75%, 57%, 92%, and 100%, respectively. Consequently, the SBL design framework was devised, providing a foundation upon which future SBL interventions can be designed such that learning outcomes are optimized. SBL is an important step in surgical education, investing in a safer and more efficient generation of surgeons. Standardization of these efforts can be accelerated with SBL design framework, a comprehensive guide to designing future interventions for basic surgical training at the undergraduate level. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  3. Integration and Validation of Hysteroscopy Simulation in the Surgical Training Curriculum.

    Science.gov (United States)

    Elessawy, Mohamed; Skrzipczyk, Moritz; Eckmann-Scholz, Christel; Maass, Nicolai; Mettler, Liselotte; Guenther, Veronika; van Mackelenbergh, Marion; Bauerschlag, Dirk O; Alkatout, Ibrahim

    The primary objective of our study was to test the construct validity of the HystSim hysteroscopic simulator to determine whether simulation training can improve the acquisition of hysteroscopic skills regardless of the previous levels of experience of the participants. The secondary objective was to analyze the performance of a selected task, using specially designed scoring charts to help reduce the learning curve for both novices and experienced surgeons. The teaching of hysteroscopic intervention has received only scant attention, focusing mainly on the development of physical models and box simulators. This encouraged our working group to search for a suitable hysteroscopic simulator module and to test its validation. We decided to use the HystSim hysteroscopic simulator, which is one of the few such simulators that has already completed a validation process, with high ratings for both realism and training capacity. As a testing tool for our study, we selected the myoma resection task. We analyzed the results using the multimetric score system suggested by HystSim, allowing a more precise interpretation of the results. Between June 2014 and May 2015, our group collected data on 57 participants of minimally invasive surgical training courses at the Kiel School of Gynecological Endoscopy, Department of Gynecology and Obstetrics, University Hospitals Schleswig-Holstein, Campus Kiel. The novice group consisted of 42 medical students and residents with no prior experience in hysteroscopy, whereas the expert group consisted of 15 participants with more than 2 years of experience of advanced hysteroscopy operations. The overall results demonstrated that all participants attained significant improvements between their pretest and posttests, independent of their previous levels of experience (p hysteroscopic skills, proving an adequate construct validation of the HystSim. Using the multimetric scoring system enabled a more accurate analysis of the performance of the

  4. A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation

    Science.gov (United States)

    Bao, Yidong; Wu, Dongmei; Yan, Zhiyuan; Du, Zhijiang

    2013-01-01

    This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy. PMID:24339837

  5. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.

    Science.gov (United States)

    Ottensmeyer, M P; Ben-Ur, E; Salisbury, J K

    2000-01-01

    Current efforts in surgical simulation very often focus on creating realistic graphical feedback, but neglect some or all tactile and force (haptic) feedback that a surgeon would normally receive. Simulations that do include haptic feedback do not typically use real tissue compliance properties, favoring estimates and user feedback to determine realism. When tissue compliance data are used, there are virtually no in vivo property measurements to draw upon. Together with the Center for Innovative Minimally Invasive Therapy at the Massachusetts General Hospital, the Haptics Group is developing tools to introduce more comprehensive haptic feedback in laparoscopy simulators and to provide biological tissue material property data for our software simulation. The platform for providing haptic feedback is a PHANToM Haptic Interface, produced by SensAble Technologies, Inc. Our devices supplement the PHANToM to provide for grasping and optionally, for the roll axis of the tool. Together with feedback from the PHANToM, which provides the pitch, yaw and thrust axes of a typical laparoscopy tool, we can recreate all of the haptic sensations experienced during laparoscopy. The devices integrate real laparoscopy toolhandles and a compliant torso model to complete the set of visual and tactile sensations. Biological tissues are known to exhibit non-linear mechanical properties, and change their properties dramatically when removed from a living organism. To measure the properties in vivo, two devices are being developed. The first is a small displacement, 1-D indenter. It will measure the linear tissue compliance (stiffness and damping) over a wide range of frequencies. These data will be used as inputs to a finite element or other model. The second device will be able to deflect tissues in 3-D over a larger range, so that the non-linearities due to changes in the tissue geometry will be measured. This will allow us to validate the performance of the model on large tissue

  6. Coaching Non-technical Skills Improves Surgical Residents' Performance in a Simulated Operating Room.

    Science.gov (United States)

    Yule, Steven; Parker, Sarah Henrickson; Wilkinson, Jill; McKinley, Aileen; MacDonald, Jamie; Neill, Adrian; McAdam, Tim

    2015-01-01

    To investigate the effect of coaching on non-technical skills and performance during laparoscopic cholecystectomy in a simulated operating room (OR). Non-technical skills (situation awareness, decision making, teamwork, and leadership) underpin technical ability and are critical to the success of operations and the safety of patients in the OR. The rate of developing assessment tools in this area has outpaced development of workable interventions to improve non-technical skills in surgical training and beyond. A randomized trial was conducted with senior surgical residents (n = 16). Participants were randomized to receive either non-technical skills coaching (intervention) or to self-reflect (control) after each of 5 simulated operations. Coaching was based on the Non-Technical Skills For Surgeons (NOTSS) behavior observation system. Surgeon-coaches trained in this method coached participants in the intervention group for 10 minutes after each simulation. Primary outcome measure was non-technical skills, assessed from video by a surgeon using the NOTSS system. Secondary outcomes were time to call for help during bleeding, operative time, and path length of laparoscopic instruments. Non-technical skills improved in the intervention group from scenario 1 to scenario 5 compared with those in the control group (p = 0.04). The intervention group was faster to call for help when faced with unstoppable bleeding in the final scenario (no. 5; p = 0.03). Coaching improved residents' non-technical skills in the simulated OR compared with those in the control group. Important next steps are to implement non-technical skills coaching in the real OR and assess effect on clinically important process measures and patient outcomes. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  7. Using the Statecharts paradigm for simulation of patient flow in surgical care.

    Science.gov (United States)

    Sobolev, Boris; Harel, David; Vasilakis, Christos; Levy, Adrian

    2008-03-01

    Computer simulation of patient flow has been used extensively to assess the impacts of changes in the management of surgical care. However, little research is available on the utility of existing modeling techniques. The purpose of this paper is to examine the capacity of Statecharts, a system of graphical specification, for constructing a discrete-event simulation model of the perioperative process. The Statecharts specification paradigm was originally developed for representing reactive systems by extending the formalism of finite-state machines through notions of hierarchy, parallelism, and event broadcasting. Hierarchy permits subordination between states so that one state may contain other states. Parallelism permits more than one state to be active at any given time. Broadcasting of events allows one state to detect changes in another state. In the context of the peri-operative process, hierarchy provides the means to describe steps within activities and to cluster related activities, parallelism provides the means to specify concurrent activities, and event broadcasting provides the means to trigger a series of actions in one activity according to transitions that occur in another activity. Combined with hierarchy and parallelism, event broadcasting offers a convenient way to describe the interaction of concurrent activities. We applied the Statecharts formalism to describe the progress of individual patients through surgical care as a series of asynchronous updates in patient records generated in reaction to events produced by parallel finite-state machines representing concurrent clinical and managerial activities. We conclude that Statecharts capture successfully the behavioral aspects of surgical care delivery by specifying permissible chronology of events, conditions, and actions.

  8. Assessment of laparoscopic psychomotor skills in interns using the MIST Virtual Reality Simulator: a prerequisite for those considering surgical training?

    Science.gov (United States)

    Cope, Daron H; Fenton-Lee, Douglas

    2008-04-01

    Selection for surgical training in Australia is currently based on assessment of a structured curriculum vitae, referral reports from selected clinicians and an interview. The formal assessment of laparoscopic psychomotor skill and ability to attain skills is not currently a prerequisite for selection. The aim of this study was to assess the innate psychomotor skills of interns and also to compare interns with an interest in pursuing a surgical career to interns with those with no interest in pursuing a surgical career. Twenty-two interns were given the opportunity to carry out tasks on the Minimal Invasive Surgical Trainer, Virtual Reality (Mentice, Gothenburg, Sweden) Simulator. The candidates were required to complete six tasks, repeated six times each. Scores for each task were calculated objectively by the simulator software. Demographic data were similar between the two groups. Although some candidates who were interested in pursuing a surgical career performed poorly on the simulator, there was no significant difference when comparing the two groups. The Minimal Invasive Surgical Trainer, Virtual Reality (Mentice) Simulator provides an objective and comparable assessment of laparoscopic psychomotor skills. We can conclude that interns have varying inherent ability as judged by the simulator and this does not seem to have an influence on their career selection. There was no significant difference in the scores between the two groups. Interns with and without inherent abilities have aspirations to pursue surgical careers and their aptitude does not seem to influence this decision. Surgical colleges could use psychomotor ability assessments to recruit candidates to pursue a career in surgery. Trainees needing closer monitoring and additional training could be identified early and guided to achieve competency.

  9. Optimizing patient flow in a large hospital surgical centre by means of discrete-event computer simulation models.

    Science.gov (United States)

    Ferreira, Rodrigo B; Coelli, Fernando C; Pereira, Wagner C A; Almeida, Renan M V R

    2008-12-01

    This study used the discrete-events computer simulation methodology to model a large hospital surgical centre (SC), in order to analyse the impact of increases in the number of post-anaesthetic beds (PABs), of changes in surgical room scheduling strategies and of increases in surgery numbers. The used inputs were: number of surgeries per day, type of surgical room scheduling, anaesthesia and surgery duration, surgical teams' specialty and number of PABs, and the main outputs were: number of surgeries per day, surgical rooms' use rate and blocking rate, surgical teams' use rate, patients' blocking rate, surgery delays (minutes) and the occurrence of postponed surgeries. Two basic strategies were implemented: in the first strategy, the number of PABs was increased under two assumptions: (a) following the scheduling plan actually used by the hospital (the 'rigid' scheduling - surgical rooms were previously assigned and assignments could not be changed) and (b) following a 'flexible' scheduling (surgical rooms, when available, could be freely used by any surgical team). In the second, the same analysis was performed, increasing the number of patients (up to the system 'feasible maximum') but fixing the number of PABs, in order to evaluate the impact of the number of patients over surgery delays. It was observed that the introduction of a flexible scheduling/increase in PABs would lead to a significant improvement in the SC productivity.

  10. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques

    Science.gov (United States)

    Wang, P.; Becker, A. A.; Jones, I. A.; Glover, A. T.; Benford, S. D.; Vloeberghs, M.

    2009-08-01

    A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.

  11. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques

    International Nuclear Information System (INIS)

    Wang, P; Becker, A A; Jones, I A; Glover, A T; Benford, S D; Vloeberghs, M

    2009-01-01

    A virtual-reality real-time simulation of surgical operations that incorporates the inclusion of a hard tumour is presented. The software is based on Boundary Element (BE) technique. A review of the BE formulation for real-time analysis of two-domain deformable objects, using the pre-solution technique, is presented. The two-domain BE software is incorporated into a surgical simulation system called VIRS to simulate the initiation of a cut on the surface of the soft tissue and extending the cut deeper until the tumour is reached.

  12. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  13. Development and evaluation of a simulator-based laparoscopic training program for surgical novices.

    Science.gov (United States)

    Nugent, Emmeline; Shirilla, Nicole; Hafeez, Adnan; O'Riordain, Diarmuid S; Traynor, Oscar; Harrison, Anthony M; Neary, Paul

    2013-01-01

    The use of simulation to train novice surgeons in laparoscopic skills is becoming increasingly popular. To maximize benefit from simulation, training needs to be delivered and assessed in a structured manner. This study aimed to define performance goals, demonstrate construct validity of the training program, and evaluate whether novice surgeons could reach the preset performance goals. Nine expert laparoscopic surgeons established performance goals for three basic modules of an augmented-reality laparoscopic simulator. The three laparoscopic modules were used by 40 novice surgeons and 40 surgical trainees (postgraduate years [PGYs] 1-4). The performance outcomes were analyzed across the different groups (novice, PGYs 1 and 2, PGYs 3 and 4, expert) to determine construct validity. Then 26 recruited novices trained on the three modules with the aim of reaching the performance goals. The results demonstrated a significant difference in performance between all levels of experience for time (p < 0.001), motion analysis (p < 0.001), and error score (p < 0.001), thus demonstrating construct validity. All 26 novice surgeons significantly improved in performance with repetition for the metrics of time (p < 0.001) and motion analysis (p < 0.001). For two of the modules, the proficiency goals were reached in fewer than 10 trials by 80% of the study participants. Basic skills in laparoscopic surgery can be learned and improved using proficiency-based simulation training. It is possible for novice surgeons to achieve predefined performance goals in a reasonable time frame.

  14. Patient-specific surgical simulator for the pre-operative planning of single-incision laparoscopic surgery with bimanual robots.

    Science.gov (United States)

    Turini, Giuseppe; Moglia, Andrea; Ferrari, Vincenzo; Ferrari, Mauro; Mosca, Franco

    2012-01-01

    The trend of surgical robotics is to follow the evolution of laparoscopy, which is now moving towards single-incision laparoscopic surgery. The main drawback of this approach is the limited maneuverability of the surgical tools. Promising solutions to improve the surgeon's dexterity are based on bimanual robots. However, since both robot arms are completely inserted into the patient's body, issues related to possible unwanted collisions with structures adjacent to the target organ may arise. This paper presents a simulator based on patient-specific data for the positioning and workspace evaluation of bimanual surgical robots in the pre-operative planning of single-incision laparoscopic surgery. The simulator, designed for the pre-operative planning of robotic laparoscopic interventions, was tested by five expert surgeons who evaluated its main functionalities and provided an overall rating for the system. The proposed system demonstrated good performance and usability, and was designed to integrate both present and future bimanual surgical robots.

  15. Computer based training for oil spill management

    International Nuclear Information System (INIS)

    Goodman, R.

    1993-01-01

    Large oil spills are infrequent occurrences, which poses a particular problem for training oil spill response staff and for maintaining a high level of response readiness. Conventional training methods involve table-top simulations to develop tactical and strategic response skills and boom-deployment exercises to maintain operational readiness. Both forms of training are quite effective, but they are very time-consuming to organize, are expensive to conduct, and tend to become repetitious. To provide a variety of response experiences, a computer-based system of oil spill response training has been developed which can supplement a table-top training program. Using a graphic interface, a realistic and challenging computerized oil spill response simulation has been produced. Integral to the system is a program editing tool which allows the teacher to develop a custom training exercise for the area of interest to the student. 1 ref

  16. Comparing video games and laparoscopic simulators in the development of laparoscopic skills in surgical residents.

    Science.gov (United States)

    Adams, Barbara J; Margaron, Franklin; Kaplan, Brian J

    2012-01-01

    The video game industry has become increasingly popular over recent years, offering photorealistic simulations of various scenarios while requiring motor, visual, and cognitive coordination. Video game players outperform nonplayers on different visual tasks and are faster and more accurate on laparoscopic simulators. The same qualities found in video game players are highly desired in surgeons. Our investigation aims to evaluate the effect of video game play on the development of fine motor and visual skills. Specifically, we plan to examine if handheld video devices offer the same improvement in laparoscopic skill as traditional simulators, with less cost and more accessibility. We performed an Institutional Review Board-approved study, including categorical surgical residents and preliminary interns at our institution. The residents were randomly assigned to 1 of 3 study arms, including a traditional laparoscopic simulator, XBOX 360 gaming console, or Nintendo DS handheld gaming system. After an introduction survey and baseline timed test using a laparoscopic surgery box trainer, residents were given 6 weeks to practice on their respective consoles. At the conclusion of the study, the residents were tested again on the simulator and completed a final survey. A total of 31 residents were included in the study, representing equal distribution of each class level. The XBOX 360 group spent more time on their console weekly (6 hours per week) compared with the simulator (2 hours per week), and Nintendo groups (3 hours per week). There was a significant difference in the improvement of the tested time among the 3 groups, with the XBOX 360 group showing the greatest improvement (p = 0.052). The residents in the laparoscopic simulator arm (n = 11) improved 4.6 seconds, the XBOX group (n = 10) improved 17.7 seconds, and the Nintendo DS group (n = 10) improved 11.8 seconds. Residents who played more than 10 hours of video games weekly had the fastest times on the simulator

  17. Does computer-aided surgical simulation improve efficiency in bimaxillary orthognathic surgery?

    Science.gov (United States)

    Schwartz, H C

    2014-05-01

    The purpose of this study was to compare the efficiency of bimaxillary orthognathic surgery using computer-aided surgical simulation (CASS), with cases planned using traditional methods. Total doctor time was used to measure efficiency. While costs vary widely in different localities and in different health schemes, time is a valuable and limited resource everywhere. For this reason, total doctor time is a more useful measure of efficiency than is cost. Even though we use CASS primarily for planning more complex cases at the present time, this study showed an average saving of 60min for each case. In the context of a department that performs 200 bimaxillary cases each year, this would represent a saving of 25 days of doctor time, if applied to every case. It is concluded that CASS offers great potential for improving efficiency when used in the planning of bimaxillary orthognathic surgery. It saves significant doctor time that can be applied to additional surgical work. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Development of a virtual reality haptic Veress needle insertion simulator for surgical skills training.

    Science.gov (United States)

    Okrainec, A; Farcas, M; Henao, O; Choy, I; Green, J; Fotoohi, M; Leslie, R; Wight, D; Karam, P; Gonzalez, N; Apkarian, J

    2009-01-01

    The Veress needle is the most commonly used technique for creating the pneumoperitoneum at the start of a laparoscopic surgical procedure. Inserting the Veress needle correctly is crucial since errors can cause significant harm to patients. Unfortunately, this technique can be difficult to teach since surgeons rely heavily on tactile feedback while advancing the needle through the various layers of the abdominal wall. This critical step in laparoscopy, therefore, can be challenging for novice trainees to learn without adequate opportunities to practice in a safe environment with no risk of injury to patients. To address this issue, we have successfully developed a prototype of a virtual reality haptic needle insertion simulator using the tactile feedback of 22 surgeons to set realistic haptic parameters. A survey of these surgeons concluded that our device appeared and felt realistic, and could potentially be a useful tool for teaching the proper technique of Veress needle insertion.

  19. Construct validity of the LapVR virtual-reality surgical simulator.

    Science.gov (United States)

    Iwata, Naoki; Fujiwara, Michitaka; Kodera, Yasuhiro; Tanaka, Chie; Ohashi, Norifumi; Nakayama, Goro; Koike, Masahiko; Nakao, Akimasa

    2011-02-01

    Laparoscopic surgery requires fundamental skills peculiar to endoscopic procedures such as eye-hand coordination. Acquisition of such skills prior to performing actual surgery is highly desirable for favorable outcome. Virtual-reality simulators have been developed for both surgical training and assessment of performance. The aim of the current study is to show construct validity of a novel simulator, LapVR (Immersion Medical, San Jose, CA, USA), for Japanese surgeons and surgical residents. Forty-four subjects were divided into the following three groups according to their experience in laparoscopic surgery: 14 residents (RE) with no experience in laparoscopic surgery, 14 junior surgeons (JR) with little experience, and 16 experienced surgeons (EX). All subjects executed "essential task 1" programmed in the LapVR, which consists of six tasks, resulting in automatic measurement of 100 parameters indicating various aspects of laparoscopic skills. Time required for each task tended to be inversely correlated with experience in laparoscopic surgery. For the peg transfer skill, statistically significant differences were observed between EX and RE in three parameters, including total time and average time taken to complete the procedure and path length for the nondominant hand. For the cutting skill, similar differences were observed between EX and RE in total time, number of unsuccessful cutting attempts, and path length for the nondominant hand. According to the programmed comprehensive evaluation, performance in terms of successful completion of the task and actual experience of the participants in laparoscopic surgery correlated significantly for the peg transfer (P=0.007) and cutting skills (P=0.026). The peg transfer and cutting skills could best distinguish between EX and RE. This study is the first to provide evidence that LapVR has construct validity to discriminate between novice and experienced laparoscopic surgeons.

  20. Visual-spatial ability is more important than motivation for novices in surgical simulator training: a preliminary study.

    Science.gov (United States)

    Schlickum, Marcus; Hedman, Leif; Felländer-Tsai, Li

    2016-02-21

    To investigate whether surgical simulation performance and previous video gaming experience would correlate with higher motivation to further train a specific simulator task and whether visual-spatial ability would rank higher in importance to surgical performance than the above. It was also examined whether or not motivation would correlate with a preference to choose a surgical specialty in the future and if simulator training would increase the interest in choosing that same work field. Motivation and general interest in surgery was measured pre- and post-training in 30 medical students at Karolinska Institutet who were tested in a laparoscopic surgical simulator in parallel with measurement of visual-spatial ability and self-estimated video gaming experience. Correlations between simulator performance metrics, visual-spatial ability and motivation were statistically analyzed using regression analysis. A good result in the first simulator trial correlated with higher self-determination index (r =-0.46, p=0.05) in male students. Visual-spatial ability was the most important underlying factor followed by intrinsic motivation score and finally video gaming experience (p=0.02, p=0.05, p=0.11) regarding simulator performance in male students. Simulator training increased interest in surgery when studying all subjects (p=0.01), male subjects (p=0.02) as well as subjects with low video gaming experience (p=0.02). This preliminary study highlights individual differences regarding the effect of simulator training on motivation that can be taken into account when designing simulator training curricula, although the sample size is quite small and findings should be interpreted carefully.

  1. Protocol for concomitant temporomandibular joint custom-fitted total joint reconstruction and orthognathic surgery utilizing computer-assisted surgical simulation.

    Science.gov (United States)

    Movahed, Reza; Teschke, Marcus; Wolford, Larry M

    2013-12-01

    Clinicians who address temporomandibular joint (TMJ) pathology and dentofacial deformities surgically can perform the surgery in 1 stage or 2 separate stages. The 2-stage approach requires the patient to undergo 2 separate operations and anesthesia, significantly prolonging the overall treatment. However, performing concomitant TMJ and orthognathic surgery (CTOS) in these cases requires careful treatment planning and surgical proficiency in the 2 surgical areas. This article presents a new treatment protocol for the application of computer-assisted surgical simulation in CTOS cases requiring reconstruction with patient-fitted total joint prostheses. The traditional and new CTOS protocols are described and compared. The new CTOS protocol helps decrease the preoperative workup time and increase the accuracy of model surgery. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Construct validity for eye-hand coordination skill on a virtual reality laparoscopic surgical simulator.

    Science.gov (United States)

    Yamaguchi, Shohei; Konishi, Kozo; Yasunaga, Takefumi; Yoshida, Daisuke; Kinjo, Nao; Kobayashi, Kiichiro; Ieiri, Satoshi; Okazaki, Ken; Nakashima, Hideaki; Tanoue, Kazuo; Maehara, Yoshihiko; Hashizume, Makoto

    2007-12-01

    This study was carried out to investigate whether eye-hand coordination skill on a virtual reality laparoscopic surgical simulator (the LAP Mentor) was able to differentiate among subjects with different laparoscopic experience and thus confirm its construct validity. A total of 31 surgeons, who were all right-handed, were divided into the following two groups according to their experience as an operator in laparoscopic surgery: experienced surgeons (more than 50 laparoscopic procedures) and novice surgeons (fewer than 10 laparoscopic procedures). The subjects were tested using the eye-hand coordination task of the LAP Mentor, and performance was compared between the two groups. Assessment of the laparoscopic skills was based on parameters measured by the simulator. The experienced surgeons completed the task significantly faster than the novice surgeons. The experienced surgeons also achieved a lower number of movements (NOM), better economy of movement (EOM) and faster average speed of the left instrument than the novice surgeons, whereas there were no significant differences between the two groups for the NOM, EOM and average speed of the right instrument. Eye-hand coordination skill of the nondominant hand, but not the dominant hand, measured using the LAP Mentor was able to differentiate between subjects with different laparoscopic experience. This study also provides evidence of construct validity for eye-hand coordination skill on the LAP Mentor.

  3. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.

    Science.gov (United States)

    Loukas, Constantinos; Lahanas, Vasileios; Georgiou, Evangelos

    2013-12-01

    Despite the popular use of virtual and physical reality simulators in laparoscopic training, the educational potential of augmented reality (AR) has not received much attention. A major challenge is the robust tracking and three-dimensional (3D) pose estimation of the endoscopic instrument, which are essential for achieving interaction with the virtual world and for realistic rendering when the virtual scene is occluded by the instrument. In this paper we propose a method that addresses these issues, based solely on visual information obtained from the endoscopic camera. Two different tracking algorithms are combined for estimating the 3D pose of the surgical instrument with respect to the camera. The first tracker creates an adaptive model of a colour strip attached to the distal part of the tool (close to the tip). The second algorithm tracks the endoscopic shaft, using a combined Hough-Kalman approach. The 3D pose is estimated with perspective geometry, using appropriate measurements extracted by the two trackers. The method has been validated on several complex image sequences for its tracking efficiency, pose estimation accuracy and applicability in AR-based training. Using a standard endoscopic camera, the absolute average error of the tip position was 2.5 mm for working distances commonly found in laparoscopic training. The average error of the instrument's angle with respect to the camera plane was approximately 2°. The results are also supplemented by video segments of laparoscopic training tasks performed in a physical and an AR environment. The experiments yielded promising results regarding the potential of applying AR technologies for laparoscopic skills training, based on a computer vision framework. The issue of occlusion handling was adequately addressed. The estimated trajectory of the instruments may also be used for surgical gesture interpretation and assessment. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Training in Basic Laparoscopic Surgical Skills : Residents Opinion of the New Nintendo Wii-U Laparoscopic Simulator

    NARCIS (Netherlands)

    Overtoom, Evelien M.; Jansen, Frank-Willem; van Santbrink, Evert J P; Schraffordt Koops, Steven E; Veersema, Sebastiaan; Schreuder, Henk W R

    2017-01-01

    Objective Serious games are new in the field of laparoscopic surgical training. We evaluate the residents׳ opinion of a new laparoscopic simulator for the Nintendo Wii-U platform. Design Prospective questionnaire study. Participants received a standardized introduction and completed level 3 and 4 of

  5. Innovative approach using interprofessional simulation to educate surgical residents in technical and nontechnical skills in high-risk clinical scenarios.

    Science.gov (United States)

    Nicksa, Grace A; Anderson, Cristan; Fidler, Richard; Stewart, Lygia

    2015-03-01

    The Accreditation Council for Graduate Medical Education core competencies stress nontechnical skills that can be difficult to evaluate and teach to surgical residents. During emergencies, surgeons work in interprofessional teams and are required to perform certain procedures. To obtain proficiency in these skills, residents must be trained. To educate surgical residents in leadership, teamwork, effective communication, and infrequently performed emergency surgical procedures with the use of interprofessional simulations. SimMan 3GS was used to simulate high-risk clinical scenarios (15-20 minutes), followed by debriefings with real-time feedback (30 minutes). A modified Oxford Non-Technical Skills scale (score range, 1-4) was used to assess surgical resident performance during the first half of the academic year (July-December 2012) and the second half of the academic year (January-June 2013). Anonymous online surveys were used to solicit participant feedback. Simulations were conducted in the operating room, intensive care unit, emergency department, ward, and simulation center. A total of 43 surgical residents (postgraduate years [PGYs] 1 and 2) participated in interdisciplinary clinical scenarios, with other health care professionals (nursing, anesthesia, critical care, medicine, respiratory therapy, and pharmacy; mean number of nonsurgical participants/session: 4, range 0-9). Thirty seven surgical residents responded to the survey. Simulation of high-risk clinical scenarios: postoperative pulmonary embolus, pneumothorax, myocardial infarction, gastrointestinal bleeding, anaphylaxis with a difficult airway, and pulseless electrical activity arrest. Evaluation of resident skills: communication, leadership, teamwork, problem solving, situation awareness, and confidence in performing emergency procedures (eg, cricothyroidotomy). A total of 31 of 35 (89%) of the residents responding found the sessions useful. Additionally, 28 of 33 (85%) reported improved confidence

  6. Development of Computer-Based Resources for Textile Education.

    Science.gov (United States)

    Hopkins, Teresa; Thomas, Andrew; Bailey, Mike

    1998-01-01

    Describes the production of computer-based resources for students of textiles and engineering in the United Kingdom. Highlights include funding by the Teaching and Learning Technology Programme (TLTP), courseware author/subject expert interaction, usage test and evaluation, authoring software, graphics, computer-aided design simulation, self-test…

  7. Basic airway skills acquisition using the American College of Surgeons/Association for Surgical Education medical student simulation-based surgical skills curriculum: Initial results.

    Science.gov (United States)

    Muratore, Sydne; Kim, Michael; Olasky, Jaisa; Campbell, Andre; Acton, Robert

    2017-02-01

    The ACS/ASE Medical Student Simulation-Based Skills Curriculum was developed to standardize medical student training. This study aims to evaluate the feasibility and validity of implementing the basic airway curriculum. This single-center, prospective study of medical students participating in the basic airway module from 12/2014-3/2016 consisted of didactics, small-group practice, and testing in a simulated clinical scenario. Proficiency was determined by a checklist of skills (1-15), global score (1-5), and letter grade (NR-needs review, PS-proficient in simulation scenario, CP-proficient in clinical scenario). A proportion of students completed pre/post-test surveys regarding experience, satisfaction, comfort, and self-perceived proficiency. Over 16 months, 240 students were enrolled with 98% deemed proficient in a simulated or clinical scenario. Pre/post-test surveys (n = 126) indicated improvement in self-perceived proficiency by 99% of learners. All students felt moderately to very comfortable performing basic airway skills and 94% had moderate to considerable satisfaction after completing the module. The ACS/ASE Surgical Skills Curriculum is a feasible and effective way to teach medical students basic airway skills using simulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study.

    Science.gov (United States)

    Maddox, Michael M; Feibus, Allison; Liu, James; Wang, Julie; Thomas, Raju; Silberstein, Jonathan L

    2018-03-01

    To construct patient-specific physical three-dimensional (3D) models of renal units with materials that approximates the properties of renal tissue to allow pre-operative and robotic training surgical simulation, 3D physical kidney models were created (3DSystems, Rock Hill, SC) using computerized tomography to segment structures of interest (parenchyma, vasculature, collection system, and tumor). Images were converted to a 3D surface mesh file for fabrication using a multi-jet 3D printer. A novel construction technique was employed to approximate normal renal tissue texture, printers selectively deposited photopolymer material forming the outer shell of the kidney, and subsequently, an agarose gel solution was injected into the inner cavity recreating the spongier renal parenchyma. We constructed seven models of renal units with suspected malignancies. Partial nephrectomy and renorrhaphy were performed on each of the replicas. Subsequently all patients successfully underwent robotic partial nephrectomy. Average tumor diameter was 4.4 cm, warm ischemia time was 25 min, RENAL nephrometry score was 7.4, and surgical margins were negative. A comparison was made between the seven cases and the Tulane Urology prospectively maintained robotic partial nephrectomy database. Patients with surgical models had larger tumors, higher nephrometry score, longer warm ischemic time, fewer positive surgical margins, shorter hospitalization, and fewer post-operative complications; however, the only significant finding was lower estimated blood loss (186 cc vs 236; p = 0.01). In this feasibility study, pre-operative resectable physical 3D models can be constructed and used as patient-specific surgical simulation tools; further study will need to demonstrate if this results in improvement of surgical outcomes and robotic simulation education.

  9. Technical tips and advancements in pediatric minimally invasive surgical training on porcine based simulations.

    Science.gov (United States)

    Narayanan, Sarath Kumar; Cohen, Ralph Clinton; Shun, Albert

    2014-06-01

    Minimal access techniques have transformed the way pediatric surgery is practiced. Due to various constraints, surgical residency programs have not been able to tutor adequate training skills in the routine setting. The advent of new technology and methods in minimally invasive surgery (MIS), has similarly contributed to the need for systematic skills' training in a safe, simulated environment. To enable the training of the proper technique among pediatric surgery trainees, we have advanced a porcine non-survival model for endoscopic surgery. The technical advancements over the past 3 years and a subjective validation of the porcine model from 114 participating trainees using a standard questionnaire and a 5-point Likert scale have been described here. Mean attitude scores and analysis of variance (ANOVA) were used for statistical analysis of the data. Almost all trainees agreed or strongly agreed that the animal-based model was appropriate (98.35%) and also acknowledged that such workshops provided adequate practical experience before attempting on human subjects (96.6%). Mean attitude score for respondents was 19.08 (SD 3.4, range 4-20). Attitude scores showed no statistical association with years of experience or the level of seniority, indicating a positive attitude among all groups of respondents. Structured porcine-based MIS training should be an integral part of skill acquisition for pediatric surgery trainees and the experience gained can be transferred into clinical practice. We advocate that laparoscopic training should begin in a controlled workshop setting before procedures are attempted on human patients.

  10. The Mozart effect on task performance in a laparoscopic surgical simulator.

    Science.gov (United States)

    Wiseman, Michael C

    2013-10-01

    The Mozart Effect is a phenomenon whereby certain pieces of music induce temporary enhancement in "spatial temporal reasoning." To determine whether the Mozart Effect can improve surgical performance, 55 male volunteers (mean age = 20.6 years, range = 16-27), novice to surgery, were timed as they completed an activity course on a laparoscopic simulator. Subjects were then randomized for exposure to 1 of 2 musical pieces by Mozart (n = 21) and Dream Theater (n = 19), after which they repeated the course. Following a 15-minute exposure to a nonmusical piece, subjects were exposed to one of the pieces and performed the activity course a third time. An additional group (n = 15) that was not corandomized performed the tasks without any exposure to music. The percent improvements in completion time between 3 successive trials were calculated for each subject and group means compared. In 2 of the tasks, subjects exposed to the Dream Theater piece achieved approximately 30% more improvement (26.7 ± 8.3%) than those exposed to the Mozart piece (20.2 ± 7.8%, P = .021) or to no music (20.4 ± 9.1%, P = .049). Distinct patterns of covariance between baseline performance and subsequent improvement were observed for the different musical conditions and tasks. The data confirm the existence of a Mozart Effect and demonstrate for the first time its practical applicability. Prior exposure to certain pieces may enhance performance in practical skills requiring spatial temporal reasoning.

  11. The use of cone-beam computed tomography and virtual reality simulation for pre-surgical practice in endodontic microsurgery.

    Science.gov (United States)

    Suebnukarn, S; Rhienmora, P; Haddawy, P

    2012-07-01

    To design and evaluate the impact of virtual reality (VR) pre-surgical practice on the performance of actual endodontic microsurgery.   The VR system operates on a laptop with a 1.6-GHz Intel processor and 2 GB of main memory. Volumetric cone-beam computed tomography (CBCT) data were acquired from a fresh cadaveric porcine mandible prior to endodontic microsurgery. Ten inexperienced endodontic trainees were randomized as to whether they performed endodontic microsurgery with or without virtual pre-surgical practice. The VR simulator has microinstruments to perform surgical procedures under magnification. After the initial endodontic microsurgery, all participants served as their own controls by performing another procedure with or without virtual pre-surgical practice. All procedures were videotaped and assessed by two independent observers using an endodontic competency rating scale (from 6 to 30). A significant difference was observed between the scores for endodontic microsurgery on molar teeth completed with virtual pre-surgical practice and those completed without virtual presurgical practice, median 24.5 (range = 17-28) versus median 18.75 (range = 14-26.5), P = 0.041. A significant difference was observed between the scores for osteotomy on a molar tooth completed with virtual pre-surgical practice and those completed without virtual pre-surgical practice, median 4.5 (range = 3.5-4.5) versus median 3 (range = 2-4), P = 0.042. Pre-surgical practice in a virtual environment using the 3D computerized model generated from the original CBCT image data improved endodontic microsurgery performance. © 2012 International Endodontic Journal.

  12. Industrial application of a graphics computer-based training system

    International Nuclear Information System (INIS)

    Klemm, R.W.

    1985-01-01

    Graphics Computer Based Training (GCBT) roles include drilling, tutoring, simulation and problem solving. Of these, Commonwealth Edison uses mainly tutoring, simulation and problem solving. These roles are not separate in any particular program. They are integrated to provide tutoring and part-task simulation, part-task simulation and problem solving, or problem solving tutoring. Commonwealth's Graphics Computer Based Training program was a result of over a year's worth of research and planning. The keys to the program are it's flexibility and control. Flexibility is maintained through stand alone units capable of program authoring and modification for plant/site specific users. Yet, the system has the capability to support up to 31 terminals with a 40 mb hard disk drive. Control of the GCBT program is accomplished through establishment of development priorities and a central development facility (Commonwealth Edison's Production Training Center)

  13. Systematic Review of Voluntary Participation in Simulation-Based Laparoscopic Skills Training: Motivators and Barriers for Surgical Trainee Attendance.

    Science.gov (United States)

    Gostlow, Hannah; Marlow, Nicholas; Babidge, Wendy; Maddern, Guy

    To examine and report on evidence relating to surgical trainees' voluntary participation in simulation-based laparoscopic skills training. Specifically, the underlying motivators, enablers, and barriers faced by surgical trainees with regard to attending training sessions on a regular basis. A systematic search of the literature (PubMed; CINAHL; EMBASE; Cochrane Collaboration) was conducted between May and July 2015. Studies were included on whether they reported on surgical trainee attendance at voluntary, simulation-based laparoscopic skills training sessions, in addition to qualitative data regarding participant's perceived barriers and motivators influencing their decision to attend such training. Factors affecting a trainee's motivation were categorized as either intrinsic (internal) or extrinsic (external). Two randomised control trials and 7 case series' met our inclusion criteria. Included studies were small and generally poor quality. Overall, voluntary simulation-based laparoscopic skills training was not well attended. Intrinsic motivators included clearly defined personal performance goals and relevance to clinical practice. Extrinsic motivators included clinical responsibilities and available free time, simulator location close to clinical training, and setting obligatory assessments or mandated training sessions. The effect of each of these factors was variable, and largely dependent on the individual trainee. The greatest reported barrier to attending voluntary training was the lack of available free time. Although data quality is limited, it can be seen that providing unrestricted access to simulator equipment is not effective in motivating surgical trainees to voluntarily participate in simulation-based laparoscopic skills training. To successfully encourage participation, consideration needs to be given to the factors influencing motivation to attend training. Further research, including better designed randomised control trials and large

  14. Validating a Methodology for Establishing a Criteria and Proficiency Levels in Surgical Skills Simulators

    National Research Council Canada - National Science Library

    Heinrichs, LeRoy; Lukoff, Brian; Youngblood, Patricia; Dev, Parvati; Shavelson, Richard

    2006-01-01

    .... To establish training criteria, we have assessed the performance of 18 experienced laparoscopic surgeons basic technical surgical skills of recorded electronically in 26 basic skills modules selected...

  15. Implementation of simulation in surgical practice: minimally invasive surgery has taken the lead: the Dutch experience

    NARCIS (Netherlands)

    Schreuder, Henk W. R.; Oei, Guid; Maas, Mario; Borleffs, Jan C. C.; Schijven, Marlies P.

    2011-01-01

    Minimal invasive techniques are rapidly becoming standard surgical techniques for many surgical procedures. To develop the skills necessary to apply these techniques, box trainers and/or inanimate models may be used, but these trainers lack the possibility of inherent objective classification of

  16. Implementation of simulation in surgical practice : Minimally invasive surgery has taken the lead: The Dutch experience

    NARCIS (Netherlands)

    Schreuder, Henk W. R.; Oei, Guid; Maas, Mario; Borleffs, Jan C. C.; Schijven, Marlies P.

    2011-01-01

    Minimal invasive techniques are rapidly becoming standard surgical techniques for many surgical procedures. To develop the skills necessary to apply these techniques, box trainers and/or inanimate models may be used, but these trainers lack the possibility of inherent objective classification of

  17. Battle of the bots: a comparison of the standard da Vinci and the da Vinci Surgical Skills Simulator in surgical skills acquisition.

    Science.gov (United States)

    Brown, Kevin; Mosley, Natalie; Tierney, James

    2017-06-01

    Virtual reality simulators are increasingly used to gain robotic surgical skills. This study compared use of the da Vinci Surgical Skills Simulator (dVSSS) to the standard da Vinci (SdV) robot for skills acquisition in a prospective randomized study. Residents from urology, gynecology, and general surgery programs performed three virtual reality tasks (thread the ring, ring rail, and tubes) on the dvSSS. Participants were then randomized to one of the two study groups (dVSSS and SdV). Each participant then practiced on either the dVSSS or the SdV (depending on randomization) for 30 min per week over a 4-week time period. The dVSSS arm was not permitted to practice ring rail (due to no similar practice scenario available for the SdV group). Following 4 weeks of practice, participants performed the same three virtual reality tasks and the results were recorded and compared to baseline. Overall and percent improvement were recorded for all participants from pre-test to post-test. Two-way ANOVA analyses were used to compare the dVSSS and SdV groups and three tasks. Initially, 30 participants were identified and enrolled in the study. Randomization resulted in 15 participants in each arm. During the course of the study, four participants were unable to complete all tasks and practice sessions and were, therefore, excluded. This resulted in a total of 26 participants (15 in the dVSSS group and 11 in the SdV group) who completed the study. Overall total improvement score was found to be 23.23 and 23.48 for the SdV and dVSSS groups, respectively (p = 0.9245). The percent improvement was 60 and 47 % for the SdV and dVSSS groups respectively, which was a statistically significant difference between the two groups and three tasks. Practicing on the standard da Vinci is comparable to practicing on the da Vinci simulator for acquiring robotic surgical skills. In spite of several potential advantages, the dVSSS arm performed no better than the SdV arm in the final

  18. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  19. Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery.

    Science.gov (United States)

    Shen, Shuwei; Wang, Haili; Xue, Yue; Yuan, Li; Zhou, Ximing; Zhao, Zuhua; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Xu, Ronald X

    2017-09-08

    Preoperative assessment of tissue anatomy and accurate surgical planning is crucial in conjoined twin separation surgery. We developed a new method that combines three-dimensional (3D) printing, assembling, and casting to produce anatomic models of high fidelity for surgical planning. The related anatomic features of the conjoined twins were captured by computed tomography (CT), classified as five organ groups, and reconstructed as five computer models. Among these organ groups, the skeleton was produced by fused deposition modeling (FDM) using acrylonitrile-butadiene-styrene. For the other four organ groups, shell molds were prepared by FDM and cast with silica gel to simulate soft tissues, with contrast enhancement pigments added to simulate different CT and visual contrasts. The produced models were assembled, positioned firmly within a 3D printed shell mold simulating the skin boundary, and cast with transparent silica gel. The produced phantom was subject to further CT scan in comparison with that of the patient data for fidelity evaluation. Further data analysis showed that the produced model reassembled the geometric features of the original CT data with an overall mean deviation of less than 2 mm, indicating the clinical potential to use this method for surgical planning in conjoined twin separation surgery.

  20. Simulation-based cutaneous surgical-skill training on a chicken-skin bench model in a medical undergraduate program.

    Science.gov (United States)

    Denadai, Rafael; Saad-Hossne, Rogério; Martinhão Souto, Luís Ricardo

    2013-05-01

    Because of ethical and medico-legal aspects involved in the training of cutaneous surgical skills on living patients, human cadavers and living animals, it is necessary the search for alternative and effective forms of training simulation. To propose and describe an alternative methodology for teaching and learning the principles of cutaneous surgery in a medical undergraduate program by using a chicken-skin bench model. One instructor for every four students, teaching materials on cutaneous surgical skills, chicken trunks, wings, or thighs, a rigid platform support, needled threads, needle holders, surgical blades with scalpel handles, rat-tooth tweezers, scissors, and marking pens were necessary for training simulation. A proposal for simulation-based training on incision, suture, biopsy, and on reconstruction techniques using a chicken-skin bench model distributed in several sessions and with increasing levels of difficultywas structured. Both feedback and objective evaluations always directed to individual students were also outlined. The teaching of a methodology for the principles of cutaneous surgery using a chicken-skin bench model versatile, portable, easy to assemble, and inexpensive is an alternative and complementary option to the armamentarium of methods based on other bench models described.

  1. SimLife a new model of simulation using a pulsated revascularized and reventilated cadaver for surgical education.

    Science.gov (United States)

    Delpech, P O; Danion, J; Oriot, D; Richer, J P; Breque, C; Faure, J P

    2017-02-01

    Alike becoming a pilot requires competences, acquisition of technical skills is essential to become a surgeon. Halsted's theory on surgical education "See one, do one, and teach one" is not currently compatible with the reality of socio-economic constraints of the operating room, the patient's safety demand and the reduction of residents' work hours. In all countries, this brings mandatory to simulation education for surgery resident's training. Many models are available: video trainers or pelvi-trainers, computed simulator, animal models or human cadaver… Human cadaveric dissection has long been used to teach surgical anatomy. Surgery on human cadaveric model brings greatest accuracy to the haptic characteristics of surgical procedures. Learning in an appropriate and realistic simulation context increases the level of acquisition of the residents' skills and reduces stress and anxiety when performing real procedures. We present a technique of perfusion and ventilation of a fresh human cadaver that restores pulsatile circulation and respiratory movements of the model. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Simulation-based cutaneous surgical-skill training on a chicken-skin bench model in a medical undergraduate program

    Directory of Open Access Journals (Sweden)

    Rafael Denadai

    2013-01-01

    Full Text Available Background: Because of ethical and medico-legal aspects involved in the training of cutaneous surgical skills on living patients, human cadavers and living animals, it is necessary the search for alternative and effective forms of training simulation. Aims: To propose and describe an alternative methodology for teaching and learning the principles of cutaneous surgery in a medical undergraduate program by using a chicken-skin bench model. Materials and Methods: One instructor for every four students, teaching materials on cutaneous surgical skills, chicken trunks, wings, or thighs, a rigid platform support, needled threads, needle holders, surgical blades with scalpel handles, rat-tooth tweezers, scissors, and marking pens were necessary for training simulation. Results: A proposal for simulation-based training on incision, suture, biopsy, and on reconstruction techniques using a chicken-skin bench model distributed in several sessions and with increasing levels of difficultywas structured. Both feedback and objective evaluations always directed to individual students were also outlined. Conclusion: The teaching of a methodology for the principles of cutaneous surgery using a chicken-skin bench model versatile, portable, easy to assemble, and inexpensive is an alternative and complementary option to the armamentarium of methods based on other bench models described.

  3. Introducing the Xitact LS500 laparoscopy simulator: toward a revolution in surgical education

    NARCIS (Netherlands)

    Schijven, Marlies P.; Jakimowicz, Jack J.

    2003-01-01

    Minimal invasive surgery has become the primary technique-of-choice for uncomplicated, symptomatic cholelithiasis. Skills needed for performing laparoscopic cholecystectomy cannot be extrapolated directly from the open surgical technique. An obvious need exists for a valid, objective, and repetitive

  4. Notes From the Field: Secondary Task Precision for Cognitive Load Estimation During Virtual Reality Surgical Simulation Training.

    Science.gov (United States)

    Rasmussen, Sebastian R; Konge, Lars; Mikkelsen, Peter T; Sørensen, Mads S; Andersen, Steven A W

    2016-03-01

    Cognitive load (CL) theory suggests that working memory can be overloaded in complex learning tasks such as surgical technical skills training, which can impair learning. Valid and feasible methods for estimating the CL in specific learning contexts are necessary before the efficacy of CL-lowering instructional interventions can be established. This study aims to explore secondary task precision for the estimation of CL in virtual reality (VR) surgical simulation and also investigate the effects of CL-modifying factors such as simulator-integrated tutoring and repeated practice. Twenty-four participants were randomized for visual assistance by a simulator-integrated tutor function during the first 5 of 12 repeated mastoidectomy procedures on a VR temporal bone simulator. Secondary task precision was found to be significantly lower during simulation compared with nonsimulation baseline, p impact on secondary task precision. This finding suggests that even though considerable changes in CL are reflected in secondary task precision, it lacks sensitivity. In contrast, secondary task reaction time could be more sensitive, but requires substantial postprocessing of data. Therefore, future studies on the effect of CL modifying interventions should weigh the pros and cons of the various secondary task measurements. © The Author(s) 2015.

  5. A virtual surgical training system that simulates cutting of soft tissue using a modified pre-computed elastic model.

    Science.gov (United States)

    Toe, Kyaw Kyar; Huang, Weimin; Yang, Tao; Duan, Yuping; Zhou, Jiayin; Su, Yi; Teo, Soo-Kng; Kumar, Selvaraj Senthil; Lim, Calvin Chi-Wan; Chui, Chee Kong; Chang, Stephen

    2015-08-01

    This work presents a surgical training system that incorporates cutting operation of soft tissue simulated based on a modified pre-computed linear elastic model in the Simulation Open Framework Architecture (SOFA) environment. A precomputed linear elastic model used for the simulation of soft tissue deformation involves computing the compliance matrix a priori based on the topological information of the mesh. While this process may require a few minutes to several hours, based on the number of vertices in the mesh, it needs only to be computed once and allows real-time computation of the subsequent soft tissue deformation. However, as the compliance matrix is based on the initial topology of the mesh, it does not allow any topological changes during simulation, such as cutting or tearing of the mesh. This work proposes a way to modify the pre-computed data by correcting the topological connectivity in the compliance matrix, without re-computing the compliance matrix which is computationally expensive.

  6. Simulated surgical workshops enhance medical school students’ preparation for clinical rotation

    Directory of Open Access Journals (Sweden)

    Patricia Johnson

    2013-02-01

    Full Text Available BackgroundA major focus of the medical school curriculum is to ensure medical students are well prepared prior to entering clinical rotations, which includes the compulsory surgical rotation.AimsThe objective of this research was to design and formally evaluate a set of real-life surgical workshops aimed at better preparing medical students for their clinical rotation in surgery. These workshops would be incorporated into the pre-clinical medical school curriculum.MethodDedicated surgical workshops were introduced into the preclinical component of the Bachelor of Medicine/Bachelor of Surgery (MBBS program at our University in 2009. These workshops encompassed training in the clinical skills needed in the perioperative and wider hospital setting. A survey comprising of eight to nine ranked questions (utilising a five-point Likert Scale as well as three short answer questions was administered to the medical students after they completed their compulsory surgical clinical rotation.ResultsThe overall response rate to the survey evaluating the surgical workshops was 79% (123/155. The mean of the ranked questions ranged from 4.05 to 4.89 which indicated that the students found the workshops useful. When evaluating the short answer questions (via topic coding, additional information was provided that supported and explained the survey findings and also included suggestions for improvements.ConclusionThe findings of the medical student survey demonstrated the value of incorporating dedicated preparatory surgical workshops in the medical school pre-clinical curriculum. However, further research is warranted to determine if this inclusion translated into improved student performance during the clinical surgical rotation.

  7. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    Science.gov (United States)

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Use of a machine learning algorithm to classify expertise: analysis of hand motion patterns during a simulated surgical task.

    Science.gov (United States)

    Watson, Robert A

    2014-08-01

    To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.

  9. Does simulation-based training facilitate the integration of human anatomy with surgery? A report of a novel Surgical Anatomy Course.

    Science.gov (United States)

    Torres, K; Denisow-Pietrzyk, M; Pietrzyk, Ł; Maciejewski, R; Torres, A

    2018-01-01

    Knowledge of gross anatomy, as a basic core subject, is fundamental for medical students and essential to medical practitioners, particularly for those intending a surgical career. However, both medical students and clinical teachers have found a significant gap in teaching basic sciences and the transition into clinical skills. The authors present a Surgical Anatomy Course developed to teach the anatomical basis of surgical procedures with particular emphasis on laparo-scopic skills while incorporating medical simulation. An evaluation of the students' satisfaction of the Surgical Anatomy Course was completed using a mix of multiple choice and open-ended questions, and a six-point Likert Scale. Questions were asked about the students' perceived improvement in surgical and laparoscopic skills. Manual skills were assessed using a laparoscopic simulator. Both evaluation of the course structure and the general impression of the course were positive. Most students believed the course should be an integral part of a modern curriculum. The course supported the traditional surgical classes and improved anatomical knowledge and strengthened students' confidentiality and facilitated understanding and taking surgical rotations. A medical course combining the practical learning of anatomy and surgical-based approaches will bring out the best from the students. Medical students positively evaluated the Surgical Anatomy Course as useful and benefi-cial regarding understanding anatomical structure and relationship necessary for further surgical education. (Folia Morphol 2018; 77, 2: 279-285).

  10. Development and validation of a laparoscopic hysterectomy cuff closure simulation model for surgical training.

    Science.gov (United States)

    Tunitsky-Bitton, Elena; Propst, Katie; Muffly, Tyler

    2016-03-01

    The number of robotically assisted hysterectomies is increasing, and therefore, the opportunities for trainees to become competent in performing traditional laparoscopic hysterectomy are decreasing. Simulation-based training is ideal for filling this gap in training. The objective of the study was to design a surgical model for training in laparoscopic vaginal cuff closure and to present evidence of its validity and reliability as an assessment and training tool. Participants included gynecology staff and trainees at 2 tertiary care centers. Experienced surgeons were also recruited at the combined International Urogynecologic Association and American Urogynecologic Society scientific meeting. Participants included 19 experts and 21 trainees. All participants were recorded using the laparoscopic hysterectomy cuff closure simulation model. The model was constructed using the an advanced uterine manipulation system with a sacrocolopexy tip/vaginal stent, a vaginal cuff constructed from neoprene material and lined with a swimsuit material (nylon and spandex) secured to the vaginal stent with a plastic cable tie. The uterine manipulation system was attached to the fundamentals of laparoscopic surgery laparoscopic training box trainer using a metal bracket. Performance was evaluated using the Global Operative Assessment of Laparoscopic Skills scale. In addition, needle handling, knot tying, and incorporation of epithelial edge were also evaluated. The Student t test was used to compare the scores and the operating times between the groups. Intrarater reliability between the scores by the 2 masked experts was measured using the interclass correlation coefficient. Total and annual experience with laparoscopic suturing and specifically vaginal cuff closure varied greatly among the participants. For the construct validity, the participants in the expert group received significantly higher scores in each of the domains of the Global Operative Assessment of Laparoscopic Skills

  11. Adding tactile realism to a virtual reality laparoscopic surgical simulator with a cost-effective human interface device

    Science.gov (United States)

    Mack, Ian W.; Potts, Stephen; McMenemy, Karen R.; Ferguson, R. S.

    2006-02-01

    The laparoscopic technique for performing abdominal surgery requires a very high degree of skill in the medical practitioner. Much interest has been focused on using computer graphics to provide simulators for training surgeons. Unfortunately, these tend to be complex and have a very high cost, which limits availability and restricts the length of time over which individuals can practice their skills. With computer game technology able to provide the graphics required for a surgical simulator, the cost does not have to be high. However, graphics alone cannot serve as a training simulator. Human interface hardware, the equivalent of the force feedback joystick for a flight simulator game, is required to complete the system. This paper presents a design for a very low cost device to address this vital issue. The design encompasses: the mechanical construction, the electronic interfaces and the software protocols to mimic a laparoscopic surgical set-up. Thus the surgeon has the capability of practicing two-handed procedures with the possibility of force feedback. The force feedback and collision detection algorithms allow surgeons to practice realistic operating theatre procedures with a good degree of authenticity.

  12. Pilot study: evaluation of the use of the convergent interview technique in understanding the perception of surgical design and simulation.

    Science.gov (United States)

    Logan, Heather; Wolfaardt, Johan; Boulanger, Pierre; Hodgetts, Bill; Seikaly, Hadi

    2013-06-19

    It is important to understand the perceived value of surgical design and simulation (SDS) amongst surgeons, as this will influence its implementation in clinical settings. The purpose of the present study was to examine the application of the convergent interview technique in the field of surgical design and simulation and evaluate whether the technique would uncover new perceptions of virtual surgical planning (VSP) and medical models not discovered by other qualitative case-based techniques. Five surgeons were asked to participate in the study. Each participant was interviewed following the convergent interview technique. After each interview, the interviewer interpreted the information by seeking agreements and disagreements among the interviewees in order to understand the key concepts in the field of SDS. Fifteen important issues were extracted from the convergent interviews. In general, the convergent interview was an effective technique in collecting information about the perception of clinicians. The study identified three areas where the technique could be improved upon for future studies in the SDS field.

  13. A serious game skills competition increases voluntary usage and proficiency of a virtual reality laparoscopic simulator during first-year surgical residents' simulation curriculum.

    Science.gov (United States)

    El-Beheiry, Mostafa; McCreery, Greig; Schlachta, Christopher M

    2017-04-01

    The objective of this study was to assess the effect of a serious game skills competition on voluntary usage of a laparoscopic simulator among first-year surgical residents' standard simulation curriculum. With research ethics board approval, informed consent was obtained from first-year surgical residents enrolled in an introductory surgical simulation curriculum. The class of 2013 served as a control cohort following the standard curriculum which mandates completion of six laparoscopic simulator skill tasks. For the 2014 competition cohort, the only change introduced was the biweekly and monthly posting of a leader board of the top three and ten fastest peg transfer times. Entry surveys were administered assessing attitudes towards simulation-based training and competition. Cohorts were observed for 5 months. There were 24 and 25 residents in the control and competition cohorts, respectively. The competition cohort overwhelmingly (76 %) stated that they were not motivated to deliberate practice by competition. Median total simulator usage time was 132 min (IQR = 214) in the competition cohort compared to 89 (IQR = 170) in the control cohort. The competition cohort completed their course requirements significantly earlier than the control cohort (χ 2  = 6.5, p = 0.01). There was a significantly greater proportion of residents continuing to use the simulator voluntarily after completing their course requirements in the competition cohort (44 vs. 4 %; p = 0.002). Residents in the competition cohort were significantly faster at peg transfer (194 ± 66 vs. 233 ± 53 s, 95 % CI of difference = 4-74 s; p = 0.03) and significantly decreased their completion time by 33 ± 54 s (95 % CI 10-56 s; paired t test, p = 0.007). A simple serious games skills competition increased voluntary usage and performance on a laparoscopic simulator, despite a majority of participants reporting they were not motivated by competition. Future directions should

  14. 3D Computer graphics simulation to obtain optimal surgical exposure during microvascular decompression of the glossopharyngeal nerve.

    Science.gov (United States)

    Hiraishi, Tetsuya; Matsushima, Toshio; Kawashima, Masatou; Nakahara, Yukiko; Takahashi, Yuichi; Ito, Hiroshi; Oishi, Makoto; Fujii, Yukihiko

    2013-10-01

    The affected artery in glossopharyngeal neuralgia (GPN) is most often the posterior inferior cerebellar artery (PICA) from the caudal side or the anterior inferior cerebellar artery (AICA) from the rostral side. This technical report describes two representative cases of GPN, one with PICA as the affected artery and the other with AICA, and demonstrates the optimal approach for each affected artery. We used 3D computer graphics (3D CG) simulation to consider the ideal transposition of the affected artery in any position and approach. Subsequently, we performed microvascular decompression (MVD) surgery based on this simulation. For PICA, we used the transcondylar fossa approach in the lateral recumbent position, very close to the prone position, with the patient's head tilted anteriorly for caudal transposition of PICA. In contrast, for AICA, we adopted a lateral suboccipital approach with opening of the lateral cerebellomedullary fissure, to visualize better the root entry zone of the glossopharyngeal nerve and to obtain a wide working space in the cerebellomedullary cistern, for rostral transposition of AICA. Both procedures were performed successfully. The best surgical approach for MVD in patients with GPN is contingent on the affected artery--PICA or AICA. 3D CG simulation provides tailored approach for MVD of the glossopharyngeal nerve, thereby ensuring optimal surgical exposure.

  15. Current status of robotic simulators in acquisition of robotic surgical skills.

    Science.gov (United States)

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  16. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.

    Science.gov (United States)

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  17. Achieving Accreditation Council for Graduate Medical Education duty hours compliance within advanced surgical training: a simulation-based feasibility assessment.

    Science.gov (United States)

    Obi, Andrea; Chung, Jennifer; Chen, Ryan; Lin, Wandi; Sun, Siyuan; Pozehl, William; Cohn, Amy M; Daskin, Mark S; Seagull, F Jacob; Reddy, Rishindra M

    2015-11-01

    Certain operative cases occur unpredictably and/or have long operative times, creating a conflict between Accreditation Council for Graduate Medical Education (ACGME) rules and adequate training experience. A ProModel-based simulation was developed based on historical data. Probabilistic distributions of operative time calculated and combined with an ACGME compliant call schedule. For the advanced surgical cases modeled (cardiothoracic transplants), 80-hour violations were 6.07% and the minimum number of days off was violated 22.50%. There was a 36% chance of failure to fulfill any (either heart or lung) minimum case requirement despite adequate volume. The variable nature of emergency cases inevitably leads to work hour violations under ACGME regulations. Unpredictable cases mandate higher operative volume to ensure achievement of adequate caseloads. Publically available simulation technology provides a valuable avenue to identify adequacy of case volumes for trainees in both the elective and emergency setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Crisis management on surgical wards: a simulation-based approach to enhancing technical, teamwork, and patient interaction skills.

    Science.gov (United States)

    Arora, Sonal; Hull, Louise; Fitzpatrick, Maureen; Sevdalis, Nick; Birnbach, David J

    2015-05-01

    To establish the efficacy of simulation-based training for improving residents' management of postoperative complications on a surgical ward. Effective postoperative care is a crucial determinant of patient outcome, yet trainees learn this through the Halstedian approach. Little evidence exists on the efficacy of simulation in this safety-critical environment. A pre-/postintervention design was employed with 185 residents from 5 hospitals. Residents participated in 2 simulated ward-based scenarios consisting of a deteriorating postoperative patient. A debriefing intervention was implemented between scenarios. Resident performance was evaluated by calibrated, blinded assessors using the validated Global Assessment Toolkit for Ward Care. This included an assessment of clinical skills (checklist of 35 tasks), team-working skills (score range 1-6 per skill), and physician-patient interaction skills. Excellent interrater reliability was achieved in all assessments (reliability 0.89-0.99, P pre = 73.7% vs post = 94.8%, P pre = 21.1% vs post = 84.2% P pre = 42.1% vs post = 100%, P pre = 36.8% vs post = 89.8%, P pre = 1.75 vs post = 3.43), leadership (pre = 2.43 vs post = 4.20), and decision-making skills (pre = 2.20 vs post = 3.81, P < 0.001). Finally, residents improved in all elements of interaction with patients: empathy, organization, and verbal and nonverbal expression (Ps < 0.001). The study provides evidence for the efficacy of ward-based team training using simulation. Such exercises should be formally incorporated into training curricula to enhance patient safety in the high-risk surgical ward environment.

  19. Simulation of Surgical Cutting in Deformable Bodies using a Game Engine

    DEFF Research Database (Denmark)

    Jørgensen, Martin Kibsgaard; Kronborg Thomsen, Kasper; Kraus, Martin

    2014-01-01

    Simulators as a training tool for surgeons are becoming more important with the increase of minimally invasive surgery and a wish to limit training on animals, especially in the field of robotic surgery. Accessibility to surgery simulators is currently limited and the ability to cut is restricted...

  20. The Relationship of Endoscopic Proficiency to Educational Expense for Virtual Reality Simulator Training Amongst Surgical Trainees.

    Science.gov (United States)

    Raque, Jessica; Goble, Adam; Jones, Veronica M; Waldman, Lindsey E; Sutton, Erica

    2015-07-01

    With the introduction of Fundamentals of Endoscopic Surgery, training methods in flexible endoscopy are being augmented with simulation-based curricula. The investment for virtual reality simulators warrants further research into its training advantage. Trainees were randomized into bedside or simulator training groups (BED vs SIM). SIM participated in a proficiency-based virtual reality curriculum. Trainees' endoscopic skills were rated using the Global Assessment of Gastrointestinal Endoscopic Skills (GAGES) in the patient care setting. The number of cases to reach 90 per cent of the maximum GAGES score and calculated costs of training were compared. Nineteen residents participated in the study. There was no difference in the average number of cases required to achieve 90 per cent of the maximum GAGES score for esophagogastroduodenoscopy, 13 (SIM) versus11 (BED) (P = 0.63), or colonoscopy 21 (SIM) versus 4 (BED) (P = 0.34). The average per case cost of training for esophagogastroduodenoscopy was $35.98 (SIM) versus $39.71 (BED) (P = 0.50), not including the depreciation costs associated with the simulator ($715.00 per resident over six years). Use of a simulator appeared to increase the cost of training without accelerating the learning curve or decreasing faculty time spent in instruction. The importance of simulation in endoscopy training will be predicated on more cost-effective simulators.

  1. Planning surgical reconstruction in Treacher-Collins syndrome using virtual simulation.

    Science.gov (United States)

    Nikkhah, Dariush; Ponniah, Allan; Ruff, Cliff; Dunaway, David

    2013-11-01

    Treacher-Collins syndrome is a rare autosomal dominant condition of varying phenotypic expression. The surgical correction in this syndrome is difficult, and the approach varies between craniofacial departments worldwide. The authors aimed to design standardized tools for planning orbitozygomatic and mandibular reconstruction in Treacher-Collins syndrome using geometric morphometrics. The Great Ormond Street Hospital database was retrospectively identified for patients with Treacher-Collins syndrome. Thirteen children (aged 2 to 15 years) who had suitable preoperative three-dimensional computed tomographic head scans were included. Six Treacher-Collins syndrome three-dimensional computed tomographic head scans were quantitatively compared using a template of 96 anatomically defined landmarks to 26 age-matched normal dry skulls. Thin-plate spline videos illustrated the characteristic deformities of retromicrognathia and maxillary and orbitozygomatic hypoplasia in the Treacher-Collins syndrome population. Geometric morphometrics was used in the virtual reconstruction of the orbitozygomatic and mandibular region in Treacher-Collins syndrome patients. Intrarater and interrater reliability of the landmarks was acceptable and within a standard deviation of less than 1 mm on 97 percent and 100 percent of 10 repeated scans, respectively. Virtual normalization of the Treacher-Collins syndrome skull effectively describes characteristic skeletal deformities and provides a useful guide to surgical reconstruction. Size-matched stereolithographic templates derived from thin-plate spline warps can provide effective intraoperative templates for zygomatic and mandibular reconstruction in the Treacher-Collins syndrome patient. Diagnostic, V.

  2. Urology Residents' Experience and Attitude Toward Surgical Simulation: Presenting our 4-Year Experience With a Multi-institutional, Multi-modality Simulation Model.

    Science.gov (United States)

    Chow, Alexander K; Sherer, Benjamin A; Yura, Emily; Kielb, Stephanie; Kocjancic, Ervin; Eggener, Scott; Turk, Thomas; Park, Sangtae; Psutka, Sarah; Abern, Michael; Latchamsetty, Kalyan C; Coogan, Christopher L

    2017-11-01

    To evaluate the Urological resident's attitude and experience with surgical simulation in residency education using a multi-institutional, multi-modality model. Residents from 6 area urology training programs rotated through simulation stations in 4 consecutive sessions from 2014 to 2017. Workshops included GreenLight photovaporization of the prostate, ureteroscopic stone extraction, laparoscopic peg transfer, 3-dimensional laparoscopy rope pass, transobturator sling placement, intravesical injection, high definition video system trainer, vasectomy, and Urolift. Faculty members provided teaching assistance, objective scoring, and verbal feedback. Participants completed a nonvalidated questionnaire evaluating utility of the workshop and soliciting suggestions for improvement. Sixty-three of 75 participants (84%) (postgraduate years 1-6) completed the exit questionnaire. Median rating of exercise usefulness on a scale of 1-10 ranged from 7.5 to 9. On a scale of 0-10, cumulative median scores of the course remained high over 4 years: time limit per station (9; interquartile range [IQR] 2), faculty instruction (9, IQR 2), ease of use (9, IQR 2), face validity (8, IQR 3), and overall course (9, IQR 2). On multivariate analysis, there was no difference in rating of domains between postgraduate years. Sixty-seven percent (42/63) believe that simulation training should be a requirement of Urology residency. Ninety-seven percent (63/65) viewed the laboratory as beneficial to their education. This workshop model is a valuable training experience for residents. Most participants believe that surgical simulation is beneficial and should be a requirement for Urology residency. High ratings of usefulness for each exercise demonstrated excellent face validity provided by the course. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Computer-based planning of optimal donor sites for autologous osseous grafts

    Science.gov (United States)

    Krol, Zdzislaw; Chlebiej, Michal; Zerfass, Peter; Zeilhofer, Hans-Florian U.; Sader, Robert; Mikolajczak, Pawel; Keeve, Erwin

    2002-05-01

    Bone graft surgery is often necessary for reconstruction of craniofacial defects after trauma, tumor, infection or congenital malformation. In this operative technique the removed or missing bone segment is filled with a bone graft. The mainstay of the craniofacial reconstruction rests with the replacement of the defected bone by autogeneous bone grafts. To achieve sufficient incorporation of the autograft into the host bone, precise planning and simulation of the surgical intervention is required. The major problem is to determine as accurately as possible the donor site where the graft should be dissected from and to define the shape of the desired transplant. A computer-aided method for semi-automatic selection of optimal donor sites for autografts in craniofacial reconstructive surgery has been developed. The non-automatic step of graft design and constraint setting is followed by a fully automatic procedure to find the best fitting position. In extension to preceding work, a new optimization approach based on the Levenberg-Marquardt method has been implemented and embedded into our computer-based surgical planning system. This new technique enables, once the pre-processing step has been performed, selection of the optimal donor site in time less than one minute. The method has been applied during surgery planning step in more than 20 cases. The postoperative observations have shown that functional results, such as speech and chewing ability as well as restoration of bony continuity were clearly better compared to conventionally planned operations. Moreover, in most cases the duration of the surgical interventions has been distinctly reduced.

  4. Computer-Based Learning in Chemistry Classes

    Science.gov (United States)

    Pietzner, Verena

    2014-01-01

    Currently not many people would doubt that computers play an essential role in both public and private life in many countries. However, somewhat surprisingly, evidence of computer use is difficult to find in German state schools although other countries have managed to implement computer-based teaching and learning in their schools. This paper…

  5. Computer-Based Testing: Test Site Security.

    Science.gov (United States)

    Rosen, Gerald A.

    Computer-based testing places great burdens on all involved parties to ensure test security. A task analysis of test site security might identify the areas of protecting the test, protecting the data, and protecting the environment as essential issues in test security. Protecting the test involves transmission of the examinations, identifying the…

  6. Computer-based feedback in formative assessment

    NARCIS (Netherlands)

    van der Kleij, Fabienne

    2013-01-01

    Formative assessment concerns any assessment that provides feedback that is intended to support learning and can be used by teachers and/or students. Computers could offer a solution to overcoming obstacles encountered in implementing formative assessment. For example, computer-based assessments

  7. Performances on simulator and da Vinci robot on subjects with and without surgical background.

    Science.gov (United States)

    Moglia, Andrea; Ferrari, Vincenzo; Melfi, Franca; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred; Morelli, Luca

    2017-08-17

    To assess whether previous training in surgery influences performance on da Vinci Skills Simulator and da Vinci robot. In this prospective study, thirty-seven participants (11 medical students, 17 residents, and 9 attending surgeons) without previous experience in laparoscopy and robotic surgery performed 26 exercises at da Vinci Skills Simulator. Thirty-five then executed a suture using a da Vinci robot. The overall scores on the exercises at the da Vinci Skills Simulator show a similar performance among the groups with no statistically significant pair-wise differences (p poor for the untrained groups (5 (3.5, 9)), without statistically significant difference (p < .05). This study showed, for subjects new to laparoscopy and robotic surgery, insignificant differences in the scores at the da Vinci Skills Simulator and at the da Vinci robot on inanimate models.

  8. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 1: planning sequence

    Science.gov (United States)

    Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Chen, K.-C.; Li, J.; Zhang, X.; Tang, Z.; Alfi, D. M.

    2015-01-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also on an accurate surgical plan. The adoption of computer-aided surgical simulation (CASS) has created a paradigm shift in surgical planning. However, planning an orthognathic operation using CASS differs fundamentally from planning using traditional methods. With this in mind, the Surgical Planning Laboratory of Houston Methodist Research Institute has developed a CASS protocol designed specifically for orthognathic surgery. The purpose of this article is to present an algorithm using virtual tools for planning a double-jaw orthognathic operation. This paper will serve as an operation manual for surgeons wanting to incorporate CASS into their clinical practice. PMID:26573562

  9. Modeling soft factors in computer-based wargames

    Science.gov (United States)

    Alexander, Steven M.; Ross, David O.; Vinarskai, Jonathan S.; Farr, Steven D.

    2002-07-01

    Computer-based wargames have seen much improvement in recent years due to rapid increases in computing power. Because these games have been developed for the entertainment industry, most of these advances have centered on the graphics, sound, and user interfaces integrated into these wargames with less attention paid to the game's fidelity. However, for a wargame to be useful to the military, it must closely approximate as many of the elements of war as possible. Among the elements that are typically not modeled or are poorly modeled in nearly all military computer-based wargames are systematic effects, command and control, intelligence, morale, training, and other human and political factors. These aspects of war, with the possible exception of systematic effects, are individually modeled quite well in many board-based commercial wargames. The work described in this paper focuses on incorporating these elements from the board-based games into a computer-based wargame. This paper will also address the modeling and simulation of the systemic paralysis of an adversary that is implied by the concept of Effects Based Operations (EBO). Combining the fidelity of current commercial board wargames with the speed, ease of use, and advanced visualization of the computer can significantly improve the effectiveness of military decision making and education. Once in place, the process of converting board wargames concepts to computer wargames will allow the infusion of soft factors into military training and planning.

  10. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    Science.gov (United States)

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  11. A surgical simulator for peeling the inner limiting membrane during wet conditions.

    Science.gov (United States)

    Omata, Seiji; Someya, Yusei; Adachi, Shyn'ya; Masuda, Taisuke; Hayakawa, Takeshi; Harada, Kanako; Mitsuishi, Mamoru; Totsuka, Kiyohito; Araki, Fumiyuki; Takao, Muneyuki; Aihara, Makoto; Arai, Fumihito

    2018-01-01

    The present study was performed to establish a novel ocular surgery simulator for training in peeling of the inner limited membrane (ILM). This simulator included a next-generation artificial ILM with mechanical properties similar to the natural ILM that could be peeled underwater in the same manner as in actual surgery. An artificial eye consisting of a fundus and eyeball parts was fabricated. The artificial eye was installed in the eye surgery simulator. The fundus part was mounted in the eyeball, which consisted of an artificial sclera, retina, and ILM. To measure the thickness of the fabricated ILM on the artificial retina, we calculated the distance of the step height as the thickness of the artificial ILM. Two experienced ophthalmologists then assessed the fabricated ILM by sensory evaluation. The minimum thickness of the artificial ILM was 1.9 ± 0.3 μm (n = 3). We were able to perform the peeling task with the ILM in water. Based on the sensory evaluation, an ILM with a minimum thickness and 1000 degrees of polymerization was suitable for training. We installed the eye model on an ocular surgery simulator, which allowed for the performance of a sequence of operations similar to ILM peeling. In conclusion, we developed a novel ocular surgery simulator for ILM peeling. The artificial ILM was peeled underwater in the same manner as in an actual operation.

  12. Contemporary virtual reality laparoscopy simulators: quicksand or solid grounds for assessing surgical trainees?

    NARCIS (Netherlands)

    Thijssen, Anthony S.; Schijven, Marlies P.

    2010-01-01

    BACKGROUND: A demand for safe, efficient laparoscopic training tools has prompted the introduction of virtual reality (VR) laparoscopic simulators, which might be used for performance assessment. The purpose of this review is to determine the value of VR metrics in laparoscopic skills assessment.

  13. Perceptions About the Present and Future of Surgical Simulation: A National Study of Mixed Qualitative and Quantitative Methodology.

    Science.gov (United States)

    Yiasemidou, Marina; Glassman, Daniel; Tomlinson, James; Song, David; Gough, Michael J

    Assess expert opinion on the current and future role of simulation in surgical education. Expert opinion was sought through an externally validated questionnaire that was disseminated electronically. Heads of Schools of Surgery (HoS) (and deputies) and Training Program Directors (TPD) (and deputies). Simulation was considered a good training tool (HoS: 15/15, TPD: 21/21). The concept that simulation is useful mostly to novices and for basic skills acquisition was rejected (HoS: 15/15, TPDs: 21/21; HoS: 13/15, TPDs: 18/21). Further, simulation is considered suitable for teaching nontechnical skills (HoS: 13/15, TPDs: 20/21) and re-enacting stressful situations (HoS: 14/15, TPDs: 15/21). Most respondents also felt that education centers should be formally accredited (HoS: 12/15, TPDs: 16/21) and that consultant mentors should be appointed by every trust (HoS: 12/15, TPDs: 19/21). In contrast, there were mixed views on its use for trainee assessment (HoS: 6/15, TPDs: 14/21) and whether it should be compulsory (HoS: 8/15, TPDs: 11/21). The use of simulation for the acquirement of both technical and nontechnical skills is strongly supported while views on other applications (e.g., assessment) are conflicting. Further, the need for center accreditation and supervised, consultant-led teaching is highlighted. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  14. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  15. Computer-Based Wireless Advertising Communication System

    Directory of Open Access Journals (Sweden)

    Anwar Al-Mofleh

    2009-10-01

    Full Text Available In this paper we developed a computer based wireless advertising communication system (CBWACS that enables the user to advertise whatever he wants from his own office to the screen in front of the customer via wireless communication system. This system consists of two PIC microcontrollers, transmitter, receiver, LCD, serial cable and antenna. The main advantages of the system are: the wireless structure and the system is less susceptible to noise and other interferences because it uses digital communication techniques.

  16. Simulation for training in oral cancer biopsy: a surgical model and feedback from GDPs.

    Science.gov (United States)

    Seoane, Juan; Varela-Centelles, Pablo; Esparza-Gómez, Germán; Cerero-Lapiedra, Rocío; Seoane-Romero, Juan M; Diz, Pedro

    2013-03-01

    To describe a new bench model for oral precancer/cancer biopsy training and to assess its effectiveness in terms of trainees' perception. Cross-sectional, descriptive, performed on 424 general dental practitioners (GDP) who undertook biopsies on a pig tongue. The participants were assessed by direct observation for 2.5 hours using specific check-lists and by means of a self-applied questionnaire. The workshop was perceived as "very interesting" even by those with previous surgical experience (Xi - Xj = 0.07; 95%CI= -0.20-0.09). Most GDPs considered themselves able to undertake oral biopsies on real patients after the workshop. Those who had previously received theoretical continuous education courses on oral biopsy scored higher values within the group (Xi - Xj = 0.20; 95%CI= 0.04-0.37). There is a need for including clinical abilities workshops when instructing on oral biopsy techniques. More studies are needed to validate the procedure and to address cognitive and communication skills.

  17. Objective evaluation of minimally invasive surgical skills for transplantation. Surgeons using a virtual reality simulator.

    Science.gov (United States)

    Dănilă, R; Gerdes, B; Ulrike, H; Domínguez Fernández, E; Hassan, I

    2009-01-01

    The learning curve in laparoscopic surgery may be associated with higher patient risk, which is unacceptable in the setting of kidney donation. Virtual reality simulators may increase the safety and efficiency of training in laparoscopic surgery. The aim of this study was to investigate if the results of a training session reflect the actual skill level of transplantation surgeons and whether the simulator could differentiate laparoscopic experienced transplantation surgeon from advanced trainees. 16 subjects were assigned to one of two groups: 5 experienced transplantation surgeon and 11 advanced residents, with only assistant role during transplantation. The level of performance was measured by a relative scoring system that combines single parameters assessed by the computer. The higher the level of transplantation experience of a participant, the higher the laparoscopic performance. Experienced transplantation surgeons showed statistically significant better scores than the advanced group for time and precision parameters. Our results show that performance of the various tasks on the simulator corresponds to the respective level of experience in transplantation surgery in our research groups. This study confirms construct validity for the LapSim. It thus measures relevant skills and can be integrated in an endoscopic training and assessment curriculum for transplantations surgeons.

  18. Identifying Opportunities for Virtual Reality Simulation in Surgical Education: A Review of the Proceedings from the Innovation, Design, and Emerging Alliances in Surgery (IDEAS) Conference: VR Surgery

    Science.gov (United States)

    Olasky, Jaisa; Sankaranarayanan, Ganesh; Seymour, Neal E.; Magee, J. Harvey; Enquobahrie, Andinet; Lin, Ming C.; Aggarwal, Rajesh; Brunt, L. Michael; Schwaitzberg, Steven D.; Cao, Caroline G. L.; De, Suvranu; Jones, Daniel B.

    2015-01-01

    Objectives To conduct a review of the state of virtual reality (VR) simulation technology, to identify areas of surgical education that have the greatest potential to benefit from it, and to identify challenges to implementation. Background Data Simulation is an increasingly important part of surgical training. VR is a developing platform for using simulation to teach technical skills, behavioral skills, and entire procedures to trainees and practicing surgeons worldwide. Questions exist regarding the science behind the technology and most effective usage of VR simulation. A symposium was held to address these issues. Methods Engineers, educators, and surgeons held a conference in November 2013 both to review the background science behind simulation technology and to create guidelines for its use in teaching and credentialing trainees and surgeons in practice. Results Several technologic challenges were identified that must be overcome in order for VR simulation to be useful in surgery. Specific areas of student, resident, and practicing surgeon training and testing that would likely benefit from VR were identified: technical skills, team training and decision-making skills, and patient safety, such as in use of electrosurgical equipment. Conclusions VR simulation has the potential to become an essential piece of surgical education curriculum but depends heavily on the establishment of an agreed upon set of goals. Researchers and clinicians must collaborate to allocate funding toward projects that help achieve these goals. The recommendations outlined here should guide further study and implementation of VR simulation. PMID:25925424

  19. Identifying Opportunities for Virtual Reality Simulation in Surgical Education: A Review of the Proceedings from the Innovation, Design, and Emerging Alliances in Surgery (IDEAS) Conference: VR Surgery.

    Science.gov (United States)

    Olasky, Jaisa; Sankaranarayanan, Ganesh; Seymour, Neal E; Magee, J Harvey; Enquobahrie, Andinet; Lin, Ming C; Aggarwal, Rajesh; Brunt, L Michael; Schwaitzberg, Steven D; Cao, Caroline G L; De, Suvranu; Jones, Daniel B

    2015-10-01

    To conduct a review of the state of virtual reality (VR) simulation technology, to identify areas of surgical education that have the greatest potential to benefit from it, and to identify challenges to implementation. Simulation is an increasingly important part of surgical training. VR is a developing platform for using simulation to teach technical skills, behavioral skills, and entire procedures to trainees and practicing surgeons worldwide. Questions exist regarding the science behind the technology and most effective usage of VR simulation. A symposium was held to address these issues. Engineers, educators, and surgeons held a conference in November 2013 both to review the background science behind simulation technology and to create guidelines for its use in teaching and credentialing trainees and surgeons in practice. Several technologic challenges were identified that must be overcome in order for VR simulation to be useful in surgery. Specific areas of student, resident, and practicing surgeon training and testing that would likely benefit from VR were identified: technical skills, team training and decision-making skills, and patient safety, such as in use of electrosurgical equipment. VR simulation has the potential to become an essential piece of surgical education curriculum but depends heavily on the establishment of an agreed upon set of goals. Researchers and clinicians must collaborate to allocate funding toward projects that help achieve these goals. The recommendations outlined here should guide further study and implementation of VR simulation. © The Author(s) 2015.

  20. Development of a Detailed Volumetric Finite Element Model of the Spine to Simulate Surgical Correction of Spinal Deformities

    Directory of Open Access Journals (Sweden)

    Mark Driscoll

    2013-01-01

    Full Text Available A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices.

  1. Surgical competence.

    Science.gov (United States)

    Patil, Nivritti G; Cheng, Stephen W K; Wong, John

    2003-08-01

    Recent high-profile cases have heightened the need for a formal structure to monitor achievement and maintenance of surgical competence. Logbooks, morbidity and mortality meetings, videos and direct observation of operations using a checklist, motion analysis devices, and virtual reality simulators are effective tools for teaching and evaluating surgical skills. As the operating theater is also a place for training, there must be protocols and guidelines, including mandatory standards for supervision, to ensure that patient care is not compromised. Patients appreciate frank communication and honesty from surgeons regarding their expertise and level of competence. To ensure that surgical competence is maintained and keeps pace with technologic advances, professional registration bodies have been promoting programs for recertification. They evaluate performance in practice, professional standing, and commitment to ongoing education.

  2. Combining Latin Hypercube Designs and Discrete Event Simulation in a Study of a Surgical Unit

    DEFF Research Database (Denmark)

    Dehlendorff, Christian; Andersen, Klaus Kaae; Kulahci, Murat

    Summary form given only:In this article experiments on a discrete event simulation model for an orthopedic surgery are considered. The model is developed as part of a larger project in co-operation with Copenhagen University Hospital in Gentofte. Experiments on the model are performed by using...... Latin hypercube designs. The parameter set consists of system settings such as use of preparation room for sedation and the number of operating rooms, as well as management decisions such as staffing, size of the recovery room and the number of simultaneously active operating rooms. Sensitivity analysis...... and optimization combined with meta-modeling are employed in search for optimal setups. The primary objective in this article is to minimize time spent by the patients in the system. The overall long-term objective for the orthopedic surgery unit is to minimize time lost during the pre- and post operation...

  3. A computer-based purchase management system

    International Nuclear Information System (INIS)

    Kuriakose, K.K.; Subramani, M.G.

    1989-01-01

    The details of a computer-based purchase management system developed to meet the specific requirements of Madras Regional Purchase Unit (MRPU) is given. Howe ver it can be easily modified to meet the requirements of any other purchase department. It covers various operations of MRPU starting from indent processing to preparation of purchase orders and reminders. In order to enable timely management action and control facilities are provided to generate the necessary management information reports. The scope for further work is also discussed. The system is completely menu driven and user friendly. Appendix A and B contains the menu implemented and the sample outputs respectively. (author)

  4. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model).

    Science.gov (United States)

    Whitehurst, Sabrina V; Lockrow, Ernest G; Lendvay, Thomas S; Propst, Anthony M; Dunlow, Susan G; Rosemeyer, Christopher J; Gobern, Joseph M; White, Lee W; Skinner, Anna; Buller, Jerome L

    2015-01-01

    To compare the efficacy of simulation-based training between the Mimic dV- Trainer and traditional dry lab da Vinci robot training. A prospective randomized study analyzing the performance of 20 robotics-naive participants. Participants were enrolled in an online da Vinci Intuitive Surgical didactic training module, followed by training in use of the da Vinci standard surgical robot. Spatial ability tests were performed as well. Participants were randomly assigned to 1 of 2 training conditions: performance of 3 Fundamentals of Laparoscopic Surgery dry lab tasks using the da Vinci or performance of 4 dV-Trainer tasks. Participants in both groups performed all tasks to empirically establish proficiency criterion. Participants then performed the transfer task, a cystotomy closure using the daVinci robot on a live animal (swine) model. The performance of robotic tasks was blindly assessed by a panel of experienced surgeons using objective tracking data and using the validated Global Evaluative Assessment of Robotic Surgery (GEARS), a structured assessment tool. No statistically significant difference in surgeon performance was found between the 2 training conditions, dV-Trainer and da Vinci robot. Analysis of a 95% confidence interval for the difference in means (-0.803 to 0.543) indicated that the 2 methods are unlikely to differ to an extent that would be clinically meaningful. Based on the results of this study, a curriculum on the dV- Trainer was shown to be comparable to traditional da Vinci robot training. Therefore, we have identified that training on a virtual reality system may be an alternative to live animal training for future robotic surgeons. Published by Elsevier Inc.

  5. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation.

    Science.gov (United States)

    Lim, Yi-Je; Deo, Dhanannjay; Singh, Tejinder P; Jones, Daniel B; De, Suvranu

    2009-06-01

    Development of a laparoscopic surgery simulator that delivers high-fidelity visual and haptic (force) feedback, based on the physical models of soft tissues, requires the use of empirical data on the mechanical behavior of intra-abdominal organs under the action of external forces. As experiments on live human patients present significant risks, the use of cadavers presents an alternative. We present techniques of measuring and modeling the mechanical response of human cadaveric tissue for the purpose of developing a realistic model. The major contribution of this paper is the development of physics-based models of soft tissues that range from linear elastic models to nonlinear viscoelastic models which are efficient for application within the framework of a real-time surgery simulator. To investigate the in situ mechanical, static, and dynamic properties of intra-abdominal organs, we have developed a high-precision instrument by retrofitting a robotic device from Sensable Technologies (position resolution of 0.03 mm) with a six-axis Nano 17 force-torque sensor from ATI Industrial Automation (force resolution of 1/1,280 N along each axis), and used it to apply precise displacement stimuli and record the force response of liver and stomach of ten fresh human cadavers. The mean elastic modulus of liver and stomach is estimated as 5.9359 kPa and 1.9119 kPa, respectively over the range of indentation depths tested. We have also obtained the parameters of a quasilinear viscoelastic (QLV) model to represent the nonlinear viscoelastic behavior of the cadaver stomach and liver over a range of indentation depths and speeds. The models are found to have an excellent goodness of fit (with R (2) > 0.99). The data and models presented in this paper together with additional ones based on the principles presented in this paper would result in realistic physics-based surgical simulators.

  6. The impact of secondary-task type on the sensitivity of reaction-time based measurement of cognitive load for novices learning surgical skills using simulation.

    Science.gov (United States)

    Rojas, David; Haji, Faizal; Shewaga, Rob; Kapralos, Bill; Dubrowski, Adam

    2014-01-01

    Interest in the measurement of cognitive load (CL) in simulation-based education has grown in recent years. In this paper we present two pilot experiments comparing the sensitivity of two reaction time based secondary task measures of CL. The results suggest that simple reaction time measures are sensitive enough to detect changes in CL experienced by novice learners in the initial stages of simulation-based surgical skills training.

  7. See me, touch me, heal me : the role of visuo-spatial ability in virtual anatomical learning and surgical simulator training

    NARCIS (Netherlands)

    Luursema, J.M.

    2010-01-01

    Medical learning and training are fields in transition. Catalyst in this change is the introduction of digital technology, for example in the form of simulator technology in surgical training, and virtual learning environments in anatomical learning. The primary aim of this thesis is to help

  8. Reconstruction of a Severely Atrophied Alveolar Ridge by Computer-Aided Gingival Simulation and 3D-Printed Surgical Guide: A Case Report.

    Science.gov (United States)

    Song, In-Seok; Lee, Mi-Ran; Ryu, Jae-Jun; Lee, Ui-Lyong

    Dental implants positioned in severely atrophied anterior maxillae require esthetic or functional compromises. This case report describes the rehabilitation of a severely atrophied alveolar ridge with a three-dimensional (3D) computer-aided design/computer-aided manufacture (CAD/CAM) surgical guide. A 50-year-old woman had a severely atrophied anterior maxilla with unfavorably positioned dental implants. Functional and esthetic prosthodontic restoration was difficult to achieve. An anterior segmental osteotomy was planned to reposition the dental implants. A 3D surgical guide was designed for precise relocation of the segment. The surgical guide firmly grasped the impression copings of the dental implants, minimizing surgical errors. Three-dimensional gingival simulation was used preoperatively to estimate the appropriate position of the gingiva. Rigid fixation to the surrounding bone allowed immobilization of the implant-bone segment. Satisfactory esthetic and functional outcomes were attained 6 months after surgery. Finally, a severely atrophied alveolar ridge with unfavorably positioned dental implants was recovered with minimal esthetic and functional deterioration using gingival simulation and a 3D CAD/CAM surgical guide.

  9. Does Warm-Up Training in a Virtual Reality Simulator Improve Surgical Performance? A Prospective Randomized Analysis.

    Science.gov (United States)

    da Cruz, José Arnaldo Shiomi; Dos Reis, Sabrina Thalita; Cunha Frati, Rodrigo Marcus; Duarte, Ricardo Jordão; Nguyen, Hiep; Srougi, Miguel; Passerotti, Carlo Camargo

    Virtual reality surgical simulators (VRSS) have been showing themselves as a valuable tool in laparoscopy training and education. Taking in consideration the effectiveness of the VRSS, new uses for this tool have been purposed. In sports, warming up before exercise clearly shows benefit in performance. It is hypothesized that warming up in the VRSS before going to the operating room may show benefit in surgical performance. Verify whether there is benefit in surgical performance with preoperatory warm-up using a VRSS. A total of 20 medical students with basic knowledge in laparoscopy were divided in 2 groups (I and II). Group I performed a laparoscopic cholecystectomy in a porcine model. Group II performed preoperative warm-up in a VRSS and then performed a laparoscopic cholecystectomy in a porcine model. The performance between both groups was compared regarding quantitative parameters (time for dissection of the gallbladder pedicle, time for clipping the pedicle, time for cutting the pedicle, time for gallbladder removal, total operative time, and aspirated blood loss) and qualitative parameters (depth perception, bimanual dexterity, efficiency, tissue handling, and autonomy) based on a previously validated score system, in which the higher the score, the better the result. Data were analyzed with level of significance of 5%. The group that underwent preoperative warm-up (group II) showed significantly superior results as to the time for dissection of the gallbladder pedicle (11.91 ± 9.85 vs. 4.52 ± 2.89min, p = 0.012), time for clipping the pedicle (5.51 ± 2.36 vs. 2.89 ± 2.76min, p = 0.004), time for cutting the pedicle (1.84 ± 0.7 vs. 1.13 ± 0.51, p = 0.019), aspirated blood loss (171 ± 112 vs. 57 ± 27.8ml, p = 0.006), depth perception (4.5 ± 0.7 vs. 3.3 ± 0.67, p = 0.004), bianual dexterity (4.2 ± 0.78 vs. 3.3 ± 0.67, p = 0.004), tissue handling (4.2 ± 0.91 vs. 3.6 ± 0.66, p = 0.012), and autonomy (4.9 ± 0.31 vs. 3.6 ± 0.96, p = 0.028). There

  10. Computer-based training at Sellafield

    International Nuclear Information System (INIS)

    Cartmell, A.; Evans, M.C.

    1986-01-01

    British Nuclear Fuel Limited (BNFL) operate the United Kingdom's spent-fuel receipt, storage, and reprocessing complex at Sellafield. Spent fuel from graphite-moderated CO 2 -cooled Magnox reactors has been reprocessed at Sellafield for 22 yr. Spent fuel from light water and advanced gas reactors is stored pending reprocessing in the Thermal Oxide Reprocessing Plant currently being constructed. The range of knowledge and skills needed for plant operation, construction, and commissioning represents a formidable training requirement. In addition, employees need to be acquainted with company practices and procedures. Computer-based training (CBT) is expected to play a significant role in this process. In this paper, current applications of CBT to the filed of nuclear criticality safety are described and plans for the immediate future are outlined

  11. Surgical Assisting

    Science.gov (United States)

    ... instruction, including: Microbiology Pathophysiology Pharmacology Anatomy and physiology Medical terminology Curriculum . Course content includes: Advanced surgical anatomy Surgical microbiology Surgical pharmacology Anesthesia methods and agents Bioscience Ethical ...

  12. Computer-based laboratory simulation: evaluations of student perceptions

    Directory of Open Access Journals (Sweden)

    Norrie S. Edward

    1996-12-01

    Full Text Available Laboratory experimentation in engineering is an essential part of the three main components in an engineer's formation. The theoretical constructs and models are imparted in lectures and tutorials. Workshop hands-on activity allows the student to acquire an understanding of the interaction of design and manufacture, and the constraints both impose. Characteristics of plant are investigated through experiment, and this aids the learner's understanding of the limitation of models in predicting performance. The learner also gains an appreciation of the nature of errors and of the construction of plant. But while the oil industry has brought prosperity to the North- East, it has also brought unique educational demands: the working arrangements place severe restrictions on part-time student attendance. Technicians work a block of two to four weeks offshore, followed by a similar period of leave. Different companies have different arrangements, and shift-change days.

  13. Accuracy of a Computer-Aided Surgical Simulation (CASS) Protocol for Orthognathic Surgery: A Prospective Multicenter Study

    Science.gov (United States)

    Hsu, Sam Sheng-Pin; Gateno, Jaime; Bell, R. Bryan; Hirsch, David L.; Markiewicz, Michael R.; Teichgraeber, John F.; Zhou, Xiaobo; Xia, James J.

    2012-01-01

    Purpose The purpose of this prospective multicenter study was to assess the accuracy of a computer-aided surgical simulation (CASS) protocol for orthognathic surgery. Materials and Methods The accuracy of the CASS protocol was assessed by comparing planned and postoperative outcomes of 65 consecutive patients enrolled from 3 centers. Computer-generated surgical splints were used for all patients. For the genioplasty, one center utilized computer-generated chin templates to reposition the chin segment only for patients with asymmetry. Standard intraoperative measurements were utilized without the chin templates for the remaining patients. The primary outcome measurements were linear and angular differences for the maxilla, mandible and chin when the planned and postoperative models were registered at the cranium. The secondary outcome measurements were: maxillary dental midline difference between the planned and postoperative positions; and linear and angular differences of the chin segment between the groups with and without the use of the template. The latter was measured when the planned and postoperative models were registered at mandibular body. Statistical analyses were performed, and the accuracy was reported using root mean square deviation (RMSD) and Bland and Altman's method for assessing measurement agreement. Results In the primary outcome measurements, there was no statistically significant difference among the 3 centers for the maxilla and mandible. The largest RMSD was 1.0mm and 1.5° for the maxilla, and 1.1mm and 1.8° for the mandible. For the chin, there was a statistically significant difference between the groups with and without the use of the chin template. The chin template group showed excellent accuracy with largest positional RMSD of 1.0mm and the largest orientational RSMD of 2.2°. However, larger variances were observed in the group not using the chin template. This was significant in anteroposterior and superoinferior directions, as in

  14. The use of a virtual reality surgical simulator for cataract surgical skill assessment with 6 months of intervening operating room experience.

    Science.gov (United States)

    Sikder, Shameema; Luo, Jia; Banerjee, P Pat; Luciano, Cristian; Kania, Patrick; Song, Jonathan C; Kahtani, Eman S; Edward, Deepak P; Towerki, Abdul-Elah Al

    2015-01-01

    To evaluate a haptic-based simulator, MicroVisTouch™, as an assessment tool for capsulorhexis performance in cataract surgery. The study is a prospective, unmasked, nonrandomized dual academic institution study conducted at the Wilmer Eye Institute at Johns Hopkins Medical Center (Baltimore, MD, USA) and King Khaled Eye Specialist Hospital (Riyadh, Saudi Arabia). This prospective study evaluated capsulorhexis simulator performance in 78 ophthalmology residents in the US and Saudi Arabia in the first round of testing and 40 residents in a second round for follow-up. Four variables (circularity, accuracy, fluency, and overall) were tested by the simulator and graded on a 0-100 scale. Circularity (42%), accuracy (55%), and fluency (3%) were compiled to give an overall score. Capsulorhexis performance was retested in the original cohort 6 months after baseline assessment. Average scores in all measured metrics demonstrated statistically significant improvement (except for circularity, which trended toward improvement) after baseline assessment. A reduction in standard deviation and improvement in process capability indices over the 6-month period was also observed. An interval objective improvement in capsulorhexis skill on a haptic-enabled cataract surgery simulator was associated with intervening operating room experience. Further work investigating the role of formalized simulator training programs requiring independent simulator use must be studied to determine its usefulness as an evaluation tool.

  15. Applying computer-based procedures in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro V. de; Carvalho, Paulo V.R. de; Santos, Isaac J.A.L. dos; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Instrumentacao e Confiabilidade Humana], e-mail: mvitor@ien.gov.br, e-mail: paulov@ien.gov.br, e-mail: luquetti@ien.gov.br, e-mail: grecco@ien.gov.br; Bruno, Diego S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola Politecnica. Curso de Engenharia de Controle e Automacao], e-mail: diegosalomonebruno@gmail.com

    2009-07-01

    Plant operation procedures are used to guide operators in coping with normal, abnormal or emergency situations in a process control system. Historically, the plant procedures have been paper-based (PBP), with the digitalisation trend in these complex systems computer-based procedures (CBPs) are being developed to support procedure use. This work shows briefly the research on CBPs at the Human-System Interface Laboratory (LABIHS). The emergency operation procedure EOP-0 of the LABIHS NPP simulator was implemented in the ImPRO CBP system. The ImPRO system was chosen for test because it is available for download in the Internet. A preliminary operation test using the implemented procedure in the CBP system was realized and the results were compared to the operation through PBP use. (author)

  16. Security personnel training using a computer-based game

    International Nuclear Information System (INIS)

    Ralph, J.; Bickner, L.

    1987-01-01

    Security personnel training is an integral part of a total physical security program, and is essential in enabling security personnel to perform their function effectively. Several training tools are currently available for use by security supervisors, including: textbook study, classroom instruction, and live simulations. However, due to shortcomings inherent in each of these tools, a need exists for the development of low-cost alternative training methods. This paper discusses one such alternative: a computer-based, game-type security training system. This system would be based on a personal computer with high-resolution graphics. Key features of this system include: a high degree of realism; flexibility in use and maintenance; high trainee motivation; and low cost

  17. Abortion - surgical

    Science.gov (United States)

    Suction curettage; Surgical abortion; Elective abortion - surgical; Therapeutic abortion - surgical ... Surgical abortion involves dilating the opening to the uterus (cervix) and placing a small suction tube into the uterus. ...

  18. The use of a virtual reality surgical simulator for cataract surgical skill assessment with 6 months of intervening operating room experience

    Directory of Open Access Journals (Sweden)

    Sikder S

    2015-01-01

    Full Text Available Shameema Sikder,1 Jia Luo,2 P Pat Banerjee,2 Cristian Luciano,2 Patrick Kania,2 Jonathan C Song,1 Eman S Kahtani,3 Deepak P Edward,1,3 Abdul-Elah Al Towerki3 1Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 2College of Engineering, University of Illinois at Chicago, Chicago, IL, USA; 3King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia Purpose: To evaluate a haptic-based simulator, MicroVisTouch™, as an assessment tool for capsulorhexis performance in cataract surgery. The study is a prospective, unmasked, nonrandomized dual academic institution study conducted at the Wilmer Eye Institute at Johns Hopkins Medical Center (Baltimore, MD, USA and King Khaled Eye Specialist Hospital (Riyadh, Saudi Arabia.Methods: This prospective study evaluated capsulorhexis simulator performance in 78 ophthalmology residents in the US and Saudi Arabia in the first round of testing and 40 residents in a second round for follow-up.Results: Four variables (circularity, accuracy, fluency, and overall were tested by the simulator and graded on a 0–100 scale. Circularity (42%, accuracy (55%, and fluency (3% were compiled to give an overall score. Capsulorhexis performance was retested in the original cohort 6 months after baseline assessment. Average scores in all measured metrics demonstrated statistically significant improvement (except for circularity, which trended toward improvement after baseline assessment. A reduction in standard deviation and improvement in process capability indices over the 6-month period was also observed.Conclusion: An interval objective improvement in capsulorhexis skill on a haptic-enabled cataract surgery simulator was associated with intervening operating room experience. Further work investigating the role of formalized simulator training programs requiring independent simulator use must be studied to determine its usefulness as an evaluation tool. Keywords: medical education, computer simulation

  19. Training in Basic Laparoscopic Surgical Skills: Residents Opinion of the New Nintendo Wii-U Laparoscopic Simulator.

    Science.gov (United States)

    Overtoom, Evelien M; Jansen, Frank-Willem; van Santbrink, Evert J P; Schraffordt Koops, Steven E; Veersema, Sebastiaan; Schreuder, Henk W R

    Serious games are new in the field of laparoscopic surgical training. We evaluate the residents׳ opinion of a new laparoscopic simulator for the Nintendo Wii-U platform. Prospective questionnaire study. Participants received a standardized introduction and completed level 3 and 4 of the game "Underground." They filled out a questionnaire concerning demographics and their opinion on realism, usefulness, suitability, haptic feedback, and home training-use of the game. Two tertiary teaching hospitals. Obstetrics and gynaecology residents postgraduate year 1 to 6 (n = 59) from several European countries. Subjects (n = 59) were divided into 2 groups based on laparoscopic experience: Group A (n = 38) and Group B (n = 21). The realism of different aspects of the game received mean scores around 3 on a 5-point Likert scale. The hand-eye coordination was regarded most useful for training with a mean of 3.92 (standard deviation 0.93) and the game was considered most suitable for residents in the first part of their postgraduate training with a mean of 3.73 (standard deviation 0.97). Both groups differed especially concerning their opinion of the usefulness of the game as a training tool. Most residents liked the new serious game for the Nintendo Wii-U. The usefulness and suitability as a laparoscopic training tool were rated at an acceptable to high level. However, the game does require improvements such as inclusion of a good scoring system before it can be integrated in resident training curricula. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  20. COMPUTER-BASED REASONING SYSTEMS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    CIPRIAN CUCU

    2012-12-01

    Full Text Available Argumentation is nowadays seen both as skill that people use in various aspects of their lives, as well as an educational technique that can support the transfer or creation of knowledge thus aiding in the development of other skills (e.g. Communication, critical thinking or attitudes. However, teaching argumentation and teaching with argumentation is still a rare practice, mostly due to the lack of available resources such as time or expert human tutors that are specialized in argumentation. Intelligent Computer Systems (i.e. Systems that implement an inner representation of particular knowledge and try to emulate the behavior of humans could allow more people to understand the purpose, techniques and benefits of argumentation. The proposed paper investigates the state of the art concepts of computer-based argumentation used in education and tries to develop a conceptual map, showing benefits, limitation and relations between various concepts focusing on the duality “learning to argue – arguing to learn”.

  1. Computer-Based Cognitive Training in Aging.

    Science.gov (United States)

    Klimova, Blanka

    2016-01-01

    At present there is a rapid growth of aging population groups worldwide, which brings about serious economic and social problems. Thus, there is considerable effort to prolong the active life of these older people and keep them independent. The purpose of this mini review is to explore available clinical studies implementing computer-based cognitive training programs as intervention tools in the prevention and delay of cognitive decline in aging, with a special focus on their effectiveness. This was done by conducting a literature search in the databases Web of Science, Scopus, MEDLINE and Springer, and consequently by evaluating the findings of the relevant studies. The findings show that computerized cognitive training can lead to the improvement of cognitive functions such as working memory and reasoning skills in particular. However, this training should be performed over a longer time span since a short-term cognitive training mainly has an impact on short-term memory with temporary effects. In addition, the training must be intense to become effective. Furthermore, the results indicate that it is important to pay close attention to the methodological standards in future clinical studies.

  2. Novel computer-based endoscopic camera

    Science.gov (United States)

    Rabinovitz, R.; Hai, N.; Abraham, Martin D.; Adler, Doron; Nissani, M.; Fridental, Ron; Vitsnudel, Ilia

    1995-05-01

    We have introduced a computer-based endoscopic camera which includes (a) unique real-time digital image processing to optimize image visualization by reducing over exposed glared areas and brightening dark areas, and by accentuating sharpness and fine structures, and (b) patient data documentation and management. The image processing is based on i Sight's iSP1000TM digital video processor chip and Adaptive SensitivityTM patented scheme for capturing and displaying images with wide dynamic range of light, taking into account local neighborhood image conditions and global image statistics. It provides the medical user with the ability to view images under difficult lighting conditions, without losing details `in the dark' or in completely saturated areas. The patient data documentation and management allows storage of images (approximately 1 MB per image for a full 24 bit color image) to any storage device installed into the camera, or to an external host media via network. The patient data which is included with every image described essential information on the patient and procedure. The operator can assign custom data descriptors, and can search for the stored image/data by typing any image descriptor. The camera optics has extended zoom range of f equals 20 - 45 mm allowing control of the diameter of the field which is displayed on the monitor such that the complete field of view of the endoscope can be displayed on all the area of the screen. All these features provide versatile endoscopic camera with excellent image quality and documentation capabilities.

  3. Using a micro computer based test bank

    International Nuclear Information System (INIS)

    Hamel, R.T.

    1987-01-01

    Utilizing a micro computer based test bank offers a training department many advantages and can have a positive impact upon training procedures and examination standards. Prior to data entry, Training Department management must pre-review the examination questions and answers to ensure compliance with examination standards and to verify the validity of all questions. Management must adhere to the TSD format since all questions require an enabling objective numbering scheme. Each question is entered under the enabling objective upon which it is based. Then the question is selected via the enabling objective. This eliminates any instructor bias because a random number generator chooses the test question. However, the instructor may load specific questions to create an emphasis theme for any test. The examination, answer and cover sheets are produced and printed within minutes. The test bank eliminates the large amount of time that is normally required for an instructor to formulate an examination. The need for clerical support is reduced by the elimination of typing examinations and also by the software's ability to maintain and generate student/course lists, attendance sheets, and grades. Software security measures limit access to the test bank, and the impromptu method used to generate and print an examination enhance its security

  4. Computers and virtual reality for surgical education in the 21st century.

    Science.gov (United States)

    Haluck, R S; Krummel, T M

    2000-07-01

    Surgeons must learn to perform operations. The current system of surgical resident education is facing many challenges in terms of time efficiency, costs, and patient safety. In addition, as new types of operations are developed rapidly, practicing surgeons may find a need for more efficient methods of surgical skill education. An in-depth examination of the current learning environment and the literature of motor skills learning provides insights into ways in which surgical skills education can be improved. Computers will certainly be a part of this process. Computer-based training in technical skills has the potential to solve many of the educational, economic, ethical, and patient safety issues related to learning to perform operations. Although full virtual-reality systems are still in development, there has been early progress that should encourage surgeons to incorporate computer simulation into the surgical curriculum.

  5. Computer Based Training Authors' and Designers' training

    Directory of Open Access Journals (Sweden)

    Frédéric GODET

    2016-03-01

    Full Text Available This communication, through couple of studies driven since 10 years, tries to show how important is the training of authors in Computer Based Training (CBT. We submit here an approach to prepare designers mastering Interactive Multimedia modules in this domain. Which institutions are really dedicating their efforts in training authors and designers in this area of CBTs? Television devices and broadcast organisations offered since year 60s' a first support for Distance Learning. New media, New Information and Communication Technologies (NICT allowed several public and private organisations to start Distance Learning projects. As usual some of them met their training objectives, other of them failed. Did their really failed? Currently, nobody has the right answer. Today, we do not have enough efficient tools allowing us to evaluate trainees' acquisition in a short term view. Training evaluation needs more than 10 to 20 years of elapsed time to bring reliable measures. Nevertheless, given the high investments already done in this area, we cannot wait until the final results of the pedagogical evaluation. A lot of analyses showed relevant issues which can be used as directions for CBTs authors and designers training. Warning - Our studies and the derived conclusions are mainly based on projects driven in the field. We additionally bring our several years experience in the training of movie film authors in the design of interactive multimedia products. Some of our examples are extracting from vocational training projects where we were involved in all development phases from the analysis of needs to the evaluation of the acquisition within the trainee's / employee job's. Obviously, we cannot bring and exhaustive approach in this domain where a lot of parameters are involved as frame for the CBT interactive multimedia modules authors' and designers' training.

  6. Computer Based Porosity Design by Multi Phase Topology Optimization

    Science.gov (United States)

    Burblies, Andreas; Busse, Matthias

    2008-02-01

    A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.

  7. Computer-based theory of strategies

    Energy Technology Data Exchange (ETDEWEB)

    Findler, N V

    1983-01-01

    Some of the objectives and working tools of a new area of study, tentatively called theory of strategies, are described. It is based on the methodology of artificial intelligence, decision theory, operations research and digital gaming. The latter refers to computing activity that incorporates model building, simulation and learning programs in conflict situations. Three long-term projects which aim at automatically analyzing and synthesizing strategies are discussed. 27 references.

  8. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars

    2016-01-01

    training of mastoidectomy. Methods Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem......Background Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation....... Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices....

  9. Computer-based learning for the enhancement of breastfeeding ...

    African Journals Online (AJOL)

    In this study, computer-based learning (CBL) was explored in the context of breastfeeding training for undergraduate Dietetic students. Aim: To adapt and validate an Indian computer-based undergraduate breastfeeding training module for use by South African undergraduate Dietetic students. Methods and materials: The ...

  10. Computer-based multi-channel analyzer based on internet

    International Nuclear Information System (INIS)

    Zhou Xinzhi; Ning Jiaoxian

    2001-01-01

    Combined the technology of Internet with computer-based multi-channel analyzer, a new kind of computer-based multi-channel analyzer system which is based on browser is presented. Its framework and principle as well as its implementation are discussed

  11. An Overview of Computer-Based Natural Language Processing.

    Science.gov (United States)

    Gevarter, William B.

    Computer-based Natural Language Processing (NLP) is the key to enabling humans and their computer-based creations to interact with machines using natural languages (English, Japanese, German, etc.) rather than formal computer languages. NLP is a major research area in the fields of artificial intelligence and computational linguistics. Commercial…

  12. Women and Computer Based Technologies: A Feminist Perspective.

    Science.gov (United States)

    Morritt, Hope

    The use of computer based technologies by professional women in education is examined through a feminist standpoint theory in this paper. The theory is grounded in eight claims which form the basis of the conceptual framework for the study. The experiences of nine women participants with computer based technologies were categorized using three…

  13. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T.

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  14. Continuous Curvilinear Capsulorhexis Training and Non-Rhexis Related Vitreous Loss: The Specificity of Virtual Reality Simulator Surgical Training (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    McCannel, Colin A

    2017-08-01

    To assess the specificity of simulation-based virtual reality ophthalmic cataract surgery training on the Eyesi ophthalmic virtual reality surgical simulator, and test the hypothesis that microsurgical motor learning is highly specific. Retrospective educational interventional case series. The rates of vitreous loss and retained lens material, and vitreous loss and retained lens material associated with an errant continuous curvilinear capsulorhexis (CCC) were assessed among 1037 consecutive cataract surgeries performed during four consecutive academic years at a teaching hospital. The data were grouped by Eyesi use and capsulorhexis intensive training curriculum (CITC) completion. The main intervention was the completion of the CITC on the Eyesi. In the Eyesi simulator experience-based stratification, the vitreous loss rate was similar in each group (chi square p=0.95) and was not preceded by an errant CCC in 86.2% for "CITC done at least once", 57.1% for "CITC not done, but some Eyesi use", and 48.9% for "none" training groups (p=4×10-5). Retained lens material overall and occurring among the errant CCC cases was similar among training groups (p=0.82 and p=0.71, respectively). Eyesi capsulorhexis training was not associated with lower vitreous loss rates overall. However, non-errant CCC associated vitreous loss was higher among those who underwent Eyesi capsulorhexis training. Training focused on the CCC portion of cataract surgery may not reduce vitreous loss unassociated with an errant CCC. It is likely that surgical training is highly specific to the task being trained. Residents may need to be trained for all surgical steps with adequate intensity to minimize overall complication rates.

  15. Computer-based irrigation scheduling for cotton crop

    International Nuclear Information System (INIS)

    Laghari, K.Q.; Memon, H.M.

    2008-01-01

    In this study a real time irrigation schedule for cotton crop has been tested using mehran model, a computer-based DDS (Decision Support System). The irrigation schedule was set on selected MAD (Management Allowable Depletion) and the current root depth position. The total 451 mm irrigation water applied to the crop field. The seasonal computed crop ET (Evapotranspiration) was estimated 421.32 mm and actual (ET/sub ca/) observed was 413 mm. The model over-estimated seasonal ET by only 1.94. WUE (Water Use Efficiency) for seed-cotton achieved 6.59 Kg (ha mm)/sup -1/. The statistical analysis (R/sup 2/=0.96, ARE%=2.00, T-1.17 and F=550.57) showed good performance of the model in simulated and observed ET values. The designed Mehran model is designed quite versatile for irrigation scheduling and can be successfully used as irrigation DSS tool for various crop types. (author)

  16. A Spread Willingness Computing-Based Information Dissemination Model

    Science.gov (United States)

    Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network. PMID:25110738

  17. A spread willingness computing-based information dissemination model.

    Science.gov (United States)

    Huang, Haojing; Cui, Zhiming; Zhang, Shukui

    2014-01-01

    This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user's spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  18. A Spread Willingness Computing-Based Information Dissemination Model

    Directory of Open Access Journals (Sweden)

    Haojing Huang

    2014-01-01

    Full Text Available This paper constructs a kind of spread willingness computing based on information dissemination model for social network. The model takes into account the impact of node degree and dissemination mechanism, combined with the complex network theory and dynamics of infectious diseases, and further establishes the dynamical evolution equations. Equations characterize the evolutionary relationship between different types of nodes with time. The spread willingness computing contains three factors which have impact on user’s spread behavior: strength of the relationship between the nodes, views identity, and frequency of contact. Simulation results show that different degrees of nodes show the same trend in the network, and even if the degree of node is very small, there is likelihood of a large area of information dissemination. The weaker the relationship between nodes, the higher probability of views selection and the higher the frequency of contact with information so that information spreads rapidly and leads to a wide range of dissemination. As the dissemination probability and immune probability change, the speed of information dissemination is also changing accordingly. The studies meet social networking features and can help to master the behavior of users and understand and analyze characteristics of information dissemination in social network.

  19. Surgical lighting

    NARCIS (Netherlands)

    Knulst, A.J.

    2017-01-01

    The surgical light is an important tool for surgeons to create and maintain good visibility on the surgical task. Chapter 1 gives background to the field of (surgical) lighting and related terminology. Although the surgical light has been developed strongly since its introduction a long time ago,

  20. Computer-based literature search in medical institutions in India

    Directory of Open Access Journals (Sweden)

    Kalita Jayantee

    2007-01-01

    Full Text Available Aim: To study the use of computer-based literature search and its application in clinical training and patient care as a surrogate marker of evidence-based medicine. Materials and Methods: A questionnaire comprising of questions on purpose (presentation, patient management, research, realm (site accessed, nature and frequency of search, effect, infrastructure, formal training in computer based literature search and suggestions for further improvement were sent to residents and faculty of a Postgraduate Medical Institute (PGI and a Medical College. The responses were compared amongst different subgroups of respondents. Results: Out of 300 subjects approached 194 responded; of whom 103 were from PGI and 91 from Medical College. There were 97 specialty residents, 58 super-specialty residents and 39 faculty members. Computer-based literature search was done at least once a month by 89% though there was marked variability in frequency and extent. The motivation for computer-based literature search was for presentation in 90%, research in 65% and patient management in 60.3%. The benefit of search was acknowledged in learning and teaching by 80%, research by 65% and patient care by 64.4% of respondents. Formal training in computer based literature search was received by 41% of whom 80% were residents. Residents from PGI did more frequent and more extensive computer-based literature search, which was attributed to better infrastructure and training. Conclusion: Training and infrastructure both are crucial for computer-based literature search, which may translate into evidence based medicine.

  1. Fail-safe computer-based plant protection systems

    International Nuclear Information System (INIS)

    Keats, A.B.

    1983-01-01

    A fail-safe mode of operation for computers used in nuclear reactor protection systems was first evolved in the UK for application to a sodium cooled fast reactor. The fail-safe properties of both the hardware and the software were achieved by permanently connecting test signals to some of the multiplexed inputs. This results in an unambiguous data pattern, each time the inputs are sequentially scanned by the multiplexer. The ''test inputs'' simulate transient excursions beyond defined safe limits. The alternating response of the trip algorithms to the ''out-of-limits'' test signals and the normal plant measurements is recognised by hardwired pattern recognition logic external to the computer system. For more general application to plant protection systems, a ''Test Signal Generator'' (TSG) is used to compute and generate test signals derived from prevailing operational conditions. The TSG, from its knowledge of the sensitivity of the trip algorithm to each of the input variables, generates a ''test disturbance'' which is superimposed upon each variable in turn, to simulate a transient excursion beyond the safe limits. The ''tripped'' status yielded by the trip algorithm when using data from a ''disturbed'' input forms part of a pattern determined by the order in which the disturbances are applied to the multiplexer inputs. The data pattern formed by the interleaved test disturbances is again recognised by logic external to the protection system's computers. This fail-safe mode of operation of computer-based protection systems provides a powerful defence against common-mode failure. It also reduces the importance of software verification in the licensing procedure. (author)

  2. Virtual reality based surgical assistance and training system for long duration space missions.

    Science.gov (United States)

    Montgomery, K; Thonier, G; Stephanides, M; Schendel, S

    2001-01-01

    Access to medical care during long duration space missions is extremely important. Numerous unanticipated medical problems will need to be addressed promptly and efficiently. Although telemedicine provides a convenient tool for remote diagnosis and treatment, it is impractical due to the long delay between data transmission and reception to Earth. While a well-trained surgeon-internist-astronaut would be an essential addition to the crew, the vast number of potential medical problems necessitate instant access to computerized, skill-enhancing and diagnostic tools. A functional prototype of a virtual reality based surgical training and assistance tool was created at our center, using low-power, small, lightweight components that would be easy to transport on a space mission. The system consists of a tracked, head-mounted display, a computer system, and a number of tracked surgical instruments. The software provides a real-time surgical simulation system with integrated monitoring and information retrieval and a voice input/output subsystem. Initial medical content for the system has been created, comprising craniofacial, hand, inner ear, and general anatomy, as well as information on a number of surgical procedures and techniques. One surgical specialty in particular, microsurgery, was provided as a full simulation due to its long training requirements, significant impact on result due to experience, and likelihood for need. However, the system is easily adapted to realistically simulate a large number of other surgical procedures. By providing a general system for surgical simulation and assistance, the astronaut-surgeon can maintain their skills, acquire new specialty skills, and use tools for computer-based surgical planning and assistance to minimize overall crew and mission risk.

  3. A novel virtual reality simulation for hemostasis in a brain surgical cavity: perceived utility for visuomotor skills in current and aspiring neurosurgery residents.

    Science.gov (United States)

    Gasco, Jaime; Patel, Achal; Luciano, Cristian; Holbrook, Thomas; Ortega-Barnett, Juan; Kuo, Yong-Fang; Rizzi, Silvio; Kania, Patrick; Banerjee, Pat; Roitberg, Ben Z

    2013-12-01

    To understand the perceived utility of a novel simulator to improve operative skill, eye-hand coordination, and depth perception. We used the ImmersiveTouch simulation platform (ImmersiveTouch, Inc., Chicago, Illinois, USA) in two U.S. Accreditation Council for Graduate Medical Education-accredited neurosurgical training programs: the University of Chicago and the University of Texas Medical Branch. A total of 54 trainees participated in the study, which consisted of 14 residents (group A), 20 senior medical students who were neurosurgery candidates (group B), and 20 junior medical students (group C). The participants performed a simulation task that established bipolar hemostasis in a virtual brain cavity and provided qualitative feedback regarding perceived benefits in eye-hand coordination, depth perception, and potential to assist in improving operating skills. The perceived ability of the simulator to positively influence skills judged by the three groups: group A, residents; group B, senior medical students; and group C, junior medical students was, respectively, 86%, 100%, and 100% for eye-hand coordination; 86%, 100%, and 95% for depth perception; and 79%, 100%, and 100% for surgical skills in the operating room. From all groups, 96.2% found the simulation somewhat or very useful to improve eye-hand coordination, and 94% considered it beneficial to improve depth perception and operating room skills. This simulation module may be suitable for resident training, as well as for the development of career interest and skill acquisition; however, validation for this type of simulation needs to be further developed. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Surgical smoke.

    Science.gov (United States)

    Fan, Joe King-Man; Chan, Fion Siu-Yin; Chu, Kent-Man

    2009-10-01

    Surgical smoke is the gaseous by-product formed during surgical procedures. Most surgeons, operating theatre staff and administrators are unaware of its potential health risks. Surgical smoke is produced by various surgical instruments including those used in electrocautery, lasers, ultrasonic scalpels, high speed drills, burrs and saws. The potential risks include carbon monoxide toxicity to the patient undergoing a laparoscopic operation, pulmonary fibrosis induced by non-viable particles, and transmission of infectious diseases like human papilloma virus. Cytotoxicity and mutagenicity are other concerns. Minimisation of the production of surgical smoke and modification of any evacuation systems are possible solutions. In general, a surgical mask can provide more than 90% protection to exposure to surgical smoke; however, in most circumstances it cannot provide air-tight protection to the user. An at least N95 grade or equivalent respirator offers the best protection against surgical smoke, but whether such protection is necessary is currently unknown.

  5. 3D Rapid Prototyping for Otolaryngology—Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling

    Science.gov (United States)

    Chan, Harley H. L.; Siewerdsen, Jeffrey H.; Vescan, Allan; Daly, Michael J.; Prisman, Eitan; Irish, Jonathan C.

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  6. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Science.gov (United States)

    Chan, Harley H L; Siewerdsen, Jeffrey H; Vescan, Allan; Daly, Michael J; Prisman, Eitan; Irish, Jonathan C

    2015-01-01

    The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques

  7. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Directory of Open Access Journals (Sweden)

    Harley H L Chan

    Full Text Available The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i a mono-material paranasal sinus phantom for endoscopy training ii a multi-material skull base simulator and iii 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and

  8. A computer-based measure of resultant achievement motivation.

    Science.gov (United States)

    Blankenship, V

    1987-08-01

    Three experiments were conducted to develop a computer-based measure of individual differences in resultant achievement motivation (RAM) on the basis of level-of-aspiration, achievement motivation, and dynamics-of-action theories. In Experiment 1, the number of atypical shifts and greater responsiveness to incentives on 21 trials with choices among easy, intermediate, and difficult levels of an achievement-oriented game were positively correlated and were found to differentiate the 62 subjects (31 men, 31 women) on the amount of time they spent at a nonachievement task (watching a color design) 1 week later. In Experiment 2, test-retest reliability was established with the use of 67 subjects (15 men, 52 women). Point and no-point trials were offered in blocks, with point trials first for half the subjects and no-point trials first for the other half. Reliability was higher for the atypical-shift measure than for the incentive-responsiveness measure and was higher when points were offered first. In Experiment 3, computer anxiety was manipulated by creating a simulated computer breakdown in the experimental condition. Fifty-nine subjects (13 men, 46 women) were randomly assigned to the experimental condition or to one of two control conditions (an interruption condition and a no-interruption condition). Subjects with low RAM, as demonstrated by a low number of typical shifts, took longer to choose the achievement-oriented task, as predicted by the dynamics-of-action theory. The difference was evident in all conditions and most striking in the computer-breakdown condition. A change of focus from atypical to typical shifts is discussed.

  9. Reheating breakfast: Age and multitasking on a computer-based and a non-computer-based task

    OpenAIRE

    Feinkohl, I.; Cress, U.; Kimmerle, J.

    2016-01-01

    Computer-based assessments are popular means to measure individual differences, including age differences, in cognitive ability, but are rarely tested for the extent to which they correspond to more realistic behavior. In the present study, we explored the extent to which performance on an existing computer-based task of multitasking ('cooking breakfast') may be generalizable by comparing it with a newly developed version of the same task that required interaction with physical objects. Twent...

  10. Use of three-dimensional, CAD/CAM-assisted, virtual surgical simulation and planning in the pediatric craniofacial population.

    Science.gov (United States)

    Gray, Rachel; Gougoutas, Alexander; Nguyen, Vinh; Taylor, Jesse; Bastidas, Nicholas

    2017-06-01

    Virtual Surgical Planning (VSP) and computer-aided design/computer-aided manufacturing (CAD/CAM) have recently helped improve efficiency and accuracy in many different craniofacial surgeries. Research has mainly focused on the use in the adult population with the exception of the use for mandibular distractions and cranial vault remodeling in the pediatric population. This study aims to elucidate the role of VSP and CAD/CAM in complex pediatric craniofacial cases by exploring its use in the correction of midface hypoplasia, orbital dystopia, mandibular reconstruction, and posterior cranial vault expansion. A retrospective analysis of thirteen patients who underwent 3d, CAD/CAM- assisted preoperative surgical planning between 2012 and 2016 was performed. All CAD/CAM assisted surgical planning was done in conjunction with a third party vendor (either 3D Systems or Materialise). Cutting and positioning guides as well as models were produced based on the virtual plan. Surgeries included free fibula mandible reconstruction (n = 4), lefort I osteotomy and distraction (n = 2), lefort II osteotomy with monobloc distraction (n = 1), expansion of the posterior vault for correction of chiari malformation (n = 3), and secondary orbital and midface reconstruction for facial trauma (n = 3). The patient's age, diagnosis, previous surgeries, length of operating time, complications, and post-surgery satisfaction were determined. In all cases we found presurgical planning was helpful to improve accuracy and significantly decrease intra-operative time. In cases where distraction was used, the planned and actual vectors were found to be accurate with excellent clinical outcomes. There were no complications except for one patient who experienced a wound infection post-operatively which did not alter the ultimate reconstruction. All patients experienced high satisfaction with their outcomes and excellent subjective aesthetic results were achieved. Preoperative planning using

  11. Surgical Simulations Based on Limited Quantitative Data: Understanding How Musculoskeletal Models Can Be Used to Predict Moment Arms and Guide Experimental Design.

    Directory of Open Access Journals (Sweden)

    Jennifer A Nichols

    Full Text Available The utility of biomechanical models and simulations to examine clinical problems is currently limited by the need for extensive amounts of experimental data describing how a given procedure or disease affects the musculoskeletal system. Methods capable of predicting how individual biomechanical parameters are altered by surgery are necessary for the efficient development of surgical simulations. In this study, we evaluate to what extent models based on limited amounts of quantitative data can be used to predict how surgery influences muscle moment arms, a critical parameter that defines how muscle force is transformed into joint torque. We specifically examine proximal row carpectomy and scaphoid-excision four-corner fusion, two common surgeries to treat wrist osteoarthritis. Using models of these surgeries, which are based on limited data and many assumptions, we perform simulations to formulate a hypothesis regarding how these wrist surgeries influence muscle moment arms. Importantly, the hypothesis is based on analysis of only the primary wrist muscles. We then test the simulation-based hypothesis using a cadaveric experiment that measures moment arms of both the primary wrist and extrinsic thumb muscles. The measured moment arms of the primary wrist muscles are used to verify the hypothesis, while those of the extrinsic thumb muscles are used as cross-validation to test whether the hypothesis is generalizable. The moment arms estimated by the models and measured in the cadaveric experiment both indicate that a critical difference between the surgeries is how they alter radial-ulnar deviation versus flexion-extension moment arms at the wrist. Thus, our results demonstrate that models based on limited quantitative data can provide novel insights. This work also highlights that synergistically utilizing simulation and experimental methods can aid the design of experiments and make it possible to test the predictive limits of current computer

  12. Assessing information and communication technology in surgical ...

    African Journals Online (AJOL)

    2012-08-03

    Aug 3, 2012 ... c. evaluate computer-IT literacy and competency d. identify ... on real patients is unacceptable during the early stages of training. ... operating room time and cost. ... canulation), computer based systems, simulated patients.

  13. Implementation of a novel portfolio of structured, curriculum-aligned, simulation-based, cardiothoracic surgery training courses: Evolving the delivery of surgical education.

    Science.gov (United States)

    Moorjani, Narain; Lewis, Michael; Shah, Rajesh; Barnard, Sion; Graham, Tim; Rathinam, Sridhar

    2017-12-01

    The provision of high-quality cardiothoracic surgical training faces many challenges. This has generated an increased interest in simulation-based learning, which can provide a less stressful environment for deliberate practice. We developed a comprehensive, structured program of knowledge and simulation-based learning aligned to the official cardiothoracic surgery curriculum. A portfolio of 10 curriculum-aligned training courses was designed for cardiothoracic surgical trainees during their 6-year training program. The courses were delivered through a multitude of education methods, including live porcine operating simulation models, and were evaluated through a series of quantitative (5-point Likert-scale) and qualitative assessments. The trainees (n = 15-21 per course) also completed pre- and postsession self-confidence and competency levels for each training episode of knowledge and skill, respectively. In addition, board examination pass rates were assessed in the 3-year periods before and after implementation of the courses. Quantitative analysis of the trainees' feedback demonstrated an extremely positive view of the portfolio of the simulation-based training courses with excellent satisfaction scores (out of 5) for teaching sessions (4.44 ± 0.07), faculty (4.64 ± 0.07), content and materials (4.63 ± 0.07), and facilities (4.73 ± 0.05). The courses have shown a significant improvement in the post-self-confidence (7.98 ± 0.13 vs 5.62 ± 0.20, P < .01) and perceived self-competency (8.10 ± 0.10 vs 5.67 ± 0.11, P < .01) scores for all courses. Examination pass rates significantly improved in the 3-year period after attendance at the courses (94.82% ± 2.34% vs 76.26% ± 3.23%, P < .005). This study has described the implementation of the only extensive program of structured simulation-based courses that has been developed to complement clinical training in cardiothoracic surgery. Crown Copyright © 2017. Published by Elsevier

  14. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial.

    Science.gov (United States)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p  = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p  virtual reality surgical simulation training of novices.

  15. A crisis of faith? A review of simulation in teaching team-based, crisis management skills to surgical trainees.

    Science.gov (United States)

    Doumouras, Aristithes G; Keshet, Itay; Nathens, Avery B; Ahmed, Najma; Hicks, Christopher M

    2012-01-01

    Team-based training using crisis resource management (CRM) has gained popularity as a strategy to minimize the impact of medical error during critical events. The purpose of this review was to appraise and summarize the design, implementation, and efficacy of peer-reviewed, simulation-based CRM training programs for postgraduate trainees (residents). Two independent reviewers conducted a structured literature review, querying multiple medical and allied health databases from 1950 to May 2010 (MEDLINE, EMBASE, CINAHL, EBM, and PsycINFO). We included articles that (1) were written in English, (2) were published in peer-reviewed journals, (3) included residents, (4) contained a simulation component, and (5) included a team-based component. Peer-reviewed articles describing the implementation of CRM instruction were critically appraised using the Kirkpatrick framework for evaluating training programs. Fifteen studies involving a total of 404 residents met inclusion criteria; most studies reported high resident satisfaction for CRM training. In several CRM domains, residents demonstrated significant improvements after training, which did not decay over time. With regard to design, oral feedback may be equivalent to video feedback and single-day interventions may be as efficacious as multiple-day interventions for residents. No studies demonstrated a link between simulation-based CRM training and performance during real-life critical events. The findings support the utility of CRM programs for residents. A high degree of satisfaction and perceived value reflect robust resident engagement. The iteration of themes from our review provides the basis for the development of best practices in curricula design. A dearth of well-designed, randomized studies preclude the quantification of impact of simulation-based training in the clinical environment. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  16. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  17. Design criteria for crankshafts - axial slide bearing in Otto and diesel engines by means of computer-based simulations and experimental investigations. Axial slide bearing design - final report; Auslegungskriterien fuer Kurbelwellen - Axialgleitlager in Otto- und Dieselmotoren durch rechnergestuetzte Simulation und experimentelle Untersuchungen. Axialgleitlagerauslegung - Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, K. [Univ. GH Kassel (Germany). Inst. fuer Maschinenelemente und Konstruktionstechnik; Hunsicker, W. [Fachhochschule Mannheim (Germany). Inst. fuer Tribologie; Schubert, W. [KS Gleitlager GmbH, St. Leon-Rot (Germany)

    2003-07-01

    In the frame of this research project a simulation program has been developed in order to investigate suspension pressure build-up in crankshaft axial bearings taking into account mixed friction conditions. The investigated system is performing in a dynamic way taking into account the engine dynamics. Based upon the high engineering state of radial slide bearings, axial bearings as well as conical slide faces with any conical angle can be simulated in the same way. The solid body contact share in the system to be investigated is taken into account by the integral effect of the real microscopic surface structure on microhydrodynamics and contact pressure build-up. The influence of individual parameters, as e.g. macro-geometric bearing surface design can be investigated by means of simulation results. Wavy stopping faces and bearing surfaces with Rayleigh-steps are characterised by high hydrodynamic supporting pressure magnitudes in terms of macrogeometry. Elasto-hydrodynamic investigations at one stop collar and under engine-specific load on stop disks of a base bearing show the influence of structure elasticity and prove the necessity to consider them when the individual systems are analysed. (orig.) [German] Im Rahmen des durchgefuehrten Forschungsvorhabens wurde ein Simulationsprogramm zur Untersuchung des Tragdruckaufbaus in Kurbelwellen-Axiallagern unter Beruecksichtigung von Mischreibungszustaenden entwickelt. Das untersuchte System verhaelt sich dabei unter Beruecksichtigung der Motordynamik dynamisch. Ausgehend von dem hohen Entwicklungsstand von Radialgleitlagern koennen Axiallager sowie kegelfoermige Gleitflaechen mit beliebigen Kegelwinkeln in gleicher Weise simuliert werden. Dem hohen Festkoerperkontaktanteil in dem zu untersuchenden System wird durch die Beruecksichtigung der integralen Wirkung der realen mikroskopischen Oberflaechenstruktur auf Mikrohydrodynamik und Kontaktdruckaufbau Rechnung getragen. Anhand von Simulationsergebnissen kann der

  18. Simulation-based end-of-life care training during surgical clerkship: assessment of skills and perceptions.

    Science.gov (United States)

    Parikh, Priti P; Brown, Ronald; White, Mary; Markert, Ronald J; Eustace, Rosemary; Tchorz, Kathryn

    2015-06-15

    Assessment of interpersonal and psychosocial competencies during end-of-life care training is essential. This study reports the relationship between simulation-based end-of-life care Objective Structured Clinical Examination ratings and communication skills, trust, and self-assessed empathy along with the perceptions of students regarding their training experiences. Medical students underwent simulation-based end-of-life care OSCE training that involved standardized patients who evaluated students' communication skills and physician trust with the Kalamazoo Essential Elements Communication Checklist and the Wake Forest Physician Trust Scale. Students also completed the Jefferson Scale of Physician Empathy. Pearson correlation was used to examine the relationship between OSCE performance grades and communication, trust, and empathy scores. Student comments were analyzed using the constant comparative method of analysis to identify dominant themes. The 389 students (mean age 26.6 ± 2.8 y; 54.5% female) had OSCE grades that were positively correlated with physician trust scores (r = 0.325, P training to be a valuable learning experience and appreciated its placement early in clinical training. We found that simulation-based OSCE training in palliative and end-of-life care can be effectively conducted during a surgery clerkship. Moreover, the standardized patient encounters combined with the formal assessment of communication skills, physician trust, and empathy provide feedback to students at an early phase of their professional life. The positive and appreciative comments of students regarding the opportunity to practice difficult patient conversations suggest that attention to these professional characteristics and skills is a valued element of clinical training and conceivably a step toward better patient outcomes and satisfaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Ready for OR or not? Human reader supplements Eyesi scoring in cataract surgical skills assessment

    Directory of Open Access Journals (Sweden)

    Selvander M

    2013-10-01

    Full Text Available Madeleine Selvander,1,2 Peter Åsman11Department of Clinical Sciences, Malmö: Ophthalmology, Lund University, Malmö, Sweden; 2Practicum Clinical Skills Centre, Skåne University Hospital, Malmö, SwedenPurpose: To compare the internal computer-based scoring with human-based video scoring of cataract modules in the Eyesi virtual reality intraocular surgical simulator, a comparative case series was conducted at the Department of Clinical Sciences – Ophthalmology, Lund University, Skåne University Hospital, Malmö, Sweden.Methods: Seven cataract surgeons and 17 medical students performed one video-recorded trial with each of the capsulorhexis, hydromaneuvers, and phacoemulsification divide-and-conquer modules. For each module, the simulator calculated an overall score for the performance ranging from 0 to 100. Two experienced masked cataract surgeons analyzed each video using the Objective Structured Assessment of Cataract Surgical Skill (OSACSS for individual models and modified Objective Structured Assessment of Surgical Skills (OSATS for all three modules together. The average of the two assessors' scores for each tool was used as the video-based performance score. The ability to discriminate surgeons from naive individuals using the simulator score and the video score, respectively, was compared using receiver operating characteristic (ROC curves.Results: The ROC areas for simulator score did not differ from 0.5 (random for hydromaneuvers and phacoemulsification modules, yielding unacceptably poor discrimination. OSACSS video scores all showed good ROC areas significantly different from 0.5. The OSACSS video score was also superior compared to the simulator score for the phacoemulsification procedure: ROC area 0.945 vs 0.664 for simulator score (P = 0.010. Corresponding values for capsulorhexis were 0.887 vs 0.761 (P = 0.056 and for hydromaneuvers 0.817 vs 0.571 (P = 0.052 for the video scores and simulator scores, respectively.The ROC

  20. Interactive computer-based training program for radiological workers

    International Nuclear Information System (INIS)

    Trinoskey, P.A.; Camacho, P.I.; Wells, L.

    2000-01-01

    Lawrence Livermore National Laboratory is redesigning its existing Computer-Based Training (CBT) programs for radiological workers. The redesign represents a major effort that is aimed at producing a single highly interactive and flexible CBT program. The new CBT program is designed to address a variety of radiological workers, including researchers, x-ray operators, and individuals working in tritium, uranium, plutonium, and accelerator facilities. The program addresses the diversity of backgrounds found at a national laboratory. The CBT program includes photographs, line drawings and illustrations, sound, video, and simulations, and it allows for easy insertion and replacement of text, graphics, sound, and video. The new design supports timely updates and customization for use at other University of California sites. The CBT program is divided into ten basic modules. Introduction and Lessons Learned, History and Uses, Fundamentals, Background Radiation, Biological Effects of Radiation, Characteristics of Radionuclides, Radiological Controls, Monitoring, Emergency Response, Responsibilities. Some of the main modules features as many as seven or eight submodules. For example, the module on Characteristics of Radionuclides features submodules on common radionuclides, tritium uranium, plutonium, x-ray machines, E-beam devices, radiographic devices, and accelerators. Required submodules are tailored to an individual's type of work and facility, and they are determined by the answers to an onscreen questionnaire given at the outset of training. Individuals can challenge most individual modules, but certain submodules will be mandatory based on the initial survey. For example, individuals working in the uranium facility will be required to complete the submodule on 'History and Uses of Uranium'. However, all other submodules under the main module, 'History and Uses', will be available if selected for preview. For each module, an opportunity is provided for further

  1. Centralized computer-based controls of the Nova Laser Facility

    International Nuclear Information System (INIS)

    Krammen, J.

    1985-01-01

    This article introduces the overall architecture of the computer-based Nova Laser Control System and describes its basic components. Use of standard hardware and software components ensures that the system, while specialized and distributed throughout the facility, is adaptable. 9 references, 6 figures

  2. An Intelligent Computer-Based System for Sign Language Tutoring

    Science.gov (United States)

    Ritchings, Tim; Khadragi, Ahmed; Saeb, Magdy

    2012-01-01

    A computer-based system for sign language tutoring has been developed using a low-cost data glove and a software application that processes the movement signals for signs in real-time and uses Pattern Matching techniques to decide if a trainee has closely replicated a teacher's recorded movements. The data glove provides 17 movement signals from…

  3. Computer-Based Self-Instructional Modules. Final Technical Report.

    Science.gov (United States)

    Weinstock, Harold

    Reported is a project involving seven chemists, six mathematicians, and six physicists in the production of computer-based, self-study modules for use in introductory college courses in chemistry, physics, and mathematics. These modules were designed to be used by students and instructors with little or no computer backgrounds, in institutions…

  4. Strategic Planning for Computer-Based Educational Technology.

    Science.gov (United States)

    Bozeman, William C.

    1984-01-01

    Offers educational practitioners direction for the development of a master plan for the implementation and application of computer-based educational technology by briefly examining computers in education, discussing organizational change from a theoretical perspective, and presenting an overview of the planning strategy known as the planning and…

  5. Content Analysis of a Computer-Based Faculty Activity Repository

    Science.gov (United States)

    Baker-Eveleth, Lori; Stone, Robert W.

    2013-01-01

    The research presents an analysis of faculty opinions regarding the introduction of a new computer-based faculty activity repository (FAR) in a university setting. The qualitative study employs content analysis to better understand the phenomenon underlying these faculty opinions and to augment the findings from a quantitative study. A web-based…

  6. ISAT promises fail-safe computer-based reactor protection

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    AEA Technology's ISAT system is a multiplexed microprocessor-based reactor protection system which has very extensive self-monitoring capabilities and is inherently fail safe. It provides a way of addressing software reliability problems that have tended to hamper widespread introduction of computer-based reactor protection. (author)

  7. The Use of Audio and Animation in Computer Based Instruction.

    Science.gov (United States)

    Koroghlanian, Carol; Klein, James D.

    This study investigated the effects of audio, animation, and spatial ability in a computer-based instructional program for biology. The program presented instructional material via test or audio with lean text and included eight instructional sequences presented either via static illustrations or animations. High school students enrolled in a…

  8. Computer-Based Interaction Analysis with DEGREE Revisited

    Science.gov (United States)

    Barros, B.; Verdejo, M. F.

    2016-01-01

    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  9. The Accuracy of Cognitive Monitoring during Computer-Based Instruction.

    Science.gov (United States)

    Garhart, Casey; Hannafin, Michael J.

    This study was conducted to determine the accuracy of learners' comprehension monitoring during computer-based instruction and to assess the relationship between enroute monitoring and different levels of learning. Participants were 50 university undergraduate students enrolled in an introductory educational psychology class. All students received…

  10. Evolution of a Computer-Based Testing Laboratory

    Science.gov (United States)

    Moskal, Patrick; Caldwell, Richard; Ellis, Taylor

    2009-01-01

    In 2003, faced with increasing growth in technology-based and large-enrollment courses, the College of Business Administration at the University of Central Florida opened a computer-based testing lab to facilitate administration of course examinations. Patrick Moskal, Richard Caldwell, and Taylor Ellis describe the development and evolution of the…

  11. Optimal Sequential Rules for Computer-Based Instruction.

    Science.gov (United States)

    Vos, Hans J.

    1998-01-01

    Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…

  12. The use of computer based instructions to enhance Rwandan ...

    African Journals Online (AJOL)

    Annestar

    (2) To what extent the newly acquired ICT skills impact on teachers' competency? (3) How suitable is computer based instruction to enhance teachers' continuous professional development? Literature review. ICT competency for teachers. Regardless of the quantity and quality of technology available in classrooms, the key ...

  13. Issues in Text Design and Layout for Computer Based Communications.

    Science.gov (United States)

    Andresen, Lee W.

    1991-01-01

    Discussion of computer-based communications (CBC) focuses on issues involved with screen design and layout for electronic text, based on experiences with electronic messaging, conferencing, and publishing within the Australian Open Learning Information Network (AOLIN). Recommendations for research on design and layout for printed text are also…

  14. A computer-based teaching programme (CBTP) developed for ...

    African Journals Online (AJOL)

    The nursing profession, like other professions, is focused on preparing students for practice, and particular attention must be paid to the ability of student nurses to extend their knowledge and to solve nursing care problems effectively. A computer-based teaching programme (CBTP) for clinical practice to achieve these ...

  15. Evaluation of computer-based library services at Kenneth Dike ...

    African Journals Online (AJOL)

    This study evaluated computer-based library services/routines at Kenneth Dike Library, University of Ibadan. Four research questions were developed and answered. A survey research design was adopted; using questionnaire as the instrument for data collection. A total of 200 respondents randomly selected from 10 ...

  16. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  17. Stereoscopic (3D) versus monoscopic (2D) laparoscopy: comparative study of performance using advanced HD optical systems in a surgical simulator model.

    Science.gov (United States)

    Schoenthaler, Martin; Schnell, Daniel; Wilhelm, Konrad; Schlager, Daniel; Adams, Fabian; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz

    2016-04-01

    To compare task performances of novices and experts using advanced high-definition 3D versus 2D optical systems in a surgical simulator model. Fifty medical students (novices in laparoscopy) were randomly assigned to perform five standardized tasks adopted from the Fundamentals of Laparoscopic Surgery (FLS) curriculum in either a 2D or 3D laparoscopy simulator system. In addition, eight experts performed the same tasks. Task performances were evaluated using a validated scoring system of the SAGES/FLS program. Participants were asked to rate 16 items in a questionnaire. Overall task performance of novices was significantly better using stereoscopic visualization. Superiority of performances in 3D reached a level of significance for tasks peg transfer and precision cutting. No significant differences were noted in performances of experts when using either 2D or 3D. Overall performances of experts compared to novices were better in both 2D and 3D. Scorings in the questionnaires showed a tendency toward lower scores in the group of novices using 3D. Stereoscopic imaging significantly improves performance of laparoscopic phantom tasks of novices. The current study confirms earlier data based on a large number of participants and a standardized task and scoring system. Participants felt more confident and comfortable when using a 3D laparoscopic system. However, the question remains open whether these findings translate into faster and safer operations in a clinical setting.

  18. Comparison of different sets of instruments for laparoendoscopic single-site surgery in a surgical simulator with novices.

    Science.gov (United States)

    Wang, Dong; Shi, Long-Qing; Wang, Jing-Min; Jiang, Xiao-Hua; Ji, Zhen-Ling

    2016-04-01

    Given the parallel entry of working instruments through a single incision in laparoendoscopic single-site surgery, loss of triangulation in the abdominal cavity and counteracting movements of the instruments are inevitable obstacles. Some specially designed devices have emerged to ameliorate these challenges. Twenty-four novice participants were randomized into four groups using assigned instruments, conventional straight instruments, single-curved instruments, double-curved instruments and articulating instruments, respectively, to perform two basic tasks (peg transferring and pattern cutting) 14 times in a modified simulator. A test of the tasks and a resection of the intestine segment of a rat were performed. The task scores and evaluation of intraoperative skills during the resection of the intestine segment were recorded. The instrument of modified National Aeronautics and Space Administration Task Load Index (NASA-TLX) was completed. The task scores of the groups using single-curved instruments and articulating instruments were better than the other two groups on the simulator tasks, consistent with the evaluation of intraoperative skills during the resection of intestine segment. As the proficiency with the instruments increased, the task scores improved, as demonstrated by the learning curve. The workload measured by the modified NASA-TLX tool demonstrated that the groups using articulating instruments and double-curved instruments had a heavier workload in most of the categories compared with the other two groups. Single-curved and articulating instruments are more effective than conventional straight and double-curved devices, and are favourable in laparoendoscopic single-site surgery for novice learners. © 2013 Royal Australasian College of Surgeons.

  19. Virtual reality simulator training of laparoscopic cholecystectomies - a systematic review.

    Science.gov (United States)

    Ikonen, T S; Antikainen, T; Silvennoinen, M; Isojärvi, J; Mäkinen, E; Scheinin, T M

    2012-01-01

    Simulators are widely used in occupations where practice in authentic environments would involve high human or economic risks. Surgical procedures can be simulated by increasingly complex and expensive techniques. This review gives an update on computer-based virtual reality (VR) simulators in training for laparoscopic cholecystectomies. From leading databases (Medline, Cochrane, Embase), randomised or controlled trials and the latest systematic reviews were systematically searched and reviewed. Twelve randomised trials involving simulators were identified and analysed, as well as four controlled studies. Furthermore, seven studies comparing black boxes and simulators were included. The results indicated any kind of simulator training (black box, VR) to be beneficial at novice level. After VR training, novice surgeons seemed to be able to perform their first live cholecystectomies with fewer errors, and in one trial the positive effect remained during the first ten cholecystectomies. No clinical follow-up data were found. Optimal learning requires skills training to be conducted as part of a systematic training program. No data on the cost-benefit of simulators were found, the price of a VR simulator begins at EUR 60 000. Theoretical background to learning and limited research data support the use of simulators in the early phases of surgical training. The cost of buying and using simulators is justified if the risk of injuries and complications to patients can be reduced. Developing surgical skills requires repeated training. In order to achieve optimal learning a validated training program is needed.

  20. A Novel Clinical-Simulated Suture Education for Basic Surgical Skill: Suture on the Biological Tissue Fixed on Standardized Patient Evaluated with Objective Structured Assessment of Technical Skill (OSATS) Tools.

    Science.gov (United States)

    Shen, Zhanlong; Yang, Fan; Gao, Pengji; Zeng, Li; Jiang, Guanchao; Wang, Shan; Ye, Yingjiang; Zhu, Fengxue

    2017-06-21

    Clinical-simulated training has shown benefit in the education of medical students. However, the role of clinical simulation for surgical basic skill training such as suturing techniques remains unclear. Forty-two medical students were asked to perform specific suturing tasks at three stations with the different settings within four minutes (Station 1: Synthetic suture pad fixed on the bench, Station 2: Synthetic suture pad fixed on the standardized patient, Station 3: Pig skin fixed on the standardized patient); the OSATS (Objective Structured Assessment of Technical Skill) tool was used to evaluate the performance of students. A questionnaire was distributed to the students following the examination. Mean performance score of Station 3 was significant lower than that of Station 1 and 2 in the general performance including tissue handling, time, and motion. The suturing techniques of students at Station 2 and 3 were not as accurate as that at Station 1. Inappropriate tension was applied to the knot at Station 2 compared with Station 1 and 3. On the questionnaire, 93% of students considered clinical-simulated training of basic surgical skills was necessary and may increase their confidence in future clinical work as surgeons; 98% of students thought the assessment was more objective when OSATS tool was used for evaluation. Clinical simulation examination assessed with OSATS might throw a novel light on the education of basic surgical skills and may be worthy of wider adoption in the surgical education of medical students.

  1. Computer Based Test Untuk Seleksi Masuk Politeknik Negeri Bengkalis

    Directory of Open Access Journals (Sweden)

    Agus Tedyyana

    2017-11-01

    Full Text Available AbstrakPenyeleksian calon mahasiswa baru dapat dilakukan dengan aplikasi Computer Based Test (CBT. Metode yang digunakan meliputi teknik pengumpulan data, analisis sistem, model perancangan, implementasi dan pengujian. Penelitian ini menghasilkan aplikasi CBT dimana soal yang dimunculkan dari bank soal melalui proses pengacakan dengan tidak akan memunculkan soal yang sama dengan menggunakan metoda Fisher-Yates Shuffle. Dalam proses pengamanan informasi soal saat terhubung ke jaringan maka diperlukan teknik untuk penyandian pesan agar soal tersebut sebeum dimunculkan melewati proses enkripsi dan deskripsi data terlebih dahulu maka digunakan algoritma kriptografi  RSA. Metode perancangan perangkat lunak menggunakan model waterfall, perancangan database menggunakan entity relationship diagram, perancangan antarmuka menggunakan hypertext markup language (HTML Cascading Style Sheet (CSS dan jQuery serta diimplementasikan berbasis web dengan menggunakan bahasa pemrograman PHP dan database MySQL, Arsitektur jaringan yang digunakan aplikasi Computer Based Test adalah model jaringan client-server dengan jaringan Local Area Network (LAN. Kata kunci: Computer Based Test, Fisher-Yates Shuffle, Criptography, Local Area Network AbstractSelection of new student candidates can be done with Computer Based Test (CBT application. The methods used include data collection techniques, system analysis, design model, implementation and testing. This study produces a CBT application where the questions raised from the question bank through randomization process will not bring up the same problem using the Fisher-Yates Shuffle method. In the process of securing information about the problem when connected to the network it is necessary techniques for encoding the message so that the problem before appear through the process of encryption and description of data first then used RSA cryptography algorithm. Software design method using waterfall model, database design

  2. Surgical orthodontics.

    Science.gov (United States)

    Strohl, Alexis M; Vitkus, Lauren

    2017-08-01

    The article reviews some commonly used orthodontic treatments as well as new strategies to assist in the correction of malocclusion. Many techniques are used in conjunction with surgical intervention and are a necessary compliment to orthognathic surgery. Basic knowledge of these practices will aid in the surgeon's ability to adequately treat the patient. Many orthodontists and surgeons are eliminating presurgical orthodontics to adopt a strategy of 'surgery first' orthodontics in orthognathic surgery. This has the benefit of immediate improvement in facial aesthetics and shorter treatment times. The advent of virtual surgical planning has helped facilitate the development of this new paradigm by making surgical planning faster and easier. Furthermore, using intraoperative surgical navigation is improving overall precision and outcomes. A variety of surgical and nonsurgical treatments may be employed in the treatment of malocclusion. It is important to be familiar with all options available and tailor the patient's treatment plan accordingly. Surgery-first orthodontics, intraoperative surgical navigation, virtual surgical planning, and 3D printing are evolving new techniques that are producing shorter treatment times and subsequently improving patient satisfaction without sacrificing long-term stability.

  3. Quantum computers based on electron spins controlled by ultrafast off-resonant single optical pulses.

    Science.gov (United States)

    Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa

    2007-07-27

    We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.

  4. From ancient to avant-garde: a review of traditional and modern multimodal approaches to surgical anatomy education.

    Science.gov (United States)

    Hu, Minhao; Wattchow, David; de Fontgalland, Dayan

    2018-03-01

    The landscape of surgical anatomy education is progressively changing. Traditional methods, such as cadaveric dissection and didacticism are being increasingly phased out in undergraduate courses for multimodal approaches incorporating problem-based learning, radiology and computer-based simulations. Although effective at clinically contextualizing and integrating anatomical information, these approaches may be a poor substitute for fostering a grasp of foundational 'pure' anatomy. Dissection is ideal for this purpose and hence remains the cornerstone of anatomical education. However, novel methods and technological advancements continually give way to adjuncts such as cadaveric surgery, three-dimensional printing, virtual simulation and live surgical streaming, which have demonstrated significant efficacy alone or alongside dissection. Therefore, although divergent paradigms of 'new versus old' approaches have engulfed and divided the community, educators should seek to integrate the ancient and avant-garde to comprehensively satisfy all of the modern anatomy learner's educational needs. © 2017 Royal Australasian College of Surgeons.

  5. Standardized computer-based organized reporting of EEG:SCORE

    DEFF Research Database (Denmark)

    Beniczky, Sandor; H, Aurlien,; JC, Brøgger,

    2013-01-01

    process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice...... in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings....... SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make possible the build-up of a multinational database, and it will help in training young neurophysiologists....

  6. An overview of computer-based natural language processing

    Science.gov (United States)

    Gevarter, W. B.

    1983-01-01

    Computer based Natural Language Processing (NLP) is the key to enabling humans and their computer based creations to interact with machines in natural language (like English, Japanese, German, etc., in contrast to formal computer languages). The doors that such an achievement can open have made this a major research area in Artificial Intelligence and Computational Linguistics. Commercial natural language interfaces to computers have recently entered the market and future looks bright for other applications as well. This report reviews the basic approaches to such systems, the techniques utilized, applications, the state of the art of the technology, issues and research requirements, the major participants and finally, future trends and expectations. It is anticipated that this report will prove useful to engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  7. Interprofessional Simulations Promote Knowledge Retention and Enhance Perceptions of Teamwork Skills in a Surgical-Trauma-Burn Intensive Care Unit Setting.

    Science.gov (United States)

    George, Katie L; Quatrara, Beth

    The current state of health care encompasses highly acute, complex patients, managed with ever-changing technology. The ability to function proficiently in critical care relies on knowledge, technical skills, and interprofessional teamwork. Integration of these factors can improve patient outcomes. Simulation provides "hands-on" practice and allows for the integration of teamwork into knowledge/skill training. However, simulation can require a significant investment of time, effort, and financial resources. The Institute of Medicine recommendations from 2015 include "strengthening the evidence base for interprofessional education (IPE)" and "linking IPE with changes in collaborative behavior." In one surgical-trauma-burn intensive care unit (STBICU), no IPE existed. The highly acute and diverse nature of the patients served by the unit highlights the importance of appropriate training. This is heightened during critical event situations where patients deteriorate rapidly and the team intervenes swiftly. The aims of this study were to (1) evaluate knowledge retention and analyze changes in perceptions of teamwork among nurses and resident physicians in a STBICU setting after completion of an interprofessional critical event simulation and (2) provide insight for future interprofessional simulations (IPSs), including the ideal frequency of such training, associated cost, and potential effect on nursing turnover. A comparison-cohort pilot study was developed to evaluate knowledge retention and analyze changes in perceptions of teamwork. A 1-hour critical event IPS was held for nurses and resident physicians in a STBICU setting. A traumatic brain injury patient with elevated intracranial pressure, rapid deterioration, and cardiac arrest was utilized for the simulation scenario. The simulation required the team to use interventions to reduce elevated intracranial pressure and then perform cardiac resuscitation according to Advanced Cardiac Life Support guidelines. A

  8. Computer based approach to fatigue analysis and design

    International Nuclear Information System (INIS)

    Comstock, T.R.; Bernard, T.; Nieb, J.

    1979-01-01

    An approach is presented which uses a mini-computer based system for data acquisition, analysis and graphic displays relative to fatigue life estimation and design. Procedures are developed for identifying an eliminating damaging events due to overall duty cycle, forced vibration and structural dynamic characteristics. Two case histories, weld failures in heavy vehicles and low cycle fan blade failures, are discussed to illustrate the overall approach. (orig.) 891 RW/orig. 892 RKD [de

  9. A quantum computer based on recombination processes in microelectronic devices

    International Nuclear Information System (INIS)

    Theodoropoulos, K; Ntalaperas, D; Petras, I; Konofaos, N

    2005-01-01

    In this paper a quantum computer based on the recombination processes happening in semiconductor devices is presented. A 'data element' and a 'computational element' are derived based on Schokley-Read-Hall statistics and they can later be used to manifest a simple and known quantum computing process. Such a paradigm is shown by the application of the proposed computer onto a well known physical system involving traps in semiconductor devices

  10. Computer Based Asset Management System For Commercial Banks

    Directory of Open Access Journals (Sweden)

    Amanze

    2015-08-01

    Full Text Available ABSTRACT The Computer-based Asset Management System is a web-based system. It allows commercial banks to keep track of their assets. The most advantages of this system are the effective management of asset by keeping records of the asset and retrieval of information. In this research I gather the information to define the requirements of the new application and look at factors how commercial banks managed their asset.

  11. ARGOS-NT: A computer based emergency management system

    International Nuclear Information System (INIS)

    Hoe, S.; Thykier-Nielsen, S.; Steffensen, L.B.

    2000-01-01

    In case of a nuclear accident or a threat of a release the Danish Emergency Management Agency is responsible for actions to minimize the consequences in Danish territory. To provide an overview of the situation, a computer based system called ARGOS-NT has been developed in 1993/94. This paper gives an overview of the system with emphasis on the prognostic part of the system. An example calculation shows the importance of correct landscape modeling. (author)

  12. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-08-27

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field ({approx}10 T) and at low temperature {approx}1 K .

  13. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-01-01

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field (∼10 T) and at low temperature ∼1 K

  14. Design Of Computer Based Test Using The Unified Modeling Language

    Science.gov (United States)

    Tedyyana, Agus; Danuri; Lidyawati

    2017-12-01

    The Admission selection of Politeknik Negeri Bengkalis through interest and talent search (PMDK), Joint Selection of admission test for state Polytechnics (SB-UMPN) and Independent (UM-Polbeng) were conducted by using paper-based Test (PBT). Paper Based Test model has some weaknesses. They are wasting too much paper, the leaking of the questios to the public, and data manipulation of the test result. This reasearch was Aimed to create a Computer-based Test (CBT) models by using Unified Modeling Language (UML) the which consists of Use Case diagrams, Activity diagram and sequence diagrams. During the designing process of the application, it is important to pay attention on the process of giving the password for the test questions before they were shown through encryption and description process. RSA cryptography algorithm was used in this process. Then, the questions shown in the questions banks were randomized by using the Fisher-Yates Shuffle method. The network architecture used in Computer Based test application was a client-server network models and Local Area Network (LAN). The result of the design was the Computer Based Test application for admission to the selection of Politeknik Negeri Bengkalis.

  15. Standardized computer-based organized reporting of EEG

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C.

    2017-01-01

    Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted in the se......Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted...... in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper. The revised terminology was implemented in a software package (SCORE EEG), which was tested in clinical practice on 12,160 EEG recordings. Standardized terms implemented in SCORE...... are used to report the features of clinical relevance, extracted while assessing the EEGs. Selection of the terms is context sensitive: initial choices determine the subsequently presented sets of additional choices. This process automatically generates a report and feeds these features into a database...

  16. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  17. Standardized computer-based organized reporting of EEG

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C.

    2017-01-01

    Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted in the se......Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted...... in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper. The revised terminology was implemented in a software package (SCORE EEG), which was tested in clinical practice on 12,160 EEG recordings. Standardized terms implemented in SCORE....... In the end, the diagnostic significance is scored, using a standardized list of terms. SCORE has specific modules for scoring seizures (including seizure semiology and ictal EEG patterns), neonatal recordings (including features specific for this age group), and for Critical Care EEG Terminology. SCORE...

  18. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  19. Using computer-based training to facilitate radiation protection review

    International Nuclear Information System (INIS)

    Abercrombie, J.S.; Copenhaver, E.D.

    1989-01-01

    In a national laboratory setting, it is necessary to provide radiation protection overview and training to diverse parts of the laboratory population. This includes employees at research reactors, accelerators, waste facilities, radiochemical isotope processing, and analytical laboratories, among others. In addition, our own radiation protection and monitoring staffs must be trained. To assist in the implementation of this full range of training, ORNL has purchased prepackaged computer-based training in health physics and technical mathematics with training modules that can be selected from many topics. By selection of specific modules, appropriate radiation protection review packages can be determined to meet many individual program needs. Because our radiation protection personnel must have some previous radiation protection experience or the equivalent of an associate's degree in radiation protection for entry level, the computer-based training will serve primarily as review of major principles. Others may need very specific prior training to make the computer-based training effective in their work situations. 4 refs

  20. Human Emotion and Response in Surgery (HEARS): a simulation-based curriculum for communication skills, systems-based practice, and professionalism in surgical residency training.

    Science.gov (United States)

    Larkin, Anne C; Cahan, Mitchell A; Whalen, Giles; Hatem, David; Starr, Susan; Haley, Heather-Lyn; Litwin, Demetrius; Sullivan, Kate; Quirk, Mark

    2010-08-01

    This study examines the development and implementation of a pilot human factors curriculum during a 2-year period. It is one component of a comprehensive 5-year human factors curriculum spanning core competencies of interpersonal and communication skills, systems-based practice, and professionalism and using low-and high-fidelity simulation techniques. Members of the Department of Surgery and the Center for Clinical Communication and Performance Outcomes jointly constructed a curriculum for PGY1 and PGY2 residents on topics ranging from challenging communication to time and stress management. Video demonstrations, triggers, and simulated scenarios involving acting patients were created by surgeons and medical educators. Pre- and postintervention measures were obtained for communication skills, perceived stress level, and teamwork. Communication skills were evaluated using a series of video vignettes. The validated Perceived Stress Scale and Teamwork and Patient Safety Attitudes survey were used. Residents' perceptions of the program were also measured. Twenty-seven PGY1 residents and 15 PGY2 residents participated during 2 years. Analyses of video vignette tests indicated significant improvement in empathic communication for PGY1 (t = 3.62, p = 0.001) and PGY2 (t = 5.00, p = 0.004). There were no significant changes to teamwork attitudes. Perceived levels of stress became considerably higher. PGY1 residents reported trying 1 to 3 strategies taught in the time management session, with 60% to 75% reporting improvement post-training. This unique and comprehensive human factors curriculum is shown to be effective in building communication competency for junior-level residents in the human and emotional aspects of surgical training and practice. Continued refinement and ongoing data acquisition and analyses are underway. Copyright 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Deriving DICOM surgical extensions from surgical workflows

    Science.gov (United States)

    Burgert, O.; Neumuth, T.; Gessat, M.; Jacobs, S.; Lemke, H. U.

    2007-03-01

    The generation, storage, transfer, and representation of image data in radiology are standardized by DICOM. To cover the needs of image guided surgery or computer assisted surgery in general one needs to handle patient information besides image data. A large number of objects must be defined in DICOM to address the needs of surgery. We propose an analysis process based on Surgical Workflows that helps to identify these objects together with use cases and requirements motivating for their specification. As the first result we confirmed the need for the specification of representation and transfer of geometric models. The analysis of Surgical Workflows has shown that geometric models are widely used to represent planned procedure steps, surgical tools, anatomical structures, or prosthesis in the context of surgical planning, image guided surgery, augmented reality, and simulation. By now, the models are stored and transferred in several file formats bare of contextual information. The standardization of data types including contextual information and specifications for handling of geometric models allows a broader usage of such models. This paper explains the specification process leading to Geometry Mesh Service Object Pair classes. This process can be a template for the definition of further DICOM classes.

  2. Evolution of surgical skills training

    Science.gov (United States)

    Roberts, Kurt E; Bell, Robert L; Duffy, Andrew J

    2006-01-01

    Surgical training is changing: one hundred years of tradition is being challenged by legal and ethical concerns for patient safety, work hours restrictions, the cost of operating room time, and complications. Surgical simulation and skills training offers an opportunity to teach and practice advanced skills outside of the operating room environment before attempting them on living patients. Simulation training can be as straight forward as using real instruments and video equipment to manipulate simulated “tissue” in a box trainer. More advanced, virtual reality simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. The Accreditation Council of Graduate Medical Education’s (ACGME) has mandated the development of novel methods of training and evaluation. Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and to credential surgeons as technically competent. Simulators in their current form have been demonstrated to improve the operating room performance of surgical residents. Development of standardized training curricula remains an urgent and important agenda, particularly for minimal invasive surgery. An innovative and progressive approach, borrowing experiences from the field of aviation, can provide the foundation for the next century of surgical training, ensuring the quality of the product. As the technology develops, the way we practice will continue to evolve, to the benefit of physicians and patients. PMID:16718842

  3. Quantum computing based on space states without charge transfer

    International Nuclear Information System (INIS)

    Vyurkov, V.; Filippov, S.; Gorelik, L.

    2010-01-01

    An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.

  4. Computer-based information management system for interventional radiology

    International Nuclear Information System (INIS)

    Forman, B.H.; Silverman, S.G.; Mueller, P.R.; Hahn, P.F.; Papanicolaou, N.; Tung, G.A.; Brink, J.A.; Ferrucci, J.T.

    1989-01-01

    The authors authored and implemented a computer-based information management system (CBIMS) for the integrated analysis of data from a variety of abdominal nonvascular interventional procedures. The CBIMS improved on their initial handwritten-card system (which listed only patient name, hospital number, and type of procedure) by capturing relevant patient data in an organized fashion and integrating information for meaningful analysis. Advantages of CBIMS include enhanced compilation of monthly census, easy access to a patient's interventional history, and flexible querying capability that allows easy extraction of subsets of information from the patient database

  5. An Interactive Computer-Based Circulation System: Design and Development

    Directory of Open Access Journals (Sweden)

    James S. Aagaard

    1972-03-01

    Full Text Available An on-line computer-based circulation control system has been installed at the Northwestern University library. Features of the system include self-service book charge, remote terminal inquiry and update, and automatic production of notices for call-ins and books available. Fine notices are also prepared daily and overdue notices weekly. Important considerations in the design of the system were to minimize costs of operation and to include technical services functions eventually. The system operates on a relatively small computer in a multiprogrammed mode.

  6. Nanophotonic quantum computer based on atomic quantum transistor

    International Nuclear Information System (INIS)

    Andrianov, S N; Moiseev, S A

    2015-01-01

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  7. Cost-effectiveness analysis of computer-based assessment

    Directory of Open Access Journals (Sweden)

    Pauline Loewenberger

    2003-12-01

    Full Text Available The need for more cost-effective and pedagogically acceptable combinations of teaching and learning methods to sustain increasing student numbers means that the use of innovative methods, using technology, is accelerating. There is an expectation that economies of scale might provide greater cost-effectiveness whilst also enhancing student learning. The difficulties and complexities of these expectations are considered in this paper, which explores the challenges faced by those wishing to evaluate the costeffectiveness of computer-based assessment (CBA. The paper outlines the outcomes of a survey which attempted to gather information about the costs and benefits of CBA.

  8. INFORMATION DISPLAY: CONSIDERATIONS FOR DESIGNING COMPUTER-BASED DISPLAY SYSTEMS

    International Nuclear Information System (INIS)

    O'HARA, J.M.; PIRUS, D.; BELTRATCCHI, L.

    2004-01-01

    This paper discussed the presentation of information in computer-based control rooms. Issues associated with the typical displays currently in use are discussed. It is concluded that these displays should be augmented with new displays designed to better meet the information needs of plant personnel and to minimize the need for interface management tasks (the activities personnel have to do to access and organize the information they need). Several approaches to information design are discussed, specifically addressing: (1) monitoring, detection, and situation assessment; (2) routine task performance; and (3) teamwork, crew coordination, collaborative work

  9. Nanophotonic quantum computer based on atomic quantum transistor

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, S N [Institute of Advanced Research, Academy of Sciences of the Republic of Tatarstan, Kazan (Russian Federation); Moiseev, S A [Kazan E. K. Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences, Kazan (Russian Federation)

    2015-10-31

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  10. A blending of computer-based assessment and performance-based assessment: Multimedia-Based Performance Assessment (MBPA). The introduction of a new method of assessment in Dutch Vocational Education and Training (VET)

    NARCIS (Netherlands)

    de Klerk, Sebastiaan; Eggen, Theodorus Johannes Hendrikus Maria; Veldkamp, Bernard P.

    2014-01-01

    Innovation in technology drives innovation in assessment. Since the introduction of computer-based assessment (CBA), a few decades ago, many formerly paper-and-pencil tests have transformed in a computer-based equivalent. CBAs are becoming more complex, including multimedia and simulative elements

  11. Computer-Aided Surgical Simulation in Head and Neck Reconstruction: A Cost Comparison among Traditional, In-House, and Commercial Options.

    Science.gov (United States)

    Li, Sean S; Copeland-Halperin, Libby R; Kaminsky, Alexander J; Li, Jihui; Lodhi, Fahad K; Miraliakbari, Reza

    2018-06-01

     Computer-aided surgical simulation (CASS) has redefined surgery, improved precision and reduced the reliance on intraoperative trial-and-error manipulations. CASS is provided by third-party services; however, it may be cost-effective for some hospitals to develop in-house programs. This study provides the first cost analysis comparison among traditional (no CASS), commercial CASS, and in-house CASS for head and neck reconstruction.  The costs of three-dimensional (3D) pre-operative planning for mandibular and maxillary reconstructions were obtained from an in-house CASS program at our large tertiary care hospital in Northern Virginia, as well as a commercial provider (Synthes, Paoli, PA). A cost comparison was performed among these modalities and extrapolated in-house CASS costs were derived. The calculations were based on estimated CASS use with cost structures similar to our institution and sunk costs were amortized over 10 years.  Average operating room time was estimated at 10 hours, with an average of 2 hours saved with CASS. The hourly cost to the hospital for the operating room (including anesthesia and other ancillary costs) was estimated at $4,614/hour. Per case, traditional cases were $46,140, commercial CASS cases were $40,951, and in-house CASS cases were $38,212. Annual in-house CASS costs were $39,590.  CASS reduced operating room time, likely due to improved efficiency and accuracy. Our data demonstrate that hospitals with similar cost structure as ours, performing greater than 27 cases of 3D head and neck reconstructions per year can see a financial benefit from developing an in-house CASS program. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Computerbasiert prüfen [Computer-based Assessment

    Directory of Open Access Journals (Sweden)

    Frey, Peter

    2006-08-01

    Full Text Available [english] Computer-based testing in medical education offers new perspectives. Advantages are sequential or adaptive testing, integration of movies or sound, rapid feedback to candidates and management of web-based question banks. Computer-based testing can also be implemented in an OSCE examination. In e-learning environments formative self-assessment are often implemented and gives helpful feedbacks to learners. Disadvantages in high-stake exams are the high requirements as well for the quality of testing (e.g. standard setting as additionally for the information technology and especially for security. [german] Computerbasierte Prüfungen im Medizinstudium eröffnen neue Möglichkeiten. Vorteile solcher Prüfungen liegen im sequentiellen oder adaptiven Prüfen, in der Integration von Bewegtbildern oder Ton, der raschen Auswertung und zentraler Verwaltung der Prüfungsfragen via Internet. Ein Einsatzgebiet mit vertretbarem Aufwand sind Prüfungen mit mehreren Stationen wie beispielsweise die OSCE-Prüfung. Computerbasierte formative Selbsttests werden im Bereiche e-learning häufig angeboten. Das hilft den Lernenden ihren Wissensstand besser einzuschätzen oder sich mit den Leistungen anderer zu vergleichen. Grenzen zeigen sich bei den summativen Prüfungen beim Prüfungsort, da zuhause Betrug möglich ist. Höhere ärztliche Kompetenzen wie Untersuchungstechnik oder Kommunikation eigenen sich kaum für rechnergestützte Prüfungen.

  13. Computer-based systems for nuclear power stations

    International Nuclear Information System (INIS)

    Humble, P.J.; Welbourne, D.; Belcher, G.

    1995-01-01

    The published intentions of vendors are for extensive touch-screen control and computer-based protection. The software features needed for acceptance in the UK are indicated. The defence in depth needed is analyzed. Current practice in aircraft flight control systems and the software methods available are discussed. Software partitioning and mathematically formal methods are appropriate for the structures and simple logic needed for nuclear power applications. The potential for claims of diversity and independence between two computer-based subsystems of a protection system is discussed. Features needed to meet a single failure criterion applied to software are discussed. Conclusions are given on the main factors which a design should allow for. The work reported was done for the Health and Safety Executive of the UK (HSE), and acknowledgement is given to them, to NNC Ltd and to GEC-Marconi Avionics Ltd for permission to publish. The opinions and recommendations expressed are those of the authors and do not necessarily reflect those of HSE. (Author)

  14. A cloud computing based 12-lead ECG telemedicine service

    Science.gov (United States)

    2012-01-01

    Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan. PMID:22838382

  15. A cloud computing based 12-lead ECG telemedicine service.

    Science.gov (United States)

    Hsieh, Jui-Chien; Hsu, Meng-Wei

    2012-07-28

    Due to the great variability of 12-lead ECG instruments and medical specialists' interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists' decision making support in emergency telecardiology. We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan.

  16. A cloud computing based 12-lead ECG telemedicine service

    Directory of Open Access Journals (Sweden)

    Hsieh Jui-chien

    2012-07-01

    Full Text Available Abstract Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan.

  17. Computer-based learning--an aid to successful teaching of pharmacology?

    Science.gov (United States)

    E Hughes, Ian

    2002-07-01

    Various types of software have been developed for use in pharmacology courses. These include: simple drill (question and answer) software; electronic books; video material; tutorial type programs; simulations; and electronic learning environments for course organisation and delivery. These different types of software can be used in different ways to achieve very different learning objectives and gains in teaching efficiency. For example, software can be used: in tutorial and small group teaching; in lectures; to better prepare students for practical work; as a replacement for practicals; to provide options within a limited course structure; to supplement lectures and enable students to work at their own pace; to provide ongoing access to self-assessment throughout a course; to aid distance learning; as remedial teaching and to extend the student learning experience in areas which are too expensive or too time consuming or for which staff expertise does not exist. Evidence indicates that it is insufficient simply to make computer based learning material available to students. Like a laboratory class, it must be fully integrated into a module if real benefits are to be obtained. Students need to be taught how to learn from computer-based learning materials and how to integrate this learning tool in their learning strategy. Teachers need to be supported not only with information about the availability of software but, equally importantly, about how it can be integrated into modules. We are all delivering teaching and facilitating learning in a changing environment and subject to a variety of increasing pressures. It may well be that computer based learning materials may help to maintain a high quality of pharmacology teaching within this changing environment but we need more pedagogical research at the discipline level to establish how this can best be done.

  18. Surgical Navigation

    DEFF Research Database (Denmark)

    Azarmehr, Iman; Stokbro, Kasper; Bell, R. Bryan

    2017-01-01

    Purpose: This systematic review investigates the most common indications, treatments, and outcomes of surgical navigation (SN) published from 2010 to 2015. The evolution of SN and its application in oral and maxillofacial surgery have rapidly developed over recent years, and therapeutic indicatio...

  19. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  20. A Multilevel Modeling Approach to Examining Individual Differences in Skill Acquisition for a Computer-Based Task

    OpenAIRE

    Nair, Sankaran N.; Czaja, Sara J.; Sharit, Joseph

    2007-01-01

    This article explores the role of age, cognitive abilities, prior experience, and knowledge in skill acquisition for a computer-based simulated customer service task. Fifty-two participants aged 50–80 performed the task over 4 consecutive days following training. They also completed a battery that assessed prior computer experience and cognitive abilities. The data indicated that overall quality and efficiency of performance improved with practice. The predictors of initial level of performan...

  1. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  2. The effect of fasting on surgical performance

    DEFF Research Database (Denmark)

    Schefte, David Fenger; Rosenstock, Steffen Jais

    2016-01-01

    BACKGROUND: It is unknown whether fasting has any impact on surgical performance. This simulator-based study investigates whether fasting affects surgical performance. METHODS: Twelve healthy medical students [seven women, mean age 26.5 years (range 23-34)] with no prior experience with surgical...... simulators underwent a short course introduction to the LapSim(®) simulator. After having reached a predefined level, the participants performed five simulated salpingectomies on the LapSim(®) simulator 5-30 days after the initial introduction. The procedures took place at 9 a.m. and 2 p.m. after fasting...... in the longitudinal axis with the left hand. CONCLUSION: The simulator-based study suggests that 17 h of fasting does not deteriorate surgical performance. Further studies on the effect of fasting on surgical performance are needed....

  3. An integrated computer-based procedure for teamwork in digital nuclear power plants.

    Science.gov (United States)

    Gao, Qin; Yu, Wenzhu; Jiang, Xiang; Song, Fei; Pan, Jiajie; Li, Zhizhong

    2015-01-01

    Computer-based procedures (CBPs) are expected to improve operator performance in nuclear power plants (NPPs), but they may reduce the openness of interaction between team members and harm teamwork consequently. To support teamwork in the main control room of an NPP, this study proposed a team-level integrated CBP that presents team members' operation status and execution histories to one another. Through a laboratory experiment, we compared the new integrated design and the existing individual CBP design. Sixty participants, randomly divided into twenty teams of three people each, were assigned to the two conditions to perform simulated emergency operating procedures. The results showed that compared with the existing CBP design, the integrated CBP reduced the effort of team communication and improved team transparency. The results suggest that this novel design is effective to optim team process, but its impact on the behavioural outcomes may be moderated by more factors, such as task duration. The study proposed and evaluated a team-level integrated computer-based procedure, which present team members' operation status and execution history to one another. The experimental results show that compared with the traditional procedure design, the integrated design reduces the effort of team communication and improves team transparency.

  4. The Importance of Computer Based Active Learning for Basic Chemistry in Vocational High Schools

    Directory of Open Access Journals (Sweden)

    Tuğçe GÜNTER

    2011-01-01

    Full Text Available Chemistry is a very comprehensive discipline that researches atoms; molecules; the structure of matter in the form of element or compound; combinations, and physical and chemical properties of matter; macroscopic and microscopic transformations of matters; the energy and entropy released or absorbed in the course of these transformations; the structures and functions of carbohydrates, lipids, proteins, enzymes, vitamins and minerals in the body. This discipline includes numerous reactions at the macroscopic, microscopic and particulate levels, abstract concepts, three-dimensional structure of molecules, mathematics, and graphics. It is important for students to be trained as scientists to internalize -with meaningful learning - chemistry having much abstract concepts. Especially for students in associate degree programs in Vocational High Schools, taking this integrated course will provide them to be more creative in their future professional work; to cope with and overcome analytical problems; to be self-learners; to fill the gaps concerning chemical analysis originated from secondary education; and to gain critical thinking and self-evaluation skills regarding chemical problems. In the age of developing science and technology, “Computer-Based Active Learning Method” emerged with the introduction of multi-media into education and training. In this context, students will learn difficult and complex mathematical operations and graphics interpretations more meaningfully with computer-based simulations and analogies.

  5. Security Considerations and Recommendations in Computer-Based Testing

    Directory of Open Access Journals (Sweden)

    Saleh M. Al-Saleem

    2014-01-01

    Full Text Available Many organizations and institutions around the globe are moving or planning to move their paper-and-pencil based testing to computer-based testing (CBT. However, this conversion will not be the best option for all kinds of exams and it will require significant resources. These resources may include the preparation of item banks, methods for test delivery, procedures for test administration, and last but not least test security. Security aspects may include but are not limited to the identification and authentication of examinee, the risks that are associated with cheating on the exam, and the procedures related to test delivery to the examinee. This paper will mainly investigate the security considerations associated with CBT and will provide some recommendations for the security of these kinds of tests. We will also propose a palm-based biometric authentication system incorporated with basic authentication system (username/password in order to check the identity and authenticity of the examinee.

  6. Supporting plant operation through computer-based procedures

    International Nuclear Information System (INIS)

    Martinez, Victor; Medrano, Javier; Mendez, Julio

    2014-01-01

    Digital Systems are becoming more important in controlling and monitoring nuclear power plant operations. The capabilities of these systems provide additional functions as well as support operators in making decisions and avoiding errors. Regarding Operation Support Systems, an important way of taking advantage of these features is using computer-based procedures (CBPs) tools that enhance the plant operation. Integrating digital systems in analogue controls at nuclear power plants in operation becomes an extra challenge, in contrast to the integration of Digital Control Systems in new nuclear power plants. Considering the potential advantages of using this technology, Tecnatom has designed and developed a CBP platform taking currently operating nuclear power plants as its design basis. The result is a powerful tool which combines the advantages of CBPs and the conventional analogue control systems minimizing negative effects during plant operation and integrating operation aid-systems to support operators. (authors)

  7. Computer-based control systems of nuclear power plants

    International Nuclear Information System (INIS)

    Kalashnikov, V.K.; Shugam, R.A.; Ol'shevsky, Yu.N.

    1975-01-01

    Computer-based control systems of nuclear power plants may be classified into those using computers for data acquisition only, those using computers for data acquisition and data processing, and those using computers for process control. In the present paper a brief review is given of the functions the systems above mentioned perform, their applications in different nuclear power plants, and some of their characteristics. The trend towards hierarchic systems using control computers with reserves already becomes clear when consideration is made of the control systems applied in the Canadian nuclear power plants that pertain to the first ones equipped with process computers. The control system being now under development for the large Soviet reactors of WWER type will also be based on the use of control computers. That part of the system concerned with controlling the reactor assembly is described in detail

  8. Security considerations and recommendations in computer-based testing.

    Science.gov (United States)

    Al-Saleem, Saleh M; Ullah, Hanif

    2014-01-01

    Many organizations and institutions around the globe are moving or planning to move their paper-and-pencil based testing to computer-based testing (CBT). However, this conversion will not be the best option for all kinds of exams and it will require significant resources. These resources may include the preparation of item banks, methods for test delivery, procedures for test administration, and last but not least test security. Security aspects may include but are not limited to the identification and authentication of examinee, the risks that are associated with cheating on the exam, and the procedures related to test delivery to the examinee. This paper will mainly investigate the security considerations associated with CBT and will provide some recommendations for the security of these kinds of tests. We will also propose a palm-based biometric authentication system incorporated with basic authentication system (username/password) in order to check the identity and authenticity of the examinee.

  9. Computer based C and I systems in Indian PHWRs

    International Nuclear Information System (INIS)

    Govindarajan, G.; Sharma, M.P.

    1997-01-01

    Benefits of programmable digital technology have been well recognized and employment of computer based systems in Indian PHWRs has evolved in a phased manner, keeping in view the regulatory requirements for their use. In the initial phase some operator information functions and control of on-power fuel handling system were implemented and then some systems performing control and safety functions have been employed. The availability of powerful microcomputer hardware at reasonable cost and indigenous capability in design and execution has encouraged wider use of digital technology in the nuclear power programme. To achieve the desired level of quality and reliability, the hardware modules for the implementation of these systems in the plants under construction, have been standardized and methodology for software verification and validation has been evolved. A large number of C and I functions including those for equipment diagnostics are being implemented. The paper describes the various applications of computers in Indian NPPs and their current status of implementation. (author)

  10. A Computer- Based Digital Signal Processing for Nuclear Scintillator Detectors

    International Nuclear Information System (INIS)

    Ashour, M.A.; Abo Shosha, A.M.

    2000-01-01

    In this paper, a Digital Signal Processing (DSP) Computer-based system for the nuclear scintillation signals with exponential decay is presented. The main objective of this work is to identify the characteristics of the acquired signals smoothly, this can be done by transferring the signal environment from random signal domain to deterministic domain using digital manipulation techniques. The proposed system consists of two major parts. The first part is the high performance data acquisition system (DAQ) that depends on a multi-channel Logic Scope. Which is interfaced with the host computer through the General Purpose Interface Board (GPIB) Ver. IEEE 488.2. Also, a Graphical User Interface (GUI) has been designed for this purpose using the graphical programming facilities. The second of the system is the DSP software Algorithm which analyses, demonstrates, monitoring these data to obtain the main characteristics of the acquired signals; the amplitude, the pulse count, the pulse width, decay factor, and the arrival time

  11. All-optical reservoir computer based on saturation of absorption.

    Science.gov (United States)

    Dejonckheere, Antoine; Duport, François; Smerieri, Anteo; Fang, Li; Oudar, Jean-Louis; Haelterman, Marc; Massar, Serge

    2014-05-05

    Reservoir computing is a new bio-inspired computation paradigm. It exploits a dynamical system driven by a time-dependent input to carry out computation. For efficient information processing, only a few parameters of the reservoir needs to be tuned, which makes it a promising framework for hardware implementation. Recently, electronic, opto-electronic and all-optical experimental reservoir computers were reported. In those implementations, the nonlinear response of the reservoir is provided by active devices such as optoelectronic modulators or optical amplifiers. By contrast, we propose here the first reservoir computer based on a fully passive nonlinearity, namely the saturable absorption of a semiconductor mirror. Our experimental setup constitutes an important step towards the development of ultrafast low-consumption analog computers.

  12. A Cloud Computing Based Patient Centric Medical Information System

    Science.gov (United States)

    Agarwal, Ankur; Henehan, Nathan; Somashekarappa, Vivek; Pandya, A. S.; Kalva, Hari; Furht, Borko

    This chapter discusses an emerging concept of a cloud computing based Patient Centric Medical Information System framework that will allow various authorized users to securely access patient records from various Care Delivery Organizations (CDOs) such as hospitals, urgent care centers, doctors, laboratories, imaging centers among others, from any location. Such a system must seamlessly integrate all patient records including images such as CT-SCANS and MRI'S which can easily be accessed from any location and reviewed by any authorized user. In such a scenario the storage and transmission of medical records will have be conducted in a totally secure and safe environment with a very high standard of data integrity, protecting patient privacy and complying with all Health Insurance Portability and Accountability Act (HIPAA) regulations.

  13. A personal computer based console monitor for a TRIGA reactor

    International Nuclear Information System (INIS)

    Rieke, Phillip E.; Hood, William E.; Razvi, Junaid

    1990-01-01

    Numerous improvements have been made to the Mark F facility to provide a minimum reactor down time, giving a high reactor availability. A program was undertaken to enhance the monitoring capabilities of the instrumentation and control system on this reactor. To that end, a personal computer based console monitoring system has been developed, installed in the control room and is operational to provide real-time monitoring and display of a variety of reactor operating parameters. This system is based on commercially available hardware and an applications software package developed internally at the GA facility. It has (a) assisted the operator in controlling reactor parameters to maintain the high degree of power stability required during extended runs with thermionic devices in-core, and (b) provided data trending and archiving capabilities on all monitored channels to allow a post-mortem analysis to be performed on any of the monitored parameters

  14. Standardized Computer-based Organized Reporting of EEG: SCORE

    Science.gov (United States)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make

  15. Computer Based Procedures for Field Workers - FY16 Research Activities

    International Nuclear Information System (INIS)

    Oxstrand, Johanna; Bly, Aaron

    2016-01-01

    The Computer-Based Procedure (CBP) research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. One area that could yield tremendous savings in increased efficiency and safety is in improving procedure use. A CBP provides the opportunity to incorporate context-driven job aids, such as drawings, photos, and just-in-time training. The presentation of information in CBPs can be much more flexible and tailored to the task, actual plant condition, and operation mode. The dynamic presentation of the procedure will guide the user down the path of relevant steps, thus minimizing time spent by the field worker to evaluate plant conditions and decisions related to the applicability of each step. This dynamic presentation of the procedure also minimizes the risk of conducting steps out of order and/or incorrectly assessed applicability of steps. This report provides a summary of the main research activities conducted in the Computer-Based Procedures for Field Workers effort since 2012. The main focus of the report is on the research activities conducted in fiscal year 2016. The activities discussed are the Nuclear Electronic Work Packages - Enterprise Requirements initiative, the development of a design guidance for CBPs (which compiles all insights gained through the years of CBP research), the facilitation of vendor studies at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), a pilot study for how to enhance the plant design modification work process, the collection of feedback from a field evaluation study at Plant Vogtle, and path forward to

  16. Computer Based Procedures for Field Workers - FY16 Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The Computer-Based Procedure (CBP) research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. One area that could yield tremendous savings in increased efficiency and safety is in improving procedure use. A CBP provides the opportunity to incorporate context-driven job aids, such as drawings, photos, and just-in-time training. The presentation of information in CBPs can be much more flexible and tailored to the task, actual plant condition, and operation mode. The dynamic presentation of the procedure will guide the user down the path of relevant steps, thus minimizing time spent by the field worker to evaluate plant conditions and decisions related to the applicability of each step. This dynamic presentation of the procedure also minimizes the risk of conducting steps out of order and/or incorrectly assessed applicability of steps. This report provides a summary of the main research activities conducted in the Computer-Based Procedures for Field Workers effort since 2012. The main focus of the report is on the research activities conducted in fiscal year 2016. The activities discussed are the Nuclear Electronic Work Packages – Enterprise Requirements initiative, the development of a design guidance for CBPs (which compiles all insights gained through the years of CBP research), the facilitation of vendor studies at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), a pilot study for how to enhance the plant design modification work process, the collection of feedback from a field evaluation study at Plant Vogtle, and path forward to

  17. Computer-based systems important to safety (COMPSIS) - Reporting guidelines

    International Nuclear Information System (INIS)

    1999-07-01

    The objective of this procedure is to help the user to prepare an COMPSIS report on an event so that important lessons learned are most efficiently transferred to the database. This procedure focuses on the content of the information to be provided in the report rather than on its format. The established procedure follows to large extend the procedure chosen by the IRS incident reporting system. However this database is built for I and C equipment with the purpose of the event report database to collect and disseminate information on events of significance involving Computer-Based Systems important to safety in nuclear power plants, and feedback conclusions and lessons learnt from such events. For events where human performance is dominant to draw lessons, more detailed guidance on the specific information that should be supplied is spelled out in the present procedure. This guidance differs somewhat from that for the provision of technical information, and takes into account that the engineering world is usually less familiar with human behavioural analysis than with technical analysis. The events to be reported to the COMPSIS database should be based on the national reporting criteria in the participating member countries. The aim is that all reports including computer based systems that meet each country reporting criteria should be reported. The database should give a broad picture of events/incidents occurring in operation with computer control systems. As soon as an event has been identified, the insights and lessons learnt to be conveyed to the international nuclear community shall be clearly identified. On the basis of the description of the event, the event shall be analyzed in detail under the aspect of direct and potential impact to plant safety functions. The first part should show the common involvement of operation and safety systems and the second part should show the special aspects of I and C functions, hardware and software

  18. Customizable Computer-Based Interaction Analysis for Coaching and Self-Regulation in Synchronous CSCL Systems

    Science.gov (United States)

    Lonchamp, Jacques

    2010-01-01

    Computer-based interaction analysis (IA) is an automatic process that aims at understanding a computer-mediated activity. In a CSCL system, computer-based IA can provide information directly to learners for self-assessment and regulation and to tutors for coaching support. This article proposes a customizable computer-based IA approach for a…

  19. Key Points to Facilitate the Adoption of Computer-Based Assessments.

    Science.gov (United States)

    Burr, S A; Chatterjee, A; Gibson, S; Coombes, L; Wilkinson, S

    2016-01-01

    There are strong pedagogical arguments in favor of adopting computer-based assessment. The risks of technical failure can be managed and are offset by improvements in cost-effectiveness and quality assurance capability. Academic, administrative, and technical leads at an appropriately senior level within an institution need to be identified, so that they can act as effective advocates. All stakeholder groups need to be represented in undertaking a detailed appraisal of requirements and shortlisting software based on core functionality, summative assessment life cycle needs, external compatibility, security, and usability. Any software that is a candidate for adoption should be trialed under simulated summative conditions, with all stakeholders having a voice in agreeing the optimum solution. Transfer to a new system should be carefully planned and communicated, with a programme of training established to maximize the success of adoption.

  20. Key Points to Facilitate the Adoption of Computer-Based Assessments

    Directory of Open Access Journals (Sweden)

    S.A. Burr

    2016-01-01

    Full Text Available There are strong pedagogical arguments in favor of adopting computer-based assessment. The risks of technical failure can be managed and are offset by improvements in cost-effectiveness and quality assurance capability. Academic, administrative, and technical leads at an appropriately senior level within an institution need to be identified, so that they can act as effective advocates. All stakeholder groups need to be represented in undertaking a detailed appraisal of requirements and shortlisting software based on core functionality, summative assessment life cycle needs, external compatibility, security, and usability. Any software that is a candidate for adoption should be trialed under simulated summative conditions, with all stakeholders having a voice in agreeing the optimum solution. Transfer to a new system should be carefully planned and communicated, with a programme of training established to maximize the success of adoption.

  1. Interactive, Computer-Based Training Program for Radiological Workers

    International Nuclear Information System (INIS)

    Trinoskey, P.A.; Camacho, P.I.; Wells, L.

    2000-01-01

    Lawrence Livermore National Laboratory (LLNL) is redesigning its Computer-Based Training (CBT) program for radiological workers. The redesign represents a major effort to produce a single, highly interactive and flexible CBT program that will meet the training needs of a wide range of radiological workers--from researchers and x-ray operators to individuals working in tritium, uranium, plutonium, and accelerator facilities. The new CBT program addresses the broad diversity of backgrounds found at a national laboratory. When a training audience is homogeneous in terms of education level and type of work performed, it is difficult to duplicate the effectiveness of a flexible, technically competent instructor who can tailor a course to the express needs and concerns of a course's participants. Unfortunately, such homogeneity is rare. At LLNL, they have a diverse workforce engaged in a wide range of radiological activities, from the fairly common to the quite exotic. As a result, the Laboratory must offer a wide variety of radiological worker courses. These include a general contamination-control course in addition to radioactive-material-handling courses for both low-level laboratory (i.e., bench-top) activities as well as high-level work in tritium, uranium, and plutonium facilities. They also offer training courses for employees who work with radiation-generating devices--x-ray, accelerator, and E-beam operators, for instance. However, even with the number and variety of courses the Laboratory offers, they are constrained by the diversity of backgrounds (i.e., knowledge and experience) of those to be trained. Moreover, time constraints often preclude in-depth coverage of site- and/or task-specific details. In response to this situation, several years ago LLNL began moving toward computer-based training for radiological workers. Today, that CBT effort includes a general radiological safety course developed by the Department of Energy's Hanford facility and a

  2. Computer-based multisensory learning in children with developmental dyslexia.

    Science.gov (United States)

    Kast, Monika; Meyer, Martin; Vögeli, Christian; Gross, Markus; Jäncke, Lutz

    2007-01-01

    Several attempts have been made to remediate developmental dyslexia using various training environments. Based on the well-known retrieval structure model, the memory strength of phonemes and graphemes should be strengthened by visual and auditory associations between graphemes and phonemes. Using specifically designed training software, we examined whether establishing a multitude of visuo-auditory associations might help to mitigate writing errors in children with developmental dyslexia. Forty-three children with developmental dyslexia and 37 carefully matched normal reading children performed a computer-based writing training (15-20 minutes 4 days a week) for three months with the aim to recode a sequential textual input string into a multi-sensory representation comprising visual and auditory codes (including musical tones). The study included four matched groups: a group of children with developmental dyslexia (n=20) and a control group (n=18) practiced with the training software in the first period (3 months, 15-20 minutes 4 days a week), while a second group of children with developmental dyslexia (n=23) (waiting group) and a second control group (n=19) received no training during the first period. In the second period the children with developmental dyslexia and controls who did not receive training during the first period now took part in the training. Children with developmental dyslexia who did not perform computer-based training during the first period hardly improved their writing skills (post-pre improvement of 0-9%), the dyslexic children receiving training strongly improved their writing skills (post-pre improvement of 19-35%). The group who did the training during the second period also revealed improvement of writing skills (post-pre improvement of 27-35%). Interestingly, we noticed a strong transfer from trained to non-trained words in that the children who underwent the training were also better able to write words correctly that were not part

  3. Computer-based endoscopic image-processing technology for endourology and laparoscopic surgery

    International Nuclear Information System (INIS)

    Igarashi, Tatsuo; Suzuki, Hiroyoshi; Naya, Yukio

    2009-01-01

    Endourology and laparoscopic surgery are evolving in accordance with developments in instrumentation and progress in surgical technique. Recent advances in computer and image-processing technology have enabled novel images to be created from conventional endoscopic and laparoscopic video images. Such technology harbors the potential to advance endourology and laparoscopic surgery by adding new value and function to the endoscope. The panoramic and three-dimensional images created by computer processing are two outstanding features that can address the shortcomings of conventional endoscopy and laparoscopy, such as narrow field of view, lack of depth cue, and discontinuous information. The wide panoramic images show an anatomical map' of the abdominal cavity and hollow organs with high brightness and resolution, as the images are collected from video images taken in a close-up manner. To assist in laparoscopic surgery, especially in suturing, a three-dimensional movie can be obtained by enhancing movement parallax using a conventional monocular laparoscope. In tubular organs such as the prostatic urethra, reconstruction of three-dimensional structure can be achieved, implying the possibility of a liquid dynamic model for assessing local urethral resistance in urination. Computer-based processing of endoscopic images will establish new tools for endourology and laparoscopic surgery in the near future. (author)

  4. Students Perception on the Use of Computer Based Test

    Science.gov (United States)

    Nugroho, R. A.; Kusumawati, N. S.; Ambarwati, O. C.

    2018-02-01

    Teaching nowadays might use technology in order to disseminate science and knowledge. As part of teaching, the way evaluating study progress and result has also benefited from this IT rapid progress. The computer-based test (CBT) has been introduced to replace the more conventional Paper and Pencil Test (PPT). CBT are considered more advantageous than PPT. It is considered as more efficient, transparent, and has the ability of minimising fraud in cognitive evaluation. Current studies have indicated the debate of CBT vs PPT usage. Most of the current research compares the two methods without exploring the students’ perception about the test. This study will fill the gap in the literature by providing students’ perception on the two tests method. Survey approach is conducted to obtain the data. The sample is collected in two identical classes with similar subject in a public university in Indonesia. Mann-Whitney U test used to analyse the data. The result indicates that there is a significant difference between two groups of students regarding CBT usage. Student with different test method prefers to have test other than what they were having. Further discussion and research implication is discussed in the paper.

  5. A Computer-based 21st Century Prototype

    Directory of Open Access Journals (Sweden)

    Pannathon Sangarun

    2015-01-01

    Full Text Available Abstract This paper describes a prototype computer-based reading comprehension program. It begins with a short description, at a general level, of theoretical issues relating to the learning of comprehension skills in a foreign/second language learning. These issues cover such areas as personal meaning-making on the basis of individual differences and the need for individualized intervention to maximize the comprehension process. Modern technology facilitates this process and enables simultaneous support of large numbers of students. Specifically, from a learning perspective, the program focuses on students’ personal understandings while, from a reading perspective, the construction of meaning is based on an interactive model where both high-level (global, inferential structures are elicited/studied as well as low-level structures (e.g. vocabulary, grammar. These principles are strengthened with research findings from studies in awareness and language processing based on eye-movement analysis. As part of its reading comprehensions focus, the system also has a strong commitment to the development of critical thinking skills, recognized as one of the most important 21st Century skills. The program is then described in detail, including its ability to store students’ responses and to be administered through standard learning management systems. Finally, an outline of planned future developments and enhancements is presented.

  6. Industrial Personal Computer based Display for Nuclear Safety System

    International Nuclear Information System (INIS)

    Kim, Ji Hyeon; Kim, Aram; Jo, Jung Hee; Kim, Ki Beom; Cheon, Sung Hyun; Cho, Joo Hyun; Sohn, Se Do; Baek, Seung Min

    2014-01-01

    The safety display of nuclear system has been classified as important to safety (SIL:Safety Integrity Level 3). These days the regulatory agencies are imposing more strict safety requirements for digital safety display system. To satisfy these requirements, it is necessary to develop a safety-critical (SIL 4) grade safety display system. This paper proposes industrial personal computer based safety display system with safety grade operating system and safety grade display methods. The description consists of three parts, the background, the safety requirements and the proposed safety display system design. The hardware platform is designed using commercially available off-the-shelf processor board with back plane bus. The operating system is customized for nuclear safety display application. The display unit is designed adopting two improvement features, i.e., one is to provide two separate processors for main computer and display device using serial communication, and the other is to use Digital Visual Interface between main computer and display device. In this case the main computer uses minimized graphic functions for safety display. The display design is at the conceptual phase, and there are several open areas to be concreted for a solid system. The main purpose of this paper is to describe and suggest a methodology to develop a safety-critical display system and the descriptions are focused on the safety requirement point of view

  7. Trend of computer-based console for nuclear power plants

    International Nuclear Information System (INIS)

    Wajima, Tsunetaka; Serizawa, Michiya

    1975-01-01

    The amount of informations to be watched by the operators in the central operation room increased with the increase of the capacity of nuclear power generation plants, and the necessity of computer-based consoles, in which the informations are compiled and the rationalization of the interface between the operators and the plants is intended by introducing CRT displays and process computers, became to be recognized. The integrated monitoring and controlling system is explained briefly by taking Dungeness B Nuclear Power Station in Britain as a typical example. This power station comprises two AGRs, and these two plants can be controlled in one central control room, each by one man. Three computers including stand-by one are installed. Each computer has the core memory of 16 K words (24 bits/word), and 4 magnetic drums of 256 K words are installed as the external memory. The peripheral equipments are 12 CRT displays, 6 typewriters, high speed tape reader and tape punch for each plant. The display and record of plant data, the analysis, display and record of alarms, the control of plants including reactors, and post incident record are assigned to the computers. In Hitachi Ltd. in Japan, the introduction of color CRTs, the developments of operating consoles, new data-accessing method, and the consoles for maintenance management are in progress. (Kako, I.)

  8. A personal computer-based nuclear magnetic resonance spectrometer

    Science.gov (United States)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  9. Diagnostic reliability of MMPI-2 computer-based test interpretations.

    Science.gov (United States)

    Pant, Hina; McCabe, Brian J; Deskovitz, Mark A; Weed, Nathan C; Williams, John E

    2014-09-01

    Reflecting the common use of the MMPI-2 to provide diagnostic considerations, computer-based test interpretations (CBTIs) also typically offer diagnostic suggestions. However, these diagnostic suggestions can sometimes be shown to vary widely across different CBTI programs even for identical MMPI-2 profiles. The present study evaluated the diagnostic reliability of 6 commercially available CBTIs using a 20-item Q-sort task developed for this study. Four raters each sorted diagnostic classifications based on these 6 CBTI reports for 20 MMPI-2 profiles. Two questions were addressed. First, do users of CBTIs understand the diagnostic information contained within the reports similarly? Overall, diagnostic sorts of the CBTIs showed moderate inter-interpreter diagnostic reliability (mean r = .56), with sorts for the 1/2/3 profile showing the highest inter-interpreter diagnostic reliability (mean r = .67). Second, do different CBTIs programs vary with respect to diagnostic suggestions? It was found that diagnostic sorts of the CBTIs had a mean inter-CBTI diagnostic reliability of r = .56, indicating moderate but not strong agreement across CBTIs in terms of diagnostic suggestions. The strongest inter-CBTI diagnostic agreement was found for sorts of the 1/2/3 profile CBTIs (mean r = .71). Limitations and future directions are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Learning styles: individualizing computer-based learning environments

    Directory of Open Access Journals (Sweden)

    Tim Musson

    1995-12-01

    Full Text Available While the need to adapt teaching to the needs of a student is generally acknowledged (see Corno and Snow, 1986, for a wide review of the literature, little is known about the impact of individual learner-differences on the quality of learning attained within computer-based learning environments (CBLEs. What evidence there is appears to support the notion that individual differences have implications for the degree of success or failure experienced by students (Ford and Ford, 1992 and by trainee end-users of software packages (Bostrom et al, 1990. The problem is to identify the way in which specific individual characteristics of a student interact with particular features of a CBLE, and how the interaction affects the quality of the resultant learning. Teaching in a CBLE is likely to require a subset of teaching strategies different from that subset appropriate to more traditional environments, and the use of a machine may elicit different behaviours from those normally arising in a classroom context.

  11. Safety applications of computer based systems for the process industry

    International Nuclear Information System (INIS)

    Bologna, Sandro; Picciolo, Giovanni; Taylor, Robert

    1997-11-01

    Computer based systems, generally referred to as Programmable Electronic Systems (PESs) are being increasingly used in the process industry, also to perform safety functions. The process industry as they intend in this document includes, but is not limited to, chemicals, oil and gas production, oil refining and power generation. Starting in the early 1970's the wide application possibilities and the related development problems of such systems were recognized. Since then, many guidelines and standards have been developed to direct and regulate the application of computers to perform safety functions (EWICS-TC7, IEC, ISA). Lessons learnt in the last twenty years can be summarised as follows: safety is a cultural issue; safety is a management issue; safety is an engineering issue. In particular, safety systems can only be properly addressed in the overall system context. No single method can be considered sufficient to achieve the safety features required in many safety applications. Good safety engineering approach has to address not only hardware and software problems in isolation but also their interfaces and man-machine interface problems. Finally, the economic and industrial aspects of the safety applications and development of PESs in process plants are evidenced throughout all the Report. Scope of the Report is to contribute to the development of an adequate awareness of these problems and to illustrate technical solutions applied or being developed

  12. [Problem list in computer-based patient records].

    Science.gov (United States)

    Ludwig, C A

    1997-01-14

    Computer-based clinical information systems are capable of effectively processing even large amounts of patient-related data. However, physicians depend on rapid access to summarized, clearly laid out data on the computer screen to inform themselves about a patient's current clinical situation. In introducing a clinical workplace system, we therefore transformed the problem list-which for decades has been successfully used in clinical information management-into an electronic equivalent and integrated it into the medical record. The table contains a concise overview of diagnoses and problems as well as related findings. Graphical information can also be integrated into the table, and an additional space is provided for a summary of planned examinations or interventions. The digital form of the problem list makes it possible to use the entire list or selected text elements for generating medical documents. Diagnostic terms for medical reports are transferred automatically to corresponding documents. Computer technology has an immense potential for the further development of problem list concepts. With multimedia applications sound and images will be included in the problem list. For hyperlink purpose the problem list could become a central information board and table of contents of the medical record, thus serving as the starting point for database searches and supporting the user in navigating through the medical record.

  13. Industrial Personal Computer based Display for Nuclear Safety System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyeon; Kim, Aram; Jo, Jung Hee; Kim, Ki Beom; Cheon, Sung Hyun; Cho, Joo Hyun; Sohn, Se Do; Baek, Seung Min [KEPCO, Youngin (Korea, Republic of)

    2014-08-15

    The safety display of nuclear system has been classified as important to safety (SIL:Safety Integrity Level 3). These days the regulatory agencies are imposing more strict safety requirements for digital safety display system. To satisfy these requirements, it is necessary to develop a safety-critical (SIL 4) grade safety display system. This paper proposes industrial personal computer based safety display system with safety grade operating system and safety grade display methods. The description consists of three parts, the background, the safety requirements and the proposed safety display system design. The hardware platform is designed using commercially available off-the-shelf processor board with back plane bus. The operating system is customized for nuclear safety display application. The display unit is designed adopting two improvement features, i.e., one is to provide two separate processors for main computer and display device using serial communication, and the other is to use Digital Visual Interface between main computer and display device. In this case the main computer uses minimized graphic functions for safety display. The display design is at the conceptual phase, and there are several open areas to be concreted for a solid system. The main purpose of this paper is to describe and suggest a methodology to develop a safety-critical display system and the descriptions are focused on the safety requirement point of view.

  14. Computer-based mechanical design of overhead lines

    Science.gov (United States)

    Rusinaru, D.; Bratu, C.; Dinu, R. C.; Manescu, L. G.

    2016-02-01

    Beside the performance, the safety level according to the actual standards is a compulsory condition for distribution grids’ operation. Some of the measures leading to improvement of the overhead lines reliability ask for installations’ modernization. The constraints imposed to the new lines components refer to the technical aspects as thermal stress or voltage drop, and look for economic efficiency, too. The mechanical sizing of the overhead lines is after all an optimization problem. More precisely, the task in designing of the overhead line profile is to size poles, cross-arms and stays and locate poles along a line route so that the total costs of the line's structure to be minimized and the technical and safety constraints to be fulfilled.The authors present in this paper an application for the Computer-Based Mechanical Design of the Overhead Lines and the features of the corresponding Visual Basic program, adjusted to the distribution lines. The constraints of the optimization problem are adjusted to the existing weather and loading conditions of Romania. The outputs of the software application for mechanical design of overhead lines are: the list of components chosen for the line: poles, cross-arms, stays; the list of conductor tension and forces for each pole, cross-arm and stay for different weather conditions; the line profile drawings.The main features of the mechanical overhead lines design software are interactivity, local optimization function and high-level user-interface

  15. Computer based aids for operator support in nuclear power plants

    International Nuclear Information System (INIS)

    1990-04-01

    In the framework of the Agency's programme on nuclear safety a survey was carried out based on a questionnaire to collect information on computer based aids for operator support in nuclear power plants in Member States. The intention was to put together a state-of-the-art report where different systems under development or already implemented would be described. This activity was also supported by an INSAG (International Nuclear Safety Advisory Group) recommendation. Two consultant's meetings were convened and their work is reflected in the two sections of the technical document. The first section, produced during the first meeting, is devoted to provide some general background material on the overall usability of Computerized Operator Decision Aids (CODAs), their advantages and shortcomings. During this first meeting, the first draft of the questionnaire was also produced. The second section presents the evaluation of the 40 questionnaires received from 11 Member States and comprises a short description of each system and some statistical and comparative observations. The ultimate goal of this activity was to inform Member States, particularly those who are considering implementation of a CODA, on the status of related developments elsewhere. 8 refs, 10 figs, 4 tabs

  16. IMPACT OF COMPUTER BASED ONLINE ENTREPRENEURSHIP DISTANCE EDUCATION IN INDIA

    Directory of Open Access Journals (Sweden)

    Bhagwan SHREE RAM

    2012-07-01

    Full Text Available The success of Indian enterprises and professionals in the computer and information technology (CIT domain during the twenty year has been spectacular. Entrepreneurs, bureaucrats and technocrats are now advancing views about how India can ride CIT bandwagon and leapfrog into a knowledge-based economy in the area of entrepreneurship distance education on-line. Isolated instances of remotely located villagers sending and receiving email messages, effective application of mobile communications and surfing the Internet are being promoted as examples of how the nation can achieve this transformation, while vanquishing socio-economic challenges such as illiteracy, high growth of population, poverty, and the digital divide along the way. Likewise, even while a small fraction of the urban population in India has access to computers and the Internet, e-governance is being projected as the way of the future. There is no dearth of fascinating stories about CIT enabled changes, yet there is little discussion about whether such changes are effective and sustainable in the absence of the basic infrastructure that is accessible to the citizens of more advanced economies. When used appropriately, different CITs are said to help expand access to entrepreneurship distance education, strengthen the relevance of education to the increasingly digital workplace, and raise technical and managerial educational quality by, among others, helping make teaching and learning into an engaging, active process connected to real life. This research paper investigates on the impact of computer based online entrepreneurship distance education in India.

  17. Mobile surgical skills education unit: a new concept in surgical training.

    Science.gov (United States)

    Shaikh, Faisal M; Hseino, Hazem; Hill, Arnold D K; Kavanagh, Eamon; Traynor, Oscar

    2011-08-01

    Basic surgical skills are an integral part of surgical training. Simulation-based surgical training offers an opportunity both to trainees and trainers to learn and teach surgical skills outside the operating room in a nonpatient, nonstressed environment. However, widespread adoption of simulation technology especially in medical education is prohibited by its inherent higher cost, limited space, and interruptions to clinical duties. Mobile skills laboratory has been proposed as a means to address some of these limitations. A new program is designed by the Royal College of Surgeons in Ireland (RCSI), in an approach to teach its postgraduate basic surgical trainees the necessary surgical skills, by making the use of mobile innovative simulation technology in their own hospital settings. In this article, authors describe the program and students response to the mobile surgical skills being delivered in the region of their training hospitals and by their own regional consultant trainers.

  18. Evolving Educational Techniques in Surgical Training.

    Science.gov (United States)

    Evans, Charity H; Schenarts, Kimberly D

    2016-02-01

    Training competent and professional surgeons efficiently and effectively requires innovation and modernization of educational methods. Today's medical learner is quite adept at using multiple platforms to gain information, providing surgical educators with numerous innovative avenues to promote learning. With the growth of technology, and the restriction of work hours in surgical education, there has been an increase in use of simulation, including virtual reality, robotics, telemedicine, and gaming. The use of simulation has shifted the learning of basic surgical skills to the laboratory, reserving limited time in the operating room for the acquisition of complex surgical skills". Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Computer-Based Video Instruction to Teach Students with Intellectual Disabilities to Verbally Respond to Questions and Make Purchases in Fast Food Restaurants

    Science.gov (United States)

    Mechling, Linda C.; Pridgen, Leslie S.; Cronin, Beth A.

    2005-01-01

    Computer-based video instruction (CBVI) was used to teach verbal responses to questions presented by cashiers and purchasing skills in fast food restaurants. A multiple probe design across participants was used to evaluate the effectiveness of CBVI. Instruction occurred through simulations of three fast food restaurants on the computer using video…

  20. A User Modelling Approach for Computer-Based Critiquing

    Science.gov (United States)

    1990-01-01

    example a CAD/CAM system). Com- puters are good for simulating in circumstances where training on the actual equip- 13 ment (for example a power plant or...system. It is an environment in which simulated devices, such as steam plant controllers, can be assembled and operated. Students can assemble a...Con- cordia hypermedia system, graphics can be integrated easily. Concordia is a hy- permedia development and presentation system available on the

  1. Computer-Based Tools for Evaluating Graphical User Interfaces

    Science.gov (United States)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  2. Learners’ views about cloud computing-based group activities

    Directory of Open Access Journals (Sweden)

    Yildirim Serkan

    2017-01-01

    Full Text Available Thanks to its use independently of time and place during the process of software development and by making it easier to access to information with mobile technologies, cloud based environments attracted the attention of education world and this technology started to be used in various activities. In this study, for programming education, the effects of extracurricular group assignments in cloud based environments on learners were evaluated in terms of group work satisfaction, ease of use and user satisfaction. Within the scope of computer programming education lasting eight weeks, a total of 100 students participated in the study including 34 men and 66 women. Participants were divided into groups of at least three people considering the advantages of cooperative learning in programming education. In this study carried out in both conventional and cloud based environments, between groups factorial design was used as research design. The data collected by questionnaires of opinions of group work were examined with quantitative analysis method. According to the study results extracurricular learning activities as group activity created satisfaction. However, perceptions of easy use of the environment and user satisfaction were partly positive. Despite the similar understandings; male participants were easier to perceive use of cloud computing based environments. Some variables such as class level, satisfaction, computer and internet usage time do not have any effect on satisfaction and perceptions of ease of use. Evening class students stated that they found it easy to use cloud based learning environments and became more satisfied with using these environments besides being happier with group work than daytime students.

  3. ARAC: a computer-based emergency dose-assessment service

    International Nuclear Information System (INIS)

    Sullivan, T.J.

    1990-01-01

    Over the past 15 years, the Lawrence Livermore National Laboratory's Atmospheric Release Advisory Capability (ARAC) has developed and evolved a computer-based, real-time, radiological-dose-assessment service for the United States Departments of Energy and Defense. This service is built on the integrated components of real-time computer-acquired meteorological data, extensive computer databases, numerical atmospheric-dispersion models, graphical displays, and operational-assessment-staff expertise. The focus of ARAC is the off-site problem where regional meteorology and topography are dominant influences on transport and dispersion. Through application to numerous radiological accidents/releases on scales from small accidental ventings to the Chernobyl reactor disaster, ARAC has developed methods to provide emergency dose assessments from the local to the hemispheric scale. As the power of computers has evolved inversely with respect to cost and size, ARAC has expanded its service and reduced the response time from hours to minutes for an accident within the United States. Concurrently the quality of the assessments has improved as more advanced models have been developed and incorporated into the ARAC system. Over the past six years, the number of directly connected facilities has increased from 6 to 73. All major U.S. Federal agencies now have access to ARAC via the Department of Energy. This assures a level of consistency as well as experience. ARAC maintains its real-time skills by participation in approximately 150 exercises per year; ARAC also continuously validates its modeling systems by application to all available tracer experiments and data sets

  4. Improving Patient Satisfaction Through Computer-Based Questionnaires.

    Science.gov (United States)

    Smith, Matthew J; Reiter, Michael J; Crist, Brett D; Schultz, Loren G; Choma, Theodore J

    2016-01-01

    Patient-reported outcome measures are helping clinicians to use evidence-based medicine in decision making. The use of computer-based questionnaires to gather such data may offer advantages over traditional paper-based methods. These advantages include consistent presentation, prompts for missed questions, reliable scoring, and simple and accurate transfer of information into databases without manual data entry. The authors enrolled 308 patients over a 16-month period from 3 orthopedic clinics: spine, upper extremity, and trauma. Patients were randomized to complete either electronic or paper validated outcome forms during their first visit, and they completed the opposite modality at their second visit, which was approximately 7 weeks later. For patients with upper-extremity injuries, the Penn Shoulder Score (PSS) was used. For patients with lower-extremity injuries, the Foot Function Index (FFI) was used. For patients with lumbar spine symptoms, the Oswestry Disability Index (ODI) was used. All patients also were asked to complete the 36-Item Short Form Health Survey (SF-36) Health Status Survey, version 1. The authors assessed patient satisfaction with each survey modality and determined potential advantages and disadvantages for each. No statistically significant differences were found between the paper and electronic versions for patient-reported outcome data. However, patients strongly preferred the electronic surveys. Additionally, the paper forms had significantly more missed questions for the FFI (P<.0001), ODI (P<.0001), and PSS (P=.008), and patents were significantly less likely to complete these forms (P<.0001). Future research should focus on limiting the burden on responders, individualizing forms and questions as much as possible, and offering alternative environments for completion (home or mobile platforms). Copyright 2016, SLACK Incorporated.

  5. Development of Computer-Based Training to Supplement Lessons in Fundamentals of Electronics

    Directory of Open Access Journals (Sweden)

    Ian P. Benitez

    2016-05-01

    Full Text Available Teaching Fundamentals of Electronics allow students to familiarize with basic electronics concepts, acquire skills in the use of multi-meter test instrument, and develop mastery in testing basic electronic components. Actual teaching and doing observations during practical activities on components pin identification and testing showed that the lack of skills of new students in testing components can lead to incorrect fault diagnosis and wrong pin connection during in-circuit replacement of the defective parts. With the aim of reinforcing students with concrete understanding of the concepts of components applied in the actual test and measurement, a Computer-Based Training was developed. The proponent developed the learning modules (courseware utilizing concept mapping and storyboarding instructional design. Developing a courseware as simulated, activity-based and interactive as possible was the primary goal to resemble the real-world process. A Local area network (LAN-based learning management system was also developed to use in administering the learning modules. The Paired Sample T-Test based on the pretest and post-test result was used to determine whether the students achieved learning after taking the courseware. The result revealed that there is a significant achievement of the students after studying the learning module. The E-learning content was validated by the instructors in terms of contents, activities, assessment and format with a grand weighted mean of 4.35 interpreted as Sufficient. Based from the evaluation result, supplementing with the proposed computer-based training can enhance the teachinglearning process in electronic fundamentals.

  6. A rural community's involvement in the design and usability testing of a computer-based informed consent process for the Personalized Medicine Research Project.

    Science.gov (United States)

    Mahnke, Andrea N; Plasek, Joseph M; Hoffman, David G; Partridge, Nathan S; Foth, Wendy S; Waudby, Carol J; Rasmussen, Luke V; McManus, Valerie D; McCarty, Catherine A

    2014-01-01

    Many informed consent studies demonstrate that research subjects poorly retain and understand information in written consent documents. Previous research in multimedia consent is mixed in terms of success for improving participants' understanding, satisfaction, and retention. This failure may be due to a lack of a community-centered design approach to building the interventions. The goal of this study was to gather information from the community to determine the best way to undertake the consent process. Community perceptions regarding different computer-based consenting approaches were evaluated, and a computer-based consent was developed and tested. A second goal was to evaluate whether participants make truly informed decisions to participate in research. Simulations of an informed consent process were videotaped to document the process. Focus groups were conducted to determine community attitudes towards a computer-based informed consent process. Hybrid focus groups were conducted to determine the most acceptable hardware device. Usability testing was conducted on a computer-based consent prototype using a touch-screen kiosk. Based on feedback, a computer-based consent was developed. Representative study participants were able to easily complete the consent, and all were able to correctly answer the comprehension check questions. Community involvement in developing a computer-based consent proved valuable for a population-based genetic study. These findings may translate to other types of informed consents, including those for trials involving treatment of genetic disorders. A computer-based consent may serve to better communicate consistent, clear, accurate, and complete information regarding the risks and benefits of study participation. Additional analysis is necessary to measure the level of comprehension of the check-question answers by larger numbers of participants. The next step will involve contacting participants to measure whether understanding of

  7. Evaluating interactive computer-based scenarios designed for learning medical technology.

    Science.gov (United States)

    Persson, Johanna; Dalholm, Elisabeth Hornyánszky; Wallergård, Mattias; Johansson, Gerd

    2014-11-01

    The use of medical equipment is growing in healthcare, resulting in an increased need for resources to educate users in how to manage the various devices. Learning the practical operation of a device is one thing, but learning how to work with the device in the actual clinical context is more challenging. This paper presents a computer-based simulation prototype for learning medical technology in the context of critical care. Properties from simulation and computer games have been adopted to create a visualization-based, interactive and contextually bound tool for learning. A participatory design process, including three researchers and three practitioners from a clinic for infectious diseases, was adopted to adjust the form and content of the prototype to the needs of the clinical practice and to create a situated learning experience. An evaluation with 18 practitioners showed that practitioners were positive to this type of tool for learning and that it served as a good platform for eliciting and sharing knowledge. Our conclusion is that this type of tools can be a complement to traditional learning resources to situate the learning in a context without requiring advanced technology or being resource-demanding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Evaluation of Computer-Based Procedure System Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Johanna Oxstrand; Katya Le Blanc; Seth Hays

    2012-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE), performed in close collaboration with industry R&D programs, to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The introduction of advanced technology in existing nuclear power plants may help to manage the effects of aging systems, structures, and components. In addition, the incorporation of advanced technology in the existing LWR fleet may entice the future workforce, who will be familiar with advanced technology, to work for these utilities rather than more newly built nuclear power plants. Advantages are being sought by developing and deploying technologies that will increase safety and efficiency. One significant opportunity for existing plants to increase efficiency is to phase out the paper-based procedures (PBPs) currently used at most nuclear power plants and replace them, where feasible, with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information

  9. Design Guidance for Computer-Based Procedures for Field Workers

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Nearly all activities that involve human interaction with nuclear power plant systems are guided by procedures, instructions, or checklists. Paper-based procedures (PBPs) currently used by most utilities have a demonstrated history of ensuring safety; however, improving procedure use could yield significant savings in increased efficiency, as well as improved safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease human error rates, especially human error rates associated with procedure use. As a step toward the goal of improving field workers’ procedure use and adherence and hence improve human performance and overall system reliability, the U.S. Department of Energy Light Water Reactor Sustainability (LWRS) Program researchers, together with the nuclear industry, have been investigating the possibility and feasibility of replacing current paper-based procedures with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing, depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to use of PBPs are management of multiple procedures, place-keeping, finding the correct procedure for a task, and relying

  10. Use of computer-based clinical examination to assess medical students in surgery.

    Science.gov (United States)

    El Shallaly, Gamal E H A; Mekki, Abdelrahman M

    2012-01-01

    To improve the viewing of the video-projected structured clinical examination (ViPSCE), we developed a computerized version; the computer-based clinical examination (CCE). This was used to assess medical students' higher knowledge and problem solving skills in surgery. We present how we did this, test score descriptive statistics, and the students' evaluation of the CCE. A CCE in surgery was administered to assess a class of 43 final year medical students at the end of their surgical clerkship. Like the ViPSCE, the exam was delivered as a slide show, using a PowerPoint computer program. However, instead of projecting it onto a screen, each student used a computer. There were 20 slides containing either still photos or short video clips of clinical situations in surgery. The students answered by hand writing on the exam papers. At the end, they completed evaluation forms. The exam papers were corrected manually. Test score descriptive statistics were calculated and correlated with the students' scores in other exams in surgery. Administration of the CCE was straightforward. The test scores were normally distributed (mean = median = 4.9). They correlated significantly with the total scores obtained by the students in surgery (r = 0.68), and with each of the other exam modalities in surgery, such as the multiple choice and structured essay questions. Acceptability of the CCE to the students was high and they recommended the use of the CCE in other departments. CCE is feasible and popular with students. It inherits the validity and reliability of the ViPSCE with the added advantage of improving the viewing of the slides.

  11. Implementing Computer-Based Procedures: Thinking Outside the Paper Margins

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna; Bly, Aaron

    2017-06-01

    In the past year there has been increased interest from the nuclear industry in adopting the use of electronic work packages and computer-based procedures (CBPs) in the field. The goal is to incorporate the use of technology in order to meet the Nuclear Promise requirements of reducing costs and improve efficiency and decrease human error rates of plant operations. Researchers, together with the nuclear industry, have been investigating the benefits an electronic work package system and specifically CBPs would have over current paper-based procedure practices. There are several classifications of CBPs ranging from a straight copy of the paper-based procedure in PDF format to a more intelligent dynamic CBP. A CBP system offers a vast variety of improvements, such as context driven job aids, integrated human performance tools (e.g., placekeeping and correct component verification), and dynamic step presentation. The latter means that the CBP system could only display relevant steps based on operating mode, plant status, and the task at hand. The improvements can lead to reduction of the worker’s workload and human error by allowing the work to focus on the task at hand more. A team of human factors researchers at the Idaho National Laboratory studied and developed design concepts for CBPs for field workers between 2012 and 2016. The focus of the research was to present information in a procedure in a manner that leveraged the dynamic and computational capabilities of a handheld device allowing the worker to focus more on the task at hand than on the administrative processes currently applied when conducting work in the plant. As a part of the research the team identified type of work, instructions, and scenarios where the transition to a dynamic CBP system might not be as beneficial as it would for other types of work in the plant. In most cases the decision to use a dynamic CBP system and utilize the dynamic capabilities gained will be beneficial to the worker

  12. What Does Research on Computer-Based Instruction Have to Say to the Reading Teacher?

    Science.gov (United States)

    Balajthy, Ernest

    1987-01-01

    Examines questions typically asked about the effectiveness of computer-based reading instruction, suggesting that these questions must be refined to provide meaningful insight into the issues involved. Describes several critical problems with existing research and presents overviews of research on the effects of computer-based instruction on…

  13. English Language Learners' Strategies for Reading Computer-Based Texts at Home and in School

    Science.gov (United States)

    Park, Ho-Ryong; Kim, Deoksoon

    2016-01-01

    This study investigated four elementary-level English language learners' (ELLs') use of strategies for reading computer-based texts at home and in school. The ELLs in this study were in the fourth and fifth grades in a public elementary school. We identify the ELLs' strategies for reading computer-based texts in home and school environments. We…

  14. Computer-Based Molecular Modelling: Finnish School Teachers' Experiences and Views

    Science.gov (United States)

    Aksela, Maija; Lundell, Jan

    2008-01-01

    Modern computer-based molecular modelling opens up new possibilities for chemistry teaching at different levels. This article presents a case study seeking insight into Finnish school teachers' use of computer-based molecular modelling in teaching chemistry, into the different working and teaching methods used, and their opinions about necessary…

  15. Enhancing Lecture Presentations in Introductory Biology with Computer-Based Multimedia.

    Science.gov (United States)

    Fifield, Steve; Peifer, Rick

    1994-01-01

    Uses illustrations and text to discuss convenient ways to organize and present computer-based multimedia to students in lecture classes. Includes the following topics: (1) Effects of illustrations on learning; (2) Using computer-based illustrations in lecture; (3) MacPresents-Multimedia Presentation Software; (4) Advantages of computer-based…

  16. HuRECA: Human Reliability Evaluator for Computer-based Control Room Actions

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Lee, Seung Jun; Jang, Seung Cheol

    2011-01-01

    As computer-based design features such as computer-based procedures (CBP), soft controls (SCs), and integrated information systems are being adopted in main control rooms (MCR) of nuclear power plants, a human reliability analysis (HRA) method capable of dealing with the effects of these design features on human reliability is needed. From the observations of human factors engineering verification and validation experiments, we have drawn some major important characteristics on operator behaviors and design-related influencing factors (DIFs) from the perspective of human reliability. Firstly, there are new DIFs that should be considered in developing an HRA method for computer-based control rooms including especially CBP and SCs. In the case of the computer-based procedure rather than the paper-based procedure, the structural and managerial elements should be considered as important PSFs in addition to the procedural contents. In the case of the soft controllers, the so-called interface management tasks (or secondary tasks) should be reflected in the assessment of human error probability. Secondly, computer-based control rooms can provide more effective error recovery features than conventional control rooms. Major error recovery features for computer-based control rooms include the automatic logic checking function of the computer-based procedure and the information sharing feature of the general computer-based designs

  17. Reciprocal Questioning and Computer-based Instruction in Introductory Auditing: Student Perceptions.

    Science.gov (United States)

    Watters, Mike

    2000-01-01

    An auditing course used reciprocal questioning (Socratic method) and computer-based instruction. Separate evaluations by 67 students revealed a strong aversion to the Socratic method; students expected professors to lecture. They showed a strong preference for the computer-based assignment. (SK)

  18. Providing Feedback on Computer-Based Algebra Homework in Middle-School Classrooms

    Science.gov (United States)

    Fyfe, Emily R.

    2016-01-01

    Homework is transforming at a rapid rate with continuous advances in educational technology. Computer-based homework, in particular, is gaining popularity across a range of schools, with little empirical evidence on how to optimize student learning. The current aim was to test the effects of different types of feedback on computer-based homework.…

  19. A Quantitative Exploration of Preservice Teachers' Intent to Use Computer-based Technology

    Science.gov (United States)

    Kim, Kioh; Jain, Sachin; Westhoff, Guy; Rezabek, Landra

    2008-01-01

    Based on Bandura's (1977) social learning theory, the purpose of this study is to identify the relationship of preservice teachers' perceptions of faculty modeling of computer-based technology and preservice teachers' intent of using computer-based technology in educational settings. There were 92 participants in this study; they were enrolled in…

  20. Assessment of skills using a virtual reality temporal bone surgery simulator.

    Science.gov (United States)

    Linke, R; Leichtle, A; Sheikh, F; Schmidt, C; Frenzel, H; Graefe, H; Wollenberg, B; Meyer, J E

    2013-08-01

    Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear.

  1. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  2. USING COMPUTER-BASED TESTING AS ALTERNATIVE ASSESSMENT METHOD OF STUDENT LEARNING IN DISTANCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Amalia SAPRIATI

    2010-04-01

    Full Text Available This paper addresses the use of computer-based testing in distance education, based on the experience of Universitas Terbuka (UT, Indonesia. Computer-based testing has been developed at UT for reasons of meeting the specific needs of distance students as the following: Ø students’ inability to sit for the scheduled test, Ø conflicting test schedules, and Ø students’ flexibility to take examination to improve their grades. In 2004, UT initiated a pilot project in the development of system and program for computer-based testing method. Then in 2005 and 2006 tryouts in the use of computer-based testing methods were conducted in 7 Regional Offices that were considered as having sufficient supporting recourses. The results of the tryouts revealed that students were enthusiastic in taking computer-based tests and they expected that the test method would be provided by UT as alternative to the traditional paper and pencil test method. UT then implemented computer-based testing method in 6 and 12 Regional Offices in 2007 and 2008 respectively. The computer-based testing was administered in the city of the designated Regional Office and was supervised by the Regional Office staff. The development of the computer-based testing was initiated with conducting tests using computers in networked configuration. The system has been continually improved, and it currently uses devices linked to the internet or the World Wide Web. The construction of the test involves the generation and selection of the test items from the item bank collection of the UT Examination Center. Thus the combination of the selected items compromises the test specification. Currently UT has offered 250 courses involving the use of computer-based testing. Students expect that more courses are offered with computer-based testing in Regional Offices within easy access by students.

  3. Effectiveness Evaluation of Force Protection Training Using Computer-Based Instruction and X3d Simulation

    National Research Council Canada - National Science Library

    Cruzbaez, Wilfredo

    2007-01-01

    Due to growing operational constraints accelerated by the Global War on Terror, the United States Navy is looking for alternative methods of training to maintain its force in a high status of readiness...

  4. An Explanatory Item Response Theory Approach for a Computer-Based Case Simulation Test

    Science.gov (United States)

    Kahraman, Nilüfer

    2014-01-01

    Problem: Practitioners working with multiple-choice tests have long utilized Item Response Theory (IRT) models to evaluate the performance of test items for quality assurance. The use of similar applications for performance tests, however, is often encumbered due to the challenges encountered in working with complicated data sets in which local…

  5. Adaptive Advice in Learning With a Computer-Based Knowledge Management Simulation Game

    NARCIS (Netherlands)

    Leemkuil, Hendrik H.; de Jong, Anthonius J.M.

    2012-01-01

    Despite the long tradition of game-based learning, there are still many unanswered questions regarding the instructional design of educational games. An important issue is the support that learners can be given in a game to enhance their learning. One recommended type of support is “advice,” which

  6. Virtual reality in surgical education.

    Science.gov (United States)

    Ota, D; Loftin, B; Saito, T; Lea, R; Keller, J

    1995-03-01

    Virtual reality (VR) is an emerging technology that can teach surgeons new procedures and can determine their level of competence before they operate on patients. Also VR allows the trainee to return to the same procedure or task several times later as a refresher course. Laparoscopic surgery is a new operative technique which requires the surgeon to observe the operation on a video-monitor and requires the acquisition of new skills. VR simulation could duplicate the operative field and thereby enhance training and reduce the need for expensive animal training models. Our preliminary experience has shown that we have the technology to model tissues and laparoscopic instruments and to develop in real time a VR learning environment for surgeons. Another basic need is to measure competence. Surgical training is an apprenticeship requiring close supervision and 5-7 years of training. Technical competence is judged by the mentor and has always been subjective. If VR surgical simulators are to play an important role in the future, quantitative measurement of competence would have to be part of the system. Because surgical competence is "vague" and is characterized by such terms as "too long, too short" or "too close, too far," it is possible that the principles of fuzzy logic could be used to measure competence in a VR surgical simulator. Because a surgical procedure consists of a series of tasks and each task is a series of steps, we will plan to create two important tasks in a VR simulator and validate their use. These tasks consist of laparoscopic knot tying and laparoscopic suturing. Our hypothesis is that VR in combination with fuzzy logic can educate surgeons and determine when they are competent to perform these procedures on patients.

  7. Validating the Accuracy of Reaction Time Assessment on Computer-Based Tablet Devices.

    Science.gov (United States)

    Schatz, Philip; Ybarra, Vincent; Leitner, Donald

    2015-08-01

    Computer-based assessment has evolved to tablet-based devices. Despite the availability of tablets and "apps," there is limited research validating their use. We documented timing delays between stimulus presentation and (simulated) touch response on iOS devices (3rd- and 4th-generation Apple iPads) and Android devices (Kindle Fire, Google Nexus, Samsung Galaxy) at response intervals of 100, 250, 500, and 1,000 milliseconds (ms). Results showed significantly greater timing error on Google Nexus and Samsung tablets (81-97 ms), than Kindle Fire and Apple iPads (27-33 ms). Within Apple devices, iOS 7 obtained significantly lower timing error than iOS 6. Simple reaction time (RT) trials (250 ms) on tablet devices represent 12% to 40% error (30-100 ms), depending on the device, which decreases considerably for choice RT trials (3-5% error at 1,000 ms). Results raise implications for using the same device for serial clinical assessment of RT using tablets, as well as the need for calibration of software and hardware. © The Author(s) 2015.

  8. DOE contractor radiation safety CBT [computer based training] course

    International Nuclear Information System (INIS)

    Gardner, P.R.

    1986-01-01

    Westinghouse Hanford Company developed a generic Radiation Worker safety CBT course for Department of Energy contractors. Task analysis concentrated on actual and potential tasks and included visits to fourteen different contractor sites. Team Design and Prototype verification formed the major portion of the development phase. Lesson entry was accomplished using the WISE author system from WICAT Systems, Inc. The course features graded task simulations for both Pretest and Final; fourteen Topics in five Lessons, each Topic keyed to ''Critical Acts'' and Questions in the Pretest and Final; Automatic, Intensive, and Manual modes of instruction available for each Lesson; Practical Problems and Sample Questions associated with each Topic; and provisions for local configuration in several areas. The course is deliverable on IBM PC compatible equipment. 2 refs

  9. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars

    2016-01-01

    Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training...

  10. Cloud computing-based energy optimization control framework for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Liang; You, Sixiong; Yan, Bingjie; Du, Xian

    2017-01-01

    Considering the complicated characteristics of traffic flow in city bus route and the nonlinear vehicle dynamics, optimal energy management integrated with clustering and recognition of driving conditions in plug-in hybrid electric bus is still a challenging problem. Motivated by this issue, this paper presents an innovative energy optimization control framework based on the cloud computing for plug-in hybrid electric bus. This framework, which includes offline part and online part, can realize the driving conditions clustering in offline part, and the energy management in online part. In offline part, utilizing the operating data transferred from a bus to the remote monitoring center, K-means algorithm is adopted to cluster the driving conditions, and then Markov probability transfer matrixes are generated to predict the possible operating demand of the bus driver. Next in online part, the current driving condition is real-time identified by a well-trained support vector machine, and Markov chains-based driving behaviors are accordingly selected. With the stochastic inputs, stochastic receding horizon control method is adopted to obtain the optimized energy management of hybrid powertrain. Simulations and hardware-in-loop test are carried out with the real-world city bus route, and the results show that the presented strategy could greatly improve the vehicle fuel economy, and as the traffic flow data feedback increases, the fuel consumption of every plug-in hybrid electric bus running in a specific bus route tends to be a stable minimum. - Highlights: • Cloud computing-based energy optimization control framework is proposed. • Driving cycles are clustered into 6 types by K-means algorithm. • Support vector machine is employed to realize the online recognition of driving condition. • Stochastic receding horizon control-based energy management strategy is designed for plug-in hybrid electric bus. • The proposed framework is verified by simulation and hard

  11. Micro-surgical endodontics.

    Science.gov (United States)

    Eliyas, S; Vere, J; Ali, Z; Harris, I

    2014-02-01

    Non-surgical endodontic retreatment is the treatment of choice for endodontically treated teeth with recurrent or residual disease in the majority of cases. In some cases, surgical endodontic treatment is indicated. Successful micro-surgical endodontic treatment depends on the accuracy of diagnosis, appropriate case selection, the quality of the surgical skills, and the application of the most appropriate haemostatic agents and biomaterials. This article describes the armamentarium and technical procedures involved in performing micro-surgical endodontics to a high standard.

  12. Computer based core monitoring system for an operating CANDU reactor

    International Nuclear Information System (INIS)

    Yoon, Moon Young; Kwon, O Hwan; Kim, Kyung Hwa; Yeom, Choong Sub

    2004-01-01

    The research was performed to develop a CANDU-6 Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong nuclear power plant unit 1. The CCMS uses Reactor Fueling Simulation Program(RFSP, developed by AECL) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from Digital Control Computer(DCC) for the purpose of producing basic input data. The CCMS has two modules; CCMS server program and CCMS client program. The CCMS server program performs automatic and continuous core calculation and manages overall output controlled by DataBase Management System. The CCMS client program enables users to monitor current and past core status in the predefined GUI(Graphic-User Interface) environment. For the purpose of verifying the effectiveness of CCMS, we compared field-test data with the data used for Wolsong unit 1 operation. In the verification the mean percent differences of both cases were the same(0.008%), which showed that the CCMS could monitor core behaviors well

  13. Situation awareness and trust in computer-based procedures in nuclear power plant operations

    Energy Technology Data Exchange (ETDEWEB)

    Throneburg, E. B.; Jones, J. M. [AREVA NP Inc., 7207 IBM Drive, Charlotte, NC 28262 (United States)

    2006-07-01

    Situation awareness and trust are two issues that need to be addressed in the design of computer-based procedures for nuclear power plants. Situation awareness, in relation to computer-based procedures, concerns the operators' knowledge of the plant's state while following the procedures. Trust concerns the amount of faith that the operators put into the automated procedures, which can affect situation awareness. This paper first discusses the advantages and disadvantages of computer-based procedures. It then discusses the known aspects of situation awareness and trust as applied to computer-based procedures in nuclear power plants. An outline of a proposed experiment is then presented that includes methods of measuring situation awareness and trust so that these aspects can be analyzed for further study. (authors)

  14. Investigating a New Way To Teach Law: A Computer-based Commercial Law Course.

    Science.gov (United States)

    Lloyd, Robert M.

    2000-01-01

    Describes the successful use of an interactive, computer-based format supplemented by online chats to provide a two-credit-hour commercial law course at the University of Tennessee College of Law. (EV)

  15. Formative Evaluation of the Tactical Patrol Craft Trainer: A Computer-Based Training Evaluation

    National Research Council Canada - National Science Library

    Jacobs, Dean

    1997-01-01

    ...) during the implementation stage. The TPCT is an interactive multi-media computer based trainer designed to deliver a full fidelity and analog video training scenario to Prospective Commanding Officers (PCOs...

  16. Computer-Based Job and Occupational Data Collection Methods: Feasibility Study

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    1998-01-01

    .... The feasibility study was conducted to assess the operational and logistical problems involved with the development, implementation, and evaluation of computer-based job and occupational data collection methods...

  17. Preliminary Evaluation of the Computer-Based Tactics Certification Course--Principles of War Module

    National Research Council Canada - National Science Library

    Pleban, Robert

    1997-01-01

    This report describes a portion of the U.S. Army Research Institute for the Behavioral and Social Sciences Infantry Forces Research Unit's work in the formative evaluation of the computer based Tactics Certification Course (TCC...

  18. Situation awareness and trust in computer-based procedures in nuclear power plant operations

    International Nuclear Information System (INIS)

    Throneburg, E. B.; Jones, J. M.

    2006-01-01

    Situation awareness and trust are two issues that need to be addressed in the design of computer-based procedures for nuclear power plants. Situation awareness, in relation to computer-based procedures, concerns the operators' knowledge of the plant's state while following the procedures. Trust concerns the amount of faith that the operators put into the automated procedures, which can affect situation awareness. This paper first discusses the advantages and disadvantages of computer-based procedures. It then discusses the known aspects of situation awareness and trust as applied to computer-based procedures in nuclear power plants. An outline of a proposed experiment is then presented that includes methods of measuring situation awareness and trust so that these aspects can be analyzed for further study. (authors)

  19. Un Cours de composition francaise par ordinateur (A Computer-Based Course in French Composition).

    Science.gov (United States)

    Landes, Anne; Kaplan, Alice

    1988-01-01

    The origins, organization, and methods of a Columbia University course offering computer-based instruction in French composition are outlined, and the progress of four individual students is described. (MSE)

  20. Computer-Based Methods for Collecting Peer Nomination Data: Utility, Practice, and Empirical Support.

    Science.gov (United States)

    van den Berg, Yvonne H M; Gommans, Rob

    2017-09-01

    New technologies have led to several major advances in psychological research over the past few decades. Peer nomination research is no exception. Thanks to these technological innovations, computerized data collection is becoming more common in peer nomination research. However, computer-based assessment is more than simply programming the questionnaire and asking respondents to fill it in on computers. In this chapter the advantages and challenges of computer-based assessments are discussed. In addition, a list of practical recommendations and considerations is provided to inform researchers on how computer-based methods can be applied to their own research. Although the focus is on the collection of peer nomination data in particular, many of the requirements, considerations, and implications are also relevant for those who consider the use of other sociometric assessment methods (e.g., paired comparisons, peer ratings, peer rankings) or computer-based assessments in general. © 2017 Wiley Periodicals, Inc.

  1. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation

    Science.gov (United States)

    Lonic, Daniel; Pai, Betty Chien-Jung; Yamaguchi, Kazuaki; Chortrakarnkij, Peerasak; Lin, Hsiu-Hsia; Lo, Lun-Jou

    2016-01-01

    Background Although conventional two-dimensional (2D) methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D) simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method. Patients and Methods This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years). All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment. Results 83.3% of 2D plans were modified, mostly concerning yaw (63.3%) and midline (36.7%) adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation. Conclusion Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is

  2. Computer-Assisted Orthognathic Surgery for Patients with Cleft Lip/Palate: From Traditional Planning to Three-Dimensional Surgical Simulation.

    Directory of Open Access Journals (Sweden)

    Daniel Lonic

    Full Text Available Although conventional two-dimensional (2D methods for orthognathic surgery planning are still popular, the use of three-dimensional (3D simulation is steadily increasing. In facial asymmetry cases such as in cleft lip/palate patients, the additional information can dramatically improve planning accuracy and outcome. The purpose of this study is to investigate which parameters are changed most frequently in transferring a traditional 2D plan to 3D simulation, and what planning parameters can be better adjusted by this method.This prospective study enrolled 30 consecutive patients with cleft lip and/or cleft palate (mean age 18.6±2.9 years, range 15 to 32 years. All patients received two-jaw single-splint orthognathic surgery. 2D orthodontic surgery plans were transferred into a 3D setting. Severe bony collisions in the ramus area after 2D plan transfer were noted. The position of the maxillo-mandibular complex was evaluated and eventually adjusted. Position changes of roll, midline, pitch, yaw, genioplasty and their frequency within the patient group were recorded as an alternation of the initial 2D plan. Patients were divided in groups of no change from the original 2D plan and changes in one, two, three and four of the aforementioned parameters as well as subgroups of unilateral, bilateral cleft lip/palate and isolated cleft palate cases. Postoperative OQLQ scores were obtained for 20 patients who finished orthodontic treatment.83.3% of 2D plans were modified, mostly concerning yaw (63.3% and midline (36.7% adjustments. Yaw adjustments had the highest mean values in total and in all subgroups. Severe bony collisions as a result of 2D planning were seen in 46.7% of patients. Possible asymmetry was regularly foreseen and corrected in the 3D simulation.Based on our findings, 3D simulation renders important information for accurate planning in complex cleft lip/palate cases involving facial asymmetry that is regularly missed in conventional 2D

  3. Concept of development of integrated computer - based control system for 'Ukryttia' object

    International Nuclear Information System (INIS)

    Buyal'skij, V.M.; Maslov, V.P.

    2003-01-01

    The structural concept of Chernobyl NPP 'Ukryttia' Object's integrated computer - based control system development is presented on the basis of general concept of integrated Computer - based Control System (CCS) design process for organizing and technical management subjects.The concept is aimed at state-of-the-art architectural design technique application and allows using modern computer-aided facilities for functional model,information (logical and physical) models development,as well as for system object model under design

  4. Problems and Issues in Using Computer- Based Support Tools to Enhance 'Soft' Systems Methodologies

    Directory of Open Access Journals (Sweden)

    Mark Stansfield

    2001-11-01

    Full Text Available This paper explores the issue of whether computer-based support tools can enhance the use of 'soft' systems methodologies as applied to real-world problem situations. Although work has been carried out by a number of researchers in applying computer-based technology to concepts and methodologies relating to 'soft' systems thinking such as Soft Systems Methodology (SSM, such attempts appear to be still in their infancy and have not been applied widely to real-world problem situations. This paper will highlight some of the problems that may be encountered in attempting to develop computer-based support tools for 'soft' systems methodologies. Particular attention will be paid to an attempt by the author to develop a computer-based support tool for a particular 'soft' systems method of inquiry known as the Appreciative Inquiry Method that is based upon Vickers' notion of 'appreciation' (Vickers, 196S and Checkland's SSM (Checkland, 1981. The final part of the paper will explore some of the lessons learnt from developing and applying the computer-based support tool to a real world problem situation, as well as considering the feasibility of developing computer-based support tools for 'soft' systems methodologies. This paper will put forward the point that a mixture of manual and computer-based tools should be employed to allow a methodology to be used in an unconstrained manner, but the benefits provided by computer-based technology should be utilised in supporting and enhancing the more mundane and structured tasks.

  5. Towards Safe Robotic Surgical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    a controller for motion compensation in beating-heart surgery, and prove that it is safe, i.e., the surgical tool is kept within an allowable distance and orientation of the heart. We solve the problem by simultaneously finding a control law and a barrier function. The motion compensation system is simulated...... from several initial conditions to demonstrate that the designed control system is safe for every admissible initial condition....

  6. Comparison of minimally invasive surgical skills of neurosurgeons versus general surgeons: is there a difference in the first exposure to a virtual reality simulator?

    Science.gov (United States)

    Hassan, I; Bin Dayne, K; Kappus, C; Gerdes, B; Rothmund, M; Hellwig, D

    2007-04-01

    The increasing use of minimally invasive surgery, which has a longer learning curve compared to open surgery lets the necessity to develop training programs to improve endoscopic skills of trainees become ever clearer. The aim of this study was to compare the endoscopic skills of neurosurgeons versus general surgeons at first exposure to a virtual reality simulator. 72 general surgeons who visited the 122nd Conference of the German Surgeons Society (DGCH in Munich 2005) and 35 neuroendoscopic surgeons, who visited the Third World Conference of the International Study Group of Neuroendoscopy (ISGNE in Marburg 2005) participated in this study. Each participant performed the basic module "clip application" on the virtual reality simulator (LapSim). All participants were given the same pretest instructions. Time to complete the task, error score and economy of motion were recorded. The general surgeons performed the clip application faster, but with more errors than neuroendoscopic surgeons. However, the difference of both parameters was not significant. Both surgeon groups have a similar score for economy of motion. Although neuroendoscopic surgeons were exposed to a foreign procedure and unfamiliar equipment, they were able to perform virtual endoscopy with similar accuracy as general surgeons, who are adapted to these endoscopic instruments and procedures and do these daily.

  7. IMASIS computer-based medical record project: dealing with the human factor.

    Science.gov (United States)

    Martín-Baranera, M; Planas, I; Palau, J; Sanz, F

    1995-01-01

    level, problems to be solved in utilization of the system, errors detected in the systems' database, and the personal interest in participating in the IMASIS project. The questionnaire was also intended to be a tool to monitor IMASIS evolution. Our study showed that medical staff had a lack of information about the current HIS, leading to a poor utilization of some system options. Another major characteristic, related to the above, was the feeling that the project would negatively affect the organization of work at the hospitals. A computer-based medical record was feared to degrade physician-patient relationship, introduce supplementary administrative burden in clinicians day-to-day work, unnecessarily slow history taking, and imply too-rigid patterns of work. The most frequent problems in using the current system could be classified into two groups: problems related to lack of agility and consistency in user interface design, and those derived from lack of a common patient identification number. Duplication of medical records was the most frequent error detected by physicians. Analysis of physicians' attitudes towards IMASIS revealed a lack of confidence globally. This was probably the consequence of two current features: a lack of complete information about IMASIS possibilities and problems faced when using the system. To deal with such factors, three types of measures have been planned. First, an effort is to be done to ensure that every physician is able to adequately use the current system and understands long-term benefits of the project. This task will be better accomplished by personal interaction between clinicians and a physician from the Informatics Department than through formal teaching of IMASIS. Secondly, a protocol for evaluating the HIS is being developed and will be systematically applied to detect both database errors and systemUs design pitfalls. Finally, the IMASIS project has to find a convenient point for starting, to offer short-term re

  8. Construct and face validity of the educational computer-based environment (ECE) assessment scenarios for basic endoneurosurgery skills.

    Science.gov (United States)

    Cagiltay, Nergiz Ercil; Ozcelik, Erol; Sengul, Gokhan; Berker, Mustafa

    2017-11-01

    In neurosurgery education, there is a paradigm shift from time-based training to criterion-based model for which competency and assessment becomes very critical. Even virtual reality simulators provide alternatives to improve education and assessment in neurosurgery programs and allow for several objective assessment measures, there are not many tools for assessing the overall performance of trainees. This study aims to develop and validate a tool for assessing the overall performance of participants in a simulation-based endoneurosurgery training environment. A training program was developed in two levels: endoscopy practice and beginning surgical practice based on four scenarios. Then, three experiments were conducted with three corresponding groups of participants (Experiment 1, 45 (32 beginners, 13 experienced), Experiment 2, 53 (40 beginners, 13 experienced), and Experiment 3, 26 (14 novices, 12 intermediate) participants). The results analyzed to understand the common factors among the performance measurements of these experiments. Then, a factor capable of assessing the overall skill levels of surgical residents was extracted. Afterwards, the proposed measure was tested to estimate the experience levels of the participants. Finally, the level of realism of these educational scenarios was assessed. The factor formed by time, distance, and accuracy on simulated tasks provided an overall performance indicator. The prediction correctness was very high for the beginners than the one for experienced surgeons in Experiments 1 and 2. When non-dominant hand is used in a surgical procedure-based scenario, skill levels of surgeons can be better predicted. The results indicate that the scenarios in Experiments 1 and 2 can be used as an assessment tool for the beginners, and scenario-2 in Experiment 3 can be used as an assessment tool for intermediate and novice levels. It can be concluded that forming the balance between perceived action capacities and skills is

  9. American Pediatric Surgical Association

    Science.gov (United States)

    American Pediatric Surgical Association Search for: Login Resources + For Members For Professionals For Training Program Directors For Media For ... Surgical Outcomes Surveys & Results Publications Continuing Education + ExPERT Pediatric Surgery NaT Annual Meeting CME MOC Requirements Residents / ...

  10. Abortion - surgical - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000658.htm Abortion - surgical - aftercare To use the sharing features on ... please enable JavaScript. You have had a surgical abortion. This is a procedure that ends pregnancy by ...

  11. Urogynecologic Surgical Mesh Implants

    Science.gov (United States)

    ... procedures performed to treat pelvic floor disorders with surgical mesh: Transvaginal mesh to treat POP Transabdominal mesh to treat ... address safety risks Final Order for Reclassification of Surgical Mesh for Transvaginal Pelvic Organ Prolapse Repair Final Order for Effective ...

  12. Assessing the performance of a computer-based policy model of HIV and AIDS.

    Science.gov (United States)

    Rydzak, Chara E; Cotich, Kara L; Sax, Paul E; Hsu, Heather E; Wang, Bingxia; Losina, Elena; Freedberg, Kenneth A; Weinstein, Milton C; Goldie, Sue J

    2010-09-09

    Model-based analyses, conducted within a decision analytic framework, provide a systematic way to combine information about the natural history of disease and effectiveness of clinical management strategies with demographic and epidemiological characteristics of the population. Among the challenges with disease-specific modeling include the need to identify influential assumptions and to assess the face validity and internal consistency of the model. We describe a series of exercises involved in adapting a computer-based simulation model of HIV disease to the Women's Interagency HIV Study (WIHS) cohort and assess model performance as we re-parameterized the model to address policy questions in the U.S. relevant to HIV-infected women using data from the WIHS. Empiric calibration targets included 24-month survival curves stratified by treatment status and CD4 cell count. The most influential assumptions in untreated women included chronic HIV-associated mortality following an opportunistic infection, and in treated women, the 'clinical effectiveness' of HAART and the ability of HAART to prevent HIV complications independent of virologic suppression. Good-fitting parameter sets required reductions in the clinical effectiveness of 1st and 2nd line HAART and improvements in 3rd and 4th line regimens. Projected rates of treatment regimen switching using the calibrated cohort-specific model closely approximated independent analyses published using data from the WIHS. The model demonstrated good internal consistency and face validity, and supported cohort heterogeneities that have been reported in the literature. Iterative assessment of model performance can provide information about the relative influence of uncertain assumptions and provide insight into heterogeneities within and between cohorts. Description of calibration exercises can enhance the transparency of disease-specific models.

  13. Assessing the performance of a computer-based policy model of HIV and AIDS.

    Directory of Open Access Journals (Sweden)

    Chara E Rydzak

    2010-09-01

    Full Text Available Model-based analyses, conducted within a decision analytic framework, provide a systematic way to combine information about the natural history of disease and effectiveness of clinical management strategies with demographic and epidemiological characteristics of the population. Among the challenges with disease-specific modeling include the need to identify influential assumptions and to assess the face validity and internal consistency of the model.We describe a series of exercises involved in adapting a computer-based simulation model of HIV disease to the Women's Interagency HIV Study (WIHS cohort and assess model performance as we re-parameterized the model to address policy questions in the U.S. relevant to HIV-infected women using data from the WIHS. Empiric calibration targets included 24-month survival curves stratified by treatment status and CD4 cell count. The most influential assumptions in untreated women included chronic HIV-associated mortality following an opportunistic infection, and in treated women, the 'clinical effectiveness' of HAART and the ability of HAART to prevent HIV complications independent of virologic suppression. Good-fitting parameter sets required reductions in the clinical effectiveness of 1st and 2nd line HAART and improvements in 3rd and 4th line regimens. Projected rates of treatment regimen switching using the calibrated cohort-specific model closely approximated independent analyses published using data from the WIHS.The model demonstrated good internal consistency and face validity, and supported cohort heterogeneities that have been reported in the literature. Iterative assessment of model performance can provide information about the relative influence of uncertain assumptions and provide insight into heterogeneities within and between cohorts. Description of calibration exercises can enhance the transparency of disease-specific models.

  14. Dealing with media distractions: An observational study of computer-based multitasking among children and adults in the Netherlands

    NARCIS (Netherlands)

    Baumgartner, S.E.; Sumter, S.R.

    2017-01-01

    The aim of this observational study was to investigate differences in computer-based multitasking among children and adults. Moreover, the study investigated how attention problems are related to computer-based multitasking and how these individual differences interact with age. Computer-based

  15. Evaluation of E-Rat, a Computer-based Rat Dissection in Terms of Student Learning Outcomes.

    Science.gov (United States)

    Predavec, Martin

    2001-01-01

    Presents a study that used computer-based rat anatomy to compare student learning outcomes from computer-based instruction with a conventional dissection. Indicates that there was a significant relationship between the time spent on both classes and the marks gained. Shows that computer-based instruction can be a viable alternative to the use of…

  16. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads.

    Science.gov (United States)

    Lee, Gyusung I; Lee, Mija R

    2018-01-01

    While it is often claimed that virtual reality (VR) training system can offer self-directed and mentor-free skill learning using the system's performance metrics (PM), no studies have yet provided evidence-based confirmation. This experimental study investigated what extent to which trainees achieved their self-learning with a current VR simulator and whether additional mentoring improved skill learning, skill transfer and cognitive workloads in robotic surgery simulation training. Thirty-two surgical trainees were randomly assigned to either the Control-Group (CG) or Experiment-Group (EG). While the CG participants reviewed the PM at their discretion, the EG participants had explanations about PM and instructions on how to improve scores. Each subject completed a 5-week training using four simulation tasks. Pre- and post-training data were collected using both a simulator and robot. Peri-training data were collected after each session. Skill learning, time spent on PM (TPM), and cognitive workloads were compared between groups. After the simulation training, CG showed substantially lower simulation task scores (82.9 ± 6.0) compared with EG (93.2 ± 4.8). Both groups demonstrated improved physical model tasks performance with the actual robot, but the EG had a greater improvement in two tasks. The EG exhibited lower global mental workload/distress, higher engagement, and a better understanding regarding using PM to improve performance. The EG's TPM was initially long but substantially shortened as the group became familiar with PM. Our study demonstrated that the current VR simulator offered limited self-skill learning and additional mentoring still played an important role in improving the robotic surgery simulation training.

  17. Simulation Applications in Educational Leadership.

    Science.gov (United States)

    Bozeman, William; Wright, Robert H.

    1995-01-01

    Explores the use of computer-based simulations using multimedia materials for a graduate course in school administration. Highlights include simulation applications in military and in business; educational simulations; the use of computers and other technology; production requirements and costs; and time required. (LRW)

  18. A multilevel modeling approach to examining individual differences in skill acquisition for a computer-based task.

    Science.gov (United States)

    Nair, Sankaran N; Czaja, Sara J; Sharit, Joseph

    2007-06-01

    This article explores the role of age, cognitive abilities, prior experience, and knowledge in skill acquisition for a computer-based simulated customer service task. Fifty-two participants aged 50-80 performed the task over 4 consecutive days following training. They also completed a battery that assessed prior computer experience and cognitive abilities. The data indicated that overall quality and efficiency of performance improved with practice. The predictors of initial level of performance and rate of change in performance varied according to the performance parameter assessed. Age and fluid intelligence predicted initial level and rate of improvement in overall quality, whereas crystallized intelligence and age predicted initial e-mail processing time, and crystallized intelligence predicted rate of change in e-mail processing time over days. We discuss the implications of these findings for the design of intervention strategies.

  19. Repeated use of computerized case simulations in a test format does not present a security risk.

    Science.gov (United States)

    Lynch, T G; Zadalis, R J; Schneider, P D

    1999-03-01

    Computer-based examination formats permit evaluation of patient care strategies in a realistic context. Because such examinations are complex and difficult to develop, the same case simulations must often be used on multiple occasions. To determine if repeated, serial administration of computerized case simulations influences performance, 8 simulations were administered over 2 consecutive years to 252 third-year medical students at the conclusion of 16 surgical clerkship rotations (8 per year). One-way analyses of variance were used to compare scores across rotations during the year and to compare scores between 2 consecutive academic years. Scheffe pairwise comparisons were used to identify trends within each academic year. The data demonstrate an increase in scores across rotations during the year. There is, however, no difference between scores in successive years. The data are consistent with an increase in knowledge during the course of the year, without evidence that test information transfer influences the performance of successive classes.

  20. A Review of Endoscopic Simulation: Current Evidence on Simulators and Curricula.

    Science.gov (United States)

    King, Neil; Kunac, Anastasia; Merchant, Aziz M

    2016-01-01

    Upper and lower endoscopy is an important tool that is being utilized more frequently by general surgeons. Training in therapeutic endoscopic techniques has become a mandatory requirement for general surgery residency programs in the United States. The Fundamentals of Endoscopic Surgery has been developed to train and assess competency in these advanced techniques. Simulation has been shown to increase the skill and learning curve of trainees in other surgical disciplines. Several types of endoscopy simulators are commercially available; mechanical trainers, animal based, and virtual reality or computer-based simulators all have their benefits and limitations. However they have all been shown to improve trainee's endoscopic skills. Endoscopic simulators will play a critical role as part of a comprehensive curriculum designed to train the next generation of surgeons. We reviewed recent literature related to the various types of endoscopic simulators and their use in an educational curriculum, and discuss the relevant findings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. MODELADO, SIMULACIÓN Y CONTROL DEL ROBOT PARA CIRUGÍA LAPAROSCÓPICA 'LAPBOT' MODELING, SIMULATION AND CONTROL OF SURGICAL LAPAROSCOPIC ROBOT 'LAPBOT'

    Directory of Open Access Journals (Sweden)

    Sergio Alexander Salinas

    2009-12-01

    Full Text Available Este artículo presenta el modelado matemático y estructural, la simulación por computador y el control por par calculado del robot para cirugía laparoscópica ‘LapBot’, que ha sido desarrollado en el Grupo de Investigación de Automática Industrial de la Universidad del Cauca, Colombia. Inicialmente se muestra un resumen de los principales robots utilizados como asistentes para cirugías de laparoscopia en el mundo, y de cómo tratan ellos el problema del paso por la incisión practicada en la cavidad abdominal. Con base en lo anterior se describen los requerimientos que deben cumplir los robots de este tipo y a partir de éstos se diseña el robot LapBot. Se muestra el modelo cinemático y dinámico del robot LapBot, así como el modelo de la restricción espacial que representa el punto de incisión abdominal. Se implementa una estrategia de control basada en el modelo del robot (control por par calculado. Diversas trayectorias en un plano y en un espacio de tres dimensiones son utilizadas para validar tanto el modelo como el controlador.This paper presents the mathematical and structural model, simulation and computed torque control of the LapBot robot, developed by the Group of Investigation of Industrial Automatics, of the University of Cauca, Colombia. First, a summary of the principal surgery assistant robots of the world is presented, and how they solve the problem of passing through the incision into the abdominal cavity. Based on this, the conditions that must be fulfilled by the robots of this type is exposed, and from these conditions the LapBot robot is designed. Its kinematics and dynamics model is shown, as well as the mathematical spatial restriction that incision represents. A control strategy based on the model (computed torque control is implemented. Several trajectories defined in a plane and in a three dimensions space are used to validate the model and the control.

  2. Report of the 2. research co-ordination meeting of the co-ordinated research programme on the development of computer-based troubleshooting tools and instruments

    International Nuclear Information System (INIS)

    1998-11-01

    The Research coordination meeting reviewed current results on the Development of Computer-Based Troubleshooting Tools and Instruments. Presentations at the meeting were made by the participants, and the project summary reports include: PC based software for troubleshooting microprocessor-based instruments; technical data base software; design and construction of a random pulser for maintenance and quality control of a nuclear counting system; microprocessor-based power conditioner; in-circuit emulator for microprocessor-based nuclear instruments; PC-based analog signal generator for simulated detector signals and arbitrary test waveforms for testing of nuclear instruments; expert system for nuclear instrument troubleshooting; development and application of versatile computer-based measurement and diagnostic tools; and development of a programmable signal generator for troubleshooting of nuclear instrumentation

  3. Applications of computer based safety systems in Korea nuclear power plants

    International Nuclear Information System (INIS)

    Won Young Yun

    1998-01-01

    With the progress of computer technology, the applications of computer based safety systems in Korea nuclear power plants have increased rapidly in recent decades. The main purpose of this movement is to take advantage of modern computer technology so as to improve the operability and maintainability of the plants. However, in fact there have been a lot of controversies on computer based systems' safety between the regulatory body and nuclear utility in Korea. The Korea Institute of Nuclear Safety (KINS), technical support organization for nuclear plant licensing, is currently confronted with the pressure to set up well defined domestic regulatory requirements from this aspect. This paper presents the current status and the regulatory activities related to the applications of computer based safety systems in Korea. (author)

  4. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  5. Teaching advance care planning to medical students with a computer-based decision aid.

    Science.gov (United States)

    Green, Michael J; Levi, Benjamin H

    2011-03-01

    Discussing end-of-life decisions with cancer patients is a crucial skill for physicians. This article reports findings from a pilot study evaluating the effectiveness of a computer-based decision aid for teaching medical students about advance care planning. Second-year medical students at a single medical school were randomized to use a standard advance directive or a computer-based decision aid to help patients with advance care planning. Students' knowledge, skills, and satisfaction were measured by self-report; their performance was rated by patients. 121/133 (91%) of students participated. The Decision-Aid Group (n = 60) outperformed the Standard Group (n = 61) in terms of students' knowledge (p satisfaction with their learning experience (p student performance. Use of a computer-based decision aid may be an effective way to teach medical students how to discuss advance care planning with cancer patients.

  6. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  7. Computer-based programs on acquisition of reading skills in schoolchildren (review of contemporary foreign investigations

    Directory of Open Access Journals (Sweden)

    Prikhoda N.A.

    2015-03-01

    Full Text Available The article presents a description of 17 computer-based programs, which were used over the last 5 years (2008—2013 in 15 studies of computer-assisted reading instruction and intervention of schoolchildren. The article includes a description of specificity of various terms used in the above-mentioned studies and the contents of training sessions. The article also carries out a brief analysis of main characteristics of computer-based techniques — language of instruction, age and basic characteristics of students, duration and frequency of training sessions, dependent variables of education. Special attention is paid to efficiency of acquisition of different reading skills through computer-based programs in comparison to traditional school instruction.

  8. Software for computer based systems important to safety in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Computer based systems are of increasing importance to safety in nuclear power plants as their use in both new and older plants is rapidly increasing. They are used both in safety related applications, such as some functions of the process control and monitoring systems, as well as in safety critical applications, such as reactor protection or actuation of safety features. The dependability of computer based systems important to safety is therefore of prime interest and should be ensured. With current technology, it is possible in principle to develop computer based instrumentation and control systems for systems important to safety that have the potential for improving the level of safety and reliability with sufficient dependability. However, their dependability can be predicted and demonstrated only if a systematic, fully documented and reviewable engineering process is followed. Although a number of national and international standards dealing with quality assurance for computer based systems important to safety have been or are being prepared, internationally agreed criteria for demonstrating the safety of such systems are not generally available. It is recognized that there may be other ways of providing the necessary safety demonstration than those recommended here. The basic requirements for the design of safety systems for nuclear power plants are provided in the Requirements for Design issued in the IAEA Safety Standards Series.The IAEA has issued a Technical Report to assist Member States in ensuring that computer based systems important to safety in nuclear power plants are safe and properly licensed. The report provides information on current software engineering practices and, together with relevant standards, forms a technical basis for this Safety Guide. The objective of this Safety Guide is to provide guidance on the collection of evidence and preparation of documentation to be used in the safety demonstration for the software for computer based

  9. Screening for cognitive impairment in older individuals. Validation study of a computer-based test.

    Science.gov (United States)

    Green, R C; Green, J; Harrison, J M; Kutner, M H

    1994-08-01

    This study examined the validity of a computer-based cognitive test that was recently designed to screen the elderly for cognitive impairment. Criterion-related validity was examined by comparing test scores of impaired patients and normal control subjects. Construct-related validity was computed through correlations between computer-based subtests and related conventional neuropsychological subtests. University center for memory disorders. Fifty-two patients with mild cognitive impairment by strict clinical criteria and 50 unimpaired, age- and education-matched control subjects. Control subjects were rigorously screened by neurological, neuropsychological, imaging, and electrophysiological criteria to identify and exclude individuals with occult abnormalities. Using a cut-off total score of 126, this computer-based instrument had a sensitivity of 0.83 and a specificity of 0.96. Using a prevalence estimate of 10%, predictive values, positive and negative, were 0.70 and 0.96, respectively. Computer-based subtests correlated significantly with conventional neuropsychological tests measuring similar cognitive domains. Thirteen (17.8%) of 73 volunteers with normal medical histories were excluded from the control group, with unsuspected abnormalities on standard neuropsychological tests, electroencephalograms, or magnetic resonance imaging scans. Computer-based testing is a valid screening methodology for the detection of mild cognitive impairment in the elderly, although this particular test has important limitations. Broader applications of computer-based testing will require extensive population-based validation. Future studies should recognize that normal control subjects without a history of disease who are typically used in validation studies may have a high incidence of unsuspected abnormalities on neurodiagnostic studies.

  10. Attempted establishment of proficiency levels for laparoscopic performance on a national scale using simulation: the results from the 2004 SAGES Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) learning center study.

    Science.gov (United States)

    Van Sickle, K R; Ritter, E M; McClusky, D A; Lederman, A; Baghai, M; Gallagher, A G; Smith, C D

    2007-01-01

    The Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) has been well validated as a training device for laparoscopic skills. It has been demonstrated that training to a level of proficiency on the simulator significantly improves operating room performance of laparoscopic cholecystectomy. The purpose of this project was to obtain a national standard of proficiency using the MIST-VR based on the performance of experienced laparoscopic surgeons. Surgeons attending the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) 2004 Annual Scientific Meeting who had performed more than 100 laparoscopic procedures volunteered to participate. All the subjects completed a demographic questionnaire assessing laparoscopic and MIST-VR experience in the learning center of the SAGES 2004 meeting. Each subject performed two consecutive trials of the MIST-VR Core Skills 1 program at the medium setting. Each trial involved six basic tasks of increasing difficulty: acquire place (AP), transfer place (TP), traversal (TV), withdrawal insert (WI), diathermy task (DT), and manipulate diathermy (MD). Trial 1 was considered a "warm-up," and trial 2 functioned as the test trial proper. Subject performance was scored for time, errors, and economy of instrument movement for each task, and a cumulative total score was calculated. Trial 2 data are expressed as mean time in seconds in Table 2. Proficiency levels for laparoscopic skills have now been established on a national scale by experienced laparoscopic surgeons using the MIST-VR simulator. Residency programs, training centers, and practicing surgeons can now use these data as guidelines for performance criterion during MIST-VR skills training.

  11. [Efficiency of computer-based documentation in long-term care--preliminary project].

    Science.gov (United States)

    Lüngen, Markus; Gerber, Andreas; Rupprecht, Christoph; Lauterbach, Karl W

    2008-06-01

    In Germany the documentation of processes in long-term care is mainly paper-based. Planning, realization and evaluation are not supported in an optimal way. In a preliminary study we evaluated the consequences of the introduction of a computer-based documentation system using handheld devices. We interviewed 16 persons before and after introducing the computer-based documentation and assessed costs for the documentation process and administration. The results show that reducing costs is likely. The job satisfaction of the personnel increased, more time could be spent for caring for the residents. We suggest further research to reach conclusive results.

  12. Replacement of traditional lectures with computer-based tutorials: a case study

    Directory of Open Access Journals (Sweden)

    Derek Lavelle

    1996-12-01

    Full Text Available This paper reports on a pilot project with a group of 60 second-year undergraduates studying the use of standard forms of contract in the construction industry. The project entailed the replacement of two of a series of nine scheduled lectures with a computer-based tutorial. The two main aims of the project were to test the viability of converting existing lecture material into computer-based material on an in-house production basis, and to obtain feedback from the student cohort on their behavioural response to the change in media. The effect on student performance was not measured at this stage of development.

  13. Usability test of the ImPRO, computer-based procedure system

    International Nuclear Information System (INIS)

    Jung, Y.; Lee, J.

    2006-01-01

    ImPRO is a computer based procedure in both flowchart and success logic tree. It is evaluated on the basis of computer based procedure guidelines. It satisfies most requirements such as presentations and functionalities. Besides, SGTR has been performed with ImPRO to evaluate reading comprehension and situation awareness. ImPRO is a software engine which can interpret procedure script language, so that ImPRO is reliable by nature and verified with formal method. One bug, however, had hidden one year after release, but it was fixed. Finally backup paper procedures can be prepared on the same format as VDU in case of ImPRO failure. (authors)

  14. Introducing Computer-Based Testing in High-Stakes Exams in Higher Education: Results of a Field Experiment

    Science.gov (United States)

    Boevé, Anja J.; Meijer, Rob R.; Albers, Casper J.; Beetsma, Yta; Bosker, Roel J.

    2015-01-01

    The introduction of computer-based testing in high-stakes examining in higher education is developing rather slowly due to institutional barriers (the need of extra facilities, ensuring test security) and teacher and student acceptance. From the existing literature it is unclear whether computer-based exams will result in similar results as paper-based exams and whether student acceptance can change as a result of administering computer-based exams. In this study, we compared results from a computer-based and paper-based exam in a sample of psychology students and found no differences in total scores across the two modes. Furthermore, we investigated student acceptance and change in acceptance of computer-based examining. After taking the computer-based exam, fifty percent of the students preferred paper-and-pencil exams over computer-based exams and about a quarter preferred a computer-based exam. We conclude that computer-based exam total scores are similar as paper-based exam scores, but that for the acceptance of high-stakes computer-based exams it is important that students practice and get familiar with this new mode of test administration. PMID:26641632

  15. Introducing Computer-Based Testing in High-Stakes Exams in Higher Education: Results of a Field Experiment.

    Science.gov (United States)

    Boevé, Anja J; Meijer, Rob R; Albers, Casper J; Beetsma, Yta; Bosker, Roel J

    2015-01-01

    The introduction of computer-based testing in high-stakes examining in higher education is developing rather slowly due to institutional barriers (the need of extra facilities, ensuring test security) and teacher and student acceptance. From the existing literature it is unclear whether computer-based exams will result in similar results as paper-based exams and whether student acceptance can change as a result of administering computer-based exams. In this study, we compared results from a computer-based and paper-based exam in a sample of psychology students and found no differences in total scores across the two modes. Furthermore, we investigated student acceptance and change in acceptance of computer-based examining. After taking the computer-based exam, fifty percent of the students preferred paper-and-pencil exams over computer-based exams and about a quarter preferred a computer-based exam. We conclude that computer-based exam total scores are similar as paper-based exam scores, but that for the acceptance of high-stakes computer-based exams it is important that students practice and get familiar with this new mode of test administration.

  16. Serious Games and Simulation as Tools for Education

    Directory of Open Access Journals (Sweden)

    Luca Mori

    2012-06-01

    Full Text Available The increasing adoption of computer-based “serious games” as digital tools for education requires to address the question about the role of simulation in teaching and learning process. Whereas many recent studies have stressed the benefits of digital games in a variety of learning contexts, this paper approaches the problem of misuse and limitations of computer-based simulations, and argues that we still need to understand when a digital serious game is actually better than other non-computer-based simulation experiences. Considering that the distinction between the two types of simulation does not mean that they are incompatible, the final question that I address regards the best ways to correlate computer-based and non-computer-based simulation techniques.

  17. THE USE OF COMPUTER-BASED MEANS TO DEVELOP LISTENING AND SPEAKING SKILLS TO BUSINESS STUDENTS

    Directory of Open Access Journals (Sweden)

    Sim Monica Ariana

    2012-07-01

    Full Text Available The aim of this paper is to analyze how business students can achieve communication skills, namely listening and speaking, through computer-based interactive simulations. In today’s foreign language teaching, methods using computer applications and multimedia environments are more and more gaining territory to the detriment of traditional methods. These applications are used successfully in reading, writing, listening and speaking practices both by foreign language teachers and by students throughout the world. Moreover, these means are helpful in practising the four skills of a language: reading, writing, listening and speaking. With the advance of Internet, the computer has been transformed from a tool for information processing and display into a tool for information processing and communication. The instant worldwide connections enabled by the Internet have changed the way teachers and learners work in their teaching and learning of second/foreign language. The Internet provides the opportunity for business students to interact with native speakers and, in the same time, to listen to business people around the world, in this way getting acquainted with different accents and speeches. When students listen to a native speaker, they are automatically emerged in the latter’s world. There are many idioms and phrases used by native speakers of the language but they hardly are included in the traditional lesson materials. Through specific Internet sites, the students become familiar with these idioms and phrases and most important is that they learn how to use them in a context. From a cultural point of view, the students become familiar with the turn taking habits, addressing different people, greetings, invitations and many cultural related issues. What is important to keep in mind is that the teacher must create an appropriate learning environment to suit the situation and conform to the needs of the class. A learning environment

  18. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  19. Computer-Based Video Instruction to Teach Students with Intellectual Disabilities to Use Public Bus Transportation

    Science.gov (United States)

    Mechling, Linda; O'Brien, Eileen

    2010-01-01

    This study investigated the effectiveness of computer-based video instruction (CBVI) to teach three young adults with moderate intellectual disabilities to push a "request to stop bus signal" and exit a city bus in response to target landmarks. A multiple probe design across three students and one bus route was used to evaluate effectiveness of…

  20. Performance of a computer-based assessment of cognitive function measures in two cohorts of seniors

    Science.gov (United States)

    Computer-administered assessment of cognitive function is being increasingly incorporated in clinical trials, however its performance in these settings has not been systematically evaluated. The Seniors Health and Activity Research Program (SHARP) pilot trial (N=73) developed a computer-based tool f...

  1. A Computer-Based Program to Teach Braille Reading to Sighted Individuals

    Science.gov (United States)

    Scheithauer, Mindy C.; Tiger, Jeffrey H.

    2012-01-01

    Instructors of the visually impaired need efficient braille-training methods. This study conducted a preliminary evaluation of a computer-based program intended to teach the relation between braille characters and English letters using a matching-to-sample format with 4 sighted college students. Each participant mastered matching visual depictions…

  2. Development of a Computer-Based Measure of Listening Comprehension of Science Talk

    Science.gov (United States)

    Lin, Sheau-Wen; Liu, Yu; Chen, Shin-Feng; Wang, Jing-Ru; Kao, Huey-Lien

    2015-01-01

    The purpose of this study was to develop a computer-based assessment for elementary school students' listening comprehension of science talk within an inquiry-oriented environment. The development procedure had 3 steps: a literature review to define the framework of the test, collecting and identifying key constructs of science talk, and…

  3. Application of the Decomposition Method to the Design Complexity of Computer-based Display

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Ju; Lee, Seung Woo; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Jin Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The importance of the design of human machine interfaces (HMIs) for human performance and safety has long been recognized in process industries. In case of nuclear power plants (NPPs), HMIs have significant implications for the safety of the NPPs since poor implementation of HMIs can impair the operators' information searching ability which is considered as one of the important aspects of human behavior. To support and increase the efficiency of the operators' information searching behavior, advanced HMIs based on computer technology are provided. Operators in advanced main control room (MCR) acquire information through video display units (VDUs), and large display panel (LDP) required for the operation of NPPs. These computer-based displays contain a very large quantity of information and present them in a variety of formats than conventional MCR. For example, these displays contain more elements such as abbreviations, labels, icons, symbols, coding, and highlighting than conventional ones. As computer-based displays contain more information, complexity of the elements becomes greater due to less distinctiveness of each element. A greater understanding is emerging about the effectiveness of designs of computer-based displays, including how distinctively display elements should be designed. And according to Gestalt theory, people tend to group similar elements based on attributes such as shape, color or pattern based on the principle of similarity. Therefore, it is necessary to consider not only human operator's perception but the number of element consisting of computer-based display

  4. Application of the Decomposition Method to the Design Complexity of Computer-based Display

    International Nuclear Information System (INIS)

    Kim, Hyoung Ju; Lee, Seung Woo; Seong, Poong Hyun; Park, Jin Kyun

    2012-01-01

    The importance of the design of human machine interfaces (HMIs) for human performance and safety has long been recognized in process industries. In case of nuclear power plants (NPPs), HMIs have significant implications for the safety of the NPPs since poor implementation of HMIs can impair the operators' information searching ability which is considered as one of the important aspects of human behavior. To support and increase the efficiency of the operators' information searching behavior, advanced HMIs based on computer technology are provided. Operators in advanced main control room (MCR) acquire information through video display units (VDUs), and large display panel (LDP) required for the operation of NPPs. These computer-based displays contain a very large quantity of information and present them in a variety of formats than conventional MCR. For example, these displays contain more elements such as abbreviations, labels, icons, symbols, coding, and highlighting than conventional ones. As computer-based displays contain more information, complexity of the elements becomes greater due to less distinctiveness of each element. A greater understanding is emerging about the effectiveness of designs of computer-based displays, including how distinctively display elements should be designed. And according to Gestalt theory, people tend to group similar elements based on attributes such as shape, color or pattern based on the principle of similarity. Therefore, it is necessary to consider not only human operator's perception but the number of element consisting of computer-based display

  5. A Cost–Effective Computer-Based, Hybrid Motorised and Gravity ...

    African Journals Online (AJOL)

    A Cost–Effective Computer-Based, Hybrid Motorised and Gravity-Driven Material Handling System for the Mauritian Apparel Industry. ... Thus, many companies are investing significantly in a Research & Development department in order to design new techniques to improve worker's efficiency, and to decrease the amount ...

  6. The computer-based process information system for the 5 MW THR

    International Nuclear Information System (INIS)

    Zhang Liangju; Zhang Youhua; Liu Xu; An Zhencai; Li Baoxiang

    1990-01-01

    The computer-based process information system has effectively improved the interface between operation person and the reactor, and has been successfully used in reactor operation environment. This article presents the design strategy, functions realized in the system and some advanced techniques used in the system construction and software development

  7. Learning Mathematics by Designing, Programming, and Investigating with Interactive, Dynamic Computer-Based Objects

    Science.gov (United States)

    Marshall, Neil; Buteau, Chantal

    2014-01-01

    As part of their undergraduate mathematics curriculum, students at Brock University learn to create and use computer-based tools with dynamic, visual interfaces, called Exploratory Objects, developed for the purpose of conducting pure or applied mathematical investigations. A student's Development Process Model of creating and using an Exploratory…

  8. Standardized computer-based organized reporting of EEG SCORE - Second version

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C

    2017-01-01

    Standardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted in the se...

  9. Computer based methods for measurement of joint space width: update of an ongoing OMERACT project

    NARCIS (Netherlands)

    Sharp, John T.; Angwin, Jane; Boers, Maarten; Duryea, Jeff; von Ingersleben, Gabriele; Hall, James R.; Kauffman, Joost A.; Landewé, Robert; Langs, Georg; Lukas, Cédric; Maillefert, Jean-Francis; Bernelot Moens, Hein J.; Peloschek, Philipp; Strand, Vibeke; van der Heijde, Désirée

    2007-01-01

    Computer-based methods of measuring joint space width (JSW) could potentially have advantages over scoring joint space narrowing, with regard to increased standardization, sensitivity, and reproducibility. In an early exercise, 4 different methods showed good agreement on measured change in JSW over

  10. The Effectiveness of Computer-Based Hypermedia Teaching Modules for Radiology Residents.

    Science.gov (United States)

    Azevedo, Roger; And Others

    This paper explains the rationale for utilizing computer-based, hypermedia tutorials for radiology education and presents the results of a field test of this educational technique. It discusses the development of the hypermedia tutorials at Montreal General Hospital (Quebec, Canada) in 1991-92 and their use in the radiology residency program. The…

  11. Applications of decision theory to computer-based adaptive instructional systems

    NARCIS (Netherlands)

    Vos, Hendrik J.

    1988-01-01

    This paper considers applications of decision theory to the problem of instructional decision-making in computer-based adaptive instructional systems, using the Minnesota Adaptive Instructional System (MAIS) as an example. The first section indicates how the problem of selecting the appropriate

  12. Computer-Based Script Training for Aphasia: Emerging Themes from Post-Treatment Interviews

    Science.gov (United States)

    Cherney, Leora R.; Halper, Anita S.; Kaye, Rosalind C.

    2011-01-01

    This study presents results of post-treatment interviews following computer-based script training for persons with chronic aphasia. Each of the 23 participants received 9 weeks of AphasiaScripts training. Post-treatment interviews were conducted with the person with aphasia and/or a significant other person. The 23 interviews yielded 584 coded…

  13. The Relationship between Emotional Intelligence and Attitudes toward Computer-Based Instruction of Postsecondary Hospitality Students

    Science.gov (United States)

    Behnke, Carl; Greenan, James P.

    2011-01-01

    This study examined the relationship between postsecondary students' emotional-social intelligence and attitudes toward computer-based instructional materials. Research indicated that emotions and emotional intelligence directly impact motivation, while instructional design has been shown to impact student attitudes and subsequent engagement with…

  14. Development of a Computer-Based Visualised Quantitative Learning System for Playing Violin Vibrato

    Science.gov (United States)

    Ho, Tracy Kwei-Liang; Lin, Huann-shyang; Chen, Ching-Kong; Tsai, Jih-Long

    2015-01-01

    Traditional methods of teaching music are largely subjective, with the lack of objectivity being particularly challenging for violin students learning vibrato because of the existence of conflicting theories. By using a computer-based analysis method, this study found that maintaining temporal coincidence between the intensity peak and the target…

  15. Automated Detection of Heuristics and Biases among Pathologists in a Computer-Based System

    Science.gov (United States)

    Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia

    2013-01-01

    The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to…

  16. Virginia Power's computer-based interactive videodisc training: a prototype for the future

    International Nuclear Information System (INIS)

    Seigler, G.G.; Adams, R.H.

    1987-01-01

    Virginia Power has developed a system and internally produced a prototype for computer-based interactive videodisc (CBIV) training. Two programs have been developed using the CBIV instructional methodology: Fire Team Retraining and General Employee Training (practical factors). In addition, the company developed a related program for conducting a videodisc tour of their nuclear power stations using a videodisc information management system (VIMS)

  17. Classroom versus Computer-Based CPR Training: A Comparison of the Effectiveness of Two Instructional Methods

    Science.gov (United States)

    Rehberg, Robb S.; Gazzillo Diaz, Linda; Middlemas, David A.

    2009-01-01

    Objective: The objective of this study was to determine whether computer-based CPR training is comparable to traditional classroom training. Design and Setting: This study was quantitative in design. Data was gathered from a standardized examination and skill performance evaluation which yielded numerical scores. Subjects: The subjects were 64…

  18. JAX: a micro-computer based X-ray diffractometer controller

    International Nuclear Information System (INIS)

    Naval, P.C. Jr.

    1987-05-01

    This paper describes a micro-computer based X-ray diffractometer controller and explores its possibilities in simplifying acquisition and analysis of X-ray powder diffraction data. The interrupt-driven controller can operate in both present time and present count data acquisition modes and allows a data analysis program to execute concurrently with data collection. (Auth.). 16 figs.; 2 tabs

  19. A Randomized Field Trial of the Fast ForWord Language Computer-Based Training Program

    Science.gov (United States)

    Borman, Geoffrey D.; Benson, James G.; Overman, Laura

    2009-01-01

    This article describes an independent assessment of the Fast ForWord Language computer-based training program developed by Scientific Learning Corporation. Previous laboratory research involving children with language-based learning impairments showed strong effects on their abilities to recognize brief and fast sequences of nonspeech and speech…

  20. Computer-Based English Language Testing in China: Present and Future

    Science.gov (United States)

    Yu, Guoxing; Zhang, Jing

    2017-01-01

    In this special issue on high-stakes English language testing in China, the two articles on computer-based testing (Jin & Yan; He & Min) highlight a number of consistent, ongoing challenges and concerns in the development and implementation of the nationwide IB-CET (Internet Based College English Test) and institutional computer-adaptive…