WorldWideScience

Sample records for computer vision potential

  1. Computational vision

    CERN Document Server

    Wechsler, Harry

    1990-01-01

    The book is suitable for advanced courses in computer vision and image processing. In addition to providing an overall view of computational vision, it contains extensive material on topics that are not usually covered in computer vision texts (including parallel distributed processing and neural networks) and considers many real applications.

  2. Computer vision for sports

    DEFF Research Database (Denmark)

    Thomas, Graham; Gade, Rikke; Moeslund, Thomas B.

    2017-01-01

    fixed to players or equipment is generally not possible. This provides a rich set of opportunities for the application of computer vision techniques to help the competitors, coaches and audience. This paper discusses a selection of current commercial applications that use computer vision for sports...

  3. Computer Vision Syndrome.

    Science.gov (United States)

    Randolph, Susan A

    2017-07-01

    With the increased use of electronic devices with visual displays, computer vision syndrome is becoming a major public health issue. Improving the visual status of workers using computers results in greater productivity in the workplace and improved visual comfort.

  4. Rapid, computer vision-enabled murine screening system identifies neuropharmacological potential of two new mechanisms

    Directory of Open Access Journals (Sweden)

    Steven L Roberds

    2011-09-01

    Full Text Available The lack of predictive in vitro models for behavioral phenotypes impedes rapid advancement in neuropharmacology and psychopharmacology. In vivo behavioral assays are more predictive of activity in human disorders, but such assays are often highly resource-intensive. Here we describe the successful application of a computer vision-enabled system to identify potential neuropharmacological activity of two new mechanisms. The analytical system was trained using multiple drugs that are used clinically to treat depression, schizophrenia, anxiety, and other psychiatric or behavioral disorders. During blinded testing the PDE10 inhibitor TP-10 produced a signature of activity suggesting potential antipsychotic activity. This finding is consistent with TP-10’s activity in multiple rodent models that is similar to that of clinically used antipsychotic drugs. The CK1ε inhibitor PF-670462 produced a signature consistent with anxiolytic activity and, at the highest dose tested, behavioral effects similar to that of opiate analgesics. Neither TP-10 nor PF-670462 was included in the training set. Thus, computer vision-based behavioral analysis can facilitate drug discovery by identifying neuropharmacological effects of compounds acting through new mechanisms.

  5. Progress in computer vision.

    Science.gov (United States)

    Jain, A. K.; Dorai, C.

    Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.

  6. Computer vision syndrome: a review of ocular causes and potential treatments.

    Science.gov (United States)

    Rosenfield, Mark

    2011-09-01

    Computer vision syndrome (CVS) is the combination of eye and vision problems associated with the use of computers. In modern western society the use of computers for both vocational and avocational activities is almost universal. However, CVS may have a significant impact not only on visual comfort but also occupational productivity since between 64% and 90% of computer users experience visual symptoms which may include eyestrain, headaches, ocular discomfort, dry eye, diplopia and blurred vision either at near or when looking into the distance after prolonged computer use. This paper reviews the principal ocular causes for this condition, namely oculomotor anomalies and dry eye. Accommodation and vergence responses to electronic screens appear to be similar to those found when viewing printed materials, whereas the prevalence of dry eye symptoms is greater during computer operation. The latter is probably due to a decrease in blink rate and blink amplitude, as well as increased corneal exposure resulting from the monitor frequently being positioned in primary gaze. However, the efficacy of proposed treatments to reduce symptoms of CVS is unproven. A better understanding of the physiology underlying CVS is critical to allow more accurate diagnosis and treatment. This will enable practitioners to optimize visual comfort and efficiency during computer operation. Ophthalmic & Physiological Optics © 2011 The College of Optometrists.

  7. Riemannian computing in computer vision

    CERN Document Server

    Srivastava, Anuj

    2016-01-01

    This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).   ·         Illustrates Riemannian computing theory on applications in computer vision, machine learning, and robotics ·         Emphasis on algorithmic advances that will allow re-application in other...

  8. Python and computer vision

    Energy Technology Data Exchange (ETDEWEB)

    Doak, J. E. (Justin E.); Prasad, Lakshman

    2002-01-01

    This paper discusses the use of Python in a computer vision (CV) project. We begin by providing background information on the specific approach to CV employed by the project. This includes a brief discussion of Constrained Delaunay Triangulation (CDT), the Chordal Axis Transform (CAT), shape feature extraction and syntactic characterization, and normalization of strings representing objects. (The terms 'object' and 'blob' are used interchangeably, both referring to an entity extracted from an image.) The rest of the paper focuses on the use of Python in three critical areas: (1) interactions with a MySQL database, (2) rapid prototyping of algorithms, and (3) gluing together all components of the project including existing C and C++ modules. For (l), we provide a schema definition and discuss how the various tables interact to represent objects in the database as tree structures. (2) focuses on an algorithm to create a hierarchical representation of an object, given its string representation, and an algorithm to match unknown objects against objects in a database. And finally, (3) discusses the use of Boost Python to interact with the pre-existing C and C++ code that creates the CDTs and CATS, performs shape feature extraction and syntactic characterization, and normalizes object strings. The paper concludes with a vision of the future use of Python for the CV project.

  9. Functional programming for computer vision

    Science.gov (United States)

    Breuel, Thomas M.

    1992-04-01

    Functional programming is a style of programming that avoids the use of side effects (like assignment) and uses functions as first class data objects. Compared with imperative programs, functional programs can be parallelized better, and provide better encapsulation, type checking, and abstractions. This is important for building and integrating large vision software systems. In the past, efficiency has been an obstacle to the application of functional programming techniques in computationally intensive areas such as computer vision. We discuss and evaluate several 'functional' data structures for representing efficiently data structures and objects common in computer vision. In particular, we will address: automatic storage allocation and reclamation issues; abstraction of control structures; efficient sequential update of large data structures; representing images as functions; and object-oriented programming. Our experience suggests that functional techniques are feasible for high- performance vision systems, and that a functional approach simplifies the implementation and integration of vision systems greatly. Examples in C++ and SML are given.

  10. Computer Vision for Timber Harvesting

    DEFF Research Database (Denmark)

    Dahl, Anders Lindbjerg

    The goal of this thesis is to investigate computer vision methods for timber harvesting operations. The background for developing computer vision for timber harvesting is to document origin of timber and to collect qualitative and quantitative parameters concerning the timber for efficient harvest...... segments. The purpose of image segmentation is to make the basis for more advanced computer vision methods like object recognition and classification. Our second method concerns image classification and we present a method where we classify small timber samples to tree species based on Active Appearance...... to the development of the logTracker system the described methods have a general applicability making them useful for many other computer vision problems....

  11. Artificial intelligence and computer vision

    CERN Document Server

    Li, Yujie

    2017-01-01

    This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.

  12. Computer vision for an autonomous mobile robot

    CSIR Research Space (South Africa)

    Withey, Daniel J

    2015-10-01

    Full Text Available Computer vision systems are essential for practical, autonomous, mobile robots – machines that employ artificial intelligence and control their own motion within an environment. As with biological systems, computer vision systems include the vision...

  13. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  14. [Ophthalmologist and "computer vision syndrome"].

    Science.gov (United States)

    Barar, A; Apatachioaie, Ioana Daniela; Apatachioaie, C; Marceanu-Brasov, L

    2007-01-01

    The authors had tried to collect the data available on the Internet about a subject that we consider as being totally ignored in the Romanian scientific literature and unexpectedly insufficiently treated in the specialized ophthalmologic literature. Known in the specialty literature under the generic name of "Computer vision syndrome", it is defined by the American Optometric Association as a complex of eye and vision problems related to the activities which stress the near vision and which are experienced in relation, or during, the use of the computer. During the consultations we hear frequent complaints of eye-strain - asthenopia, headaches, blurred distance and/or near vision, dry and irritated eyes, slow refocusing, neck and backache, photophobia, sensation of diplopia, light sensitivity, and double vision, but because of the lack of information, we overlooked them too easily, without going thoroughly into the real motives. In most of the developed countries, there are recommendations issued by renowned medical associations with regard to the definition, the diagnosis, and the methods for the prevention, treatment and periodical control of the symptoms found in computer users, in conjunction with an extremely detailed ergonomic legislation. We found out that these problems incite a much too low interest in our country. We would like to rouse the interest of our ophthalmologist colleagues in the understanding and the recognition of these symptoms and in their treatment, or at least their improvement, through specialized measures or through the cooperation with our specialist occupational medicine colleagues.

  15. Advances in embedded computer vision

    CERN Document Server

    Kisacanin, Branislav

    2014-01-01

    This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. The authoritative insights range from historical perspectives to future developments, reviewing embedded implementation, tools, technolog

  16. Computer vision and machine learning for archaeology

    NARCIS (Netherlands)

    van der Maaten, L.J.P.; Boon, P.; Lange, G.; Paijmans, J.J.; Postma, E.

    2006-01-01

    Until now, computer vision and machine learning techniques barely contributed to the archaeological domain. The use of these techniques can support archaeologists in their assessment and classification of archaeological finds. The paper illustrates the use of computer vision techniques for

  17. UNDERSTANDING AND PREVENTING COMPUTER VISION SYNDROME

    OpenAIRE

    REDDY SC; LOH KY

    2008-01-01

    The invention of computer and advancement in information technology has revolutionized and benefited the society but at the same time has caused symptoms related to its usage such as ocular sprain, irritation, redness, dryness, blurred vision and double vision. This cluster of symptoms is known as computer vision syndrome which is characterized by the visual symptoms which result from interaction with computer display or its environment. Three major mechanisms that lead to computer vision syn...

  18. Computer vision in control systems

    CERN Document Server

    Jain, Lakhmi

    2015-01-01

    Volume 1 : This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: ·         Morphological Image Analysis for Computer Vision Applications. ·         Methods for Detecting of Structural Changes in Computer Vision Systems. ·         Hierarchical Adaptive KL-based Transform: Algorithms and Applications. ·         Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. ·         A Way of Energy Analysis for Image and Video Sequence Processing. ·         Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. ·         Scene Analysis Using Morphological Mathematics and Fuzzy Logic. ·         Digital Video Stabilization in Static and Dynamic Scenes. ·         Implementation of Hadamard Matrices for Image Processing. ·         A Generalized Criterion ...

  19. Understanding and preventing computer vision syndrome.

    Science.gov (United States)

    Loh, Ky; Redd, Sc

    2008-01-01

    The invention of computer and advancement in information technology has revolutionized and benefited the society but at the same time has caused symptoms related to its usage such as ocular sprain, irritation, redness, dryness, blurred vision and double vision. This cluster of symptoms is known as computer vision syndrome which is characterized by the visual symptoms which result from interaction with computer display or its environment. Three major mechanisms that lead to computer vision syndrome are extraocular mechanism, accommodative mechanism and ocular surface mechanism. The visual effects of the computer such as brightness, resolution, glare and quality all are known factors that contribute to computer vision syndrome. Prevention is the most important strategy in managing computer vision syndrome. Modification in the ergonomics of the working environment, patient education and proper eye care are crucial in managing computer vision syndrome.

  20. UNDERSTANDING AND PREVENTING COMPUTER VISION SYNDROME

    Directory of Open Access Journals (Sweden)

    REDDY SC

    2008-01-01

    Full Text Available The invention of computer and advancement in information technology has revolutionized and benefited the society but at the same time has caused symptoms related to its usage such as ocular sprain, irritation, redness, dryness, blurred vision and double vision. This cluster of symptoms is known as computer vision syndrome which is characterized by the visual symptoms which result from interaction with computer display or its environment. Three major mechanisms that lead to computer vision syndrome are extraocular mechanism, accommodative mechanism and ocular surface mechanism. The visual effects of the computer such as brightness, resolution, glare and quality all are known factors that contribute to computer vision syndrome. Prevention is the most important strategy in managing computer vision syndrome. Modification in the ergonomics of the working environment, patient education and proper eye care are crucial in managing computer vision syndrome.

  1. Computer vision syndrome: A review.

    Science.gov (United States)

    Gowrisankaran, Sowjanya; Sheedy, James E

    2015-01-01

    Computer vision syndrome (CVS) is a collection of symptoms related to prolonged work at a computer display. This article reviews the current knowledge about the symptoms, related factors and treatment modalities for CVS. Relevant literature on CVS published during the past 65 years was analyzed. Symptoms reported by computer users are classified into internal ocular symptoms (strain and ache), external ocular symptoms (dryness, irritation, burning), visual symptoms (blur, double vision) and musculoskeletal symptoms (neck and shoulder pain). The major factors associated with CVS are either environmental (improper lighting, display position and viewing distance) and/or dependent on the user's visual abilities (uncorrected refractive error, oculomotor disorders and tear film abnormalities). Although the factors associated with CVS have been identified the physiological mechanisms that underlie CVS are not completely understood. Additionally, advances in technology have led to the increased use of hand-held devices, which might impose somewhat different visual challenges compared to desktop displays. Further research is required to better understand the physiological mechanisms underlying CVS and symptoms associated with the use of hand-held and stereoscopic displays.

  2. Color in Computer Vision Fundamentals and Applications

    CERN Document Server

    Gevers, Theo; van de Weijer, Joost; Geusebroek, Jan-Mark

    2012-01-01

    While the field of computer vision drives many of today’s digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors’ intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theor

  3. Computer and machine vision theory, algorithms, practicalities

    CERN Document Server

    Davies, E R

    2012-01-01

    Computer and Machine Vision: Theory, Algorithms, Practicalities (previously entitled Machine Vision) clearly and systematically presents the basic methodology of computer and machine vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fourth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date tutorial text suitable for graduate students, researchers and R&D engineers working in this vibrant subject. Key features include: Practical examples and case studies give the 'ins and outs' of developing real-world vision systems, giving engineers the realities of implementing the principles in practice New chapters containing case studies on surveillance and driver assistance systems give practical methods on these cutting-edge applications in computer vision Necessary mathematics and essential theory are made approachable by careful explanations and well-il...

  4. Tensors in image processing and computer vision

    CERN Document Server

    De Luis García, Rodrigo; Tao, Dacheng; Li, Xuelong

    2009-01-01

    Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the developments in this branch of signal processing, offering research and discussions by experts in the area. It is suitable for advanced students working in the area of computer vision and image processing.

  5. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  6. FPGA Implementation of Computer Vision Algorithm

    OpenAIRE

    Zhou, Zhonghua

    2014-01-01

    Computer vision algorithms, which play an significant role in vision processing, is widely applied in many aspects such as geology survey, traffic management and medical care, etc.. Most of the situations require the process to be real-timed, in other words, as fast as possible. Field Programmable Gate Arrays (FPGAs) have a advantage of parallelism fabric in programming, comparing to the serial communications of CPUs, which makes FPGA a perfect platform for implementing vision algorithms. The...

  7. Prevalence of computer vision syndrome in Erbil

    OpenAIRE

    Dler Jalal Ahmed; Eman Hussein Alwan

    2018-01-01

    Background and objective: Nearly all colleges, universities and homes today are regularly using video display terminals, such as computer, iPad, mobile, and TV. Very little research has been carried out on Kurdish users to reveal the effect of video display terminals on the eye and vision. This study aimed to evaluate the prevalence of computer vision syndrome among computer users. Methods: A hospital based cross-sectional study was conducted in the Ophthalmology Department of Rizgary...

  8. COMPUTER VISION SYNDROME: A SHORT REVIEW.

    OpenAIRE

    Sameena; Mohd Inayatullah

    2012-01-01

    Computers are probably one of the biggest scientific inventions of the modern era, and since then they have become an integral part of our life. The increased usage of computers have lead to variety of ocular symptoms which includ es eye strain, tired eyes, irritation, redness, blurred vision, and diplopia, collectively referred to as Computer Vision Syndrome (CVS). CVS may have a significant impact not only on visual com fort but also occupational productivit...

  9. Prevalence of computer vision syndrome in Erbil

    Directory of Open Access Journals (Sweden)

    Dler Jalal Ahmed

    2018-04-01

    Full Text Available Background and objective: Nearly all colleges, universities and homes today are regularly using video display terminals, such as computer, iPad, mobile, and TV. Very little research has been carried out on Kurdish users to reveal the effect of video display terminals on the eye and vision. This study aimed to evaluate the prevalence of computer vision syndrome among computer users. Methods: A hospital based cross-sectional study was conducted in the Ophthalmology Department of Rizgary and Erbil teaching hospitals in Erbil city. Those used computers in the months preceding the date of this study were included in the study. Results: Among 173 participants aged between 8 to 48 years (mean age of 23.28±6.6 years, the prevalence of computer vision syndrome found to be 89.65%. The most disturbing symptom was eye irritation (79.8%, followed by blurred vision(75.7%. Participants who were using visual display terminals for more than six hours per day were at higher risk of developing nearly all symptoms of computer vision syndrome. Significant correlation was found between time-consuming on computer and symptoms such as headache (P <0.001, redness (P <0.001, eye irritation (P <0.001, blurred vision (P <0.001 and neck pain (P <0.001. Conclusion: The present study demonstrates that more than three-fourths of the participants had one of the symptoms of computer vision syndrome while working on visual display terminals. Keywords: Computer vision syndrome; Headache; Neck pain; Blurred vision.

  10. Soft Computing Techniques in Vision Science

    CERN Document Server

    Yang, Yeon-Mo

    2012-01-01

    This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies.  It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...

  11. Computer vision based room interior design

    Science.gov (United States)

    Ahmad, Nasir; Hussain, Saddam; Ahmad, Kashif; Conci, Nicola

    2015-12-01

    This paper introduces a new application of computer vision. To the best of the author's knowledge, it is the first attempt to incorporate computer vision techniques into room interior designing. The computer vision based interior designing is achieved in two steps: object identification and color assignment. The image segmentation approach is used for the identification of the objects in the room and different color schemes are used for color assignment to these objects. The proposed approach is applied to simple as well as complex images from online sources. The proposed approach not only accelerated the process of interior designing but also made it very efficient by giving multiple alternatives.

  12. Object recognition in images by human vision and computer vision

    NARCIS (Netherlands)

    Chen, Q.; Dijkstra, J.; Vries, de B.

    2010-01-01

    Object recognition plays a major role in human behaviour research in the built environment. Computer based object recognition techniques using images as input are challenging, but not an adequate representation of human vision. This paper reports on the differences in object shape recognition

  13. [Meibomian gland disfunction in computer vision syndrome].

    Science.gov (United States)

    Pimenidi, M K; Polunin, G S; Safonova, T N

    2010-01-01

    This article reviews ethiology and pathogenesis of dry eye syndrome due to meibomian gland disfunction (MDG). It is showed that blink rate influences meibomian gland functioning and computer vision syndrome development. Current diagnosis and treatment options of MDG are presented.

  14. Object categorization: computer and human vision perspectives

    National Research Council Canada - National Science Library

    Dickinson, Sven J

    2009-01-01

    .... The result of a series of four highly successful workshops on the topic, the book gathers many of the most distinguished researchers from both computer and human vision to reflect on their experience...

  15. Computer vision for biomedical image applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanxi [Carnegie Mellon Univ., Pittsburgh, PA (United States). School of Computer Science, The Robotics Institute; Jiang, Tianzi [Chinese Academy of Sciences, Beijing (China). National Lab. of Pattern Recognition, Inst. of Automation; Zhang, Changshui (eds.) [Tsinghua Univ., Beijing, BJ (China). Dept. of Automation

    2005-07-01

    This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20. (orig.)

  16. International Conference on Computational Vision and Robotics

    CERN Document Server

    2015-01-01

    Computer Vision and Robotic is one of the most challenging areas of 21st century. Its application ranges from Agriculture to Medicine, Household applications to Humanoid, Deep-sea-application to Space application, and Industry applications to Man-less-plant. Today’s technologies demand to produce intelligent machine, which are enabling applications in various domains and services. Robotics is one such area which encompasses number of technology in it and its application is widespread. Computational vision or Machine vision is one of the most challenging tools for the robot to make it intelligent.   This volume covers chapters from various areas of Computational Vision such as Image and Video Coding and Analysis, Image Watermarking, Noise Reduction and Cancellation, Block Matching and Motion Estimation, Tracking of Deformable Object using Steerable Pyramid Wavelet Transformation, Medical Image Fusion, CT and MRI Image Fusion based on Stationary Wavelet Transform. The book also covers articles from applicati...

  17. Ocular problems of computer vision syndrome: Review

    Directory of Open Access Journals (Sweden)

    Ayakutty Muni Raja

    2015-01-01

    Full Text Available Nowadays, ophthalmologists are facing a new group of patients having eye problems related to prolonged and excessive computer use. When the demand for near work exceeds the normal ability of the eye to perform the job comfortably, one develops discomfort and prolonged exposure, which leads to a cascade of reactions that can be put together as computer vision syndrome (CVS. In India, the computer-using population is more than 40 million, and 80% have discomfort due to CVS. Eye strain, headache, blurring of vision and dryness are the most common symptoms. Workstation modification, voluntary blinking, adjustment of the brightness of screen and breaks in between can reduce CVS.

  18. Computer vision camera with embedded FPGA processing

    Science.gov (United States)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  19. Empirical evaluation methods in computer vision

    CERN Document Server

    Christensen, Henrik I

    2002-01-01

    This book provides comprehensive coverage of methods for the empirical evaluation of computer vision techniques. The practical use of computer vision requires empirical evaluation to ensure that the overall system has a guaranteed performance. The book contains articles that cover the design of experiments for evaluation, range image segmentation, the evaluation of face recognition and diffusion methods, image matching using correlation methods, and the performance of medical image processing algorithms. Sample Chapter(s). Foreword (228 KB). Chapter 1: Introduction (505 KB). Contents: Automate

  20. Neuropathies of the optic nerve and visual evoked potentials with special reference to color vision and differential light threshold measured with the computer perimeter OCTOPUS.

    Science.gov (United States)

    Wildberger, H

    1984-10-31

    The contrast evoked potentials (VEPs) to different check sizes were recorded in about 200 cases of discrete optic neuropathies (ON) of different origin. Differential light threshold (DLT) was tested with the computer perimeter OCTOPUS. Saturated and desaturated tests were applied to evaluate the degree of acquired color vision deficiency. Delayed VEP responses are not confined to optic neuritis (RBN) alone and the different latency times obtained from other ON are confluent. The delay may be due to demyelination, to an increasing dominance of paramacular VEP subcomponents or to an increasing dominance of the upper half-field responses. Recording with smaller check sizes has the advantage that discrete dysfunctions in the visual field (VF) center are more easily detected: a correlation between amplitudes and visual acuity is best in strabismic amblyopias, is less expressed in maculopathies of the retina and weak in ON. The absence or reduction of amplitudes to smaller check sizes, however, is an important indication of a disorder in the VF center of ON in an early or recovered stage. Acquired color vision defects of the tritan-like type are more confined to discrete ON, whereas the red/green type is reserved to more severe ON. The DLT of the VF center is reduced in a different, significant and non significant extent in discrete optic neuropathies and the correlation between DLT and visual acuity is weak. A careful numerical analysis is needed in types of discrete ON where the central DLT lies within normal statistical limits: a side difference of the DLT between the affected and the normal fellow eye is always present. Evaluation of visual fatigue effects and of the relative sensitivity loss of VF center and VF periphery may provide further diagnostic information.

  1. Impact of computer use on children's vision.

    Science.gov (United States)

    Kozeis, N

    2009-10-01

    Today, millions of children use computers on a daily basis. Extensive viewing of the computer screen can lead to eye discomfort, fatigue, blurred vision and headaches, dry eyes and other symptoms of eyestrain. These symptoms may be caused by poor lighting, glare, an improper work station set-up, vision problems of which the person was not previously aware, or a combination of these factors. Children can experience many of the same symptoms related to computer use as adults. However, some unique aspects of how children use computers may make them more susceptible than adults to the development of these problems. In this study, the most common eye symptoms related to computer use in childhood, the possible causes and ways to avoid them are reviewed.

  2. Computer vision syndrome (CVS) - Thermographic Analysis

    Science.gov (United States)

    Llamosa-Rincón, L. E.; Jaime-Díaz, J. M.; Ruiz-Cardona, D. F.

    2017-01-01

    The use of computers has reported an exponential growth in the last decades, the possibility of carrying out several tasks for both professional and leisure purposes has contributed to the great acceptance by the users. The consequences and impact of uninterrupted tasks with computers screens or displays on the visual health, have grabbed researcher’s attention. When spending long periods of time in front of a computer screen, human eyes are subjected to great efforts, which in turn triggers a set of symptoms known as Computer Vision Syndrome (CVS). Most common of them are: blurred vision, visual fatigue and Dry Eye Syndrome (DES) due to unappropriate lubrication of ocular surface when blinking decreases. An experimental protocol was de-signed and implemented to perform thermographic studies on healthy human eyes during exposure to dis-plays of computers, with the main purpose of comparing the existing differences in temperature variations of healthy ocular surfaces.

  3. Fulfilling the vision of automatic computing

    OpenAIRE

    Dobson, Simon; Sterritt, Roy; Nixon, Paddy; Hinchey, Mike

    2010-01-01

    Efforts since 2001 to design self-managing systems have yielded many impressive achievements, yet the original vision of autonomic computing remains unfulfilled. Researchers must develop a comprehensive systems engineering approach to create effective solutions for next-generation enterprise and sensor systems. Publisher PDF Peer reviewed

  4. AstroCV: Astronomy computer vision library

    Science.gov (United States)

    González, Roberto E.; Muñoz, Roberto P.; Hernández, Cristian A.

    2018-04-01

    AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.

  5. Accuracy of a Low-Cost Novel Computer-Vision Dynamic Movement Assessment: Potential Limitations and Future Directions

    Science.gov (United States)

    McGroarty, M.; Giblin, S.; Meldrum, D.; Wetterling, F.

    2016-04-01

    The aim of the study was to perform a preliminary validation of a low cost markerless motion capture system (CAPTURE) against an industry gold standard (Vicon). Measurements of knee valgus and flexion during the performance of a countermovement jump (CMJ) between CAPTURE and Vicon were compared. After correction algorithms were applied to the raw CAPTURE data acceptable levels of accuracy and precision were achieved. The knee flexion angle measured for three trials using Capture deviated by -3.8° ± 3° (left) and 1.7° ± 2.8° (right) compared to Vicon. The findings suggest that low-cost markerless motion capture has potential to provide an objective method for assessing lower limb jump and landing mechanics in an applied sports setting. Furthermore, the outcome of the study warrants the need for future research to examine more fully the potential implications of the use of low-cost markerless motion capture in the evaluation of dynamic movement for injury prevention.

  6. Computational and cognitive neuroscience of vision

    CERN Document Server

    2017-01-01

    Despite a plethora of scientific literature devoted to vision research and the trend toward integrative research, the borders between disciplines remain a practical difficulty. To address this problem, this book provides a systematic and comprehensive overview of vision from various perspectives, ranging from neuroscience to cognition, and from computational principles to engineering developments. It is written by leading international researchers in the field, with an emphasis on linking multiple disciplines and the impact such synergy can lead to in terms of both scientific breakthroughs and technology innovations. It is aimed at active researchers and interested scientists and engineers in related fields.

  7. Computer vision approach to morphometric feature analysis of basal cell nuclei for evaluating malignant potentiality of oral submucous fibrosis.

    Science.gov (United States)

    Muthu Rama Krishnan, M; Pal, Mousumi; Paul, Ranjan Rashmi; Chakraborty, Chandan; Chatterjee, Jyotirmoy; Ray, Ajoy K

    2012-06-01

    This research work presents a quantitative approach for analysis of histomorphometric features of the basal cell nuclei in respect to their size, shape and intensity of staining, from surface epithelium of Oral Submucous Fibrosis showing dysplasia (OSFD) to that of the Normal Oral Mucosa (NOM). For all biological activity, the basal cells of the surface epithelium form the proliferative compartment and therefore their morphometric changes will spell the intricate biological behavior pertaining to normal cellular functions as well as in premalignant and malignant status. In view of this, the changes in shape, size and intensity of staining of the nuclei in the basal cell layer of the NOM and OSFD have been studied. Geometric, Zernike moments and Fourier descriptor (FD) based as well as intensity based features are extracted for histomorphometric pattern analysis of the nuclei. All these features are statistically analyzed along with 3D visualization in order to discriminate the groups. Results showed increase in the dimensions (area and perimeter), shape parameters and decreasing mean nuclei intensity of the nuclei in OSFD in respect to NOM. Further, the selected features are fed to the Bayesian classifier to discriminate normal and OSFD. The morphometric and intensity features provide a good sensitivity of 100%, specificity of 98.53% and positive predicative accuracy of 97.35%. This comparative quantitative characterization of basal cell nuclei will be of immense help for oral onco-pathologists, researchers and clinicians to assess the biological behavior of OSFD, specially relating to their premalignant and malignant potentiality. As a future direction more extensive study involving more number of disease subjects is observed.

  8. Computation and parallel implementation for early vision

    Science.gov (United States)

    Gualtieri, J. Anthony

    1990-01-01

    The problem of early vision is to transform one or more retinal illuminance images-pixel arrays-to image representations built out of such primitive visual features such as edges, regions, disparities, and clusters. These transformed representations form the input to later vision stages that perform higher level vision tasks including matching and recognition. Researchers developed algorithms for: (1) edge finding in the scale space formulation; (2) correlation methods for computing matches between pairs of images; and (3) clustering of data by neural networks. These algorithms are formulated for parallel implementation of SIMD machines, such as the Massively Parallel Processor, a 128 x 128 array processor with 1024 bits of local memory per processor. For some cases, researchers can show speedups of three orders of magnitude over serial implementations.

  9. Eyesight quality and Computer Vision Syndrome.

    Science.gov (United States)

    Bogdănici, Camelia Margareta; Săndulache, Diana Elena; Nechita, Corina Andreea

    2017-01-01

    The aim of the study was to analyze the effects that gadgets have on eyesight quality. A prospective observational study was conducted from January to July 2016, on 60 people who were divided into two groups: Group 1 - 30 middle school pupils with a mean age of 11.9 ± 1.86 and Group 2 - 30 patients evaluated in the Ophthalmology Clinic, "Sf. Spiridon" Hospital, Iași, with a mean age of 21.36 ± 7.16 years. The clinical parameters observed were the following: visual acuity (VA), objective refraction, binocular vision (BV), fusional amplitude (FA), Schirmer's test. A questionnaire was also distributed, which contained 8 questions that highlighted the gadget's impact on the eyesight. The use of different gadgets, such as computer, laptops, mobile phones or other displays become part of our everyday life and people experience a variety of ocular symptoms or vision problems related to these. Computer Vision Syndrome (CVS) represents a group of visual and extraocular symptoms associated with sustained use of visual display terminals. Headache, blurred vision, and ocular congestion are the most frequent manifestations determined by the long time use of gadgets. Mobile phones and laptops are the most frequently used gadgets. People who use gadgets for a long time have a sustained effort for accommodation. A small amount of refractive errors (especially myopic shift) was objectively recorded by various studies on near work. Dry eye syndrome could also be identified, and an improvement of visual comfort could be observed after the instillation of artificial tears drops. Computer Vision Syndrome is still under-diagnosed, and people should be made aware of the bad effects the prolonged use of gadgets has on eyesight.

  10. Computer vision as an alternative for collision detection

    OpenAIRE

    Drangsholt, Marius Aarvik

    2015-01-01

    The goal of this thesis was to implement a computer vision system on a low power platform, to see if that could be an alternative for a collision detection system. To achieve this, research into fundamentals in computer vision were performed, and both hardware and software implementation were carried out. To create the computer vision system, a stereo rig were constructed using low cost Logitech webcameras, and connected to a Raspberry Pi 2 development board. The computer vision library Op...

  11. Low Vision Care: The Need to Maximise Visual Potential

    Directory of Open Access Journals (Sweden)

    Ramachandra Pararajasegaram

    2004-01-01

    Full Text Available People with low vision have residual vision with some light perception, but their vision loss does not lend itself to improvement by standard spectacles or medical or surgical treatment. Such persons have the potential for enhanced functional vision if they receive appropriate low vision care services.

  12. Application of Computer Vision in Agriculture

    OpenAIRE

    Archana B. Patankar; Priya A. Tayade

    2015-01-01

    Grading and sorting of fruits, leaf is one of the most important process in fruits production, while this process is typically performed manually in most countries. Computer vision techniques have applied for evaluating food quality as well as fruit grading. In this project different technique used that is image preprocessing, image segmentation k-means clustering algorithm to find out the infection present in image also calculate percentage of infection, from that percentage did the...

  13. X-ray machine vision and computed tomography

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This survey examines how 2-D x-ray machine vision and 3-D computed tomography will be used in industry in the 1988-1995 timeframe. Specific applications are described and rank-ordered in importance. The types of companies selling and using 2-D and 3-D systems are profiled, and markets are forecast for 1988 to 1995. It is known that many machine vision and automation companies are now considering entering this field. This report looks at the potential pitfalls and whether recent market problems similar to those recently experienced by the machine vision industry will likely occur in this field. FTS will publish approximately 100 other surveys in 1988 on emerging technology in the fields of AI, manufacturing, computers, sensors, photonics, energy, bioengineering, and materials

  14. Algorithms for image processing and computer vision

    CERN Document Server

    Parker, J R

    2010-01-01

    A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It's an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists wh

  15. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.

    Science.gov (United States)

    Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-03-01

    Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Feature extraction & image processing for computer vision

    CERN Document Server

    Nixon, Mark

    2012-01-01

    This book is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, ""The main strength of the proposed book is the exemplar code of the algorithms."" Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filt

  17. Colour vision and computer-generated images

    International Nuclear Information System (INIS)

    Ramek, Michael

    2010-01-01

    Colour vision deficiencies affect approximately 8% of the male and approximately 0.4% of the female population. In this work, it is demonstrated that computer generated images oftentimes pose unnecessary problems for colour deficient viewers. Three examples, the visualization of molecular structures, graphs of mathematical functions, and colour coded images from numerical data are used to identify problematic colour combinations: red/black, green/black, red/yellow, yellow/white, fuchsia/white, and aqua/white. Alternatives for these combinations are discussed.

  18. Computer Vision Using Local Binary Patterns

    CERN Document Server

    Pietikainen, Matti; Zhao, Guoying; Ahonen, Timo

    2011-01-01

    The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, b

  19. Review On Applications Of Neural Network To Computer Vision

    Science.gov (United States)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  20. A practical introduction to computer vision with OpenCV

    CERN Document Server

    Dawson-Howe, Kenneth

    2014-01-01

    Explains the theory behind basic computer vision and provides a bridge from the theory to practical implementation using the industry standard OpenCV libraries Computer Vision is a rapidly expanding area and it is becoming progressively easier for developers to make use of this field due to the ready availability of high quality libraries (such as OpenCV 2).  This text is intended to facilitate the practical use of computer vision with the goal being to bridge the gap between the theory and the practical implementation of computer vision. The book will explain how to use the relevant OpenCV

  1. Object extraction in photogrammetric computer vision

    Science.gov (United States)

    Mayer, Helmut

    This paper discusses state and promising directions of automated object extraction in photogrammetric computer vision considering also practical aspects arising for digital photogrammetric workstations (DPW). A review of the state of the art shows that there are only few practically successful systems on the market. Therefore, important issues for a practical success of automated object extraction are identified. A sound and most important powerful theoretical background is the basis. Here, we particularly point to statistical modeling. Testing makes clear which of the approaches are suited best and how useful they are for praxis. A key for commercial success of a practical system is efficient user interaction. As the means for data acquisition are changing, new promising application areas such as extremely detailed three-dimensional (3D) urban models for virtual television or mission rehearsal evolve.

  2. Gesture Recognition by Computer Vision : An Integral Approach

    NARCIS (Netherlands)

    Lichtenauer, J.F.

    2009-01-01

    The fundamental objective of this Ph.D. thesis is to gain more insight into what is involved in the practical application of a computer vision system, when the conditions of use cannot be controlled completely. The basic assumption is that research on isolated aspects of computer vision often leads

  3. Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision?

    OpenAIRE

    Kruger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodriguez-Sanchez, Antonio J.; Wiskott, Laurenz

    2013-01-01

    Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition or vision-based navigation and manipulation. This article reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer ...

  4. Deep hierarchies in the primate visual cortex: what can we learn for computer vision?

    Science.gov (United States)

    Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz

    2013-08-01

    Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.

  5. Intelligent Computer Vision System for Automated Classification

    International Nuclear Information System (INIS)

    Jordanov, Ivan; Georgieva, Antoniya

    2010-01-01

    In this paper we investigate an Intelligent Computer Vision System applied for recognition and classification of commercially available cork tiles. The system is capable of acquiring and processing gray images using several feature generation and analysis techniques. Its functionality includes image acquisition, feature extraction and preprocessing, and feature classification with neural networks (NN). We also discuss system test and validation results from the recognition and classification tasks. The system investigation also includes statistical feature processing (features number and dimensionality reduction techniques) and classifier design (NN architecture, target coding, learning complexity and performance, and training with our own metaheuristic optimization method). The NNs trained with our genetic low-discrepancy search method (GLPτS) for global optimisation demonstrated very good generalisation abilities. In our view, the reported testing success rate of up to 95% is due to several factors: combination of feature generation techniques; application of Analysis of Variance (ANOVA) and Principal Component Analysis (PCA), which appeared to be very efficient for preprocessing the data; and use of suitable NN design and learning method.

  6. Deep Learning for Computer Vision: A Brief Review

    Science.gov (United States)

    Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios

    2018-01-01

    Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein. PMID:29487619

  7. Deep Learning for Computer Vision: A Brief Review

    Directory of Open Access Journals (Sweden)

    Athanasios Voulodimos

    2018-01-01

    Full Text Available Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

  8. Deep Learning for Computer Vision: A Brief Review.

    Science.gov (United States)

    Voulodimos, Athanasios; Doulamis, Nikolaos; Doulamis, Anastasios; Protopapadakis, Eftychios

    2018-01-01

    Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.

  9. Specifying colours for colour vision testing using computer graphics.

    Science.gov (United States)

    Toufeeq, A

    2004-10-01

    This paper describes a novel test of colour vision using a standard personal computer, which is simple and reliable to perform. Twenty healthy individuals with normal colour vision and 10 healthy individuals with a red/green colour defect were tested binocularly at 13 selected points in the CIE (Commission International d'Eclairage, 1931) chromaticity triangle, representing the gamut of a computer monitor, where the x, y coordinates of the primary colour phosphors were known. The mean results from individuals with normal colour vision were compared to those with defective colour vision. Of the 13 points tested, five demonstrated consistently high sensitivity in detecting colour defects. The test may provide a convenient method for classifying colour vision abnormalities.

  10. A memory-array architecture for computer vision

    Energy Technology Data Exchange (ETDEWEB)

    Balsara, P.T.

    1989-01-01

    With the fast advances in the area of computer vision and robotics there is a growing need for machines that can understand images at a very high speed. A conventional von Neumann computer is not suited for this purpose because it takes a tremendous amount of time to solve most typical image processing problems. Exploiting the inherent parallelism present in various vision tasks can significantly reduce the processing time. Fortunately, parallelism is increasingly affordable as hardware gets cheaper. Thus it is now imperative to study computer vision in a parallel processing framework. The author should first design a computational structure which is well suited for a wide range of vision tasks and then develop parallel algorithms which can run efficiently on this structure. Recent advances in VLSI technology have led to several proposals for parallel architectures for computer vision. In this thesis he demonstrates that a memory array architecture with efficient local and global communication capabilities can be used for high speed execution of a wide range of computer vision tasks. This architecture, called the Access Constrained Memory Array Architecture (ACMAA), is efficient for VLSI implementation because of its modular structure, simple interconnect and limited global control. Several parallel vision algorithms have been designed for this architecture. The choice of vision problems demonstrates the versatility of ACMAA for a wide range of vision tasks. These algorithms were simulated on a high level ACMAA simulator running on the Intel iPSC/2 hypercube, a parallel architecture. The results of this simulation are compared with those of sequential algorithms running on a single hypercube node. Details of the ACMAA processor architecture are also presented.

  11. Computer graphics visions and challenges: a European perspective.

    Science.gov (United States)

    Encarnação, José L

    2006-01-01

    I have briefly described important visions and challenges in computer graphics. They are a personal and therefore subjective selection. But most of these issues have to be addressed and solved--no matter if we call them visions or challenges or something else--if we want to make and further develop computer graphics into a key enabling technology for our IT-based society.

  12. Computer Vision Syndrome and Associated Factors Among Medical ...

    African Journals Online (AJOL)

    among college students the effects of computer use on the eye and vision related problems. ... which included the basic demographic profile, hours of computer use per ..... Male was reported by Costa et al., among call center workers in. Brazil.[17]. Headache .... the use of computer had become universal in higher education.

  13. Developments in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2015-01-01

    This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 – IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013.  The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimat...

  14. Stereo Vision for Unrestricted Human-Computer Interaction

    OpenAIRE

    Eldridge, Ross; Rudolph, Heiko

    2008-01-01

    Human computer interfaces have come long way in recent years, but the goal of a computer interpreting unrestricted human movement remains elusive. The use of stereo vision in this field has enabled the development of systems that begin to approach this goal. As computer technology advances we come ever closer to a system that can react to the ambiguities of human movement in real-time. In the foreseeable future stereo computer vision is not likely to replace the keyboard or mouse. There is at...

  15. Computer Vision and Image Processing: A Paper Review

    Directory of Open Access Journals (Sweden)

    victor - wiley

    2018-02-01

    Full Text Available Computer vision has been studied from many persective. It expands from raw data recording into techniques and ideas combining digital image processing, pattern recognition, machine learning and computer graphics. The wide usage has attracted many scholars to integrate with many disciplines and fields. This paper provide a survey of the recent technologies and theoretical concept explaining the development of computer vision especially related to image processing using different areas of their field application. Computer vision helps scholars to analyze images and video to obtain necessary information,    understand information on events or descriptions, and scenic pattern. It used method of multi-range application domain with massive data analysis. This paper provides contribution of recent development on reviews related to computer vision, image processing, and their related studies. We categorized the computer vision mainstream into four group e.g., image processing, object recognition, and machine learning. We also provide brief explanation on the up-to-date information about the techniques and their performance.

  16. Application of chaos and fractals to computer vision

    CERN Document Server

    Farmer, Michael E

    2014-01-01

    This book provides a thorough investigation of the application of chaos theory and fractal analysis to computer vision. The field of chaos theory has been studied in dynamical physical systems, and has been very successful in providing computational models for very complex problems ranging from weather systems to neural pathway signal propagation. Computer vision researchers have derived motivation for their algorithms from biology and physics for many years as witnessed by the optical flow algorithm, the oscillator model underlying graphical cuts and of course neural networks. These algorithm

  17. Machine learning and computer vision approaches for phenotypic profiling.

    Science.gov (United States)

    Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J

    2017-01-02

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.

  18. Low computation vision-based navigation for a Martian rover

    Science.gov (United States)

    Gavin, Andrew S.; Brooks, Rodney A.

    1994-01-01

    Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.

  19. Computer Vision Syndrome: Implications for the Occupational Health Nurse.

    Science.gov (United States)

    Lurati, Ann Regina

    2018-02-01

    Computers and other digital devices are commonly used both in the workplace and during leisure time. Computer vision syndrome (CVS) is a new health-related condition that negatively affects workers. This article reviews the pathology of and interventions for CVS with implications for the occupational health nurse.

  20. DIKU-LASMEA Workshop on Computer Vision, Copenhagen, March, 2009

    DEFF Research Database (Denmark)

    Fihl, Preben

    This report will cover the participation in the DIKU-LASMEA Workshop on Computer Vision held at the department of computer science, University of Copenhagen, in March 2009. The report will give a concise description of the topics presented at the workshop, and briefly discuss how the work relates...... to the HERMES project and human motion and action recognition....

  1. Automated cutting in the food industry using computer vision

    KAUST Repository

    Daley, Wayne D R

    2012-01-01

    The processing of natural products has posed a significant problem to researchers and developers involved in the development of automation. The challenges have come from areas such as sensing, grasping and manipulation, as well as product-specific areas such as cutting and handling of meat products. Meat products are naturally variable and fixed automation is at its limit as far as its ability to accommodate these products. Intelligent automation systems (such as robots) are also challenged, mostly because of a lack of knowledge of the physical characteristic of the individual products. Machine vision has helped to address some of these shortcomings but underperforms in many situations. Developments in sensors, software and processing power are now offering capabilities that will help to make more of these problems tractable. In this chapter we will describe some of the developments that are underway in terms of computer vision for meat product applications, the problems they are addressing and potential future trends. © 2012 Woodhead Publishing Limited All rights reserved.

  2. Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities

    OpenAIRE

    Buyya, Rajkumar; Yeo, Chee Shin; Venugopal, Srikumar

    2008-01-01

    This keynote paper: presents a 21st century vision of computing; identifies various computing paradigms promising to deliver the vision of computing utilities; defines Cloud computing and provides the architecture for creating market-oriented Clouds by leveraging technologies such as VMs; provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; presents...

  3. Application of the SP theory of intelligence to the understanding of natural vision and the development of computer vision.

    Science.gov (United States)

    Wolff, J Gerard

    2014-01-01

    The SP theory of intelligence aims to simplify and integrate concepts in computing and cognition, with information compression as a unifying theme. This article is about how the SP theory may, with advantage, be applied to the understanding of natural vision and the development of computer vision. Potential benefits include an overall simplification of concepts in a universal framework for knowledge and seamless integration of vision with other sensory modalities and other aspects of intelligence. Low level perceptual features such as edges or corners may be identified by the extraction of redundancy in uniform areas in the manner of the run-length encoding technique for information compression. The concept of multiple alignment in the SP theory may be applied to the recognition of objects, and to scene analysis, with a hierarchy of parts and sub-parts, at multiple levels of abstraction, and with family-resemblance or polythetic categories. The theory has potential for the unsupervised learning of visual objects and classes of objects, and suggests how coherent concepts may be derived from fragments. As in natural vision, both recognition and learning in the SP system are robust in the face of errors of omission, commission and substitution. The theory suggests how, via vision, we may piece together a knowledge of the three-dimensional structure of objects and of our environment, it provides an account of how we may see things that are not objectively present in an image, how we may recognise something despite variations in the size of its retinal image, and how raster graphics and vector graphics may be unified. And it has things to say about the phenomena of lightness constancy and colour constancy, the role of context in recognition, ambiguities in visual perception, and the integration of vision with other senses and other aspects of intelligence.

  4. Artificial intelligence, expert systems, computer vision, and natural language processing

    Science.gov (United States)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  5. Computer vision and machine learning with RGB-D sensors

    CERN Document Server

    Shao, Ling; Kohli, Pushmeet

    2014-01-01

    This book presents an interdisciplinary selection of cutting-edge research on RGB-D based computer vision. Features: discusses the calibration of color and depth cameras, the reduction of noise on depth maps and methods for capturing human performance in 3D; reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption and obtain accurate action classification; presents an approach for 3D object retrieval and for the reconstruction of gas flow from multiple Kinect cameras; describes an RGB-D computer vision system designed to assist t

  6. An Enduring Dialogue between Computational and Empirical Vision.

    Science.gov (United States)

    Martinez-Conde, Susana; Macknik, Stephen L; Heeger, David J

    2018-04-01

    In the late 1970s, key discoveries in neurophysiology, psychophysics, computer vision, and image processing had reached a tipping point that would shape visual science for decades to come. David Marr and Ellen Hildreth's 'Theory of edge detection', published in 1980, set out to integrate the newly available wealth of data from behavioral, physiological, and computational approaches in a unifying theory. Although their work had wide and enduring ramifications, their most important contribution may have been to consolidate the foundations of the ongoing dialogue between theoretical and empirical vision science. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. OpenCV 3.0 computer vision with Java

    CERN Document Server

    Baggio, Daniel Lélis

    2015-01-01

    If you are a Java developer, student, researcher, or hobbyist wanting to create computer vision applications in Java then this book is for you. If you are an experienced C/C++ developer who is used to working with OpenCV, you will also find this book very useful for migrating your applications to Java. All you need is basic knowledge of Java, with no prior understanding of computer vision required, as this book will give you clear explanations and examples of the basics.

  8. Computer vision and imaging in intelligent transportation systems

    CERN Document Server

    Bala, Raja; Trivedi, Mohan

    2017-01-01

    Acts as a single source reference providing readers with an overview of how computer vision can contribute to the different applications in the field of road transportation. This book presents a survey of computer vision techniques related to three key broad problems in the roadway transportation domain: safety, efficiency, and law enforcement. The individual chapters present significant applications within these problem domains, each presented in a tutorial manner, describing the motivation for and benefits of the application, and a description of the state of the art.

  9. Centaure: an heterogeneous parallel architecture for computer vision

    International Nuclear Information System (INIS)

    Peythieux, Marc

    1997-01-01

    This dissertation deals with the architecture of parallel computers dedicated to computer vision. In the first chapter, the problem to be solved is presented, as well as the architecture of the Sympati and Symphonie computers, on which this work is based. The second chapter is about the state of the art of computers and integrated processors that can execute computer vision and image processing codes. The third chapter contains a description of the architecture of Centaure. It has an heterogeneous structure: it is composed of a multiprocessor system based on Analog Devices ADSP21060 Sharc digital signal processor, and of a set of Symphonie computers working in a multi-SIMD fashion. Centaure also has a modular structure. Its basic node is composed of one Symphonie computer, tightly coupled to a Sharc thanks to a dual ported memory. The nodes of Centaure are linked together by the Sharc communication links. The last chapter deals with a performance validation of Centaure. The execution times on Symphonie and on Centaure of a benchmark which is typical of industrial vision, are presented and compared. In the first place, these results show that the basic node of Centaure allows a faster execution than Symphonie, and that increasing the size of the tested computer leads to a better speed-up with Centaure than with Symphonie. In the second place, these results validate the choice of running the low level structure of Centaure in a multi- SIMD fashion. (author) [fr

  10. Hubungan Antara Lama Penggunaan Komputer dengan Terjadinya Computer Vision Syndrome

    OpenAIRE

    Sahitra

    2016-01-01

    Computer Vision Syndrome is a list of symptoms to eyes which is caused by usage of computers for a long period of time. It is expected that 88% of computer users will come across this symptoms at least once in their lifetime. Period of usage of computer is one of the factor that causes this syndrome. This study is the type of analytic research with case control approach. The sample for this research are the students in the Computer Science department of University of Sumatera Utara 2012 ba...

  11. 1st International Conference on Computer Vision and Image Processing

    CERN Document Server

    Kumar, Sanjeev; Roy, Partha; Sen, Debashis

    2017-01-01

    This edited volume contains technical contributions in the field of computer vision and image processing presented at the First International Conference on Computer Vision and Image Processing (CVIP 2016). The contributions are thematically divided based on their relation to operations at the lower, middle and higher levels of vision systems, and their applications. The technical contributions in the areas of sensors, acquisition, visualization and enhancement are classified as related to low-level operations. They discuss various modern topics – reconfigurable image system architecture, Scheimpflug camera calibration, real-time autofocusing, climate visualization, tone mapping, super-resolution and image resizing. The technical contributions in the areas of segmentation and retrieval are classified as related to mid-level operations. They discuss some state-of-the-art techniques – non-rigid image registration, iterative image partitioning, egocentric object detection and video shot boundary detection. Th...

  12. Photogrammetric computer vision statistics, geometry, orientation and reconstruction

    CERN Document Server

    Förstner, Wolfgang

    2016-01-01

    This textbook offers a statistical view on the geometry of multiple view analysis, required for camera calibration and orientation and for geometric scene reconstruction based on geometric image features. The authors have backgrounds in geodesy and also long experience with development and research in computer vision, and this is the first book to present a joint approach from the converging fields of photogrammetry and computer vision. Part I of the book provides an introduction to estimation theory, covering aspects such as Bayesian estimation, variance components, and sequential estimation, with a focus on the statistically sound diagnostics of estimation results essential in vision metrology. Part II provides tools for 2D and 3D geometric reasoning using projective geometry. This includes oriented projective geometry and tools for statistically optimal estimation and test of geometric entities and transformations and their rela­tions, tools that are useful also in the context of uncertain reasoning in po...

  13. Computer Vision Systems for Hardwood Logs and Lumber

    Science.gov (United States)

    Philip A. Araman; Tai-Hoon Cho; D. Zhu; R. Conners

    1991-01-01

    Computer vision systems being developed at Virginia Tech University with the support and cooperation from the U.S. Forest Service are presented. Researchers at Michigan State University, West Virginia University, and Mississippi State University are also members of the research team working on various parts of this research. Our goals are to help U.S. hardwood...

  14. PIONEERING WORK IN COMPUTER VISION FOR HISTOLOGY

    OpenAIRE

    Andrei Daniel Timofte; Irina-Draga Căruntu

    2017-01-01

    The concept of computer-assisted training was firstly implemented in UMF Iasi in 1997, through the development of two pioneering digital instruments, namely the Histology Album and the Oral Histology Album. Both were built for learning purposes and became available, at that time, as Internet resources worldwide visible. The application of this particular e-learning method was dictated by the importance of well-defined visual images in acquiring basic histologic principles. Thus, t...

  15. Safety Computer Vision Rules for Improved Sensor Certification

    DEFF Research Database (Denmark)

    Mogensen, Johann Thor Ingibergsson; Kraft, Dirk; Schultz, Ulrik Pagh

    2017-01-01

    Mobile robots are used across many domains from personal care to agriculture. Working in dynamic open-ended environments puts high constraints on the robot perception system, which is critical for the safety of the system as a whole. To achieve the required safety levels the perception system needs...... to be certified, but no specific standards exist for computer vision systems, and the concept of safe vision systems remains largely unexplored. In this paper we present a novel domain-specific language that allows the programmer to express image quality detection rules for enforcing safety constraints...

  16. Grid computing : enabling a vision for collaborative research

    International Nuclear Information System (INIS)

    von Laszewski, G.

    2002-01-01

    In this paper the authors provide a motivation for Grid computing based on a vision to enable a collaborative research environment. The authors vision goes beyond the connection of hardware resources. They argue that with an infrastructure such as the Grid, new modalities for collaborative research are enabled. They provide an overview showing why Grid research is difficult, and they present a number of management-related issues that must be addressed to make Grids a reality. They list projects that provide solutions to subsets of these issues

  17. Computer radiography-X-ray with vision

    International Nuclear Information System (INIS)

    Waitiki, C.

    2006-01-01

    Computer radiography describes an entire process of creating a digital image including acquiring, processing, presenting and managing the image data. the cassettes are special in that they use an imaging plate instead of films. the imaging plate is coated with storage phosphors which captures x-ray as they pass through the patient. the imaging plate is read with a bar code reader and the imaging plate number recorded in the computer. The cassette is then loaded in the reader unit where it is read using infra-red light which excites the particles on the plate which in turn illuminates and picked by photo-sensors which converts the signal into digital pulses. the pulses then run through a board which converts it into an image which is then displayed on the control console. The plate then runs through the erasure section where it is exposed to yellow light, which erases the plate. The IP is then put back in the cassette and locked and can be reused for the next episode

  18. Mahotas: Open source software for scriptable computer vision

    Directory of Open Access Journals (Sweden)

    Luis Pedro Coelho

    2013-07-01

    Full Text Available Mahotas is a computer vision library for Python. It contains traditional image processing functionality such as filtering and morphological operations as well as more modern computer vision functions for feature computation, including interest point detection and local descriptors. The interface is in Python, a dynamic programming language, which is appropriate for fast development, but the algorithms are implemented in C++ and are tuned for speed. The library is designed to fit in with the scientific software ecosystem in this language and can leverage the existing infrastructure developed in that language. Mahotas is released under a liberal open source license (MIT License and is available from http://github.com/luispedro/mahotas and from the Python Package Index (http://pypi.python.org/pypi/mahotas. Tutorials and full API documentation are available online at http://mahotas.readthedocs.org/.

  19. Computer vision for continuous plankton monitoring

    OpenAIRE

    Damian Janusz Matuszewski

    2014-01-01

    Plankton microorganisms constitute the base of the marine food web and play a great role in global atmospheric carbon dioxide drawdown. Moreover, being very sensitive to any environmental changes they allow noticing (and potentially counteracting) them faster than with any other means. As such they not only influence the fishery industry but are also frequently used to analyze changes in exploited coastal areas and the influence of these interferences on local environment and climate. As a co...

  20. Computer Vision Malaria Diagnostic Systems—Progress and Prospects

    Directory of Open Access Journals (Sweden)

    Joseph Joel Pollak

    2017-08-01

    Full Text Available Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of antimalarial drugs, and promote appropriate management of other causes of fever. While several diagnostic tests exist, the need for a rapid and highly accurate malaria assay remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities available, yet they can demonstrate poor performance and accuracy. Automated microscopy platforms have the potential to significantly improve and standardize malaria diagnosis. Based on image recognition and machine learning algorithms, these systems maintain the benefits of light microscopy and provide improvements such as quicker scanning time, greater scanning area, and increased consistency brought by automation. While these applications have been in development for over a decade, recently several commercial platforms have emerged. In this review, we discuss the most advanced computer vision malaria diagnostic technologies and investigate several of their features which are central to field use. Additionally, we discuss the technological and policy barriers to implementing these technologies in low-resource settings world-wide.

  1. A Computer Vision Approach to Identify Einstein Rings and Arcs

    Science.gov (United States)

    Lee, Chien-Hsiu

    2017-03-01

    Einstein rings are rare gems of strong lensing phenomena; the ring images can be used to probe the underlying lens gravitational potential at every position angles, tightly constraining the lens mass profile. In addition, the magnified images also enable us to probe high-z galaxies with enhanced resolution and signal-to-noise ratios. However, only a handful of Einstein rings have been reported, either from serendipitous discoveries or or visual inspections of hundred thousands of massive galaxies or galaxy clusters. In the era of large sky surveys, an automated approach to identify ring pattern in the big data to come is in high demand. Here, we present an Einstein ring recognition approach based on computer vision techniques. The workhorse is the circle Hough transform that recognise circular patterns or arcs in the images. We propose a two-tier approach by first pre-selecting massive galaxies associated with multiple blue objects as possible lens, than use Hough transform to identify circular pattern. As a proof-of-concept, we apply our approach to SDSS, with a high completeness, albeit with low purity. We also apply our approach to other lenses in DES, HSC-SSP, and UltraVISTA survey, illustrating the versatility of our approach.

  2. Computer vision in roadway transportation systems: a survey

    Science.gov (United States)

    Loce, Robert P.; Bernal, Edgar A.; Wu, Wencheng; Bala, Raja

    2013-10-01

    There is a worldwide effort to apply 21st century intelligence to evolving our transportation networks. The goals of smart transportation networks are quite noble and manifold, including safety, efficiency, law enforcement, energy conservation, and emission reduction. Computer vision is playing a key role in this transportation evolution. Video imaging scientists are providing intelligent sensing and processing technologies for a wide variety of applications and services. There are many interesting technical challenges including imaging under a variety of environmental and illumination conditions, data overload, recognition and tracking of objects at high speed, distributed network sensing and processing, energy sources, as well as legal concerns. This paper presents a survey of computer vision techniques related to three key problems in the transportation domain: safety, efficiency, and security and law enforcement. A broad review of the literature is complemented by detailed treatment of a few selected algorithms and systems that the authors believe represent the state-of-the-art.

  3. Monitoring system of multiple fire fighting based on computer vision

    Science.gov (United States)

    Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2010-10-01

    With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.

  4. Possible Computer Vision Systems and Automated or Computer-Aided Edging and Trimming

    Science.gov (United States)

    Philip A. Araman

    1990-01-01

    This paper discusses research which is underway to help our industry reduce costs, increase product volume and value recovery, and market more accurately graded and described products. The research is part of a team effort to help the hardwood sawmill industry automate with computer vision systems, and computer-aided or computer controlled processing. This paper...

  5. Quality Parameters of Six Cultivars of Blueberry Using Computer Vision

    Directory of Open Access Journals (Sweden)

    Silvia Matiacevich

    2013-01-01

    Full Text Available Background. Blueberries are considered an important source of health benefits. This work studied six blueberry cultivars: “Duke,” “Brigitta”, “Elliott”, “Centurion”, “Star,” and “Jewel”, measuring quality parameters such as °Brix, pH, moisture content using standard techniques and shape, color, and fungal presence obtained by computer vision. The storage conditions were time (0–21 days, temperature (4 and 15°C, and relative humidity (75 and 90%. Results. Significant differences (P<0.05 were detected between fresh cultivars in pH, °Brix, shape, and color. However, the main parameters which changed depending on storage conditions, increasing at higher temperature, were color (from blue to red and fungal presence (from 0 to 15%, both detected using computer vision, which is important to determine a shelf life of 14 days for all cultivars. Similar behavior during storage was obtained for all cultivars. Conclusion. Computer vision proved to be a reliable and simple method to objectively determine blueberry decay during storage that can be used as an alternative approach to currently used subjective measurements.

  6. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Multimedia

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  7. Computer vision based nacre thickness measurement of Tahitian pearls

    Science.gov (United States)

    Loesdau, Martin; Chabrier, Sébastien; Gabillon, Alban

    2017-03-01

    The Tahitian Pearl is the most valuable export product of French Polynesia contributing with over 61 million Euros to more than 50% of the total export income. To maintain its excellent reputation on the international market, an obligatory quality control for every pearl deemed for exportation has been established by the local government. One of the controlled quality parameters is the pearls nacre thickness. The evaluation is currently done manually by experts that are visually analyzing X-ray images of the pearls. In this article, a computer vision based approach to automate this procedure is presented. Even though computer vision based approaches for pearl nacre thickness measurement exist in the literature, the very specific features of the Tahitian pearl, namely the large shape variety and the occurrence of cavities, have so far not been considered. The presented work closes the. Our method consists of segmenting the pearl from X-ray images with a model-based approach, segmenting the pearls nucleus with an own developed heuristic circle detection and segmenting possible cavities with region growing. Out of the obtained boundaries, the 2-dimensional nacre thickness profile can be calculated. A certainty measurement to consider imaging and segmentation imprecisions is included in the procedure. The proposed algorithms are tested on 298 manually evaluated Tahitian pearls, showing that it is generally possible to automatically evaluate the nacre thickness of Tahitian pearls with computer vision. Furthermore the results show that the automatic measurement is more precise and faster than the manual one.

  8. Effect of contact lens use on Computer Vision Syndrome.

    Science.gov (United States)

    Tauste, Ana; Ronda, Elena; Molina, María-José; Seguí, Mar

    2016-03-01

    To analyse the relationship between Computer Vision Syndrome (CVS) in computer workers and contact lens use, according to lens materials. Cross-sectional study. The study included 426 civil-service office workers, of whom 22% were contact lens wearers. Workers completed the Computer Vision Syndrome Questionnaire (CVS-Q) and provided information on their contact lenses and exposure to video display terminals (VDT) at work. CVS was defined as a CVS-Q score of 6 or more. The covariates were age and sex. Logistic regression was used to calculate the association (crude and adjusted for age and sex) between CVS and individual and work-related factors, and between CVS and contact lens type. Contact lens wearers are more likely to suffer CVS than non-lens wearers, with a prevalence of 65% vs 50%. Workers who wear contact lenses and are exposed to the computer for more than 6 h day(-1) are more likely to suffer CVS than non-lens wearers working at the computer for the same amount of time (aOR = 4.85; 95% CI, 1.25-18.80; p = 0.02). Regular contact lens use increases CVS after 6 h of computer work. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  9. Remote media vision-based computer input device

    Science.gov (United States)

    Arabnia, Hamid R.; Chen, Ching-Yi

    1991-11-01

    In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.

  10. Computer vision syndrome and ergonomic practices among undergraduate university students.

    Science.gov (United States)

    Mowatt, Lizette; Gordon, Carron; Santosh, Arvind Babu Rajendra; Jones, Thaon

    2018-01-01

    To determine the prevalence of computer vision syndrome (CVS) and ergonomic practices among students in the Faculty of Medical Sciences at The University of the West Indies (UWI), Jamaica. A cross-sectional study was done with a self-administered questionnaire. Four hundred and nine students participated; 78% were females. The mean age was 21.6 years. Neck pain (75.1%), eye strain (67%), shoulder pain (65.5%) and eye burn (61.9%) were the most common CVS symptoms. Dry eyes (26.2%), double vision (28.9%) and blurred vision (51.6%) were the least commonly experienced symptoms. Eye burning (P = .001), eye strain (P = .041) and neck pain (P = .023) were significantly related to level of viewing. Moderate eye burning (55.1%) and double vision (56%) occurred in those who used handheld devices (P = .001 and .007, respectively). Moderate blurred vision was reported in 52% who looked down at the device compared with 14.8% who held it at an angle. Severe eye strain occurred in 63% of those who looked down at a device compared with 21% who kept the device at eye level. Shoulder pain was not related to pattern of use. Ocular symptoms and neck pain were less likely if the device was held just below eye level. There is a high prevalence of Symptoms of CVS amongst university students which could be reduced, in particular neck pain and eye strain and burning, with improved ergonomic practices. © 2017 John Wiley & Sons Ltd.

  11. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    Science.gov (United States)

    Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri

    2014-01-01

    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.

  12. Computer vision techniques for rotorcraft low altitude flight

    Science.gov (United States)

    Sridhar, Banavar

    1990-01-01

    Rotorcraft operating in high-threat environments fly close to the earth's surface to utilize surrounding terrain, vegetation, or manmade objects to minimize the risk of being detected by an enemy. Increasing levels of concealment are achieved by adopting different tactics during low-altitude flight. Rotorcraft employ three tactics during low-altitude flight: low-level, contour, and nap-of-the-earth (NOE). The key feature distinguishing the NOE mode from the other two modes is that the whole rotorcraft, including the main rotor, is below tree-top whenever possible. This leads to the use of lateral maneuvers for avoiding obstacles, which in fact constitutes the means for concealment. The piloting of the rotorcraft is at best a very demanding task and the pilot will need help from onboard automation tools in order to devote more time to mission-related activities. The development of an automation tool which has the potential to detect obstacles in the rotorcraft flight path, warn the crew, and interact with the guidance system to avoid detected obstacles, presents challenging problems. Research is described which applies techniques from computer vision to automation of rotorcraft navigtion. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle-detection approach can be used as obstacle data for the obstacle avoidance in an automatic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. The presentation concludes with some comments on future work and how research in this area relates to the guidance of other autonomous vehicles.

  13. Signal- and Symbol-based Representations in Computer Vision

    DEFF Research Database (Denmark)

    Krüger, Norbert; Felsberg, Michael

    We discuss problems of signal-- and symbol based representations in terms of three dilemmas which are faced in the design of each vision system. Signal- and symbol-based representations are opposite ends of a spectrum of conceivable design decisions caught at opposite sides of the dilemmas. We make...... inherent problems explicit and describe potential design decisions for artificial visual systems to deal with the dilemmas....

  14. Dataflow-Based Mapping of Computer Vision Algorithms onto FPGAs

    Directory of Open Access Journals (Sweden)

    Ivan Corretjer

    2007-01-01

    Full Text Available We develop a design methodology for mapping computer vision algorithms onto an FPGA through the use of coarse-grain reconfigurable dataflow graphs as a representation to guide the designer. We first describe a new dataflow modeling technique called homogeneous parameterized dataflow (HPDF, which effectively captures the structure of an important class of computer vision applications. This form of dynamic dataflow takes advantage of the property that in a large number of image processing applications, data production and consumption rates can vary, but are equal across dataflow graph edges for any particular application iteration. After motivating and defining the HPDF model of computation, we develop an HPDF-based design methodology that offers useful properties in terms of verifying correctness and exposing performance-enhancing transformations; we discuss and address various challenges in efficiently mapping an HPDF-based application representation into target-specific HDL code; and we present experimental results pertaining to the mapping of a gesture recognition application onto the Xilinx Virtex II FPGA.

  15. Ergophthalmology in accounting offices: the computer vision syndrome (CVS

    Directory of Open Access Journals (Sweden)

    Arjuna Nudi Perin

    Full Text Available Abstract Purpose: This study aimed to determine the presence of the symptoms of computer vision syndrome (CVS accounting office employees. Methods: The research tools used were a questionnaire based on the set of symptoms of CVS rated by Likert scale (1-5 and workplace observations based on Ergonomic Workplace Analysis (EWA. Results: The participants who worked with a viewing angle of less than 10º relative to the screen had more symptoms, particularly of pain in the back of the neck and back (p = 0.0460. The participants who used lighting other than 450 and 699 lux reported significant headache (p = 0.0045 and dry eye (p = 0.0329 symptoms. Younger workers had more headaches (p = 0.0182, and workers with fewer years of employment had more headaches and dry eyes symptoms (p = 0.0164 and p = 0.0479, respectively. A total of 37% of the participants reported a lack of guidance regarding prevention and painful symptoms in the back of the neck and back (p = 0.0936. Conclusion: Younger participants with fewer years of employment, who had not received information regarding proper computer use, who did not use lighting between 450 and 699 lux or who worked with viewing angles of less than 10º had more computer vision syndrome symptoms.

  16. Fusion in computer vision understanding complex visual content

    CERN Document Server

    Ionescu, Bogdan; Piatrik, Tomas

    2014-01-01

    This book presents a thorough overview of fusion in computer vision, from an interdisciplinary and multi-application viewpoint, describing successful approaches, evaluated in the context of international benchmarks that model realistic use cases. Features: examines late fusion approaches for concept recognition in images and videos; describes the interpretation of visual content by incorporating models of the human visual system with content understanding methods; investigates the fusion of multi-modal features of different semantic levels, as well as results of semantic concept detections, fo

  17. Computer vision applications for coronagraphic optical alignment and image processing.

    Science.gov (United States)

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  18. Shape perception in human and computer vision an interdisciplinary perspective

    CERN Document Server

    Dickinson, Sven J

    2013-01-01

    This comprehensive and authoritative text/reference presents a unique, multidisciplinary perspective on Shape Perception in Human and Computer Vision. Rather than focusing purely on the state of the art, the book provides viewpoints from world-class researchers reflecting broadly on the issues that have shaped the field. Drawing upon many years of experience, each contributor discusses the trends followed and the progress made, in addition to identifying the major challenges that still lie ahead. Topics and features: examines each topic from a range of viewpoints, rather than promoting a speci

  19. Comparison of progressive addition lenses for general purpose and for computer vision: an office field study.

    Science.gov (United States)

    Jaschinski, Wolfgang; König, Mirjam; Mekontso, Tiofil M; Ohlendorf, Arne; Welscher, Monique

    2015-05-01

    Two types of progressive addition lenses (PALs) were compared in an office field study: 1. General purpose PALs with continuous clear vision between infinity and near reading distances and 2. Computer vision PALs with a wider zone of clear vision at the monitor and in near vision but no clear distance vision. Twenty-three presbyopic participants wore each type of lens for two weeks in a double-masked four-week quasi-experimental procedure that included an adaptation phase (Weeks 1 and 2) and a test phase (Weeks 3 and 4). Questionnaires on visual and musculoskeletal conditions as well as preferences regarding the type of lenses were administered. After eight more weeks of free use of the spectacles, the preferences were assessed again. The ergonomic conditions were analysed from photographs. Head inclination when looking at the monitor was significantly lower by 2.3 degrees with the computer vision PALs than with the general purpose PALs. Vision at the monitor was judged significantly better with computer PALs, while distance vision was judged better with general purpose PALs; however, the reported advantage of computer vision PALs differed in extent between participants. Accordingly, 61 per cent of the participants preferred the computer vision PALs, when asked without information about lens design. After full information about lens characteristics and additional eight weeks of free spectacle use, 44 per cent preferred the computer vision PALs. On average, computer vision PALs were rated significantly better with respect to vision at the monitor during the experimental part of the study. In the final forced-choice ratings, approximately half of the participants preferred either the computer vision PAL or the general purpose PAL. Individual factors seem to play a role in this preference and in the rated advantage of computer vision PALs. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  20. Picture processing computer to control movement by computer provided vision

    Energy Technology Data Exchange (ETDEWEB)

    Graefe, V

    1983-01-01

    The author introduces a multiprocessor system which has been specially developed to enable mechanical devices to interpret pictures presented in real time. The separate processors within this system operate simultaneously and independently. By means of freely moveable windows the processors can concentrate on those parts of the picture that are relevant to the control problem. If a machine is to make a correct response to its observation of a picture of moving objects, it must be able to follow the picture sequence, step by step, in real time. As the usual serially operating processors are too slow for such a task, the author describes three models of a special picture processing computer which it has been necessary to develop. 3 references.

  1. Perceptual organization in computer vision - A review and a proposal for a classificatory structure

    Science.gov (United States)

    Sarkar, Sudeep; Boyer, Kim L.

    1993-01-01

    The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.

  2. Foreword to the theme issue on geospatial computer vision

    Science.gov (United States)

    Wegner, Jan Dirk; Tuia, Devis; Yang, Michael; Mallet, Clement

    2018-06-01

    Geospatial Computer Vision has become one of the most prevalent emerging fields of investigation in Earth Observation in the last few years. In this theme issue, we aim at showcasing a number of works at the interface between remote sensing, photogrammetry, image processing, computer vision and machine learning. In light of recent sensor developments - both from the ground as from above - an unprecedented (and ever growing) quantity of geospatial data is available for tackling challenging and urgent tasks such as environmental monitoring (deforestation, carbon sequestration, climate change mitigation), disaster management, autonomous driving or the monitoring of conflicts. The new bottleneck for serving these applications is the extraction of relevant information from such large amounts of multimodal data. This includes sources, stemming from multiple sensors, that exhibit distinct physical nature of heterogeneous quality, spatial, spectral and temporal resolutions. They are as diverse as multi-/hyperspectral satellite sensors, color cameras on drones, laser scanning devices, existing open land-cover geodatabases and social media. Such core data processing is mandatory so as to generate semantic land-cover maps, accurate detection and trajectories of objects of interest, as well as by-products of superior added-value: georeferenced data, images with enhanced geometric and radiometric qualities, or Digital Surface and Elevation Models.

  3. Computer Vision Based Measurement of Wildfire Smoke Dynamics

    Directory of Open Access Journals (Sweden)

    BUGARIC, M.

    2015-02-01

    Full Text Available This article presents a novel method for measurement of wildfire smoke dynamics based on computer vision and augmented reality techniques. The aspect of smoke dynamics is an important feature in video smoke detection that could distinguish smoke from visually similar phenomena. However, most of the existing smoke detection systems are not capable of measuring the real-world size of the detected smoke regions. Using computer vision and GIS-based augmented reality, we measure the real dimensions of smoke plumes, and observe the change in size over time. The measurements are performed on offline video data with known camera parameters and location. The observed data is analyzed in order to create a classifier that could be used to eliminate certain categories of false alarms induced by phenomena with different dynamics than smoke. We carried out an offline evaluation where we measured the improvement in the detection process achieved using the proposed smoke dynamics characteristics. The results show a significant increase in algorithm performance, especially in terms of reducing false alarms rate. From this it follows that the proposed method for measurement of smoke dynamics could be used to improve existing smoke detection algorithms, or taken into account when designing new ones.

  4. Computer vision uncovers predictors of physical urban change.

    Science.gov (United States)

    Naik, Nikhil; Kominers, Scott Duke; Raskar, Ramesh; Glaeser, Edward L; Hidalgo, César A

    2017-07-18

    Which neighborhoods experience physical improvements? In this paper, we introduce a computer vision method to measure changes in the physical appearances of neighborhoods from time-series street-level imagery. We connect changes in the physical appearance of five US cities with economic and demographic data and find three factors that predict neighborhood improvement. First, neighborhoods that are densely populated by college-educated adults are more likely to experience physical improvements-an observation that is compatible with the economic literature linking human capital and local success. Second, neighborhoods with better initial appearances experience, on average, larger positive improvements-an observation that is consistent with "tipping" theories of urban change. Third, neighborhood improvement correlates positively with physical proximity to the central business district and to other physically attractive neighborhoods-an observation that is consistent with the "invasion" theories of urban sociology. Together, our results provide support for three classical theories of urban change and illustrate the value of using computer vision methods and street-level imagery to understand the physical dynamics of cities.

  5. THE PIXHAWK OPEN-SOURCE COMPUTER VISION FRAMEWORK FOR MAVS

    Directory of Open Access Journals (Sweden)

    L. Meier

    2012-09-01

    Full Text Available Unmanned aerial vehicles (UAV and micro air vehicles (MAV are already intensively used in geodetic applications. State of the art autonomous systems are however geared towards the application area in safe and obstacle-free altitudes greater than 30 meters. Applications at lower altitudes still require a human pilot. A new application field will be the reconstruction of structures and buildings, including the facades and roofs, with semi-autonomous MAVs. Ongoing research in the MAV robotics field is focusing on enabling this system class to operate at lower altitudes in proximity to nearby obstacles and humans. PIXHAWK is an open source and open hardware toolkit for this purpose. The quadrotor design is optimized for onboard computer vision and can connect up to four cameras to its onboard computer. The validity of the system design is shown with a fully autonomous capture flight along a building.

  6. Heterogeneous compute in computer vision: OpenCL in OpenCV

    Science.gov (United States)

    Gasparakis, Harris

    2014-02-01

    We explore the relevance of Heterogeneous System Architecture (HSA) in Computer Vision, both as a long term vision, and as a near term emerging reality via the recently ratified OpenCL 2.0 Khronos standard. After a brief review of OpenCL 1.2 and 2.0, including HSA features such as Shared Virtual Memory (SVM) and platform atomics, we identify what genres of Computer Vision workloads stand to benefit by leveraging those features, and we suggest a new mental framework that replaces GPU compute with hybrid HSA APU compute. As a case in point, we discuss, in some detail, popular object recognition algorithms (part-based models), emphasizing the interplay and concurrent collaboration between the GPU and CPU. We conclude by describing how OpenCL has been incorporated in OpenCV, a popular open source computer vision library, emphasizing recent work on the Transparent API, to appear in OpenCV 3.0, which unifies the native CPU and OpenCL execution paths under a single API, allowing the same code to execute either on CPU or on a OpenCL enabled device, without even recompiling.

  7. COMPUTER VISION AND FACE RECOGNITION : Tietokonenäkö ja kasvojentunnistus

    OpenAIRE

    Ballester, Felipe

    2010-01-01

    Computer vision is a rapidly growing field, partly because of the affordable hardware (cameras, processing power) and partly because vision algorithms are starting to mature. This field started with the motivation to study how computers process images and how to apply this knowledge to develop useful programs. The purposes of this study were to give valuable knowledge for those who are interested in computer vision, and to implement a facial recognition application using the OpenCV librar...

  8. Computer vision syndrome-A common cause of unexplained visual symptoms in the modern era.

    Science.gov (United States)

    Munshi, Sunil; Varghese, Ashley; Dhar-Munshi, Sushma

    2017-07-01

    The aim of this study was to assess the evidence and available literature on the clinical, pathogenetic, prognostic and therapeutic aspects of Computer vision syndrome. Information was collected from Medline, Embase & National Library of Medicine over the last 30 years up to March 2016. The bibliographies of relevant articles were searched for additional references. Patients with Computer vision syndrome present to a variety of different specialists, including General Practitioners, Neurologists, Stroke physicians and Ophthalmologists. While the condition is common, there is a poor awareness in the public and among health professionals. Recognising this condition in the clinic or in emergency situations like the TIA clinic is crucial. The implications are potentially huge in view of the extensive and widespread use of computers and visual display units. Greater public awareness of Computer vision syndrome and education of health professionals is vital. Preventive strategies should form part of work place ergonomics routinely. Prompt and correct recognition is important to allow management and avoid unnecessary treatments. © 2017 John Wiley & Sons Ltd.

  9. Online Graph Completion: Multivariate Signal Recovery in Computer Vision.

    Science.gov (United States)

    Kim, Won Hwa; Jalal, Mona; Hwang, Seongjae; Johnson, Sterling C; Singh, Vikas

    2017-07-01

    The adoption of "human-in-the-loop" paradigms in computer vision and machine learning is leading to various applications where the actual data acquisition (e.g., human supervision) and the underlying inference algorithms are closely interwined. While classical work in active learning provides effective solutions when the learning module involves classification and regression tasks, many practical issues such as partially observed measurements, financial constraints and even additional distributional or structural aspects of the data typically fall outside the scope of this treatment. For instance, with sequential acquisition of partial measurements of data that manifest as a matrix (or tensor), novel strategies for completion (or collaborative filtering) of the remaining entries have only been studied recently. Motivated by vision problems where we seek to annotate a large dataset of images via a crowdsourced platform or alternatively, complement results from a state-of-the-art object detector using human feedback, we study the "completion" problem defined on graphs, where requests for additional measurements must be made sequentially. We design the optimization model in the Fourier domain of the graph describing how ideas based on adaptive submodularity provide algorithms that work well in practice. On a large set of images collected from Imgur, we see promising results on images that are otherwise difficult to categorize. We also show applications to an experimental design problem in neuroimaging.

  10. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    OpenAIRE

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of tra...

  11. Computer vision techniques for the diagnosis of skin cancer

    CERN Document Server

    Celebi, M

    2014-01-01

    The goal of this volume is to summarize the state-of-the-art in the utilization of computer vision techniques in the diagnosis of skin cancer. Malignant melanoma is one of the most rapidly increasing cancers in the world. Early diagnosis is particularly important since melanoma can be cured with a simple excision if detected early. In recent years, dermoscopy has proved valuable in visualizing the morphological structures in pigmented lesions. However, it has also been shown that dermoscopy is difficult to learn and subjective. Newer technologies such as infrared imaging, multispectral imaging, and confocal microscopy, have recently come to the forefront in providing greater diagnostic accuracy. These imaging technologies presented in this book can serve as an adjunct to physicians and  provide automated skin cancer screening. Although computerized techniques cannot as yet provide a definitive diagnosis, they can be used to improve biopsy decision-making as well as early melanoma detection, especially for pa...

  12. Computer vision techniques for rotorcraft low-altitude flight

    Science.gov (United States)

    Sridhar, Banavar; Cheng, Victor H. L.

    1988-01-01

    A description is given of research that applies techniques from computer vision to automation of rotorcraft navigation. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle detection approach can be used as obstacle data for the obstacle avoidance in an automataic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data, however, presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. Some comments are made on future work and how research in this area relates to the guidance of other autonomous vehicles.

  13. Template matching techniques in computer vision theory and practice

    CERN Document Server

    Brunelli, Roberto

    2009-01-01

    The detection and recognition of objects in images is a key research topic in the computer vision community.  Within this area, face recognition and interpretation has attracted increasing attention owing to the possibility of unveiling human perception mechanisms, and for the development of practical biometric systems. This book and the accompanying website, focus on template matching, a subset of object recognition techniques of wide applicability, which has proved to be particularly effective for face recognition applications. Using examples from face processing tasks throughout the book to illustrate more general object recognition approaches, Roberto Brunelli: examines the basics of digital image formation, highlighting points critical to the task of template matching;presents basic and  advanced template matching techniques, targeting grey-level images, shapes and point sets;discusses recent pattern classification paradigms from a template matching perspective;illustrates the development of a real fac...

  14. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  15. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  16. Topics in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2013-01-01

      The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery.   Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation.   The book brings together the current state-of-the-art in the various mul...

  17. Iris features-based heart disease diagnosis by computer vision

    Science.gov (United States)

    Nguchu, Benedictor A.; Li, Li

    2017-07-01

    The study takes advantage of several new breakthroughs in computer vision technology to develop a new mid-irisbiomedical platform that processes iris image for early detection of heart-disease. Guaranteeing early detection of heart disease provides a possibility of having non-surgical treatment as suggested by biomedical researchers and associated institutions. However, our observation discovered that, a clinical practicable solution which could be both sensible and specific for early detection is still lacking. Due to this, the rate of majority vulnerable to death is highly increasing. The delayed diagnostic procedures, inefficiency, and complications of available methods are the other reasons for this catastrophe. Therefore, this research proposes the novel IFB (Iris Features Based) method for diagnosis of premature, and early stage heart disease. The method incorporates computer vision and iridology to obtain a robust, non-contact, nonradioactive, and cost-effective diagnostic tool. The method analyzes abnormal inherent weakness in tissues, change in color and patterns, of a specific region of iris that responds to impulses of heart organ as per Bernard Jensen-iris Chart. The changes in iris infer the presence of degenerative abnormalities in heart organ. These changes are precisely detected and analyzed by IFB method that includes, tensor-based-gradient(TBG), multi orientations gabor filters(GF), textural oriented features(TOF), and speed-up robust features(SURF). Kernel and Multi class oriented support vector machines classifiers are used for classifying normal and pathological iris features. Experimental results demonstrated that the proposed method, not only has better diagnostic performance, but also provides an insight for early detection of other diseases.

  18. Computer and visual display terminals (VDT) vision syndrome (CVDTS).

    Science.gov (United States)

    Parihar, J K S; Jain, Vaibhav Kumar; Chaturvedi, Piyush; Kaushik, Jaya; Jain, Gunjan; Parihar, Ashwini K S

    2016-07-01

    Computer and visual display terminals have become an essential part of modern lifestyle. The use of these devices has made our life simple in household work as well as in offices. However the prolonged use of these devices is not without any complication. Computer and visual display terminals syndrome is a constellation of symptoms ocular as well as extraocular associated with prolonged use of visual display terminals. This syndrome is gaining importance in this modern era because of the widespread use of technologies in day-to-day life. It is associated with asthenopic symptoms, visual blurring, dry eyes, musculoskeletal symptoms such as neck pain, back pain, shoulder pain, carpal tunnel syndrome, psychosocial factors, venous thromboembolism, shoulder tendonitis, and elbow epicondylitis. Proper identification of symptoms and causative factors are necessary for the accurate diagnosis and management. This article focuses on the various aspects of the computer vision display terminals syndrome described in the previous literature. Further research is needed for the better understanding of the complex pathophysiology and management.

  19. Computer-Vision-Assisted Palm Rehabilitation With Supervised Learning.

    Science.gov (United States)

    Vamsikrishna, K M; Dogra, Debi Prosad; Desarkar, Maunendra Sankar

    2016-05-01

    Physical rehabilitation supported by the computer-assisted-interface is gaining popularity among health-care fraternity. In this paper, we have proposed a computer-vision-assisted contactless methodology to facilitate palm and finger rehabilitation. Leap motion controller has been interfaced with a computing device to record parameters describing 3-D movements of the palm of a user undergoing rehabilitation. We have proposed an interface using Unity3D development platform. Our interface is capable of analyzing intermediate steps of rehabilitation without the help of an expert, and it can provide online feedback to the user. Isolated gestures are classified using linear discriminant analysis (DA) and support vector machines (SVM). Finally, a set of discrete hidden Markov models (HMM) have been used to classify gesture sequence performed during rehabilitation. Experimental validation using a large number of samples collected from healthy volunteers reveals that DA and SVM perform similarly while applied on isolated gesture recognition. We have compared the results of HMM-based sequence classification with CRF-based techniques. Our results confirm that both HMM and CRF perform quite similarly when tested on gesture sequences. The proposed system can be used for home-based palm or finger rehabilitation in the absence of experts.

  20. Hubungan Antara Faktor Risiko Individual Dan Komputer Terhadap Kejadian Computer Vision Syndrome

    OpenAIRE

    Azkadina, Amira; Julianti, Hari Peni; Pramono, Dodik

    2012-01-01

    Background : Computer USAge could cause health complaints called Computer Vision Syndrome (CVS). This syndrome was influenced by individual and computer risk factors. The objective of the study is to identify and to analyze individual and computer factors of Computer Vision Syndrome (CVS).Method : The study was an observational study by using case control method, which was held on May-June 2012 in RSI Sultan Agung, RSUP dr.Kariadi, and Bank Jateng. The samples were 60 people who were chosen b...

  1. The computer vision in the service of safety and reliability in steam generators inspection services

    International Nuclear Information System (INIS)

    Pineiro Fernandez, P.; Garcia Bueno, A.; Cabrera Jordan, E.

    2012-01-01

    The actual computational vision has matured very quickly in the last ten years by facilitating new developments in various areas of nuclear application allowing to automate and simplify processes and tasks, instead or in collaboration with the people and equipment efficiently. The current computer vision (more appropriate than the artificial vision concept) provides great possibilities of also improving in terms of the reliability and safety of NPPS inspection systems.

  2. Blink rate, incomplete blinks and computer vision syndrome.

    Science.gov (United States)

    Portello, Joan K; Rosenfield, Mark; Chu, Christina A

    2013-05-01

    Computer vision syndrome (CVS), a highly prevalent condition, is frequently associated with dry eye disorders. Furthermore, a reduced blink rate has been observed during computer use. The present study examined whether post task ocular and visual symptoms are associated with either a decreased blink rate or a higher prevalence of incomplete blinks. An additional trial tested whether increasing the blink rate would reduce CVS symptoms. Subjects (N = 21) were required to perform a continuous 15-minute reading task on a desktop computer at a viewing distance of 50 cm. Subjects were videotaped during the task to determine their blink rate and amplitude. Immediately after the task, subjects completed a questionnaire regarding ocular symptoms experienced during the trial. In a second session, the blink rate was increased by means of an audible tone that sounded every 4 seconds, with subjects being instructed to blink on hearing the tone. The mean blink rate during the task without the audible tone was 11.6 blinks per minute (SD, 7.84). The percentage of blinks deemed incomplete for each subject ranged from 0.9 to 56.5%, with a mean of 16.1% (SD, 15.7). A significant positive correlation was observed between the total symptom score and the percentage of incomplete blinks during the task (p = 0.002). Furthermore, a significant negative correlation was noted between the blink score and symptoms (p = 0.035). Increasing the mean blink rate to 23.5 blinks per minute by means of the audible tone did not produce a significant change in the symptom score. Whereas CVS symptoms are associated with a reduced blink rate, the completeness of the blink may be equally significant. Because instructing a patient to increase his or her blink rate may be ineffective or impractical, actions to achieve complete corneal coverage during blinking may be more helpful in alleviating symptoms during computer operation.

  3. Experiences Using an Open Source Software Library to Teach Computer Vision Subjects

    Science.gov (United States)

    Cazorla, Miguel; Viejo, Diego

    2015-01-01

    Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with emphasis on readability and…

  4. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    International Nuclear Information System (INIS)

    Moore, Kevin L.; Moiseenko, Vitali; Kagadis, George C.; McNutt, Todd R.; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy

  5. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States); Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); McNutt, Todd R. [Department of Radiation Oncology and Molecular Radiation Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Mutic, Sasa [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110 (United States)

    2014-01-15

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  6. Vision 20/20: Automation and advanced computing in clinical radiation oncology.

    Science.gov (United States)

    Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  7. Particular application of methods of AdaBoost and LBP to the problems of computer vision

    OpenAIRE

    Волошин, Микола Володимирович

    2012-01-01

    The application of AdaBoost method and local binary pattern (LBP) method for different spheres of computer vision implementation, such as personality identification and computer iridology, is considered in the article. The goal of the research is to develop error-correcting methods and systems for implements of computer vision and computer iridology, in particular. This article considers the problem of colour spaces, which are used as a filter and as a pre-processing of images. Method of AdaB...

  8. Computer Vision for the Solar Dynamics Observatory (SDO)

    Science.gov (United States)

    Martens, P. C. H.; Attrill, G. D. R.; Davey, A. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Savcheva, A.; Su, Y.; Testa, P.; Wills-Davey, M.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F.; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgoulis, M. K.; McAteer, R. T. J.; Timmons, R. P.

    2012-01-01

    In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre- Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic

  9. Selection of Norway spruce somatic embryos by computer vision

    Science.gov (United States)

    Hamalainen, Jari J.; Jokinen, Kari J.

    1993-05-01

    A computer vision system was developed for the classification of plant somatic embryos. The embryos are in a Petri dish that is transferred with constant speed and they are recognized as they pass a line scan camera. A classification algorithm needs to be installed for every plant species. This paper describes an algorithm for the recognition of Norway spruce (Picea abies) embryos. A short review of conifer micropropagation by somatic embryogenesis is also given. The recognition algorithm is based on features calculated from the boundary of the object. Only part of the boundary corresponding to the developing cotyledons (2 - 15) and the straight sides of the embryo are used for recognition. An index of the length of the cotyledons describes the developmental stage of the embryo. The testing set for classifier performance consisted of 118 embryos and 478 nonembryos. With the classification tolerances chosen 69% of the objects classified as embryos by a human classifier were selected and 31$% rejected. Less than 1% of the nonembryos were classified as embryos. The basic features developed can probably be easily adapted for the recognition of other conifer somatic embryos.

  10. A computer vision based candidate for functional balance test.

    Science.gov (United States)

    Nalci, Alican; Khodamoradi, Alireza; Balkan, Ozgur; Nahab, Fatta; Garudadri, Harinath

    2015-08-01

    Balance in humans is a motor skill based on complex multimodal sensing, processing and control. Ability to maintain balance in activities of daily living (ADL) is compromised due to aging, diseases, injuries and environmental factors. Center for Disease Control and Prevention (CDC) estimate of the costs of falls among older adults was $34 billion in 2013 and is expected to reach $54.9 billion in 2020. In this paper, we present a brief review of balance impairments followed by subjective and objective tools currently used in clinical settings for human balance assessment. We propose a novel computer vision (CV) based approach as a candidate for functional balance test. The test will take less than a minute to administer and expected to be objective, repeatable and highly discriminative in quantifying ability to maintain posture and balance. We present an informal study with preliminary data from 10 healthy volunteers, and compare performance with a balance assessment system called BTrackS Balance Assessment Board. Our results show high degree of correlation with BTrackS. The proposed system promises to be a good candidate for objective functional balance tests and warrants further investigations to assess validity in clinical settings, including acute care, long term care and assisted living care facilities. Our long term goals include non-intrusive approaches to assess balance competence during ADL in independent living environments.

  11. Identification of double-yolked duck egg using computer vision.

    Directory of Open Access Journals (Sweden)

    Long Ma

    Full Text Available The double-yolked (DY egg is quite popular in some Asian countries because it is considered as a sign of good luck, however, the double yolk is one of the reasons why these eggs fail to hatch. The usage of automatic methods for identifying DY eggs can increase the efficiency in the poultry industry by decreasing egg loss during incubation or improving sale proceeds. In this study, two methods for DY duck egg identification were developed by using computer vision technology. Transmittance images of DY and single-yolked (SY duck eggs were acquired by a CCD camera to identify them according to their shape features. The Fisher's linear discriminant (FLD model equipped with a set of normalized Fourier descriptors (NFDs extracted from the acquired images and the convolutional neural network (CNN model using primary preprocessed images were built to recognize duck egg yolk types. The classification accuracies of the FLD model for SY and DY eggs were 100% and 93.2% respectively, while the classification accuracies of the CNN model for SY and DY eggs were 98% and 98.8% respectively. The CNN-based algorithm took about 0.12 s to recognize one sample image, which was slightly faster than the FLD-based (about 0.20 s. Finally, this work compared two classification methods and provided the better method for DY egg identification.

  12. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    Science.gov (United States)

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  13. Computer Vision Syndrome and Associated Factors Among Medical and Engineering Students in Chennai

    OpenAIRE

    Logaraj, M; Madhupriya, V; Hegde, SK

    2014-01-01

    Background: Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. Aim: The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. Subjects and Methods: A cross-sectional study was conducted...

  14. Dynamic Programming and Graph Algorithms in Computer Vision*

    Science.gov (United States)

    Felzenszwalb, Pedro F.; Zabih, Ramin

    2013-01-01

    Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950

  15. Learning openCV computer vision with the openCV library

    CERN Document Server

    Bradski, Gary

    2008-01-01

    Learning OpenCV puts you right in the middle of the rapidly expanding field of computer vision. Written by the creators of OpenCV, the widely used free open-source library, this book introduces you to computer vision and demonstrates how you can quickly build applications that enable computers to see" and make decisions based on the data. With this book, any developer or hobbyist can get up and running with the framework quickly, whether it's to build simple or sophisticated vision applications

  16. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  17. Computer vision and augmented reality in gastrointestinal endoscopy

    Science.gov (United States)

    Mahmud, Nadim; Cohen, Jonah; Tsourides, Kleovoulos; Berzin, Tyler M.

    2015-01-01

    Augmented reality (AR) is an environment-enhancing technology, widely applied in the computer sciences, which has only recently begun to permeate the medical field. Gastrointestinal endoscopy—which relies on the integration of high-definition video data with pathologic correlates—requires endoscopists to assimilate and process a tremendous amount of data in real time. We believe that AR is well positioned to provide computer-guided assistance with a wide variety of endoscopic applications, beginning with polyp detection. In this article, we review the principles of AR, describe its potential integration into an endoscopy set-up, and envisage a series of novel uses. With close collaboration between physicians and computer scientists, AR promises to contribute significant improvements to the field of endoscopy. PMID:26133175

  18. Computer Use and Vision.Related Problems Among University ...

    African Journals Online (AJOL)

    Related Problems Among University Students In Ajman, United Arab Emirate. ... of 500 Students studying in Gulf Medical University, Ajman and Ajman University of ... prevalence of vision related problems was noted among university students.

  19. Automated cutting in the food industry using computer vision

    KAUST Repository

    Daley, Wayne D R; Arif, Omar

    2012-01-01

    , mostly because of a lack of knowledge of the physical characteristic of the individual products. Machine vision has helped to address some of these shortcomings but underperforms in many situations. Developments in sensors, software and processing power

  20. Measurement of meat color using a computer vision system.

    Science.gov (United States)

    Girolami, Antonio; Napolitano, Fabio; Faraone, Daniela; Braghieri, Ada

    2013-01-01

    The limits of the colorimeter and a technique of image analysis in evaluating the color of beef, pork, and chicken were investigated. The Minolta CR-400 colorimeter and a computer vision system (CVS) were employed to measure colorimetric characteristics. To evaluate the chromatic fidelity of the image of the sample displayed on the monitor, a similarity test was carried out using a trained panel. The panelists found the digital images of the samples visualized on the monitor very similar to the actual ones (Pmeat sample and the sample image on the monitor in order to evaluate the similarity between them (test A). Moreover, the panelists were asked to evaluate the similarity between two colors, both generated by the software Adobe Photoshop CS3 one using the L, a and b values read by the colorimeter and the other obtained using the CVS (test B); which of the two colors was more similar to the sample visualized on the monitor was also assessed (test C). The panelists found the digital images very similar to the actual samples (Pcolors the panelists found significant differences between them (Pcolor of the sample on the monitor was more similar to the CVS generated color than to the colorimeter generated color. The differences between the values of the L, a, b, hue angle and chroma obtained with the CVS and the colorimeter were statistically significant (Pcolor of meat. Instead, the CVS method seemed to give valid measurements that reproduced a color very similar to the real one. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. PENGEMBANGAN COMPUTER VISION SYSTEM SEDERHANA UNTUK MENENTUKAN KUALITAS TOMAT Development of a simple Computer Vision System to determine tomato quality

    Directory of Open Access Journals (Sweden)

    Rudiati Evi Masithoh

    2012-05-01

    Full Text Available The purpose of this research was to develop a simple computer vision system (CVS to non-destructively measure tomato quality based on its Red Gren Blue (RGB color parameter. Tomato quality parameters measured were Brix, citric acid, vitamin C, and total sugar. This system consisted of a box to place object, a webcam to capture images, a computer to process images, illumination system, and an image analysis software which was equipped with artificial neural networks technique for determining tomato quality. Network architecture was formed with 3 layers consisting of1 input layer with 3 input neurons, 1 hidden layer with 14 neurons using logsig activation function, and 5 output layers using purelin activation function by using backpropagation training algorithm. CVS developed was able to predict the quality parameters of a Brix value, vitamin C, citric acid, and total sugar. To obtain the predicted values which were equal or close to the actual values, a calibration model was required. For Brix value, the actual value obtained from the equation y = 12,16x – 26,46, with x was Brix predicted. The actual values of vitamin C, citric acid, and total sugar were obtained from y = 1,09x - 3.13, y = 7,35x – 19,44,  and  y = 1.58x – 0,18,, with x was the value of vitamin C, citric acid, and total sugar, respectively. ABSTRAK Tujuan penelitian adalah mengembangkan computer vision system (CVS sederhana untuk menentukan kualitas tomat secara non­destruktif berdasarkan parameter warna Red Green Blue (RGB. Parameter kualitas tomat yang diukur ada­ lah Brix, asam sitrat, vitamin C, dan gula total. Sistem ini terdiri peralatan utama yaitu kotak untuk meletakkan obyek, webcam untuk menangkap citra, komputer untuk mengolah data, sistem penerangan, dan perangkat lunak analisis citra yang dilengkapi dengan jaringan syaraf tiruan untuk menentukan kualitas tomat. Arsitektur jaringan dibentuk dengan3 lapisan yang terdiri dari 1 lapisan masukan dengan 3 sel

  2. Furnance grate monitoring by computer vision; Rosteroevervakning med bildanalys

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Gustafsson, Bengt; Olsson, Magnus

    2005-01-01

    During the last couple of year's computer vision has developed a lot beside computers and video technic. This makes it technical and economical possible to use cameras as a monitoring instrument. The first experiments with this type of equipment were made in the early 1990s. Most of the experiments were made to measure the bed length from the back of the grate. In this experiment the cameras were mounted in the front instead. The highest priority was to detect the topography of the fuel bed. An uneven fuel bed means combustion with local temperature variations that do the combustion more difficult to control. The goal was to show possibilities to measure fuel bed highs, particle size and combustion intensity or the combustion spreading with pictures from one or two cameras. The test was done in a bark-fuelled boiler in Karlsborg because that boiler has doors from the fuel feeding side suitable for looking down on the grate. The results shows that the cameras mounting that were done in Karlsborg were not good enough to do a 3D calculation of the fuel bed. It was however possible to se the drying and it was possible to see the flames in the pictures. To see the flames and steam without over exposure because of different light in different points, it is possible to use a filter or an on linear sensibility camera. To test if a parallel mounting of the two cameras would work a cold test were done in the grate test facility at KMW in Norrtaelje. With the pictures from this test we were able to do 3D measurements of the bed topography. The conclusions are that it is possible to measure bed height and bed topography with other camera positions than we were able to use in this experiment. The particle size is easier to measure before entering the boiler for examples over a rim were the particles falling down. It is also possible to estimate a temperature zone were the steam goes off.

  3. Foundations of computer vision computational geometry, visual image structures and object shape detection

    CERN Document Server

    Peters, James F

    2017-01-01

    This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classification of image regions. Algorithms provide a practical, step-by-step means of viewing image structures. The implementations of CV methods in Matlab and Mathematica, classification of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of C...

  4. Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

    Science.gov (United States)

    Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.

    2016-01-01

    Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.

  5. Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.

    Science.gov (United States)

    Battiti, Roberto

    1990-01-01

    This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from

  6. Crossing the divide between computer vision and data bases in search of image data bases

    NARCIS (Netherlands)

    Worring, M.; Smeulders, A.W.M.; Ioannidis, Y.; Klas, W.

    1998-01-01

    Image databases call upon the combined effort of computing vision and database technology to advance beyond exemplary systems. In this paper we charter several areas for mutually beneficial research activities and provide an architectural design to accommodate it.

  7. Reconfigurable FPGA architecture for computer vision applications in Smart Camera Networks

    OpenAIRE

    Maggiani , Luca; Salvadori , Claudio; Petracca , Matteo; Pagano , Paolo; Saletti , Roberto

    2013-01-01

    International audience; Smart Camera Networks (SCNs) is nowadays an emerging research field which represents the natural evolution of centralized computer vision applications towards full distributed and pervasive systems. In such a scenario, one of the biggest effort is in the definition of a flexible and reconfigurable SCN node architecture able to remotely support the possibility of updating the application parameters and changing the running computer vision applications at run-time. In th...

  8. Distance estimation by computer vision and shortest path planning ...

    African Journals Online (AJOL)

    Journal Home > Vol 10, No 6S (2018) > ... The proposed way also detects and avoids obstacles in an environment using a single ... This paper has a great importance because of its fast execution speed also vision is a smart sensor as it helps ...

  9. Smartphone, tablet computer and e-reader use by people with vision impairment.

    Science.gov (United States)

    Crossland, Michael D; Silva, Rui S; Macedo, Antonio F

    2014-09-01

    Consumer electronic devices such as smartphones, tablet computers, and e-book readers have become far more widely used in recent years. Many of these devices contain accessibility features such as large print and speech. Anecdotal experience suggests people with vision impairment frequently make use of these systems. Here we survey people with self-identified vision impairment to determine their use of this equipment. An internet-based survey was advertised to people with vision impairment by word of mouth, social media, and online. Respondents were asked demographic information, what devices they owned, what they used these devices for, and what accessibility features they used. One hundred and thirty-two complete responses were received. Twenty-six percent of the sample reported that they had no vision and the remainder reported they had low vision. One hundred and seven people (81%) reported using a smartphone. Those with no vision were as likely to use a smartphone or tablet as those with low vision. Speech was found useful by 59% of smartphone users. Fifty-one percent of smartphone owners used the camera and screen as a magnifier. Forty-eight percent of the sample used a tablet computer, and 17% used an e-book reader. The most frequently cited reason for not using these devices included cost and lack of interest. Smartphones, tablet computers, and e-book readers can be used by people with vision impairment. Speech is used by people with low vision as well as those with no vision. Many of our (self-selected) group used their smartphone camera and screen as a magnifier, and others used the camera flash as a spotlight. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  10. Automatic calibration system of the temperature instrument display based on computer vision measuring

    Science.gov (United States)

    Li, Zhihong; Li, Jinze; Bao, Changchun; Hou, Guifeng; Liu, Chunxia; Cheng, Fang; Xiao, Nianxin

    2010-07-01

    With the development of computers and the techniques of dealing with pictures and computer optical measurement, various measuring techniques are maturing gradually on the basis of optical picture processing technique and using in practice. On the bases, we make use of the many years' experience and social needs in temperature measurement and computer vision measurement to come up with the completely automatic way of the temperature measurement meter with integration of the computer vision measuring technique. It realizes synchronization collection with theory temperature value, improves calibration efficiency. based on least square fitting principle, integrate data procession and the best optimize theory, rapidly and accurately realizes automation acquisition and calibration of temperature.

  11. A CLINICAL STUDY TO EVALUATE THE ROLE OF AKSHITARPANA, SHIRODHARA AND AN AYURVEDIC COMPOUND IN CHILDHOOD COMPUTER VISION SYNDROME

    OpenAIRE

    Singh Omendra Pal; Singh Laxmi; Kumar Abhimanyu

    2011-01-01

    Computer vision syndrome is one among the lifestyle disorders in children. About 88% of people who use computers everyday suffer from this problem and children are no exception. Computer Vision Syndrome (CVS) is the complex of eye and vision problems related to near works which are experienced during the use of Video Display Terminals (TV and computers). Therefore, considering these prospects a randomized double blind placebo control study was conducted among 40 clinically diagnosed children ...

  12. Automatic Plant Annotation Using 3D Computer Vision

    DEFF Research Database (Denmark)

    Nielsen, Michael

    In this thesis 3D reconstruction was investigated for application in precision agriculture where previous work focused on low resolution index maps where each pixel represents an area in the field and the index represents an overall crop status in that area. 3D reconstructions of plants would allow...... reconstruction in occluded areas. The trinocular setup was used for both window correlation based and energy minimization based algorithms. A novel adaption of symmetric multiple windows algorithm with trinocular vision was developed. The results were promising and allowed for better disparity estimations...... on steep sloped surfaces. Also, a novel adaption of a well known graph cut based disparity estimation algorithm with trinocular vision was developed and tested. The results were successful and allowed for better disparity estimations on steep sloped surfaces. After finding the disparity maps each...

  13. A study of computer-related upper limb discomfort and computer vision syndrome.

    Science.gov (United States)

    Sen, A; Richardson, Stanley

    2007-12-01

    Personal computers are one of the commonest office tools in Malaysia today. Their usage, even for three hours per day, leads to a health risk of developing Occupational Overuse Syndrome (OOS), Computer Vision Syndrome (CVS), low back pain, tension headaches and psychosocial stress. The study was conducted to investigate how a multiethnic society in Malaysia is coping with these problems that are increasing at a phenomenal rate in the west. This study investigated computer usage, awareness of ergonomic modifications of computer furniture and peripherals, symptoms of CVS and risk of developing OOS. A cross-sectional questionnaire study of 136 computer users was conducted on a sample population of university students and office staff. A 'Modified Rapid Upper Limb Assessment (RULA) for office work' technique was used for evaluation of OOS. The prevalence of CVS was surveyed incorporating a 10-point scoring system for each of its various symptoms. It was found that many were using standard keyboard and mouse without any ergonomic modifications. Around 50% of those with some low back pain did not have an adjustable backrest. Many users had higher RULA scores of the wrist and neck suggesting increased risk of developing OOS, which needed further intervention. Many (64%) were using refractive corrections and still had high scores of CVS commonly including eye fatigue, headache and burning sensation. The increase of CVS scores (suggesting more subjective symptoms) correlated with increase in computer usage spells. It was concluded that further onsite studies are needed, to follow up this survey to decrease the risks of developing CVS and OOS amongst young computer users.

  14. Rehabilitation of patients with motor disabilities using computer vision based techniques

    Directory of Open Access Journals (Sweden)

    Alejandro Reyes-Amaro

    2012-05-01

    Full Text Available In this paper we present details about the implementation of computer vision based applications for the rehabilitation of patients with motor disabilities. The applications are conceived as serious games, where the computer-patient interaction during playing contributes to the development of different motor skills. The use of computer vision methods allows the automatic guidance of the patient’s movements making constant specialized supervision unnecessary. The hardware requirements are limited to low-cost devices like usual webcams and Netbooks.

  15. Embedded Platforms for Computer Vision-based Advanced Driver Assistance Systems: a Survey

    OpenAIRE

    Velez, Gorka; Otaegui, Oihana

    2015-01-01

    Computer Vision, either alone or combined with other technologies such as radar or Lidar, is one of the key technologies used in Advanced Driver Assistance Systems (ADAS). Its role understanding and analysing the driving scene is of great importance as it can be noted by the number of ADAS applications that use this technology. However, porting a vision algorithm to an embedded automotive system is still very challenging, as there must be a trade-off between several design requisites. Further...

  16. Beyond the computer-based patient record: re-engineering with a vision.

    Science.gov (United States)

    Genn, B; Geukers, L

    1995-01-01

    In order to achieve real benefit from the potential offered by a Computer-Based Patient Record, the capabilities of the technology must be applied along with true re-engineering of healthcare delivery processes. University Hospital recognizes this and is using systems implementation projects, such as the catalyst, for transforming the way we care for our patients. Integration is fundamental to the success of these initiatives and this must be explicitly planned against an organized systems architecture whose standards are market-driven. University Hospital also recognizes that Community Health Information Networks will offer improved quality of patient care at a reduced overall cost to the system. All of these implementation factors are considered up front as the hospital makes its initial decisions on to how to computerize its patient records. This improves our chances for success and will provide a consistent vision to guide the hospital's development of new and better patient care.

  17. Computer vision for automatic inspection of agricultural produce

    Science.gov (United States)

    Molto, Enrique; Blasco, Jose; Benlloch, Jose V.

    1999-01-01

    Fruit and vegetables suffer different manipulations from the field to the final consumer. These are basically oriented towards the cleaning and selection of the product in homogeneous categories. For this reason, several research projects, aimed at fast, adequate produce sorting and quality control are currently under development around the world. Moreover, it is possible to find manual and semi- automatic commercial system capable of reasonably performing these tasks.However, in many cases, their accuracy is incompatible with current European market demands, which are constantly increasing. IVIA, the Valencian Research Institute of Agriculture, located in Spain, has been involved in several European projects related with machine vision for real-time inspection of various agricultural produces. This paper will focus on the work related with two products that have different requirements: fruit and olives. In the case of fruit, the Institute has developed a vision system capable of providing assessment of the external quality of single fruit to a robot that also receives information from other senors. The system use four different views of each fruit and has been tested on peaches, apples and citrus. Processing time of each image is under 500 ms using a conventional PC. The system provides information about primary and secondary color, blemishes and their extension, and stem presence and position, which allows further automatic orientation of the fruit in the final box using a robotic manipulator. Work carried out in olives was devoted to fast sorting of olives for consumption at table. A prototype has been developed to demonstrate the feasibility of a machine vision system capable of automatically sorting 2500 kg/h olives using low-cost conventional hardware.

  18. Comparative randomised active drug controlled clinical trial of a herbal eye drop in computer vision syndrome.

    Science.gov (United States)

    Chatterjee, Pranab Kr; Bairagi, Debasis; Roy, Sudipta; Majumder, Nilay Kr; Paul, Ratish Ch; Bagchi, Sunil Ch

    2005-07-01

    A comparative double-blind placebo-controlled clinical trial of a herbal eye drop (itone) was conducted to find out its efficacy and safety in 120 patients with computer vision syndrome. Patients using computers for more than 3 hours continuously per day having symptoms of watering, redness, asthenia, irritation, foreign body sensation and signs of conjunctival hyperaemia, corneal filaments and mucus were studied. One hundred and twenty patients were randomly given either placebo, tears substitute (tears plus) or itone in identical vials with specific code number and were instructed to put one drop four times daily for 6 weeks. Subjective and objective assessments were done at bi-weekly intervals. In computer vision syndrome both subjective and objective improvements were noticed with itone drops. Itone drop was found significantly better than placebo (pcomputer vision syndrome.

  19. Review: computer vision applied to the inspection and quality control of fruits and vegetables

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2013-12-01

    Full Text Available This is a review of the current existing literature concerning the inspection of fruits and vegetables with the application of computer vision, where the techniques most used to estimate various properties related to quality are analyzed. The objectives of the typical applications of such systems include the classification, quality estimation according to the internal and external characteristics, supervision of fruit processes during storage or the evaluation of experimental treatments. In general, computer vision systems do not only replace manual inspection, but can also improve their skills. In conclusion, computer vision systems are powerful tools for the automatic inspection of fruits and vegetables. In addition, the development of such systems adapted to the food industry is fundamental to achieve competitive advantages.

  20. Inclusive vision for high performance computing at the CSIR

    CSIR Research Space (South Africa)

    Gazendam, A

    2006-02-01

    Full Text Available and computationally intensive applications. A number of different technologies and standards were identified as core to the open and distributed high-performance infrastructure envisaged...

  1. An innovative road marking quality assessment mechanism using computer vision

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Lin

    2016-06-01

    Full Text Available Aesthetic quality acceptance for road marking works has been relied on subjective visual examination. Due to a lack of quantitative operation procedures, acceptance outcome can be biased and results in great quality variation. To improve aesthetic quality acceptance procedure of road marking, we develop an innovative road marking quality assessment mechanism, utilizing machine vision technologies. Using edge smoothness as a quantitative aesthetic indicator, the proposed prototype system first receives digital images of finished road marking surface and has the images processed and analyzed to capture the geometric characteristics of the marking. The geometric characteristics are then evaluated to determine the quality level of the finished work. System is demonstrated through two real cases to show how it works. In the end, a test comparing the assessment results between the proposed system and expert inspection is conducted to enhance the accountability of the proposed mechanism.

  2. A Novel Solar Tracker Based on Omnidirectional Computer Vision

    Directory of Open Access Journals (Sweden)

    Zakaria El Kadmiri

    2015-01-01

    Full Text Available This paper presents a novel solar tracker system based on omnidirectional vision technology. The analysis of acquired images with a catadioptric camera allows extracting accurate information about the sun position toward both elevation and azimuth. The main advantages of this system are its wide field of tracking of 360° horizontally and 200° vertically. The system has the ability to track the sun in real time independently of the spatiotemporal coordinates of the site. The extracted information is used to control the two DC motors of the dual-axis mechanism to achieve the optimal orientation of the photovoltaic panels with the aim of increasing the power generation. Several experimental studies have been conducted and the obtained results confirm the power generation efficiency of the proposed solar tracker.

  3. A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace.

    Science.gov (United States)

    Seguí, María del Mar; Cabrero-García, Julio; Crespo, Ana; Verdú, José; Ronda, Elena

    2015-06-01

    To design and validate a questionnaire to measure visual symptoms related to exposure to computers in the workplace. Our computer vision syndrome questionnaire (CVS-Q) was based on a literature review and validated through discussion with experts and performance of a pretest, pilot test, and retest. Content validity was evaluated by occupational health, optometry, and ophthalmology experts. Rasch analysis was used in the psychometric evaluation of the questionnaire. Criterion validity was determined by calculating the sensitivity and specificity, receiver operator characteristic curve, and cutoff point. Test-retest repeatability was tested using the intraclass correlation coefficient (ICC) and concordance by Cohen's kappa (κ). The CVS-Q was developed with wide consensus among experts and was well accepted by the target group. It assesses the frequency and intensity of 16 symptoms using a single rating scale (symptom severity) that fits the Rasch rating scale model well. The questionnaire has sensitivity and specificity over 70% and achieved good test-retest repeatability both for the scores obtained [ICC = 0.802; 95% confidence interval (CI): 0.673, 0.884] and CVS classification (κ = 0.612; 95% CI: 0.384, 0.839). The CVS-Q has acceptable psychometric properties, making it a valid and reliable tool to control the visual health of computer workers, and can potentially be used in clinical trials and outcome research. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Big data computing: Building a vision for ARS information management

    Science.gov (United States)

    Improvements are needed within the ARS to increase scientific capacity and keep pace with new developments in computer technologies that support data acquisition and analysis. Enhancements in computing power and IT infrastructure are needed to provide scientists better access to high performance com...

  5. Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.

    Science.gov (United States)

    Greene, Runyu L; Azari, David P; Hu, Yu Hen; Radwin, Robert G

    2017-11-01

    Patterns of physical stress exposure are often difficult to measure, and the metrics of variation and techniques for identifying them is underdeveloped in the practice of occupational ergonomics. Computer vision has previously been used for evaluating repetitive motion tasks for hand activity level (HAL) utilizing conventional 2D videos. The approach was made practical by relaxing the need for high precision, and by adopting a semi-automatic approach for measuring spatiotemporal characteristics of the repetitive task. In this paper, a new method for visualizing task factors, using this computer vision approach, is demonstrated. After videos are made, the analyst selects a region of interest on the hand to track and the hand location and its associated kinematics are measured for every frame. The visualization method spatially deconstructs and displays the frequency, speed and duty cycle components of tasks that are part of the threshold limit value for hand activity for the purpose of identifying patterns of exposure associated with the specific job factors, as well as for suggesting task improvements. The localized variables are plotted as a heat map superimposed over the video, and displayed in the context of the task being performed. Based on the intensity of the specific variables used to calculate HAL, we can determine which task factors most contribute to HAL, and readily identify those work elements in the task that contribute more to increased risk for an injury. Work simulations and actual industrial examples are described. This method should help practitioners more readily measure and interpret temporal exposure patterns and identify potential task improvements. Copyright © 2017. Published by Elsevier Ltd.

  6. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  7. Towards OpenVL: Improving Real-Time Performance of Computer Vision Applications

    Science.gov (United States)

    Shen, Changsong; Little, James J.; Fels, Sidney

    Meeting constraints for real-time performance is a main issue for computer vision, especially for embedded computer vision systems. This chapter presents our progress on our open vision library (OpenVL), a novel software architecture to address efficiency through facilitating hardware acceleration, reusability, and scalability for computer vision systems. A logical image understanding pipeline is introduced to allow parallel processing. We also discuss progress on our middleware—vision library utility toolkit (VLUT)—that enables applications to operate transparently over a heterogeneous collection of hardware implementations. OpenVL works as a state machine,with an event-driven mechanismto provide users with application-level interaction. Various explicit or implicit synchronization and communication methods are supported among distributed processes in the logical pipelines. The intent of OpenVL is to allow users to quickly and easily recover useful information from multiple scenes, in a cross-platform, cross-language manner across various software environments and hardware platforms. To validate the critical underlying concepts of OpenVL, a human tracking system and a local positioning system are implemented and described. The novel architecture separates the specification of algorithmic details from the underlying implementation, allowing for different components to be implemented on an embedded system without recompiling code.

  8. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    Science.gov (United States)

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Development of a Wireless Computer Vision Instrument to Detect Biotic Stress in Wheat

    Directory of Open Access Journals (Sweden)

    Joaquin J. Casanova

    2014-09-01

    Full Text Available Knowledge of crop abiotic and biotic stress is important for optimal irrigation management. While spectral reflectance and infrared thermometry provide a means to quantify crop stress remotely, these measurements can be cumbersome. Computer vision offers an inexpensive way to remotely detect crop stress independent of vegetation cover. This paper presents a technique using computer vision to detect disease stress in wheat. Digital images of differentially stressed wheat were segmented into soil and vegetation pixels using expectation maximization (EM. In the first season, the algorithm to segment vegetation from soil and distinguish between healthy and stressed wheat was developed and tested using digital images taken in the field and later processed on a desktop computer. In the second season, a wireless camera with near real-time computer vision capabilities was tested in conjunction with the conventional camera and desktop computer. For wheat irrigated at different levels and inoculated with wheat streak mosaic virus (WSMV, vegetation hue determined by the EM algorithm showed significant effects from irrigation level and infection. Unstressed wheat had a higher hue (118.32 than stressed wheat (111.34. In the second season, the hue and cover measured by the wireless computer vision sensor showed significant effects from infection (p = 0.0014, as did the conventional camera (p < 0.0001. Vegetation hue obtained through a wireless computer vision system in this study is a viable option for determining biotic crop stress in irrigation scheduling. Such a low-cost system could be suitable for use in the field in automated irrigation scheduling applications.

  10. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  11. FAKTOR YANG BERHUBUNGAN DENGAN KELUHAN COMPUTER VISION SYNDROME (CVS PADA PEKERJA RENTAL KOMPUTER DI WILAYAH UNNES

    Directory of Open Access Journals (Sweden)

    Melati Aisyah Permana

    2015-07-01

    Full Text Available Computer as a tool that is widely used human beings, it also raises occupational diseases as well as the use of machine in industry. Vision problems caused bye the use of computers, the American Optometric Association (AOA called Computer Vision Syndrome (CVS as a compound eye problems related to employment experienced by a person at close range as or related to computer use. The purpose of this study was to analyze the relationship between the working length, the distance eye with the monitor, lighting intensity, work attitude, and identifity the incidence of complaints of CVS workers experienced computer rentals. This study used Cross Sectional approach. Number of population and sample of 36 peoples working computer rental in the area Unnes campus. The instruments used in the form of quetionnatires, meter, and Lux meter. Chi square test result : (1the working length (p=0,005; (2 the distance eye with the monitor (p=0,012; (3 lighting intensity (p=0,001; (4 work attitude (p=0,014 with complaints of CVS in workers computer rental at the campus Unnes. Suggestion for worker is to check their eyes regulary to the doctor if the complaints of CVS in order to minimize the occurrence of more severe diseases. While other researchers needed for further studies with different variables to better determine other factors associated with symptoms of Computer Vision Syndrome (CVS.

  12. Uranus: a rapid prototyping tool for FPGA embedded computer vision

    Science.gov (United States)

    Rosales-Hernández, Victor; Castillo-Jimenez, Liz; Viveros-Velez, Gilberto; Zuñiga-Grajeda, Virgilio; Treviño Torres, Abel; Arias-Estrada, M.

    2007-01-01

    The starting point for all successful system development is the simulation. Performing high level simulation of a system can help to identify, insolate and fix design problems. This work presents Uranus, a software tool for simulation and evaluation of image processing algorithms with support to migrate them to an FPGA environment for algorithm acceleration and embedded processes purposes. The tool includes an integrated library of previous coded operators in software and provides the necessary support to read and display image sequences as well as video files. The user can use the previous compiled soft-operators in a high level process chain, and code his own operators. Additional to the prototyping tool, Uranus offers FPGA-based hardware architecture with the same organization as the software prototyping part. The hardware architecture contains a library of FPGA IP cores for image processing that are connected with a PowerPC based system. The Uranus environment is intended for rapid prototyping of machine vision and the migration to FPGA accelerator platform, and it is distributed for academic purposes.

  13. Computer vision system in real-time for color determination on flat surface food

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2013-03-01

    Full Text Available Artificial vision systems also known as computer vision are potent quality inspection tools, which can be applied in pattern recognition for fruits and vegetables analysis. The aim of this research was to design, implement and calibrate a new computer vision system (CVS in real-time for the color measurement on flat surface food. For this purpose was designed and implemented a device capable of performing this task (software and hardware, which consisted of two phases: a image acquisition and b image processing and analysis. Both the algorithm and the graphical interface (GUI were developed in Matlab. The CVS calibration was performed using a conventional colorimeter (Model CIEL* a* b*, where were estimated the errors of the color parameters: eL* = 5.001%, and ea* = 2.287%, and eb* = 4.314 % which ensure adequate and efficient automation application in industrial processes in the quality control in the food industry sector.

  14. Computer vision system in real-time for color determination on flat surface food

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2013-01-01

    Full Text Available Artificial vision systems also known as computer vision are potent quality inspection tools, which can be applied in pattern recognition for fruits and vegetables analysis. The aim of this research was to design, implement and calibrate a new computer vision system (CVS in real - time f or the color measurement on flat surface food. For this purpose was designed and implemented a device capable of performing this task (software and hardware, which consisted of two phases: a image acquisition and b image processing and analysis. Both th e algorithm and the graphical interface (GUI were developed in Matlab. The CVS calibration was performed using a conventional colorimeter (Model CIEL* a* b*, where were estimated the errors of the color parameters: e L* = 5.001%, and e a* = 2.287%, and e b* = 4.314 % which ensure adequate and efficient automation application in industrial processes in the quality control in the food industry sector.

  15. Computer vision syndrome: a study of the knowledge, attitudes and practices in Indian ophthalmologists.

    Science.gov (United States)

    Bali, Jatinder; Navin, Neeraj; Thakur, Bali Renu

    2007-01-01

    To study the knowledge, attitude and practices (KAP) towards computer vision syndrome prevalent in Indian ophthalmologists and to assess whether 'computer use by practitioners' had any bearing on the knowledge and practices in computer vision syndrome (CVS). A random KAP survey was carried out on 300 Indian ophthalmologists using a 34-point spot-questionnaire in January 2005. All the doctors who responded were aware of CVS. The chief presenting symptoms were eyestrain (97.8%), headache (82.1%), tiredness and burning sensation (79.1%), watering (66.4%) and redness (61.2%). Ophthalmologists using computers reported that focusing from distance to near and vice versa (P =0.006, chi2 test), blurred vision at a distance (P =0.016, chi2 test) and blepharospasm (P =0.026, chi2 test) formed part of the syndrome. The main mode of treatment used was tear substitutes. Half of ophthalmologists (50.7%) were not prescribing any spectacles. They did not have any preference for any special type of glasses (68.7%) or spectral filters. Computer-users were more likely to prescribe sedatives/anxiolytics (P = 0.04, chi2 test), spectacles (P = 0.02, chi2 test) and conscious frequent blinking (P = 0.003, chi2 test) than the non-computer-users. All respondents were aware of CVS. Confusion regarding treatment guidelines was observed in both groups. Computer-using ophthalmologists were more informed of symptoms and diagnostic signs but were misinformed about treatment modalities.

  16. Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.

    Science.gov (United States)

    1983-08-15

    obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey

  17. Computer Vision Photogrammetry for Underwater Archaeological Site Recording in a Low-Visibility Environment

    Science.gov (United States)

    Van Damme, T.

    2015-04-01

    Computer Vision Photogrammetry allows archaeologists to accurately record underwater sites in three dimensions using simple twodimensional picture or video sequences, automatically processed in dedicated software. In this article, I share my experience in working with one such software package, namely PhotoScan, to record a Dutch shipwreck site. In order to demonstrate the method's reliability and flexibility, the site in question is reconstructed from simple GoPro footage, captured in low-visibility conditions. Based on the results of this case study, Computer Vision Photogrammetry compares very favourably to manual recording methods both in recording efficiency, and in the quality of the final results. In a final section, the significance of Computer Vision Photogrammetry is then assessed from a historical perspective, by placing the current research in the wider context of about half a century of successful use of Analytical and later Digital photogrammetry in the field of underwater archaeology. I conclude that while photogrammetry has been used in our discipline for several decades now, for various reasons the method was only ever used by a relatively small percentage of projects. This is likely to change in the near future since, compared to the `traditional' photogrammetry approaches employed in the past, today Computer Vision Photogrammetry is easier to use, more reliable and more affordable than ever before, while at the same time producing more accurate and more detailed three-dimensional results.

  18. Ontwikkeling en validatie van computer vision technologie ten behoeve van een broccoli oogstrobot

    NARCIS (Netherlands)

    Blok, Pieter M.; Tielen, Antonius P.M.

    2018-01-01

    De selectieve en handmatige oogst van broccoli is arbeidsintensief en omvat ongeveer 35% van de totale productiekosten. Dit onderzoek is uitgevoerd om te bepalen of computer vision kan worden gebruikt om broccoli kronen te detecteren, als eerste stap in de ontwikkeling van een autonome selectieve

  19. A Cellular Automata Approach to Computer Vision and Image Processing.

    Science.gov (United States)

    1980-09-01

    the ACM, vol. 15, no. 9, pp. 827-837. [ Duda and Hart] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, Wiley, New York, 1973...Center TR-738, 1979. [Farley] Arthur M. Farley and Andrzej Proskurowski, "Gossiping in Grid Graphs", University of Oregon Computer Science Department CS-TR

  20. Computer Vision Syndrome in Eleven to Eighteen-Year-Old Students in Qazvin

    Directory of Open Access Journals (Sweden)

    Khalaj

    2015-08-01

    Full Text Available Background Prolonged use of computers can lead to complications such as eye strain, eye and head aches, double and blurred vision, tired eyes, irritation, burning and itching eyes, eye redness, light sensitivity, dry eyes, muscle strains, and other problems. Objectives The aim of the present study was to evaluate visual problems and major symptoms, and their associations among computer users, aged between 11 and 18 years old, residing in the Qazvin city of Iran, during year 2010. Patients and Methods This cross-sectional study was done on 642 secondary to pre university students who had referred to the eye clinic of Buali hospital of Qazvin during year 2013. A questionnaire consisting of demographic information and 26 questions on visual effects of the computer was used to gather information. Participants answered all questions and then underwent complete eye examinations and in some cases cycloplegic refraction. Visual acuity (VA was measured with a logMAR in six meters. Refraction errors were determined using an auto refractometer (Potece and Heine retinoscope. The collected data was then analyzed using the SPSS statistical software. Results The results of this study indicated that 63.86% of the subjects had refractive errors. Refractive errors were significantly different in children of different genders (P < 0.05. The most common complaints associated with the continuous use of computers were eyestrain, eye pain, eye redness, headache, and blurred vision. The most prevalent (81.8% eye-related problem in computer users was eyestrain and the least prevalent was dry eyes (7.84%. In order to reduce computer related problems 54.2% of the participants suggested taking enough rest, 37.9% recommended use of computers only for necessary tasks, while 24.4% and 19.1% suggested the use of monitor shields and proper working distance, respectively. Conclusions Our findings revealed that using computers for prolonged periods of time can lead to eye

  1. Survey of computer vision technology for UVA navigation

    Science.gov (United States)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are

  2. Computational Biology and the Limits of Shared Vision

    DEFF Research Database (Denmark)

    Carusi, Annamaria

    2011-01-01

    of cases is necessary in order to gain a better perspective on social sharing of practices, and on what other factors this sharing is dependent upon. The article presents the case of currently emerging inter-disciplinary visual practices in the domain of computational biology, where the sharing of visual...... practices would be beneficial to the collaborations necessary for the research. Computational biology includes sub-domains where visual practices are coming to be shared across disciplines, and those where this is not occurring, and where the practices of others are resisted. A significant point......, its domain of study. Social practices alone are not sufficient to account for the shaping of evidence. The philosophy of Merleau-Ponty is introduced as providing an alternative framework for thinking of the complex inter-relations between all of these factors. This [End Page 300] philosophy enables us...

  3. Computer Vision Research and Its Applications to Automated Cartography

    Science.gov (United States)

    1984-09-01

    Imaging Geometry from a Camera Transformation Matrix. Many scene analysis algorithms require knowledge of the geometry of the image formation process as a...to compute the imaging geometry directly from the constraints provided by the known data points. Partial information such as the camera’s focal length...Artificial Infelli- 1 fence 4, 1973, 121-137. 8. Kanade, T., A theory of origami world, Artificial Intelligence 13, 1080, 270-311. 0. Barnard, S. T

  4. Toward a Computational Neuropsychology of High-Level Vision.

    Science.gov (United States)

    1984-08-20

    known as visual agnosia ’ (also called "mindblindness’)l this patient failed to *recognize her nurses, got lost frequently when travelling familiar routes...visual agnosia are not blind: these patients can compare two shapes reliably when Computational neuropsychology 16 both are visible, but they cannot...visually recognize what an object is (although many can recognize objects by touch). This sort of agnosia has been well-documented in the literature (see

  5. Computer vision syndrome in presbyopia and beginning presbyopia: effects of spectacle lens type.

    Science.gov (United States)

    Jaschinski, Wolfgang; König, Mirjam; Mekontso, Tiofil M; Ohlendorf, Arne; Welscher, Monique

    2015-05-01

    This office field study investigated the effects of different types of spectacle lenses habitually worn by computer users with presbyopia and in the beginning stages of presbyopia. Computer vision syndrome was assessed through reported complaints and ergonomic conditions. A questionnaire regarding the type of habitually worn near-vision lenses at the workplace, visual conditions and the levels of different types of complaints was administered to 175 participants aged 35 years and older (mean ± SD: 52.0 ± 6.7 years). Statistical factor analysis identified five specific aspects of the complaints. Workplace conditions were analysed based on photographs taken in typical working conditions. In the subgroup of 25 users between the ages of 36 and 57 years (mean 44 ± 5 years), who wore distance-vision lenses and performed more demanding occupational tasks, the reported extents of 'ocular strain', 'musculoskeletal strain' and 'headache' increased with the daily duration of computer work and explained up to 44 per cent of the variance (rs = 0.66). In the other subgroups, this effect was smaller, while in the complete sample (n = 175), this correlation was approximately rs = 0.2. The subgroup of 85 general-purpose progressive lens users (mean age 54 years) adopted head inclinations that were approximately seven degrees more elevated than those of the subgroups with single vision lenses. The present questionnaire was able to assess the complaints of computer users depending on the type of spectacle lenses worn. A missing near-vision addition among participants in the early stages of presbyopia was identified as a risk factor for complaints among those with longer daily durations of demanding computer work. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  6. Computer vision for shoe upper profile measurement via upper and sole conformal matching

    Science.gov (United States)

    Hu, Zhongxu; Bicker, Robert; Taylor, Paul; Marshall, Chris

    2007-01-01

    This paper describes a structured light computer vision system applied to the measurement of the 3D profile of shoe uppers. The trajectory obtained is used to guide an industrial robot for automatic edge roughing around the contour of the shoe upper so that the bonding strength can be improved. Due to the specific contour and unevenness of the shoe upper, even if the 3D profile is obtained using computer vision, it is still difficult to reliably define the roughing path around the shape. However, the shape of the corresponding shoe sole is better defined, and it is much easier to measure the edge using computer vision. Therefore, a feasible strategy is to measure both the upper and sole profiles, and then align and fit the sole contour to the upper, in order to obtain the best fit. The trajectory of the edge of the desired roughing path is calculated and is then smoothed and interpolated using NURBS curves to guide an industrial robot for shoe upper surface removal; experiments show robust and consistent results. An outline description of the structured light vision system is given here, along with the calibration techniques used.

  7. TO STUDY THE ROLE OF ERGONOMICS IN THE MANAGEMENT OF COMPUTER VISION SYNDROME

    Directory of Open Access Journals (Sweden)

    Anshu

    2016-03-01

    Full Text Available INTRODUCTION Ergonomics is the science of designing the job equipment and workplace to fit the worker by obtaining a correct match between the human body, work related tasks and work tools. By applying the science of ergonomics we can reduce the difficulties faced by computer users. OBJECTIVES To evaluate the efficacy of tear substitutes and the role of ergonomics in the management of Computer Vision Syndrome. Development of counseling plan, initial treatment plan, prevent complications and educate the subjects about the disease process and to enhance public awareness. MATERIALS AND METHODS A minimum of 100 subjects were selected randomly irrespective of gender, place and nature of computer work & ethnic differences. The subjects were between age group of 10-60 years who had been using the computer for a minimum of 2 hours/day for atleast 5-6 days a week. The subjects underwent tests like Schirmer's, Test film breakup time (TBUT, Inter Blink Interval and Ocular surface staining. A Computer Vision score was taken out based on 5 symptoms each of which was given a score of 2. The symptoms included foreign body sensation, redness, eyestrain, blurring of vision and frequent change in refraction. The score of more than 6 was treated as Computer Vision syndrome and the subjects underwent synoptophore tests and refraction. RESULT In the present study where we had divided 100 subjects into 2 groups of 50 each and given tear substitutes only in one group and ergonomics was considered with tear substitutes in the other. We saw that there was more improvement after 4 weeks and 8 weeks in the group taking lubricants and ergonomics into consideration than lubricants alone. More improvement was seen in eyestrain and blurring (P0.05. CONCLUSION Advanced training in proper computer usage can decrease discomfort.

  8. A conceptual framework of computations in mid-level vision.

    Science.gov (United States)

    Kubilius, Jonas; Wagemans, Johan; Op de Beeck, Hans P

    2014-01-01

    If a picture is worth a thousand words, as an English idiom goes, what should those words-or, rather, descriptors-capture? What format of image representation would be sufficiently rich if we were to reconstruct the essence of images from their descriptors? In this paper, we set out to develop a conceptual framework that would be: (i) biologically plausible in order to provide a better mechanistic understanding of our visual system; (ii) sufficiently robust to apply in practice on realistic images; and (iii) able to tap into underlying structure of our visual world. We bring forward three key ideas. First, we argue that surface-based representations are constructed based on feature inference from the input in the intermediate processing layers of the visual system. Such representations are computed in a largely pre-semantic (prior to categorization) and pre-attentive manner using multiple cues (orientation, color, polarity, variation in orientation, and so on), and explicitly retain configural relations between features. The constructed surfaces may be partially overlapping to compensate for occlusions and are ordered in depth (figure-ground organization). Second, we propose that such intermediate representations could be formed by a hierarchical computation of similarity between features in local image patches and pooling of highly-similar units, and reestimated via recurrent loops according to the task demands. Finally, we suggest to use datasets composed of realistically rendered artificial objects and surfaces in order to better understand a model's behavior and its limitations.

  9. A conceptual framework of computations in mid-level vision

    Directory of Open Access Journals (Sweden)

    Jonas eKubilius

    2014-12-01

    Full Text Available If a picture is worth a thousand words, as an English idiom goes, what should those words – or, rather, descriptors – capture? What format of image representation would be sufficiently rich if we were to reconstruct the essence of images from their descriptors? In this paper, we set out to develop a conceptual framework that would be: (i biologically plausible in order to provide a better mechanistic understanding of our visual system; (ii sufficiently robust to apply in practice on realistic images; and (iii able to tap into underlying structure of our visual world. We bring forward three key ideas. First, we argue that surface-based representations are constructed based on feature inference from the input in the intermediate processing layers of the visual system. Such representations are computed in a largely pre-semantic (prior to categorization and pre-attentive manner using multiple cues (orientation, color, polarity, variation in orientation and so on, and explicitly retain configural relations between features. The constructed surfaces may be partially overlapping to compensate for occlusions and are ordered in depth (figure-ground organization. Second, we propose that such intermediate representations could be formed by a hierarchical computation of similarity between features in local image patches and pooling of highly-similar units, and reestimated via recurrent loops according to the task demands. Finally, we suggest to use datasets composed of realistically rendered artificial objects and surfaces in order to better understand a model’s behavior and its limitations.

  10. A conceptual framework of computations in mid-level vision

    Science.gov (United States)

    Kubilius, Jonas; Wagemans, Johan; Op de Beeck, Hans P.

    2014-01-01

    If a picture is worth a thousand words, as an English idiom goes, what should those words—or, rather, descriptors—capture? What format of image representation would be sufficiently rich if we were to reconstruct the essence of images from their descriptors? In this paper, we set out to develop a conceptual framework that would be: (i) biologically plausible in order to provide a better mechanistic understanding of our visual system; (ii) sufficiently robust to apply in practice on realistic images; and (iii) able to tap into underlying structure of our visual world. We bring forward three key ideas. First, we argue that surface-based representations are constructed based on feature inference from the input in the intermediate processing layers of the visual system. Such representations are computed in a largely pre-semantic (prior to categorization) and pre-attentive manner using multiple cues (orientation, color, polarity, variation in orientation, and so on), and explicitly retain configural relations between features. The constructed surfaces may be partially overlapping to compensate for occlusions and are ordered in depth (figure-ground organization). Second, we propose that such intermediate representations could be formed by a hierarchical computation of similarity between features in local image patches and pooling of highly-similar units, and reestimated via recurrent loops according to the task demands. Finally, we suggest to use datasets composed of realistically rendered artificial objects and surfaces in order to better understand a model's behavior and its limitations. PMID:25566044

  11. VISION development

    International Nuclear Information System (INIS)

    Hernandez, J.E.; Sherwood, R.J.; Whitman, S.R.

    1994-01-01

    VISION is a flexible and extensible object-oriented programming environment for prototyping computer-vision and pattern-recognition algorithms. This year's effort focused on three major areas: documentation, graphics, and support for new applications

  12. Factors leading to the computer vision syndrome: an issue at the contemporary workplace.

    Science.gov (United States)

    Izquierdo, Juan C; García, Maribel; Buxó, Carmen; Izquierdo, Natalio J

    2007-01-01

    Vision and eye related problems are common among computer users, and have been collectively called the Computer Vision Syndrome (CVS). An observational study in order to identify the risk factors leading to the CVS was done. Twenty-eight participants answered a validated questionnaire, and had their workstations examined. The questionnaire evaluated personal, environmental, ergonomic factors, and physiologic response of computer users. The distance from the eye to the computers' monitor (A), the computers' monitor height (B), and visual axis height (C) were measured. The difference between B and C was calculated and labeled as D. Angles of gaze to the computer monitor were calculated using the formula: angle=tan-1(D/A). Angles were divided into two groups: participants with angles of gaze ranging from 0 degree to 13.9 degrees were included in Group 1; and participants gazing at angles larger than 14 degrees were included in Group 2. Statistical analysis of the evaluated variables was made. Computer users in both groups used more tear supplements (as part of the syndrome) than expected. This association was statistically significant (p syndrome is the angle of gaze at the computer monitor. Pain in computer users is diminished when gazing downwards at angles of 14 degrees or more. The CVS remains an under estimated and poorly understood issue at the workplace. The general public, health professionals, the government, and private industries need to be educated about the CVS.

  13. Sigma: computer vision in the service of safety and reliability in the inspection services

    International Nuclear Information System (INIS)

    Pineiro, P. J.; Mendez, M.; Garcia, A.; Cabrera, E.; Regidor, J. J.

    2012-01-01

    Vision Computing is growing very fast in the last decade with very efficient tools and algorithms. This allows new development of applications in the nuclear field providing more efficient equipment and tasks: redundant systems, vision-guided mobile robots, automated visual defects recognition, measurement, etc., In this paper Tecnatom describes a detailed example of visual computing application developed to provide secure redundant identification of the thousands of tubes existing in a power plant steam generator. some other on-going or planned visual computing projects by Tecnatom are also introduced. New possibilities of application in the inspection systems for nuclear components appear where the main objective is to maximize their reliability. (Author) 6 refs.

  14. Computer vision syndrome and associated factors among medical and engineering students in chennai.

    Science.gov (United States)

    Logaraj, M; Madhupriya, V; Hegde, Sk

    2014-03-01

    Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer.

  15. Integrating computation into the undergraduate curriculum: A vision and guidelines for future developments

    Science.gov (United States)

    Chonacky, Norman; Winch, David

    2008-04-01

    There is substantial evidence of a need to make computation an integral part of the undergraduate physics curriculum. This need is consistent with data from surveys in both the academy and the workplace, and has been reinforced by two years of exploratory efforts by a group of physics faculty for whom computation is a special interest. We have examined past and current efforts at reform and a variety of strategic, organizational, and institutional issues involved in any attempt to broadly transform existing practice. We propose a set of guidelines for development based on this past work and discuss our vision of computationally integrated physics.

  16. A computer vision-based automated Figure-8 maze for working memory test in rodents.

    Science.gov (United States)

    Pedigo, Samuel F; Song, Eun Young; Jung, Min Whan; Kim, Jeansok J

    2006-09-30

    The benchmark test for prefrontal cortex (PFC)-mediated working memory in rodents is a delayed alternation task utilizing variations of T-maze or Figure-8 maze, which requires the animals to make specific arm entry responses for reward. In this task, however, manual procedures involved in shaping target behavior, imposing delays between trials and delivering rewards can potentially influence the animal's performance on the maze. Here, we report an automated Figure-8 maze which does not necessitate experimenter-subject interaction during shaping, training or testing. This system incorporates a computer vision system for tracking, motorized gates to impose delays, and automated reward delivery. The maze is controlled by custom software that records the animal's location and activates the gates according to the animal's behavior and a control algorithm. The program performs calculations of task accuracy, tracks movement sequence through the maze, and provides other dependent variables (such as running speed, time spent in different maze locations, activity level during delay). Testing in rats indicates that the performance accuracy is inversely proportional to the delay interval, decreases with PFC lesions, and that animals anticipate timing during long delays. Thus, our automated Figure-8 maze is effective at assessing working memory and provides novel behavioral measures in rodents.

  17. Analysis of the Indented Cylinder by the use of Computer Vision

    DEFF Research Database (Denmark)

    Buus, Ole Thomsen

    -groups: (1) “long” seeds and (2) “short” seeds (known as length-separation). The motion of seeds being physically manipulated inside an active indented cylinder was analysed using various computer vision methods. The data from such analyses were used to create an overview of the machine’s ability to separate...... as a cite-aware imagery data set. The work summarised in this thesis is very much related to the task of constructing models from observed data. This field is known as empirical model development or more specifically as “system identification”. System v identification deals specifically with estimating...... mathematical models from observed dynamic states (time series) of inputs and outputs to and from some physical system under investigation. The contribution of the work is to be found primarily within the problem domain of experimentation for system identification. Computer vision techniques were used...

  18. Computer Vision and Machine Learning for Autonomous Characterization of AM Powder Feedstocks

    Science.gov (United States)

    DeCost, Brian L.; Jain, Harshvardhan; Rollett, Anthony D.; Holm, Elizabeth A.

    2017-03-01

    By applying computer vision and machine learning methods, we develop a system to characterize powder feedstock materials for metal additive manufacturing (AM). Feature detection and description algorithms are applied to create a microstructural scale image representation that can be used to cluster, compare, and analyze powder micrographs. When applied to eight commercial feedstock powders, the system classifies powder images into the correct material systems with greater than 95% accuracy. The system also identifies both representative and atypical powder images. These results suggest the possibility of measuring variations in powders as a function of processing history, relating microstructural features of powders to properties relevant to their performance in AM processes, and defining objective material standards based on visual images. A significant advantage of the computer vision approach is that it is autonomous, objective, and repeatable.

  19. Recent advances in transient imaging: A computer graphics and vision perspective

    Directory of Open Access Journals (Sweden)

    Adrian Jarabo

    2017-03-01

    Full Text Available Transient imaging has recently made a huge impact in the computer graphics and computer vision fields. By capturing, reconstructing, or simulating light transport at extreme temporal resolutions, researchers have proposed novel techniques to show movies of light in motion, see around corners, detect objects in highly-scattering media, or infer material properties from a distance, to name a few. The key idea is to leverage the wealth of information in the temporal domain at the pico or nanosecond resolution, information usually lost during the capture-time temporal integration. This paper presents recent advances in this field of transient imaging from a graphics and vision perspective, including capture techniques, analysis, applications and simulation. Keywords: Transient imaging, Ultrafast imaging, Time-of-flight

  20. Development of a body motion interactive system with a weight voting mechanism and computer vision technology

    Science.gov (United States)

    Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien

    2012-09-01

    This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.

  1. Computer Vision System For Locating And Identifying Defects In Hardwood Lumber

    Science.gov (United States)

    Conners, Richard W.; Ng, Chong T.; Cho, Tai-Hoon; McMillin, Charles W.

    1989-03-01

    This paper describes research aimed at developing an automatic cutup system for use in the rough mills of the hardwood furniture and fixture industry. In particular, this paper describes attempts to create the vision system that will power this automatic cutup system. There are a number of factors that make the development of such a vision system a challenge. First there is the innate variability of the wood material itself. No two species look exactly the same, in fact, they can have a significant visual difference in appearance among species. Yet a truly robust vision system must be able to handle a variety of such species, preferably with no operator intervention required when changing from one species to another. Secondly, there is a good deal of variability in the definition of what constitutes a removable defect. The hardwood furniture and fixture industry is diverse in the nature of the products that it makes. The products range from hardwood flooring to fancy hardwood furniture, from simple mill work to kitchen cabinets. Thus depending on the manufacturer, the product, and the quality of the product the nature of what constitutes a removable defect can and does vary. The vision system must be such that it can be tailored to meet each of these unique needs, preferably without any additional program modifications. This paper will describe the vision system that has been developed. It will assess the current system capabilities, and it will discuss the directions for future research. It will be argued that artificial intelligence methods provide a natural mechanism for attacking this computer vision application.

  2. Computer vision syndrome: A study of the knowledge, attitudes and practices in Indian Ophthalmologists

    Directory of Open Access Journals (Sweden)

    Bali Jatinder

    2007-01-01

    Full Text Available Purpose: To study the knowledge, attitude and practices (KAP towards computer vision syndrome prevalent in Indian ophthalmologists and to assess whether ′computer use by practitioners′ had any bearing on the knowledge and practices in computer vision syndrome (CVS. Materials and Methods: A random KAP survey was carried out on 300 Indian ophthalmologists using a 34-point spot-questionnaire in January 2005. Results: All the doctors who responded were aware of CVS. The chief presenting symptoms were eyestrain (97.8%, headache (82.1%, tiredness and burning sensation (79.1%, watering (66.4% and redness (61.2%. Ophthalmologists using computers reported that focusing from distance to near and vice versa ( P =0.006, χ2 test, blurred vision at a distance ( P =0.016, χ2 test and blepharospasm ( P =0.026, χ2 test formed part of the syndrome. The main mode of treatment used was tear substitutes. Half of ophthalmologists (50.7% were not prescribing any spectacles. They did not have any preference for any special type of glasses (68.7% or spectral filters. Computer-users were more likely to prescribe sedatives/ anxiolytics ( P = 0.04, χ2 test, spectacles ( P = 0.02, χ2 test and conscious frequent blinking ( P = 0.003, χ2 test than the non-computer-users. Conclusions: All respondents were aware of CVS. Confusion regarding treatment guidelines was observed in both groups. Computer-using ophthalmologists were more informed of symptoms and diagnostic signs but were misinformed about treatment modalities.

  3. Computer vision techniques applied to the quality control of ceramic plates

    OpenAIRE

    Silveira, Joaquim; Ferreira, Manuel João Oliveira; Santos, Cristina; Martins, Teresa

    2009-01-01

    This paper presents a system, based on computer vision techniques, that detects and quantifies different types of defects in ceramic plates. It was developed in collaboration with the industrial ceramic sector and consequently it was focused on the defects that are considered more quality depreciating by the Portuguese industry. They are of three main types: cracks; granules and relief surface. For each type the development was specific as far as image processing techn...

  4. Computer vision system R&D for EAST Articulated Maintenance Arm robot

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Linglong, E-mail: linglonglin@ipp.ac.cn; Song, Yuntao, E-mail: songyt@ipp.ac.cn; Yang, Yang, E-mail: yangy@ipp.ac.cn; Feng, Hansheng, E-mail: hsfeng@ipp.ac.cn; Cheng, Yong, E-mail: chengyong@ipp.ac.cn; Pan, Hongtao, E-mail: panht@ipp.ac.cn

    2015-11-15

    Highlights: • We discussed the image preprocessing, object detection and pose estimation algorithms under poor light condition of inner vessel of EAST tokamak. • The main pipeline, including contours detection, contours filter, MER extracted, object location and pose estimation, was carried out in detail. • The technical issues encountered during the research were discussed. - Abstract: Experimental Advanced Superconducting Tokamak (EAST) is the first full superconducting tokamak device which was constructed at Institute of Plasma Physics Chinese Academy of Sciences (ASIPP). The EAST Articulated Maintenance Arm (EAMA) robot provides the means of the in-vessel maintenance such as inspection and picking up the fragments of first wall. This paper presents a method to identify and locate the fragments semi-automatically by using the computer vision. The use of computer vision in identification and location faces some difficult challenges such as shadows, poor contrast, low illumination level, less texture and so on. The method developed in this paper enables credible identification of objects with shadows through invariant image and edge detection. The proposed algorithms are validated through our ASIPP robotics and computer vision platform (ARVP). The results show that the method can provide a 3D pose with reference to robot base so that objects with different shapes and size can be picked up successfully.

  5. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    Science.gov (United States)

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  6. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    Directory of Open Access Journals (Sweden)

    Shoaib Ehsan

    2015-07-01

    Full Text Available The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF, allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video. Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44% in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  7. Method of mobile robot indoor navigation by artificial landmarks with use of computer vision

    Science.gov (United States)

    Glibin, E. S.; Shevtsov, A. A.; Enik, O. A.

    2018-05-01

    The article describes an algorithm of the mobile robot indoor navigation based on the use of visual odometry. The results of the experiment identifying calculation errors in the distance traveled on a slip are presented. It is shown that the use of computer vision allows one to correct erroneous coordinates of the robot with the help of artificial landmarks. The control system utilizing the proposed method has been realized on the basis of Arduino Mego 2560 controller and a single-board computer Raspberry Pi 3. The results of the experiment on the mobile robot navigation with the use of this control system are presented.

  8. A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision

    Directory of Open Access Journals (Sweden)

    loubna benchikhi

    2017-10-01

    Full Text Available Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO, reinforcement learning (RL and ant colony optimization (ACO show the efficiency of this novel method.

  9. Computer-enhanced stereoscopic vision in a head-mounted operating binocular

    International Nuclear Information System (INIS)

    Birkfellner, Wolfgang; Figl, Michael; Matula, Christian; Hummel, Johann; Hanel, Rudolf; Imhof, Herwig; Wanschitz, Felix; Wagner, Arne; Watzinger, Franz; Bergmann, Helmar

    2003-01-01

    Based on the Varioscope, a commercially available head-mounted operating binocular, we have developed the Varioscope AR, a see through head-mounted display (HMD) for augmented reality visualization that seamlessly fits into the infrastructure of a surgical navigation system. We have assessed the extent to which stereoscopic visualization improves target localization in computer-aided surgery in a phantom study. In order to quantify the depth perception of a user aiming at a given target, we have designed a phantom simulating typical clinical situations in skull base surgery. Sixteen steel spheres were fixed at the base of a bony skull, and several typical craniotomies were applied. After having taken CT scans, the skull was filled with opaque jelly in order to simulate brain tissue. The positions of the spheres were registered using VISIT, a system for computer-aided surgical navigation. Then attempts were made to locate the steel spheres with a bayonet probe through the craniotomies using VISIT and the Varioscope AR as a stereoscopic display device. Localization of targets 4 mm in diameter using stereoscopic vision and additional visual cues indicating target proximity had a success rate (defined as a first-trial hit rate) of 87.5%. Using monoscopic vision and target proximity indication, the success rate was found to be 66.6%. Omission of visual hints on reaching a target yielded a success rate of 79.2% in the stereo case and 56.25% with monoscopic vision. Time requirements for localizing all 16 targets ranged from 7.5 min (stereo, with proximity cues) to 10 min (mono, without proximity cues). Navigation error is primarily governed by the accuracy of registration in the navigation system, whereas the HMD does not appear to influence localization significantly. We conclude that stereo vision is a valuable tool in augmented reality guided interventions. (note)

  10. Clinical efficacy of Ayurvedic management in computer vision syndrome: A pilot study.

    Science.gov (United States)

    Dhiman, Kartar Singh; Ahuja, Deepak Kumar; Sharma, Sanjeev Kumar

    2012-07-01

    Improper use of sense organs, violating the moral code of conduct, and the effect of the time are the three basic causative factors behind all the health problems. Computer, the knowledge bank of modern life, has emerged as a profession causing vision-related discomfort, ocular fatigue, and systemic effects. Computer Vision Syndrome (CVS) is the new nomenclature to the visual, ocular, and systemic symptoms arising due to the long time and improper working on the computer and is emerging as a pandemic in the 21(st) century. On critical analysis of the symptoms of CVS on Tridoshika theory of Ayurveda, as per the road map given by Acharya Charaka, it seems to be a Vata-Pittaja ocular cum systemic disease which needs systemic as well as topical treatment approach. Shatavaryaadi Churna (orally), Go-Ghrita Netra Tarpana (topically), and counseling regarding proper working conditions on computer were tried in 30 patients of CVS. In group I, where oral and local treatment was given, significant improvement in all the symptoms of CVS was observed, whereas in groups II and III, local treatment and counseling regarding proper working conditions, respectively, were given and showed insignificant results. The study verified the hypothesis that CVS in Ayurvedic perspective is a Vata-Pittaja disease affecting mainly eyes and body as a whole and needs a systemic intervention rather than topical ocular medication only.

  11. Computer use and vision-related problems among university students in ajman, United arab emirate.

    Science.gov (United States)

    Shantakumari, N; Eldeeb, R; Sreedharan, J; Gopal, K

    2014-03-01

    The extensive use of computers as medium of teaching and learning in universities necessitates introspection into the extent of computer related health disorders among student population. This study was undertaken to assess the pattern of computer usage and related visual problems, among University students in Ajman, United Arab Emirates. A total of 500 Students studying in Gulf Medical University, Ajman and Ajman University of Science and Technology were recruited into this study. Demographic characteristics, pattern of usage of computers and associated visual symptoms were recorded in a validated self-administered questionnaire. Chi-square test was used to determine the significance of the observed differences between the variables. The level of statistical significance was at P computer users were headache - 53.3% (251/471), burning sensation in the eyes - 54.8% (258/471) and tired eyes - 48% (226/471). Female students were found to be at a higher risk. Nearly 72% of students reported frequent interruption of computer work. Headache caused interruption of work in 43.85% (110/168) of the students while tired eyes caused interruption of work in 43.5% (98/168) of the students. When the screen was viewed at distance more than 50 cm, the prevalence of headaches decreased by 38% (50-100 cm - OR: 0.62, 95% of the confidence interval [CI]: 0.42-0.92). Prevalence of tired eyes increased by 89% when screen filters were not used (OR: 1.894, 95% CI: 1.065-3.368). High prevalence of vision related problems was noted among university students. Sustained periods of close screen work without screen filters were found to be associated with occurrence of the symptoms and increased interruptions of work of the students. There is a need to increase the ergonomic awareness among students and corrective measures need to be implemented to reduce the impact of computer related vision problems.

  12. Architecture and VHDL behavioural validation of a parallel processor dedicated to computer vision

    International Nuclear Information System (INIS)

    Collette, Thierry

    1992-01-01

    Speeding up image processing is mainly obtained using parallel computers; SIMD processors (single instruction stream, multiple data stream) have been developed, and have proven highly efficient regarding low-level image processing operations. Nevertheless, their performances drop for most intermediate of high level operations, mainly when random data reorganisations in processor memories are involved. The aim of this thesis was to extend the SIMD computer capabilities to allow it to perform more efficiently at the image processing intermediate level. The study of some representative algorithms of this class, points out the limits of this computer. Nevertheless, these limits can be erased by architectural modifications. This leads us to propose SYMPATIX, a new SIMD parallel computer. To valid its new concept, a behavioural model written in VHDL - Hardware Description Language - has been elaborated. With this model, the new computer performances have been estimated running image processing algorithm simulations. VHDL modeling approach allows to perform the system top down electronic design giving an easy coupling between system architectural modifications and their electronic cost. The obtained results show SYMPATIX to be an efficient computer for low and intermediate level image processing. It can be connected to a high level computer, opening up the development of new computer vision applications. This thesis also presents, a top down design method, based on the VHDL, intended for electronic system architects. (author) [fr

  13. TU-FG-201-04: Computer Vision in Autonomous Quality Assurance of Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H; Jenkins, C; Yu, S; Yang, Y; Xing, L [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: Routine quality assurance (QA) of linear accelerators represents a critical and costly element of a radiation oncology center. Recently, a system was developed to autonomously perform routine quality assurance on linear accelerators. The purpose of this work is to extend this system and contribute computer vision techniques for obtaining quantitative measurements for a monthly multi-leaf collimator (MLC) QA test specified by TG-142, namely leaf position accuracy, and demonstrate extensibility for additional routines. Methods: Grayscale images of a picket fence delivery on a radioluminescent phosphor coated phantom are captured using a CMOS camera. Collected images are processed to correct for camera distortions, rotation and alignment, reduce noise, and enhance contrast. The location of each MLC leaf is determined through logistic fitting and a priori modeling based on knowledge of the delivered beams. Using the data collected and the criteria from TG-142, a decision is made on whether or not the leaf position accuracy of the MLC passes or fails. Results: The locations of all MLC leaf edges are found for three different picket fence images in a picket fence routine to 0.1mm/1pixel precision. The program to correct for image alignment and determination of leaf positions requires a runtime of 21– 25 seconds for a single picket, and 44 – 46 seconds for a group of three pickets on a standard workstation CPU, 2.2 GHz Intel Core i7. Conclusion: MLC leaf edges were successfully found using techniques in computer vision. With the addition of computer vision techniques to the previously described autonomous QA system, the system is able to quickly perform complete QA routines with minimal human contribution.

  14. Fuzzy classification for strawberry diseases-infection using machine vision and soft-computing techniques

    Science.gov (United States)

    Altıparmak, Hamit; Al Shahadat, Mohamad; Kiani, Ehsan; Dimililer, Kamil

    2018-04-01

    Robotic agriculture requires smart and doable techniques to substitute the human intelligence with machine intelligence. Strawberry is one of the important Mediterranean product and its productivity enhancement requires modern and machine-based methods. Whereas a human identifies the disease infected leaves by his eye, the machine should also be capable of vision-based disease identification. The objective of this paper is to practically verify the applicability of a new computer-vision method for discrimination between the healthy and disease infected strawberry leaves which does not require neural network or time consuming trainings. The proposed method was tested under outdoor lighting condition using a regular DLSR camera without any particular lens. Since the type and infection degree of disease is approximated a human brain a fuzzy decision maker classifies the leaves over the images captured on-site having the same properties of human vision. Optimizing the fuzzy parameters for a typical strawberry production area at a summer mid-day in Cyprus produced 96% accuracy for segmented iron deficiency and 93% accuracy for segmented using a typical human instant classification approximation as the benchmark holding higher accuracy than a human eye identifier. The fuzzy-base classifier provides approximate result for decision making on the leaf status as if it is healthy or not.

  15. Gesture recognition based on computer vision and glove sensor for remote working environments

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Sung Il; Kim, In Chul; Baek, Yung Mok; Kim, Dong Su; Jeong, Jee Won; Shin, Kug [Kyungpook National University, Taegu (Korea)

    1998-04-01

    In this research, we defined a gesture set needed for remote monitoring and control of a manless system in atomic power station environments. Here, we define a command as the loci of a gesture. We aim at the development of an algorithm using a vision sensor and glove sensors in order to implement the gesture recognition system. The gesture recognition system based on computer vision tracks a hand by using cross correlation of PDOE image. To recognize the gesture word, the 8 direction code is employed as the input symbol for discrete HMM. Another gesture recognition based on sensor has introduced Pinch glove and Polhemus sensor as an input device. The extracted feature through preprocessing now acts as an input signal of the recognizer. For recognition 3D loci of Polhemus sensor, discrete HMM is also adopted. The alternative approach of two foregoing recognition systems uses the vision and and glove sensors together. The extracted mesh feature and 8 direction code from the locus tracking are introduced for further enhancing recognition performance. MLP trained by backpropagation is introduced here and its performance is compared to that of discrete HMM. (author). 32 refs., 44 figs., 21 tabs.

  16. Objective definition of rosette shape variation using a combined computer vision and data mining approach.

    Directory of Open Access Journals (Sweden)

    Anyela Camargo

    Full Text Available Computer-vision based measurements of phenotypic variation have implications for crop improvement and food security because they are intrinsically objective. It should be possible therefore to use such approaches to select robust genotypes. However, plants are morphologically complex and identification of meaningful traits from automatically acquired image data is not straightforward. Bespoke algorithms can be designed to capture and/or quantitate specific features but this approach is inflexible and is not generally applicable to a wide range of traits. In this paper, we have used industry-standard computer vision techniques to extract a wide range of features from images of genetically diverse Arabidopsis rosettes growing under non-stimulated conditions, and then used statistical analysis to identify those features that provide good discrimination between ecotypes. This analysis indicates that almost all the observed shape variation can be described by 5 principal components. We describe an easily implemented pipeline including image segmentation, feature extraction and statistical analysis. This pipeline provides a cost-effective and inherently scalable method to parameterise and analyse variation in rosette shape. The acquisition of images does not require any specialised equipment and the computer routines for image processing and data analysis have been implemented using open source software. Source code for data analysis is written using the R package. The equations to calculate image descriptors have been also provided.

  17. Tensor Voting A Perceptual Organization Approach to Computer Vision and Machine Learning

    CERN Document Server

    Mordohai, Philippos

    2006-01-01

    This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organiza

  18. An Application of Computer Vision Systems to Solve the Problem of Unmanned Aerial Vehicle Control

    Directory of Open Access Journals (Sweden)

    Aksenov Alexey Y.

    2014-09-01

    Full Text Available The paper considers an approach for application of computer vision systems to solve the problem of unmanned aerial vehicle control. The processing of images obtained through onboard camera is required for absolute positioning of aerial platform (automatic landing and take-off, hovering etc. used image processing on-board camera. The proposed method combines the advantages of existing systems and gives the ability to perform hovering over a given point, the exact take-off and landing. The limitations of implemented methods are determined and the algorithm is proposed to combine them in order to improve the efficiency.

  19. The computer vision in the service of safety and reliability in steam generators inspection services; La vision computacional al servicio de la seguridad y fiabilidad en los servicios de inspeccion en generadores de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro Fernandez, P.; Garcia Bueno, A.; Cabrera Jordan, E.

    2012-07-01

    The actual computational vision has matured very quickly in the last ten years by facilitating new developments in various areas of nuclear application allowing to automate and simplify processes and tasks, instead or in collaboration with the people and equipment efficiently. The current computer vision (more appropriate than the artificial vision concept) provides great possibilities of also improving in terms of the reliability and safety of NPPS inspection systems.

  20. Comparative randomised controlled clinical trial of a herbal eye drop with artificial tear and placebo in computer vision syndrome.

    Science.gov (United States)

    Biswas, N R; Nainiwal, S K; Das, G K; Langan, U; Dadeya, S C; Mongre, P K; Ravi, A K; Baidya, P

    2003-03-01

    A comparative randomised double masked multicentric clinical trial has been conducted to find out the efficacy and safety of a herbal eye drop preparation, itone eye drops with artificial tear and placebo in 120 patients with computer vision syndrome. Patients using computer for at least 2 hours continuosly per day having symptoms of irritation, foreign body sensation, watering, redness, headache, eyeache and signs of conjunctival congestion, mucous/debris, corneal filaments, corneal staining or lacrimal lake were included in this study. Every patient was instructed to put two drops of either herbal drugs or placebo or artificial tear in the eyes regularly four times for 6 weeks. Objective and subjective findings were recorded at bi-weekly intervals up to six weeks. Side-effects, if any, were also noted. In computer vision syndrome the herbal eye drop preparation was found significantly better than artificial tear (p computer vision syndrome.

  1. EAST-AIA deployment under vacuum: Calibration of laser diagnostic system using computer vision

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao; Cheng, Yong; Feng, Hansheng; Wu, Zhenwei; Li, Yingying; Sun, Yongjun; Zheng, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Bruno, Vincent; Eric, Villedieu [CEA-IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2016-11-15

    Highlights: • The first deployment of the EAST articulated inspection arm robot under vacuum is presented. • A computer vision based approach to measure the laser spot displacement is proposed. • An experiment on the real EAST tokamak is performed to validate the proposed measure approach, and the results shows that the measurement accuracy satisfies the requirement. - Abstract: For the operation of EAST tokamak, it is crucial to ensure that all the diagnostic systems are in the good condition in order to reflect the plasma status properly. However, most of the diagnostic systems are mounted inside the tokamak vacuum vessel, which makes them extremely difficult to maintain under high vacuum condition during the tokamak operation. Thanks to a system called EAST articulated inspection arm robot (EAST-AIA), the examination of these in-vessel diagnostic systems can be performed by an embedded camera carried by the robot. In this paper, a computer vision algorithm has been developed to calibrate a laser diagnostic system with the help of a monocular camera at the robot end. In order to estimate the displacement of the laser diagnostic system with respect to the vacuum vessel, several visual markers were attached to the inner wall. This experiment was conducted both on the EAST vacuum vessel mock-up and the real EAST tokamak under vacuum condition. As a result, the accuracy of the displacement measurement was within 3 mm under the current camera resolution, which satisfied the laser diagnostic system calibration.

  2. Container-code recognition system based on computer vision and deep neural networks

    Science.gov (United States)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  3. Computer vision-based method for classification of wheat grains using artificial neural network.

    Science.gov (United States)

    Sabanci, Kadir; Kayabasi, Ahmet; Toktas, Abdurrahim

    2017-06-01

    A simplified computer vision-based application using artificial neural network (ANN) depending on multilayer perceptron (MLP) for accurately classifying wheat grains into bread or durum is presented. The images of 100 bread and 100 durum wheat grains are taken via a high-resolution camera and subjected to pre-processing. The main visual features of four dimensions, three colors and five textures are acquired using image-processing techniques (IPTs). A total of 21 visual features are reproduced from the 12 main features to diversify the input population for training and testing the ANN model. The data sets of visual features are considered as input parameters of the ANN model. The ANN with four different input data subsets is modelled to classify the wheat grains into bread or durum. The ANN model is trained with 180 grains and its accuracy tested with 20 grains from a total of 200 wheat grains. Seven input parameters that are most effective on the classifying results are determined using the correlation-based CfsSubsetEval algorithm to simplify the ANN model. The results of the ANN model are compared in terms of accuracy rate. The best result is achieved with a mean absolute error (MAE) of 9.8 × 10 -6 by the simplified ANN model. This shows that the proposed classifier based on computer vision can be successfully exploited to automatically classify a variety of grains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Computer Vision Utilization for Detection of Green House Tomato under Natural Illumination

    Directory of Open Access Journals (Sweden)

    H Mohamadi Monavar

    2013-02-01

    Full Text Available Agricultural sector experiences the application of automated systems since two decades ago. These systems are applied to harvest fruits in agriculture. Computer vision is one of the technologies that are most widely used in food industries and agriculture. In this paper, an automated system based on computer vision for harvesting greenhouse tomatoes is presented. A CCD camera takes images from workspace and tomatoes with over 50 percent ripeness are detected through an image processing algorithm. In this research three color spaces including RGB, HSI and YCbCr and three algorithms including threshold recognition, curvature of the image and red/green ratio were used in order to identify the ripe tomatoes from background under natural illumination. The average error of threshold recognition, red/green ratio and curvature of the image algorithms were 11.82%, 10.03% and 7.95% in HSI, RGB and YCbCr color spaces, respectively. Therefore, the YCbCr color space and curvature of the image algorithm were identified as the most suitable for recognizing fruits under natural illumination condition.

  5. Design of an optimum computer vision-based automatic abalone (Haliotis discus hannai) grading algorithm.

    Science.gov (United States)

    Lee, Donggil; Lee, Kyounghoon; Kim, Seonghun; Yang, Yongsu

    2015-04-01

    An automatic abalone grading algorithm that estimates abalone weights on the basis of computer vision using 2D images is developed and tested. The algorithm overcomes the problems experienced by conventional abalone grading methods that utilize manual sorting and mechanical automatic grading. To design an optimal algorithm, a regression formula and R(2) value were investigated by performing a regression analysis for each of total length, body width, thickness, view area, and actual volume against abalone weights. The R(2) value between the actual volume and abalone weight was 0.999, showing a relatively high correlation. As a result, to easily estimate the actual volumes of abalones based on computer vision, the volumes were calculated under the assumption that abalone shapes are half-oblate ellipsoids, and a regression formula was derived to estimate the volumes of abalones through linear regression analysis between the calculated and actual volumes. The final automatic abalone grading algorithm is designed using the abalone volume estimation regression formula derived from test results, and the actual volumes and abalone weights regression formula. In the range of abalones weighting from 16.51 to 128.01 g, the results of evaluation of the performance of algorithm via cross-validation indicate root mean square and worst-case prediction errors of are 2.8 and ±8 g, respectively. © 2015 Institute of Food Technologists®

  6. The potential of the quantum computer

    CERN Multimedia

    2006-01-01

    The Physics Section of the University of Geneva is continuing its series of lectures, open to the general public, on the most recent developments in the field of physics. The next lecture, given by Professor Michel Devoret of Yale University in the United States, will be on the potential of the quantum computer. The quantum computer is, as yet, a hypothetical machine which would operate on the basic principles of quantum mechanics. Compared to standard computers, it represents a significant gain in computing power for certain complex calculations. Quantum operations can simultaneously explore a very large number of possibilities. The correction of quantum errors, which until recently had been deemed impossible, has now become a well-established technique. Several prototypes for, as yet, very simple quantum processors have been developed. The lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de M...

  7. REDUCED DATA FOR CURVE MODELING – APPLICATIONS IN GRAPHICS, COMPUTER VISION AND PHYSICS

    Directory of Open Access Journals (Sweden)

    Małgorzata Janik

    2013-06-01

    Full Text Available In this paper we consider the problem of modeling curves in Rn via interpolation without a priori specified interpolation knots. We discuss two approaches to estimate the missing knots for non-parametric data (i.e. collection of points. The first approach (uniform evaluation is based on blind guess in which knots are chosen uniformly. The second approach (cumulative chord parameterization incorporates the geometry of the distribution of data points. More precisely, the difference is equal to the Euclidean distance between data points qi+1 and qi. The second method partially compensates for the loss of the information carried by the reduced data. We also present the application of the above schemes for fitting non-parametric data in computer graphics (light-source motion rendering, in computer vision (image segmentation and in physics (high velocity particles trajectory modeling. Though experiments are conducted for points in R2 and R3 the entire method is equally applicable in Rn.

  8. Aquatic Toxic Analysis by Monitoring Fish Behavior Using Computer Vision: A Recent Progress

    Directory of Open Access Journals (Sweden)

    Chunlei Xia

    2018-01-01

    Full Text Available Video tracking based biological early warning system achieved a great progress with advanced computer vision and machine learning methods. Ability of video tracking of multiple biological organisms has been largely improved in recent years. Video based behavioral monitoring has become a common tool for acquiring quantified behavioral data for aquatic risk assessment. Investigation of behavioral responses under chemical and environmental stress has been boosted by rapidly developed machine learning and artificial intelligence. In this paper, we introduce the fundamental of video tracking and present the pioneer works in precise tracking of a group of individuals in 2D and 3D space. Technical and practical issues suffered in video tracking are explained. Subsequently, the toxic analysis based on fish behavioral data is summarized. Frequently used computational methods and machine learning are explained with their applications in aquatic toxicity detection and abnormal pattern analysis. Finally, advantages of recent developed deep learning approach in toxic prediction are presented.

  9. THE USE OF COMPUTER VISION ALGORITHMS FOR AUTOMATIC ORIENTATION OF TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    J. S. Markiewicz

    2016-06-01

    Full Text Available The paper presents analysis of the orientation of terrestrial laser scanning (TLS data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  10. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data

    Science.gov (United States)

    Markiewicz, Jakub Stefan

    2016-06-01

    The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  11. A malaria diagnostic tool based on computer vision screening and visualization of Plasmodium falciparum candidate areas in digitized blood smears.

    Directory of Open Access Journals (Sweden)

    Nina Linder

    Full Text Available INTRODUCTION: Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood smears. METHODS: Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27 and uninfected controls (n = 20 were digitally scanned with an oil immersion objective (0.1 µm/pixel to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast and Scale-invariant feature transform descriptors used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples. RESULTS: The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls. From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97. CONCLUSION: We developed a decision support system for detecting malaria parasites using a computer vision algorithm combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel method for blood smear screening with a significantly reduced need for

  12. A method of non-contact reading code based on computer vision

    Science.gov (United States)

    Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan

    2018-03-01

    With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.

  13. Computer vision syndrome: a study of knowledge and practices in university students.

    Science.gov (United States)

    Reddy, S C; Low, C K; Lim, Y P; Low, L L; Mardina, F; Nursaleha, M P

    2013-01-01

    Computer vision syndrome (CVS) is a condition in which a person experiences one or more of eye symptoms as a result of prolonged working on a computer. To determine the prevalence of CVS symptoms, knowledge and practices of computer use in students studying in different universities in Malaysia, and to evaluate the association of various factors in computer use with the occurrence of symptoms. In a cross sectional, questionnaire survey study, data was collected in college students regarding the demography, use of spectacles, duration of daily continuous use of computer, symptoms of CVS, preventive measures taken to reduce the symptoms, use of radiation filter on the computer screen, and lighting in the room. A total of 795 students, aged between 18 and 25 years, from five universities in Malaysia were surveyed. The prevalence of symptoms of CVS (one or more) was found to be 89.9%; the most disturbing symptom was headache (19.7%) followed by eye strain (16.4%). Students who used computer for more than 2 hours per day experienced significantly more symptoms of CVS (p=0.0001). Looking at far objects in-between the work was significantly (p=0.0008) associated with less frequency of CVS symptoms. The use of radiation filter on the screen (p=0.6777) did not help in reducing the CVS symptoms. Ninety percent of university students in Malaysia experienced symptoms related to CVS, which was seen more often in those who used computer for more than 2 hours continuously per day. © NEPjOPH.

  14. An Exploratory Study of the Potential Effects of Vision Training on Concussion Incidence in Football

    OpenAIRE

    Joseph F. Clark, PHD, ATC; Pat Graman, MA, ATC; James K. Ellis, OD; Robert E. Mangine, MEd, PT, ATC; Joesph T. Rauch, DPT, SCS, ATC; Ben Bixenmann, MD; Kimberly A. Hasselfeld, MS; Jon G. Divine, MD; Angelo J. Colosimo, MD; Gregory D. Myer, PhD, FACSM

    2015-01-01

    Background: Vision training has become a component of sports enhancement training; however, quantifiable and validated improvement in visual performance has not been clearly demonstrated. In addition, there is minimal literature related to the effects of vision training on sports performance and injury risk reduction. The purpose of the current investigation was to determine the effects of vision training on peripheral vision and concussion incidence. Methods: Vision training was initiate...

  15. Development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification

    Science.gov (United States)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  16. Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications

    Science.gov (United States)

    Olson, Gaylord G.; Walker, Jo N.

    1997-09-01

    Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.

  17. Dirt detection on brown eggs by means of color computer vision.

    Science.gov (United States)

    Mertens, K; De Ketelaere, B; Kamers, B; Bamelis, F R; Kemps, B J; Verhoelst, E M; De Baerdemaeker, J G; Decuypere, E M

    2005-10-01

    In the last 20 yr, different methods for detecting defects in eggs were developed. Until now, no satisfying technique existed to sort and quantify dirt on eggshells. The work presented here focuses on the design of an off-line computer vision system to differentiate and quantify the presence of different dirt stains on brown eggs: dark (feces), white (uric acid), blood, and yolk stains. A system that provides uniform light exposure around the egg was designed. In this uniform light, pictures of dirty and clean eggs were taken, stored, and analyzed. The classification was based on a few standard logical operators, allowing for a quick implementation in an online set-up. In an experiment, 100 clean and 100 dirty eggs were used to validate the classification algorithm. The designed vision system showed an accuracy of 99% for the detection of dirt stains. Two percent of the clean eggs had a light-colored eggshell and were subsequently mistaken for showing large white stains. The accuracy of differentiation of the different kinds of dirt stains was 91%. Of the eggs with dark stains, 10.81% were mistaken for having bloodstains, and 33.33% of eggs with bloodstains were mistaken for having dark stains. The developed system is possibly a first step toward an on line dirt evaluation technique for brown eggs.

  18. Principle for the Validation of a Driving Support using a Computer Vision-Based Driver Modelization on a Simulator

    Directory of Open Access Journals (Sweden)

    Baptiste Rouzier

    2015-07-01

    Full Text Available This paper presents a new structure for a driving support designed to compensate for the problems caused by the behaviour of the driver without causing a feeling of unease. This assistance is based on a shared control between the human and an automatic support that computes and applies an assisting torque on the steering wheel. This torque is computed from a representation of the hazards encountered on the road by virtual potentials. However, the equilibrium between the relative influences of the human and the support on the steering wheel are difficult to find and depend upon the situation. This is why this driving support includes a modelization of the driver based on an analysis of several face features using a computer vision algorithm. The goal is to determine whether the driver is drowsy or whether he is paying attention to some specific points in order to adapt the strength of the support. The accuracy of the measurements made on the face features is estimated, and the interest of the proposal as well as the concepts raised by such assistance are studied through simulations.

  19. SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, R.D.; Scherrer, B [Boston Children’s Hospital, Boston, MA (United States); Don, S [Washington University, St. Louis, MO (United States)

    2016-06-15

    Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient. The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund.

  20. SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality

    International Nuclear Information System (INIS)

    MacDougall, R.D.; Scherrer, B; Don, S

    2016-01-01

    Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient. The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund

  1. A method of detection to the grinding wheel layer thickness based on computer vision

    Science.gov (United States)

    Ji, Yuchen; Fu, Luhua; Yang, Dujuan; Wang, Lei; Liu, Changjie; Wang, Zhong

    2018-01-01

    This paper proposed a method of detection to the grinding wheel layer thickness based on computer vision. A camera is used to capture images of grinding wheel layer on the whole circle. Forward lighting and back lighting are used to enables a clear image to be acquired. Image processing is then executed on the images captured, which consists of image preprocessing, binarization and subpixel subdivision. The aim of binarization is to help the location of a chord and the corresponding ring width. After subpixel subdivision, the thickness of the grinding layer can be calculated finally. Compared with methods usually used to detect grinding wheel wear, method in this paper can directly and quickly get the information of thickness. Also, the eccentric error and the error of pixel equivalent are discussed in this paper.

  2. The Event Detection and the Apparent Velocity Estimation Based on Computer Vision

    Science.gov (United States)

    Shimojo, M.

    2012-08-01

    The high spatial and time resolution data obtained by the telescopes aboard Hinode revealed the new interesting dynamics in solar atmosphere. In order to detect such events and estimate the velocity of dynamics automatically, we examined the estimation methods of the optical flow based on the OpenCV that is the computer vision library. We applied the methods to the prominence eruption observed by NoRH, and the polar X-ray jet observed by XRT. As a result, it is clear that the methods work well for solar images if the images are optimized for the methods. It indicates that the optical flow estimation methods in the OpenCV library are very useful to analyze the solar phenomena.

  3. Gait Analysis Using Computer Vision Based on Cloud Platform and Mobile Device

    Directory of Open Access Journals (Sweden)

    Mario Nieto-Hidalgo

    2018-01-01

    Full Text Available Frailty and senility are syndromes that affect elderly people. The ageing process involves a decay of cognitive and motor functions which often produce an impact on the quality of life of elderly people. Some studies have linked this deterioration of cognitive and motor function to gait patterns. Thus, gait analysis can be a powerful tool to assess frailty and senility syndromes. In this paper, we propose a vision-based gait analysis approach performed on a smartphone with cloud computing assistance. Gait sequences recorded by a smartphone camera are processed by the smartphone itself to obtain spatiotemporal features. These features are uploaded onto the cloud in order to analyse and compare them to a stored database to render a diagnostic. The feature extraction method presented can work with both frontal and sagittal gait sequences although the sagittal view provides a better classification since an accuracy of 95% can be obtained.

  4. UE4Sim: A Photo-Realistic Simulator for Computer Vision Applications

    KAUST Repository

    Mueller, Matthias; Casser, Vincent; Lahoud, Jean; Smith, Neil; Ghanem, Bernard

    2017-01-01

    We present a photo-realistic training and evaluation simulator (UE4Sim) with extensive applications across various fields of computer vision. Built on top of the Unreal Engine, the simulator integrates full featured physics based cars, unmanned aerial vehicles (UAVs), and animated human actors in diverse urban and suburban 3D environments. We demonstrate the versatility of the simulator with two case studies: autonomous UAV-based tracking of moving objects and autonomous driving using supervised learning. The simulator fully integrates both several state-of-the-art tracking algorithms with a benchmark evaluation tool and a deep neural network (DNN) architecture for training vehicles to drive autonomously. It generates synthetic photo-realistic datasets with automatic ground truth annotations to easily extend existing real-world datasets and provides extensive synthetic data variety through its ability to reconfigure synthetic worlds on the fly using an automatic world generation tool.

  5. Simulation of Specular Surface Imaging Based on Computer Graphics: Application on a Vision Inspection System

    Directory of Open Access Journals (Sweden)

    Seulin Ralph

    2002-01-01

    Full Text Available This work aims at detecting surface defects on reflecting industrial parts. A machine vision system, performing the detection of geometric aspect surface defects, is completely described. The revealing of defects is realized by a particular lighting device. It has been carefully designed to ensure the imaging of defects. The lighting system simplifies a lot the image processing for defect segmentation and so a real-time inspection of reflective products is possible. To bring help in the conception of imaging conditions, a complete simulation is proposed. The simulation, based on computer graphics, enables the rendering of realistic images. Simulation provides here a very efficient way to perform tests compared to the numerous attempts of manual experiments.

  6. On quaternion based parameterization of orientation in computer vision and robotics

    Directory of Open Access Journals (Sweden)

    G. Terzakis

    2014-04-01

    Full Text Available The problem of orientation parameterization for applications in computer vision and robotics is examined in detail herein. The necessary intuition and formulas are provided for direct practical use in any existing algorithm that seeks to minimize a cost function in an iterative fashion. Two distinct schemes of parameterization are analyzed: The first scheme concerns the traditional axis-angle approach, while the second employs stereographic projection from unit quaternion sphere to the 3D real projective space. Performance measurements are taken and a comparison is made between the two approaches. Results suggests that there exist several benefits in the use of stereographic projection that include rational expressions in the rotation matrix derivatives, improved accuracy, robustness to random starting points and accelerated convergence.

  7. Application of Computer Vision Methods and Algorithms in Documentation of Cultural Heritage

    Directory of Open Access Journals (Sweden)

    David Káňa

    2012-12-01

    Full Text Available The main task of this paper is to describe methods and algorithms used in computer vision for fully automatic reconstruction of exterior orientation in ordered and unordered sets of images captured by digital calibrated cameras without prior informations about camera positions or scene structure. Attention will be paid to the SIFT interest operator for finding key points clearly describing the image areas with respect to scale and rotation, so that these areas could be compared to the regions in other images. There will also be discussed methods of matching key points, calculation of the relative orientation and strategy of linking sub-models to estimate the parameters entering complex bundle adjustment. The paper also compares the results achieved with above system with the results obtained by standard photogrammetric methods in processing of project documentation for reconstruction of the Žinkovy castle.

  8. [Vision test program for ophthalmologists on Apple II, IIe and IIc computers].

    Science.gov (United States)

    Huber, C

    1985-03-01

    A microcomputer program for the Apple II family of computers on a monochrome and a color screen is described. The program draws most of the tests used by ophthalmologists, and is offered as an alternative to a projector system. One advantage of the electronic generation of drawings is that true random orientation of Pflueger's E is possible. Tests are included for visual acuity (Pflueger's E, Landolt rings, numbers and children's drawings). Colored tests include a duochrome test, simple color vision tests, a fixation help with a musical background, a cobalt blue test and a Worth figure. In the astigmatic dial a mobile pointer helps to determine the axis. New tests can be programmed by the user and exchanged on disks among collageues.

  9. UE4Sim: A Photo-Realistic Simulator for Computer Vision Applications

    KAUST Repository

    Mueller, Matthias

    2017-08-19

    We present a photo-realistic training and evaluation simulator (UE4Sim) with extensive applications across various fields of computer vision. Built on top of the Unreal Engine, the simulator integrates full featured physics based cars, unmanned aerial vehicles (UAVs), and animated human actors in diverse urban and suburban 3D environments. We demonstrate the versatility of the simulator with two case studies: autonomous UAV-based tracking of moving objects and autonomous driving using supervised learning. The simulator fully integrates both several state-of-the-art tracking algorithms with a benchmark evaluation tool and a deep neural network (DNN) architecture for training vehicles to drive autonomously. It generates synthetic photo-realistic datasets with automatic ground truth annotations to easily extend existing real-world datasets and provides extensive synthetic data variety through its ability to reconfigure synthetic worlds on the fly using an automatic world generation tool.

  10. Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications

    KAUST Repository

    Müller, Matthias

    2018-03-24

    We present a photo-realistic training and evaluation simulator (Sim4CV) (http://www.sim4cv.org) with extensive applications across various fields of computer vision. Built on top of the Unreal Engine, the simulator integrates full featured physics based cars, unmanned aerial vehicles (UAVs), and animated human actors in diverse urban and suburban 3D environments. We demonstrate the versatility of the simulator with two case studies: autonomous UAV-based tracking of moving objects and autonomous driving using supervised learning. The simulator fully integrates both several state-of-the-art tracking algorithms with a benchmark evaluation tool and a deep neural network architecture for training vehicles to drive autonomously. It generates synthetic photo-realistic datasets with automatic ground truth annotations to easily extend existing real-world datasets and provides extensive synthetic data variety through its ability to reconfigure synthetic worlds on the fly using an automatic world generation tool.

  11. Lipid vesicle shape analysis from populations using light video microscopy and computer vision.

    Directory of Open Access Journals (Sweden)

    Jernej Zupanc

    Full Text Available We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1-50 µm in diameter. For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness. This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected.

  12. Micro Vision

    OpenAIRE

    Ohba, Kohtaro; Ohara, Kenichi

    2007-01-01

    In the field of the micro vision, there are few researches compared with macro environment. However, applying to the study result for macro computer vision technique, you can measure and observe the micro environment. Moreover, based on the effects of micro environment, it is possible to discovery the new theories and new techniques.

  13. Application of Computer Vision for quality control in frozen mixed berries production: colour calibration issues

    Directory of Open Access Journals (Sweden)

    D. Ricauda Aimonino

    2013-09-01

    Full Text Available Computer vision is becoming increasingly important in quality control of many food processes. The appearance properties of food products (colour, texture, shape and size are, in fact, correlated with organoleptic characteristics and/or the presence of defects. Quality control based on image processing eliminates the subjectivity of human visual inspection, allowing rapid and non-destructive analysis. However, most food matrices show a wide variability in appearance features, therefore robust and customized image elaboration algorithms have to be implemented for each specific product. For this reason, quality control by visual inspection is still rather diffused in several food processes. The case study inspiring this paper concerns the production of frozen mixed berries. Once frozen, different kinds of berries are mixed together, in different amounts, according to a recipe. The correct quantity of each kind of fruit, within a certain tolerance, has to be ensured by producers. Quality control relies on bringing few samples for each production lot (samples of the same weight and, manually, counting the amount of each species. This operation is tedious, subject to errors, and time consuming, while a computer vision system (CVS could determine the amount of each kind of berries in a few seconds. This paper discusses the problem of colour calibration of the CVS used for frozen berries mixture evaluation. Images are acquired by a digital camera coupled with a dome lighting system, which gives a homogeneous illumination on the entire visible surface of the berries, and a flat bed scanner. RBG device dependent data are then mapped onto CIELab colorimetric colour space using different transformation operators. The obtained results show that the proposed calibration procedure leads to colour discrepancies comparable or even below the human eyes sensibility.

  14. Former food products safety: microbiological quality and computer vision evaluation of packaging remnants contamination.

    Science.gov (United States)

    Tretola, M; Di Rosa, A R; Tirloni, E; Ottoboni, M; Giromini, C; Leone, F; Bernardi, C E M; Dell'Orto, V; Chiofalo, V; Pinotti, L

    2017-08-01

    The use of alternative feed ingredients in farm animal's diets can be an interesting choice from several standpoints, including safety. In this respect, this study investigated the safety features of selected former food products (FFPs) intended for animal nutrition produced in the framework of the IZS PLV 06/14 RC project by an FFP processing plant. Six FFP samples, both mash and pelleted, were analysed for the enumeration of total viable count (TVC) (ISO 4833), Enterobacteriaceae (ISO 21528-1), Escherichia coli (ISO 16649-1), coagulase-positive Staphylococci (CPS) (ISO 6888), presumptive Bacillus cereus and its spores (ISO 7932), sulphite-reducing Clostridia (ISO 7937), yeasts and moulds (ISO 21527-1), and the presence in 25 g of Salmonella spp. (ISO 6579). On the same samples, the presence of undesired ingredients, which can be identified as remnants of packaging materials, was evaluated by two different methods: stereomicroscopy according to published methods; and stereomicroscopy coupled with a computer vision system (IRIS Visual Analyzer VA400). All FFPs analysed were safe from a microbiological point of view. TVC was limited and Salmonella was always absent. When remnants of packaging materials were considered, the contamination level was below 0.08% (w/w). Of note, packaging remnants were found mainly from the 1-mm sieve mesh fractions. Finally, the innovative computer vision system demonstrated the possibility of rapid detection for the presence of packaging remnants in FFPs when combined with a stereomicroscope. In conclusion, the FFPs analysed in the present study can be considered safe, even though some improvements in FFP processing in the feeding plant can be useful in further reducing their microbial loads and impurity.

  15. Automated egg grading system using computer vision: Investigation on weight measure versus shape parameters

    Science.gov (United States)

    Nasir, Ahmad Fakhri Ab; Suhaila Sabarudin, Siti; Majeed, Anwar P. P. Abdul; Ghani, Ahmad Shahrizan Abdul

    2018-04-01

    Chicken egg is a source of food of high demand by humans. Human operators cannot work perfectly and continuously when conducting egg grading. Instead of an egg grading system using weight measure, an automatic system for egg grading using computer vision (using egg shape parameter) can be used to improve the productivity of egg grading. However, early hypothesis has indicated that more number of egg classes will change when using egg shape parameter compared with using weight measure. This paper presents the comparison of egg classification by the two above-mentioned methods. Firstly, 120 images of chicken eggs of various grades (A–D) produced in Malaysia are captured. Then, the egg images are processed using image pre-processing techniques, such as image cropping, smoothing and segmentation. Thereafter, eight egg shape features, including area, major axis length, minor axis length, volume, diameter and perimeter, are extracted. Lastly, feature selection (information gain ratio) and feature extraction (principal component analysis) are performed using k-nearest neighbour classifier in the classification process. Two methods, namely, supervised learning (using weight measure as graded by egg supplier) and unsupervised learning (using egg shape parameters as graded by ourselves), are conducted to execute the experiment. Clustering results reveal many changes in egg classes after performing shape-based grading. On average, the best recognition results using shape-based grading label is 94.16% while using weight-based label is 44.17%. As conclusion, automated egg grading system using computer vision is better by implementing shape-based features since it uses image meanwhile the weight parameter is more suitable by using weight grading system.

  16. Computer vision syndrome among computer office workers in a developing country: an evaluation of prevalence and risk factors.

    Science.gov (United States)

    Ranasinghe, P; Wathurapatha, W S; Perera, Y S; Lamabadusuriya, D A; Kulatunga, S; Jayawardana, N; Katulanda, P

    2016-03-09

    Computer vision syndrome (CVS) is a group of visual symptoms experienced in relation to the use of computers. Nearly 60 million people suffer from CVS globally, resulting in reduced productivity at work and reduced quality of life of the computer worker. The present study aims to describe the prevalence of CVS and its associated factors among a nationally-representative sample of Sri Lankan computer workers. Two thousand five hundred computer office workers were invited for the study from all nine provinces of Sri Lanka between May and December 2009. A self-administered questionnaire was used to collect socio-demographic data, symptoms of CVS and its associated factors. A binary logistic regression analysis was performed in all patients with 'presence of CVS' as the dichotomous dependent variable and age, gender, duration of occupation, daily computer usage, pre-existing eye disease, not using a visual display terminal (VDT) filter, adjusting brightness of screen, use of contact lenses, angle of gaze and ergonomic practices knowledge as the continuous/dichotomous independent variables. A similar binary logistic regression analysis was performed in all patients with 'severity of CVS' as the dichotomous dependent variable and other continuous/dichotomous independent variables. Sample size was 2210 (response rate-88.4%). Mean age was 30.8 ± 8.1 years and 50.8% of the sample were males. The 1-year prevalence of CVS in the study population was 67.4%. Female gender (OR: 1.28), duration of occupation (OR: 1.07), daily computer usage (1.10), pre-existing eye disease (OR: 4.49), not using a VDT filter (OR: 1.02), use of contact lenses (OR: 3.21) and ergonomics practices knowledge (OR: 1.24) all were associated with significantly presence of CVS. The duration of occupation (OR: 1.04) and presence of pre-existing eye disease (OR: 1.54) were significantly associated with the presence of 'severe CVS'. Sri Lankan computer workers had a high prevalence of CVS. Female gender

  17. Computer Vision for High-Throughput Quantitative Phenotyping: A Case Study of Grapevine Downy Mildew Sporulation and Leaf Trichomes.

    Science.gov (United States)

    Divilov, Konstantin; Wiesner-Hanks, Tyr; Barba, Paola; Cadle-Davidson, Lance; Reisch, Bruce I

    2017-12-01

    Quantitative phenotyping of downy mildew sporulation is frequently used in plant breeding and genetic studies, as well as in studies focused on pathogen biology such as chemical efficacy trials. In these scenarios, phenotyping a large number of genotypes or treatments can be advantageous but is often limited by time and cost. We present a novel computational pipeline dedicated to estimating the percent area of downy mildew sporulation from images of inoculated grapevine leaf discs in a manner that is time and cost efficient. The pipeline was tested on images from leaf disc assay experiments involving two F 1 grapevine families, one that had glabrous leaves (Vitis rupestris B38 × 'Horizon' [RH]) and another that had leaf trichomes (Horizon × V. cinerea B9 [HC]). Correlations between computer vision and manual visual ratings reached 0.89 in the RH family and 0.43 in the HC family. Additionally, we were able to use the computer vision system prior to sporulation to measure the percent leaf trichome area. We estimate that an experienced rater scoring sporulation would spend at least 90% less time using the computer vision system compared with the manual visual method. This will allow more treatments to be phenotyped in order to better understand the genetic architecture of downy mildew resistance and of leaf trichome density. We anticipate that this computer vision system will find applications in other pathosystems or traits where responses can be imaged with sufficient contrast from the background.

  18. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  19. Monitoring and Optimization of the Process of Drying Fruits and Vegetables Using Computer Vision: A Review

    Directory of Open Access Journals (Sweden)

    Flavio Raponi

    2017-11-01

    Full Text Available An overview is given regarding the most recent use of non-destructive techniques during drying used to monitor quality changes in fruits and vegetables. Quality changes were commonly investigated in order to improve the sensory properties (i.e., appearance, texture, flavor and aroma, nutritive values, chemical constituents and mechanical properties of drying products. The application of single-point spectroscopy coupled with drying was discussed by virtue of its potentiality to improve the overall efficiency of the process. With a similar purpose, the implementation of a machine vision (MV system used to inspect foods during drying was investigated; MV, indeed, can easily monitor physical changes (e.g., color, size, texture and shape in fruits and vegetables during the drying process. Hyperspectral imaging spectroscopy is a sophisticated technology since it is able to combine the advantages of spectroscopy and machine vision. As a consequence, its application to drying of fruits and vegetables was reviewed. Finally, attention was focused on the implementation of sensors in an on-line process based on the technologies mentioned above. This is a necessary step in order to turn the conventional dryer into a smart dryer, which is a more sustainable way to produce high quality dried fruits and vegetables.

  20. Oral omega-3 fatty acids treatment in computer vision syndrome related dry eye.

    Science.gov (United States)

    Bhargava, Rahul; Kumar, Prachi; Phogat, Hemant; Kaur, Avinash; Kumar, Manjushri

    2015-06-01

    To assess the efficacy of dietary consumption of omega-3 fatty acids (O3FAs) on dry eye symptoms, Schirmer test, tear film break up time (TBUT) and conjunctival impression cytology (CIC) in patients with computer vision syndrome. Interventional, randomized, double blind, multi-centric study. Four hundred and seventy eight symptomatic patients using computers for more than 3h per day for minimum 1 year were randomized into two groups: 220 patients received two capsules of omega-3 fatty acids each containing 180mg eicosapentaenoic acid (EPA) and 120mg docosahexaenoic acid (DHA) daily (O3FA group) and 236 patients received two capsules of a placebo containing olive oil daily for 3 months (placebo group). The primary outcome measure was improvement in dry eye symptoms and secondary outcome measures were improvement in Nelson grade and an increase in Schirmer and TBUT scores at 3 months. In the placebo group, before dietary intervention, the mean symptom score, Schirmer, TBUT and CIC scores were 7.5±2, 19.9±4.7mm, 11.5±2s and 1±0.9 respectively, and 3 months later were 6.8±2.2, 20.5±4.7mm, 12±2.2s and 0.9±0.9 respectively. In the O3FA group, these values were 8.0±2.6, 20.1±4.2mm, 11.7±1.6s and 1.2±0.8 before dietary intervention and 3.9±2.2, 21.4±4mm, 15±1.7s, 0.5±0.6 after 3 months of intervention, respectively. This study demonstrates the beneficial effect of orally administered O3FAs in alleviating dry eye symptoms, decreasing tear evaporation rate and improving Nelson grade in patients suffering from computer vision syndrome related dry eye. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. Computer Vision Syndrome among Call Center Employees at Telecommunication Company in Bandung

    Directory of Open Access Journals (Sweden)

    Ghea Nursyifa

    2016-06-01

    Full Text Available Background: The occurrence of Computer Vision Syndrome (CVS at the workplace has increased within decades due to theprolonged use of computers. Knowledge of CVS is necessary in order to develop an awareness of how to prevent and alleviate itsprevalence . The objective of this study was to assess the knowledge of CVS among call center employees and to explore the most frequent CVS symptom experienced by the workers. Methods: A descriptive cross sectional study was conducted during the period of September to November 2014 at Telecommunication Company in Bandung using a questionnaire consisting of 30 questions. Out of the 30 questions/statements, 15 statements were about knowledge of CVS and other 15 questions were about the occurrence of CVS and its symptoms. In this study 125 call center employees participated as respondents using consecutive sampling. The level of knowledge was divided into 3 categories: good (76–100%, fair (75–56% and poor (<56%. The collected data was presented in frequency tabulation. Results: There was 74.4% of the respondents had poor knowledge of CVS. The most symptom experienced by the respondents was asthenopia. Conclusions: The CVS occurs in call center employees with various symptoms and signs. This situation is not supported by good knowledge of the syndrome which can hamper prevention programs.

  2. Morphological features of the macerated cranial bones registered by the 3D vision system for potential use in forensic anthropology.

    Science.gov (United States)

    Skrzat, Janusz; Sioma, Andrzej; Kozerska, Magdalena

    2013-01-01

    In this paper we present potential usage of the 3D vision system for registering features of the macerated cranial bones. Applied 3D vision system collects height profiles of the object surface and from that data builds a three-dimensional image of the surface. This method appeared to be accurate enough to capture anatomical details of the macerated bones. With the aid of the 3D vision system we generated images of the surface of the human calvaria which was used for testing the system. Performed reconstruction visualized the imprints of the dural vascular system, cranial sutures, and the three-layer structure of the cranial bones observed in the cross-section. We figure out that the 3D vision system may deliver data which can enhance estimation of sex from the osteological material.

  3. Tactile and bone-conduction auditory brain computer interface for vision and hearing impaired users.

    Science.gov (United States)

    Rutkowski, Tomasz M; Mori, Hiromu

    2015-04-15

    The paper presents a report on the recently developed BCI alternative for users suffering from impaired vision (lack of focus or eye-movements) or from the so-called "ear-blocking-syndrome" (limited hearing). We report on our recent studies of the extents to which vibrotactile stimuli delivered to the head of a user can serve as a platform for a brain computer interface (BCI) paradigm. In the proposed tactile and bone-conduction auditory BCI novel multiple head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) P300 brain responses, in order to define a multimodal tactile and bone-conduction auditory brain computer interface (tbcaBCI). In order to further remove EEG interferences and to improve P300 response classification synchrosqueezing transform (SST) is applied. SST outperforms the classical time-frequency analysis methods of the non-linear and non-stationary signals such as EEG. The proposed method is also computationally more effective comparing to the empirical mode decomposition. The SST filtering allows for online EEG preprocessing application which is essential in the case of BCI. Experimental results with healthy BCI-naive users performing online tbcaBCI, validate the paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies. We present a comparison of the proposed SST-based preprocessing method, combined with a logistic regression (LR) classifier, together with classical preprocessing and LDA-based classification BCI techniques. The proposed tbcaBCI paradigm together with data-driven preprocessing methods are a step forward in robust BCI applications research. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Potential of Cognitive Computing and Cognitive Systems

    Science.gov (United States)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  5. Toward a Computer Vision-based Wayfinding Aid for Blind Persons to Access Unfamiliar Indoor Environments.

    Science.gov (United States)

    Tian, Yingli; Yang, Xiaodong; Yi, Chucai; Arditi, Aries

    2013-04-01

    Independent travel is a well known challenge for blind and visually impaired persons. In this paper, we propose a proof-of-concept computer vision-based wayfinding aid for blind people to independently access unfamiliar indoor environments. In order to find different rooms (e.g. an office, a lab, or a bathroom) and other building amenities (e.g. an exit or an elevator), we incorporate object detection with text recognition. First we develop a robust and efficient algorithm to detect doors, elevators, and cabinets based on their general geometric shape, by combining edges and corners. The algorithm is general enough to handle large intra-class variations of objects with different appearances among different indoor environments, as well as small inter-class differences between different objects such as doors and door-like cabinets. Next, in order to distinguish intra-class objects (e.g. an office door from a bathroom door), we extract and recognize text information associated with the detected objects. For text recognition, we first extract text regions from signs with multiple colors and possibly complex backgrounds, and then apply character localization and topological analysis to filter out background interference. The extracted text is recognized using off-the-shelf optical character recognition (OCR) software products. The object type, orientation, location, and text information are presented to the blind traveler as speech.

  6. m-BIRCH: an online clustering approach for computer vision applications

    Science.gov (United States)

    Madan, Siddharth K.; Dana, Kristin J.

    2015-03-01

    We adapt a classic online clustering algorithm called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH), to incrementally cluster large datasets of features commonly used in multimedia and computer vision. We call the adapted version modified-BIRCH (m-BIRCH). The algorithm uses only a fraction of the dataset memory to perform clustering, and updates the clustering decisions when new data comes in. Modifications made in m-BIRCH enable data driven parameter selection and effectively handle varying density regions in the feature space. Data driven parameter selection automatically controls the level of coarseness of the data summarization. Effective handling of varying density regions is necessary to well represent the different density regions in data summarization. We use m-BIRCH to cluster 840K color SIFT descriptors, and 60K outlier corrupted grayscale patches. We use the algorithm to cluster datasets consisting of challenging non-convex clustering patterns. Our implementation of the algorithm provides an useful clustering tool and is made publicly available.

  7. Differentiation of Ecuadorian National and CCN-51 cocoa beans and their mixtures by computer vision.

    Science.gov (United States)

    Jimenez, Juan C; Amores, Freddy M; Solórzano, Eddyn G; Rodríguez, Gladys A; La Mantia, Alessandro; Blasi, Paolo; Loor, Rey G

    2018-05-01

    Ecuador exports two major types of cocoa beans, the highly regarded and lucrative National, known for its fine aroma, and the CCN-51 clone type, used in bulk for mass chocolate products. In order to discourage exportation of National cocoa adulterated with CCN-51, a fast and objective methodology for distinguishing between the two types of cocoa beans is needed. This study reports a methodology based on computer vision, which makes it possible to recognize these beans and determine the percentage of their mixture. The methodology was challenged with 336 samples of National cocoa and 127 of CCN-51. By excluding the samples with a low fermentation level and white beans, the model discriminated with a precision higher than 98%. The model was also able to identify and quantify adulterations in 75 export batches of National cocoa and separate out poorly fermented beans. A scientifically reliable methodology able to discriminate between Ecuadorian National and CCN-51 cocoa beans and their mixtures was successfully developed. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Real-Time Evaluation of Breast Self-Examination Using Computer Vision

    Directory of Open Access Journals (Sweden)

    Eman Mohammadi

    2014-01-01

    Full Text Available Breast cancer is the most common cancer among women worldwide and breast self-examination (BSE is considered as the most cost-effective approach for early breast cancer detection. The general objective of this paper is to design and develop a computer vision algorithm to evaluate the BSE performance in real-time. The first stage of the algorithm presents a method for detecting and tracking the nipples in frames while a woman performs BSE; the second stage presents a method for localizing the breast region and blocks of pixels related to palpation of the breast, and the third stage focuses on detecting the palpated blocks in the breast region. The palpated blocks are highlighted at the time of BSE performance. In a correct BSE performance, all blocks must be palpated, checked, and highlighted, respectively. If any abnormality, such as masses, is detected, then this must be reported to a doctor to confirm the presence of this abnormality and proceed to perform other confirmatory tests. The experimental results have shown that the BSE evaluation algorithm presented in this paper provides robust performance.

  9. Real-time evaluation of breast self-examination using computer vision.

    Science.gov (United States)

    Mohammadi, Eman; Dadios, Elmer P; Gan Lim, Laurence A; Cabatuan, Melvin K; Naguib, Raouf N G; Avila, Jose Maria C; Oikonomou, Andreas

    2014-01-01

    Breast cancer is the most common cancer among women worldwide and breast self-examination (BSE) is considered as the most cost-effective approach for early breast cancer detection. The general objective of this paper is to design and develop a computer vision algorithm to evaluate the BSE performance in real-time. The first stage of the algorithm presents a method for detecting and tracking the nipples in frames while a woman performs BSE; the second stage presents a method for localizing the breast region and blocks of pixels related to palpation of the breast, and the third stage focuses on detecting the palpated blocks in the breast region. The palpated blocks are highlighted at the time of BSE performance. In a correct BSE performance, all blocks must be palpated, checked, and highlighted, respectively. If any abnormality, such as masses, is detected, then this must be reported to a doctor to confirm the presence of this abnormality and proceed to perform other confirmatory tests. The experimental results have shown that the BSE evaluation algorithm presented in this paper provides robust performance.

  10. Measuring vigilance decrement using computer vision assisted eye tracking in dynamic naturalistic environments.

    Science.gov (United States)

    Bodala, Indu P; Abbasi, Nida I; Yu Sun; Bezerianos, Anastasios; Al-Nashash, Hasan; Thakor, Nitish V

    2017-07-01

    Eye tracking offers a practical solution for monitoring cognitive performance in real world tasks. However, eye tracking in dynamic environments is difficult due to high spatial and temporal variation of stimuli, needing further and thorough investigation. In this paper, we study the possibility of developing a novel computer vision assisted eye tracking analysis by using fixations. Eye movement data is obtained from a long duration naturalistic driving experiment. Source invariant feature transform (SIFT) algorithm was implemented using VLFeat toolbox to identify multiple areas of interest (AOIs). A new measure called `fixation score' was defined to understand the dynamics of fixation position between the target AOI and the non target AOIs. Fixation score is maximum when the subjects focus on the target AOI and diminishes when they gaze at the non-target AOIs. Statistically significant negative correlation was found between fixation score and reaction time data (r =-0.2253 and pdecrement, the fixation score decreases due to visual attention shifting away from the target objects resulting in an increase in the reaction time.

  11. Integrating Symbolic and Statistical Methods for Testing Intelligent Systems Applications to Machine Learning and Computer Vision

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Sumit Kumar [University of Central Florida, Orlando; Pullum, Laura L [ORNL; Ramanathan, Arvind [ORNL

    2016-01-01

    Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studying the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.

  12. Optimisation and assessment of three modern touch screen tablet computers for clinical vision testing.

    Directory of Open Access Journals (Sweden)

    Humza J Tahir

    Full Text Available Technological advances have led to the development of powerful yet portable tablet computers whose touch-screen resolutions now permit the presentation of targets small enough to test the limits of normal visual acuity. Such devices have become ubiquitous in daily life and are moving into the clinical space. However, in order to produce clinically valid tests, it is important to identify the limits imposed by the screen characteristics, such as resolution, brightness uniformity, contrast linearity and the effect of viewing angle. Previously we have conducted such tests on the iPad 3. Here we extend our investigations to 2 other devices and outline a protocol for calibrating such screens, using standardised methods to measure the gamma function, warm up time, screen uniformity and the effects of viewing angle and screen reflections. We demonstrate that all three devices manifest typical gamma functions for voltage and luminance with warm up times of approximately 15 minutes. However, there were differences in homogeneity and reflectance among the displays. We suggest practical means to optimise quality of display for vision testing including screen calibration.

  13. Optimisation and assessment of three modern touch screen tablet computers for clinical vision testing.

    Science.gov (United States)

    Tahir, Humza J; Murray, Ian J; Parry, Neil R A; Aslam, Tariq M

    2014-01-01

    Technological advances have led to the development of powerful yet portable tablet computers whose touch-screen resolutions now permit the presentation of targets small enough to test the limits of normal visual acuity. Such devices have become ubiquitous in daily life and are moving into the clinical space. However, in order to produce clinically valid tests, it is important to identify the limits imposed by the screen characteristics, such as resolution, brightness uniformity, contrast linearity and the effect of viewing angle. Previously we have conducted such tests on the iPad 3. Here we extend our investigations to 2 other devices and outline a protocol for calibrating such screens, using standardised methods to measure the gamma function, warm up time, screen uniformity and the effects of viewing angle and screen reflections. We demonstrate that all three devices manifest typical gamma functions for voltage and luminance with warm up times of approximately 15 minutes. However, there were differences in homogeneity and reflectance among the displays. We suggest practical means to optimise quality of display for vision testing including screen calibration.

  14. A Collaborative Approach for Surface Inspection Using Aerial Robots and Computer Vision

    Directory of Open Access Journals (Sweden)

    Martin Molina

    2018-03-01

    Full Text Available Aerial robots with cameras on board can be used in surface inspection to observe areas that are difficult to reach by other means. In this type of problem, it is desirable for aerial robots to have a high degree of autonomy. A way to provide more autonomy would be to use computer vision techniques to automatically detect anomalies on the surface. However, the performance of automated visual recognition methods is limited in uncontrolled environments, so that in practice it is not possible to perform a fully automatic inspection. This paper presents a solution for visual inspection that increases the degree of autonomy of aerial robots following a semi-automatic approach. The solution is based on human-robot collaboration in which the operator delegates tasks to the drone for exploration and visual recognition and the drone requests assistance in the presence of uncertainty. We validate this proposal with the development of an experimental robotic system using the software framework Aerostack. The paper describes technical challenges that we had to solve to develop such a system and the impact on this solution on the degree of autonomy to detect anomalies on the surface.

  15. Recent developments in computer vision-based analytical chemistry: A tutorial review.

    Science.gov (United States)

    Capitán-Vallvey, Luis Fermín; López-Ruiz, Nuria; Martínez-Olmos, Antonio; Erenas, Miguel M; Palma, Alberto J

    2015-10-29

    Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. a Holistic Approach for Inspection of Civil Infrastructures Based on Computer Vision Techniques

    Science.gov (United States)

    Stentoumis, C.; Protopapadakis, E.; Doulamis, A.; Doulamis, N.

    2016-06-01

    In this work, it is examined the 2D recognition and 3D modelling of concrete tunnel cracks, through visual cues. At the time being, the structural integrity inspection of large-scale infrastructures is mainly performed through visual observations by human inspectors, who identify structural defects, rate them and, then, categorize their severity. The described approach targets at minimum human intervention, for autonomous inspection of civil infrastructures. The shortfalls of existing approaches in crack assessment are being addressed by proposing a novel detection scheme. Although efforts have been made in the field, synergies among proposed techniques are still missing. The holistic approach of this paper exploits the state of the art techniques of pattern recognition and stereo-matching, in order to build accurate 3D crack models. The innovation lies in the hybrid approach for the CNN detector initialization, and the use of the modified census transformation for stereo matching along with a binary fusion of two state-of-the-art optimization schemes. The described approach manages to deal with images of harsh radiometry, along with severe radiometric differences in the stereo pair. The effectiveness of this workflow is evaluated on a real dataset gathered in highway and railway tunnels. What is promising is that the computer vision workflow described in this work can be transferred, with adaptations of course, to other infrastructure such as pipelines, bridges and large industrial facilities that are in the need of continuous state assessment during their operational life cycle.

  17. When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition.

    Science.gov (United States)

    Mocanu, Bogdan; Tapu, Ruxandra; Zaharia, Titus

    2016-10-28

    In the most recent report published by the World Health Organization concerning people with visual disabilities it is highlighted that by the year 2020, worldwide, the number of completely blind people will reach 75 million, while the number of visually impaired (VI) people will rise to 250 million. Within this context, the development of dedicated electronic travel aid (ETA) systems, able to increase the safe displacement of VI people in indoor/outdoor spaces, while providing additional cognition of the environment becomes of outmost importance. This paper introduces a novel wearable assistive device designed to facilitate the autonomous navigation of blind and VI people in highly dynamic urban scenes. The system exploits two independent sources of information: ultrasonic sensors and the video camera embedded in a regular smartphone. The underlying methodology exploits computer vision and machine learning techniques and makes it possible to identify accurately both static and highly dynamic objects existent in a scene, regardless on their location, size or shape. In addition, the proposed system is able to acquire information about the environment, semantically interpret it and alert users about possible dangerous situations through acoustic feedback. To determine the performance of the proposed methodology we have performed an extensive objective and subjective experimental evaluation with the help of 21 VI subjects from two blind associations. The users pointed out that our prototype is highly helpful in increasing the mobility, while being friendly and easy to learn.

  18. UAV and Computer Vision in 3D Modeling of Cultural Heritage in Southern Italy

    Science.gov (United States)

    Barrile, Vincenzo; Gelsomino, Vincenzo; Bilotta, Giuliana

    2017-08-01

    On the Waterfront Italo Falcomatà of Reggio Calabria you can admire the most extensive tract of the walls of the Hellenistic period of ancient city of Rhegion. The so-called Greek Walls are one of the most significant and visible traces of the past linked to the culture of Ancient Greece in the site of Reggio Calabria territory. Over the years this stretch of wall has always been a part, to the reconstruction of Reggio after the earthquake of 1783, the outer walls at all times, restored countless times, to cope with the degradation of the time and the adjustments to the technical increasingly innovative and sophisticated siege. They were the subject of several studies on history, for the study of the construction techniques and the maintenance and restoration of the same. This note describes the methodology for the implementation of a three-dimensional model of the Greek Walls conducted by the Geomatics Laboratory, belonging to DICEAM Department of University “Mediterranea” of Reggio Calabria. 3D modeling we made is based on imaging techniques, such as Digital Photogrammetry and Computer Vision, by using a drone. The acquired digital images were then processed using commercial software Agisoft PhotoScan. The results denote the goodness of the technique used in the field of cultural heritage, attractive alternative to more expensive and demanding techniques such as laser scanning.

  19. When Ultrasonic Sensors and Computer Vision Join Forces for Efficient Obstacle Detection and Recognition

    Directory of Open Access Journals (Sweden)

    Bogdan Mocanu

    2016-10-01

    Full Text Available In the most recent report published by the World Health Organization concerning people with visual disabilities it is highlighted that by the year 2020, worldwide, the number of completely blind people will reach 75 million, while the number of visually impaired (VI people will rise to 250 million. Within this context, the development of dedicated electronic travel aid (ETA systems, able to increase the safe displacement of VI people in indoor/outdoor spaces, while providing additional cognition of the environment becomes of outmost importance. This paper introduces a novel wearable assistive device designed to facilitate the autonomous navigation of blind and VI people in highly dynamic urban scenes. The system exploits two independent sources of information: ultrasonic sensors and the video camera embedded in a regular smartphone. The underlying methodology exploits computer vision and machine learning techniques and makes it possible to identify accurately both static and highly dynamic objects existent in a scene, regardless on their location, size or shape. In addition, the proposed system is able to acquire information about the environment, semantically interpret it and alert users about possible dangerous situations through acoustic feedback. To determine the performance of the proposed methodology we have performed an extensive objective and subjective experimental evaluation with the help of 21 VI subjects from two blind associations. The users pointed out that our prototype is highly helpful in increasing the mobility, while being friendly and easy to learn.

  20. Prediction of pork loin quality using online computer vision system and artificial intelligence model.

    Science.gov (United States)

    Sun, Xin; Young, Jennifer; Liu, Jeng-Hung; Newman, David

    2018-06-01

    The objective of this project was to develop a computer vision system (CVS) for objective measurement of pork loin under industry speed requirement. Color images of pork loin samples were acquired using a CVS. Subjective color and marbling scores were determined according to the National Pork Board standards by a trained evaluator. Instrument color measurement and crude fat percentage were used as control measurements. Image features (18 color features; 1 marbling feature; 88 texture features) were extracted from whole pork loin color images. Artificial intelligence prediction model (support vector machine) was established for pork color and marbling quality grades. The results showed that CVS with support vector machine modeling reached the highest prediction accuracy of 92.5% for measured pork color score and 75.0% for measured pork marbling score. This research shows that the proposed artificial intelligence prediction model with CVS can provide an effective tool for predicting color and marbling in the pork industry at online speeds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A HOLISTIC APPROACH FOR INSPECTION OF CIVIL INFRASTRUCTURES BASED ON COMPUTER VISION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    C. Stentoumis

    2016-06-01

    Full Text Available In this work, it is examined the 2D recognition and 3D modelling of concrete tunnel cracks, through visual cues. At the time being, the structural integrity inspection of large-scale infrastructures is mainly performed through visual observations by human inspectors, who identify structural defects, rate them and, then, categorize their severity. The described approach targets at minimum human intervention, for autonomous inspection of civil infrastructures. The shortfalls of existing approaches in crack assessment are being addressed by proposing a novel detection scheme. Although efforts have been made in the field, synergies among proposed techniques are still missing. The holistic approach of this paper exploits the state of the art techniques of pattern recognition and stereo-matching, in order to build accurate 3D crack models. The innovation lies in the hybrid approach for the CNN detector initialization, and the use of the modified census transformation for stereo matching along with a binary fusion of two state-of-the-art optimization schemes. The described approach manages to deal with images of harsh radiometry, along with severe radiometric differences in the stereo pair. The effectiveness of this workflow is evaluated on a real dataset gathered in highway and railway tunnels. What is promising is that the computer vision workflow described in this work can be transferred, with adaptations of course, to other infrastructure such as pipelines, bridges and large industrial facilities that are in the need of continuous state assessment during their operational life cycle.

  2. Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans.

    Science.gov (United States)

    Ritchie, Alexander J; Sanghera, Calvin; Jacobs, Colin; Zhang, Wei; Mayo, John; Schmidt, Heidi; Gingras, Michel; Pasian, Sergio; Stewart, Lori; Tsai, Scott; Manos, Daria; Seely, Jean M; Burrowes, Paul; Bhatia, Rick; Atkar-Khattra, Sukhinder; van Ginneken, Bram; Tammemagi, Martin; Tsao, Ming Sound; Lam, Stephen

    2016-05-01

    To implement a cost-effective low-dose computed tomography (LDCT) lung cancer screening program at the population level, accurate and efficient interpretation of a large volume of LDCT scans is needed. The objective of this study was to evaluate a workflow strategy to identify abnormal LDCT scans in which a technician assisted by computer vision (CV) software acts as a first reader with the aim to improve speed, consistency, and quality of scan interpretation. Without knowledge of the diagnosis, a technician reviewed 828 randomly batched scans (136 with lung cancers, 556 with benign nodules, and 136 without nodules) from the baseline Pan-Canadian Early Detection of Lung Cancer Study that had been annotated by the CV software CIRRUS Lung Screening (Diagnostic Image Analysis Group, Nijmegen, The Netherlands). The scans were classified as either normal (no nodules ≥1 mm or benign nodules) or abnormal (nodules or other abnormality). The results were compared with the diagnostic interpretation by Pan-Canadian Early Detection of Lung Cancer Study radiologists. The overall sensitivity and specificity of the technician in identifying an abnormal scan were 97.8% (95% confidence interval: 96.4-98.8) and 98.0% (95% confidence interval: 89.5-99.7), respectively. Of the 112 prevalent nodules that were found to be malignant in follow-up, 92.9% were correctly identified by the technician plus CV compared with 84.8% by the study radiologists. The average time taken by the technician to review a scan after CV processing was 208 ± 120 seconds. Prescreening CV software and a technician as first reader is a promising strategy for improving the consistency and quality of screening interpretation of LDCT scans. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  3. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    Directory of Open Access Journals (Sweden)

    Shanis Barnard

    Full Text Available Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is

  4. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    Science.gov (United States)

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  5. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    Science.gov (United States)

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  6. Prevalence and associated factors of computer vision syndrome among bank workers in Gondar City, northwest Ethiopia, 2015

    Directory of Open Access Journals (Sweden)

    Assefa NL

    2017-04-01

    Full Text Available Natnael Lakachew Assefa, Dawit Zenebe Weldemichael, Haile Woretaw Alemu, Dereje Hayilu Anbesse Department of Optometry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia Introduction: Use of computers is generally encouraged; this is to keep up with the fast-moving world of technology, research and science. Extensive use of computers will result in computer vision syndrome (CVS, and the prevalence is increased dramatically. The main objective of the study was to assess the prevalence and associated factors of CVS among bank workers in Gondar city, northwest Ethiopia.Methods: A cross-sectional institution-based study was conducted among computer-using bank workers in Gondar city from April to June, 2015. Data were collected through structured questionnaires and observations with checklists, entered with Epi Info™ 7 and analyzed by Statistical Package for the Social Sciences (SPSS version 20. Descriptive statistics and logistic regression were carried out to compute the different rates, proportion and relevant associations.Results: Among the total 304 computer-using bank workers, the prevalence of CVS was 73% (95% confidence interval [CI]=68.04, 78.02. Blurred vision (42.4%, headache (23.0% and redness (23.0% were the most experienced symptoms. Inappropriate sitting position was 2.3 times (adjusted odds ratio [AOR]=2.33; 95% CI=1.27, 4.28 more likely to be associated with CVS when compared with appropriate sitting position. Those working on the computer for more than 20 minutes without break were nearly 2 times (AOR=1.93; 95% CI=1.11, 3.35 more likely to have suffered from CVS when compared with those taking break within 20 minutes, and those wearing eye glasses were 3 times (AOR=3.19; 95% CI=1.07, 9.51 more likely to suffer from CVS when compared with those not wearing glasses.Conclusion: About three-fourths of computer-using bank workers suffered from CVS with the most experienced symptoms being blurred vision

  7. A clinical study on "Computer vision syndrome" and its management with Triphala eye drops and Saptamrita Lauha.

    Science.gov (United States)

    Gangamma, M P; Poonam; Rajagopala, Manjusha

    2010-04-01

    American Optometric Association (AOA) defines computer vision syndrome (CVS) as "Complex of eye and vision problems related to near work, which are experienced during or related to computer use". Most studies indicate that Video Display Terminal (VDT) operators report more eye related problems than non-VDT office workers. The causes for the inefficiencies and the visual symptoms are a combination of individual visual problems and poor office ergonomics. In this clinical study on "CVS", 151 patients were registered, out of whom 141 completed the treatment. In Group A, 45 patients had been prescribed Triphala eye drops; in Group B, 53 patients had been prescribed the Triphala eye drops and SaptamritaLauha tablets internally, and in Group C, 43 patients had been prescribed the placebo eye drops and placebo tablets. In total, marked improvement was observed in 48.89, 54.71 and 06.98% patients in groups A, B and C, respectively.

  8. A computer vision system for rapid search inspired by surface-based attention mechanisms from human perception.

    Science.gov (United States)

    Mohr, Johannes; Park, Jong-Han; Obermayer, Klaus

    2014-12-01

    Humans are highly efficient at visual search tasks by focusing selective attention on a small but relevant region of a visual scene. Recent results from biological vision suggest that surfaces of distinct physical objects form the basic units of this attentional process. The aim of this paper is to demonstrate how such surface-based attention mechanisms can speed up a computer vision system for visual search. The system uses fast perceptual grouping of depth cues to represent the visual world at the level of surfaces. This representation is stored in short-term memory and updated over time. A top-down guided attention mechanism sequentially selects one of the surfaces for detailed inspection by a recognition module. We show that the proposed attention framework requires little computational overhead (about 11 ms), but enables the system to operate in real-time and leads to a substantial increase in search efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Volume Measurement Algorithm for Food Product with Irregular Shape using Computer Vision based on Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-11-01

    Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.

  10. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  11. Computer vision-based apple grading for golden delicious apples based on surface features

    Directory of Open Access Journals (Sweden)

    Payman Moallem

    2017-03-01

    Full Text Available In this paper, a computer vision-based algorithm for golden delicious apple grading is proposed which works in six steps. Non-apple pixels as background are firstly removed from input images. Then, stem end is detected by combination of morphological methods and Mahalanobis distant classifier. Calyx region is also detected by applying K-means clustering on the Cb component in YCbCr color space. After that, defects segmentation is achieved using Multi-Layer Perceptron (MLP neural network. In the next step, stem end and calyx regions are removed from defected regions to refine and improve apple grading process. Then, statistical, textural and geometric features from refined defected regions are extracted. Finally, for apple grading, a comparison between performance of Support Vector Machine (SVM, MLP and K-Nearest Neighbor (KNN classifiers is done. Classification is done in two manners which in the first one, an input apple is classified into two categories of healthy and defected. In the second manner, the input apple is classified into three categories of first rank, second rank and rejected ones. In both grading steps, SVM classifier works as the best one with recognition rate of 92.5% and 89.2% for two categories (healthy and defected and three quality categories (first rank, second rank and rejected ones, among 120 different golden delicious apple images, respectively, considering K-folding with K = 5. Moreover, the accuracy of the proposed segmentation algorithms including stem end detection and calyx detection are evaluated for two different apple image databases.

  12. Computational intelligence and neuromorphic computing potential for cybersecurity applications

    Science.gov (United States)

    Pino, Robinson E.; Shevenell, Michael J.; Cam, Hasan; Mouallem, Pierre; Shumaker, Justin L.; Edwards, Arthur H.

    2013-05-01

    In today's highly mobile, networked, and interconnected internet world, the flow and volume of information is overwhelming and continuously increasing. Therefore, it is believed that the next frontier in technological evolution and development will rely in our ability to develop intelligent systems that can help us process, analyze, and make-sense of information autonomously just as a well-trained and educated human expert. In computational intelligence, neuromorphic computing promises to allow for the development of computing systems able to imitate natural neurobiological processes and form the foundation for intelligent system architectures.

  13. OpenVX-based Python Framework for real-time cross platform acceleration of embedded computer vision applications

    Directory of Open Access Journals (Sweden)

    Ori Heimlich

    2016-11-01

    Full Text Available Embedded real-time vision applications are being rapidly deployed in a large realm of consumer electronics, ranging from automotive safety to surveillance systems. However, the relatively limited computational power of embedded platforms is considered as a bottleneck for many vision applications, necessitating optimization. OpenVX is a standardized interface, released in late 2014, in an attempt to provide both system and kernel level optimization to vision applications. With OpenVX, Vision processing are modeled with coarse-grained data flow graphs, which can be optimized and accelerated by the platform implementer. Current full implementations of OpenVX are given in the programming language C, which does not support advanced programming paradigms such as object-oriented, imperative and functional programming, nor does it have runtime or type-checking. Here we present a python-based full Implementation of OpenVX, which eliminates much of the discrepancies between the object-oriented paradigm used by many modern applications and the native C implementations. Our open-source implementation can be used for rapid development of OpenVX applications in embedded platforms. Demonstration includes static and real-time image acquisition and processing using a Raspberry Pi and a GoPro camera. Code is given as supplementary information. Code project and linked deployable virtual machine are located on GitHub: https://github.com/NBEL-lab/PythonOpenVX.

  14. A computer vision framework for finger-tapping evaluation in Parkinson's disease.

    Science.gov (United States)

    Khan, Taha; Nyholm, Dag; Westin, Jerker; Dougherty, Mark

    2014-01-01

    The rapid finger-tapping test (RFT) is an important method for clinical evaluation of movement disorders, including Parkinson's disease (PD). In clinical practice, the naked-eye evaluation of RFT results in a coarse judgment of symptom scores. We introduce a novel computer-vision (CV) method for quantification of tapping symptoms through motion analysis of index-fingers. The method is unique as it utilizes facial features to calibrate tapping amplitude for normalization of distance variation between the camera and subject. The study involved 387 video footages of RFT recorded from 13 patients diagnosed with advanced PD. Tapping performance in these videos was rated by two clinicians between the symptom severity levels ('0: normal' to '3: severe') using the unified Parkinson's disease rating scale motor examination of finger-tapping (UPDRS-FT). Another set of recordings in this study consisted of 84 videos of RFT recorded from 6 healthy controls. These videos were processed by a CV algorithm that tracks the index-finger motion between the video-frames to produce a tapping time-series. Different features were computed from this time series to estimate speed, amplitude, rhythm and fatigue in tapping. The features were trained in a support vector machine (1) to categorize the patient group between UPDRS-FT symptom severity levels, and (2) to discriminate between PD patients and healthy controls. A new representative feature of tapping rhythm, 'cross-correlation between the normalized peaks' showed strong Guttman correlation (μ2=-0.80) with the clinical ratings. The classification of tapping features using the support vector machine classifier and 10-fold cross validation categorized the patient samples between UPDRS-FT levels with an accuracy of 88%. The same classification scheme discriminated between RFT samples of healthy controls and PD patients with an accuracy of 95%. The work supports the feasibility of the approach, which is presumed suitable for PD monitoring

  15. On the Computing Potential of Intracellular Vesicles.

    Science.gov (United States)

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  16. Tracking the Creation of Tropical Forest Canopy Gaps with UAV Computer Vision Remote Sensing

    Science.gov (United States)

    Dandois, J. P.

    2015-12-01

    The formation of canopy gaps is fundamental for shaping forest structure and is an important component of ecosystem function. Recent time-series of airborne LIDAR have shown great promise for improving understanding of the spatial distribution and size of forest gaps. However, such work typically looks at gap formation across multiple years and important intra-annual variation in gap dynamics remains unknown. Here we present findings on the intra-annual dynamics of canopy gap formation within the 50 ha forest dynamics plot of Barro Colorado Island (BCI), Panama based on unmanned aerial vehicle (UAV) remote sensing. High-resolution imagery (7 cm GSD) over the 50 ha plot was obtained regularly (≈ every 10 days) beginning October 2014 using a UAV equipped with a point and shoot camera. Imagery was processed into three-dimensional (3D) digital surface models (DSMs) using automated computer vision structure from motion / photogrammetric methods. New gaps that formed between each UAV flight were identified by subtracting DSMs between each interval and identifying areas of large deviation. A total of 48 new gaps were detected from 2014-10-02 to 2015-07-23, with sizes ranging from less than 20 m2 to greater than 350 m2. The creation of new gaps was also evaluated across wet and dry seasons with 4.5 new gaps detected per month in the dry season (Jan. - May) and 5.2 per month outside the dry season (Oct. - Jan. & May - July). The incidence of gap formation was positively correlated with ground-surveyed liana stem density (R2 = 0.77, p < 0.001) at the 1 hectare scale. Further research will consider the role of climate in predicting gap formation frequency as well as site history and other edaphic factors. Future satellite missions capable of observing vegetation structure at greater extents and frequencies than airborne observations will be greatly enhanced by the high spatial and temporal resolution bridging scale made possible by UAV remote sensing.

  17. Rapid identification of pearl powder from Hyriopsis cumingii by Tri-step infrared spectroscopy combined with computer vision technology

    Science.gov (United States)

    Liu, Siqi; Wei, Wei; Bai, Zhiyi; Wang, Xichang; Li, Xiaohong; Wang, Chuanxian; Liu, Xia; Liu, Yuan; Xu, Changhua

    2018-01-01

    Pearl powder, an important raw material in cosmetics and Chinese patent medicines, is commonly uneven in quality and frequently adulterated with low-cost shell powder in the market. The aim of this study is to establish an adequate approach based on Tri-step infrared spectroscopy with enhancing resolution combined with chemometrics for qualitative identification of pearl powder originated from three different quality grades of pearls and quantitative prediction of the proportions of shell powder adulterated in pearl powder. Additionally, computer vision technology (E-eyes) can investigate the color difference among different pearl powders and make it traceable to the pearl quality trait-visual color categories. Though the different grades of pearl powder or adulterated pearl powder have almost identical IR spectra, SD-IR peak intensity at about 861 cm- 1 (v2 band) exhibited regular enhancement with the increasing quality grade of pearls, while the 1082 cm- 1 (v1 band), 712 cm- 1 and 699 cm- 1 (v4 band) were just the reverse. Contrastly, only the peak intensity at 862 cm- 1 was enhanced regularly with the increasing concentration of shell powder. Thus, the bands in the ranges of (1550-1350 cm- 1, 730-680 cm- 1) and (830-880 cm- 1, 690-725 cm- 1) could be exclusive ranges to discriminate three distinct pearl powders and identify adulteration, respectively. For massive sample analysis, a qualitative classification model and a quantitative prediction model based on IR spectra was established successfully by principal component analysis (PCA) and partial least squares (PLS), respectively. The developed method demonstrated great potential for pearl powder quality control and authenticity identification in a direct, holistic manner.

  18. In-line 3D print failure detection using computer vision

    DEFF Research Database (Denmark)

    Lyngby, Rasmus Ahrenkiel; Wilm, Jakob; Eiríksson, Eyþór Rúnar

    2017-01-01

    Here we present our findings on a novel real-time vision system that allows for automatic detection of failure conditions that are considered outside of nominal operation. These failure modes include warping, build plate delamination and extrusion failure. Our system consists of a calibrated came...

  19. Development of a Computer Vision Technology for the Forest Products Manufacturing Industry

    Science.gov (United States)

    D. Earl Kline; Richard Conners; Philip A. Araman

    1992-01-01

    The goal of this research is to create an automated processing/grading system for hardwood lumber that will be of use to the forest products industry. The objective of creating a full scale machine vision prototype for inspecting hardwood lumber will become a reality in calendar year 1992. Space for the full scale prototype has been created at the Brooks Forest...

  20. An artificial-vision responsive to patient motions during computer controlled radiation therapy

    International Nuclear Information System (INIS)

    Kalend, A.M.; Shimoga, K.; Kanade, T.; Greenberger, J.S.

    1997-01-01

    Purpose/Objectives: Automated precision radiotherapy using multiple conformal and modulated beams, requires monitoring of patient movements during irradiation. Immobilizers relying on patient cooperating in cradles have somewhat reduced positional uncertainties, but others including breathing are largely unknown. We built an artificial vision (AV) device for real-time vision of patient movements, their tracking and quantification. Method and Materials: The Artificial Vision System's 'acuity' and 'reflex' were evaluated in terms of imaged skin spatial resolutions and temporal dispersions measured using a mannequin and a fiduciated harmonic oscillator placed at 100cm isocenter. The device traced skin motion even in poorly lighted rooms without use of explicit skin fiduciation, or using standard radiotherapy skin tattoos. Results: The AV system tracked human skin at vision rates approaching 30Hz and sensitivity of 2mm. It successfully identified and tracked independent skin marks, either natural tattoos or artificial fiducials. Three alert levels triggered when patient movement exceeded preset displacements (2mm/30Hz), motion velocities (5m/sec) or acceleration (2m/sec 2 ). Conclusion: The AV system trigger should suit for patient ventilatory gating and safety interlocking of treatment accelerators, in order to modulate, interrupt, or abort radiation during dynamic therapy

  1. Computer vision syndrome prevalence, knowledge and associated factors among Saudi Arabia University Students: Is it a serious problem?

    Science.gov (United States)

    Al Rashidi, Sultan H; Alhumaidan, H

    2017-01-01

    Computers and other visual display devices are now an essential part of our daily life. With the increased use, a very large population is experiencing sundry ocular symptoms globally such as dry eyes, eye strain, irritation, and redness of the eyes to name a few. Collectively, all such computer related symptoms are usually referred to as computer vision syndrome (CVS). The current study aims to define the prevalence, knowledge in community, pathophysiology, factors associated, and prevention of CVS. This is a cross-sectional study conducted in Qassim University College of Medicine during a period of 1 year from January 2015 to January 2016 using a questionnaire to collect relevant data including demographics and various variables to be studied. 634 students were inducted from a public sector University of Qassim, Saudi Arabia, regardless of their age and gender. The data were then statistically analyzed on SPSS version 22, and the descriptive data were expressed as percentages, mode, and median using graphs where needed. A total of 634 students with a mean age of 21. 40, Std 1.997 and Range 7 (18-25) were included as study subjects with a male predominance (77.28%). Of the total patients, majority (459, 72%) presented with acute symptoms while remaining had chronic problems. A clear-cut majority was carrying the symptoms for 1 month. The statistical analysis revealed serious symptoms in the majority of study subjects especially those who are permanent users of a computer for long hours. Continuous use of computers for long hours is found to have severe problems of vision especially in those who are using computers and similar devices for a long duration.

  2. Computer simulation of pitting potential measurements

    International Nuclear Information System (INIS)

    Laycock, N.J.; Noh, J.S.; White, S.P.; Krouse, D.P.

    2005-01-01

    A deterministic model for the growth of single pits in stainless steel has been combined with a purely stochastic model of pit nucleation. Monte-Carlo simulations have been used to compare the predictions of this model with potentiodynamic experimental measurements of the pitting potential. The quantitative agreement between model and experiment is reasonable for both 304 and 316 stainless steel, and the effects of varying surface roughness, solution chloride concentration and potential sweep rate have been considered

  3. Is Telephone Review Feasible and Potentially Effective in Low Vision Services?

    Science.gov (United States)

    Parkes, Claire; Lennon, Julie; Harper, Robert

    2013-01-01

    Purpose: Demographic transformations within the UK population combine to contribute to a substantial increase in demand for low vision (LV) services, creating a pressing need to reconsider the appropriate methods for service provision. In this study, we evaluate the feasibility of using telephone triage to assess the need for, and timing of, LV…

  4. Bio-inspired vision

    International Nuclear Information System (INIS)

    Posch, C

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  5. Development of a tool to aid the radiologic technologist using augmented reality and computer vision

    International Nuclear Information System (INIS)

    MacDougall, Robert D.; Scherrer, Benoit; Don, Steven

    2018-01-01

    This technical innovation describes the development of a novel device to aid technologists in reducing exposure variation and repeat imaging in computed and digital radiography. The device consists of a color video and depth camera in combination with proprietary software and user interface. A monitor in the x-ray control room displays the position of the patient in real time with respect to automatic exposure control chambers and image receptor area. The thickness of the body part of interest is automatically displayed along with a motion indicator for the examined body part. The aim is to provide an automatic measurement of patient thickness to set the x-ray technique and to assist the technologist in detecting errors in positioning and motion before the patient is exposed. The device has the potential to reduce the incidence of repeat imaging by addressing problems technologists encounter daily during the acquisition of radiographs. (orig.)

  6. Development of a tool to aid the radiologic technologist using augmented reality and computer vision

    Energy Technology Data Exchange (ETDEWEB)

    MacDougall, Robert D.; Scherrer, Benoit [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); Don, Steven [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2018-01-15

    This technical innovation describes the development of a novel device to aid technologists in reducing exposure variation and repeat imaging in computed and digital radiography. The device consists of a color video and depth camera in combination with proprietary software and user interface. A monitor in the x-ray control room displays the position of the patient in real time with respect to automatic exposure control chambers and image receptor area. The thickness of the body part of interest is automatically displayed along with a motion indicator for the examined body part. The aim is to provide an automatic measurement of patient thickness to set the x-ray technique and to assist the technologist in detecting errors in positioning and motion before the patient is exposed. The device has the potential to reduce the incidence of repeat imaging by addressing problems technologists encounter daily during the acquisition of radiographs. (orig.)

  7. Distributed FPGA-based smart camera architecture for computer vision applications

    OpenAIRE

    Bourrasset, Cédric; Maggiani, Luca; Sérot, Jocelyn; Berry, François; Pagano, Paolo

    2013-01-01

    International audience; Smart camera networks (SCN) raise challenging issues in many fields of research, including vision processing, communication protocols, distributed algorithms or power management. Furthermore, application logic in SCN is not centralized but spread among network nodes meaning that each node must have to process images to extract significant features, and aggregate data to understand the surrounding environment. In this context, smart camera have first embedded general pu...

  8. Customized Computer Vision and Sensor System for Colony Recognition and Live Bacteria Counting in Agriculture

    Directory of Open Access Journals (Sweden)

    Gabriel M. ALVES

    2016-06-01

    Full Text Available This paper presents an arrangement based on a dedicated computer and charge-coupled device (CCD sensor system to intelligently allow the counting and recognition of colony formation. Microbes in agricultural environments are important catalysts of global carbon and nitrogen cycles, including the production and consumption of greenhouse gases in soil. Some microbes produce greenhouse gases such as carbon dioxide and nitrous oxide while decomposing organic matter in soil. Others consume methane from the atmosphere, helping to mitigate climate change. The magnitude of each of these processes is influenced by human activities and impacts the warming potential of Earth’s atmosphere. In this context, bacterial colony counting is important and requires sophisticated analysis methods. The method implemented in this study uses digital image processing techniques, including the Hough Transform for circular objects. The visual environment Borland Builder C++ was used for development, and a model for decision making was incorporated to aggregate intelligence. For calibration of the method a prepared illuminated chamber was used to enable analyses of the bacteria Escherichia coli, and Acidithiobacillus ferrooxidans. For validation, a set of comparisons were established between this smart method and the expert analyses. The results show the potential of this method for laboratory applications that involve the quantification and pattern recognition of bacterial colonies in solid culture environments.

  9. Vision-based interaction

    CERN Document Server

    Turk, Matthew

    2013-01-01

    In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such

  10. Computer vision system approach in colour measurements of foods: Part II. validation of methodology with real foods

    Directory of Open Access Journals (Sweden)

    Fatih TARLAK

    2016-01-01

    Full Text Available Abstract The colour of food is one of the most important factors affecting consumers’ purchasing decision. Although there are many colour spaces, the most widely used colour space in the food industry is L*a*b* colour space. Conventionally, the colour of foods is analysed with a colorimeter that measures small and non-representative areas of the food and the measurements usually vary depending on the point where the measurement is taken. This leads to the development of alternative colour analysis techniques. In this work, a simple and alternative method to measure the colour of foods known as “computer vision system” is presented and justified. With the aid of the computer vision system, foods that are homogenous and uniform in colour and shape could be classified with regard to their colours in a fast, inexpensive and simple way. This system could also be used to distinguish the defectives from the non-defectives. Quality parameters of meat and dairy products could be monitored without any physical contact, which causes contamination during sampling.

  11. The Effect of the Usage of Computer-Based Assistive Devices on the Functioning and Quality of Life of Individuals Who Are Blind or Have Low Vision

    Science.gov (United States)

    Rosner, Yotam; Perlman, Amotz

    2018-01-01

    Introduction: The Israel Ministry of Social Affairs and Social Services subsidizes computer-based assistive devices for individuals with visual impairments (that is, those who are blind or have low vision) to assist these individuals in their interactions with computers and thus to enhance their independence and quality of life. The aim of this…

  12. Identifying the computational requirements of an integrated top-down-bottom-up model for overt visual attention within an active vision system.

    Directory of Open Access Journals (Sweden)

    Sebastian McBride

    Full Text Available Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as 'active vision', to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1 conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2 implementation and validation of the model into robotic hardware (as a representative of an active vision system. Seven computational requirements were identified: 1 transformation of retinotopic to egocentric mappings, 2 spatial memory for the purposes of medium-term inhibition of return, 3 synchronization of 'where' and 'what' information from the two visual streams, 4 convergence of top-down and bottom-up information to a centralized point of information processing, 5 a threshold function to elicit saccade action, 6 a function to represent task relevance as a ratio of excitation and inhibition, and 7 derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate 'active' visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a 'priority map'.

  13. Identifying the computational requirements of an integrated top-down-bottom-up model for overt visual attention within an active vision system.

    Science.gov (United States)

    McBride, Sebastian; Huelse, Martin; Lee, Mark

    2013-01-01

    Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as 'active vision', to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of 'where' and 'what' information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate 'active' visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a 'priority map'.

  14. Computer-related vision problems in Osogbo, south-western Nigeria ...

    African Journals Online (AJOL)

    Widespread use of computers for office work and e-learning has resulted in increased visual demands among computer users. The increased visual demands have led to development of ocular complaints and discomfort among users. The objective of this study is to determine the prevalence of computer related eye ...

  15. Usability and Acceptability of ASSESS MS: Assessment of Motor Dysfunction in Multiple Sclerosis Using Depth-Sensing Computer Vision.

    Science.gov (United States)

    Morrison, Cecily; D'Souza, Marcus; Huckvale, Kit; Dorn, Jonas F; Burggraaff, Jessica; Kamm, Christian Philipp; Steinheimer, Saskia Marie; Kontschieder, Peter; Criminisi, Antonio; Uitdehaag, Bernard; Dahlke, Frank; Kappos, Ludwig; Sellen, Abigail

    2015-06-24

    Sensor-based recordings of human movements are becoming increasingly important for the assessment of motor symptoms in neurological disorders beyond rehabilitative purposes. ASSESS MS is a movement recording and analysis system being developed to automate the classification of motor dysfunction in patients with multiple sclerosis (MS) using depth-sensing computer vision. It aims to provide a more consistent and finer-grained measurement of motor dysfunction than currently possible. To test the usability and acceptability of ASSESS MS with health professionals and patients with MS. A prospective, mixed-methods study was carried out at 3 centers. After a 1-hour training session, a convenience sample of 12 health professionals (6 neurologists and 6 nurses) used ASSESS MS to capture recordings of standardized movements performed by 51 volunteer patients. Metrics for effectiveness, efficiency, and acceptability were defined and used to analyze data captured by ASSESS MS, video recordings of each examination, feedback questionnaires, and follow-up interviews. All health professionals were able to complete recordings using ASSESS MS, achieving high levels of standardization on 3 of 4 metrics (movement performance, lateral positioning, and clear camera view but not distance positioning). Results were unaffected by patients' level of physical or cognitive disability. ASSESS MS was perceived as easy to use by both patients and health professionals with high scores on the Likert-scale questions and positive interview commentary. ASSESS MS was highly acceptable to patients on all dimensions considered, including attitudes to future use, interaction (with health professionals), and overall perceptions of ASSESS MS. Health professionals also accepted ASSESS MS, but with greater ambivalence arising from the need to alter patient interaction styles. There was little variation in results across participating centers, and no differences between neurologists and nurses. In typical

  16. Detection of white spot lesions by segmenting laser speckle images using computer vision methods.

    Science.gov (United States)

    Gavinho, Luciano G; Araujo, Sidnei A; Bussadori, Sandra K; Silva, João V P; Deana, Alessandro M

    2018-05-05

    This paper aims to develop a method for laser speckle image segmentation of tooth surfaces for diagnosis of early stages caries. The method, applied directly to a raw image obtained by digital photography, is based on the difference between the speckle pattern of a carious lesion tooth surface area and that of a sound area. Each image is divided into blocks which are identified in a working matrix by their χ 2 distance between block histograms of the analyzed image and the reference histograms previously obtained by K-means from healthy (h_Sound) and lesioned (h_Decay) areas, separately. If the χ 2 distance between a block histogram and h_Sound is greater than the distance to h_Decay, this block is marked as decayed. The experiments showed that the method can provide effective segmentation for initial lesions. We used 64 images to test the algorithm and we achieved 100% accuracy in segmentation. Differences between the speckle pattern of a sound tooth surface region and a carious region, even in the early stage, can be evidenced by the χ 2 distance between histograms. This method proves to be more effective for segmenting the laser speckle image, which enhances the contrast between sound and lesioned tissues. The results were obtained with low computational cost. The method has the potential for early diagnosis in a clinical environment, through the development of low-cost portable equipment.

  17. Lambda Vision

    Science.gov (United States)

    Czajkowski, Michael

    2014-06-01

    There is an explosion in the quantity and quality of IMINT data being captured in Intelligence Surveillance and Reconnaissance (ISR) today. While automated exploitation techniques involving computer vision are arriving, only a few architectures can manage both the storage and bandwidth of large volumes of IMINT data and also present results to analysts quickly. Lockheed Martin Advanced Technology Laboratories (ATL) has been actively researching in the area of applying Big Data cloud computing techniques to computer vision applications. This paper presents the results of this work in adopting a Lambda Architecture to process and disseminate IMINT data using computer vision algorithms. The approach embodies an end-to-end solution by processing IMINT data from sensors to serving information products quickly to analysts, independent of the size of the data. The solution lies in dividing up the architecture into a speed layer for low-latent processing and a batch layer for higher quality answers at the expense of time, but in a robust and fault-tolerant way. This approach was evaluated using a large corpus of IMINT data collected by a C-130 Shadow Harvest sensor over Afghanistan from 2010 through 2012. The evaluation data corpus included full motion video from both narrow and wide area field-of-views. The evaluation was done on a scaled-out cloud infrastructure that is similar in composition to those found in the Intelligence Community. The paper shows experimental results to prove the scalability of the architecture and precision of its results using a computer vision algorithm designed to identify man-made objects in sparse data terrain.

  18. Sigma: computer vision in the service of safety and reliability in the inspection services; Sigma: la vision computacional al servicio de la seguridad y fiabilidad en los servicios de inspeccion

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, P. J.; Mendez, M.; Garcia, A.; Cabrera, E.; Regidor, J. J.

    2012-11-01

    Vision Computing is growing very fast in the last decade with very efficient tools and algorithms. This allows new development of applications in the nuclear field providing more efficient equipment and tasks: redundant systems, vision-guided mobile robots, automated visual defects recognition, measurement, etc., In this paper Tecnatom describes a detailed example of visual computing application developed to provide secure redundant identification of the thousands of tubes existing in a power plant steam generator. some other on-going or planned visual computing projects by Tecnatom are also introduced. New possibilities of application in the inspection systems for nuclear components appear where the main objective is to maximize their reliability. (Author) 6 refs.

  19. Computer Use and Vision-Related Problems Among University Students In Ajman, United Arab Emirate

    OpenAIRE

    Shantakumari, N; Eldeeb, R; Sreedharan, J; Gopal, K

    2014-01-01

    Background: The extensive use of computers as medium of teaching and learning in universities necessitates introspection into the extent of computer related health disorders among student population. Aim: This study was undertaken to assess the pattern of computer usage and related visual problems, among University students in Ajman, United Arab Emirates. Materials and Methods: A total of 500 Students studying in Gulf Medical University, Ajman and Ajman University of Science and Technology we...

  20. The potential impact of computer-aided assessment technology in ...

    African Journals Online (AJOL)

    The potential impact of computer-aided assessment technology in higher education. ... Further more 'Increased number of students in Higher Education and the ... benefits, limitations, impacts on student learning and strategies for developing ...

  1. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    Science.gov (United States)

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  2. VibroCV: a computer vision-based vibroarthrography platform with possible application to Juvenile Idiopathic Arthritis.

    Science.gov (United States)

    Wiens, Andrew D; Prahalad, Sampath; Inan, Omer T

    2016-08-01

    Vibroarthrography, a method for interpreting the sounds emitted by a knee during movement, has been studied for several joint disorders since 1902. However, to our knowledge, the usefulness of this method for management of Juvenile Idiopathic Arthritis (JIA) has not been investigated. To study joint sounds as a possible new biomarker for pediatric cases of JIA we designed and built VibroCV, a platform to capture vibroarthrograms from four accelerometers; electromyograms (EMG) and inertial measurements from four wireless EMG modules; and joint angles from two Sony Eye cameras and six light-emitting diodes with commercially-available off-the-shelf parts and computer vision via OpenCV. This article explains the design of this turn-key platform in detail, and provides a sample recording captured from a pediatric subject.

  3. Virtual Vision

    Science.gov (United States)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  4. Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization.

    Science.gov (United States)

    Kiani, Sajad; Minaei, Saeid

    2016-12-01

    Saffron quality characterization is an important issue in the food industry and of interest to the consumers. This paper proposes an expert system based on the application of machine vision technology for characterization of saffron and shows how it can be employed in practical usage. There is a correlation between saffron color and its geographic location of production and some chemical attributes which could be properly used for characterization of saffron quality and freshness. This may be accomplished by employing image processing techniques coupled with multivariate data analysis for quantification of saffron properties. Expert algorithms can be made available for prediction of saffron characteristics such as color as well as for product classification. Copyright © 2016. Published by Elsevier Ltd.

  5. Selected Publications in Image Understanding and Computer Vision from 1974 to 1983

    Science.gov (United States)

    1985-04-18

    Germany, September 26-28, 1978), Plenum, New York, 1979. 9. Reconnaissance des Formes et Intelligence Artificielle (2’me Congres AFCET-IRIA, Toulouse...the last decade. .To L..... ABBREVIATIONS - AI Artificial Intelligence BC Biological Cybernetics CACM Communications of the ACM CG Computer Graphics... Intelligence PACM Proceedings of the ACM "P-IEEE Proceedings of the IEEE P-NCC Proceedings of the National Computer Conference PR Pattern Recognition PRL

  6. Evaluation of body weight of sea cucumber Apostichopus japonicus by computer vision

    Science.gov (United States)

    Liu, Hui; Xu, Qiang; Liu, Shilin; Zhang, Libin; Yang, Hongsheng

    2015-01-01

    A postichopus japonicus (Holothuroidea, Echinodermata) is an ecological and economic species in East Asia. Conventional biometric monitoring method includes diving for samples and weighing above water, with highly variable in weight measurement due to variation in the quantity of water in the respiratory tree and intestinal content of this species. Recently, video survey method has been applied widely in biometric detection on underwater benthos. However, because of the high flexibility of A. japonicus body, video survey method of monitoring is less used in sea cucumber. In this study, we designed a model to evaluate the wet weight of A. japonicus, using machine vision technology combined with a support vector machine (SVM) that can be used in field surveys on the A. japonicus population. Continuous dorsal images of free-moving A. japonicus individuals in seawater were captured, which also allows for the development of images of the core body edge as well as thorn segmentation. Parameters that include body length, body breadth, perimeter and area, were extracted from the core body edge images and used in SVM regression, to predict the weight of A. japonicus and for comparison with a power model. Results indicate that the use of SVM for predicting the weight of 33 A. japonicus individuals is accurate ( R 2=0.99) and compatible with the power model ( R 2 =0.96). The image-based analysis and size-weight regression models in this study may be useful in body weight evaluation of A. japonicus in lab and field study.

  7. Computer Vision Based Smart Lane Departure Warning System for Vehicle Dynamics Control

    Directory of Open Access Journals (Sweden)

    Ambarish G. Mohapatra

    2011-09-01

    Full Text Available Collision Avoidance System solves many problems caused by traffic congestion worldwide and a synergy of new information technologies for simulation, real-time control and communications networks. The above system is characterized as an intelligent vehicle system. Traffic congestion has been increasing world-wide as a result of increased motorization, urbanization, population growth and changes in population density. Congestion reduces utilization of the transportation infrastructure and increases travel time, air pollution, fuel consumption and most importantly traffic accidents. The main objective of this work is to develop a machine vision system for lane departure detection and warning to measure the lane related parameters such as heading angle, lateral deviation, yaw rate and sideslip angle from the road scene image using standard image processing technique that can be used for automation of steering a motor vehicle. The exact position of the steering wheel can be monitored using a steering wheel sensor. This core part of this work is based on Hough transformation based edge detection technique for the detection of lane departure parameters. The prototype designed for this work has been tested in a running vehicle for the monitoring of real-time lane related parameters.

  8. Fractographic classification in metallic materials by using 3D processing and computer vision techniques

    Directory of Open Access Journals (Sweden)

    Maria Ximena Bastidas-Rodríguez

    2016-09-01

    Full Text Available Failure analysis aims at collecting information about how and why a failure is produced. The first step in this process is a visual inspection on the flaw surface that will reveal the features, marks, and texture, which characterize each type of fracture. This is generally carried out by personnel with no experience that usually lack the knowledge to do it. This paper proposes a classification method for three kinds of fractures in crystalline materials: brittle, fatigue, and ductile. The method uses 3D vision, and it is expected to support failure analysis. The features used in this work were: i Haralick’s features and ii the fractal dimension. These features were applied to 3D images obtained from a confocal laser scanning microscopy Zeiss LSM 700. For the classification, we evaluated two classifiers: Artificial Neural Networks and Support Vector Machine. The performance evaluation was made by extracting four marginal relations from the confusion matrix: accuracy, sensitivity, specificity, and precision, plus three evaluation methods: Receiver Operating Characteristic space, the Individual Classification Success Index, and the Jaccard’s coefficient. Despite the classification percentage obtained by an expert is better than the one obtained with the algorithm, the algorithm achieves a classification percentage near or exceeding the 60 % accuracy for the analyzed failure modes. The results presented here provide a good approach to address future research on texture analysis using 3D data.

  9. An automatic colour-based computer vision algorithm for tracking the position of piglets

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Jover, J. M.; Alcaniz-Raya, M.; Gomez, V.; Balasch, S.; Moreno, J. R.; Grau-Colomer, V.; Torres, A.

    2009-07-01

    Artificial vision is a powerful observation tool for research in the field of livestock production. So, based on the search and recognition of colour spots in images, a digital image processing system which permits the detection of the position of piglets in a farrowing pen, was developed. To this end, 24,000 images were captured over five takes (days), with a five-second interval between every other image. The nine piglets in a litter were marked on their backs and sides with different coloured spray paints each one, placed at a considerable distance on the RGB space. The programme requires the user to introduce the colour patterns to be found, and the output is an ASCII file with the positions (column X, lineY) for each of these marks within the image analysed. This information may be extremely useful for further applications in the study of animal behaviour and welfare parameters (huddling, activity, suckling, etc.). The software programme initially segments the image in the RGB colour space to separate the colour marks from the rest of the image, and then recognises the colour patterns, using another colour space [B/(R+G+B), (G-R), (B-G)] more suitable for this purpose. This additional colour space was obtained testing different colour combinations derived from R, G and B. The statistical evaluation of the programmes performance revealed an overall 72.5% in piglet detection, 89.1% of this total being correctly detected. (Author) 33 refs.

  10. Nucleon-Nucleon Potentials and Computation of Scattering Phase Shifts

    Directory of Open Access Journals (Sweden)

    Jhasaketan Bhoi

    2015-12-01

    Full Text Available By judicious exploitation of supersymmetry formalism of quantum mechanics higher partial wave nucleon-nucleon potentials are generated from its ground state interactions. The nuclear Hulthen potential and the corresponding ground state wave function with the parameters of Arnold and MacKellar are used as the starting point of our calculation. We compute the scattering phase shifts for our constructed potentials through Phase Function Method to examine the merit of our approach to the problem.

  11. METHODS OF ASSESSING THE DEGREE OF DESTRUCTION OF RUBBER PRODUCTS USING COMPUTER VISION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2015-01-01

    Full Text Available For technical inspection of rubber products are essential methods of improving video scopes analyzing the degree of destruction and aging of rubber in an aggressive environment. The main factor determining the degree of destruction of the rubber product, the degree of coverage is cracked, which can be described as the amount of the total area, perimeter cracks, geometric shapes and other parameters. In the process of creating a methodology for assessing the degree of destruction of rubber products arises the problem of the development of machine vision algorithm for estimating the degree of coverage of the sample fractures and fracture characterization. For the development of image processing algorithm performed experimental studies on the artificial aging of several samples of products that are made from different rubbers. In the course of the experiments it was obtained several samples of shots vulcanizates in real time. To achieve the goals initially made light stabilization of array images using Gaussian filter. Thereafter, for each image binarization operation is applied. To highlight the contours of the surface damage of the sample is used Canny algorithm. The detected contours are converted into an array of pixels. However, a crack may be allocated to several contours. Therefore, an algorithm was developed by combining contours criterion of minimum distance between them. At the end of the calculation is made of the morphological features of each contour (area, perimeter, length, width, angle of inclination, the At the end of the calculation is made of the morphological features of each contour (area, perimeter, length, width, angle of inclination, the Minkowski dimension. Show schedule obtained by the method parameters destruction of samples of rubber products. The developed method allows you to automate assessment of the degree of aging of rubber products in telemetry systems, to study the dynamics of the aging process of polymers to

  12. Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows

    NARCIS (Netherlands)

    Schlageter-Tello, Andrés; Hertem, Van Tom; Bokkers, Eddie A.M.; Viazzi, Stefano; Bahr, Claudia; Lokhorst, Kees

    2018-01-01

    The objective of this study was to determine if a 3-dimensional computer vision automatic locomotion scoring (3D-ALS) method was able to outperform human observers for classifying cows as lame or nonlame and for detecting cows affected and nonaffected by specific type(s) of hoof lesion. Data

  13. BUILD-IT : a computer vision-based interaction technique for a planning tool

    NARCIS (Netherlands)

    Rauterberg, G.W.M.; Fjeld, M.; Krueger, H.; Bichsel, M.; Leonhardt, U.; Meier, M.; Thimbleby, H.; O'Conaill, B.; Thomas, P.J.

    1997-01-01

    Shows a method that goes beyond the established approaches of human-computer interaction. We first bring a serious critique of traditional interface types, showing their major drawbacks and limitations. Promising alternatives are offered by virtual (or immersive) reality (VR) and by augmented

  14. More power : Accelerating sequential Computer Vision algorithms using commodity parallel hardware

    NARCIS (Netherlands)

    Jaap van de Loosdrecht; K. Dijkstra

    2014-01-01

    The last decade has seen an increasing demand from the industrial field of computerized visual inspection. Applications rapidly become more complex and often with more demanding real time constraints. However, from 2004 onwards the clock frequency of CPUs has not increased significantly. Computer

  15. Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans

    NARCIS (Netherlands)

    Ritchie, A.J.; Sanghera, C.; Jacobs, C.; Zhang, W.; Mayo, J.; Schmidt, H.; Gingras, M.; Pasian, S.; Stewart, L.; Tsai, S.; Manos, D.; Seely, J.M.; Burrowes, P.; Bhatia, R.; Atkar-Khattra, S.; Ginneken, B. van; Tammemagi, M.; Tsao, M.S.; Lam, S.; et al.,

    2016-01-01

    To implement a cost-effective low-dose computed tomography (LDCT) lung cancer screening program at the population level, accurate and efficient interpretation of a large volume of LDCT scans is needed. The objective of this study was to evaluate a workflow strategy to identify abnormal LDCT scans in

  16. Computer Vision Syndrome for Non-Native Speaking Students: What Are the Problems with Online Reading?

    Science.gov (United States)

    Tseng, Min-chen

    2014-01-01

    This study investigated the online reading performances and the level of visual fatigue from the perspectives of non-native speaking students (NNSs). Reading on a computer screen is more visually more demanding than reading printed text. Online reading requires frequent saccadic eye movements and imposes continuous focusing and alignment demand.…

  17. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.

    Science.gov (United States)

    Markovic, Marko; Dosen, Strahinja; Popovic, Dejan; Graimann, Bernhard; Farina, Dario

    2015-12-01

    Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.

  18. Development of a Configurable Growth Chamber with a Computer Vision System to Study Circadian Rhythm in Plants

    Directory of Open Access Journals (Sweden)

    Marcos Egea-Cortines

    2012-11-01

    Full Text Available Plant development is the result of an endogenous morphogenetic program that integrates environmental signals. The so-called circadian clock is a set of genes that integrates environmental inputs into an internal pacing system that gates growth and other outputs. Study of circadian growth responses requires high sampling rates to detect changes in growth and avoid aliasing. We have developed a flexible configurable growth chamber comprising a computer vision system that allows sampling rates ranging between one image per 30 s to hours/days. The vision system has a controlled illumination system, which allows the user to set up different configurations. The illumination system used emits a combination of wavelengths ensuring the optimal growth of species under analysis. In order to obtain high contrast of captured images, the capture system is composed of two CCD cameras, for day and night periods. Depending on the sample type, a flexible image processing software calculates different parameters based on geometric calculations. As a proof of concept we tested the system in three different plant tissues, growth of petunia- and snapdragon (Antirrhinum majus flowers and of cladodes from the cactus Opuntia ficus-indica. We found that petunia flowers grow at a steady pace and display a strong growth increase in the early morning, whereas Opuntia cladode growth turned out not to follow a circadian growth pattern under the growth conditions imposed. Furthermore we were able to identify a decoupling of increase in area and length indicating that two independent growth processes are responsible for the final size and shape of the cladode.

  19. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis

    Science.gov (United States)

    Markovic, Marko; Dosen, Strahinja; Popovic, Dejan; Graimann, Bernhard; Farina, Dario

    2015-12-01

    Objective. Myoelectric activity volitionally generated by the user is often used for controlling hand prostheses in order to replicate the synergistic actions of muscles in healthy humans during grasping. Muscle synergies in healthy humans are based on the integration of visual perception, heuristics and proprioception. Here, we demonstrate how sensor fusion that combines artificial vision and proprioceptive information with the high-level processing characteristics of biological systems can be effectively used in transradial prosthesis control. Approach. We developed a novel context- and user-aware prosthesis (CASP) controller integrating computer vision and inertial sensing with myoelectric activity in order to achieve semi-autonomous and reactive control of a prosthetic hand. The presented method semi-automatically provides simultaneous and proportional control of multiple degrees-of-freedom (DOFs), thus decreasing overall physical effort while retaining full user control. The system was compared against the major commercial state-of-the art myoelectric control system in ten able-bodied and one amputee subject. All subjects used transradial prosthesis with an active wrist to grasp objects typically associated with activities of daily living. Main results. The CASP significantly outperformed the myoelectric interface when controlling all of the prosthesis DOF. However, when tested with less complex prosthetic system (smaller number of DOF), the CASP was slower but resulted with reaching motions that contained less compensatory movements. Another important finding is that the CASP system required minimal user adaptation and training. Significance. The CASP constitutes a substantial improvement for the control of multi-DOF prostheses. The application of the CASP will have a significant impact when translated to real-life scenarious, particularly with respect to improving the usability and acceptance of highly complex systems (e.g., full prosthetic arms) by amputees.

  20. Mental vision: a computer graphics platform for virtual reality, science and education

    OpenAIRE

    Peternier, Achille

    2009-01-01

    Despite the wide amount of computer graphics frameworks and solutions available for virtual reality, it is still difficult to find a perfect one fitting at the same time the many constraints of research and educational contexts. Advanced functionalities and user-friendliness, rendering speed and portability, or scalability and image quality are opposite characteristics rarely found into a same approach. Furthermore, fruition of virtual reality specific devices like CAVEs or wearable systems i...

  1. Computer graphics testbed to simulate and test vision systems for space applications

    Science.gov (United States)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  2. Low Vision

    Science.gov (United States)

    ... USAJobs Home » Statistics and Data » Low Vision Listen Low Vision Low Vision Defined: Low Vision is defined as the best- ... Ethnicity 2010 U.S. Age-Specific Prevalence Rates for Low Vision by Age, and Race/Ethnicity Table for 2010 ...

  3. White paper: A vision for a computing initiative for MFE. Revised version

    International Nuclear Information System (INIS)

    Cohen, R.H.; Crotinger, J.A.; Baldwin, D.E.

    1996-01-01

    The scientific base of magnetic fusion research comprises three capabilities: experimental research, theoretical understanding and computational modeling, with modeling providing the necessary link between the other two. The US now faces a budget climate that will preclude the construction of major new MFE facilities and limit MFE experimental operations. The situation is rather analogous to the one experienced by the DOE Defense Programs (DP), in which continued viability of the nuclear stockpile must be ensured despite the prohibition of underground experimental tests. DP is meeting this challenge, in part, by launching the Accelerated Strategic Computing Initiative (ASCI) to bring advanced algorithms and new hardware to bear on the problems of science-based stockpile stewardship (SBSS). ASCI has as its goal the establishment of a ''virtual testing'' capability, and it is expected to drive scientific software and hardware development through the next decade. The authors argue that a similar effort is warranted for the MFE program, that is, an initiative aimed at developing a comprehensive simulation capability for MFE, with the goal of enabling ''virtual experiments.'' It would play a role for MFE analogous to that played by present-day and future (ASCI) codes for nuclear weapons design and by LASNEX for ICF, and provide a powerful augmentation to constrained experimental programs. Developing a comprehensive simulation capability could provide an organizing theme for a restructured science-based MFE program. The code would become a central vehicle for integrating the accumulating science base. In the context the authors propose, the relationship would ultimately be reversed: computer simulation would become a primary vehicle for exploration, with experiments providing the necessary confirmatory evidence (or guidance for code improvements)

  4. A child's vision.

    Science.gov (United States)

    Nye, Christina

    2014-06-01

    Implementing standard vision screening techniques in the primary care practice is the most effective means to detect children with potential vision problems at an age when the vision loss may be treatable. A critical period of vision development occurs in the first few weeks of life; thus, it is imperative that serious problems are detected at this time. Although it is not possible to quantitate an infant's vision, evaluating ocular health appropriately can mean the difference between sight and blindness and, in the case of retinoblastoma, life or death. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Trends, visions and reality. Cloud computing in the energy industry; Trends, Visionen und Wirklichkeit. Cloud Computing in der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Achim [Energy Solution Center (Ensoc) e.V., Karlsruhe (Germany); Maurer, Marion; Pohling, Matthias [Bridging IT GmbH, Mannheim (Germany)

    2011-08-22

    The topic of cloud computing is not only just a temporary hype in the market of information technology, but also a true paradigm shift in the supply and use of information technology services. A sustainable change in the information technology in the energy sector is expected. The authors of the contribution under consideration present current cloud research projects with energy-economic relevance. Some important criteria are presented that should be considered in the selection and use of cloud services. The selective use of cloud services up to the outsourcing of entire business processes of an electric utility in the cloud may provide an added value. Both, current approaches as well as research projects are suitable for the optimization of processes and resources. The numerous possibilities have to be adjusted to the own general conditions.

  6. Potential implementation of reservoir computing models based on magnetic skyrmions

    Science.gov (United States)

    Bourianoff, George; Pinna, Daniele; Sitte, Matthias; Everschor-Sitte, Karin

    2018-05-01

    Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts to implement reservoir computing prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of magnetic skyrmion fabrics and the complex current patterns which form in them as an attractive physical instantiation for Reservoir Computing. We argue that their nonlinear dynamical interplay resulting from anisotropic magnetoresistance and spin-torque effects allows for an effective and energy efficient nonlinear processing of spatial temporal events with the aim of event recognition and prediction.

  7. Methodological Potential of Computer Experiment in Teaching Mathematics at University

    Science.gov (United States)

    Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.

    2017-01-01

    The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…

  8. Computer-aided discovery of antimicrobial agents as potential enoyl ...

    African Journals Online (AJOL)

    Computer-aided discovery of antimicrobial agents as potential enoyl acyl carrier protein reductase inhibitors. ... Conclusion: Overall, the newly discovered hits can act as a good starting point in the future for the development of safe and potent antibacterial agents. Keywords: Enoyl acyl carrier protein reductase, saFabI, ...

  9. The Potential of Incorporating Computer Games in Foreign Language Curricula

    Science.gov (United States)

    Mukundan, Jayakaran; Kalajahi, Seyed Ali Rezvani; Naghdipour, Bakhtiar

    2014-01-01

    There is ample evidence that technology-enhanced instruction could result in students' learning. With the advancement and ever-increasing growth of technology, the use of educational electronic games or computer games in education has appealed to both educators and students. Because of their potential to enhance students' interest, motivation and…

  10. The Potential Impact of Quantum Computers on Society

    OpenAIRE

    de Wolf, Ronald

    2017-01-01

    This paper considers the potential impact that the nascent technology of quantum computing may have on society. It focuses on three areas: cryptography, optimization, and simulation of quantum systems. We will also discuss some ethical aspects of these developments, and ways to mitigate the risks.

  11. The potential impact of quantum computers on society

    NARCIS (Netherlands)

    2017-01-01

    textabstractThis paper considers the potential impact that the nascent technology of quantum computing may have on society. It focuses on three areas: cryptography, optimization, and simulation of quantum systems. We will also discuss some ethical aspects of these developments, and ways to mitigate

  12. Retrospective study of effect of therapy on computer vision syndrome patients having convergence insufficiency

    Directory of Open Access Journals (Sweden)

    Nidhi Tiwari

    2017-01-01

    Full Text Available Aim: To study effect of therapy among computer users having convergence insufficiency. Materials and Methods: Hundred people between age group of 20-35 and who worked in IT companies were enrolled in the study. They were subjected to orthoptic evaluation to establish diagnosis of convergence insufficiency. They were then called for in-office therapy for 12 days daily. They underwent brock string exercises and at the end of therapy re-evaluation was done. Results: All the patients who underwent the therapy showed improvement in Near point of convergence at the end of therapy. They were also symptomatically better. Conclusions: Convergence insufficiency is a common occupation hazard among IT professionals. But it can be treated with appropriate therapy.

  13. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  14. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    Science.gov (United States)

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.

  15. Image formation simulation for computer-aided inspection planning of machine vision systems

    Science.gov (United States)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  16. Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences.

    Science.gov (United States)

    Revell, James; Mirmehdi, Majid; McNally, Donal

    2005-06-01

    We present the development and validation of an image based speckle tracking methodology, for determining temporal two-dimensional (2-D) axial and lateral displacement and strain fields from ultrasound video streams. We refine a multiple scale region matching approach incorporating novel solutions to known speckle tracking problems. Key contributions include automatic similarity measure selection to adapt to varying speckle density, quantifying trajectory fields, and spatiotemporal elastograms. Results are validated using tissue mimicking phantoms and in vitro data, before applying them to in vivo musculoskeletal ultrasound sequences. The method presented has the potential to improve clinical knowledge of tendon pathology from carpel tunnel syndrome, inflammation from implants, sport injuries, and many others.

  17. Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Fatih C Gundogan

    2013-01-01

    Full Text Available Background: Optic pathway involvement in multiple sclerosis is frequently the initial sign in the disease process. In most clinical applications, pattern visual evoked potential (PVEP is used in the assessment of optic pathway involvement. Objective: To question the value of PVEP against color vision assessment in the diagnosis of subclinical optic pathway involvement. Materials and Methods: This prospective, cross-sectional study included 20 multiple sclerosis patients without a history of optic neuritis, and 20 healthy control subjects. Farnsworth-Munsell (FM 100-Hue testing and PVEPs to 60-min arc and 15-min arc checks by using Roland-Consult RetiScan® system were performed. P 100 amplitude, P 100 latency in PVEP and total error scores (TES in FM 100-Hue test were assessed. Results: Expanded Disability Status Scale score and the time from diagnosis were 2.21 ± 2.53 (ranging from 0 to 7 and 4.1 ± 4.4 years. MS group showed significantly delayed P 100 latency for both checks (P 0.05 for all. 14 MS patients (70% had an increased TESs in FM-100 Hue, 11 (55% MS patients had delayed P 100 latency and 9 (45% had reduced P 100 amplitude. The areas under the ROC curves were 0.944 for FM-100 Hue test, 0.753 for P 100 latency, and 0.173 for P 100 amplitude. Conclusions: Color vision testing seems to be more sensitive than PVEP in detecting subclinical visual pathway involvement in MS.

  18. Local annealing of shape memory alloys using laser scanning and computer vision

    Science.gov (United States)

    Hafez, Moustapha; Bellouard, Yves; Sidler, Thomas C.; Clavel, Reymond; Salathe, Rene-Paul

    2000-11-01

    A complete set-up for local annealing of Shape Memory Alloys (SMA) is proposed. Such alloys, when plastically deformed at a given low temperature, have the ability to recover a previously memorized shape simply by heating up to a higher temperature. They find more and more applications in the fields of robotics and micro engineering. There is a tremendous advantage in using local annealing because this process can produce monolithic parts, which have different mechanical behavior at different location of the same body. Using this approach, it is possible to integrate all the functionality of a device within one piece of material. The set-up is based on a 2W-laser diode emitting at 805nm and a scanner head. The laser beam is coupled into an optical fiber of 60(mu) in diameter. The fiber output is focused on the SMA work-piece using a relay lens system with a 1:1 magnification, resulting in a spot diameter of 60(mu) . An imaging system is used to control the position of the laser spot on the sample. In order to displace the spot on the surface a tip/tilt laser scanner is used. The scanner is positioned in a pre-objective configuration and allows a scan field size of more than 10 x 10 mm2. A graphical user interface of the scan field allows the user to quickly set up marks and alter their placement and power density. This is achieved by computer controlling X and Y positions of the scanner as well as the laser diode power. A SMA micro-gripper with a surface area less than 1 mm2 and an opening of the jaws of 200(mu) has been realized using this set-up. It is electrically actuated and a controlled force of 16mN can be applied to hold and release small objects such as graded index micro-lenses at a cycle time of typically 1s.

  19. The Potentials of Using Cloud Computing in Schools

    DEFF Research Database (Denmark)

    Hartmann, Simon Birk; Nygaard, Lotte Qulleq Victhoria; Pedersen, Sine

    2017-01-01

    Cloud Computing (CC) refers to the physical structure of a communications network, where data is saved and stored in large data centers and thus can be accessed anywhere, at any time and from different devices. It is evident that the integration and adoption of CC and discontinuation...... of an alternative ICT includes some underlying reasons. Optimistically, these reasons can be interpreted as the potentials of using cloud computing and as the functions or values that circumvent or solve some of the existing challenges with other form of educational technology. This systematic literature review...... from ERIC, IEEE Xplore, Science Direct and Primo, and after screening and eligibility checking, 13 articles focusing on “cloud computing and school” were included for qualitative analysis and meta-analysis. The papers are coded, from which 31 themes are devised, and five categories are made to group...

  20. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.

    Science.gov (United States)

    Huang, Lin; Zhao, Jiewen; Chen, Quansheng; Zhang, Yanhua

    2014-02-15

    Total volatile basic nitrogen (TVB-N) content is an important reference index for evaluating pork freshness. This paper attempted to measure TVB-N content in pork meat using integrating near infrared spectroscopy (NIRS), computer vision (CV), and electronic nose (E-nose) techniques. In the experiment, 90 pork samples with different freshness were collected for data acquisition by three different techniques, respectively. Then, the individual characteristic variables were extracted from each sensor. Next, principal component analysis (PCA) was used to achieve data fusion based on these characteristic variables from 3 different sensors data. Back-propagation artificial neural network (BP-ANN) was used to construct the model for TVB-N content prediction, and the top principal components (PCs) were extracted as the input of model. The result of the model was achieved as follows: the root mean square error of prediction (RMSEP) = 2.73 mg/100g and the determination coefficient (R(p)(2)) = 0.9527 in the prediction set. Compared with single technique, integrating three techniques, in this paper, has its own superiority. This work demonstrates that it has the potential in nondestructive detection of TVB-N content in pork meat using integrating NIRS, CV and E-nose, and data fusion from multi-technique could significantly improve TVB-N prediction performance. Copyright © 2013. Published by Elsevier Ltd.

  1. Uav and Computer Vision, Detection of Infrastructure Losses and 3d Modeling

    Science.gov (United States)

    Barrile, V.; Bilotta, G.; Nunnari, A.

    2017-11-01

    The degradation of buildings, or rather the decline of their initial performances following external agents both natural (cold-thaw, earthquake, salt, etc.) and artificial (industrial field, urban setting, etc.), in the years lead to the necessity of developing Non-Destructive Testing (NDT) intended to give useful information for an explanation of a potential deterioration without damaging the state of buildings. An accurate examination of damages, of the repeat of cracks in condition of similar stress, indicate the existence of principles that control the creation of these events. There is no doubt that a precise visual analysis is at the bottom of a correct evaluation of the building. This paper deals with the creation of 3D models based on the capture of digital images, through autopilot flight UAV, for civil buildings situated on the area of Reggio Calabria. The following elaboration is done thanks to the use of commercial software, based on specific algorithms of the Structure from Motion (SfM) technique. SfM represents an important progress in the aerial and terrestrial survey field obtaining results, in terms of time and quality, comparable to those achievable through more traditional data capture methodologies.

  2. UAV AND COMPUTER VISION, DETECTION OF INFRASTRUCTURE LOSSES AND 3D MODELING

    Directory of Open Access Journals (Sweden)

    V. Barrile

    2017-11-01

    Full Text Available The degradation of buildings, or rather the decline of their initial performances following external agents both natural (cold-thaw, earthquake, salt, etc. and artificial (industrial field, urban setting, etc., in the years lead to the necessity of developing Non-Destructive Testing (NDT intended to give useful information for an explanation of a potential deterioration without damaging the state of buildings. An accurate examination of damages, of the repeat of cracks in condition of similar stress, indicate the existence of principles that control the creation of these events. There is no doubt that a precise visual analysis is at the bottom of a correct evaluation of the building. This paper deals with the creation of 3D models based on the capture of digital images, through autopilot flight UAV, for civil buildings situated on the area of Reggio Calabria. The following elaboration is done thanks to the use of commercial software, based on specific algorithms of the Structure from Motion (SfM technique. SfM represents an important progress in the aerial and terrestrial survey field obtaining results, in terms of time and quality, comparable to those achievable through more traditional data capture methodologies.

  3. Computing volume potentials for noninvasive imaging of cardiac excitation.

    Science.gov (United States)

    van der Graaf, A W Maurits; Bhagirath, Pranav; van Driel, Vincent J H M; Ramanna, Hemanth; de Hooge, Jacques; de Groot, Natasja M S; Götte, Marco J W

    2015-03-01

    In noninvasive imaging of cardiac excitation, the use of body surface potentials (BSP) rather than body volume potentials (BVP) has been favored due to enhanced computational efficiency and reduced modeling effort. Nowadays, increased computational power and the availability of open source software enable the calculation of BVP for clinical purposes. In order to illustrate the possible advantages of this approach, the explanatory power of BVP is investigated using a rectangular tank filled with an electrolytic conductor and a patient specific three dimensional model. MRI images of the tank and of a patient were obtained in three orthogonal directions using a turbo spin echo MRI sequence. MRI images were segmented in three dimensional using custom written software. Gmsh software was used for mesh generation. BVP were computed using a transfer matrix and FEniCS software. The solution for 240,000 nodes, corresponding to a resolution of 5 mm throughout the thorax volume, was computed in 3 minutes. The tank experiment revealed that an increased electrode surface renders the position of the 4 V equipotential plane insensitive to mesh cell size and reduces simulated deviations. In the patient-specific model, the impact of assigning a different conductivity to lung tissue on the distribution of volume potentials could be visualized. Generation of high quality volume meshes and computation of BVP with a resolution of 5 mm is feasible using generally available software and hardware. Estimation of BVP may lead to an improved understanding of the genesis of BSP and sources of local inaccuracies. © 2014 Wiley Periodicals, Inc.

  4. Utilizing Commercial Hardware and Open Source Computer Vision Software to Perform Motion Capture for Reduced Gravity Flight

    Science.gov (United States)

    Humphreys, Brad; Bellisario, Brian; Gallo, Christopher; Thompson, William K.; Lewandowski, Beth

    2016-01-01

    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts. To perform validation of these models and to support the Advanced Exercise Concepts Project, several candidate devices have been flown onboard NASAs Reduced Gravity Aircraft. In terrestrial laboratories, researchers typically have available to them motion capture systems for the measurement of subject kinematics. Onboard the parabolic flight aircraft it is not practical to utilize the traditional motion capture systems due to the large working volume they require and their relatively high replacement cost if damaged. To support measuring kinematics on board parabolic aircraft, a motion capture system is being developed utilizing open source computer vision code with commercial off the shelf (COTS) video camera hardware. While the systems accuracy is lower than lab setups, it provides a means to produce quantitative comparison motion capture kinematic data. Additionally, data such as required exercise volume for small spaces such as the Orion capsule can be determined. METHODS: OpenCV is an open source computer vision library that provides the

  5. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    Science.gov (United States)

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  6. The Potential of Incorporating Computer Games in Foreign Language Curricula

    Directory of Open Access Journals (Sweden)

    Jayakaran Mukundan

    2014-04-01

    Full Text Available There is ample evidence that technology-enhanced instruction could result in students’ learning. With the advancement and ever-increasing growth of technology, the use of educational electronic games or computer games in education has appealed to both educators and students. Because of their potential to enhance students’ interest, motivation and creativity, computer games can be used to teach various skills and strategies to different types of students, particularly schoolchildren. These games have also made inroads into language learning classrooms as they provide language learners with a rich learning context to engage in authentic and meaningful learning experiences. This paper reviews the potential of integrating computer games into second/foreign language syllabi and curricula by offering a synopsis of the assumptions, prior studies and theoretical background in support of these games in language education. At the end, the paper touches upon the role of teachers and the likely inhibiting factors affecting the integration of computer games into English language programs.

  7. The Potential of the Cell Processor for Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel; Shalf, John; Oliker, Leonid; Husbands, Parry; Kamil, Shoaib; Yelick, Katherine

    2005-10-14

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of the using the forth coming STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. We are the first to present quantitative Cell performance data on scientific kernels and show direct comparisons against leading superscalar (AMD Opteron), VLIW (IntelItanium2), and vector (Cray X1) architectures. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop both analytical models and simulators to predict kernel performance. Our work also explores the complexity of mapping several important scientific algorithms onto the Cells unique architecture. Additionally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  8. A sampler of useful computational tools for applied geometry, computer graphics, and image processing foundations for computer graphics, vision, and image processing

    CERN Document Server

    Cohen-Or, Daniel; Ju, Tao; Mitra, Niloy J; Shamir, Ariel; Sorkine-Hornung, Olga; Zhang, Hao (Richard)

    2015-01-01

    A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing shows how to use a collection of mathematical techniques to solve important problems in applied mathematics and computer science areas. The book discusses fundamental tools in analytical geometry and linear algebra. It covers a wide range of topics, from matrix decomposition to curvature analysis and principal component analysis to dimensionality reduction.Written by a team of highly respected professors, the book can be used in a one-semester, intermediate-level course in computer science. It

  9. Spatial and Semantic Processing between Audition and Vision: An Event-Related Potential Study

    Directory of Open Access Journals (Sweden)

    Xiaoxi Chen

    2011-10-01

    Full Text Available Using a crossmodal priming paradigm, this study investigated how the brain bound the spatial and semantic features in multisensory processing. The visual stimuli (pictures of animals were presented after the auditory stimuli (sounds of animals, and the stimuli from different modalities may match spatially (or semantically or not. Participants were required to detect the head orientation of the visual target (an oddball paradigm. The event-related potentials (ERPs to the visual stimuli was enhanced by spatial attention (150–170 ms irrespectively of semantic information. The early crossmodal attention effect for the visual stimuli was more negative in the spatial-congruent condition than in the spatial-incongruent condition. By contrast, the later effects of spatial ERPs were significant only for the semantic- congruent condition (250–300 ms. These findings indicated that spatial attention modulated early visual processing, and semantic and spatial features were simultaneously used to orient attention and modulate later processing stages.

  10. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    Science.gov (United States)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  11. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    Science.gov (United States)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for

  12. Applications of potential theory computations to transonic aeroelasticity

    Science.gov (United States)

    Edwards, J. W.

    1986-01-01

    Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.

  13. Effect of oculomotor vision rehabilitation on the visual-evoked potential and visual attention in mild traumatic brain injury.

    Science.gov (United States)

    Yadav, Naveen K; Thiagarajan, Preethi; Ciuffreda, Kenneth J

    2014-01-01

    The purpose of the experiment was to investigate the effect of oculomotor vision rehabilitation (OVR) on the visual-evoked potential (VEP) and visual attention in the mTBI population. Subjects (n = 7) were adults with a history of mild traumatic brain injury (mTBI). Each received 9 hours of OVR over a 6-week period. The effects of OVR on VEP amplitude and latency, the attention-related alpha band (8-13 Hz) power (µV(2)) and the clinical Visual Search and Attention Test (VSAT) were assessed before and after the OVR. After the OVR, the VEP amplitude increased and its variability decreased. There was no change in VEP latency, which was normal. Alpha band power increased, as did the VSAT score, following the OVR. The significant changes in most test parameters suggest that OVR affects the visual system at early visuo-cortical levels, as well as other pathways which are involved in visual attention.

  14. Imaging and Computer Vision

    NARCIS (Netherlands)

    Regtien, Paulus P.L.; van der Heijden, Ferdinand

    2005-01-01

    The project COMET provides a multimedia training package for metrology and measurement. The package is developed by a consortium of 10 institutes from 7 European countries. It consists of 31 modules, each dealing with a particular aspect of metrology, and is available in English, German, French and

  15. From geospatial observations of ocean currents to causal predictors of spatio-economic activity using computer vision and machine learning

    Science.gov (United States)

    Popescu, Florin; Ayache, Stephane; Escalera, Sergio; Baró Solé, Xavier; Capponi, Cecile; Panciatici, Patrick; Guyon, Isabelle

    2016-04-01

    The big data transformation currently revolutionizing science and industry forges novel possibilities in multi-modal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost - a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques. This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image. We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized representation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC's H2020-sponsored 'See.4C' project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology

  16. Heuristic lipophilicity potential for computer-aided rational drug design

    Science.gov (United States)

    Du, Qishi; Arteca, Gustavo A.; Mezey, Paul G.

    1997-09-01

    In this contribution we suggest a heuristic molecular lipophilicitypotential (HMLP), which is a structure-based technique requiring noempirical indices of atomic lipophilicity. The input data used in thisapproach are molecular geometries and molecular surfaces. The HMLP is amodified electrostatic potential, combined with the averaged influences fromthe molecular environment. Quantum mechanics is used to calculate theelectron density function ρ(r) and the electrostatic potential V(r), andfrom this information a lipophilicity potential L(r) is generated. The HMLPis a unified lipophilicity and hydrophilicity potential. The interactions ofdipole and multipole moments, hydrogen bonds, and charged atoms in amolecule are included in the hydrophilic interactions in this model. TheHMLP is used to study hydrogen bonds and water-octanol partitioncoefficients in several examples. The calculated results show that the HMLPgives qualitatively and quantitatively correct, as well as chemicallyreasonable, results in cases where comparisons are available. Thesecomparisons indicate that the HMLP has advantages over the empiricallipophilicity potential in many aspects. The HMLP is a three-dimensional andeasily visualizable representation of molecular lipophilicity, suggested asa potential tool in computer-aided three-dimensional drug design.

  17. Potentialities of computed tomography and ultrasonography in colonic cancer

    International Nuclear Information System (INIS)

    Gorshkov, A.N.

    2001-01-01

    Data of examination of 59 patients with colonic cancer were used to consider the potentialities of transabdominal, transrectal ultrasonography and X-ay compound tomography and to assess their value in diagnosing colonic cancer, including its minor forms. Ultrasound and computed tomographic semiotics of colonic cancer and determines a place of the above techniques in the algorithm of radiation and instrumental studies are described. Inclusion of these techniques into the diagnostic algorithm may solve a range of differentially diagnostic problems and allows a preliminary analysis to be made in a tumor lesion according to the International TNM classification. Ultrasonography and X-ray computed tomography should be included into a range of basic methods for diagnosis of colonic cancer [ru

  18. Functional limitations as potential mediators of the effects of self-reported vision status on fall risk of older adults.

    Science.gov (United States)

    Steinman, Bernard A; Allen, Susan M; Chen, Jie; Pynoos, Jon

    2015-02-01

    To test whether limitations in mobility and large-muscle functioning mediate self-reported vision status to increase fall risk among respondents age 65 and above. This study used two waves from the Health and Retirement Study. We conducted binary logistic and negative binomial regression analyses to test indirect paths leading from self-reported vision status to falls, via indices of mobility and large-muscle functioning. Limited evidence was found for a mediating effect among women; however, large-muscle groups were implicated as partially mediating risk factors for falls among men with fair self-reported vision status. Implications of these findings are discussed including the need for prioritizing improved muscle strength of older men and women with poor vision as a preventive measure against falls. © The Author(s) 2014.

  19. 2020 Vision Project Summary

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, K.W.; Scott, K.P.

    2000-11-01

    Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

  20. A computer model for DNAPL potential migration study

    International Nuclear Information System (INIS)

    Yan, S.; Landry, G.R.; Tate, T.

    1994-01-01

    A computer model, named DNAPMIG (DNAPL Potential Migration), was developed to calculate the dense nonaqueous phase liquid (DNAPL) critical length required to initiate movement and direction of potential migration at locations within an area of interest. The model takes into consideration the potentiometric gradient, bottom structure elevation, DNAPL density, interfacial tension, contact angle, soil grain size, partitioning coefficient, effective solubility, and water saturation. The model is interfaced with SURFER graphics software to use vectors to indicate the DNAPL critical length and the potential migration direction. The potential for DNAPL existence and migration at a specific site can be estimated by relating chemical concentration in the ground water to its solubility limit and the DNAPL critical length. The possibility of vertical migration can also be determined. This model can be used to determine and compare the effectiveness of existing or alternative recovery well systems to capture a DNAPL plume or arrest its movement; to help determine optimum locations and pumping rates of recovery wells; and to help determine the optimum location of environmental borings to locate DNAPL. This paper presents two hypothetical examples and two site applications in south Louisiana

  1. Image analysis with the computer vision system and the consumer test in evaluating the appearance of Lucanian dry sausage.

    Science.gov (United States)

    Girolami, Antonio; Napolitano, Fabio; Faraone, Daniela; Di Bello, Gerardo; Braghieri, Ada

    2014-01-01

    The object of the investigation was the Lucanian dry sausage appearance, meant as color and visible fat ratio. The study was carried out on dry sausages produced in 10 different salami factories and seasoned for 18 days on average. We studied the effect of the raw material origin (5 producers used meat bought from the market and other 5 producers used meat from pigs bred in their farms) and of the salami factories or brands on meat color, fat color and visible fat ratio in dry sausages. The sausages slices were photographed and the images were analysed with the computer vision system to measure the changes in the colorimetric characteristics L*, a*, b*, hue and chroma and in the visible fat area ratio. The last parameter was assessed on the slice surface using image binarization. A consumer test was conducted to determine the relationship between the perception of visible fat on the sausage slice surface and acceptability and preference of this product. The consumers were asked to look carefully at the 6 sausages slices in a photo, minding the presence of fat, and to identify (a) the slices they considered unacceptable for consumption and (b) the slice they preferred. The results show that the color of the sausage lean part varies in relation to the raw material employed and to the producer or brand (P<0.001). Besides, the sausage meat color is not uniform in some salami factories (P<0.05-0.001). In all salami factories the sausages show a high uniformity in fat color. The visible fat ratio of the sausages slices is higher (P<0.001) in the product from salami factories without pig-breeding farm. The fat percentage is highly variable (P<0.001) among the sausages of each salami factory. On the whole, the product the consumers consider acceptable and is inclined to eat has a low fat percentage (P<0.001). Our consumers (about 70%) prefer slices which are leaner (P<0.001). Women, in particular, show a higher preference for the leanest (P<0.001). © 2013.

  2. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    Science.gov (United States)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  3. Light transmission through intraocular lenses with or without yellow chromophore (blue light filter) and its potential influence on functional vision in everyday environmental conditions.

    Science.gov (United States)

    Owczarek, Grzegorz; Gralewicz, Grzegorz; Skuza, Natalia; Jurowski, Piotr

    2016-01-01

    In this research the factors used to evaluate the light transmission through two types of acrylic hydrophobic intraocular lenses, one that contained yellow chromophore that blocks blue light transmission and the other which did not contain that filter, were defined according to various light condition, e.g., daylight and at night. The potential influence of light transmission trough intraocular lenses with or without yellow chromophore on functional vision in everyday environmental conditions was analysed.

  4. [Computational medical imaging (radiomics) and potential for immuno-oncology].

    Science.gov (United States)

    Sun, R; Limkin, E J; Dercle, L; Reuzé, S; Zacharaki, E I; Chargari, C; Schernberg, A; Dirand, A S; Alexis, A; Paragios, N; Deutsch, É; Ferté, C; Robert, C

    2017-10-01

    The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  5. Phenomenological optical potentials and optical model computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)

  6. Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification.

    Science.gov (United States)

    Unger, Jakob; Merhof, Dorit; Renner, Susanne

    2016-11-16

    Global Plants, a collaborative between JSTOR and some 300 herbaria, now contains about 2.48 million high-resolution images of plant specimens, a number that continues to grow, and collections that are digitizing their specimens at high resolution are allocating considerable recourses to the maintenance of computer hardware (e.g., servers) and to acquiring digital storage space. We here apply machine learning, specifically the training of a Support-Vector-Machine, to classify specimen images into categories, ideally at the species level, using the 26 most common tree species in Germany as a test case. We designed an analysis pipeline and classification system consisting of segmentation, normalization, feature extraction, and classification steps and evaluated the system in two test sets, one with 26 species, the other with 17, in each case using 10 images per species of plants collected between 1820 and 1995, which simulates the empirical situation that most named species are represented in herbaria and databases, such as JSTOR, by few specimens. We achieved 73.21% accuracy of species assignments in the larger test set, and 84.88% in the smaller test set. The results of this first application of a computer vision algorithm trained on images of herbarium specimens shows that despite the problem of overlapping leaves, leaf-architectural features can be used to categorize specimens to species with good accuracy. Computer vision is poised to play a significant role in future rapid identification at least for frequently collected genera or species in the European flora.

  7. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.

    Science.gov (United States)

    Perry, George H; Martin, Robert D; Verrelli, Brian C

    2007-09-01

    While color vision perception is thought to be adaptively correlated with foraging efficiency for diurnal mammals, those that forage exclusively at night may not need color vision nor have the capacity for it. Indeed, although the basic condition for mammals is dichromacy, diverse nocturnal mammals have only monochromatic vision, resulting from functional loss of the short-wavelength sensitive opsin gene. However, many nocturnal primates maintain intact two opsin genes and thus have dichromatic capacity. The evolutionary significance of this surprising observation has not yet been elucidated. We used a molecular population genetics approach to test evolutionary hypotheses for the two intact opsin genes of the fully nocturnal aye-aye (Daubentonia madagascariensis), a highly unusual and endangered Madagascar primate. No evidence of gene degradation in either opsin gene was observed for any of 8 aye-aye individuals examined. Furthermore, levels of nucleotide diversity for opsin gene functional sites were lower than those for 15 neutrally evolving intergenic regions (>25 kb in total), which is consistent with a history of purifying selection on aye-aye opsin genes. The most likely explanation for these findings is that dichromacy is advantageous for aye-ayes despite their nocturnal activity pattern. We speculate that dichromatic nocturnal primates may be able to perceive color while foraging under moonlight conditions, and suggest that behavioral and ecological comparisons among dichromatic and monochromatic nocturnal primates will help to elucidate the specific activities for which color vision perception is advantageous.

  8. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  9. Edward Rhodes Stitt Award Lecture. Will a computer (with artificial vision) replace the surgical pathologist (or other health professionals)?

    Science.gov (United States)

    Heffner, D K

    1994-04-01

    Many jobs require vision for most of the tasks performed and the discussion focuses on the nature of human visual perception. Arguments are given to support the claim that visual perception is a very complicated function of the brain. To attempt to answer whether or not artificial intelligence (AI) will ever be able to essentially do what the brain does, the history and current state of AI research is examined, with special attention to neural net research.

  10. The software for automatic creation of the formal grammars used by speech recognition, computer vision, editable text conversion systems, and some new functions

    Science.gov (United States)

    Kardava, Irakli; Tadyszak, Krzysztof; Gulua, Nana; Jurga, Stefan

    2017-02-01

    For more flexibility of environmental perception by artificial intelligence it is needed to exist the supporting software modules, which will be able to automate the creation of specific language syntax and to make a further analysis for relevant decisions based on semantic functions. According of our proposed approach, of which implementation it is possible to create the couples of formal rules of given sentences (in case of natural languages) or statements (in case of special languages) by helping of computer vision, speech recognition or editable text conversion system for further automatic improvement. In other words, we have developed an approach, by which it can be achieved to significantly improve the training process automation of artificial intelligence, which as a result will give us a higher level of self-developing skills independently from us (from users). At the base of our approach we have developed a software demo version, which includes the algorithm and software code for the entire above mentioned component's implementation (computer vision, speech recognition and editable text conversion system). The program has the ability to work in a multi - stream mode and simultaneously create a syntax based on receiving information from several sources.

  11. Living with vision loss

    Science.gov (United States)

    Diabetes - vision loss; Retinopathy - vision loss; Low vision; Blindness - vision loss ... of visual aids. Some options include: Magnifiers High power reading glasses Devices that make it easier to ...

  12. Computer Vision Evidence Supporting Craniometric Alignment of Rat Brain Atlases to Streamline Expert-Guided, First-Order Migration of Hypothalamic Spatial Datasets Related to Behavioral Control

    Science.gov (United States)

    Khan, Arshad M.; Perez, Jose G.; Wells, Claire E.; Fuentes, Olac

    2018-01-01

    The rat has arguably the most widely studied brain among all animals, with numerous reference atlases for rat brain having been published since 1946. For example, many neuroscientists have used the atlases of Paxinos and Watson (PW, first published in 1982) or Swanson (S, first published in 1992) as guides to probe or map specific rat brain structures and their connections. Despite nearly three decades of contemporaneous publication, no independent attempt has been made to establish a basic framework that allows data mapped in PW to be placed in register with S, or vice versa. Such data migration would allow scientists to accurately contextualize neuroanatomical data mapped exclusively in only one atlas with data mapped in the other. Here, we provide a tool that allows levels from any of the seven published editions of atlases comprising three distinct PW reference spaces to be aligned to atlas levels from any of the four published editions representing S reference space. This alignment is based on registration of the anteroposterior stereotaxic coordinate (z) measured from the skull landmark, Bregma (β). Atlas level alignments performed along the z axis using one-dimensional Cleveland dot plots were in general agreement with alignments obtained independently using a custom-made computer vision application that utilized the scale-invariant feature transform (SIFT) and Random Sample Consensus (RANSAC) operation to compare regions of interest in photomicrographs of Nissl-stained tissue sections from the PW and S reference spaces. We show that z-aligned point source data (unpublished hypothalamic microinjection sites) can be migrated from PW to S space to a first-order approximation in the mediolateral and dorsoventral dimensions using anisotropic scaling of the vector-formatted atlas templates, together with expert-guided relocation of obvious outliers in the migrated datasets. The migrated data can be contextualized with other datasets mapped in S space, including

  13. Computer Vision Evidence Supporting Craniometric Alignment of Rat Brain Atlases to Streamline Expert-Guided, First-Order Migration of Hypothalamic Spatial Datasets Related to Behavioral Control

    Directory of Open Access Journals (Sweden)

    Arshad M. Khan

    2018-05-01

    Full Text Available The rat has arguably the most widely studied brain among all animals, with numerous reference atlases for rat brain having been published since 1946. For example, many neuroscientists have used the atlases of Paxinos and Watson (PW, first published in 1982 or Swanson (S, first published in 1992 as guides to probe or map specific rat brain structures and their connections. Despite nearly three decades of contemporaneous publication, no independent attempt has been made to establish a basic framework that allows data mapped in PW to be placed in register with S, or vice versa. Such data migration would allow scientists to accurately contextualize neuroanatomical data mapped exclusively in only one atlas with data mapped in the other. Here, we provide a tool that allows levels from any of the seven published editions of atlases comprising three distinct PW reference spaces to be aligned to atlas levels from any of the four published editions representing S reference space. This alignment is based on registration of the anteroposterior stereotaxic coordinate (z measured from the skull landmark, Bregma (β. Atlas level alignments performed along the z axis using one-dimensional Cleveland dot plots were in general agreement with alignments obtained independently using a custom-made computer vision application that utilized the scale-invariant feature transform (SIFT and Random Sample Consensus (RANSAC operation to compare regions of interest in photomicrographs of Nissl-stained tissue sections from the PW and S reference spaces. We show that z-aligned point source data (unpublished hypothalamic microinjection sites can be migrated from PW to S space to a first-order approximation in the mediolateral and dorsoventral dimensions using anisotropic scaling of the vector-formatted atlas templates, together with expert-guided relocation of obvious outliers in the migrated datasets. The migrated data can be contextualized with other datasets mapped in S

  14. From Deposit to Point Cloud – a Study of Low-Cost Computer Vision Approaches for the Straightforward Documentation of Archaeological Excavations

    Directory of Open Access Journals (Sweden)

    M. Doneus

    2011-12-01

    Full Text Available Stratigraphic archaeological excavations demand high-resolution documentation techniques for 3D recording. Today, this is typically accomplished using total stations or terrestrial laser scanners. This paper demonstrates the potential of another technique that is low-cost and easy to execute. It takes advantage of software using Structure from Motion (SfM algorithms, which are known for their ability to reconstruct camera pose and threedimensional scene geometry (rendered as a sparse point cloud from a series of overlapping photographs captured by a camera moving around the scene. When complemented by stereo matching algorithms, detailed 3D surface models can be built from such relatively oriented photo collections in a fully automated way. The absolute orientation of the model can be derived by the manual measurement of control points. The approach is extremely flexible and appropriate to deal with a wide variety of imagery, because this computer vision approach can also work with imagery resulting from a randomly moving camera (i.e. uncontrolled conditions and calibrated optics are not a prerequisite. For a few years, these algorithms are embedded in several free and low-cost software packages. This paper will outline how such a program can be applied to map archaeological excavations in a very fast and uncomplicated way, using imagery shot with a standard compact digital camera (even if the ima ges were not taken for this purpose. Archived data from previous excavations of VIAS-University of Vienna has been chosen and the derived digital surface models and orthophotos have been examined for their usefulness for archaeological applications. The a bsolute georeferencing of the resulting surface models was performed with the manual identification of fourteen control points. In order to express the positional accuracy of the generated 3D surface models, the NSSDA guidelines were applied.  Simultaneously acquired terrestrial laser scanning data

  15. Profile of Low Vision Population Attending Low Vision Clinic in a Peripheral Eye Hospital in Nepal

    OpenAIRE

    Safal Khanal, BOptom; Pekila Lama, MD

    2013-01-01

    Background: Blindness and low vision are major causes of morbidity and constitute a significant public health problem, both detrimental to the quality of life for the individual and an economic burden on the individual, family, and society in general. People with low vision have the potential for enhancement of functional vision if they receive the appropriate low vision services. The present study aims to determine the profile of the low vision population attending a low vision clinic at a p...

  16. The Potential for Computer Based Systems in Modular Engineering

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1998-01-01

    The paper elaborates on knowledge management and the possibility for computer support of the design process of pharmaceutical production plants in relation to the ph.d. project modular engineering.......The paper elaborates on knowledge management and the possibility for computer support of the design process of pharmaceutical production plants in relation to the ph.d. project modular engineering....

  17. Exploring New Potentials in Preventing Unhealthy Computer Habits

    DEFF Research Database (Denmark)

    Sonne, Tobias; Grønbæk, Kaj

    2013-01-01

    Each day millions of computer users experience pains due to unhealthy computer habits. Research in this field mainly focuses on encouraging users to take breaks and correct their posture. This paper shows that unhealthy computer habits calls for new sensing solutions. Based on a design process...... including experts in the field of computer-related injuries, The Habit-Aware Mouse prototype was developed. It provides high-accuracy sensing of whether a user's fingers are hovering above the mouse. This kind of hovering is known to cause pains in the forearm. The integration of trans-parent sensing...... in existing products enables medical researchers to gain new insights on unhealthy habits. The Habit-Aware Mouse is a diagnostic sensing tool to get detailed knowledge about the user's unhealthy computer habits. Sensing is the first step to enable feedback, preventing injuries from finger hovering....

  18. Future of computing technology in physics - the potentials and pitfalls

    International Nuclear Information System (INIS)

    Brenner, A.E.

    1984-02-01

    The impact of the developments of modern digital computers is discussed, especially with respect to physics research in the future. The effects of large data processing capability and increasing rates at which data can be acquired and processed are considered

  19. Motion Control with Vision

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots

    2001-01-01

    This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with

  20. The potential benefits of photonics in the computing platform

    Science.gov (United States)

    Bautista, Jerry

    2005-03-01

    The increase in computational requirements for real-time image processing, complex computational fluid dynamics, very large scale data mining in the health industry/Internet, and predictive models for financial markets are driving computer architects to consider new paradigms that rely upon very high speed interconnects within and between computing elements. Further challenges result from reduced power requirements, reduced transmission latency, and greater interconnect density. Optical interconnects may solve many of these problems with the added benefit extended reach. In addition, photonic interconnects provide relative EMI immunity which is becoming an increasing issue with a greater dependence on wireless connectivity. However, to be truly functional, the optical interconnect mesh should be able to support arbitration, addressing, etc. completely in the optical domain with a BER that is more stringent than "traditional" communication requirements. Outlined are challenges in the advanced computing environment, some possible optical architectures and relevant platform technologies, as well roughly sizing these opportunities which are quite large relative to the more "traditional" optical markets.

  1. Vision-based human motion analysis: An overview

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    2007-01-01

    Markerless vision-based human motion analysis has the potential to provide an inexpensive, non-obtrusive solution for the estimation of body poses. The significant research effort in this domain has been motivated by the fact that many application areas, including surveillance, Human-Computer

  2. Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    OpenAIRE

    Buyya, Rajkumar; Beloglazov, Anton; Abawajy, Jemal

    2010-01-01

    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational cos...

  3. Algorithmic strategies for FPGA-based vision

    OpenAIRE

    Lim, Yoong Kang

    2016-01-01

    As demands for real-time computer vision applications increase, implementations on alternative architectures have been explored. These architectures include Field-Programmable Gate Arrays (FPGAs), which offer a high degree of flexibility and parallelism. A problem with this is that many computer vision algorithms have been optimized for serial processing, and this often does not map well to FPGA implementation. This thesis introduces the concept of FPGA-tailored computer vision algorithms...

  4. Future of computing technology in physics - the potentials and pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, A.E.

    1984-02-01

    The impact of the developments of modern digital computers is discussed, especially with respect to physics research in the future. The effects of large data processing capability and increasing rates at which data can be acquired and processed are considered. (GHT)

  5. Development of Moire machine vision

    Science.gov (United States)

    Harding, Kevin G.

    1987-10-01

    Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.

  6. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges

    Directory of Open Access Journals (Sweden)

    Jaebeom Lee

    2018-05-01

    Full Text Available Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance.

  7. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges.

    Science.gov (United States)

    Lee, Jaebeom; Lee, Kyoung-Chan; Lee, Young-Joo

    2018-05-09

    Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance.

  8. Image segmentation for enhancing symbol recognition in prosthetic vision.

    Science.gov (United States)

    Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming

    2012-01-01

    Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.

  9. Embedded active vision system based on an FPGA architecture

    OpenAIRE

    Chalimbaud , Pierre; Berry , François

    2006-01-01

    International audience; In computer vision and more particularly in vision processing, the impressive evolution of algorithms and the emergence of new techniques dramatically increase algorithm complexity. In this paper, a novel FPGA-based architecture dedicated to active vision (and more precisely early vision) is proposed. Active vision appears as an alternative approach to deal with artificial vision problems. The central idea is to take into account the perceptual aspects of visual tasks,...

  10. Computational design of disulfide cyclic peptide as potential ...

    African Journals Online (AJOL)

    ... the discovery of various target proteins and potential inhibitor to be developed as drugs. Several researches by molecular docking method have been conducted to ... serine protease NS2B and NS3, molecular docking, molecular dynamics.

  11. Computer-aided discovery of antimicrobial agents as potential enoyl ...

    African Journals Online (AJOL)

    potential enoyl acyl carrier protein reductase inhibitors. Mohammad A ... shaped conformation of the fatty acyl substrate is guided by ... surface area (PSA) ≤ 140 and rotatable bonds ≤. 10. ... hydrogen bonding, electrostatic and hydrophobic.

  12. Exsanguination of turbot and the effect on fillet quality measured mechanically by sensory evaluation, and with computer vision

    NARCIS (Netherlands)

    Roth, B.; Schelvis-Smit, A.A.M.; Stien, L.H.; Foss, A.; Nortvedt, R.; Imsland, A.

    2007-01-01

    In order to investigate the impact of blood residues on the end quality of exsanguinated and unbled farmed turbot (Scophthalmus maximus), meat quality was evaluated using mechanical, sensory, and computer imaging techniques. The results show that exsanguination is important for improving the visual

  13. Computer-assisted sperm analysis (CASA): capabilities and potential developments.

    Science.gov (United States)

    Amann, Rupert P; Waberski, Dagmar

    2014-01-01

    Computer-assisted sperm analysis (CASA) systems have evolved over approximately 40 years, through advances in devices to capture the image from a microscope, huge increases in computational power concurrent with amazing reduction in size of computers, new computer languages, and updated/expanded software algorithms. Remarkably, basic concepts for identifying sperm and their motion patterns are little changed. Older and slower systems remain in use. Most major spermatology laboratories and semen processing facilities have a CASA system, but the extent of reliance thereon ranges widely. This review describes capabilities and limitations of present CASA technology used with boar, bull, and stallion sperm, followed by possible future developments. Each marketed system is different. Modern CASA systems can automatically view multiple fields in a shallow specimen chamber to capture strobe-like images of 500 to >2000 sperm, at 50 or 60 frames per second, in clear or complex extenders, and in information for ≥ 30 frames and provide summary data for each spermatozoon and the population. A few systems evaluate sperm morphology concurrent with motion. CASA cannot accurately predict 'fertility' that will be obtained with a semen sample or subject. However, when carefully validated, current CASA systems provide information important for quality assurance of semen planned for marketing, and for the understanding of the diversity of sperm responses to changes in the microenvironment in research. The four take-home messages from this review are: (1) animal species, extender or medium, specimen chamber, intensity of illumination, imaging hardware and software, instrument settings, technician, etc., all affect accuracy and precision of output values; (2) semen production facilities probably do not need a substantially different CASA system whereas biology laboratories would benefit from systems capable of imaging and tracking sperm in deep chambers for a flexible period of time

  14. Potential marketing plan for Sony Computer Entertainment, Inc. to China

    OpenAIRE

    Li, Weishen

    2013-01-01

    The purpose of this thesis was to create a marketing plan for Sony Computer Enter-tainment, Inc. (SCE) for its market entry in mainland China. SCE is a major Japanese video game company which develops and manufactures video game consoles and game software on a global scale. SCE belongs to Sony Cooperation. Sony operates almost its every single business in China except the video game business due to the internal factors of China. Along with the great increase of Chinese people’s purchas-ing po...

  15. Non-destructive analysis of sensory traits of dry-cured loins by MRI-computer vision techniques and data mining.

    Science.gov (United States)

    Caballero, Daniel; Antequera, Teresa; Caro, Andrés; Ávila, María Del Mar; G Rodríguez, Pablo; Perez-Palacios, Trinidad

    2017-07-01

    Magnetic resonance imaging (MRI) combined with computer vision techniques have been proposed as an alternative or complementary technique to determine the quality parameters of food in a non-destructive way. The aim of this work was to analyze the sensory attributes of dry-cured loins using this technique. For that, different MRI acquisition sequences (spin echo, gradient echo and turbo 3D), algorithms for MRI analysis (GLCM, NGLDM, GLRLM and GLCM-NGLDM-GLRLM) and predictive data mining techniques (multiple linear regression and isotonic regression) were tested. The correlation coefficient (R) and mean absolute error (MAE) were used to validate the prediction results. The combination of spin echo, GLCM and isotonic regression produced the most accurate results. In addition, the MRI data from dry-cured loins seems to be more suitable than the data from fresh loins. The application of predictive data mining techniques on computational texture features from the MRI data of loins enables the determination of the sensory traits of dry-cured loins in a non-destructive way. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Industrial vision

    DEFF Research Database (Denmark)

    Knudsen, Ole

    1998-01-01

    This dissertation is concerned with the introduction of vision-based application s in the ship building industry. The industrial research project is divided into a natural seq uence of developments, from basic theoretical projective image generation via CAD and subpixel analysis to a description...... is present ed, and the variability of the parameters is examined and described. The concept of using CAD together with vision information is based on the fact that all items processed at OSS have an associated complete 3D CAD model that is accessible at all production states. This concept gives numerous...... possibilities for using vision in applications which otherwise would be very difficult to automate. The requirement for low tolerances in production is, despite the huge dimensions of the items involved, extreme. This fact makes great demands on the ability to do robust sub pixel estimation. A new method based...

  17. Integrated Computational Solution for Predicting Skin Sensitization Potential of Molecules.

    Directory of Open Access Journals (Sweden)

    Konda Leela Sarath Kumar

    Full Text Available Skin sensitization forms a major toxicological endpoint for dermatology and cosmetic products. Recent ban on animal testing for cosmetics demands for alternative methods. We developed an integrated computational solution (SkinSense that offers a robust solution and addresses the limitations of existing computational tools i.e. high false positive rate and/or limited coverage.The key components of our solution include: QSAR models selected from a combinatorial set, similarity information and literature-derived sub-structure patterns of known skin protein reactive groups. Its prediction performance on a challenge set of molecules showed accuracy = 75.32%, CCR = 74.36%, sensitivity = 70.00% and specificity = 78.72%, which is better than several existing tools including VEGA (accuracy = 45.00% and CCR = 54.17% with 'High' reliability scoring, DEREK (accuracy = 72.73% and CCR = 71.44% and TOPKAT (accuracy = 60.00% and CCR = 61.67%. Although, TIMES-SS showed higher predictive power (accuracy = 90.00% and CCR = 92.86%, the coverage was very low (only 10 out of 77 molecules were predicted reliably.Owing to improved prediction performance and coverage, our solution can serve as a useful expert system towards Integrated Approaches to Testing and Assessment for skin sensitization. It would be invaluable to cosmetic/ dermatology industry for pre-screening their molecules, and reducing time, cost and animal testing.

  18. Massive calculations of electrostatic potentials and structure maps of biopolymers in a distributed computing environment

    International Nuclear Information System (INIS)

    Akishina, T.P.; Ivanov, V.V.; Stepanenko, V.A.

    2013-01-01

    Among the key factors determining the processes of transcription and translation are the distributions of the electrostatic potentials of DNA, RNA and proteins. Calculations of electrostatic distributions and structure maps of biopolymers on computers are time consuming and require large computational resources. We developed the procedures for organization of massive calculations of electrostatic potentials and structure maps for biopolymers in a distributed computing environment (several thousands of cores).

  19. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  20. Agrarian Visions.

    Science.gov (United States)

    Theobald, Paul

    A new feature in "Country Teacher,""Agrarian Visions" reminds rural teachers that they can do something about rural decline. Like to populism of the 1890s, the "new populism" advocates rural living. Current attempts to address rural decline are contrary to agrarianism because: (1) telecommunications experts seek to…

  1. Fractured Visions

    DEFF Research Database (Denmark)

    Bonde, Inger Ellekilde

    2016-01-01

    In the post-war period a heterogeneous group of photographers articulate a new photographic approach to the city as motive in a photographic language that combines intense formalism with subjective vision. This paper analyses the photobook Fragments of a City published in 1960 by Danish photograp...

  2. Embodied Visions

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    Embodied Visions presents a groundbreaking analysis of film through the lens of bioculturalism, revealing how human biology as well as human culture determine how films are made and experienced. Throughout the book the author uses the breakthroughs of modern brain science to explain general featu...

  3. Vision Screening

    Science.gov (United States)

    ... an efficient and cost-effective method to identify children with visual impairment or eye conditions that are likely to lead ... main goal of vision screening is to identify children who have or are at ... visual impairment unless treated in early childhood. Other problems that ...

  4. Síndrome de visión de la computadora en estudiantes preuniversitarios Computer vision syndrome observed in high school students

    Directory of Open Access Journals (Sweden)

    María Emilia Fernández González

    2010-01-01

    Full Text Available OBJETIVO: Describir el comportamiento clínico-epidemiológico del síndrome de visión de la computadora en estudiantes de décimo grado del preuniversitario "Rafael María de Mendive" desde septiembre del 2007 a junio del 2008. MÉTODOS: Se realizó un estudio descriptivo y transversal. El universo estuvo constituido por todos los alumnos del grado con manifestaciones clínicas relacionadas con el uso de la computadora (183 pacientes y la muestra fue de 45, tomada mediante un muestreo aleatorio simple (1 de cada 4. Se tuvo en cuenta las siguientes variables: grupos de edad, sexo, manifestaciones clínicas, uso de cristales, tiempo de trabajo con la computadora, intervalo de reposo visual por hora de trabajo y evolución visual después de 3 meses del tratamiento. RESULTADOS: Predominó el sexo femenino (68,9 % con una edad media de 16,5 y los síntomas relevantes fueron la cefalea (82,2 % y fatiga ocular (75,5 %. Los pacientes que usaban cristales y que el tiempo de trabajo con el ordenador fue superior a 4 horas originó los síntomas visuales antes mencionado; así como la miopía dentro de las ametropías (70 % y los descansos visuales de 15-20 minutos mejoraron el complejo de síntomas (51,2 %. CONCLUSIONES: El síndrome de visión de la computadora constituye un problema de salud en este centro educacional, por lo que es importante realizar siempre un diagnóstico precoz debido a los efectos negativos que trae consigo en el adolescente, la escuela y la familia.OBJECTIVE: To characterize the clinical and epidemiological behavior of the computer vision syndrome in 10th grade students from «Rafael María de Mendive» high school in the period of September 2007 to June 2008 METHODS: A cross-sectional and descriptive study was conducted in which the universe of study was made up of all students of this educational level, who presented with clinical features derived from the computer use (183 patients.The final sample comprised 45 students

  5. Sensory quality evaluation for appearance of needle-shaped green tea based on computer vision and nonlinear tools.

    Science.gov (United States)

    Dong, Chun-Wang; Zhu, Hong-Kai; Zhao, Jie-Wen; Jiang, Yong-Wen; Yuan, Hai-Bo; Chen, Quan-Sheng

    2017-06-01

    Tea is one of the three greatest beverages in the world. In China, green tea has the largest consumption, and needle-shaped green tea, such as Maofeng tea and Sparrow Tongue tea, accounts for more than 40% of green tea (Zhu et al., 2017). The appearance of green tea is one of the important indexes during the evaluation of green tea quality. Especially in market transactions, the price of tea is usually determined by its appearance (Zhou et al., 2012). Human sensory evaluation is usually conducted by experts, and is also easily affected by various factors such as light, experience, psychological and visual factors. In the meantime, people may distinguish the slight differences between similar colors or textures, but the specific levels of the tea are hard to determine (Chen et al., 2008). As human description of color and texture is qualitative, it is hard to evaluate the sensory quality accurately, in a standard manner, and objectively. Color is an important visual property of a computer image (Xie et al., 2014; Khulal et al., 2016); texture is a visual performance of image grayscale and color changing with spatial positions, which can be used to describe the roughness and directivity of the surface of an object (Sanaeifar et al., 2016). There are already researchers who have used computer visual image technologies to identify the varieties, levels, and origins of tea (Chen et al., 2008; Xie et al., 2014; Zhu et al., 2017). Most of their research targets are crush, tear, and curl (CTC) red (green) broken tea, curly green tea (Bilochun tea), and flat-typed green tea (West Lake Dragon-well green tea) as the information sources. However, the target of the above research is to establish a qualitative evaluation method on tea quality (Fu et al., 2013). There is little literature on the sensory evaluation of the appearance quality of needle-shaped green tea, especially research on a quantitative evaluation model (Zhou et al., 2012; Zhu et al., 2017).

  6. Computational drug designing of fungal pigments as potential aromatase inhibitors

    Directory of Open Access Journals (Sweden)

    Nighat Fatima

    2014-12-01

    Full Text Available The existing aromatase inhibitors produced unwelcome effects impose the discovery of novel drugs with privileged selectivity, a reduced amount of toxicity and humanizing potency. In this study, we illuminate the binding mode of polyketide azaphilanoid pigments monascin, ankaflavin, monascorubrin and monascorubramine isolated from Monascus fungus to the aromatase by molecular docking. The 3-dimensional structure of aromatase enzyme (PDB: 4KQ8 was obtained from the Protein Data Bank. PatchDock docking software was used to analyze structural complexes of the aromatase with monascus pigments. Comparatively, the AutoGrid model presented the most briskly constructive binding mode of monascin to aromatase. Docked energies in kcal/mol are: monascin;-13.2; monascorubramine:-12.8, monascorubrin:-12.3; ankaflavin: -10.5. These outcomes exposed these ligands could be potential drugs to treat hormone dependent breast cancer.

  7. Computational elucidation of potential antigenic CTL epitopes in Ebola virus.

    Science.gov (United States)

    Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep

    2015-12-01

    Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A Vision for the future

    OpenAIRE

    Moloney, David; Deniz, Oscar

    2015-01-01

    For the past 40 years, computer scientists and engineers have been building technology that has allowed machine vision to be used in high value applications from factory automation to Mars rovers. However, until now the availability of computational power has limited the application of these technologies to niches with a strong enough need to overcome the cost and power hurdles. This is changing rapidly as the computational means have now become available to bring computer visi...

  9. Construction, implementation and testing of an image identification system using computer vision methods for fruit flies with economic importance (Diptera: Tephritidae).

    Science.gov (United States)

    Wang, Jiang-Ning; Chen, Xiao-Lin; Hou, Xin-Wen; Zhou, Li-Bing; Zhu, Chao-Dong; Ji, Li-Qiang

    2017-07-01

    Many species of Tephritidae are damaging to fruit, which might negatively impact international fruit trade. Automatic or semi-automatic identification of fruit flies are greatly needed for diagnosing causes of damage and quarantine protocols for economically relevant insects. A fruit fly image identification system named AFIS1.0 has been developed using 74 species belonging to six genera, which include the majority of pests in the Tephritidae. The system combines automated image identification and manual verification, balancing operability and accuracy. AFIS1.0 integrates image analysis and expert system into a content-based image retrieval framework. In the the automatic identification module, AFIS1.0 gives candidate identification results. Afterwards users can do manual selection based on comparing unidentified images with a subset of images corresponding to the automatic identification result. The system uses Gabor surface features in automated identification and yielded an overall classification success rate of 87% to the species level by Independent Multi-part Image Automatic Identification Test. The system is useful for users with or without specific expertise on Tephritidae in the task of rapid and effective identification of fruit flies. It makes the application of computer vision technology to fruit fly recognition much closer to production level. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. A Novel Method for the Discrimination of Semen Arecae and Its Processed Products by Using Computer Vision, Electronic Nose, and Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Min Xu

    2015-01-01

    Full Text Available Areca nut, commonly known locally as Semen Arecae (SA in China, has been used as an important Chinese herbal medicine for thousands of years. The raw SA (RAW is commonly processed by stir-baking to yellow (SBY, stir-baking to dark brown (SBD, and stir-baking to carbon dark (SBC for different clinical uses. In our present investigation, intelligent sensory technologies consisting of computer vision (CV, electronic nose (E-nose, and electronic tongue (E-tongue were employed in order to develop a novel and accurate method for discrimination of SA and its processed products. Firstly, the color parameters and electronic sensory responses of E-nose and E-tongue of the samples were determined, respectively. Then, indicative components including 5-hydroxymethyl furfural (5-HMF and arecoline (ARE were determined by HPLC. Finally, principal component analysis (PCA and discriminant factor analysis (DFA were performed. The results demonstrated that these three instruments can effectively discriminate SA and its processed products. 5-HMF and ARE can reflect the stir-baking degree of SA. Interestingly, the two components showed close correlations to the color parameters and sensory responses of E-nose and E-tongue. In conclusion, this novel method based on CV, E-nose, and E-tongue can be successfully used to discriminate SA and its processed products.

  11. Visions and visioning in foresight activities

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Grosu, Dan

    2007-01-01

    The paper discusses the roles of visioning processes and visions in foresight activities and in societal discourses and changes parallel to or following foresight activities. The overall topic can be characterised as the dynamics and mechanisms that make visions and visioning processes work...... or not work. The theoretical part of the paper presents an actor-network theory approach to the analyses of visions and visioning processes, where the shaping of the visions and the visioning and what has made them work or not work is analysed. The empirical part is based on analyses of the roles of visions...... and visioning processes in a number of foresight processes from different societal contexts. The analyses have been carried out as part of the work in the COST A22 network on foresight. A vision is here understood as a description of a desirable or preferable future, compared to a scenario which is understood...

  12. Pleiades Visions

    Science.gov (United States)

    Whitehouse, M.

    2016-01-01

    Pleiades Visions (2012) is my new musical composition for organ that takes inspiration from traditional lore and music associated with the Pleiades (Seven Sisters) star cluster from Australian Aboriginal, Native American, and Native Hawaiian cultures. It is based on my doctoral dissertation research incorporating techniques from the fields of ethnomusicology and cultural astronomy; this research likely represents a new area of inquiry for both fields. This large-scale work employs the organ's vast sonic resources to evoke the majesty of the night sky and the expansive landscapes of the homelands of the above-mentioned peoples. Other important themes in Pleiades Visions are those of place, origins, cosmology, and the creation of the world.

  13. Optoelectronic vision

    Science.gov (United States)

    Ren, Chunye; Parel, Jean-Marie A.

    1993-06-01

    Scientists have searched every discipline to find effective methods of treating blindness, such as using aids based on conversion of the optical image, to auditory or tactile stimuli. However, the limited performance of such equipment and difficulties in training patients have seriously hampered practical applications. A great edification has been given by the discovery of Foerster (1929) and Krause & Schum (1931), who found that the electrical stimulation of the visual cortex evokes the perception of a small spot of light called `phosphene' in both blind and sighted subjects. According to this principle, it is possible to invite artificial vision by using stimulation with electrodes placed on the vision neural system, thereby developing a prosthesis for the blind that might be of value in reading and mobility. In fact, a number of investigators have already exploited this phenomena to produce a functional visual prosthesis, bringing about great advances in this area.

  14. Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning

    Science.gov (United States)

    Debats, Stephanie Renee

    Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, we developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. We presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, we determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands. We also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. We designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples. This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling

  15. Automatic change detection in vision: Adaptation, memory mismatch, or both? II: Oddball and adaptation effects on event-related potentials.

    Science.gov (United States)

    Bodnár, Flóra; File, Domonkos; Sulykos, István; Kecskés-Kovács, Krisztina; Czigler, István

    2017-11-01

    In this study we compared the event-related potentials (ERPs) obtained in two different paradigms: a passive visual oddball paradigm and an adaptation paradigm. The aim of the study was to investigate the relation between the effects of activity decrease following an adaptor (stimulus-specific adaptation) and the effects of an infrequent stimulus within sequences of frequent ones. In Experiment 1, participants were presented with different line textures. The frequent (standard) and rare (deviant) texture elements differed in their orientation. In Experiment 2, windmill pattern stimuli were presented in which the number of vanes differentiated the deviant and standard stimuli. In Experiment 1 the ERP differences elicited between the oddball deviant and the standard were similar to the differences between the ERPs to the nonadapted and adapted stimuli in the adaptation paradigm. In both paradigms the differences appeared as a posterior negativity with the latency of 120-140 ms. This finding demonstrates that the representation of a sequential rule (successive presentation of the standard) and the violation of this rule are not necessary for deviancy effects to emerge. In Experiment 2 (windmill pattern), in the oddball paradigm the difference potentials appeared as a long-lasting negativity. In the adaptation condition, the later part of this negativity (after 200 ms) was absent. We identified the later part of the oddball difference potential as the genuine visual mismatch negativity-that is, an ERP correlate of sequence violations. The latencies of the difference potentials (deviant minus standard) and the endogenous components (P1 and N1) diverged; therefore, the adaptation of these particular ERP components cannot explain the deviancy effect. Accordingly, the sources contributing to the standard-versus-deviant modulations differed from those related to visual adaptation; that is, they generated distinct ERP components.

  16. Synthetic vision to augment sensor based vision for remotely piloted vehicles

    NARCIS (Netherlands)

    Tadema, J.; Koeners, J.; Theunissen, E.

    2006-01-01

    In the past fifteen years, several research programs have demonstrated potential advantages of synthetic vision technology for manned aviation. More recently, some research programs have focused on integrating synthetic vision technology into control stations for remotely controlled aircraft. The

  17. A computer simulation of a potential derived from the gay-berne potential for lattice model

    Directory of Open Access Journals (Sweden)

    Habtamu Zewdie

    2000-06-01

    Full Text Available The lattice model of elongated molecules interacting via a potential derived from the Gay-Berne pair potential is proposed. We made a systematic study of the effect of varying the molecular elongation and intermolecular vector orientation dependence of the pair potential on the thermodynamic as well as the structural properties of liquid crystals. A Monte Carlo simulations of molecules placed at the site of a simple cubic lattice and interacting via the modified Gay-Berne potential with its nearest neighbours is performed. The internal energy, heat capacity, angular pair correlation function and scalar order parameter are obtained. The results are compared against predictions of molecular field theory, experimental results and that of other related simulations wherever possible. It is shown that for more elongated molecules the nematic-isotropic transition becomes stronger first order transition. For a given molecular elongation as the intermolecular vector orientation dependence becomes larger the nematic-isotropic transition becomes a stronger first order transition as measured by the rate of change of the order parameter and the divergence of the heat capacity. Scaling the potential well seems to have dramatic change on the effect of the potential well anisotropy on trends of nematic-isotropic transition temperature and divergence of the heat capacity. It is shown that the behaviour of many nematics can be described by proposed model with the elongation ratio of molecules and potential well anisotropy ranging from 3 to 5.

  18. Tablet computers and eBooks. Unlocking the potential for personal learning environments?

    NARCIS (Netherlands)

    Kalz, Marco

    2012-01-01

    Kalz, M. (2012, 9 May). Tablet computers and eBooks. Unlocking the potential for personal learning environments? Invited presentation during the annual conference of the European Association for Distance Learning (EADL), Noordwijkerhout, The Netherlands.

  19. Assessement of rheumatic diseases with computational radiology: current status and future potential

    DEFF Research Database (Denmark)

    Peloschek, Philipp; Boesen, Mikael; Donner, Rene

    2009-01-01

    In recent years, several computational image analysis methods to assess disease progression in rheumatic diseases were presented. This review article explains the basics of these methods as well as their potential application in rheumatic disease monitoring, it covers radiography, sonography...

  20. Double folding model of nucleus-nucleus potential: formulae, iteration method and computer code

    International Nuclear Information System (INIS)

    Luk'yanov, K.V.

    2008-01-01

    Method of construction of the nucleus-nucleus double folding potential is described. Iteration procedure for the corresponding integral equation is presented. Computer code and numerical results are presented

  1. Computer technology: its potential for industrial energy conservation. A technology applications manual

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Today, computer technology is within the reach of practically any industrial corporation regardless of product size. This manual highlights a few of the many applications of computers in the process industry and provides the technical reader with a basic understanding of computer technology, terminology, and the interactions among the various elements of a process computer system. The manual has been organized to separate process applications and economics from computer technology. Chapter 1 introduces the present status of process computer technology and describes the four major applications - monitoring, analysis, control, and optimization. The basic components of a process computer system also are defined. Energy-saving applications in the four major categories defined in Chapter 1 are discussed in Chapter 2. The economics of process computer systems is the topic of Chapter 3, where the historical trend of process computer system costs is presented. Evaluating a process for the possible implementation of a computer system requires a basic understanding of computer technology as well as familiarity with the potential applications; Chapter 4 provides enough technical information for an evaluation. Computer and associated peripheral costs and the logical sequence of steps in the development of a microprocessor-based process control system are covered in Chapter 5.

  2. The potential of computer software that supports the diagnosis of workplace ergonomics in shaping health awareness

    Science.gov (United States)

    Lubkowska, Wioletta

    2017-11-01

    The growing prevalence of health problems among computer workstation workers has become one of the biggest threats to the overall health of our population. That is why many modern scientists are looking for ways and methods to prevent and reverse these negative trends. The purpose of this article is to present the potential for practical use of computer programs to design an ergonomic workplace and postural loads. These programs help configure the computer workstation correctly and adopt the correct body position during work, which reduces the risk of health problems. Creating visually attractive programs helps encourage and inspire those who work with a computer to introduce ergonomic solutions and reject the sedentary lifestyle.

  3. Remotely Measuring Trash Fluxes in the Flood Canals of Megacities with Time Lapse Cameras and Computer Vision Algorithms - a Case Study from Jakarta, Indonesia.

    Science.gov (United States)

    Sedlar, F.; Turpin, E.; Kerkez, B.

    2014-12-01

    As megacities around the world continue to develop at breakneck speeds, future development, investment, and social wellbeing are threatened by a number of environmental and social factors. Chief among these is frequent, persistent, and unpredictable urban flooding. Jakarta, Indonesia with a population of 28 million, is a prime example of a city plagued by such flooding. Yet although Jakarta has ample hydraulic infrastructure already in place with more being constructed, the increasingly severity of the flooding it experiences is not from a lack of hydraulic infrastructure but rather a failure of existing infrastructure. As was demonstrated during the most recent floods in Jakarta, the infrastructure failure is often the result of excessive amounts of trash in the flood canals. This trash clogs pumps and reduces the overall system capacity. Despite this critical weakness of flood control in Jakarta, no data exists on the overall amount of trash in the flood canals, much less on how it varies temporally and spatially. The recent availability of low cost photography provides a means to obtain such data. Time lapse photography postprocessed with computer vision algorithms yields a low cost, remote, and automatic solution to measuring the trash fluxes. When combined with the measurement of key hydrological parameters, a thorough understanding of the relationship between trash fluxes and the hydrology of massive urban areas becomes possible. This work examines algorithm development, quantifying trash parameters, and hydrological measurements followed by data assimilation into existing hydraulic and hydrological models of Jakarta. The insights afforded from such an approach allows for more efficient operating of hydraulic infrastructure, knowledge of when and where critical levels of trash originate from, and the opportunity for community outreach - which is ultimately needed to reduce the trash in the flood canals of Jakarta and megacities around the world.

  4. Clustered features for use in stereo vision SLAM

    CSIR Research Space (South Africa)

    Joubert, D

    2010-07-01

    Full Text Available SLAM, or simultaneous localization and mapping, is a key component in the development of truly independent robots. Vision-based SLAM utilising stereo vision is a promising approach to SLAM but it is computationally expensive and difficult...

  5. Spatial coordinate systems for tactile spatial attention depend on developmental vision: evidence from event-related potentials in sighted and congenitally blind adult humans.

    Science.gov (United States)

    Röder, Brigitte; Föcker, Julia; Hötting, Kirsten; Spence, Charles

    2008-08-01

    Changes in limb posture (such as crossing the hands) can impair people's performance in tasks such as those involving temporal order judgements, when one tactile stimulus is presented to either hand. This crossed hands deficit has been attributed to a conflict between externally and anatomically anchored reference systems when people localize tactile stimuli. Interestingly, however, the performance of congenitally blind adults does not seem to be affected by crossing the hands, suggesting a default use of an anatomically rather than an externally anchored reference system for tactile localization. In the present study, 12 congenitally blind and 12 sighted adults were instructed to attend to either the left or the right hand on a trial-by-trial basis in order to detect rare deviants (consisting of a double touch) at that hand, while ignoring both deviants at the other hand and frequent standard stimuli (consisting of a single touch) presented to either hand. Only the sighted participants performed less accurately when they crossed their hands. Concurrent electroencephalogram recordings revealed an early contralateral attention positivity, followed by an attention negativity in the sighted group when they adopted the uncrossed hands posture. For the crossed hand posture, only the attention negativity was observed with reduced amplitude in the sighted group. By contrast, the congenitally blind group displayed an event-related potential attention negativity that did not vary when the posture of their hands was changed. These results demonstrate that the default use of an external frame of reference for tactile localization seems to depend on developmental vision.

  6. Advanced topics in computer vision

    CERN Document Server

    Farinella, Giovanni Maria; Cipolla, Roberto

    2013-01-01

    This book presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of reconstruction, registration, and recognition. The text provides an overview of challenging areas and descriptions of novel algorithms. Features: investigates visual features, trajectory features, and stereo matching; reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization; presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization; examines solutions to t

  7. Multistategy Learning for Computer Vision

    National Research Council Canada - National Science Library

    Bhanu, Bir

    1998-01-01

    .... With the goal of achieving robustness, our research at UCR is directed towards learning parameters, feedback, contexts, features, concepts, and strategies of IU algorithms for model-based object recognition...

  8. Computational Vision Based on Neurobiology

    Science.gov (United States)

    1994-08-10

    34 Journal of Personality and 71. M. Seibert and A.M. Waxman "Learning and Social Psychology, Vol. 37, pp. 2049-2058, 1979. recognizing 3D objects from...coherence. Nature. 358:412-414, 1992. 18. Petter, G. Nuove ricerche sperimentali sulla totalizzazione percettiva. Rivista di psicologia . 50: 213-227

  9. Low Vision FAQs

    Science.gov (United States)

    ... de los Ojos Cómo hablarle a su oculista Low Vision FAQs What is low vision? Low vision is a visual impairment, not correctable ... person’s ability to perform everyday activities. What causes low vision? Low vision can result from a variety of ...

  10. Pediatric Low Vision

    Science.gov (United States)

    ... Asked Questions Español Condiciones Chinese Conditions Pediatric Low Vision What is Low Vision? Partial vision loss that cannot be corrected causes ... and play. What are the signs of Low Vision? Some signs of low vision include difficulty recognizing ...

  11. Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review.

    Science.gov (United States)

    Howarth, Peter A

    2011-03-01

    The visual stimulus provided by a 3-D stereoscopic display differs from that of the real world because the image provided to each eye is produced on a flat surface. The distance from the screen to the eye remains fixed, providing a single focal distance, but the introduction of disparity between the images allows objects to be located geometrically in front of, or behind, the screen. Unlike in the real world, the stimulus to accommodation and the stimulus to convergence do not match. Although this mismatch is used positively in some forms of Orthoptic treatment, a number of authors have suggested that it could negatively lead to the development of asthenopic symptoms. From knowledge of the zone of clear, comfortable, single binocular vision one can predict that, for people with normal binocular vision, adverse symptoms will not be present if the discrepancy is small, but are likely if it is large, and that what constitutes 'large' and 'small' are idiosyncratic to the individual. The accommodation-convergence mismatch is not, however, the only difference between the natural and the artificial stimuli. In the former case, an object located in front of, or behind, a fixated object will not only be perceived as double if the images fall outside Panum's fusional areas, but it will also be defocused and blurred. In the latter case, however, it is usual for the producers of cinema, TV or computer game content to provide an image that is in focus over the whole of the display, and as a consequence diplopic images will be sharply in focus. The size of Panum's fusional area is spatial frequency-dependent, and because of this the high spatial frequencies present in the diplopic 3-D image will provide a different stimulus to the fusion system from that found naturally. © 2011 The College of Optometrists.

  12. Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis

    Science.gov (United States)

    Choudhary, Alok Nidhi

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.

  13. Vision Screening

    Science.gov (United States)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  14. Education in interactive media: a survey on the potentials of computers for visual literacy

    OpenAIRE

    Güleryüz, Hakan

    1996-01-01

    Ankara : Bilkent University, Department of Graphic Design and Institute of Fine Arts, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves 89-94. This study aims at investigating the potentials of multimedia and computers in design. For this purpose, a general survey on the historical development of computers for their use in education and possibilities related to the use of technology in education is conducted. Based on this survey, the dep...

  15. The Potentials of Using Cloud Computing in Schools:A Systematic Literature Review

    OpenAIRE

    Hartmann, Simon Birk; Nygaard, Lotte Qulleq Victhoria; Pedersen, Sine; Khalid, Md. Saifuddin

    2017-01-01

    Cloud Computing (CC) refers to the physical structure of a communications network, where data is saved and stored in large data centers and thus can be accessed anywhere, at any time and from different devices. It is evident that the integration and adoption of CC and discontinuation of an alternative ICT includes some underlying reasons. Optimistically, these reasons can be interpreted as the potentials of using cloud computing and as the functions or values that circumvent or solve some of ...

  16. Color vision test

    Science.gov (United States)

    ... present from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... Vision test - color; Ishihara color vision test Images Color blindness tests References Bowling B. Hereditary fundus dystrophies. In: ...

  17. Impairments to Vision

    Science.gov (United States)

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  18. Tablet computers versus optical aids to support education and learning in children and young people with low vision: protocol for a pilot randomised controlled trial, CREATE (Children Reading with Electronic Assistance To Educate).

    Science.gov (United States)

    Crossland, Michael D; Thomas, Rachel; Unwin, Hilary; Bharani, Seelam; Gothwal, Vijaya K; Quartilho, Ana; Bunce, Catey; Dahlmann-Noor, Annegret

    2017-06-21

    Low vision and blindness adversely affect education and independence of children and young people. New 'assistive' technologies such as tablet computers can display text in enlarged font, read text out to the user, allow speech input and conversion into typed text, offer document and spreadsheet processing and give access to wide sources of information such as the internet. Research on these devices in low vision has been limited to case series. We will carry out a pilot randomised controlled trial (RCT) to assess the feasibility of a full RCT of assistive technologies for children/young people with low vision. We will recruit 40 students age 10-18 years in India and the UK, whom we will randomise 1:1 into two parallel groups. The active intervention will be Apple iPads; the control arm will be the local standard low-vision aid care. Primary outcomes will be acceptance/usage, accessibility of the device and trial feasibility measures (time to recruit children, lost to follow-up). Exploratory outcomes will be validated measures of vision-related quality of life for children/young people as well as validated measures of reading and educational outcomes. In addition, we will carry out semistructured interviews with the participants and their teachers. NRES reference 15/NS/0068; dissemination is planned via healthcare and education sector conferences and publications, as well as via patient support organisations. NCT02798848; IRAS ID 179658, UCL reference 15/0570. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  20. Novel scheme to compute chemical potentials of chain molecules on a lattice

    Science.gov (United States)

    Mooij, G. C. A. M.; Frenkel, D.

    We present a novel method that allows efficient computation of the total number of allowed conformations of a chain molecule in a dense phase. Using this method, it is possible to estimate the chemical potential of such a chain molecule. We have tested the present method in simulations of a two-dimensional monolayer of chain molecules on a lattice (Whittington-Chapman model) and compared it with existing schemes to compute the chemical potential. We find that the present approach is two to three orders of magnitude faster than the most efficient of the existing methods.

  1. Numerical computation of soliton dynamics for NLS equations in a driving potential

    Directory of Open Access Journals (Sweden)

    Marco Caliari

    2010-06-01

    Full Text Available We provide numerical computations for the soliton dynamics of the nonlinear Schrodinger equation with an external potential. After computing the ground state solution r of a related elliptic equation we show that, in the semi-classical regime, the center of mass of the solution with initial datum built upon r is driven by the solution to $ddot x=- abla V(x$. Finally, we provide examples and analyze the numerical errors in the two dimensional case when V is a harmonic potential.

  2. Applications of AI, machine vision and robotics

    CERN Document Server

    Boyer, Kim; Bunke, H

    1995-01-01

    This text features a broad array of research efforts in computer vision including low level processing, perceptual organization, object recognition and active vision. The volume's nine papers specifically report on topics such as sensor confidence, low level feature extraction schemes, non-parametric multi-scale curve smoothing, integration of geometric and non-geometric attributes for object recognition, design criteria for a four degree-of-freedom robot head, a real-time vision system based on control of visual attention and a behavior-based active eye vision system. The scope of the book pr

  3. Remote-controlled vision-guided mobile robot system

    Science.gov (United States)

    Ande, Raymond; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.

  4. Recycling potential of neodymium: the case of computer hard disk drives.

    Science.gov (United States)

    Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan

    2014-08-19

    Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.

  5. Smart vision chips: An overview

    Science.gov (United States)

    Koch, Christof

    1994-01-01

    This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.

  6. Vision - Gateway to the brain

    CERN Multimedia

    1999-01-01

    Is the brain the result of (evolutionary) tinkering, or is it governed by natural law? How can we objectively know? What is the nature of consciousness? Vision research is spear-heading the quest and is making rapid progress with the help of new experimental, computational and theoretical tools. At the same time it is about to lead to important technical applications.

  7. New exact travelling wave solutions for two potential coupled KdV equations with symbolic computation

    International Nuclear Information System (INIS)

    Yang Zonghang

    2007-01-01

    We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed

  8. Life on the line: the therapeutic potentials of computer-mediated conversation.

    Science.gov (United States)

    Miller, J K; Gergen, K J

    1998-04-01

    In what ways are computer networking practices comparable to face-to-face therapy? With the exponential increase in computer-mediated communication and the increasing numbers of people joining topically based computer networks, the potential for grass-roots therapeutic (or antitherapeutic) interchange is greatly augmented. Here we report the results of research into exchanges on an electronic bulletin board devoted to the topic of suicide. Over an 11-month period participants offered each other valuable resources in terms of validation of experience, sympathy, acceptance, and encouragement. They also asked provocative questions and furnished broad-ranging advice. Hostile entries were rare. However, there were few communiques that parallel the change-inducing practices more frequent within many therapeutic settings. In effect, on-line dialogues seemed more sustaining than transforming. Further limits and potentials of on-line communication are explored.

  9. Computation of hybrid static potentials in SU(3 lattice gauge theory

    Directory of Open Access Journals (Sweden)

    Reisinger Christian

    2018-01-01

    Full Text Available We compute hybrid static potentials in SU(3 lattice gauge theory. We present a method to automatically generate a large set of suitable creation operators with defined quantum numbers from elementary building blocks. We show preliminary results for several channels and discuss, which structures of the gluonic flux tube seem to be realized by the ground states in these channels.

  10. Assessement of rheumatic diseases with computational radiology: Current status and future potential

    International Nuclear Information System (INIS)

    Peloschek, Philipp; Boesen, Mikael; Donner, Rene; Kubassova, Olga; Birngruber, Erich; Patsch, Janina; Mayerhoefer, Marius; Langs, Georg

    2009-01-01

    In recent years, several computational image analysis methods to assess disease progression in rheumatic diseases were presented. This review article explains the basics of these methods as well as their potential application in rheumatic disease monitoring, it covers radiography, sonography as well as magnetic resonance imaging in quantitative analysis frameworks.

  11. COMPUTATIONAL ELECTROCHEMISTRY: AQUEOUS ONE-ELECTRON OXIDATION POTENTIALS FOR SUBSTITUTED ANILINES

    Science.gov (United States)

    Semiempirical molecular orbital theory and density functional theory are used to compute one-electron oxidation potentials for aniline and a set of 21 mono- and di-substituted anilines in aqueous solution. Linear relationships between theoretical predictions and experiment are co...

  12. Basic design principles of colorimetric vision systems

    Science.gov (United States)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  13. Computational Challenge of Fractional Differential Equations and the Potential Solutions: A Survey

    Directory of Open Access Journals (Sweden)

    Chunye Gong

    2015-01-01

    Full Text Available We present a survey of fractional differential equations and in particular of the computational cost for their numerical solutions from the view of computer science. The computational complexities of time fractional, space fractional, and space-time fractional equations are O(N2M, O(NM2, and O(NM(M + N compared with O(MN for the classical partial differential equations with finite difference methods, where M, N are the number of space grid points and time steps. The potential solutions for this challenge include, but are not limited to, parallel computing, memory access optimization (fractional precomputing operator, short memory principle, fast Fourier transform (FFT based solutions, alternating direction implicit method, multigrid method, and preconditioner technology. The relationships of these solutions for both space fractional derivative and time fractional derivative are discussed. The authors pointed out that the technologies of parallel computing should be regarded as a basic method to overcome this challenge, and some attention should be paid to the fractional killer applications, high performance iteration methods, high order schemes, and Monte Carlo methods. Since the computation of fractional equations with high dimension and variable order is even heavier, the researchers from the area of mathematics and computer science have opportunity to invent cornerstones in the area of fractional calculus.

  14. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    Science.gov (United States)

    Fu, Yao; Song, Jeong-Hoon

    2014-08-01

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  15. Physics Based Vision Systems for Robotic Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increase of robotic manipulation tasks (TA4.3), specifically dexterous manipulation tasks (TA4.3.2), more advanced computer vision algorithms will be...

  16. What Is Low Vision?

    Science.gov (United States)

    ... Your Rights Training Resources Workplace Technology CareerConnect Stories Working as a Senior with Vision Loss For Seniors Age-Related Vision ... Changes Health and Aging Retirement Living Continuing to Work as a Senior with Vision Loss Get Connected About VisionAware Join ...

  17. Simple prescription for computing the interparticle potential energy for D-dimensional gravity systems

    International Nuclear Information System (INIS)

    Accioly, Antonio; Helayël-Neto, José; Barone, F E; Herdy, Wallace

    2015-01-01

    A straightforward prescription for computing the D-dimensional potential energy of gravitational models, which is strongly based on the Feynman path integral, is built up. Using this method, the static potential energy for the interaction of two masses is found in the context of D-dimensional higher-derivative gravity models, and its behavior is analyzed afterwards in both ultraviolet and infrared regimes. As a consequence, two new gravity systems in which the potential energy is finite at the origin, respectively, in D = 5 and D = 6, are found. Since the aforementioned prescription is equivalent to that based on the marriage between quantum mechanics (to leading order, i.e., in the first Born approximation) and the nonrelativistic limit of quantum field theory, and bearing in mind that the latter relies basically on the calculation of the nonrelativistic Feynman amplitude (M NR ), a trivial expression for computing M NR is obtained from our prescription as an added bonus. (paper)

  18. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  19. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials.

    Science.gov (United States)

    Jin, Jing; Allison, Brendan Z; Wang, Xingyu; Neuper, Christa

    2012-04-15

    Brain-computer interfaces (BCIs) allow users to communicate via brain activity alone. Many BCIs rely on the P300 and other event-related potentials (ERPs) that are elicited when target stimuli flash. Although there have been considerable research exploring ways to improve P300 BCIs, surprisingly little work has focused on new ways to change visual stimuli to elicit more recognizable ERPs. In this paper, we introduce a "combined" BCI based on P300 potentials and motion-onset visual evoked potentials (M-VEPs) and compare it with BCIs based on each simple approach (P300 and M-VEP). Offline data suggested that performance would be best in the combined paradigm. Online tests with adaptive BCIs confirmed that our combined approach is practical in an online BCI, and yielded better performance than the other two approaches (P<0.05) without annoying or overburdening the subject. The highest mean classification accuracy (96%) and practical bit rate (26.7bit/s) were obtained from the combined condition. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Parallel computation of electrostatic potentials and fields in technical geometries on SUPRENUM

    International Nuclear Information System (INIS)

    Alef, M.

    1990-02-01

    The programs EPOTZR und EFLDZR have been developed in order to compute electrostatic potentials and the corresponding fields in technical geometries (example: Diode geometry for optimum focussing of ion beams in pulsed high-current ion diodes). The Poisson equation is discretized in a two-dimensional boundary-fitted grid in the (r,z)-plane and solved using multigrid methods. The z- and r-components of the field are determined by numerical differentiation of the potential. This report contains the user's guide of the SUPRENUM versions EPOTZR-P and EFLDZR-P. (orig./HP) [de