WorldWideScience

Sample records for computational science collaboration

  1. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    Science.gov (United States)

    Fraser, Robert

    2014-01-01

    We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer…

  2. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    OpenAIRE

    Robert FRASER

    2014-01-01

    We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer science coursework is somewhat unique, in that there often exist ideal solutions for problems, and work may be shared and copied with very little ef...

  3. Collaboration between J-PARC and computing science

    International Nuclear Information System (INIS)

    Nakatani, Takeshi; Inamura, Yasuhiro

    2010-01-01

    Many world-forefront experimental apparatuses are under construction at Materials and Life Science Facility of Japan Proton Accelerator Research Complex (J-PARC), and new experimental methods supported by the computer facility are under development towards practical use. Many problems, however, remains to be developed as a large open use facility under the Low for Promotion of Public Utilization. Some of them need the cooperation of experimental scientists and computer scientists to be solved. Present status of the computing ability at Materials and Life Science Facility of J-PARC, and research results expected to be brought by the collaboration of experimental- and computer-scientists are described. (author)

  4. Computer Networking Strategies for Building Collaboration among Science Educators.

    Science.gov (United States)

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  5. Grid computing and collaboration technology in support of fusion energy sciences

    International Nuclear Information System (INIS)

    Schissel, D.P.

    2005-01-01

    Science research in general and magnetic fusion research in particular continue to grow in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. The simultaneous increase in wide area network speeds has made it practical to envision distributed working environments that are as productive as traditionally collocated work. In computing power, it has become reasonable to decouple production and consumption resulting in the ability to construct computing grids in a similar manner as the electrical power grid. Grid computing, the secure integration of computer systems over high speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. For human interaction, advanced collaborative environments are being researched and deployed to have distributed group work that is as productive as traditional meetings. The DOE Scientific Discovery through Advanced Computing Program initiative has sponsored several collaboratory projects, including the National Fusion Collaboratory Project, to utilize recent advances in grid computing and advanced collaborative environments to further research in several specific scientific domains. For fusion, the collaborative technology being deployed is being used in present day research and is also scalable to future research, in particular, to the International Thermonuclear Experimental Reactor experiment that will require extensive collaboration capability worldwide. This paper briefly reviews the concepts of grid computing and advanced collaborative environments and gives specific examples of how these technologies are being used in fusion research today

  6. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    Science.gov (United States)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  7. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  8. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  9. Big Data: An Opportunity for Collaboration with Computer Scientists on Data-Driven Science

    Science.gov (United States)

    Baru, C.

    2014-12-01

    Big data technologies are evolving rapidly, driven by the need to manage ever increasing amounts of historical data; process relentless streams of human and machine-generated data; and integrate data of heterogeneous structure from extremely heterogeneous sources of information. Big data is inherently an application-driven problem. Developing the right technologies requires an understanding of the applications domain. Though, an intriguing aspect of this phenomenon is that the availability of the data itself enables new applications not previously conceived of! In this talk, we will discuss how the big data phenomenon creates an imperative for collaboration among domain scientists (in this case, geoscientists) and computer scientists. Domain scientists provide the application requirements as well as insights about the data involved, while computer scientists help assess whether problems can be solved with currently available technologies or require adaptaion of existing technologies and/or development of new technologies. The synergy can create vibrant collaborations potentially leading to new science insights as well as development of new data technologies and systems. The area of interface between geosciences and computer science, also referred to as geoinformatics is, we believe, a fertile area for interdisciplinary research.

  10. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  11. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  12. From boring to scoring - a collaborative serious game for learning and practicing mathematical logic for computer science education

    Science.gov (United States)

    Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina

    2013-06-01

    In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."

  13. Collaborative virtual reality environments for computational science and design

    International Nuclear Information System (INIS)

    Papka, M. E.

    1998-01-01

    The authors are developing a networked, multi-user, virtual-reality-based collaborative environment coupled to one or more petaFLOPs computers, enabling the interactive simulation of 10 9 atom systems. The purpose of this work is to explore the requirements for this coupling. Through the design, development, and testing of such systems, they hope to gain knowledge that allows computational scientists to discover and analyze their results more quickly and in a more intuitive manner

  14. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences

    Science.gov (United States)

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...

  15. Collaborative technologies for distributed science: fusion energy and high-energy physics

    International Nuclear Information System (INIS)

    Schissel, D P; Gottschalk, E E; Greenwald, M J; McCune, D

    2006-01-01

    This paper outlines a strategy to significantly enhance scientific collaborations in both Fusion Energy Sciences and in High-Energy Physics through the development and deployment of new tools and technologies into working environments. This strategy is divided into two main elements, collaborative workspaces and secure computational services. Experimental and theory/computational programs will greatly benefit through the provision of a flexible, standards-based collaboration space, which includes advanced tools for ad hoc and structured communications, shared applications and displays, enhanced interactivity for remote data access applications, high performance computational services and an improved security environment. The technologies developed should be prototyped and tested on the current generation of experiments and numerical simulation projects. At the same time, such work should maintain a strong focus on the needs of the next generation of mega-projects, ITER and the ILC. Such an effort needs to leverage existing computer science technology and take full advantage of commercial software wherever possible. This paper compares the requirements of FES and HEP, discuss today's solutions, examine areas where more functionality is required, and discuss those areas with sufficient overlap in requirements that joint research into collaborative technologies will increase the benefit to both

  16. When Feedback Harms and Collaboration Helps in Computer Simulation Environments: An Expertise Reversal Effect

    Science.gov (United States)

    Nihalani, Priya K.; Mayrath, Michael; Robinson, Daniel H.

    2011-01-01

    We investigated the effects of feedback and collaboration on undergraduates' transfer performance when using a computer networking training simulation. In Experiment 1, 65 computer science "novices" worked through an instructional protocol individually (control), individually with feedback, or collaboratively with feedback. Unexpectedly,…

  17. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.

  18. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.  

  19. Collaborative Learning: Cognitive and Computational Approaches. Advances in Learning and Instruction Series.

    Science.gov (United States)

    Dillenbourg, Pierre, Ed.

    Intended to illustrate the benefits of collaboration between scientists from psychology and computer science, namely machine learning, this book contains the following chapters, most of which are co-authored by scholars from both sides: (1) "Introduction: What Do You Mean by 'Collaborative Learning'?" (Pierre Dillenbourg); (2)…

  20. The ecology of team science: understanding contextual influences on transdisciplinary collaboration.

    Science.gov (United States)

    Stokols, Daniel; Misra, Shalini; Moser, Richard P; Hall, Kara L; Taylor, Brandie K

    2008-08-01

    Increased public and private investments in large-scale team science initiatives over the past two decades have underscored the need to better understand how contextual factors influence the effectiveness of transdisciplinary scientific collaboration. Toward that goal, the findings from four distinct areas of research on team performance and collaboration are reviewed: (1) social psychological and management research on the effectiveness of teams in organizational and institutional settings; (2) studies of cyber-infrastructures (i.e., computer-based infrastructures) designed to support transdisciplinary collaboration across remote research sites; (3) investigations of community-based coalitions for health promotion; and (4) studies focusing directly on the antecedents, processes, and outcomes of scientific collaboration within transdisciplinary research centers and training programs. The empirical literature within these four domains reveals several contextual circumstances that either facilitate or hinder team performance and collaboration. A typology of contextual influences on transdisciplinary collaboration is proposed as a basis for deriving practical guidelines for designing, managing, and evaluating successful team science initiatives.

  1. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    International Nuclear Information System (INIS)

    Nam, H; Stoitsov, M; Nazarewicz, W; Hagen, G; Kortelainen, M; Pei, J C; Bulgac, A; Maris, P; Vary, J P; Roche, K J; Schunck, N; Thompson, I; Wild, S M

    2012-01-01

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. We illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  2. [Activities of Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  3. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  4. International collaboration in medical radiation science.

    Science.gov (United States)

    Denham, Gary; Allen, Carla; Platt, Jane

    2016-06-01

    International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.

  5. NEW SCIENCE OF LEARNING: COGNITION, COMPUTERS AND COLLABORATION IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Reviewed by Onur DONMEZ

    2011-01-01

    Full Text Available Information and Communication Technologies (ICTs have pervaded and changed much of our lives both on individual and societal scales. PCs, notebooks, tablets, cell phones, RSS feeds, emails, podcasts, tweets, social networks are all technologies we are familiar with and we are intensively using them in our daily lives. It is safe to say that our lives are becoming more and more digitized day by day.We have already invented bunch of terms to refer effects of these technologies on our lives. Digital nomads, grasshopper minds, millennium learners, digital natives, information age, knowledge building, knowledge society, network society are all terms invented to refer societal changes motivated by ICTs. New opportunities provided by ICTs are also shaping skill and quality demands of the next age. Individuals have to match these qualities if they want to earn their rightful places in tomorrow‘s world. Education is of course the sole light to guide them in their transformation to tomorrow‘s individual. One question arises however: ―are today‘s educational paradigms and practices ready to confront such a challenge?‖ There is a coherent and strong opinion among educators that the answer is ―NO‖. ―Today‘s students think and process information fundamentally differently from their predecessors‖(Prensky, 2001. And education has to keep pace with these students and their needs. But how? Khine & Saleh managed to gather distinguished colleagues around this question within their book titled ―New Science of Learning: Cognition, Computers and Collaboration‖. The book is composed of 29 chapters within three major topics which are: cognition, computers and collaboration.

  6. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.

    Science.gov (United States)

    Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker

    2016-01-01

    The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.

  7. Describing and Enhancing Collaboration at the Computer

    Directory of Open Access Journals (Sweden)

    Ken Beatty

    2002-06-01

    Full Text Available Computer-based learning materials differ from classroom practice in that they seldom explicitly offer opportunities for collaboration. Despite this, students do collaborate, helping one another through the content and affordances of computer materials. But, in doing so, students meet with challenges. Paradoxically, these challenges can either inspire or discourage learning and second-language acquisition. This paper, based on research with twenty Hong Kong university students in a controlled experiment, evaluates challenges to collaboration at the computer as evidenced by discourse. The students were videotaped and their discourse transcribed and evaluated both qualitatively and quantitatively, according to a set of discourse markers created to describe collaborative, non-collaborative and ambiguous strategies. The paper begins by exploring the differences between collaboration and similar terms such as teamwork and cooperative learning then goes on to define collaboration in the context of computer-assisted learning. It ends by presenting practical suggestions for software designers, teachers and students to enhance collaboration at the computer.

  8. Development of computational science in JAEA. R and D of simulation

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Araya, Fumimasa; Hirayama, Toshio

    2006-01-01

    R and D of computational science in JAEA (Japan Atomic Energy Agency) is described. Environment of computer, R and D system in CCSE (Center for Computational Science and e-Systems), joint computational science researches in Japan and world, development of computer technologies, the some examples of simulation researches, 3-dimensional image vibrational platform system, simulation researches of FBR cycle techniques, simulation of large scale thermal stress for development of steam generator, simulation research of fusion energy techniques, development of grid computing technology, simulation research of quantum beam techniques and biological molecule simulation researches are explained. Organization of JAEA, development of computational science in JAEA, network of JAEA, international collaboration of computational science, and environment of ITBL (Information-Technology Based Laboratory) project are illustrated. (S.Y.)

  9. Supporting collaborative computing and interaction

    International Nuclear Information System (INIS)

    Agarwal, Deborah; McParland, Charles; Perry, Marcia

    2002-01-01

    To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design

  10. The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.

    Directory of Open Access Journals (Sweden)

    Nirav Merchant

    2016-01-01

    Full Text Available The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.

  11. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  12. 10th International Symposium on Computer Science in Sports

    CERN Document Server

    Soltoggio, Andrea; Dawson, Christian; Meng, Qinggang; Pain, Matthew

    2016-01-01

    This book presents the main scientific results of the 10th International Symposium of Computer Science in Sport (IACSS/ISCSS 2015), sponsored by the International Association of Computer Science in Sport in collaboration with the International Society of Sport Psychology (ISSP), which took place between September 9-11, 2015 at Loughborough, UK. This proceedings aims to build a link between computer science and sport, and reports on results from applying computer science techniques to address a wide number of problems in sport and exercise sciences. It provides a good platform and opportunity for researchers in both computer science and sport to understand and discuss ideas and promote cross-disciplinary research. The strictly reviewed and carefully revised papers cover the following topics: Modelling and Analysis, Artificial Intelligence in Sport, Virtual Reality in Sport,  Neural Cognitive Training,  IT Systems for Sport, Sensing Technologies and Image Processing.

  13. 2012 International Conference on Teaching and Computational Science (ICTCS 2012)

    CERN Document Server

    Advanced Technology in Teaching

    2013-01-01

    2012 International Conference on Teaching and Computational Science (ICTCS 2012) is held on April 1-2, 2012, Macao.   This volume contains 120 selected papers presented at 2012 International Conference on Teaching and Computational Science (ICTCS 2012), which is to bring together researchers working in many different areas of teaching and computational Science to foster international collaborations and exchange of new ideas.   This volume book can be divided into two sections on the basis of the classification of manuscripts considered. The first section deals with teaching. The second section of this volume consists of computational Science.   We hope that all the papers here published can benefit you in the related researching fields.

  14. Coordination processes in computer supported collaborative writing

    NARCIS (Netherlands)

    Kanselaar, G.; Erkens, Gijsbert; Jaspers, Jos; Prangsma, M.E.

    2005-01-01

    In the COSAR-project a computer-supported collaborative learning environment enables students to collaborate in writing an argumentative essay. The TC3 groupware environment (TC3: Text Composer, Computer supported and Collaborative) offers access to relevant information sources, a private notepad, a

  15. An Integrative and Collaborative Approach to Creating a Diverse and Computationally Competent Geoscience Workforce

    Science.gov (United States)

    Moore, S. L.; Kar, A.; Gomez, R.

    2015-12-01

    A partnership between Fort Valley State University (FVSU), the Jackson School of Geosciences at The University of Texas (UT) at Austin, and the Texas Advanced Computing Center (TACC) is engaging computational geoscience faculty and researchers with academically talented underrepresented minority (URM) students, training them to solve grand challenges . These next generation computational geoscientists are being trained to solve some of the world's most challenging geoscience grand challenges requiring data intensive large scale modeling and simulation on high performance computers . UT Austin's geoscience outreach program GeoFORCE, recently awarded the Presidential Award in Excellence in Science, Mathematics and Engineering Mentoring, contributes to the collaborative best practices in engaging researchers with URM students. Collaborative efforts over the past decade are providing data demonstrating that integrative pipeline programs with mentoring and paid internship opportunities, multi-year scholarships, computational training, and communication skills development are having an impact on URMs developing middle skills for geoscience careers. Since 1997, the Cooperative Developmental Energy Program at FVSU and its collaborating universities have graduated 87 engineers, 33 geoscientists, and eight health physicists. Recruited as early as high school, students enroll for three years at FVSU majoring in mathematics, chemistry or biology, and then transfer to UT Austin or other partner institutions to complete a second STEM degree, including geosciences. A partnership with the Integrative Computational Education and Research Traineeship (ICERT), a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at TACC provides students with a 10-week summer research experience at UT Austin. Mentored by TACC researchers, students with no previous background in computational science learn to use some of the world's most powerful high performance

  16. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    Science.gov (United States)

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  17. Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments.

    NARCIS (Netherlands)

    Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick

    2008-01-01

    Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.

  18. New Frontiers in Analyzing Dynamic Group Interactions: Bridging Social and Computer Science.

    Science.gov (United States)

    Lehmann-Willenbrock, Nale; Hung, Hayley; Keyton, Joann

    2017-10-01

    This special issue on advancing interdisciplinary collaboration between computer scientists and social scientists documents the joint results of the international Lorentz workshop, "Interdisciplinary Insights into Group and Team Dynamics," which took place in Leiden, The Netherlands, July 2016. An equal number of scholars from social and computer science participated in the workshop and contributed to the papers included in this special issue. In this introduction, we first identify interaction dynamics as the core of group and team models and review how scholars in social and computer science have typically approached behavioral interactions in groups and teams. Next, we identify key challenges for interdisciplinary collaboration between social and computer scientists, and we provide an overview of the different articles in this special issue aimed at addressing these challenges.

  19. Assessment of (Computer-Supported) Collaborative Learning

    Science.gov (United States)

    Strijbos, J. -W.

    2011-01-01

    Within the (Computer-Supported) Collaborative Learning (CS)CL research community, there has been an extensive dialogue on theories and perspectives on learning from collaboration, approaches to scaffold (script) the collaborative process, and most recently research methodology. In contrast, the issue of assessment of collaborative learning has…

  20. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  1. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  2. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  3. Design of Scalable and Effective Earth Science Collaboration Tool

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  4. Collaborative Science Using Web Services and the SciFlo Grid Dataflow Engine

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Xing, Z.; Yunck, T.

    2006-12-01

    Access Protocol (OpenDAP) servers. The scientist injects a distributed computation into the Grid by simply filling out an HTML form or directly authoring the underlying XML dataflow document, and results are returned directly to the scientist's desktop. Once an analysis has been specified for a chunk or day of data, it can be easily repeated with different control parameters or over months of data. Recently, the Earth Science Information Partners (ESIP) Federation sponsored a collaborative activity in which several ESIP members advertised their respective WMS/WCS and SOAP services, developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. For several scenarios, the same collaborative workflow was executed in three ways: using hand-coded scripts, by executing a SciFlo document, and by executing a BPEL workflow document. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, and further collaborations that are being pursued.

  5. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  6. Making science accessible through collaborative science teacher action research on feminist pedagogy

    Science.gov (United States)

    Capobianco, Brenda M.

    The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action

  7. Surface computing and collaborative analysis work

    CERN Document Server

    Brown, Judith; Gossage, Stevenson; Hack, Chris

    2013-01-01

    Large surface computing devices (wall-mounted or tabletop) with touch interfaces and their application to collaborative data analysis, an increasingly important and prevalent activity, is the primary topic of this book. Our goals are to outline the fundamentals of surface computing (a still maturing technology), review relevant work on collaborative data analysis, describe frameworks for understanding collaborative processes, and provide a better understanding of the opportunities for research and development. We describe surfaces as display technologies with which people can interact directly, and emphasize how interaction design changes when designing for large surfaces. We review efforts to use large displays, surfaces or mixed display environments to enable collaborative analytic activity. Collaborative analysis is important in many domains, but to provide concrete examples and a specific focus, we frequently consider analysis work in the security domain, and in particular the challenges security personne...

  8. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  9. Game-based Research Collaboration adapted to Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Damgaard Hansen, Sidse; Grønbæk, Kaj

    2012-01-01

    This paper presents prospects for adapting scientific discovery games to science education. In the paper a prototype of The Quantum Computing Game is presented as a working example of adapting game-based research collaboration to physics education. The game concept is the initial result of a three......-year, inter-disciplinary project “Pilot Center for Community-driven Research” at Aarhus and Aalborg University in Denmark. The paper discusses how scientific discovery games can contribute to educating students in how to work with unsolved scientific problems and creation of new scientific knowledge. Based...

  10. Computer-Supported Collaborative Learning in Higher Education

    Science.gov (United States)

    Roberts, Tim, Ed.

    2005-01-01

    "Computer-Supported Collaborative Learning in Higher Education" provides a resource for researchers and practitioners in the area of computer-supported collaborative learning (also known as CSCL); particularly those working within a tertiary education environment. It includes articles of relevance to those interested in both theory and practice in…

  11. Collaboration spotting for dental science.

    Science.gov (United States)

    Leonardi, E; Agocs, A; Fragkiskos, S; Kasfikis, N; Le Goff, J M; Cristalli, M P; Luzzi, V; Polimeni, A

    2014-10-06

    The goal of the Collaboration Spotting project is to create an automatic system to collect information about publications and patents related to a given technology, to identify the key players involved, and to highlight collaborations and related technologies. The collected information can be visualized in a web browser as interactive graphical maps showing in an intuitive way the players and their collaborations (Sociogram) and the relations among the technologies (Technogram). We propose to use the system to study technologies related to Dental Science. In order to create a Sociogram, we create a logical filter based on a set of keywords related to the technology under study. This filter is used to extract a list of publications from the Web of Science™ database. The list is validated by an expert in the technology and sent to CERN where it is inserted in the Collaboration Spotting database. Here, an automatic software system uses the data to generate the final maps. We studied a set of recent technologies related to bone regeneration procedures of oro--maxillo--facial critical size defects, namely the use of Porous HydroxyApatite (HA) as a bone substitute alone (bone graft) or as a tridimensional support (scaffold) for insemination and differentiation ex--vivo of Mesenchymal Stem Cells. We produced the Sociograms for these technologies and the resulting maps are now accessible on--line. The Collaboration Spotting system allows the automatic creation of interactive maps to show the current and historical state of research on a specific technology. These maps are an ideal tool both for researchers who want to assess the state--of--the--art in a given technology, and for research organizations who want to evaluate their contribution to the technological development in a given field. We demonstrated that the system can be used for Dental Science and produced the maps for an initial set of technologies in this field. We now plan to enlarge the set of mapped

  12. Dynamic Collaboration Infrastructure for Hydrologic Science

    Science.gov (United States)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the

  13. The influence of audio communications technology on computer-supported collaborative learning

    Directory of Open Access Journals (Sweden)

    Denise Whitelock

    1996-12-01

    Full Text Available In recent years there has been an appreciation of the benefits that can be obtained by students working in groups or teams using computers (Eraut and Hoyles, 1988. But there is a difference in opinion as to how a partner enhances learning, and in particular how well adult learners do in the collaborative setting. In order to capitalize on the opportunities offered by new technologies, we need to understand more fully how the process of collaboration is effected by different communication technologies, and how the technologies themselves might be used to best advantage for the benefit of distance learners. However, another factor, apart from the technology itself, which is thought to influence computer-supported collaborative learning is in the gender distribution of the group. A number of classroom studies have shown gender differences when children work together with computers, and these have been reported from a number of subject-domains including science (Scanlon et al, 1993; Littleton et al, 1992. Since our own expertise is in the area of science learning, we selected a non-trivial physics task for the subjects to work with, and that is in the area of elastic collisions. Previous studies (Villani and Pacca, 1990; Whitelock et al, 1993 have shown that both adults and school-children have difficulty in predicting the subsequent motion of balls or ice pucks after they collide. Villani's study stresses that even postgraduate students tend to revert to their informal commonsense notions unless they are cued to use formal representations of these types of problem. These studies have demonstrated that the topic of elastic collisions is a complex yet fruitful one in which to engage students in group work.

  14. Collaborative Web between open and closed science

    Directory of Open Access Journals (Sweden)

    Alessandro Delfanti

    2008-06-01

    Full Text Available “Web 2.0” is the mantra enthusiastically repeated in the past few years on anything concerning the production of culture, dialogue and online communication. Even science is changing, along with the processes involving the communication, collaboration and cooperation created through the web, yet rooted in some of its historical features of openness. For this issue, JCOM has asked some experts on the most recent changes in science to analyse the potential and the contradictions lying in online collaborative science. The new open science feeds on the opportunity to freely contribute to knowledge production, sharing not only data, but also software and hardware. But it is open also to the outside, where citizens use Web 2.0 instruments to discuss about science in a horizontal way.

  15. Young Researchers Advancing Computational Science: Perspectives of the Young Scientists Conference 2015

    CERN Document Server

    Boukhanovsky, Alexander V; Krzhizhanovskaya, Valeria V; Athanassoulis, Gerassimos A; Klimentov, Alexei A; Sloot, Peter M A

    2015-01-01

    We present an annual international Young Scientists Conference (YSC) on computational science http://ysc.escience.ifmo.ru/, which brings together renowned experts and young researchers working in high-performance computing, data-driven modeling, and simulation of large-scale complex systems. The first YSC event was organized in 2012 by the University of Amsterdam, the Netherlands and ITMO University, Russia with the goal of opening a dialogue on the present and the future of computational science and its applications. We believe that the YSC conferences will strengthen the ties between young scientists in different countries, thus promoting future collaboration. In this paper we briefly introduce the challenges the millennial generation is facing; describe the YSC conference history and topics; and list the keynote speakers and program committee members. This volume of Procedia Computer Science presents selected papers from the 4th International Young Scientists Conference on Computational Science held on 25 ...

  16. Infrastructure Support for Collaborative Pervasive Computing Systems

    DEFF Research Database (Denmark)

    Vestergaard Mogensen, Martin

    Collaborative Pervasive Computing Systems (CPCS) are currently being deployed to support areas such as clinical work, emergency situations, education, ad-hoc meetings, and other areas involving information sharing and collaboration.These systems allow the users to work together synchronously......, but from different places, by sharing information and coordinating activities. Several researchers have shown the value of such distributed collaborative systems. However, building these systems is by no means a trivial task and introduces a lot of yet unanswered questions. The aforementioned areas......, are all characterized by unstable, volatile environments, either due to the underlying components changing or the nomadic work habits of users. A major challenge, for the creators of collaborative pervasive computing systems, is the construction of infrastructures supporting the system. The complexity...

  17. (The Ethics of) Teaching Science and Ethics: A Collaborative Proposal.

    Science.gov (United States)

    Kabasenche, William P

    2014-12-01

    I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains-the relevant science(s) and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  18. (The Ethics of Teaching Science and Ethics: A Collaborative Proposal

    Directory of Open Access Journals (Sweden)

    William P. Kabasenche

    2014-10-01

    Full Text Available I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains—the relevant science(s and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  19. Recent progress and modern challenges in applied mathematics, modeling and computational science

    CERN Document Server

    Makarov, Roman; Belair, Jacques

    2017-01-01

    This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science.  The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.

  20. Describing and Enhancing Collaboration at the Computer

    OpenAIRE

    Ken Beatty

    2002-01-01

    Computer-based learning materials differ from classroom practice in that they seldom explicitly offer opportunities for collaboration. Despite this, students do collaborate, helping one another through the content and affordances of computer materials. But, in doing so, students meet with challenges. Paradoxically, these challenges can either inspire or discourage learning and second-language acquisition. This paper, based on research with twenty Hong Kong university students in a controlled ...

  1. Art-Science-Technology collaboration through immersive, interactive 3D visualization

    Science.gov (United States)

    Kellogg, L. H.

    2014-12-01

    At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

  2. Social Science Collaboration with Environmental Health.

    Science.gov (United States)

    Hoover, Elizabeth; Renauld, Mia; Edelstein, Michael R; Brown, Phil

    2015-11-01

    Social science research has been central in documenting and analyzing community discovery of environmental exposure and consequential processes. Collaboration with environmental health science through team projects has advanced and improved our understanding of environmental health and justice. We sought to identify diverse methods and topics in which social scientists have expanded environmental health understandings at multiple levels, to examine how transdisciplinary environmental health research fosters better science, and to learn how these partnerships have been able to flourish because of the support from National Institute of Environmental Health Sciences (NIEHS). We analyzed various types of social science research to investigate how social science contributes to environmental health. We also examined NIEHS programs that foster social science. In addition, we developed a case study of a community-based participation research project in Akwesasne in order to demonstrate how social science has enhanced environmental health science. Social science has informed environmental health science through ethnographic studies of contaminated communities, analysis of spatial distribution of environmental injustice, psychological experience of contamination, social construction of risk and risk perception, and social impacts of disasters. Social science-environmental health team science has altered the way scientists traditionally explore exposure by pressing for cumulative exposure approaches and providing research data for policy applications. A transdisciplinary approach for environmental health practice has emerged that engages the social sciences to paint a full picture of the consequences of contamination so that policy makers, regulators, public health officials, and other stakeholders can better ameliorate impacts and prevent future exposure. Hoover E, Renauld M, Edelstein MR, Brown P. 2015. Social science collaboration with environmental health. Environ Health

  3. The Impact of Collaboration on the Epistemic Cultures of Science

    DEFF Research Database (Denmark)

    Wray, K. Brad

    2017-01-01

    Examines the impact collaborative research is having on science. Argues that the traditional notion of authorship does not fit well with current practices in science. Raises concerns about the refereeing of collaborative research....

  4. Rad World -- computer-animated video radiation and hazardous waste-management science curriculum

    International Nuclear Information System (INIS)

    Powell, B.

    1996-01-01

    The Rad World computer-animated video and curriculum materials were developed through a grant from the Waste-management Education and Research Consortium. The package, which includes a computer-animated video, hands-on activities, and multidisciplinary lessons concerning radiation and hazardous-waste management, was created to approach these subjects in an informative, yet entertaining, manner. The lessons and video, designed to supplement studies of energy and physical science at the middle school and high school level, also implement quality and consistent science education as outlined by the New Mexico Science Standards and Benchmarks (1995). Consistent with the curriculum standards and benchmarks, the curriculum includes library research, collaborative learning, hands-on-science, and discovery learning. Pre- and post-tests are included

  5. Computer-Mediated Collaborative Learning

    Science.gov (United States)

    Beatty, Ken; Nunan, David

    2004-01-01

    The study reported here investigates collaborative learning at the computer. Ten pairs of students were presented with a series of comprehension questions about Mary Shelley's novel "Frankenstein or a Modern Prometheus" along with a CD-ROM, "Frankenstein Illuminated," containing the novel and a variety of source material. Five students worked with…

  6. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  7. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    OpenAIRE

    Joel Donna; Brant G Miller

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much t...

  8. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research

    International Nuclear Information System (INIS)

    Page, B.; Hilty, L.M.

    1994-01-01

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de

  9. The ATLAS Computing Agora: a resource web site for citizen science projects

    CERN Document Server

    Bourdarios, Claire; The ATLAS collaboration

    2016-01-01

    The ATLAS collaboration has recently setup a number of citizen science projects which have a strong IT component and could not have been envisaged without the growth of general public computing resources and network connectivity: event simulation through volunteer computing, algorithms improvement via Machine Learning challenges, event display analysis on citizen science platforms, use of open data, etc. Most of the interactions with volunteers are handled through message boards, but specific outreach material was also developed, giving an enhanced visibility to the ATLAS software and computing techniques, challenges and community. In this talk the Atlas Computing Agora (ACA) web platform will be presented as well as some of the specific material developed for some of the projects.

  10. Cloud Computing Concepts for Academic Collaboration

    Directory of Open Access Journals (Sweden)

    K.K. Jabbour

    2013-05-01

    Full Text Available The aim of this paper is to explain how cloud computing technologies improve academic collaboration. To accomplish that, we have to explore the current trend of the global computer network field. During the past few years, technology has evolved in many ways; many valuable web applications and services have been introduced to internet users. Social networking, synchronous/asynchronous communication, on-line video conferencing, and wikis are just a few examples of those web technologies that altered the way people interact nowadays. By utilizing some of the latest web tools and services and combining them with the most recent semantic Cloud Computing techniques, a wide and growing array of technology services and applications are provided, which are highly specialized or distinctive to individual or to educational campuses. Therefore, cloud computing can facilitate a new way of world academic collaboration; and introduce students to new and different ways that can help them manage massive workloads.

  11. Collaborations and Partnerships in NASA’s Earth Science Data Systems

    Directory of Open Access Journals (Sweden)

    Hampapuram K. Ramapriyan

    2017-11-01

    Full Text Available NASA has been collecting Earth observation data from spaceborne instruments since 1960. Today, there are tens of satellites orbiting the Earth and collecting frequent global observations for the benefit of mankind. Collaboration between NASA and organizations in the US and other countries has been extremely important in maintaining the Earth observation capabilities as well as collecting, organizing and managing the data. These collaborations have occurred in the form of: 1. NASA’s developing and launching spacecraft and instruments for operation by other agencies; 2. Instruments from collaborating organizations being flown on NASA satellites; and 3. Instruments from NASA being flown on satellites from collaborating organizations. In addition, there are collaborations such as joint science teams, data exchanges, and participation in international organizations to promote interoperability of various data systems. The purpose of this paper is to describe some of the Earth science data-related collaborative efforts in which NASA participates, and highlight a few results relevant to Earth system science research obtained through such collaborations.

  12. How can computers support, enrich, and transform collaborative creativity

    DEFF Research Database (Denmark)

    Dalsgaard, Peter; Inie, Nanna; Hansen, Nicolai Brodersen

    2017-01-01

    The aim of the workshop is to examine and discuss how computers can support, enrich, and transform collaborative creative processes. By exploring and combining methodological, theoretical, and design- oriented perspectives, we wish to examine the implications, potentials, and limitations of diffe......The aim of the workshop is to examine and discuss how computers can support, enrich, and transform collaborative creative processes. By exploring and combining methodological, theoretical, and design- oriented perspectives, we wish to examine the implications, potentials, and limitations...... of different approaches to providing digital support for collaborative creativity. Participation in the workshop requires participants to actively document and identify salient themes in one or more examples of computer- supported collaborative creativity, and the resulting material will serve as the empirical...

  13. Computational substrates of social value in interpersonal collaboration.

    Science.gov (United States)

    Fareri, Dominic S; Chang, Luke J; Delgado, Mauricio R

    2015-05-27

    Decisions to engage in collaborative interactions require enduring considerable risk, yet provide the foundation for building and maintaining relationships. Here, we investigate the mechanisms underlying this process and test a computational model of social value to predict collaborative decision making. Twenty-six participants played an iterated trust game and chose to invest more frequently with their friends compared with a confederate or computer despite equal reinforcement rates. This behavior was predicted by our model, which posits that people receive a social value reward signal from reciprocation of collaborative decisions conditional on the closeness of the relationship. This social value signal was associated with increased activity in the ventral striatum and medial prefrontal cortex, which significantly predicted the reward parameters from the social value model. Therefore, we demonstrate that the computation of social value drives collaborative behavior in repeated interactions and provide a mechanistic account of reward circuit function instantiating this process. Copyright © 2015 the authors 0270-6474/15/358170-11$15.00/0.

  14. Collaborative CPD and inquiry-based science in the classroom

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    on the teaching of science and on collaboration. Qualitative data obtained by following the same teacher teaching Science & Technology from 4th to 6th grade are used to discuss changes in her classroom practice; in particular concerning inquiry-based methods shown in earlier QUEST-research to be understood......Continuous Professional Development (CPD) is crucial for reforming science teaching, but more knowledge is needed about how to embed CPD in teachers’ daily work. The Danish QUEST-project is a long-term collaborative CPD-project designed informed by research and with activities changing rhythmically...... between seminars, individual trials in own classroom, and collaborative activities in the science-team at local schools. The QUEST research is aimed at understanding the relation between individual and social changes. In this study, quantitative data are used to compare the perceived effect from QUEST...

  15. Communicating Science; a collaborative approach through Art, Dance, Music and Science

    Science.gov (United States)

    Smart, Sarah-Jane; Mortimer, Hugh

    2016-04-01

    A collaborative approach to communicating our amazing science. RAL Space at the Rutherford Appleton Lab, has initiated a unique collaboration with a team of award-winning performing artists with the aim of making space science research engaging and accessible to a wide audience. The collaboration has two distinct but connected strands one of which is the development of a contemporary dance work inspired by solar science and including images and data from the Space Physics Division of STFC RAL Space. The work has been commissioned by Sadler's Wells, one of the world's leading dance venues. It will be created by choreographer Alexander Whitley, video artist Tal Rosner and composers Ella Spira and Joel Cadbury and toured throughout the UK and internationally by the Alexander Whitley Dance Company (AWDC). The work will come about through collaboration with the work of the scientists of RAL Space and in particular the SOHO, CDS and STEREO missions, taking a particular interest in space weather. Choreographer Alexander Whitley and composers Ella Spira and Joel Cadbury will take their inspiration from the images and data that are produced by the solar science within RAL Space. Video artist Tal Rosner will use these spectacular images to create an atmospheric backdrop to accompany the work, bringing the beauty and wonder of space exploration to new audiences. Funding for the creation and touring of the work will be sought from Arts Council England, the British Council, partner organisations, trusts and foundations and private donors.The world premiere of the work will take place at Sadler's Wells in June 2017. It will then tour throughout the UK and internationally to theatres, science conferences and outreach venues with the aim of bringing the work of STFC RAL Space and the science behind solar science and space weather to new audiences. An education programme will combine concepts of choreography and space science aimed at young people in year 5 Key Stage 2 and be

  16. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  17. Big Science, co-publication and collaboration: getting to the core

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, M.

    2016-07-01

    International collaboration in science has risen considerably in the last two decades (UNESCO, 2010). In the same period Big Science collaborations have proliferated in physics, astronomy, astrophysics, and medicine. Publications that use Big Science data draw on the expertise of those who design and build the equipment and software, as well as the scientific community. Over time a set of ‘rules of use’ has emerged that protects their intellectual property but that may have the unintended consequence of enhancing co-publication counts. This in turn distorts the use of co-publication data as a proxy for collaboration. The distorting effects are illustrated by means of a case study of the BRICS countries that recently issued a declaration on scientific and technological cooperation with specific fields allocated to each country. It is found that with a single exception the dominant research areas of collaboration are different to individual country specializations. The disjuncture between such ‘collaboration’ and the intent of the declaration raises questions of import to science policy, for the BRICS in particular and the measurement of scientific collaboration more generally. (Author)

  18. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  19. International and interlaboratory collaboration on Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    For effectiveness of facility development for Neutron Science Projects at JAERI, international and interlaboratory collaborations have been extensively planned and promoted, especially in the areas of accelerator and target technology. Here status of two collaborations relevant to a spallation neutron target development is highlighted from those collaborations. The two collaborations are experiments on BNL-AGS spallation target simulation and PSI materials irradiation. Both are planned to start in spring of 1997. (author)

  20. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    Science.gov (United States)

    Polyak, Stephen T.; von Davier, Alina A.; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses. PMID:29238314

  1. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    Directory of Open Access Journals (Sweden)

    Stephen T. Polyak

    2017-11-01

    Full Text Available This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  2. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills.

    Science.gov (United States)

    Polyak, Stephen T; von Davier, Alina A; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  3. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  4. Democratizing Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  5. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    Science.gov (United States)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  6. Development of multidisciplinary practical lessons through research-action methodology in the faculties of computer science and educational psychology

    OpenAIRE

    Pertegal-Felices, María Luisa; Navarro Soria, Ignasi; Jimeno-Morenilla, Antonio; Gil, David

    2010-01-01

    Computer science studies possess a strong multidisciplinary vocation; most graduates do their professional work elsewhere of a computing environment, in collaboration with professionals from many different areas. However, the training offered in computer science studies lacks that multidisciplinary, focusing more on purely technical aspects. The campus, a place where studies of very different nature exist side by side, may constitute an excellent basis for conducting multidisciplinary trainin...

  7. Collaboration and Team Science Field Guide - Center for Research Strategy

    Science.gov (United States)

    Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.

  8. International Conference on Computer Science and Information Technologies

    CERN Document Server

    2017-01-01

    The book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issue in big data and cloud computing, computation linguistics, cyber-physical systems as well as topics in intelligent information management. Written by active researchers, the different chapters are based on contributions presented at the workshop in intelligent systems and computing (ISC), held during CSIT 2016, September 6-9, and jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of RadioElectronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. All in all, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and it is expected to foster new discussions and collaborations among different groups. ...

  9. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  10. Scientific Collaboration and Coauthors in Life Science Journal Articles

    Directory of Open Access Journals (Sweden)

    Ya-hsiu Fu

    2002-12-01

    Full Text Available It is common to conduct collaborative research in science and technology. In particular, the development of big science, Internet, and globalization facilitated the scientific collaboration. This study used two databases, Web of Science and Journal Citation Reports as data sources. From the analysis of 320 papers in 16 journals in life sciences, the results showed that there is no significant correlation between the impact factor of journals and the number of authors. Moreover, there is no correlation of authors and the cited times, either. The number of authors and cited times in most papers are under 10 persons and 25 times, respectively.[Article content in Chinese

  11. Use of an Interculturally Enriched Collaboration Script in Computer-Supported Collaborative Learning in Higher Education

    Science.gov (United States)

    Popov, Vitaliy; Biemans, Harm J. A.; Kuznetsov, Andrei N.; Mulder, Martin

    2014-01-01

    In this exploratory study, the authors introduced an interculturally enriched collaboration script (IECS) for working in culturally diverse groups within a computer-supported collaborative learning (CSCL) environment and then assessed student online collaborative behaviour, learning performance and experiences. The question was if and how these…

  12. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  13. Seven Affordances of Computer-Supported Collaborative Learning: How to Support Collaborative Learning? How Can Technologies Help?

    Science.gov (United States)

    Jeong, Heisawn; Hmelo-Silver, Cindy E.

    2016-01-01

    This article proposes 7 core affordances of technology for collaborative learning based on theories of collaborative learning and CSCL (Computer-Supported Collaborative Learning) practices. Technology affords learner opportunities to (1) engage in a joint task, (2) communicate, (3) share resources, (4) engage in productive collaborative learning…

  14. An analysis of national collaboration with Spanish researchers abroad in the health sciences.

    Science.gov (United States)

    Aceituno-Aceituno, Pedro; Romero-Martínez, Sonia Janeth; Victor-Ponce, Patricia; García-Núñez, José

    2015-11-07

    The establishment of scientific collaborations with researchers abroad can be considered a good practice to make appropriate use of their knowledge and to increase the possibilities of them returning to their country. This paper analyses the collaboration between Spanish researchers abroad devoted to health sciences and national science institutions. We used the Fontes' approach to perform a study on this collaboration with Spanish researchers abroad. We measured the level of national and international cooperation, the opportunity provided by the host country to collaborate, the promotion of collaboration by national science institutions, and the types of collaboration. A total of 88 biomedical researchers out of the 268 Spanish scientists who filled up the survey participated in the study. Different data analyses were performed to study the variables selected to measure the scientific collaboration and profile of Spanish researchers abroad. There is a high level of cooperation between Spanish health science researchers abroad and international institutions, which contrasts with the small-scale collaboration with national institutions. Host countries facilitate this collaboration with national and international scientific institutions to a larger extent than the level of collaboration promotion carried out by Spanish institutions. The national collaboration with Spanish researchers abroad in the health sciences is limited. Thus, the practice of making appropriate use of the potential of their expertise should be promoted and the opportunities for Spanish health science researchers to return home should be improved.

  15. Coordinated computer-supported collaborative learning: Awareness and awareness tools

    NARCIS (Netherlands)

    Janssen, J.J.H.M.; Bodermer, D.

    2013-01-01

    Traditionally, research on awareness during online collaboration focused on topics such as the effects of spatial information about group members’ activities on the collaborative process. When the concept of awareness was introduced to computer-supported collaborative learning, this focus shifted to

  16. Symbiosis on Campus: Collaborations of Scientists and Science Educators.

    Science.gov (United States)

    Duggan-Haas, Don; Moscovici, Hedy; McNulty, Brendan; Gilmer, Penny J.; Eick, Charles J.; Wilson, John

    This symposium will provide insights into collaborations among scientists and science educators in a variety of contexts-large research universities, small state and private institutions, and collaborations involving both pre- service and in-service programs. The session will begin with a brief framing of these collaborations as management of the…

  17. Science friction: data, metadata, and collaboration.

    Science.gov (United States)

    Edwards, Paul N; Mayernik, Matthew S; Batcheller, Archer L; Bowker, Geoffrey C; Borgman, Christine L

    2011-10-01

    When scientists from two or more disciplines work together on related problems, they often face what we call 'science friction'. As science becomes more data-driven, collaborative, and interdisciplinary, demand increases for interoperability among data, tools, and services. Metadata--usually viewed simply as 'data about data', describing objects such as books, journal articles, or datasets--serve key roles in interoperability. Yet we find that metadata may be a source of friction between scientific collaborators, impeding data sharing. We propose an alternative view of metadata, focusing on its role in an ephemeral process of scientific communication, rather than as an enduring outcome or product. We report examples of highly useful, yet ad hoc, incomplete, loosely structured, and mutable, descriptions of data found in our ethnographic studies of several large projects in the environmental sciences. Based on this evidence, we argue that while metadata products can be powerful resources, usually they must be supplemented with metadata processes. Metadata-as-process suggests the very large role of the ad hoc, the incomplete, and the unfinished in everyday scientific work.

  18. Schools and Informal Science Settings: Collaborate, Co-Exist, or Assimilate?

    Science.gov (United States)

    Adams, Jennifer D.; Gupta, Preeti; DeFelice, Amy

    2012-01-01

    In this metalogue we build on the arguments presented by Puvirajah, Verma and Webb to discuss the nature of authentic science learning experiences in context of collaborations between schools and out-of-school time settings. We discuss the role of stakeholders in creating collaborative science learning practices and affordances of out of school…

  19. Science and society: The benefits of scientific collaboration

    CERN Multimedia

    2003-01-01

    The guest speaker at the next Science and Society symposium is no stranger to CERN. He is, in fact, Sir Chris Llewellyn Smith, Director General of CERN from 1994 to 1998. His topic is one with which he is particularly familiar, having "lived" it throughout his time at CERN: international scientific collaboration and its advantages. International scientific collaboration is essential in a wide range of areas and for a large number of reasons: scientific problems have no frontiers; certain subjects are so complex that they require the expertise of numerous countries; certain types of research, such as that carried out at CERN, cannot be pursued by one nation on its own. However, scientific collaboration is not only beneficial to science itself. This is the point Chris Llewellyn Smith intends to demonstrate in his address. Scientific collaboration can help to build bridges between societies and act as a spur to the development of certain countries. It can even help to diminish conflicts in certain cases. The his...

  20. The use of the Climate-science Computational End Station (CCES) development and grand challenge team for the next IPCC assessment: an operational plan

    International Nuclear Information System (INIS)

    Washington, W M; Buja, L; Gent, P; Drake, J; Erickson, D; Anderson, D; Bader, D; Dickinson, R; Ghan, S; Jones, P; Jacob, R

    2008-01-01

    The grand challenge of climate change science is to predict future climates based on scenarios of anthropogenic emissions and other changes resulting from options in energy and development policies. Addressing this challenge requires a Climate Science Computational End Station consisting of a sustained climate model research, development, and application program combined with world-class DOE leadership computing resources to enable advanced computational simulation of the Earth system. This project provides the primary computer allocations for the DOE SciDAC and Climate Change Prediction Program. It builds on the successful interagency collaboration of the National Science and the U.S. Department of Energy in developing and applying the Community Climate System Model (CCSM) for climate change science. It also includes collaboration with the National Aeronautics and Space Administration in carbon data assimilation and university partners with expertise in high-end computational climate research

  1. ATLAS Experiment: Collaboration at the frontiers of science and technology

    CERN Document Server

    2018-01-01

    ATLAS is run by a collaboration of physicists, engineers, technicians and support staff from around the world. It is one of the largest collaborative efforts ever attempted in science, with over 5000 members and almost 3000 scientific authors. The ATLAS Collaboration welcomes new collaborators for long-term engagement in the experiment.

  2. Research Institute for Advanced Computer Science: Annual Report October 1998 through September 1999

    Science.gov (United States)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    1999-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center (ARC). It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. ARC has been designated NASA's Center of Excellence in Information Technology. In this capacity, ARC is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA ARC and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to

  3. Computer science handbook

    CERN Document Server

    Tucker, Allen B

    2004-01-01

    Due to the great response to the famous Computer Science Handbook edited by Allen B. Tucker, … in 2004 Chapman & Hall/CRC published a second edition of this comprehensive reference book. Within more than 70 chapters, every one new or significantly revised, one can find any kind of information and references about computer science one can imagine. … All in all, there is absolute nothing about computer science that can not be found in the encyclopedia with its 110 survey articles …-Christoph Meinel, Zentralblatt MATH

  4. Science diplomacy: Investigating the perspective of scholars on politics-science collaboration in international affairs.

    Science.gov (United States)

    Fähnrich, Birte

    2017-08-01

    Science diplomacy is a widely practiced area of international affairs, but academic research is rather sparse. The role of academia within this field of politics-science interaction has hardly been considered. This article analyzes this scholarly perspective: Based on a literature review, a case study of a German science diplomacy program is used to explore objectives, benefits, and constraints of science diplomacy for participating scholars. While political approaches suggest an ideal world where both sides profit from the collaboration, the findings of the case study point to another conclusion which shows that the interaction of scholars and officials in science diplomacy is far more complex. Thus, the contribution is regarded as both a useful starting point for further research and for a critical reflection of academics and politicians in science diplomacy practice to gauge what can be expected from the collaboration and what cannot.

  5. Collaborative Inquiry and the Professional Development of Science Teachers.

    Science.gov (United States)

    Erickson, Gaalen L.

    1991-01-01

    Argues that the nature and meaning of collaborative relationships depend upon their particular, practical context. Describes an ongoing collaborative research project, the Students' Intuitions and Science Instruction Group (University of British Columbia), detailing its research agenda, postulates pertaining to teacher development, collaborative…

  6. Preschool children's Collaborative Science Learning Scaffolded by Tablets

    Science.gov (United States)

    Fridberg, Marie; Thulin, Susanne; Redfors, Andreas

    2017-06-01

    This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.

  7. TEACHING AND LEARNING METHODOLOGIES SUPPORTED BY ICT APPLIED IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Jose CAPACHO

    2016-04-01

    Full Text Available The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory. Genetic-Cognitive Psychology Theory and Dialectics Psychology. Based on the theoretical framework the following methodologies were developed: Game Theory, Constructivist Approach, Personalized Teaching, Problem Solving, Cooperative Collaborative learning, Learning projects using ICT. These methodologies were applied to the teaching learning process during the Algorithms and Complexity – A&C course, which belongs to the area of ​​Computer Science. The course develops the concepts of Computers, Complexity and Intractability, Recurrence Equations, Divide and Conquer, Greedy Algorithms, Dynamic Programming, Shortest Path Problem and Graph Theory. The main value of the research is the theoretical support of the methodologies and their application supported by ICT using learning objects. The course aforementioned was built on the Blackboard platform evaluating the operation of methodologies. The results of the evaluation are presented for each of them, showing the learning outcomes achieved by students, which verifies that methodologies are functional.

  8. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    Directory of Open Access Journals (Sweden)

    Joel Donna

    2013-07-01

    Full Text Available Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much time to use. Second-order barriers include perceptions that this technology would not promote face-to-face collaboration skills, would create social loafing situations, and beliefs that the technology does not help students understand the nature of science. Suggestions for mitigating these barriers within pre-service education technology courses are discussed. La technologie joue un rôle essentiel pour faciliter la collaboration au sein de la communauté scientifique. Les applications infonuagiques telles que Google Drive peuvent être utilisées pour donner forme à ce type de collaboration et pour appuyer le questionnement dans les cours de sciences du secondaire. On connaît pourtant peu les opinions que se font les futurs enseignants d’une telle utilisation des technologies collaboratives infonuagiques. Or, ces opinions pourraient influencer l’intégration future de ces technologies en salle de classe. Cette étude révèle plusieurs obstacles de premier plan, comme l’idée que l’utilisation de ces outils informatiques prend trop de temps. Parmi les obstacles de second plan, on note les perceptions selon lesquelles cette technologie ne promeut pas les compétences collaboratives de personne à personne, pose des problèmes de gestion de classe et n'aide pas les étudiants à comprendre la nature de la science. Des suggestions sont proposées pour atténuer ces obstacles dans les cours de technologie des programmes d’éducation.

  9. Recent developments in collaborative CBRN decontamination science : a retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Yanofsky, N. [Defence Research and Development Canada, Ottawa, ON (Canada); Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Filatov, B. [Research Inst. of Hygiene, Toxicology and Occupational Pathology, Volgograd (Russian Federation)

    2006-07-01

    The importance of addressing the risk of chemical, biological and radiological/nuclear (CBRN) attacks was discussed with particular reference to recent developments in Canadian-led decontamination studies as part of the remediation response to a terrorist attack. Research efforts have been supported by government programs such as the CBRN Research and Technology Initiative of Defence Research and Development Canada and the Global Partnership Program of the Department of Foreign Affairs. In 2005, Environment Canada and Defence Research and Development Canada co-organized an international workshop with the Research Institute of Health, Toxicology and Occupational Pathology of Volgograd, Russia. The workshop brought together researchers from Canada, Russia, United States, United Kingdom, Netherlands, Poland and Bulgaria, with the view to eventually develop longer term collaborations. The theme focused on membrane technology and its application in CBRN decontamination. This paper reviewed these collaborative and international research efforts and identified areas in need of future work, such as bioremediation and radio-nuclear remediation. It addressed issues supporting a collaborative international research agenda in decontamination science; membrane filtration as a feasible approach to decontamination waste treatment; and possible areas of CBRN collaboration. It was suggested that the key to successful decontamination requires the creation of computer systems for the initial identification of chemical substances; complete toxicological characterization of the most dangerous agents; regulatory safety standards; quantitative determination of chemical substances; antidotes for most chemical threat agents; universal decontamination agents; and, validation of criteria for decontaminating buildings. The question of who pays for decontamination, be it the private or public sector, was also discussed.

  10. The importance of task appropriateness in computer-supported collaborative learning

    Directory of Open Access Journals (Sweden)

    Kathy Buckner

    1999-12-01

    Full Text Available The study of learning in collaborative electronic environments is becoming established as Computer Supported Collaborative Learning (CSCL - an emergent sub-discipline of the more established Computer Supported Co-operative Work (CSCW discipline (Webb, 1995. Using computers for the development of shared understanding through collaboration has been explored by Crook who suggests that success may depend partly on having a clearly specified purpose or goal (Crook, 1994. It is our view that the appropriateness of the task given to the student is central to the success or otherwise of the learning experience. However, the tasks that are given to facilitate collaborative learning in face-toface situations are not always suitable for direct transfer to the electronic medium. It may be necessary to consider redesigning these tasks in relation to the medium in which they are to be undertaken and the functionality of the electronic conferencing software used.

  11. An Interdisciplinary Collaboration between Computer Engineering and Mathematics/Bilingual Education to Develop a Curriculum for Underrepresented Middle School Students

    Science.gov (United States)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-01-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to…

  12. Mathematics, Physics and Computer Sciences The computation of ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.

  13. Associations for Citizen Science: Regional Knowledge, Global Collaboration

    Directory of Open Access Journals (Sweden)

    Martin Storksdieck

    2016-11-01

    Full Text Available Since 2012, three organizations advancing the work of citizen science practitioners have arisen in different regions: The primarily US-based but globally open Citizen Science Association (CSA, the European Citizen Science Association (ECSA, and the Australian Citizen Science Association (ACSA. These associations are moving rapidly to establish themselves and to develop inter-association collaborations. We consider the factors driving this emergence and the significance of this trend for citizen science as a field of practice, as an area of scholarship, and for the culture of scientific research itself.

  14. Get set for computer science

    CERN Document Server

    Edwards, Alistair

    2006-01-01

    This book is aimed at students who are thinking of studying Computer Science or a related topic at university. Part One is a brief introduction to the topics that make up Computer Science, some of which you would expect to find as course modules in a Computer Science programme. These descriptions should help you to tell the difference between Computer Science as taught in different departments and so help you to choose a course that best suits you. Part Two builds on what you have learned about the nature of Computer Science by giving you guidance in choosing universities and making your appli

  15. The collaborative tokamak control room

    International Nuclear Information System (INIS)

    Schissel, D.P.

    2006-01-01

    Magnetic fusion experiments keep growing in size and complexity resulting in a concurrent growth in collaborations between experimental sites and laboratories worldwide. In the US, the National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion energy research by creating a robust, user-friendly collaborative environment and deploying this to the more than 1000 US fusion scientists in 40 institutions who perform magnetic fusion research. This paper reports on one aspect of the project which is the development of the collaborative tokamak control room to enhance both collocated and remote scientific participation in experimental operations. This work includes secured computational services that can be scheduled as required, the ability to rapidly compare experimental data with simulation results, a means to easily share individual results with the group by moving application windows to a shared display, and the ability for remote scientists to be fully engaged in experimental operations through shared audio, video, and applications. The project is funded by the USDOE Office of Science, Scientific Discovery through Advanced Computing (SciDAC) Program and unites fusion and computer science researchers to directly address these challenges

  16. Computer-aided design and computer science technology

    Science.gov (United States)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  17. Intertextuality and Multimodal Meanings in High School Physics: Written and Spoken Language in Computer-Supported Collaborative Student Discourse

    Science.gov (United States)

    Tang, Kok-Sing; Tan, Seng-Chee

    2017-01-01

    The study in this article examines and illustrates the intertextual meanings made by a group of high school science students as they embarked on a knowledge building discourse to solve a physics problem. This study is situated in a computer-supported collaborative learning (CSCL) environment designed to support student learning through a science…

  18. Design and Evaluation of Dedicated Smartphone Applications for Collaborative Science Education

    Science.gov (United States)

    Fertitta, John A., Jr.

    2011-12-01

    Over the past several years, the use of scientific probes is becoming more common in science classrooms. The goal of teaching with these science probes is to engage students in inquiry-based learning. However, they are often complicated and stationary, forcing experiments to remain in the classroom and limiting their use. The Internet System for Networked Sensor Experimentation (iSENSE) was created to address these limitations. iSENSE is a web-system for storing and visualizing sensor data. The project also includes a hardware package, the PINPoint, that interfaces to existing probes, and acts as a probe itself. As the mobile phone industry continues to advance, we are beginning to see smartphones that are just as powerful, if not more powerful, than many desktop computers. These devices are often equipped with advanced sensors, making them as capable as some science probes at a lower cost. With this background, this thesis explores the use of smartphones in secondary school science classrooms. By collaborating with one teacher, three custom applications were developed for four separate curriculum-based learning activities. The smartphones replaced existing traditional tools and science probes. Some data collected with the smartphones were uploaded to the iSENSE web-system for analysis. Student use of the smartphones and the subsequent scientific visualizations using the iSENSE web-system were observed. A teacher interview was conducted afterward. It was found that a collaborative design process involving the teacher resulted in the successful integration of smartphone applications into learning activities. In one case, the smartphones and use of iSENSE did not improve the students' understanding of the learning objectives. In several others, however, the smartphones out-performed traditional probeware as a data collector, and with the classroom teachers guidance, the iSENSE web-system facilitated more in-depth discussions of the data.

  19. Sustainable computational science

    DEFF Research Database (Denmark)

    Rougier, Nicolas; Hinsen, Konrad; Alexandre, Frédéric

    2017-01-01

    Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results, however computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research...... workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested, hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages...... the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience...

  20. Supporting open collaboration in science through explicit and linked semantic description of processes

    Science.gov (United States)

    Gil, Yolanda; Michel, Felix; Ratnakar, Varun; Read, Jordan S.; Hauder, Matheus; Duffy, Christopher; Hanson, Paul C.; Dugan, Hilary

    2015-01-01

    The Web was originally developed to support collaboration in science. Although scientists benefit from many forms of collaboration on the Web (e.g., blogs, wikis, forums, code sharing, etc.), most collaborative projects are coordinated over email, phone calls, and in-person meetings. Our goal is to develop a collaborative infrastructure for scientists to work on complex science questions that require multi-disciplinary contributions to gather and analyze data, that cannot occur without significant coordination to synthesize findings, and that grow organically to accommodate new contributors as needed as the work evolves over time. Our approach is to develop an organic data science framework based on a task-centered organization of the collaboration, includes principles from social sciences for successful on-line communities, and exposes an open science process. Our approach is implemented as an extension of a semantic wiki platform, and captures formal representations of task decomposition structures, relations between tasks and users, and other properties of tasks, data, and other relevant science objects. All these entities are captured through the semantic wiki user interface, represented as semantic web objects, and exported as linked data.

  1. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  2. Computer Resources | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  3. Computer Science | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  4. How can computers support, enrich, and transform collaborative creativity

    DEFF Research Database (Denmark)

    Dalsgaard, Peter; Inie, Nanna; Hansen, Nicolai Brodersen

    2017-01-01

    of different approaches to providing digital support for collaborative creativity. Participation in the workshop requires participants to actively document and identify salient themes in one or more examples of computer- supported collaborative creativity, and the resulting material will serve as the empirical...

  5. International collaboration in the history of science of Central Europe

    Directory of Open Access Journals (Sweden)

    Soňa ŠTRBÁŇOVÁ

    2015-12-01

    Full Text Available In the last ten years, approximately, we could witness an evolution in informal international collaboration focusing on shared and interconnected history of science in the Habsburg Monarchy and in Central Europe in general. This effort, which includes mainly historians of science from Austria, Czech Republic, Hungary and Poland, has already produced a number of important results and contributed to the thematization of some timeless topics of history of sciences such as, for instance, nationalization and internationalization of science. In the context of this cooperation, the seminar of Jan Surman, a historian of science of Polish descent, held at the Institute of Contemporary History of the Czech Academy of Sciences in Prague in May 2015, concentrated on the formation of national scientific terminologies. It also underlined the necessity and usefulness of international collaboration in achieving a deeper understanding of the “national” histories of science, which cannot be separated from the “international” history.

  6. Almost Drowning: Data as a Troubling Anchor in an Arts/Social Science Collaboration

    Directory of Open Access Journals (Sweden)

    Genevieve Durham-DeCesaro MFA

    2014-02-01

    Full Text Available This article highlights fissures between the disciplines of dance and social sciences in approaching and valuing data and offers creative solutions for dancers and choreographers working collaboratively with scholars and artists in other disciplines. We locate our challenges in our divergent relationships with social science data, using the divergence as a framework for exploring discipline-specific practices as unintended roadblocks in collaborative, transdisciplinary research. We propose that the structure of our collaboration, particularly our unique pairing of dance and social science, and our emergent discoveries have implications beyond our home disciplines and promise to advance the growing enterprise of transdisciplinary collaboration.

  7. Breaking the Boundaries: Academic Applications of Multidisciplinary Research in Computer Science and Dentistry

    Directory of Open Access Journals (Sweden)

    Patricia Witt

    2016-12-01

    Full Text Available Undergrad students are trained on a specific set of skills matching their corresponding careers, as modern sciences trend to specialization; however, it has promoted the creation of a virtual boundary among different professions. In this regard, state-of-the-art dental research involves the application of ever-increasing complex computational solutions; thus, requiring of multidisciplinary research teams. Multidisciplinarity is often achieved on a higher research context (e.g., postgrad; but involves a high degree of difficulty for both factions. The aim of this work is to present a novel application of multidisciplinary research to the learning process of undergrad students in computer sciences and dentistry careers. In order to do so, we leveraged previous research on computational intelligence and image processing techniques applied to dental diagnosis, and integrated it with the clinical assessment and software engineering subjects on dental and computer engineering careers correspondently. With this, we explored the possibility to enhance diagnosis skills of dental students, while improving the software engineering skills of computer sciences students; furthermore, we intended to introduce the concepts of applied computational intelligence, multidisciplinarity, and collaboration on both sides.

  8. Making Science Matter: Collaborations between Informal Science Education Organizations and Schools. A CAISE Inquiry Group Report. Executive Summary

    Science.gov (United States)

    Center for Advancement of Informal Science Education, 2010

    2010-01-01

    Throughout the world, and for many decades, science-rich cultural institutions, such as zoos, aquaria, museums, and others, have collaborated with schools to provide students, teachers and families with opportunities to expand their experiences and understanding of science. However, these collaborations have generally failed to institutionalize:…

  9. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  10. Computability, complexity, and languages fundamentals of theoretical computer science

    CERN Document Server

    Davis, Martin D; Rheinboldt, Werner

    1983-01-01

    Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expa

  11. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  12. The Need for Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  13. A Framework on Collaboration: an Interdisciplinary Project across Multiple Colleges

    OpenAIRE

    Andis Kwan; Lin Leung; Xiangdong Li; Michael Anshel

    2007-01-01

    The order of complexity in carrying out collaborative research at multiple campuses poses a challenge to standard knowledge management systems. In this paper, we present a collaboration framework in which computer science students work in partnership with computer scientists, mathematicians and physicists on an emerging field of research, quantum information science. We first develop a few heuristic criteria to determine the rationale that makes project a successful one. We then demonstrate t...

  14. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  15. Exploring the effects of developing collaboration in a primary science teacher community

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe

    2010-01-01

    This paper presents findings from a qualitative study to explore factors that may facilitate sustainable changes of collaboration in a primary science teacher community in one school. The context for this study is a development project aimed at improving science teaching by changing teacher......’s collective work in schools and developing network between schools. The objective is to improve the collaboration within primary science teacher communities on sharing best practice and developing new ways of teaching. This study represents an in-depth approach to explore possibilities and constraints for how...... a development project can facilitate sustainable change in primary science teachers’ collaboration. The purpose of the research project introduced here is to examine closer, why many development projects fail to produce sustainable results. The framework of McLaughlin and Talbert (2006) on building teacher...

  16. Developments in Remote Collaboration and Computation

    International Nuclear Information System (INIS)

    Burruss, J.R.; Abla, G.; Flanagan, S.; Keahey, K.; Leggett, T.; Ludesche, C.; McCune, D.; Papka, M.E.; Peng, Q.; Randerson, L.; Schissel, D.P.

    2005-01-01

    The National Fusion Collaboratory (NFC) is creating and deploying collaborative software tools to unite magnetic fusion research in the United States. In particular, the NFC is developing and deploying a national FES 'Grid' (FusionGrid) for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid is to allow scientists at remote sites to participate as fully in experiments, machine design, and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community

  17. Collaboration in the Humanities, Arts and Social Sciences in Australia

    Science.gov (United States)

    Haddow, Gaby; Xia, Jianhong; Willson, Michele

    2017-01-01

    This paper reports on the first large-scale quantitative investigation into collaboration, demonstrated in co-authorship, by Australian humanities, arts and social sciences (HASS) researchers. Web of Science data were extracted for Australian HASS publications, with a focus on the softer social sciences, over the period 2004-2013. The findings…

  18. Improving together: collaborative learning in science communication

    Science.gov (United States)

    Stiller-Reeve, Mathew

    2015-04-01

    Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.

  19. Computational Science and Innovation

    International Nuclear Information System (INIS)

    Dean, David Jarvis

    2011-01-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  20. Using visualizations to support collaboration and coordination during computer-supported collaborative learning

    NARCIS (Netherlands)

    Janssen, J.J.H.M.

    2008-01-01

    This thesis addresses the topic of computer-supported collaborative learning (CSCL in short). In a CSCL-environment, students work in small groups on complex and challenging tasks. Although the teacher guides this process at a distance, students have to regulate and monitor their own learning

  1. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  2. Collaboration between science teacher educators and science faculty from arts and sciences for the purpose of developing a middle childhood science teacher education program: A case study

    Science.gov (United States)

    Buck, Gayle A.

    1998-12-01

    The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the

  3. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  4. Intel: High Throughput Computing Collaboration: A CERN openlab / Intel collaboration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The Intel/CERN High Throughput Computing Collaboration studies the application of upcoming Intel technologies to the very challenging environment of the LHC trigger and data-acquisition systems. These systems will need to transport and process many terabits of data every second, in some cases with tight latency constraints. Parallelisation and tight integration of accelerators and classical CPU via Intel's OmniPath fabric are the key elements in this project.

  5. Collaborative e-Science Experiments and Scientific Workflows

    NARCIS (Netherlands)

    Belloum, A.; Inda, M.A.; Vasunin, D.; Korkhov, V.; Zhao, Z.; Rauwerda, H.; Breit, T.M.; Bubak, M.; Hertzberger, L.O.

    2011-01-01

    Recent advances in Internet and grid technologies have greatly enhanced scientific experiments' life cycle. In addition to compute- and data-intensive tasks, large-scale collaborations involving geographically distributed scientists and e-infrastructure are now possible. Scientific workflows, which

  6. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  7. Strategies for effective collaborative manuscript development in interdisciplinary science teams

    Science.gov (United States)

    Oliver, Samantha K.; Fergus, C. Emi; Skaff, Nicholas K.; Wagner, Tyler; Tan, Pang-Ning; Cheruvelil, Kendra Spence; Soranno, Patricia A.

    2018-01-01

    Science is increasingly being conducted in large, interdisciplinary teams. As team size increases, challenges can arise during manuscript development, where achieving one team goal (e.g., inclusivity) may be in direct conflict with other goals (e.g., efficiency). Here, we present strategies for effective collaborative manuscript development that draw from our experiences in an interdisciplinary science team writing collaborative manuscripts for six years. These strategies are rooted in six guiding principles that were important to our team: to create a transparent, inclusive, and accountable research team that promotes and protects team members who have less power to influence decision‐making while fostering creativity and productivity. To help alleviate the conflicts that can arise in collaborative manuscript development, we present the following strategies: understand your team composition, create an authorship policy and discuss authorship early and often, openly announce manuscript ideas, identify and communicate the type of manuscript and lead author management style, and document and describe authorship contributions. These strategies can help reduce the probability of group conflict, uphold individual and team values, achieve fair authorship practices, and increase science productivity.

  8. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  9. Science Leadership in an Era of Accountability: A Call for Collaboration.

    Science.gov (United States)

    Jorgenson, Olaf; MacDougall, Gregory; Llewellyn, Douglas

    2003-01-01

    Describes the roles of science leaders in identifying and implementing meaningful solutions to systemic weaknesses. Discusses accountability's impact on science leadership and collaboration for enacting reform. (Contains 16 references.) (YDS)

  10. Discovery of the Collaborative Nature of Science with Undergraduate Science Majors and Non-Science Majors through the Identification of Microorganisms Enriched in Winogradsky Columns.

    Science.gov (United States)

    Ramirez, Jasmine; Pinedo, Catalina Arango; Forster, Brian M

    2015-12-01

    Today's science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors' and majors' answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines.

  11. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  12. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for

  13. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  14. DISTRIBUTED LEADERSHIP COLLABORATION FACTORS TO SUPPORT IDEA GENERATION IN COMPUTER-SUPPORTED COLLABORATIVE e-LEARNING

    Directory of Open Access Journals (Sweden)

    Niki Lambropoulos

    2011-01-01

    Full Text Available This paper aims to identify, discuss and analyze students’ collaboration factors related to distributed leadership (DL, which correlates with interaction quality evident in idea generation. Scripting computer-supported collaborative e-learning (CSCeL activities based on DL can scaffold students’ interactions that support collaboration and promote idea generation. Furthermore, the associated tools can facilitate collaboration via scripting and shed light on students’ interactions and dialogical sequences. Such detailed planning can result in effective short e-courses. In this case study, 21 MSc students’ teams worked on a DL project within a 2-day e-course at the IT Institute (ITIN, France. The research methods involved a self-reported questionnaire; the Non-Negative Matrix Factorization (NNMF algorithm with qualitative analysis; and outcomes from the Social Network Analysis (SNA tools implemented within the forums. The results indicated that scripting DL based on the identified distributed leadership attributes can support values such as collaboration and can be useful in supporting idea generation in short e-courses.

  15. Women in global science advancing academic careers through international collaboration

    CERN Document Server

    Zippel, Kathrin

    2017-01-01

    Scientific and engineering research is increasingly global, and international collaboration can be essential to academic success. Yet even as administrators and policymakers extol the benefits of global science, few recognize the diversity of international research collaborations and their participants, or take gendered inequalities into account. Women in Global Science is the first book to consider systematically the challenges and opportunities that the globalization of scientific work brings to U.S. academics, especially for women faculty. Kathrin Zippel looks to the STEM fields as a case study, where gendered cultures and structures in academia have contributed to an underrepresentation of women. While some have approached underrepresentation as a national concern with a national solution, Zippel highlights how gender relations are reconfigured in global academia. For U.S. women in particular, international collaboration offers opportunities to step outside of exclusionary networks at home. International ...

  16. Fusion Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choong-Seock [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Riley, Katherine [Argonne Leadership Computing Facility, Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Andre, R. [TRANSP Group, Princeton, NJ (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bhattacharjee, Amitava [Princeton Univ., NJ (United States); Bonoli, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Boyd, Iain [Univ. of Michigan, Ann Arbor, MI (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cary, John R. [Tech-X Corporation, Boulder, CO (United States); Chen, Yang [Univ. of Colorado, Boulder, CO (United States); Curreli, Davide [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ernst, Darin R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Green, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hager, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hakim, Ammar [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hassanein, A. [Purdue Univ., West Lafayette, IN (United States); Hatch, David [Univ. of Texas, Austin, TX (United States); Held, E. D. [Utah State Univ., Logan, UT (United States); Howard, Nathan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Izzo, Valerie A. [Univ. of California, San Diego, CA (United States); Jardin, Steve [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Jenkins, T. G. [Tech-X Corp., Boulder, CO (United States); Jenko, Frank [Univ. of California, Los Angeles, CA (United States); Kemp, Andreas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Jacob [Tech-X Corp., Boulder, CO (United States); Kritz, Arnold [Lehigh Univ., Bethlehem, PA (United States); Krstic, Predrag [Stony Brook Univ., NY (United States); Kruger, Scott E. [Tech-X Corp., Boulder, CO (United States); Kurtz, Rick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lin, Zhihong [Univ. of California, Irvine, CA (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nandipati, Giridhar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pankin, A. Y. [Tech-X Corp., Boulder, CO (United States); Parker, Scott [Univ. of Colorado, Boulder, CO (United States); Perez, Danny [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pigarov, Alex Y. [Univ. of California, San Diego, CA (United States); Poli, Francesca [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Pueschel, M. J. [Univ. of Wisconsin, Madison, WI (United States); Rafiq, Tariq [Lehigh Univ., Bethlehem, PA (United States); Rübel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sizyuk, Valeryi A. [Purdue Univ., West Lafayette, IN (United States); Smithe, D. N. [Tech-X Corp., Boulder, CO (United States); Sovinec, C. R. [Univ. of Wisconsin, Madison, WI (United States); Turner, Miles [Dublin City University, Leinster (Ireland); Umansky, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, Jean-Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Verboncoeur, John [Michigan State Univ., East Lansing, MI (United States); Vincenti, Henri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Voter, Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Weixing [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Wright, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Yuan, X. [TRANSP Group, Princeton, NJ (United States)

    2017-02-01

    The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range of fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see http://exascaleage.org/fes/ for more information.

  17. Coordination theory and collaboration technology

    CERN Document Server

    Olson, Gary M; Smith, John B

    2001-01-01

    The National Science Foundation funded the first Coordination Theory and Collaboration Technology initiative to look at systems that support collaborations in business and elsewhere. This book explores the global revolution in human interconnectedness. It will discuss the various collaborative workgroups and their use in technology. The initiative focuses on processes of coordination and cooperation among autonomous units in human systems, in computer and communication systems, and in hybrid organizations of both systems. This initiative is motivated by three scientific issues which have been

  18. Computer and Information Sciences III : 27th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo

    2013-01-01

    Information technology is the enabling foundation science and technology for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 27th International Symposium on Computer and Information Systems, held at the Institut Henri Poincare' in Paris on October 3 and 4, 2012. Computer and Information Sciences III: 27th International Symposium on Computer and Information Sciences contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams ...

  19. Teacher collaboration and elementary science teaching: Using action research as a tool for instructional leadership

    Science.gov (United States)

    Roberts, Sara Hayes

    The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.

  20. Computer Science Research Institute 2004 annual report of activities.

    Energy Technology Data Exchange (ETDEWEB)

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2004 to December 31, 2004. During this period the CSRI hosted 166 visitors representing 81 universities, companies and laboratories. Of these 65 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 4 workshops. These 4 CSRI sponsored workshops had 140 participants--74 from universities, companies and laboratories, and 66 from Sandia. Finally, the CSRI sponsored 14 long-term collaborative research projects and 5 Sabbaticals.

  1. Computer Science Research Institute 2003 annual report of activities.

    Energy Technology Data Exchange (ETDEWEB)

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2003 to December 31, 2003. During this period the CSRI hosted 164 visitors representing 78 universities, companies and laboratories. Of these 78 were summer students or faculty members. The CSRI partially sponsored 5 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 178 participants--137 from universities, companies and laboratories, and 41 from Sandia. Finally, the CSRI sponsored 18 long-term collaborative research projects and 5 Sabbaticals.

  2. Computer Science Research Institute 2005 annual report of activities.

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Bernadette M.; Collis, Samuel Scott; Ceballos, Deanna Rose; Womble, David Eugene

    2008-04-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2005 to December 31, 2005. During this period, the CSRI hosted 182 visitors representing 83 universities, companies and laboratories. Of these, 60 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 105 participants, 78 from universities, companies and laboratories, and 27 from Sandia. Finally, the CSRI sponsored 12 long-term collaborative research projects and 3 Sabbaticals.

  3. Sustainable computational science: the ReScience initiative

    Directory of Open Access Journals (Sweden)

    Nicolas P. Rougier

    2017-12-01

    Full Text Available Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested and are hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.

  4. Bringing computational science to the public.

    Science.gov (United States)

    McDonagh, James L; Barker, Daniel; Alderson, Rosanna G

    2016-01-01

    The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.

  5. Theory and computational science

    International Nuclear Information System (INIS)

    Durham, P.

    1985-01-01

    The theoretical and computational science carried out at the Daresbury Laboratory in 1984/5 is detailed in the Appendix to the Daresbury Annual Report. The Theory, Computational Science and Applications Groups, provide support work for the experimental projects conducted at Daresbury. Use of the FPS-164 processor is also described. (U.K.)

  6. Computer-Mediated Collaborative Projects: Processes for Enhancing Group Development

    Science.gov (United States)

    Dupin-Bryant, Pamela A.

    2008-01-01

    Groups are a fundamental part of the business world. Yet, as companies continue to expand internationally, a major challenge lies in promoting effective communication among employees who work in varying time zones. Global expansion often requires group collaboration through computer systems. Computer-mediated groups lead to different communicative…

  7. East-west collaboration in nuclear science

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen

    2002-01-01

    The Sandarski-2 meeting on east-west collaborations in nuclear sciences was held in May 2001 in Bulgaria with 115 participants from 17 European countries, Usa, Japan and Russia (Dubna). The scientific included 66 oral contributions. During the last decade Eastern Europe has undergone substantial political and economic changes. These changes have had a decisive impact on the scientific community in these countries, because the support for basic and applied science has decreased dramatically due to the collapse of economic systems. It should noted that there are still good resources: experimental installations, technical and scientific manpower and a well trained human intellectual reserve but conditions differ strongly from one institute to another. Many national and European institutions have set up support programs for the funding of local activities for scientists in their eastern institutions or by funding collaborations between eastern and western scientists. Many highly specialized eastern scientists work now in Europe, the Usa and Japan but the brain drain from the poorest eastern countries is a real problem. One recommendation put forward at this meeting is the creation of European structures for the support of scientists in their eastern home institutions in such a way that they can return and continue to work at home. (A.C.)

  8. Scientific Discovery through Advanced Computing in Plasma Science

    Science.gov (United States)

    Tang, William

    2005-03-01

    per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.

  9. Collaboration, Interdisciplinarity, and the Epistemology of Contemporary Science

    DEFF Research Database (Denmark)

    Andersen, Hanne

    2016-01-01

    shall provide a new account of the structure and development of contemporary science based on analyses of, first, cognitive resources and their relations to domains, and second of the distribution of cognitive resources among collaborators and the epistemic dependence that this distribution implies...

  10. Collaborative Computer Graphics Product Development between Academia and Government: A Dynamic Model

    Science.gov (United States)

    Fowler, Deborah R.; Kostis, Helen-Nicole

    2016-01-01

    Collaborations and partnerships between academia and government agencies are common, especially when it comes to research and development in the fields of science, engineering and technology. However, collaboration between a government agency and an art school is rather atypical. This paper presents the Collaborative Student Project, which aims to explore the following challenge: The ideation, development and realization of education and public outreach products for NASAs upcoming ICESat-2 mission in collaboration with art students.

  11. Computer science a concise introduction

    CERN Document Server

    Sinclair, Ian

    2014-01-01

    Computer Science: A Concise Introduction covers the fundamentals of computer science. The book describes micro-, mini-, and mainframe computers and their uses; the ranges and types of computers and peripherals currently available; applications to numerical computation; and commercial data processing and industrial control processes. The functions of data preparation, data control, computer operations, applications programming, systems analysis and design, database administration, and network control are also encompassed. The book then discusses batch, on-line, and real-time systems; the basic

  12. ART-SCIENCE OF THE SPACE AGE: towards a platform for art-science collaborations at ESTEC

    Science.gov (United States)

    Domnitch, E.; Gelfand, D.

    2015-10-01

    In 2013, in collaboration with ESTEC scientist Bernard Foing and the ArtScience Interfaculty (Royal Academy of the Arts, The Hague), Synergetica Lab (Amsterdam) developed a course, which was repeated in 2015, for bachelor's and master's students aimed at seeding interactions with ESA researchers. The participants created artworks investigating space travel, radio astronomy, microgravity, ecosynthesis as well as extraterrestrial physics and architecture [1] [2]. After their initial presentation at the Royal Academy, these artworks were shown at ESTEC, TodaysArt Festival (The Hague), and TEC ART (Rotterdam). These presentations prompted diverse future collaborations and outreach opportunities, including the European Planetary Science Congress 2014 (Cascais) and the AxS Festival (Los Angeles).

  13. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  14. A Framework on Collaboration: an Interdisciplinary Project across Multiple Colleges

    Directory of Open Access Journals (Sweden)

    Andis Kwan

    2007-06-01

    Full Text Available The order of complexity in carrying out collaborative research at multiple campuses poses a challenge to standard knowledge management systems. In this paper, we present a collaboration framework in which computer science students work in partnership with computer scientists, mathematicians and physicists on an emerging field of research, quantum information science. We first develop a few heuristic criteria to determine the rationale that makes project a successful one. We then demonstrate that our knowledge management systems produce publishable results and grant proposals within our framework.

  15. Hardly Rocket Science: Collaboration with Math and Science Teachers Doesn't Need to Be Complicated

    Science.gov (United States)

    Minkel, Walter

    2004-01-01

    While librarians routinely collaborate with reading and humanities teachers, they rarely partner with teachers of math and science--to the loss of students. With the current emphasis on standardized testing and declining student performance in math and science, media specialists need to remedy this situation. Why don't librarians click with…

  16. Grid computing : enabling a vision for collaborative research

    International Nuclear Information System (INIS)

    von Laszewski, G.

    2002-01-01

    In this paper the authors provide a motivation for Grid computing based on a vision to enable a collaborative research environment. The authors vision goes beyond the connection of hardware resources. They argue that with an infrastructure such as the Grid, new modalities for collaborative research are enabled. They provide an overview showing why Grid research is difficult, and they present a number of management-related issues that must be addressed to make Grids a reality. They list projects that provide solutions to subsets of these issues

  17. The sociability of computer-supported collaborative learning environments

    NARCIS (Netherlands)

    Kreijns, C.J.; Kirschner, P.A.; Jochems, W.M.G.

    2002-01-01

    There is much positive research on computer-supported collaborative learning (CSCL) environments in asynchronous distributed learning groups (DLGs). There is also research that shows that contemporary CSCL environments do not completely fulfil expectations on supporting interactive group learning,

  18. Toward Impactful Collaborations on Computing and Mental Health.

    Science.gov (United States)

    Calvo, Rafael Alejandro; Dinakar, Karthik; Picard, Rosalind; Christensen, Helen; Torous, John

    2018-02-09

    We describe an initiative to bring mental health researchers, computer scientists, human-computer interaction researchers, and other communities together to address the challenges of the global mental ill health epidemic. Two face-to-face events and one special issue of the Journal of Medical Internet Research were organized. The works presented in these events and publication reflect key state-of-the-art research in this interdisciplinary collaboration. We summarize the special issue articles and contextualize them to present a picture of the most recent research. In addition, we describe a series of collaborative activities held during the second symposium and where the community identified 5 challenges and their possible solutions. ©Rafael Alejandro Calvo, Karthik Dinakar, Rosalind Picard, Helen Christensen, John Torous. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 09.02.2018.

  19. Seamless Provenance Representation and Use in Collaborative Science Scenarios

    Science.gov (United States)

    Missier, P.; Ludaescher, B.; Bowers, S.; Altintas, I.; Anand, M. K.; Dey, S.; Sarkar, A.; Shrestha, B.; Goble, C.

    2010-12-01

    The notion of sharing scientific data has only recently begun to gain ground in science, where data is still considered a private asset. There is growing evidence, however, that the benefits of scientific collaboration through early data sharing during the course of a science project may outgrow the risk of losing exclusive ownership of the data. As exemplar success stories are making the headlines[1], principles of effective information sharing have become the subject of e-science research. In particular, any piece of published data should be self-describing, to the extent necessary for consumers to determine its suitability for reuse in their own projects. This is accomplished by associating a body of formally specified and machine-processable metadata to the data. When data is produced and reused by independent groups, however, metadata interoperability issues emerge. This is the case for provenance, a form of metadata that describes the history of a data product, Y. Provenance is typically expressed as a graph-structured set of dependencies that account for the sequence of computational or interactive steps that led to Y, often starting from some primary, observational data. Traversing dependency graphs is one of the mechanisms used to answer questions on data reliability. In the context of the NSF DataONE project[2], we have been studying issues of provenance interoperability in scientific collaboration scenarios. Consider a first scientist, Alice, who publishes a data product X along with its provenance, and a second scientist who further transforms X into a new product Y, also along with its provenance. A third scientist, who is interested in Y, expects to be able to trace Y's history up to the inputs used by Alice. This is only possible, however, if provenance accumulates into a single, uniform graph that can be seamlessly traversed. This becomes problematic when provenance is captured using different tools and computational models (i.e. workflow systems

  20. The Effects of Mobile-Computer-Supported Collaborative Learning: Meta-Analysis and Critical Synthesis

    Science.gov (United States)

    Sung, Yao-Ting; Yang, Je-Ming; Lee, Han-Yueh

    2017-01-01

    One of the trends in collaborative learning is using mobile devices for supporting the process and products of collaboration, which has been forming the field of mobile-computer-supported collaborative learning (mCSCL). Although mobile devices have become valuable collaborative learning tools, evaluative evidence for their substantial…

  1. Science as a Common Language in a Globalised World - Scientific Collaboration Promoting Progress, Building Bridges

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2003-01-01

    International scientific collaboration and co-operation can accelerate the progress of science, help build bridges between diverse societies, and foster the development of science and technology in non-industrialised countries. This is possible because science is a common language (although the progress of science is often influenced by non-scientific factors). I shall describe examples of the role that scientific collaboration can play in bridge building and in conflict resolution. I shall then present a proposal for "Bridge Building Fellowships" which would contribute to strengthening scientific capacity in developing countries by helping to stem the brain drain and providing a basis for collaborations with scientists in industrialised countries.

  2. D4SCIENCE-II - Report on inter-projects coordination and collaboration

    OpenAIRE

    Castelli, Donatella; Zoppi, Franco

    2010-01-01

    This deliverable reports on the collaborations with other FP7 projects and R&D programmes established by D4Science-II from the beginning of the project until July 2010. The collaborations described are of different nature, as they range from purely technical exchanges involving mutual exploitation of technologies to the sharing of e- Infrastructure resources and to the joint organization of networking and dissemination events. The deliverable presents these collaborations clustered into: (i) ...

  3. Successful Implementation of a Computer-Supported Collaborative Learning System in Teaching E-Commerce

    Science.gov (United States)

    Ngai, E. W. T.; Lam, S. S.; Poon, J. K. L.

    2013-01-01

    This paper describes the successful application of a computer-supported collaborative learning system in teaching e-commerce. The authors created a teaching and learning environment for 39 local secondary schools to introduce e-commerce using a computer-supported collaborative learning system. This system is designed to equip students with…

  4. Computer Science and the Liberal Arts

    Science.gov (United States)

    Shannon, Christine

    2010-01-01

    Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…

  5. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  6. Zebrafish in Brazilian Science: Scientific Production, Impact, and Collaboration.

    Science.gov (United States)

    Gheno, Ediane Maria; Rosemberg, Denis Broock; Souza, Diogo Onofre; Calabró, Luciana

    2016-06-01

    By means of scientometric indicators, this study investigated the characteristics of scientific production and research collaboration involving zebrafish (Danio rerio) in Brazilian Science indexed by the Web of Science (WoS). Citation data were collected from the WoS and data regarding Impact Factor (IF) were gathered from journals in the Journal Citation Reports. Collaboration was evaluated according to coauthorship data, creating representative nets with VOSviewer. Zebrafish has attained remarkable importance as an experimental model organism in recent years and an increase in scientific production with zebrafish is observed in Brazil and around the world. The citation impact of the worldwide scientific production is superior when compared to the Brazilian scientific production. However, the citation impact of the Brazilian scientific production is consistently increasing. Brazil does not follow the international trends with regard to publication research fields. The state of Rio Grande do Sul has the greatest number of articles and the institution with the largest number of publications is Pontifícia Universidade Católica do Rio Grande do Sul. Journals' average IF is higher in Brazilian publications with international coauthorship, and around 90% of articles are collaborative. The Brazilian institutions presenting the greatest number of collaborations are Pontifícia Universidade Católica do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Fundação Universidade Federal de Rio Grande, and Universidade de São Paulo. These data indicate that Brazilian research using zebrafish presents a growth in terms of number of publications, citation impact, and collaborative work.

  7. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY

    International Nuclear Information System (INIS)

    FENG, H.; JONES, K.W.; MCGUIGAN, M.; SMITH, G.J.; SPILETIC, J.

    2001-01-01

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data

  8. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  9. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  10. Collaborative Computational Project for Electron cryo-Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  11. Collaborative Computational Project for Electron cryo-Microscopy

    International Nuclear Information System (INIS)

    Wood, Chris; Burnley, Tom; Patwardhan, Ardan; Scheres, Sjors; Topf, Maya; Roseman, Alan; Winn, Martyn

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed

  12. Quantum computer science

    CERN Document Server

    Lanzagorta, Marco

    2009-01-01

    In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distin

  13. Activity-Based Support for Mobility and Collaboration in Ubiquitous Computing

    DEFF Research Database (Denmark)

    Bardram, Jacob Eyvind

    2004-01-01

    is to: (1) support human activity by managing its collection of work tasks on a computer, (2) support mobility by distributing activities across heterogeneous computing environments, (3) support asynchronous collaboration by allowing several people to participate in an activity, and (4) support...

  14. Computer-games for gravitational wave science outreach: Black Hole Pong and Space Time Quest

    International Nuclear Information System (INIS)

    Carbone, L; Bond, C; Brown, D; Brückner, F; Grover, K; Lodhia, D; Mingarelli, C M F; Fulda, P; Smith, R J E; Unwin, R; Vecchio, A; Wang, M; Whalley, L; Freise, A

    2012-01-01

    We have established a program aimed at developing computer applications and web applets to be used for educational purposes as well as gravitational wave outreach activities. These applications and applets teach gravitational wave physics and technology. The computer programs are generated in collaboration with undergraduates and summer students as part of our teaching activities, and are freely distributed on a dedicated website. As part of this program, we have developed two computer-games related to gravitational wave science: 'Black Hole Pong' and 'Space Time Quest'. In this article we present an overview of our computer related outreach activities and discuss the games and their educational aspects, and report on some positive feedback received.

  15. Collaborative production indicators in information architecture

    Directory of Open Access Journals (Sweden)

    Zayr Claudio Gomes da Silva

    2017-04-01

    Full Text Available Information architecture is considered a strategic domain of collaborative production of Information Science. We describe the conditions of collaborative production in information architecture, considering it a sub-area of the study of Information Science. In order to do so, we specifically address indicators of scientific production that include topics of study, typology and authorship, postgraduate programs and areas to which it is linked, among others. This is an exploratory and descriptive research. The scientific production of the National Meeting of Information Science Research (ENANCIB, from 2003 to 2013, is mapped in the "Network Matters" repository. Bibliometry is used to identify paratextual and textual elements that form evidence of collaborative production in information architecture. We verified the plurality in the academic formation of the researchers that approach information architecture, the sharing of languages, some indications of the disciplinary convergences from the collaboration in coauthorship, as well as a plexus of relations through the indirect citations that represent the sharing of elements Theoretical-methodological approaches in interdisciplinary production. In addition, the academic training of the researchers with the highest productivity index is mainly related to Librarianship and Computer Science. The collaborative production in the information architecture is presented as a multidisciplinary production process, constituting a convergent domain that allows the effectiveness of interdisciplinary practices in Information Science.

  16. Factors that impact interdisciplinary natural science research collaboration in academia

    DEFF Research Database (Denmark)

    Maglaughlin, Kelly L.; Sonnenwald, Diane H.

    2005-01-01

    to provide a more comprehensive understanding of interdisciplinary scientific research collaboration within the natural sciences in academia. Data analysis confirmed factors previously identified in various literatures and yielded new factors. A total of twenty factors were identified, and classified......Interdisciplinary collaboration occurs when people with different educational and research backgrounds bring complementary skills to bear on a problem or task. The strength of interdisciplinary scientific research collaboration is its capacity to bring together diverse scientific knowledge...... to address complex problems and questions. However, interdisciplinary scientific research can be difficult to initiate and sustain. We do not yet fully understand factors that impact interdisciplinary scientific research collaboration. This study synthesizes empirical data from two empirical studies...

  17. Advanced in Computer Science and its Applications

    CERN Document Server

    Yen, Neil; Park, James; CSA 2013

    2014-01-01

    The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.

  18. Computer and information science

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016) which was held on June 26– 29 in Okayama, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 12 of the conference’s most promising...

  19. Cultivating Collaborations: Site Specific Design for Embodied Science Learning.

    Science.gov (United States)

    Gill, Katherine; Glazier, Jocelyn; Towns, Betsy

    2018-05-21

    Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.

  20. Analysis and Assessment of Computer-Supported Collaborative Learning Conversations

    NARCIS (Netherlands)

    Trausan-Matu, Stefan

    2008-01-01

    Trausan-Matu, S. (2008). Analysis and Assessment of Computer-Supported Collaborative Learning Conversations. Workshop presentation at the symposium Learning networks for professional. November, 14, 2008, Heerlen, Nederland: Open Universiteit Nederland.

  1. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  2. Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning

    Science.gov (United States)

    Lee, Dong-Kuk; Lee, Eun-Sang

    2016-01-01

    The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…

  3. Computing handbook computer science and software engineering

    CERN Document Server

    Gonzalez, Teofilo; Tucker, Allen

    2014-01-01

    Overview of Computer Science Structure and Organization of Computing Peter J. DenningComputational Thinking Valerie BarrAlgorithms and Complexity Data Structures Mark WeissBasic Techniques for Design and Analysis of Algorithms Edward ReingoldGraph and Network Algorithms Samir Khuller and Balaji RaghavachariComputational Geometry Marc van KreveldComplexity Theory Eric Allender, Michael Loui, and Kenneth ReganFormal Models and Computability Tao Jiang, Ming Li, and Bala

  4. Teacher regulation of multiple computer-supported collaborating groups

    NARCIS (Netherlands)

    Van Leeuwen, Anouschka; Janssen, Jeroen; Erkens, Gijsbert; Brekelmans, Mieke

    2015-01-01

    Teachers regulating groups of students during computer-supported collaborative learning (CSCL) face the challenge of orchestrating their guidance at student, group, and class level. During CSCL, teachers can monitor all student activity and interact with multiple groups at the same time. Not much is

  5. Computational Science at the Argonne Leadership Computing Facility

    Science.gov (United States)

    Romero, Nichols

    2014-03-01

    The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

  6. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  7. The Importance of Computer Science for Public Health Training: An Opportunity and Call to Action.

    Science.gov (United States)

    Kunkle, Sarah; Christie, Gillian; Yach, Derek; El-Sayed, Abdulrahman M

    2016-01-01

    A century ago, the Welch-Rose Report established a public health education system in the United States. Since then, the system has evolved to address emerging health needs and integrate new technologies. Today, personalized health technologies generate large amounts of data. Emerging computer science techniques, such as machine learning, present an opportunity to extract insights from these data that could help identify high-risk individuals and tailor health interventions and recommendations. As these technologies play a larger role in health promotion, collaboration between the public health and technology communities will become the norm. Offering public health trainees coursework in computer science alongside traditional public health disciplines will facilitate this evolution, improving public health's capacity to harness these technologies to improve population health.

  8. Cloud computing for genomic data analysis and collaboration.

    Science.gov (United States)

    Langmead, Ben; Nellore, Abhinav

    2018-04-01

    Next-generation sequencing has made major strides in the past decade. Studies based on large sequencing data sets are growing in number, and public archives for raw sequencing data have been doubling in size every 18 months. Leveraging these data requires researchers to use large-scale computational resources. Cloud computing, a model whereby users rent computers and storage from large data centres, is a solution that is gaining traction in genomics research. Here, we describe how cloud computing is used in genomics for research and large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.

  9. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    Science.gov (United States)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  10. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  11. Science Camps in Europe--Collaboration with Companies and School, Implications and Results on Scientific Literacy

    Science.gov (United States)

    Lindner, M.; Kubat, C.

    2014-01-01

    The paper informs on the characteristics of a Comenius Network of seven organizations, who are collaborating in exchanging best practice on science camps. This exchange includes evaluation results on more science camps of European organizations, which will deliver information on organization, collaboration with companies, pedagogical aspects, as…

  12. Forging a link between mentoring and collaboration: a new training model for implementation science.

    Science.gov (United States)

    Luke, Douglas A; Baumann, Ana A; Carothers, Bobbi J; Landsverk, John; Proctor, Enola K

    2016-10-13

    Training investigators for the rapidly developing field of implementation science requires both mentoring and scientific collaboration. Using social network descriptive analyses, visualization, and modeling, this paper presents results of an evaluation of the mentoring and collaborations fostered over time through the National Institute of Mental Health (NIMH) supported by Implementation Research Institute (IRI). Data were comprised of IRI participant self-reported collaborations and mentoring relationships, measured in three annual surveys from 2012 to 2014. Network descriptive statistics, visualizations, and network statistical modeling were conducted to examine patterns of mentoring and collaboration among IRI participants and to model the relationship between mentoring and subsequent collaboration. Findings suggest that IRI is successful in forming mentoring relationships among its participants, and that these mentoring relationships are related to future scientific collaborations. Exponential random graph network models demonstrated that mentoring received in 2012 was positively and significantly related to the likelihood of having a scientific collaboration 2 years later in 2014 (p = 0.001). More specifically, mentoring was significantly related to future collaborations focusing on new research (p = 0.009), grant submissions (p = 0.003), and publications (p = 0.017). Predictions based on the network model suggest that for every additional mentoring relationships established in 2012, the likelihood of a scientific collaboration 2 years later is increased by almost 7 %. These results support the importance of mentoring in implementation science specifically and team science more generally. Mentoring relationships were established quickly and early by the IRI core faculty. IRI fellows reported increasing scientific collaboration of all types over time, including starting new research, submitting new grants, presenting research results, and

  13. Collaboration in Computer Conferencing

    OpenAIRE

    Andriessen, Jerry

    2006-01-01

    We have been experimenting with web based electronic conferencing (CMC) at the Educational Science Department of Utrecht University for a period of nearly 10 years now. Obstacles such as insufficient participation, the low quality of messages and the integration of CMC in a course have been overcome and nowadays many of our students appear actively engaged with knowledge construction activities (Veerman, 2000). While we may have succeeded in organizing interesting computer conferences, things...

  14. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  15. A Framework for Collaborative and Convenient Learning on Cloud Computing Platforms

    Science.gov (United States)

    Sharma, Deepika; Kumar, Vikas

    2017-01-01

    The depth of learning resides in collaborative work with more engagement and fun. Technology can enhance collaboration with a higher level of convenience and cloud computing can facilitate this in a cost effective and scalable manner. However, to deploy a successful online learning environment, elementary components of learning pedagogy must be…

  16. Improved Targeting Through Collaborative Decision-Making and Brain Computer Interfaces

    Science.gov (United States)

    Stoica, Adrian; Barrero, David F.; McDonald-Maier, Klaus

    2013-01-01

    This paper reports a first step toward a brain-computer interface (BCI) for collaborative targeting. Specifically, we explore, from a broad perspective, how the collaboration of a group of people can increase the performance on a simple target identification task. To this end, we requested a group of people to identify the location and color of a sequence of targets appearing on the screen and measured the time and accuracy of the response. The individual results are compared to a collective identification result determined by simple majority voting, with random choice in case of drawn. The results are promising, as the identification becomes significantly more reliable even with this simple voting and a small number of people (either odd or even number) involved in the decision. In addition, the paper briefly analyzes the role of brain-computer interfaces in collaborative targeting, extending the targeting task by using a BCI instead of a mechanical response.

  17. Factors influencing exemplary science teachers' levels of computer use

    Science.gov (United States)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to

  18. Computer Supported Collaborative Learning (CSCL): interview met Pierre Dillenbourg

    NARCIS (Netherlands)

    Lambert Berenbroek

    2005-01-01

    Pierre Dillenbourg has proved by many articles and speeches to be a hands-on expert on the subject of collaborative learning. He started in 1976 as an Elementary school teacher; he graduated in 1996 in educational and psychological sciences and became PhD in artificial intelligence. At the moment

  19. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  20. The effects of collaborative concept mapping on the achievement, science self-efficacy and attitude toward science of female eighth-grade students

    Science.gov (United States)

    Ledger, Antoinette Frances

    This study sought to examine whether collaborative concept mapping would affect the achievement, science self-efficacy and attitude toward science of female eighth grade science students. The research questions are: (1) Will the use of collaborative concept mapping affect the achievement of female students in science? (2) Will the use of collaborative concept mapping affect the science self-efficacy of female students? (3) Will the use of collaborative concept mapping affect the attitudes of females toward science? The study was quasi-experimental and utilized a pretest-posttest design for both experimental and control groups. Eighth grade female and male students from three schools in a large northeastern school district participated in this study. The achievement test consisted of 10 multiple choice and two open-response questions and used questions from state-wide and national assessments as well as teacher-constructed items. A 29 item Likert type instrument (McMillan, 1992) was administered to measure science self-efficacy and attitude toward science. The study was of 12 weeks duration. During the study, experimental group students were asked to perform collaborative concept map construction in single sex dyads using specific terms designated by the classroom teacher and the researcher. During classroom visitations, student perceptions of collaborative concept mapping were collected and were used to provide insight into the results of the quantitative data analysis. Data from the pre and posttest instruments were analyzed for both experimental and control groups using t-tests. Additionally, the three teachers were interviewed and their perceptions of the study were also used to gain insight into the results of the study. The analysis of data showed that experimental group females showed significantly higher gains in achievement than control group females. An additional analysis of data showed experimental group males showed significantly greater gains in

  1. Creative Collaborative Exploration in Multiple Environments

    DEFF Research Database (Denmark)

    Overholt, Daniel; Turk, Matthew; Hollerer, Tobias

    2008-01-01

    We seek to support creativity in science, engineering, and design applications by building infrastructure that offers new capabilities for creative collaborative exploration of complex data in a variety of non-traditional computing environments. We describe particular novel environments and devic...

  2. Classic Conversational Norms in Modern Computer-Mediated Collaboration

    Science.gov (United States)

    Oeberst, Aileen; Moskaliuk, Johannes

    2016-01-01

    This paper examines whether conversational norms that have been observed for face-to-face communication also hold in the context of a specific type of computer-mediated communication: collaboration (such as in Wikipedia). Specifically, we tested adherence to Grice's (1975) maxim of relation--the implicit demand to contribute information that is…

  3. Scripting intercultural computer-supported collaborative learning in higher education

    NARCIS (Netherlands)

    Popov, V.

    2013-01-01

    Introduction of computer-supported collaborative learning (CSCL), specifically in an intercultural learning environment, creates both challenges and benefits. Among the challenges are the coordination of different attitudes, styles of communication, and patterns of behaving. Among the benefits are

  4. Discovery of the Collaborative Nature of Science with Undergraduate Science Majors and Non-Science Majors through the Identification of Microorganisms Enriched in Winogradsky Columns

    Directory of Open Access Journals (Sweden)

    Jasmine Ramirez

    2015-08-01

    Full Text Available Today’s science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors’ and majors’ answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory

  5. Volunteer Computing for Science Gateways

    OpenAIRE

    Anderson, David

    2017-01-01

    This poster offers information about volunteer computing for science gateways that offer high-throughput computing services. Volunteer computing can be used to get computing power. This increases the visibility of the gateway to the general public as well as increasing computing capacity at little cost.

  6. Citizen Science in Libraries: Results and Insights from a Unique NASA Collaboration

    Science.gov (United States)

    Janney, D. W.; Schwerin, T. G.; Riebeek Kohl, H.; Dusenbery, P.; LaConte, K.; Taylor, J.; Weaver, K. L. K.

    2017-12-01

    Libraries are local community centers and hubs for learning, with more and more libraries responding to the need to increase science literacy and support 21st century skills by adding STEM programs and resources for patrons of all ages. A collaboration has been developed between two NASA Science Mission Directorate projects - the NASA Earth Science Education Collaborative and NASA@ My Library - each bringing unique STEM assets and networks to support library staff and bring authentic STEM experiences and resources to learners in public library settings. The collaboration used Earth Day 2017 as a high profile event to engage and support 100 libraries across the U.S. (>50% serving rural communities), in developing locally-relevant programs and events that incorporated cloud observing and resources using NASA GLOBE Observer (GO) citizen science program. GO cloud observations are helping NASA scientists understand clouds from below (the ground) and above (from space). Clouds play an important role in transferring energy from the Sun to different parts of the Earth system. Because clouds can change rapidly, scientists need frequent observations from citizen scientists. Insights from the library focus groups and evaluation include promising practices, requested resources, programming ideas and approaches, particularly approaches to leveraging NASA subject matter experts and networks, to support local library programming.

  7. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  8. Student involvement in learning: Collaboration in science for PreService elementary teachers

    Science.gov (United States)

    Roychoudhury, Anita; Roth, Wolff-Michael

    1992-03-01

    The present study provided insights regarding the interactions that take place in collaborative science laboratory and regarding the outcome of such interactions. Science laboratory experiences structured by teachers have been criticized for allowing very little, if any, meaningful learning. However, this study showed that even structured laboratory experiments can provide insightful experience for students when conducted in a group setting that demanded interactive participation from all its members. The findings of the present study underscored the synergistic and supportive nature of collaborative groups. Here, students patiently repeated explanations to support the meaning construction on the part of their slower peers and elaborated their own understanding in the process; groups negotiated the meaning of observations and the corresponding theoretical explanations; students developed and practiced a range of social skills necessary in today’s workplace; and off-task behavior was thwarted by the group members motivated to work toward understanding rather than simply generating answers for task completion. The current findings suggest an increased use of collaborative learning environments for the teaching of science to elementary education majors. Some teachers have already made use of such settings in their laboratory teaching. However, collaborative learning should not be limited to the laboratory only, but be extended to more traditionally structured classes. The effects of such a switch in activity structures, increased quality of peer interaction, mastery of subject matter content, and decreased anxiety levels could well lead to better attitudes toward science among preservice elementary school teachers and eventually among their own students.

  9. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  10. Collaborative and Competitive Video Games for Teaching Computing in Higher Education

    Science.gov (United States)

    Smith, Spencer; Chan, Samantha

    2017-01-01

    This study measures the success of using a collaborative and competitive video game, named Space Race, to teach computing to first year engineering students. Space Race is played by teams of four, each with their own tablet, collaborating to compete against the other teams in the class. The impact of the game on student learning was studied…

  11. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  12. Demystifying computer science for molecular ecologists.

    Science.gov (United States)

    Belcaid, Mahdi; Toonen, Robert J

    2015-06-01

    In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.

  13. AN EVALUATION AND IMPLEMENTATION OF COLLABORATIVE AND SOCIAL NETWORKING TECHNOLOGIES FOR COMPUTER EDUCATION

    Directory of Open Access Journals (Sweden)

    Ronnie Cheung

    2011-06-01

    Full Text Available We have developed a collaborative and social networking environment that integrates the knowledge and skills in communication and computing studies with a multimedia development project. The outcomes of the students’ projects show that computer literacy can be enhanced through a cluster of communication, social, and digital skills. Experience in implementing a web-based social networking environment shows that the new media is an effective means of enriching knowledge by sharing in computer literacy projects. The completed assignments, projects, and self-reflection reports demonstrate that the students were able to achieve the learning outcomes of a computer literacy course in multimedia development. The students were able to assess the effectiveness of a variety of media through the development of media presentations in a web-based, social-networking environment. In the collaborative and social-networking environment, students were able to collaborate and communicate with their team members to solve problems, resolve conflicts, make decisions, and work as a team to complete tasks. Our experience has shown that social networking environments are effective for computer literacy education, and the development of the new media is emerging as the core knowledge for computer literacy education.

  14. Advances and challenges in computational plasma science

    International Nuclear Information System (INIS)

    Tang, W M; Chan, V S

    2005-01-01

    should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science. (topical review)

  15. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-based Teaching Practice

    Science.gov (United States)

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-03-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants were three beginning science teachers and three mentors at the middle school level (7-9th grades) in an urban area of South Korea. For each beginning teacher, five lessons were evaluated in terms of lesson design/implementation, procedural knowledge, and classroom culture by using the Reformed Teaching Observation Protocol. Five aspects of the beginning teachers' reflections were identified. This study showed that a collaborative mentoring program focusing on inquiry-based science teaching encouraged the beginning teachers to reflect on their own perceptions and teaching practice in terms of inquiry-based science teaching, which led to changes in their teaching practice. This study also highlighted the importance of collaborative interactions between the mentors and the beginning teachers during the mentoring process.

  16. Collaborative diagramming during problem based learning in medical education: Do computerized diagrams support basic science knowledge construction?

    Science.gov (United States)

    De Leng, Bas; Gijlers, Hannie

    2015-05-01

    To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Opinions and perceptions of students (n = 70) and tutors (n = 4) who used collaborative diagramming in tutorial groups were collected with a questionnaire and focus group discussions. A framework derived from the analysis of discourse in computer-supported collaborative leaning was used to construct the questionnaire. Video observations were used during the focus group discussions. Both students and tutors felt that collaborative diagramming positively affected discussion and knowledge construction. Students particularly appreciated that diagrams helped them to structure knowledge, to develop an overview of topics, and stimulated them to find relationships between topics. Tutors emphasized that diagramming increased interaction and enhanced the focus and detail of the discussion. Favourable conditions were the following: working with a shared whiteboard, using a diagram format that facilitated distribution, and applying half filled-in diagrams for non-content expert tutors and\\or for heterogeneous groups with low achieving students. The empirical findings in this study support the findings of earlier more descriptive studies that diagramming in a collaborative setting is valuable for learning complex knowledge in medicine.

  17. Multiuser Collaboration with Networked Mobile Devices

    Science.gov (United States)

    Tso, Kam S.; Tai, Ann T.; Deng, Yong M.; Becks, Paul G.

    2006-01-01

    In this paper we describe a multiuser collaboration infrastructure that enables multiple mission scientists to remotely and collaboratively interact with visualization and planning software, using wireless networked personal digital assistants(PDAs) and other mobile devices. During ground operations of planetary rover and lander missions, scientists need to meet daily to review downlinked data and plan science activities. For example, scientists use the Science Activity Planner (SAP) in the Mars Exploration Rover (MER) mission to visualize downlinked data and plan rover activities during the science meetings [1]. Computer displays are projected onto large screens in the meeting room to enable the scientists to view and discuss downlinked images and data displayed by SAP and other software applications. However, only one person can interact with the software applications because input to the computer is limited to a single mouse and keyboard. As a result, the scientists have to verbally express their intentions, such as selecting a target at a particular location on the Mars terrain image, to that person in order to interact with the applications. This constrains communication and limits the returns of science planning. Furthermore, ground operations for Mars missions are fundamentally constrained by the short turnaround time for science and engineering teams to process and analyze data, plan the next uplink, generate command sequences, and transmit the uplink to the vehicle [2]. Therefore, improving ground operations is crucial to the success of Mars missions. The multiuser collaboration infrastructure enables users to control software applications remotely and collaboratively using mobile devices. The infrastructure includes (1) human-computer interaction techniques to provide natural, fast, and accurate inputs, (2) a communications protocol to ensure reliable and efficient coordination of the input devices and host computers, (3) an application

  18. Cloud computing with e-science applications

    CERN Document Server

    Terzo, Olivier

    2015-01-01

    The amount of data in everyday life has been exploding. This data increase has been especially significant in scientific fields, where substantial amounts of data must be captured, communicated, aggregated, stored, and analyzed. Cloud Computing with e-Science Applications explains how cloud computing can improve data management in data-heavy fields such as bioinformatics, earth science, and computer science. The book begins with an overview of cloud models supplied by the National Institute of Standards and Technology (NIST), and then:Discusses the challenges imposed by big data on scientific

  19. Girls Save the World through Computer Science

    Science.gov (United States)

    Murakami, Christine

    2011-01-01

    It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…

  20. Computing as Empirical Science – Evolution of a Concept

    Directory of Open Access Journals (Sweden)

    Polak Paweł

    2016-12-01

    Full Text Available This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry (1975 started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led to a view of the science of computing (or science of information processing - the science of general scope. Some interesting contemporary ways towards a generalized perspective on computations were also shown (e.g. natural computing.

  1. International Conference on Computer, Communication and Computational Sciences

    CERN Document Server

    Mishra, Krishn; Tiwari, Shailesh; Singh, Vivek

    2017-01-01

    Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India. These papers are arranged in the form of chapters. The content of the book is divided into two volumes that cover variety of topics such as intelligent hardware and software design, advanced communications, power and energy optimization, intelligent techniques used in internet of things, intelligent image processing, advanced software engineering, evolutionary and ...

  2. Interdisciplinary Collaboration between Natural and Social Sciences – Status and Trends Exemplified in Groundwater Research

    Science.gov (United States)

    Seidl, Roman

    2017-01-01

    Interdisciplinary collaboration, particularly between natural and social sciences, is perceived as crucial to solving the significant challenges facing humanity. However, despite the need for such collaboration being expressed more frequently and intensely, it remains unclear to what degree such collaboration actually takes place, what trends and developments there are and which actors are involved. Previous studies, often based on bibliometric analysis of large bodies of literature, partly observed an increase in interdisciplinary collaboration in general, but in particular, the collaboration among distant fields was less explored. Other more qualitative studies found that interdisciplinary collaboration, particularly between natural and social scientists was not well developed, and obstacles abounded. To shed some light on the actual status and developments of this collaboration, we performed an analysis based on a sample of articles on groundwater research. We first identified journals and articles therein that potentially combined natural and social science aspects of groundwater research. Next, we analysed the disciplinary composition of their authors’ teams, cited references, titles and keywords, making use of our detailed personal expertise in groundwater research and its interdisciplinary aspects. We combined several indicators developed from this analysis into a final classification of the degree of multidisciplinarity of each article. Covering the period between 1990 and 2014, we found that the overall percentage of multidisciplinary articles was in the low single-digit range, with only slight increases over the past decades. The interdisciplinarity of individuals plays a major role compared to interdisciplinarity involving two or more researchers. If collaboration with natural sciences takes place, social science is represented most often by economists. As a side result, we found that journals publishing multidisciplinary research had lower impact

  3. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    Science.gov (United States)

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  4. 5th Computer Science On-line Conference

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka

    2016-01-01

    This volume is based on the research papers presented in the 5th Computer Science On-line Conference. The volume Artificial Intelligence Perspectives in Intelligent Systems presents modern trends and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of artificial intelligence. New algorithms in a variety of fields are also presented. The Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.

  5. A Collaboratively-Derived Science-Policy Research Agenda

    Science.gov (United States)

    Sutherland, William J.; Bellingan, Laura; Bellingham, Jim R.; Blackstock, Jason J.; Bloomfield, Robert M.; Bravo, Michael; Cadman, Victoria M.; Cleevely, David D.; Clements, Andy; Cohen, Anthony S.; Cope, David R.; Daemmrich, Arthur A.; Devecchi, Cristina; Anadon, Laura Diaz; Denegri, Simon; Doubleday, Robert; Dusic, Nicholas R.; Evans, Robert J.; Feng, Wai Y.; Godfray, H. Charles J.; Harris, Paul; Hartley, Sue E.; Hester, Alison J.; Holmes, John; Hughes, Alan; Hulme, Mike; Irwin, Colin; Jennings, Richard C.; Kass, Gary S.; Littlejohns, Peter; Marteau, Theresa M.; McKee, Glenn; Millstone, Erik P.; Nuttall, William J.; Owens, Susan; Parker, Miles M.; Pearson, Sarah; Petts, Judith; Ploszek, Richard; Pullin, Andrew S.; Reid, Graeme; Richards, Keith S.; Robinson, John G.; Shaxson, Louise; Sierra, Leonor; Smith, Beck G.; Spiegelhalter, David J.; Stilgoe, Jack; Stirling, Andy; Tyler, Christopher P.; Winickoff, David E.; Zimmern, Ron L.

    2012-01-01

    The need for policy makers to understand science and for scientists to understand policy processes is widely recognised. However, the science-policy relationship is sometimes difficult and occasionally dysfunctional; it is also increasingly visible, because it must deal with contentious issues, or itself becomes a matter of public controversy, or both. We suggest that identifying key unanswered questions on the relationship between science and policy will catalyse and focus research in this field. To identify these questions, a collaborative procedure was employed with 52 participants selected to cover a wide range of experience in both science and policy, including people from government, non-governmental organisations, academia and industry. These participants consulted with colleagues and submitted 239 questions. An initial round of voting was followed by a workshop in which 40 of the most important questions were identified by further discussion and voting. The resulting list includes questions about the effectiveness of science-based decision-making structures; the nature and legitimacy of expertise; the consequences of changes such as increasing transparency; choices among different sources of evidence; the implications of new means of characterising and representing uncertainties; and ways in which policy and political processes affect what counts as authoritative evidence. We expect this exercise to identify important theoretical questions and to help improve the mutual understanding and effectiveness of those working at the interface of science and policy. PMID:22427809

  6. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  7. Collaborative Science with Indigenous Knowledge for Climate Solutions: Why, How, and with Whom?

    Science.gov (United States)

    Maldonado, J.; Lazrus, H.; Gough, B.

    2017-12-01

    The inherent complexity of climate change requires diverse perspectives to understand and respond to its impacts. The Rising Voices: Collaborative Science with Indigenous Knowledge for Climate Solutions (Rising Voices) program represents a growing network of engaged Indigenous and non-Indigenous scientists committed to cross-cultural and collaborative research and activities to understand and mitigate the impacts of extreme weather and climate change. Five annual Rising Voices workshops have occurred since 2013, engaging hundreds of participants from across Tribal communities, the United States, and internationally over the years. Housed at the National Center for Atmospheric Research, Rising Voices aims to expand how diversity is understood in atmospheric science, to include intellectual diversity stemming from distinct cultural backgrounds. It envisions collaborative research that brings together Indigenous knowledges and science with Western climate and weather sciences in a respectful and inclusive manner to achieve culturally relevant and scientifically robust climate and weather adaptation solutions. The premise of the program and the research and collaborations it produces is that there is an opportunity cost to not involving diverse knowledge systems and observations from varied cultural backgrounds in addressing climate change. We cannot afford that cost given the challenges ahead. This poster presents some of the protocols, methods, challenges, and outcomes of cross-cultural research between Western and Indigenous scientists and communities from across the United States. It also presents some of the recommendations that have emerged from Rising Voices workshops over the past five years.

  8. Computational Science in Armenia (Invited Talk)

    Science.gov (United States)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  9. Physics vs. computer science

    International Nuclear Information System (INIS)

    Pike, R.

    1982-01-01

    With computers becoming more frequently used in theoretical and experimental physics, physicists can no longer afford to be ignorant of the basic techniques and results of computer science. Computing principles belong in a physicist's tool box, along with experimental methods and applied mathematics, and the easiest way to educate physicists in computing is to provide, as part of the undergraduate curriculum, a computing course designed specifically for physicists. As well, the working physicist should interact with computer scientists, giving them challenging problems in return for their expertise. (orig.)

  10. Third Workshop on Teaching Computational Science (WTCS 2009)

    NARCIS (Netherlands)

    Tirado-Ramos, A.; Shiflet, A.

    2009-01-01

    The Third Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  11. Second Workshop on Teaching Computational Science WTCS 2008

    NARCIS (Netherlands)

    Tirado-Ramos, A.

    2008-01-01

    The Second Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  12. Establishing good collaborative research practices in the responsible conduct of research in nursing science.

    Science.gov (United States)

    Ulrich, Connie M; Wallen, Gwenyth R; Cui, Naixue; Chittams, Jesse; Sweet, Monica; Plemmons, Dena

    2015-01-01

    Team science is advocated to speed the pace of scientific discovery, yet the goals of collaborative practice in nursing science and the responsibilities of nurse stakeholders are sparse and inconclusive. The purpose of this study was to examine nurse scientists' views on collaborative research as part of a larger study on standards of scientific conduct. Web-based descriptive survey of nurse scientists randomly selected from 50 doctoral graduate programs in the United States. Nearly forty percent of nurse respondents were not able to identify good collaborative practices for the discipline; more than three quarters did not know of any published guidelines available to them. Successful research collaborations were challenged by different expectations of authorship and data ownership, lack of timeliness and communication, poorly defined roles and responsibilities, language barriers, and when they involve junior and senior faculty working together on a project. Individual and organizational standards, practices, and policies for collaborative research needs clarification within the discipline. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. ASCR Workshop on Quantum Computing for Science

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  14. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  15. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  16. A survey of computational physics introductory computational science

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2008-01-01

    Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics

  17. Collaborative Dialogue in Synchronous Computer-Mediated Communication and Face-to-Face Communication

    Science.gov (United States)

    Zeng, Gang

    2017-01-01

    Previous research has documented that collaborative dialogue promotes L2 learning in both face-to-face (F2F) and synchronous computer-mediated communication (SCMC) modalities. However, relatively little research has explored modality effects on collaborative dialogue. Thus, motivated by sociocultual theory, this study examines how F2F compares…

  18. Linking Effectively: Learning Lessons from Successful Collaboration in Science and Technology

    National Research Council Canada - National Science Library

    Wagner, Caroline S

    2002-01-01

    .... It is presented in a format that draws lessons from the case studies and then presents key questions that emerged from the cases that can serve as a guide to others seeking to formulate similar collaborative programs. The first section discusses the growing role that international collaboration is playing in science and technology (S&T). Here we also discuss the case study methodology used for this study. The second section presents a framework of.

  19. Computational Science: Ensuring America's Competitiveness

    National Research Council Canada - National Science Library

    Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L

    2005-01-01

    Computational science is now indispensable to the solution of complex problems in every sector, from traditional science and engineering domains to such key areas as national security, public health...

  20. Collaborating to Improve Inquiry-Based Teaching in Elementary Science and Mathematics Methods Courses

    Science.gov (United States)

    Magee, Paula A.; Flessner, Ryan

    2012-01-01

    This study examines the effect of promoting inquiry-based teaching (IBT) through collaboration between a science methods course and mathematics methods course in an elementary teacher education program. During the collaboration, preservice elementary teacher (PST) candidates experienced 3 different types of inquiry as a way to foster increased…

  1. Soft computing in computer and information science

    CERN Document Server

    Fray, Imed; Pejaś, Jerzy

    2015-01-01

    This book presents a carefully selected and reviewed collection of papers presented during the 19th Advanced Computer Systems conference ACS-2014. The Advanced Computer Systems conference concentrated from its beginning on methods and algorithms of artificial intelligence. Further future brought new areas of interest concerning technical informatics related to soft computing and some more technological aspects of computer science such as multimedia and computer graphics, software engineering, web systems, information security and safety or project management. These topics are represented in the present book under the categories Artificial Intelligence, Design of Information and Multimedia Systems, Information Technology Security and Software Technologies.

  2. Soft Computing Techniques in Vision Science

    CERN Document Server

    Yang, Yeon-Mo

    2012-01-01

    This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies.  It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...

  3. QUEST for sustainable CPD: scaffolding science teachers' individual and collaborative inquiries

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2015-01-01

    Continuous Professional Development (CPD) can be crucial for reforming science teaching, but more knowledge is needed about how to support sustainability of the effects. The Danish QUEST project is a large scale, long-term collaborative CPD project designed according to widely agreed criteria...... phase. The findings are discussed looking forward to the institutionalization phase identifying factors potentially supporting sustainable development pertaining to local science teachers developing a shared focus on student learning in science, and perceived individual and collective efficacy...

  4. Lay Theories Regarding Computer-Mediated Communication in Remote Collaboration

    Science.gov (United States)

    Parke, Karl; Marsden, Nicola; Connolly, Cornelia

    2017-01-01

    Computer-mediated communication and remote collaboration has become an unexceptional norm as an educational modality for distance and open education, therefore the need to research and analyze students' online learning experience is necessary. This paper seeks to examine the assumptions and expectations held by students in regard to…

  5. Live Storybook Outcomes of Pilot Multidisciplinary Elementary Earth Science Collaborative Project

    Science.gov (United States)

    Soeffing, C.; Pierson, R.

    2017-12-01

    Live Storybook Outcomes of pilot multidisciplinary elementary earth science collaborative project Anchoring phenomena leading to student led investigations are key to applying the NGSS standards in the classroom. This project employs the GLOBE elementary storybook, Discoveries at Willow Creek, as an inspiration and operational framework for a collaborative pilot project engaging 4th grade students in asking questions, collecting relevant data, and using analytical tools to document and understand natural phenomena. The Institute of Global Environmental Strategies (IGES), a GLOBE Partner, the Outdoor Campus, an informal educational outdoor learning facility managed by South Dakota Game, Fish and Parks, University of Sioux Falls, and All City Elementary, Sioux Falls are collaborating partners in this project. The Discoveries at Willow Creek storyline introduces young students to the scientific process, and models how they can apply science and engineering practices (SEPs) to discover and understand the Earth system in which they live. One innovation associated with this project is the formal engagement of elementary students in a global citizen science program (for all ages), GLOBE Observer, and engaging them in data collection using GLOBE Observer's Cloud and Mosquito Habitat Mapper apps. As modeled by the fictional students from Willow Creek, the 4th grade students will identify their 3 study sites at the Outdoor Campus, keep a journal, and record observations. The students will repeat their investigations at the Outdoor Campus to document and track change over time. Students will be introduced to "big data" in a manageable way, as they see their observations populate GLOBE's map-based data visualization and . Our research design recognizes the comfort and familiarity factor of literacy activities in the elementary classroom for students and teachers alike, and postulates that connecting a science education project to an engaging storybook text will contribute to a

  6. Evaluating the Effectiveness of Collaborative Computer-Intensive Projects in an Undergraduate Psychometrics Course

    Science.gov (United States)

    Barchard, Kimberly A.; Pace, Larry A.

    2010-01-01

    Undergraduate psychometrics classes often use computer-intensive active learning projects. However, little research has examined active learning or computer-intensive projects in psychometrics courses. We describe two computer-intensive collaborative learning projects used to teach the design and evaluation of psychological tests. Course…

  7. Collaborating in Life Science Research Groups: The Question of Authorship

    Science.gov (United States)

    Muller, Ruth

    2012-01-01

    This qualitative study explores how life science postdocs' perceptions of contemporary academic career rationales influence how they relate to collaboration within research groups. One consequential dimension of these perceptions is the high value assigned to publications. For career progress, postdocs consider producing publications and…

  8. Building place-based collaborations to develop high school students' groundwater systems knowledge and decision-making capacity

    Science.gov (United States)

    Podrasky, A.; Covitt, B. A.; Woessner, W.

    2017-12-01

    The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and

  9. Air, Ocean and Climate Monitoring Enhancing Undergraduate Training in the Physical, Environmental and Computer Sciences

    Science.gov (United States)

    Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.

    2000-01-01

    Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.

  10. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-04-01

    Full Text Available With the development of synthetic aperture radar (SAR technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO. However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  11. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    Science.gov (United States)

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  12. Digital Da Vinci computers in the arts and sciences

    CERN Document Server

    Lee, Newton

    2014-01-01

    Explores polymathic education through unconventional and creative applications of computer science in the arts and sciences Examines the use of visual computation, 3d printing, social robotics and computer modeling for computational art creation and design Includes contributions from leading researchers and practitioners in computer science, architecture and digital media

  13. Labour market expectation of Nigerian computer science ...

    African Journals Online (AJOL)

    ... of Nigerian computer science / Information Communication Technology (ICT) graduates. ... It also x-rays the women performance in Computer Science. ... key players were analyzed using variables such as competence, creativity, innovation, ...

  14. Research in computer science

    Science.gov (United States)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  15. Catalyzing Inquiry at the Interface of Computing and Biology

    Energy Technology Data Exchange (ETDEWEB)

    John Wooley; Herbert S. Lin

    2005-10-30

    This study is the first comprehensive NRC study that suggests a high-level intellectual structure for Federal agencies for supporting work at the biology/computing interface. The report seeks to establish the intellectual legitimacy of a fundamentally cross-disciplinary collaboration between biologists and computer scientists. That is, while some universities are increasingly favorable to research at the intersection, life science researchers at other universities are strongly impeded in their efforts to collaborate. This report addresses these impediments and describes proven strategies for overcoming them. An important feature of the report is the use of well-documented examples that describe clearly to individuals not trained in computer science the value and usage of computing across the biological sciences, from genes and proteins to networks and pathways, from organelles to cells, and from individual organisms to populations and ecosystems. It is hoped that these examples will be useful to students in the life sciences to motivate (continued) study in computer science that will enable them to be more facile users of computing in their future biological studies.

  16. Marrying Content and Process in Computer Science Education

    Science.gov (United States)

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  17. Student leadership in small group science inquiry

    Science.gov (United States)

    Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.

    2014-09-01

    Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.

  18. Collaborative Technologies for Distributed Science - Fusion Energy and High-Energy Physics

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Gottschalk, E.

    2006-01-01

    The large-scale experiments, needed for fusion energy sciences (FES) and high-energy physics (HEP) research, are staffed by correspondingly large, geographically dispersed teams. At the same time, theoretical work has come to rely increasingly on complex numerical simulations developed by distributed teams of scientists and applied mathematicians and run on massively parallel computers. These trends will only accelerate. Operation of the most powerful accelerator ever built, the Large Hadron Collider at CERN, will begin next year and will dominate experimental high-energy physics. The fusion program will be increasingly oriented toward the ITER where even now, a decade before operation begins, a large portion of national programs efforts are organized around coordinated efforts to develop promising operational scenarios. While both FES and HEP have a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of the tools available. These challenges are being addressed by the creation and deployment of advanced collaborative software and hardware tools. Grid computing, to provide secure on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. Utilizing public-key based security that is recognized worldwide, numerous analysis and simulation codes are securely available worldwide in a service-oriented approach. Traditional audio teleconferencing is being augmented by more advanced capabilities including videoconferencing, instant messaging, presentation sharing, applications sharing, large display walls, and the virtual-presence capabilities of Access Grid and VRVS. With these advances, remote real-time experimental participation has begun as well as remote seminars, working meetings, and design review meetings. Work continues to focus on reducing the

  19. Globus Platform-as-a-Service for Collaborative Science Applications.

    Science.gov (United States)

    Ananthakrishnan, Rachana; Chard, Kyle; Foster, Ian; Tuecke, Steven

    2015-02-01

    Globus, developed as Software-as-a-Service (SaaS) for research data management, also provides APIs that constitute a flexible and powerful Platform-as-a-Service (PaaS) to which developers can outsource data management activities such as transfer and sharing, as well as identity, profile and group management. By providing these frequently important but always challenging capabilities as a service, accessible over the network, Globus PaaS streamlines web application development and makes it easy for individuals, teams, and institutions to create collaborative applications such as science gateways for science communities. We introduce the capabilities of this platform and review representative applications.

  20. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  1. Using Wikis and Collaborative Learning for Science Teachers' Professional Development

    Science.gov (United States)

    Chen, Y-H.; Jang, S-J.; Chen, P-J.

    2015-01-01

    Wiki bears great potential to transform learning and instruction by scaffolding personal and social constructivism. Past studies have shown that proper application of wiki benefits both students and teachers; however, few studies have integrated wiki and collaborative learning to examine the growth of science teachers' "Technological,…

  2. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  3. A new data collaboration service based on cloud computing security

    Science.gov (United States)

    Ying, Ren; Li, Hua-Wei; Wang, Li na

    2017-09-01

    With the rapid development of cloud computing, the storage and usage of data have undergone revolutionary changes. Data owners can store data in the cloud. While bringing convenience, it also brings many new challenges to cloud data security. A key issue is how to support a secure data collaboration service that supports access and updates to cloud data. This paper proposes a secure, efficient and extensible data collaboration service, which prevents data leaks in cloud storage, supports one to many encryption mechanisms, and also enables cloud data writing and fine-grained access control.

  4. Collaboration for Actionable Climate Science in Hawaii and the US-Affiliated Pacific Islands

    Science.gov (United States)

    Keener, V. W.; Grecni, Z. N.; Helweg, D. A.

    2016-12-01

    Hawaii and the US-Affiliated Pacific Islands (USAPI) encompass more than 2000 islands spread across millions of square miles of ocean. Islands can be high volcanic or low atolls, and vary widely in terms of geography, climate, ecology, language, culture, economies, government, and vulnerability to climate change impacts. For these reasons, meaningful collaboration across research groups and climate organizations is not only helpful, it is mandatory. No single group can address all the needs of every island, stakeholder, or sector, which has led to close collaboration and leveraging of research in the region to fill different niches. The NOAA-funded Pacific Regional Integrated Sciences & Assessments (RISA) program, DOI Pacific Islands Climate Science Center (PICSC), and the DOI LCC the Pacific Islands Climate Change Cooperative (PICCC) all take a stakeholder oriented approach to climate research, and have successfully collaborated on both specific projects and larger initiatives. Examples of these collaborations include comprising the core team of the Pacific Islands Regional Climate Assessment (PIRCA), the regional arm of the US National Climate Assessment, co-sponsoring a workshop on regional downscaling for scientists and managers, leveraging research projects across multiple sectors on a single island, collaborating on communication products such as handouts and websites to ensure a consistent message, and in the case of the Pacific RISA and the PICSC, jointly funding a PIRCA Sustained Assessment Specialist position. Barriers to collaboration have been around topics such as roles of research versus granting groups, perceived research overlap, and funding uncertainties. However, collaborations have been overwhelming positive in the Pacific Islands region due to communication, recognition of partners' strengths and expertise, and especially because of the "umbrella" organization and purpose provided by the PIRCA structure, which provides a shared platform for all

  5. Improving Communicative Competence through Synchronous Communication in Computer-Supported Collaborative Learning Environments: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Xi Huang

    2018-01-01

    Full Text Available Computer-supported collaborative learning facilitates the extension of second language acquisition into social practice. Studies on its achievement effects speak directly to the pedagogical notion of treating communicative practice in synchronous computer-mediated communication (SCMC: real-time communication that takes place between human beings via the instrumentality of computers in forms of text, audio and video communication, such as live chat and chatrooms as socially-oriented meaning construction. This review begins by considering the adoption of social interactionist views to identify key paradigms and supportive principles of computer-supported collaborative learning. A special focus on two components of communicative competence is then presented to explore interactional variables in synchronous computer-mediated communication along with a review of research. There follows a discussion on a synthesis of interactional variables in negotiated interaction and co-construction of knowledge from psycholinguistic and social cohesion perspectives. This review reveals both possibilities and disparities of language socialization in promoting intersubjective learning and diversifying the salient use of interactively creative language in computer-supported collaborative learning environments in service of communicative competence.

  6. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  7. Computer science approach to quantum control

    International Nuclear Information System (INIS)

    Janzing, D.

    2006-01-01

    Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable

  8. Linking Essential Learning Outcomes and Interprofessional Collaborative Practice Competency in Health Science Undergraduates

    Science.gov (United States)

    Reed, Carole-Rae; Garcia, Luis Ivan; Slusser, Margaret M.; Konowitz, Sharon; Yep, Jewelry

    2017-01-01

    Assessing student learning outcomes and determining achievement of the Interprofessional Collaborative Practice (IPCEP) Core Competency of Values/Ethics in a generic pre-professional Bachelor of Science in Health Science (BSHS) program is challenging. A course level Student Learning Outcome (SLO) is: "….articulate the impact of personal…

  9. Mathematics and Computer Science: The Interplay

    OpenAIRE

    Madhavan, Veni CE

    2005-01-01

    Mathematics has been an important intellectual preoccupation of man for a long time. Computer science as a formal discipline is about seven decades young. However, one thing in common between all users and producers of mathematical thought is the almost involuntary use of computing. In this article, we bring to fore the many close connections and parallels between the two sciences of mathematics and computing. We show that, unlike in the other branches of human inquiry where mathematics is me...

  10. Globalization of Stem Cell Science: An Examination of Current and Past Collaborative Research Networks

    Science.gov (United States)

    Luo, Jingyuan; Matthews, Kirstin R. W.

    2013-01-01

    Science and engineering research has becoming an increasingly international phenomenon. Traditional bibliometric studies have not captured the evolution of collaborative partnerships between countries, particularly in emerging technologies such as stem cell science, in which an immense amount of investment has been made in the past decade. Analyzing over 2,800 articles from the top journals that include stem cell research in their publications, this study demonstrates the globalization of stem cell science. From 2000 to 2010, international collaborations increased from 20.9% to 36% of all stem cell publications analyzed. The United States remains the most prolific and the most dominant country in the field in terms of publications in high impact journals. But Asian countries, particularly China are steadily gaining ground. Exhibiting the largest relative growth, the percent of Chinese-authored stem cell papers grew more than ten-fold, while the percent of Chinese-authored international papers increased over seven times from 2000 to 2010. And while the percent of total stem cell publications exhibited modest growth for European countries, the percent of international publications increased more substantially, particularly in the United Kingdom. Overall, the data indicated that traditional networks of collaboration extant in 2000 still predominate in stem cell science. Although more nations are becoming involved in international collaborations and undertaking stem cell research, many of these efforts, with the exception of those in certain Asian countries, have yet to translate into publications in high impact journals. PMID:24069210

  11. The influence of multiple trials and computer-mediated communication on collaborative and individual semantic recall.

    Science.gov (United States)

    Hinds, Joanne M; Payne, Stephen J

    2018-04-01

    Collaborative inhibition is a phenomenon where collaborating groups experience a decrement in recall when interacting with others. Despite this, collaboration has been found to improve subsequent individual recall. We explore these effects in semantic recall, which is seldom studied in collaborative retrieval. We also examine "parallel CMC", a synchronous form of computer-mediated communication that has previously been found to improve collaborative recall [Hinds, J. M., & Payne, S. J. (2016). Collaborative inhibition and semantic recall: Improving collaboration through computer-mediated communication. Applied Cognitive Psychology, 30(4), 554-565]. Sixty three triads completed a semantic recall task, which involved generating words beginning with "PO" or "HE" across three recall trials, in one of three retrieval conditions: Individual-Individual-Individual (III), Face-to-face-Face-to-Face-Individual (FFI) and Parallel-Parallel-Individual (PPI). Collaborative inhibition was present across both collaborative conditions. Individual recall in Recall 3 was higher when participants had previously collaborated in comparison to recalling three times individually. There was no difference between face-to-face and parallel CMC recall, however subsidiary analyses of instance repetitions and subjective organisation highlighted differences in group members' approaches to recall in terms of organisation and attention to others' contributions. We discuss the implications of these findings in relation to retrieval strategy disruption.

  12. Changes in science classrooms resulting from collaborative action research initiatives

    Science.gov (United States)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  13. Learning Performance Enhancement Using Computer-Assisted Language Learning by Collaborative Learning Groups

    Directory of Open Access Journals (Sweden)

    Ya-huei Wang

    2017-08-01

    Full Text Available This study attempted to test whether the use of computer-assisted language learning (CALL and innovative collaborative learning could be more effective than the use of traditional collaborative learning in improving students’ English proficiencies. A true experimental design was used in the study. Four randomly-assigned groups participated in the study: a traditional collaborative learning group (TCLG, 34 students, an innovative collaborative learning group (ICLG, 31 students, a CALL traditional collaborative learning group (CALLTCLG, 32 students, and a CALL innovative collaborative learning group (CALLICLG, 31 students. TOEIC (Test of English for International Communication listening, reading, speaking, and writing pre-test and post-test assessments were given to all students at an interval of sixteen weeks. Multivariate analysis of covariance (MANCOVA, multivariate analysis of variance (MANOVA, and analysis of variance (ANOVA were used to analyze the data. The results revealed that students who used CALL had significantly better learning performance than those who did not. Students in innovative collaborative learning had significantly better learning performances than those in traditional collaborative learning. Additionally, students using CALL innovative collaborative learning had better learning performances than those in CALL collaborative learning, those in innovative collaborative learning, and those in traditional collaborative learning.

  14. Computer science and the recent innovations of the modern society

    Directory of Open Access Journals (Sweden)

    Greorghe Popescu

    2010-12-01

    Full Text Available The paper “Computer science and the recent innovations of the modern society” presents the importance of computer science, with the most important historical moments in its evolution, the main theoretical elements of the computation science, computer elements and architecture and the latest innovations in the computer science, such as Artificial Intelligence.

  15. Concept similarity in publications precedes cross-disciplinary collaboration.

    Science.gov (United States)

    Post, Andrew R; Harrison, James H

    2008-11-06

    Innovative science frequently occurs as a result of cross-disciplinary collaboration, the importance of which is reflected by recent NIH funding initiatives that promote communication and collaboration. If shared research interests between collaborators are important for the formation of collaborations,methods for identifying these shared interests across scientific domains could potentially reveal new and useful collaboration opportunities. MEDLINE represents a comprehensive database of collaborations and research interests, as reflected by article co-authors and concept content. We analyzed six years of citations using information retrieval based methods to compute articles conceptual similarity, and found that articles by basic and clinical scientists who later collaborated had significantly higher average similarity than articles by similar scientists who did not collaborate.Refinement of these methods and characterization of found conceptual overlaps could allow automated discovery of collaboration opportunities that are currently missed.

  16. Computer science I essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science I includes fundamental computer concepts, number representations, Boolean algebra, switching circuits, and computer architecture.

  17. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.

    Science.gov (United States)

    Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander

    2015-01-01

    Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots

  18. Practical Strategies for Collaboration across Discipline-Based Education Research and the Learning Sciences

    Science.gov (United States)

    Peffer, Melanie; Renken, Maggie

    2016-01-01

    Rather than pursue questions related to learning in biology from separate camps, recent calls highlight the necessity of interdisciplinary research agendas. Interdisciplinary collaborations allow for a complicated and expanded approach to questions about learning within specific science domains, such as biology. Despite its benefits, interdisciplinary work inevitably involves challenges. Some such challenges originate from differences in theoretical and methodological approaches across lines of work. Thus, aims at developing successful interdisciplinary research programs raise important considerations regarding methodologies for studying biology learning, strategies for approaching collaborations, and training of early-career scientists. Our goal here is to describe two fields important to understanding learning in biology, discipline-based education research and the learning sciences. We discuss differences between each discipline’s approach to biology education research and the benefits and challenges associated with incorporating these perspectives in a single research program. We then propose strategies for building productive interdisciplinary collaboration. PMID:27881446

  19. Catalyzing Open and Collaborative Science to Address Global ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    As the cost of computer hardware continues to drop and developing-country researchers get increased access to the Internet and mobile phones, each offers the potential for solving these development challenges by opening up the scientific process. What is open science? At the heart of the open science concept is the ...

  20. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    International Nuclear Information System (INIS)

    1998-01-01

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  1. Educational Opportunities in Pro-Am Collaboration

    Science.gov (United States)

    Fienberg, R. T.; Stencel, R. E.

    2006-08-01

    While many backyard stargazers take up the hobby just for fun, many others are attracted to it because of their keen interest in learning more about the universe. The best way to learn science is to do science. Happily, the technology available to today's amateur astronomers — including computer-controlled telescopes, CCD cameras, powerful astronomical software, and the Internet — gives them the potential to make real contributions to scientific research and to help support local educational objectives. Meanwhile, professional astronomers are losing access to small telescopes as funding is shifted to larger projects, including survey programs that will soon discover countless interesting objects needing follow-up observations. Clearly the field is ripe with opportunities for amateurs, professionals, and educators to collaborate. Amateurs will benefit from mentoring by expert professionals, pros will benefit from observations and data processing by increasingly knowledgeable amateurs, and educators will benefit from a larger pool of skilled talent to help them carry out astronomy-education initiatives. We will look at some successful pro-am collaborations that have already borne fruit and examine areas where the need and/or potential for new partnerships is especially large. In keeping with the theme of this special session, we will focus on how pro-am collaborations in astronomy can contribute to science education both inside and outside the classroom, not only for students of school age but also for adults who may not have enjoyed particularly good science education when they were younger. Because nighttime observations with sophisticated equipment are not always possible in formal educational settings, we will also mention other types of pro-am partnerships, including those involving remote observing, data mining, and/or distributed computing.

  2. Group monopolization & collaborative work: the making of a science video project

    NARCIS (Netherlands)

    Jayme, B.; Roth, W.-M.; Reis, G.; Eijck, van M.W.

    2007-01-01

    ABSTRACT: In the present ethnographic case study, we investigate how monopolization emerges and is maintained during collaborative working situations in elementary science classroom tasks. Our analysis suggests that monopolization is achieved in part by the position of the students around the

  3. ESIP Federation: A Case Study on Enabling Collaboration Infrastructure to Support Earth Science Informatics Communities

    Science.gov (United States)

    Robinson, E.; Meyer, C. B.; Benedict, K. K.

    2013-12-01

    A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a

  4. The quality and impact of computer supported collaborative learning (CSCL) in radiology case-based learning

    International Nuclear Information System (INIS)

    Kourdioukova, Elena V.; Verstraete, Koenraad L.; Valcke, Martin

    2011-01-01

    Objective: The aim of this research was to explore (1) clinical years students' perceptions about radiology case-based learning within a computer supported collaborative learning (CSCL) setting, (2) an analysis of the collaborative learning process, and (3) the learning impact of collaborative work on the radiology cases. Methods: The first part of this study focuses on a more detailed analysis of a survey study about CSCL based case-based learning, set up in the context of a broader radiology curriculum innovation. The second part centers on a qualitative and quantitative analysis of 52 online collaborative learning discussions from 5th year and nearly graduating medical students. The collaborative work was based on 26 radiology cases regarding musculoskeletal radiology. Results: The analysis of perceptions about collaborative learning on radiology cases reflects a rather neutral attitude that also does not differ significantly in students of different grade levels. Less advanced students are more positive about CSCL as compared to last year students. Outcome evaluation shows a significantly higher level of accuracy in identification of radiology key structures and in radiology diagnosis as well as in linking the radiological signs with available clinical information in nearly graduated students. No significant differences between different grade levels were found in accuracy of using medical terminology. Conclusion: Students appreciate computer supported collaborative learning settings when tackling radiology case-based learning. Scripted computer supported collaborative learning groups proved to be useful for both 5th and 7th year students in view of developing components of their radiology diagnostic approaches.

  5. The quality and impact of computer supported collaborative learning (CSCL) in radiology case-based learning.

    Science.gov (United States)

    Kourdioukova, Elena V; Verstraete, Koenraad L; Valcke, Martin

    2011-06-01

    The aim of this research was to explore (1) clinical years students' perceptions about radiology case-based learning within a computer supported collaborative learning (CSCL) setting, (2) an analysis of the collaborative learning process, and (3) the learning impact of collaborative work on the radiology cases. The first part of this study focuses on a more detailed analysis of a survey study about CSCL based case-based learning, set up in the context of a broader radiology curriculum innovation. The second part centers on a qualitative and quantitative analysis of 52 online collaborative learning discussions from 5th year and nearly graduating medical students. The collaborative work was based on 26 radiology cases regarding musculoskeletal radiology. The analysis of perceptions about collaborative learning on radiology cases reflects a rather neutral attitude that also does not differ significantly in students of different grade levels. Less advanced students are more positive about CSCL as compared to last year students. Outcome evaluation shows a significantly higher level of accuracy in identification of radiology key structures and in radiology diagnosis as well as in linking the radiological signs with available clinical information in nearly graduated students. No significant differences between different grade levels were found in accuracy of using medical terminology. Students appreciate computer supported collaborative learning settings when tackling radiology case-based learning. Scripted computer supported collaborative learning groups proved to be useful for both 5th and 7th year students in view of developing components of their radiology diagnostic approaches. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Computer and Information Sciences II : 26th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo; Sakellari, Georgia

    2012-01-01

    Information technology is the enabling foundation for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 26th International Symposium on Computer and Information Systems, held at the Royal Society in London on 26th to 28th September 2011. Computer and Information Sciences II contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams in both Europe and Asia.

  7. Virtual network computing: cross-platform remote display and collaboration software.

    Science.gov (United States)

    Konerding, D E

    1999-04-01

    VNC (Virtual Network Computing) is a computer program written to address the problem of cross-platform remote desktop/application display. VNC uses a client/server model in which an image of the desktop of the server is transmitted to the client and displayed. The client collects mouse and keyboard input from the user and transmits them back to the server. The VNC client and server can run on Windows 95/98/NT, MacOS, and Unix (including Linux) operating systems. VNC is multi-user on Unix machines (any number of servers can be run are unrelated to the primary display of the computer), while it is effectively single-user on Macintosh and Windows machines (only one server can be run, displaying the contents of the primary display of the server). The VNC servers can be configured to allow more than one client to connect at one time, effectively allowing collaboration through the shared desktop. I describe the function of VNC, provide details of installation, describe how it achieves its goal, and evaluate the use of VNC for molecular modelling. VNC is an extremely useful tool for collaboration, instruction, software development, and debugging of graphical programs with remote users.

  8. Collaborative Yet Independent: Information Practices in the Physical Sciences

    CERN Document Server

    Meyer, Eric T; Kyriakidou-Zacharoudiou, Avgousta; Power, Lucy; Williams, Peter; Venters, Will; Terras, Melissa; Wyatt, Sally

    2011-12-31

    In many ways, the physical sciences are at the forefront of using digital tools and methods to work with information and data. However, the fields and disciplines that make up the physical sciences are by no means uniform, and physical scientists find, use, and disseminate information in a variety of ways. This report examines information practices in the physical sciences across seven cases, and demonstrates the richly varied ways in which physical scientists work, collaborate, and share information and data. This report details seven case studies in the physical sciences. For each case, qualitative interviews and focus groups were used to understand the domain. Quantitative data gathered from a survey of participants highlights different information strategies employed across the cases, and identifies important software used for research. Finally, conclusions from across the cases are drawn, and recommendations are made. This report is the third in a series commissioned by the Research Information Network...

  9. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  10. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    Science.gov (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  11. A study on scientific collaboration and co-authorship patterns in library and information science studies in Iran between 2005 and 2009.

    Science.gov (United States)

    Siamaki, Saba; Geraei, Ehsan; Zare-Farashbandi, Firoozeh

    2014-01-01

    Scientific collaboration is among the most important subjects in scientometrics, and many studies have investigated this concept to this day. The goal of the current study is investigation of scientific collaboration and co-authorship patterns of researchers in the field of library and information science in Iran between years 2005 and 2009. The current study uses scientometrics method. The statistical population consists of 942 documents published in Iranian library and information science journals between years 2005 and 2009. Collaboration coefficient, collaboration index (CI), and degree of collaboration (DC) were used for data analysis. The findings showed that among 942 investigated documents, 506 documents (53.70%) was created by one individual researcher and 436 documents (46.30%) were the result of collaboration between two or more researchers. Also, the highest rank of different authorship patterns belonged to National Journal of Librarianship and Information Organization (code H). The average collaboration coefficient for the library and information science researchers in the investigated time frame was 0.23. The closer this coefficient is to 1, the higher is the level of collaboration between authors, and a coefficient near zero shows a tendency to prefer individual articles. The highest collaboration index with an average of 1.92 authors per paper was seen in year 1388. The five year collaboration index in library and information science in Iran was 1.58, and the average degree of collaboration between researchers in the investigated papers was 0.46, which shows that library and information science researchers have a tendency for co-authorship. However, the co-authorship had increased in recent years reaching its highest number in year 1388. The researchers' collaboration coefficient also shows relative increase between years 1384 and 1388. National Journal of Librarianship and Information Organization has the highest rank among all the investigated

  12. En retorisk forståelsesramme for Computer Supported Collaborative Learning (A Rhetorical Theory on Computer Supported Collaborative Learning)

    DEFF Research Database (Denmark)

    Harlung, Asger

    2003-01-01

    The dissertation explores the potential of rhetorical theories for understanding, analyzing, or planning communication and learning processes, and for integrating the digitized contexts and human interaction and communication proccesses in a single theoretical framework. Based on Cicero's rhetori...... applied to two empirical case studies of Master programs, the dissertation develops and presents a new theory on Computer Supported Collaborative Learning (CSCL).......The dissertation explores the potential of rhetorical theories for understanding, analyzing, or planning communication and learning processes, and for integrating the digitized contexts and human interaction and communication proccesses in a single theoretical framework. Based on Cicero's rhetoric...

  13. Cyberinfrastructure to Support Collaborative and Reproducible Computational Hydrologic Modeling

    Science.gov (United States)

    Goodall, J. L.; Castronova, A. M.; Bandaragoda, C.; Morsy, M. M.; Sadler, J. M.; Essawy, B.; Tarboton, D. G.; Malik, T.; Nijssen, B.; Clark, M. P.; Liu, Y.; Wang, S. W.

    2017-12-01

    Creating cyberinfrastructure to support reproducibility of computational hydrologic models is an important research challenge. Addressing this challenge requires open and reusable code and data with machine and human readable metadata, organized in ways that allow others to replicate results and verify published findings. Specific digital objects that must be tracked for reproducible computational hydrologic modeling include (1) raw initial datasets, (2) data processing scripts used to clean and organize the data, (3) processed model inputs, (4) model results, and (5) the model code with an itemization of all software dependencies and computational requirements. HydroShare is a cyberinfrastructure under active development designed to help users store, share, and publish digital research products in order to improve reproducibility in computational hydrology, with an architecture supporting hydrologic-specific resource metadata. Researchers can upload data required for modeling, add hydrology-specific metadata to these resources, and use the data directly within HydroShare.org for collaborative modeling using tools like CyberGIS, Sciunit-CLI, and JupyterHub that have been integrated with HydroShare to run models using notebooks, Docker containers, and cloud resources. Current research aims to implement the Structure For Unifying Multiple Modeling Alternatives (SUMMA) hydrologic model within HydroShare to support hypothesis-driven hydrologic modeling while also taking advantage of the HydroShare cyberinfrastructure. The goal of this integration is to create the cyberinfrastructure that supports hypothesis-driven model experimentation, education, and training efforts by lowering barriers to entry, reducing the time spent on informatics technology and software development, and supporting collaborative research within and across research groups.

  14. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  15. Gender differences in an elementary school learning environment: A study on how girls learn science in collaborative learning groups

    Science.gov (United States)

    Greenspan, Yvette Frank

    Girls are marked by low self-confidence manifested through gender discrimination during the early years of socialization and culturalization (AAUW, 1998). The nature of gender bias affects all girls in their studies of science and mathematics, particularly in minority groups, during their school years. It has been found that girls generally do not aspire in either mathematical or science-oriented careers because of such issues as overt and subtle stereotyping, inadequate confidence in ability, and discouragement in scientific competence. Grounded on constructivism, a theoretical framework, this inquiry employs fourth generation evaluation, a twelve-step evaluative process (Guba & Lincoln, 1989). The focus is to discover through qualitative research how fifth grade girls learn science in a co-sexual collaborative learning group, as they engage in hands-on, minds-on experiments. The emphasis is centered on one Hispanic girl in an effort to understand her beliefs, attitudes, and behavior as she becomes a stakeholder with other members of her six person collaborative learning group. The intent is to determine if cultural and social factors impact the learning of scientific concepts based on observations from videotapes, interviews, and student opinion questionnaires. QSR NUD*IST 4, a computer software program is utilized to help categorize and index data. Among the findings, there is evidence that clearly indicates girls' attitudes toward science are altered as they interact with other girls and boys in a collaborative learning group. Observations also indicate that cultural and social factors affect girls' performance as they explore and discover scientific concepts with other girls and boys. Based upon what I have uncovered utilizing qualitative research and confirmed according to current literature, there seems to be an appreciable impact on the way girls appear to learn science. Rooted in the data, the results mirror the conclusions of previous studies, which

  16. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    Science.gov (United States)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  17. Knowledge Incubation and Collaboration for Science, Technology Adoption, Resourcing and Transfer (KIC-START)

    International Nuclear Information System (INIS)

    Ugbor, U.; Cilliers, A.; Kurwitz, R. C.

    2016-01-01

    Full text: In order to address the effectiveness of national networks in Member States, and to implement regional and national strategies, it is important to understand the necessary conditions that ensure successful creation and sharing of knowledge, including, effective policy and programme incentives, promoting collaboration, innovation and networking. Furthermore, Member States with aspirations to develop their nuclear programmes (power and non-power applications in agriculture, industry and health sector), need to develop their own capabilities if they are to fully benefit from the social and economic opportunities from nuclear science and technology. Ultimately nuclear innovation programmes that take into account the role of universities, education and industry would lead to a robust nuclear programme that maximizes social and economic benefit. This paper a presents an initiative for capturing best practices in the areas of university collaboration and innovation, which are driven by learning, research and entrepreneurship. The initiative covers Knowledge (creation), Innovation and Collaboration for Science and Technology Adoption, Resourcing and Transfer (KIC-START). (author

  18. Summary of researches being performed in the Institute of Mathematics and Computer Science on computer science and information technologies

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2008-07-01

    Full Text Available Evolution of the informatization notion (which assumes automation of majority of human activities applying computers, computer networks, information technologies towards the notion of {\\it Global Information Society} (GIS challenges the determination of new paradigms of society: automation and intellectualization of production, new level of education and teaching, formation of new styles of work, active participation in decision making, etc. To assure transition to GIS for any society, including that from Republic of Moldova, requires both special training and broad application of progressive technologies and information systems. Methodological aspects concerning impact of GIS creation over the citizen, economic unit, national economy in the aggregate demands a profound study. Without systematic approach to these aspects the GIS creation would have confront great difficulties. Collective of researchers from the Institute of Mathematics and Computer Science (IMCS of Academy of Sciences of Moldova, which work in the field of computer science, constitutes the center of advanced researches and activates in those directions of researches of computer science which facilitate technologies and applications without of which the development of GIS cannot be assured.

  19. Empirical Determination of Competence Areas to Computer Science Education

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia

    2014-01-01

    The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…

  20. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    Science.gov (United States)

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  1. 3rd Computer Science On-line Conference

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka

    2014-01-01

    This book is based on the research papers presented in the 3rd Computer Science On-line Conference 2014 (CSOC 2014).   The conference is intended to provide an international forum for discussions on the latest high-quality research results in all areas related to Computer Science. The topics addressed are the theoretical aspects and applications of Artificial Intelligences, Computer Science, Informatics and Software Engineering.   The authors provide new approaches and methods to real-world problems, and in particular, exploratory research that describes novel approaches in their field. Particular emphasis is laid on modern trends in selected fields of interest. New algorithms or methods in a variety of fields are also presented.   This book is divided into three sections and covers topics including Artificial Intelligence, Computer Science and Software Engineering. Each section consists of new theoretical contributions and applications which can be used for the further development of knowledge of everybod...

  2. Collaborative Note-Taking: The Impact of Cloud Computing on Classroom Performance

    Science.gov (United States)

    Orndorff, Harold N., III.

    2015-01-01

    This article presents the early findings of an experimental design to see if students perform better when taking collaborative notes in small groups as compared to students who use traditional notes. Students are increasingly bringing electronic devices into social science classrooms. Few instructors have attempted robustly and systematically to…

  3. Computational Exposure Science: An Emerging Discipline to ...

    Science.gov (United States)

    Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products.Discussion: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential.Conclusions: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source

  4. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  5. Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science

    CERN Document Server

    Nguyen, Quang

    2012-01-01

    The latest inventions in computer technology influence most of human daily activities. In the near future, there is tendency that all of aspect of human life will be dependent on computer applications. In manufacturing, robotics and automation have become vital for high quality products. In education, the model of teaching and learning is focusing more on electronic media than traditional ones. Issues related to energy savings and environment is becoming critical.   Computational Science should enhance the quality of human life,  not only solve their problems. Computational Science should help humans to make wise decisions by presenting choices and their possible consequences. Computational Science should help us make sense of observations, understand natural language, plan and reason with extensive background knowledge. Intelligence with wisdom is perhaps an ultimate goal for human-oriented science.   This book is a compilation of some recent research findings in computer application and computational sci...

  6. Parallel algorithms and cluster computing

    CERN Document Server

    Hoffmann, Karl Heinz

    2007-01-01

    This book presents major advances in high performance computing as well as major advances due to high performance computing. It contains a collection of papers in which results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering are presented. From the science problems to the mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers we present state-of-the-art methods and technology as well as exemplary results in these fields. This book shows that problems which seem superficially distinct become intimately connected on a computational level.

  7. Collaborative and Competitive Video Games for Teaching Computing in Higher Education

    Science.gov (United States)

    Smith, Spencer; Chan, Samantha

    2017-08-01

    This study measures the success of using a collaborative and competitive video game, named Space Race, to teach computing to first year engineering students. Space Race is played by teams of four, each with their own tablet, collaborating to compete against the other teams in the class. The impact of the game on student learning was studied through measurements using 485 students, over one term. Surveys were used to gauge student reception of the game. Pre and post-tests, and in-course examinations were used to quantify student performance. The game was well received with at least 82% of the students that played it recommending it to others. In some cases, game participants outperformed non-participants on course exams. On the final course exam, all of the statistically significant ( pgame participants on the questions, with a maximum grade improvement of 41%. The findings also suggest that some students retain the knowledge obtained from Space Race for at least 7 weeks. The results of this study provide strong evidence that a collaborative and competitive video game can be an effective tool for teaching computing in post-secondary education.

  8. The attitudinal and cognitive effects of interdisciplinary collaboration on elementary pre-service teachers development of biological science related lesson plans

    Science.gov (United States)

    Mills, Jada Jamerson

    There is a need for STEM (science, technology, engineering, and mathematics) education to be taught effectively in elementary schools. In order to achieve this, teacher preparation programs should graduate confident, content strong teachers to convey knowledge to elementary students. This study used interdisciplinary collaboration between the School of Education and the College of Liberal Arts through a Learning-by-Teaching method (LdL): Lernen durch Lernen in German. Pre-service teacher (PST) achievement levels of understanding science concepts based on pretest and posttest data, quality of lesson plans developed, and enjoyment of the class based on the collaboration with science students. The PSTs enrolled in two treatment sections of EDEL 404: Science in the Elementary Classroom collaborated with science students enrolled in BISC 327: Introductory Neuroscience to enhance their science skills and create case-based lesson plans on neurothology topics: echolocation, electrosensory reception, steroid hormones, and vocal learning. The PSTs enrolled in the single control section of EDEL 404 collaborated with fellow elementary education majors to develop lesson plans also based on the same selected topics. Qualitative interviews of education faculty, science faculty, and PSTs provided depth to the quantitative findings. Upon lesson plan completion, in-service teachers also graded the two best and two worst plans for the treatment and control sections and a science reviewer graded the plans for scientific accuracy. Statistical analyses were conducted for hypotheses, and one significant hypothesis found that PSTs who collaborated with science students had more positive science lesson plan writing attitudes than those who did not. Despite overall insignificant statistical analyses, all PSTs responded as more confident after collaboration. Additionally, interviews provided meaning and understanding to the insignificant statistical results as well as scientific accuracy of

  9. Computer - based modeling in extract sciences research -III ...

    African Journals Online (AJOL)

    Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...

  10. A survey of computer science capstone course literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-09-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software process phases, project type, documentation, tools, groups, and instructor administration. We reflected on these issues and thecomputer science capstone course we have taught for seven years. The survey summarized, organized, and synthesized the literature to provide a referenced resource for computer science instructors and researchers interested in computer science capstone courses.

  11. Practical Strategies for Collaboration across Discipline-Based Education Research and the Learning Sciences.

    Science.gov (United States)

    Peffer, Melanie; Renken, Maggie

    Rather than pursue questions related to learning in biology from separate camps, recent calls highlight the necessity of interdisciplinary research agendas. Interdisciplinary collaborations allow for a complicated and expanded approach to questions about learning within specific science domains, such as biology. Despite its benefits, interdisciplinary work inevitably involves challenges. Some such challenges originate from differences in theoretical and methodological approaches across lines of work. Thus, aims at developing successful interdisciplinary research programs raise important considerations regarding methodologies for studying biology learning, strategies for approaching collaborations, and training of early-career scientists. Our goal here is to describe two fields important to understanding learning in biology, discipline-based education research and the learning sciences. We discuss differences between each discipline's approach to biology education research and the benefits and challenges associated with incorporating these perspectives in a single research program. We then propose strategies for building productive interdisciplinary collaboration. © 2016 M. Peffer and M. Renken. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Pre-Service Teachers' Science Teaching Self-Efficacy Beliefs: The Influence of a Collaborative Peer Microteaching Program

    Science.gov (United States)

    Cinici, Ayhan

    2016-01-01

    The aim of my study was to explore the nature of changes in pre-service science teachers' (PSTs') self-efficacy beliefs toward science teaching through a mixed-methods approach. Thirty-six participants enrolled in a science methods course that included a collaborative peer microteaching ("Cope-M"). Participants' science teaching…

  13. Applying organizational science to health care: a framework for collaborative practice.

    Science.gov (United States)

    Dow, Alan W; DiazGranados, Deborah; Mazmanian, Paul E; Retchin, Sheldon M

    2013-07-01

    Developing interprofessional education (IPE) curricula that improve collaborative practice across professions has proven challenging. A theoretical basis for understanding collaborative practice in health care settings is needed to guide the education and evaluation of health professions trainees and practitioners and support the team-based delivery of care. IPE should incorporate theory-driven, evidence-based methods and build competency toward effective collaboration.In this article, the authors review several concepts from the organizational science literature and propose using these as a framework for understanding how health care teams function. Specifically, they outline the team process model of action and planning phases in collaborative work; discuss leadership and followership, including how locus (a leader's integration into a team's usual work) and formality (a leader's responsibility conferred by the traditional hierarchy) affect team functions; and describe dynamic delegation, an approach to conceptualizing escalation and delegation within health care teams. For each concept, they identify competencies for knowledge, attitudes, and behaviors to aid in the development of innovative curricula to improve collaborative practice. They suggest that gaining an understanding of these principles will prepare health care trainees, whether team leaders or members, to analyze team performance, adapt behaviors that improve collaboration, and create team-based health care delivery processes that lead to improved clinical outcomes.

  14. Computer/Information Science

    Science.gov (United States)

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  15. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples bein...

  16. Digital platforms for research collaboration: using design science in developing a South African open knowledge repository

    CSIR Research Space (South Africa)

    van Biljon, J

    2017-05-01

    Full Text Available ) enabled collaboration through the design and development of a sustainable open knowledge repository (OKR) according to the design science research (DSR) paradigm. OKRs are tools used to support knowledge sharing and collaboration. The theoretical...

  17. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Rotman, Lauren; Tierney, Brian; Hester, Mary; Zurawski, Jason

    2013-08-13

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  18. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  19. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  20. Hispanic women overcoming deterrents to computer science: A phenomenological study

    Science.gov (United States)

    Herling, Lourdes

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty

  1. Molecular Science Computing: 2010 Greenbook

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  2. Cloud computing and services science

    NARCIS (Netherlands)

    Ivanov, Ivan; van Sinderen, Marten J.; Shishkov, Boris

    2012-01-01

    This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a

  3. Archives: Journal of Computer Science and Its Application

    African Journals Online (AJOL)

    Items 1 - 9 of 9 ... Archives: Journal of Computer Science and Its Application. Journal Home > Archives: Journal of Computer Science and Its Application. Log in or Register to get access to full text downloads.

  4. Summary of research in applied mathematics, numerical analysis and computer science at the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period October 1, 1983 through March 31, 1984 is summarized.

  5. Semiotics, Information Science, Documents and Computers.

    Science.gov (United States)

    Warner, Julian

    1990-01-01

    Discusses the relationship and value of semiotics to the established domains of information science. Highlights include documentation; computer operations; the language of computing; automata theory; linguistics; speech and writing; and the written language as a unifying principle for the document and the computer. (93 references) (LRW)

  6. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  7. Evaluating the Collaborative Ecosystem for an Innovation-Driven Economy: A Systems Analysis and Case Study of Science Parks

    Directory of Open Access Journals (Sweden)

    Min-Ren Yan

    2018-03-01

    Full Text Available National policies for science parks and innovation have been identified as one of the major driving forces for the innovation-driven economy, especially for publicly funded science parks. To investigate this collaborative ecosystem (government-academia-industry for growth and sustainable development, this paper proposes a nation-wide economic impact analysis of science parks and innovation policy based on historical data drawn from one of the globally recognized high-technology industrial clusters in Taiwan. Systems thinking with causal loop analysis are adopted to improve our understanding of the collaborative ecosystem with science park policies. First, from a holistic viewpoint, the role of government in a science parks and innovation ecosystem is reviewed. A systems analysis of an innovation-driven economy with a science park policy is presented as a strategy map for policy implementers. Second, the added economic value and employment of the benchmarked science parks is evaluated from a long range perspective. Third, the concepts of government-academia-industry collaboration and policies to innovation ecosystem are introduced while addressing the measures and performance of innovation and applied R&D in the science parks. We conclude with a discussion of lessons learned and the policy implications of science park development and an innovation ecosystem.

  8. Analysis of Sci-Hub downloads of computer science papers

    Directory of Open Access Journals (Sweden)

    Andročec Darko

    2017-07-01

    Full Text Available The scientific knowledge is disseminated by research papers. Most of the research literature is copyrighted by publishers and avail- able only through paywalls. Recently, some websites offer most of the recent content for free. One of them is the controversial website Sci-Hub that enables access to more than 47 million pirated research papers. In April 2016, Science Magazine published an article on Sci-Hub activity over the period of six months and publicly released the Sci-Hub’s server log data. The mentioned paper aggregates the view that relies on all downloads and for all fields of study, but these findings might be hiding interesting patterns within computer science. The mentioned Sci-Hub log data was used in this paper to analyse downloads of computer science papers based on DBLP’s list of computer science publications. The top downloads of computer science papers were analysed, together with the geographical location of Sci-Hub users, the most downloaded publishers, types of papers downloaded, and downloads of computer science papers per publication year. The results of this research can be used to improve legal access to the most relevant scientific repositories or journals for the computer science field.

  9. Assessing Learners' Perceived Readiness for Computer-Supported Collaborative Learning (CSCL): A Study on Initial Development and Validation

    Science.gov (United States)

    Xiong, Yao; So, Hyo-Jeong; Toh, Yancy

    2015-01-01

    The main purpose of this study was to develop an instrument that assesses university students' perceived readiness for computer-supported collaborative learning (CSCL). Assessment in CSCL research had predominantly focused on measuring "after-collaboration" outcomes and "during-collaboration" behaviors while…

  10. Science-Driven Computing: NERSC's Plan for 2006-2010

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.; Banda,Michael J.; Bethel, E. Wes; Craw, James M.; Fortney, William J.; Hules,John A.; Meyer, Nancy L.; Meza, Juan C.; Ng, Esmond G.; Rippe, Lynn E.; Saphir, William C.; Verdier, Francesca; Walter, Howard A.; Yelick,Katherine A.

    2005-05-16

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise of the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.

  11. World Congress on Engineering and Computer Science 2015

    CERN Document Server

    Kim, Haeng; Amouzegar, Mahyar

    2017-01-01

    This proceedings volume contains selected revised and extended research articles written by researchers who participated in the World Congress on Engineering and Computer Science 2015, held in San Francisco, USA, 21-23 October 2015. Topics covered include engineering mathematics, electrical engineering, circuits, communications systems, computer science, chemical engineering, systems engineering, manufacturing engineering, and industrial applications. The book offers the reader an overview of the state of the art in engineering technologies, computer science, systems engineering and applications, and will serve as an excellent reference work for researchers and graduate students working in these fields.

  12. Applying activity theory to computer-supported collaborative learning and work-based activities in corporate settings

    NARCIS (Netherlands)

    Collis, Betty; Margaryan, A.

    2004-01-01

    Business needs in many corporations call for learning outcomes that involve problem solutions, and creating and sharing new knowledge within worksplace situation that may involve collaboration among members of a team. We argue that work-based activities (WBA) and computer-supported collaborative

  13. Non-Determinism: An Abstract Concept in Computer Science Studies

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  14. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    Directory of Open Access Journals (Sweden)

    Eli Dart

    2014-01-01

    Full Text Available The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  15. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.

    2013-06-13

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  16. A Collaborative Digital Pathology System for Multi-Touch Mobile and Desktop Computing Platforms

    KAUST Repository

    Jeong, W.; Schneider, J.; Hansen, A.; Lee, M.; Turney, S. G.; Faulkner-Jones, B. E.; Hecht, J. L.; Najarian, R.; Yee, E.; Lichtman, J. W.; Pfister, H.

    2013-01-01

    Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server system that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch-enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. We introduce a domain-specific image-stack compression method that leverages real-time hardware decoding on mobile devices. It adaptively encodes image stacks in a decorrelated colour space to achieve extremely low bitrates (0.8 bpp) with very low loss of image quality. We evaluate the image quality of our compression method and the performance of our system for diagnosis with an in-depth user study. Collaborative slide image viewing systems are becoming increasingly important in pathology applications such as telepathology and E-learning. Despite rapid advances in computing and imaging technology, current digital pathology systems have limited performance with respect to remote viewing of whole slide images on desktop or mobile computing devices. In this paper we present a novel digital pathology client-server systems that supports collaborative viewing of multi-plane whole slide images over standard networks using multi-touch enabled clients. Our system is built upon a standard HTTP web server and a MySQL database to allow multiple clients to exchange image and metadata concurrently. © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  17. Bioinformation processing a primer on computational cognitive science

    CERN Document Server

    Peterson, James K

    2016-01-01

    This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.

  18. Nuclear computational science a century in review

    CERN Document Server

    Azmy, Yousry

    2010-01-01

    Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational

  19. SCIENCE TEACHERS’ INDIVIDUAL AND SOCIAL LEARNING RELATED TO IBSE IN A LARGE-SCALE, LONG- TERM, COLLABORATIVE TPD PROJECT

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Sillasen, Martin Krabbe

    2014-01-01

    It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project is designed using widely agreed criteria for effective TPD: content focus, active learning, coherence, duration, collaborative activities and collec......It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project is designed using widely agreed criteria for effective TPD: content focus, active learning, coherence, duration, collaborative activities...... and collective participation, and is organised on principles of situated learning in Professional Learning Communities (PLCs). QUEST-activities follow a rhythm of full day seminars followed by a period of collaborative inquiries locally. A major theme in the first year has been Inquiry Based Science Education......-on experiences and fewer including students’ minds-on. Teachers’ reflections indicate that many are positive towards QUEST seminars based on trying out activities directly applicable in the classroom. Case studies indicate a potentially more sustainable development, where the teachers collaboratively re...

  20. COMPUTER SCIENCE IN THE EDUCATION OF UKRAINE: FORMATION PROSPECTS

    OpenAIRE

    Viktor Shakotko

    2016-01-01

    The article deals with the formation of computer science as science and school subject as well in the system of education in Ukraine taking into consideration the development tendencies of this science in the world. The introduction of the notion« information technology», «computer science» and «informatics science» into the science, their correlation and the peculiarities of subject sphere determination are analyzed through the historical aspect. The author considers the points of view conce...

  1. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  2. Project PEACH at UCLH: Student Projects in Healthcare Computing.

    Science.gov (United States)

    Ramachandran, Navin; Mohamedally, Dean; Taylor, Paul

    2017-01-01

    A collaboration between clinicians at UCLH and the Dept of Computer Science at UCL is giving students of computer science the opportunity to undertake real healthcare computing projects as part of their education. This is enabling the creation of a significant research computing platform within the Trust, based on open source components and hosted in the cloud, while providing a large group of students with experience of the specific challenges of health IT.

  3. Comparing absolute and normalized indicators in scientific collaboration: a study in Environmental Science in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Cabrini-Grácio, M.C.; Oliveira, E.F.T.

    2016-07-01

    This paper aims to conduct a comparative analysis of scientific collaboration proximity trends generated from absolute indicators and indicators of collaboration intensity in the field of Environmental Sciences in Latin America (LA), in order to identify possible existing biases in the absolute indicators of international cooperation, due to the magnitude of scientific production of these countries in mainstream science. More specifically, the objective is to analyze the compared forms of absolute and normalized values of co-authorship among Latin America countries and their main collaborators, in order to observe similarities and differences expressed by two indexes of frequency in relation to scientific collaboration trends in LA countries. In addition, we aim to visualize and analyze scientific collaboration networks with absolute and normalized indexes of co-authorship through SC among Latin America countries and their collaborators, comparing proximity evidenced by two generated collaborative networks - absolute and relative indicators. Data collection comprised a period of 10 years (2006-2015) for the countries from LA: Brazil, Mexico, Argentina, Chile and Colombia as they produced 94% of total production, a percentage considered representative and significant for this study. Then, we verified the co-authorship frequencies among the five countries and their key collaborators and builted the matrix with the indexes of co-authorship normalized through SC. Then, we generated two egocentric networks of scientific collaboration - absolute frequencies and normalized frequencies through SC using Pajek software. From the results, we observed the need for absolute and normalized indicators to describe the scientific collaboration phenomenon in a more thoroughly way, once these indicators provide complementary information. (Author)

  4. Summary of research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    Science.gov (United States)

    1989-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1988 through March 31, 1989 is summarized.

  5. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    Science.gov (United States)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher

  6. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H [Institute for Molecular Science, Okazaki, Aichi (Japan)

    1982-06-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience.

  7. Large-scale theoretical calculations in molecular science - design of a large computer system for molecular science and necessary conditions for future computers

    International Nuclear Information System (INIS)

    Kashiwagi, H.

    1982-01-01

    A large computer system was designed and established for molecular science under the leadership of molecular scientists. Features of the computer system are an automated operation system and an open self-service system. Large-scale theoretical calculations have been performed to solve many problems in molecular science, using the computer system. Necessary conditions for future computers are discussed on the basis of this experience. (orig.)

  8. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  9. Undergraduate Research in Quantum Information Science

    Science.gov (United States)

    Lyons, David W.

    2017-01-01

    Quantum Information Science (QIS) is an interdisciplinary field involving mathematics, computer science, and physics. Appealing aspects include an abundance of accessible open problems, active interest and support from government and industry, and an energetic, open, and collaborative international research culture. We describe our student-faculty…

  10. Sustaining and Extending the Open Science Grid: Science Innovation on a PetaScale Nationwide Facility (DE-FC02-06ER41436) SciDAC-2 Closeout Report

    Energy Technology Data Exchange (ETDEWEB)

    Livny, Miron [Univ. of Wisconsin, Madison, WI (United States); Shank, James [Boston Univ., MA (United States); Ernst, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Blackburn, Kent [California Inst. of Technology (CalTech), Pasadena, CA (United States); Goasguen, Sebastien [Clemson Univ., SC (United States); Tuts, Michael [Columbia Univ., New York, NY (United States); Gibbons, Lawrence [Cornell Univ., Ithaca, NY (United States); Pordes, Ruth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sliz, Piotr [Harvard Medical School, Boston, MA (United States); Deelman, Ewa [Univ. of Southern California, Los Angeles, CA (United States). Information Sciences Inst.; Barnett, William [Indiana Univ., Bloomington, IN (United States); Olson, Doug [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McGee, John [Univ. of North Carolina, Chapel Hill, NC (United States). Renaissance Computing Inst.; Cowles, Robert [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wuerthwein, Frank [Univ. of California, San Diego, CA (United States); Gardner, Robert [Univ. of Chicago, IL (United States); Avery, Paul [Univ. of Florida, Gainesville, FL (United States); Wang, Shaowen [Univ. of Illinois, Champaign, IL (United States); Univ. of Iowa, Iowa City, IA (United States); Lincoln, David Swanson [Univ. of Nebraska, Lincoln, NE (United States)

    2015-02-11

    Under this SciDAC-2 grant the project’s goal w a s t o stimulate new discoveries by providing scientists with effective and dependable access to an unprecedented national distributed computational facility: the Open Science Grid (OSG). We proposed to achieve this through the work of the Open Science Grid Consortium: a unique hands-on multi-disciplinary collaboration of scientists, software developers and providers of computing resources. Together the stakeholders in this consortium sustain and use a shared distributed computing environment that transforms simulation and experimental science in the US. The OSG consortium is an open collaboration that actively engages new research communities. We operate an open facility that brings together a broad spectrum of compute, storage, and networking resources and interfaces to other cyberinfrastructures, including the US XSEDE (previously TeraGrid), the European Grids for ESciencE (EGEE), as well as campus and regional grids. We leverage middleware provided by computer science groups, facility IT support organizations, and computing programs of application communities for the benefit of consortium members and the US national CI.

  11. 78 FR 10180 - Annual Computational Science Symposium; Conference

    Science.gov (United States)

    2013-02-13

    ...] Annual Computational Science Symposium; Conference AGENCY: Food and Drug Administration, HHS. ACTION... Pharmaceutical Users Software Exchange (PhUSE), is announcing a public conference entitled ``The FDA/PhUSE Annual Computational Science Symposium.'' The purpose of the conference is to help the broader community align and...

  12. Partnership in Computational Science

    Energy Technology Data Exchange (ETDEWEB)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  13. Computational Science: Ensuring America's Competitiveness

    National Research Council Canada - National Science Library

    Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L

    2005-01-01

    ... previously deemed intractable. Yet, despite the great opportunities and needs, universities and the Federal government have not effectively recognized the strategic significance of computational science in either...

  14. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Science.gov (United States)

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  15. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    Science.gov (United States)

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  16. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Directory of Open Access Journals (Sweden)

    Gail F Davies

    Full Text Available Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs', work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving

  17. Research collaboration and team science a state-of-the-art review and agenda

    CERN Document Server

    Bozeman, Barry

    2014-01-01

    Today in most scientific and technical fields more than 90% of research studies and publications are collaborative, often resulting in high-impact research and development of commercial applications, as reflected in patents. Nowadays in many areas of science, collaboration is not a preference but, literally, a work prerequisite. The purpose of this book is to review and critique the burgeoning scholarship on research collaboration. The authors seek to identify gaps in theory and research and identify the ways in which existing research can be used to improve public policy for collaboration and to improve project-level management of collaborations using Scientific and Technical Human Capital (STHC) theory as a framework. Broadly speaking, STHC is the sum of scientific and technical and social knowledge, skills and resources embodied in a particular individual. It is both human capital endowments, such as formal education and training and social relations and network ties that bind scientists and the users of ...

  18. An investigation of the artifacts, outcomes, and processes of constructing computer games about environmental science in a fifth grade science classroom

    Science.gov (United States)

    Baytak, Ahmet

    Among educational researchers and practitioners, there is a growing interest in employing computer games for pedagogical purposes. The present research integrated a technology education class and a science class where 5 th graders learned about environmental issues by designing games that involved environmental concepts. The purposes of this study were to investigate how designing computer games affected the development of students' environmental knowledge, programming knowledge, environmental awareness and interest in computers. It also explored the nature of the artifacts developed and the types of knowledge represented therein. A case study (Yin, 2003) was employed within the context of a 5 th grade elementary science classroom. Fifth graders designed computer games about environmental issues to present to 2nd graders by using Scratch software. The analysis of this study was based on multiple data sources: students' pre- and post-test scores on environmental awareness, their environmental knowledge, their interest in computer science, and their game design. Included in the analyses were also data from students' computer games, participant observations, and structured interviews. The results of the study showed that students were able to successfully design functional games that represented their understanding of environment, even though the gain between pre- and post-environmental knowledge test and environmental awareness survey were minimal. The findings indicate that all students were able to use various game characteristics and programming concepts, but their prior experience with the design software affected their representations. The analyses of the interview transcriptions and games show that students improved their programming skills and that they wanted to do similar projects for other subject areas in the future. Observations showed that game design appeared to lead to knowledge-building, interaction and collaboration among students. This, in turn

  19. A Cognitive Model for Problem Solving in Computer Science

    Science.gov (United States)

    Parham, Jennifer R.

    2009-01-01

    According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…

  20. 11th International Conference on Computer and Information Science

    CERN Document Server

    Computer and Information 2012

    2012-01-01

    The series "Studies in Computational Intelligence" (SCI) publishes new developments and advances in the various areas of computational intelligence – quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life science, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Critical to both contributors and readers are the short publication time and world-wide distribution - this permits a rapid and broad dissemination of research results.   The purpose of the 11th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2012...

  1. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  2. Rangaswamy Narasimhan: Doyen of Computer Science

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Rangaswamy Narasimhan: Doyen of Computer Science and Technology. Srinivasan Ramani. Article-in-a-Box Volume 13 Issue 5 May 2008 pp 407-409. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Computational colour science using MATLAB

    CERN Document Server

    Westland, Stephen; Cheung, Vien

    2012-01-01

    Computational Colour Science Using MATLAB 2nd Edition offers a practical, problem-based approach to colour physics. The book focuses on the key issues encountered in modern colour engineering, including efficient representation of colour information, Fourier analysis of reflectance spectra and advanced colorimetric computation. Emphasis is placed on the practical applications rather than the techniques themselves, with material structured around key topics. These topics include colour calibration of visual displays, computer recipe prediction and models for colour-appearance prediction. Each t

  4. AN EVALUATION AND IMPLEMENTATION OF COLLABORATIVE AND SOCIAL NETWORKING TECHNOLOGIES FOR COMPUTER EDUCATION

    OpenAIRE

    Ronnie Cheung; Calvin Wan

    2011-01-01

    We have developed a collaborative and social networking environment that integrates the knowledge and skills in communication and computing studies with a multimedia development project. The outcomes of the students’ projects show that computer literacy can be enhanced through a cluster of communication, social, and digital skills. Experience in implementing a web-based social networking environment shows that the new media is an effective means of enriching knowledge by sharing in computer l...

  5. Science Prospects And Benefits with Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Kothe, Douglas B [ORNL

    2007-12-01

    Scientific computation has come into its own as a mature technology in all fields of science. Never before have we been able to accurately anticipate, analyze, and plan for complex events that have not yet occurred from the operation of a reactor running at 100 million degrees centigrade to the changing climate a century down the road. Combined with the more traditional approaches of theory and experiment, scientific computation provides a profound tool for insight and solution as we look at complex systems containing billions of components. Nevertheless, it cannot yet do all we would like. Much of scientific computation s potential remains untapped in areas such as materials science, Earth science, energy assurance, fundamental science, biology and medicine, engineering design, and national security because the scientific challenges are far too enormous and complex for the computational resources at hand. Many of these challenges are of immediate global importance. These challenges can be overcome by a revolution in computing that promises real advancement at a greatly accelerated pace. Planned petascale systems (capable of a petaflop, or 1015 floating point operations per second) in the next 3 years and exascale systems (capable of an exaflop, or 1018 floating point operations per second) in the next decade will provide an unprecedented opportunity to attack these global challenges through modeling and simulation. Exascale computers, with a processing capability similar to that of the human brain, will enable the unraveling of longstanding scientific mysteries and present new opportunities. Table ES.1 summarizes these scientific opportunities, their key application areas, and the goals and associated benefits that would result from solutions afforded by exascale computing.

  6. Computational error and complexity in science and engineering computational error and complexity

    CERN Document Server

    Lakshmikantham, Vangipuram; Chui, Charles K; Chui, Charles K

    2005-01-01

    The book "Computational Error and Complexity in Science and Engineering” pervades all the science and engineering disciplines where computation occurs. Scientific and engineering computation happens to be the interface between the mathematical model/problem and the real world application. One needs to obtain good quality numerical values for any real-world implementation. Just mathematical quantities symbols are of no use to engineers/technologists. Computational complexity of the numerical method to solve the mathematical model, also computed along with the solution, on the other hand, will tell us how much computation/computational effort has been spent to achieve that quality of result. Anyone who wants the specified physical problem to be solved has every right to know the quality of the solution as well as the resources spent for the solution. The computed error as well as the complexity provide the scientific convincing answer to these questions. Specifically some of the disciplines in which the book w...

  7. Assessment of Examinations in Computer Science Doctoral Education

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…

  8. Computer Science Professionals and Greek Library Science

    Science.gov (United States)

    Dendrinos, Markos N.

    2008-01-01

    This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated…

  9. Computing Whether She Belongs: Stereotypes Undermine Girls' Interest and Sense of Belonging in Computer Science

    Science.gov (United States)

    Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.

    2016-01-01

    Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…

  10. Institute for Computer Applications in Science and Engineering (ICASE)

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  11. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    Directory of Open Access Journals (Sweden)

    Joseph P. Kenny

    2008-01-01

    Full Text Available Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also address interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.

  12. Collaborative Information Technologies

    Science.gov (United States)

    Meyer, William; Casper, Thomas

    1999-11-01

    Significant effort has been expended to provide infrastructure and to facilitate the remote collaborations within the fusion community and out. Through the Office of Fusion Energy Science Information Technology Initiative, communication technologies utilized by the fusion community are being improved. The initial thrust of the initiative has been collaborative seminars and meetings. Under the initiative 23 sites, both laboratory and university, were provided with hardware required to remotely view, or project, documents being presented. The hardware is capable of delivering documents to a web browser, or to compatible hardware, over ESNET in an access controlled manner. The ability also exists for documents to originate from virtually any of the collaborating sites. In addition, RealNetwork servers are being tested to provide audio and/or video, in a non-interactive environment with MBONE providing two-way interaction where needed. Additional effort is directed at remote distributed computing, file systems, security, and standard data storage and retrieval methods. This work supported by DoE contract No. W-7405-ENG-48

  13. Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study

    Science.gov (United States)

    Herling, Lourdes

    2011-01-01

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…

  14. Enhancing Science Literacy and Art History Engagement at Princeton Through Collaboration Between the University Art Museum and the Council on Science and Technology

    Science.gov (United States)

    Riihimaki, C. A.; White, V. M.

    2016-12-01

    The importance of innovative science education for social science and humanities students is often under-appreciated by science departments, because these students typically do not take science courses beyond general education requirements, nor do they contribute to faculty research programs. However, these students are vitally important in society—for example as business leaders or consultants, and especially as voters. In these roles, they will be confronted with decisions related to science in their professional and personal lives. The Council on Science and Technology at Princeton University aims to fill this education gap by developing and supporting innovative programs that bring science to cross-disciplinary audiences. One of our most fruitful collaborations has been with the Princeton University Art Museum, which has an encyclopedic collection of over 92,000 works of art, ranging from antiquity to the contemporary. Our work includes 1) bringing introductory environmental science courses to the Museum to explore how original works of art of different ages can serve as paleo-environmental proxies, thereby providing a means for discussing broader concepts in development of proxies and validation of reconstructions; 2) sponsoring a panel aimed at the general public and composed of science faculty and art historians who discussed the scientific and art historical contexts behind Albert Bierstadt's Mount Adams, Washington, 1875 (oil on canvas, gift of Mrs. Jacob N. Beam, accession number y1940-430), including the landscape's subjects, materials, technique, and style; and 3) collaborating on an installation of photographs relevant to a freshman GIS course, with an essay about the artwork written by the students. This first-hand study of works of art encourages critical thinking and an empathetic approach to different historical periods and cultures, as well as to the environment. Our collaboration additionally provides an opportunity to engage more students in

  15. "Computer Science Can Feed a Lot of Dreams"

    Science.gov (United States)

    Educational Horizons, 2014

    2014-01-01

    Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…

  16. Case Studies of Liberal Arts Computer Science Programs

    Science.gov (United States)

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  17. New Pedagogies on Teaching Science with Computer Simulations

    Science.gov (United States)

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  18. Barbara Ryder to head Department of Computer Science

    OpenAIRE

    Daniilidi, Christina

    2008-01-01

    Barbara G. Ryder, professor of computer science at Rutgers, The State University of New Jersey, will become the computer science department head at Virginia Tech, starting in fall 2008. She is the first woman to serve as a department head in the history of the nationally ranked College of Engineering.

  19. Color in Computer Vision Fundamentals and Applications

    CERN Document Server

    Gevers, Theo; van de Weijer, Joost; Geusebroek, Jan-Mark

    2012-01-01

    While the field of computer vision drives many of today’s digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding. Based on the authors’ intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theor

  20. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  1. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    Science.gov (United States)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are

  2. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    Science.gov (United States)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  3. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    Science.gov (United States)

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  4. Journal of Computer Science and Its Application: Site Map

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: Site Map. Journal Home > About the Journal > Journal of Computer Science and Its Application: Site Map. Log in or Register to get access to full text downloads.

  5. Journal of Computer Science and Its Application: Journal Sponsorship

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: Journal Sponsorship. Journal Home > About the Journal > Journal of Computer Science and Its Application: Journal Sponsorship. Log in or Register to get access to full text downloads.

  6. African-American males in computer science---Examining the pipeline for clogs

    Science.gov (United States)

    Stone, Daryl Bryant

    The literature on African-American males (AAM) begins with a statement to the effect that "Today young Black men are more likely to be killed or sent to prison than to graduate from college." Why are the numbers of African-American male college graduates decreasing? Why are those enrolled in college not majoring in the science, technology, engineering, and mathematics (STEM) disciplines? This research explored why African-American males are not filling the well-recognized industry need for Computer Scientist/Technologists by choosing college tracks to these careers. The literature on STEM disciplines focuses largely on women in STEM, as opposed to minorities, and within minorities, there is a noticeable research gap in addressing the needs and opportunities available to African-American males. The primary goal of this study was therefore to examine the computer science "pipeline" from the African-American male perspective. The method included a "Computer Science Degree Self-Efficacy Scale" be distributed to five groups of African-American male students, to include: (1) fourth graders, (2) eighth graders, (3) eleventh graders, (4) underclass undergraduate computer science majors, and (5) upperclass undergraduate computer science majors. In addition to a 30-question self-efficacy test, subjects from each group were asked to participate in a group discussion about "African-American males in computer science." The audio record of each group meeting provides qualitative data for the study. The hypotheses include the following: (1) There is no significant difference in "Computer Science Degree" self-efficacy between fourth and eighth graders. (2) There is no significant difference in "Computer Science Degree" self-efficacy between eighth and eleventh graders. (3) There is no significant difference in "Computer Science Degree" self-efficacy between eleventh graders and lower-level computer science majors. (4) There is no significant difference in "Computer Science Degree

  7. International Developments in Computer Science.

    Science.gov (United States)

    1982-06-01

    background on 52 53 China’s scientific research and on their computer science before 1978. A useful companion to the directory is another publication of the...bimonthly publication in Portuguese; occasional translation of foreign articles into Portuguese. Data News: A bimonthly industry newsletter. Sistemas ...computer-related topics; Spanish. Delta: Publication of local users group; Spanish. Sistemas : Publication of System Engineers of Colombia; Spanish. CUBA

  8. The Effects of Mobile-Computer-Supported Collaborative Learning: Meta-Analysis and Critical Synthesis.

    Science.gov (United States)

    Sung, Yao-Ting; Yang, Je-Ming; Lee, Han-Yueh

    2017-08-01

    One of the trends in collaborative learning is using mobile devices for supporting the process and products of collaboration, which has been forming the field of mobile-computer-supported collaborative learning (mCSCL). Although mobile devices have become valuable collaborative learning tools, evaluative evidence for their substantial contributions to collaborative learning is still scarce. The present meta-analysis, which included 48 peer-reviewed journal articles and doctoral dissertations written over a 16-year period (2000-2015) involving 5,294 participants, revealed that mCSCL has produced meaningful improvements for collaborative learning, with an overall mean effect size of 0.516. Moderator variables, such as domain subject, group size, teaching method, intervention duration, and reward method were related to different effect sizes. The results provided implications for future research and practice, such as suggestions on how to appropriately use the functionalities of mobile devices, how to best leverage mCSCL through effective group learning mechanisms, and what outcome variables should be included in future studies to fully elucidate the process and products of mCSCL.

  9. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.

  10. Pilot Study on the Feasibility and Indicator Effects of Collaborative Online Projects on Science Learning for English Learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Walden, Emily

    2015-01-01

    The 2006 National Science Board called for new strategies and instructional materials for teachers to better serve English Learners' (EL) needs. Bilingual Collaborative Online Projects in science were created to assist ELs' construction of science knowledge, facilitate academic English acquisition, and improve science learning. Two bilingual…

  11. Computer science II essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science II includes organization of a computer, memory and input/output, coding, data structures, and program development. Also included is an overview of the most commonly

  12. Collaborating and sharing data in epilepsy research.

    Science.gov (United States)

    Wagenaar, Joost B; Worrell, Gregory A; Ives, Zachary; Dümpelmann, Matthias; Matthias, Dümpelmann; Litt, Brian; Schulze-Bonhage, Andreas

    2015-06-01

    Technological advances are dramatically advancing translational research in Epilepsy. Neurophysiology, imaging, and metadata are now recorded digitally in most centers, enabling quantitative analysis. Basic and translational research opportunities to use these data are exploding, but academic and funding cultures prevent this potential from being realized. Research on epileptogenic networks, antiepileptic devices, and biomarkers could progress rapidly if collaborative efforts to digest this "big neuro data" could be organized. Higher temporal and spatial resolution data are driving the need for novel multidimensional visualization and analysis tools. Crowd-sourced science, the same that drives innovation in computer science, could easily be mobilized for these tasks, were it not for competition for funding, attribution, and lack of standard data formats and platforms. As these efforts mature, there is a great opportunity to advance Epilepsy research through data sharing and increase collaboration between the international research community.

  13. Roles for Agent Assistants in Field Science: Understanding Personal Projects and Collaboration

    Science.gov (United States)

    Clancey, William J.

    2003-01-01

    A human-centered approach to computer systems design involves reframing analysis in terms of the people interacting with each other. The primary concern is not how people can interact with computers, but how shall we design work systems (facilities, tools, roles, and procedures) to help people pursue their personal projects, as they work independently and collaboratively? Two case studies provide empirical requirements. First, an analysis of astronaut interactions with CapCom on Earth during one traverse of Apollo 17 shows what kind of information was conveyed and what might be automated today. A variety of agent and robotic technologies are proposed that deal with recurrent problems in communication and coordination during the analyzed traverse. Second, an analysis of biologists and a geologist working at Haughton Crater in the High Canadian Arctic reveals how work interactions between people involve independent personal projects, sensitively coordinated for mutual benefit. In both cases, an agent or robotic system's role would be to assist people, rather than collaborating, because today's computer systems lack the identity and purpose that consciousness provides.

  14. Technology Trends in Mobile Computer Supported Collaborative Learning in Elementary Education from 2009 to 2014

    Science.gov (United States)

    Carapina, Mia; Boticki, Ivica

    2015-01-01

    This paper analyses mobile computer supported collaborative learning in elementary education worldwide focusing on technology trends for the period from 2009 to 2014. The results present representation of device types used to support collaborative activities, their distribution per users (1:1 or 1:m) and if students are learning through or around…

  15. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    Science.gov (United States)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  16. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  17. World Congress on Engineering and Computer Science 2014

    CERN Document Server

    Amouzegar, Mahyar; Ao, Sio-long

    2015-01-01

    This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering, and applications of engineering science in industry. This book describes some significant advances in engineering technologies, and also serves as an excellent source of reference for researchers and graduate students.

  18. Women in computer science: An interpretative phenomenological analysis exploring common factors contributing to women's selection and persistence in computer science as an academic major

    Science.gov (United States)

    Thackeray, Lynn Roy

    The purpose of this study is to understand the meaning that women make of the social and cultural factors that influence their reasons for entering and remaining in study of computer science. The twenty-first century presents many new challenges in career development and workforce choices for both men and women. Information technology has become the driving force behind many areas of the economy. As this trend continues, it has become essential that U.S. citizens need to pursue a career in technologies, including the computing sciences. Although computer science is a very lucrative profession, many Americans, especially women, are not choosing it as a profession. Recent studies have shown no significant differences in math, technical and science competency between men and women. Therefore, other factors, such as social, cultural, and environmental influences seem to affect women's decisions in choosing an area of study and career choices. A phenomenological method of qualitative research was used in this study, based on interviews of seven female students who are currently enrolled in a post-secondary computer science program. Their narratives provided meaning into the social and cultural environments that contribute to their persistence in their technical studies, as well as identifying barriers and challenges that are faced by female students who choose to study computer science. It is hoped that the data collected from this study may provide recommendations for the recruiting, retention and support for women in computer science departments of U.S. colleges and universities, and thereby increase the numbers of women computer scientists in industry. Keywords: gender access, self-efficacy, culture, stereotypes, computer education, diversity.

  19. Multiscale Computation. Needs and Opportunities for BER Science

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    The Environmental Molecular Sciences Laboratory (EMSL), a scientific user facility managed by Pacific Northwest National Laboratory for the U.S. Department of Energy, Office of Biological and Environmental Research (BER), conducted a one-day workshop on August 26, 2014 on the topic of “Multiscale Computation: Needs and Opportunities for BER Science.” Twenty invited participants, from various computational disciplines within the BER program research areas, were charged with the following objectives; Identify BER-relevant models and their potential cross-scale linkages that could be exploited to better connect molecular-scale research to BER research at larger scales and; Identify critical science directions that will motivate EMSL decisions regarding future computational (hardware and software) architectures.

  20. Programmers, professors, and parasites: credit and co-authorship in computer science.

    Science.gov (United States)

    Solomon, Justin

    2009-12-01

    This article presents an in-depth analysis of past and present publishing practices in academic computer science to suggest the establishment of a more consistent publishing standard. Historical precedent for academic publishing in computer science is established through the study of anecdotes as well as statistics collected from databases of published computer science papers. After examining these facts alongside information about analogous publishing situations and standards in other scientific fields, the article concludes with a list of basic principles that should be adopted in any computer science publishing standard. These principles would contribute to the reliability and scientific nature of academic publications in computer science and would allow for more straightforward discourse in future publications.

  1. Enhancing Science Education Instruction: A Mixed-Methods Study on University and Middle School Collaborations

    Science.gov (United States)

    Owen-Stone, Deborah S.

    The purpose of this concurrent mixed methods study was to examine the collaborative relationship between scientists and science teachers and to incorporate and advocate scientific literacy based on past and current educational theories such as inquiry based teaching. The scope of this study included archived student standardized test scores, semi-structured interviews, and a Likert scale survey to include open-ended comments. The methodology was based on the guiding research question: To what extent and in what ways does the collaboration and inquiry methodology, with GTF and PT teams, serve toward contributing to a more comprehensive and nuanced understanding of this predicting relationship between student PASS scores, inquiry skills, and increased scientific literacy for GTF's, PT's, and students via an integrative mixed methods analysis? The data analysis considerations were derived from the qualitative data collected from the three GTF/PT teams by the use of recorded interviews and text answered survey comments. The quantitative data of archived student Palmetto Assessment of State Standards (PASS) scores on scientific literacy and inquiry tests and the Likert-scale portion of the survey were support data to the aforementioned qualitative data findings. Limitations of the study were (1) the population of only the GK-12 teachers and their students versus the inclusion of participants that did not experience the GK-12 Fellow partnerships within their classrooms, should they be considered as participants, (2) involved the researcher as a participant for two years of the program and objectivity remained through interpretation and well documented personal reflections and experiences to inform accuracy, and (3) cultural diversity contributed to the relationship formed between the research Fellow and science educator and communication and scientific language did form a barrier between the Fellow, educator, and student rapport within the classroom. This study

  2. Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course

    Science.gov (United States)

    Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff

    2010-01-01

    Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…

  3. The ANTOSTRAT legacy: Science collaboration and international transparency in potential marine mineral resource exploitation of Antarctica

    Science.gov (United States)

    Cooper, Alan; Barker, Peter; Barrett, Peter; Behrendt, John; Brancolini, Giuliano; Childs, Jonathan R.; Escutia, Carlota; Jokat, Wilfried; Kristoffersen, Yngve; Leitchenkov, German; Stagg, Howard; Tanahashi, Manabu; Wardell, Nigel; Webb, Peter

    2009-01-01

    The Antarctic Offshore Stratigraphy project (ANTOSTRAT; 1989–2002) was an extremely successful collaboration in international marine geological science that also lifted the perceived “veil of secrecy” from studies of potential exploitation of Antarctic marine mineral resources. The project laid the groundwork for circum-Antarctic seismic, drilling, and rock coring programs designed to decipher Antarctica’s tectonic, stratigraphic, and climate histories. In 2002, ANTOSTRAT evolved into the equally successful and currently active Antarctic Climate Evolution research program. The need for, and evolution of, ANTOSTRAT was based on two simple tenets within SCAR and the Antarctic Treaty: international science collaboration and open access to data. The ANTOSTRAT project may be a helpful analog for other regions of strong international science and geopolitical interests, such as the Arctic. This is the ANTOSTRAT story.

  4. Internal and External Regulation to Support Knowledge Construction and Convergence in Computer Supported Collaborative Learning (CSCL)

    Science.gov (United States)

    Romero, Margarida; Lambropoulos, Niki

    2011-01-01

    Computer Supported Collaborative Learning (CSCL) activities aim to promote collaborative knowledge construction and convergence. During the CSCL activity, the students should regulate their learning activity, at the individual and collective level. This implies an organisation cost related to the coordination of the activity with the team-mates…

  5. Developing institutional collaboration between Wageningen University and the Chinese Academy of Agricultural Sciences

    OpenAIRE

    Bonnema, A.B.; Lin, Zhai; Qu, Liang; Jacobsen, E.

    2006-01-01

    Scientific co-operation between the Chinese Academy of Agricultural Sciences (CAAS) and Wageningen University (WU) has been underway since 1990, especially in the field of plant sciences. In 2001, CAAS and WU initiated a formal joint PhD training programme to further structure their co-operation. The goals of this co-operation are to: (1) initiate long-term institutional collaboration through capacity building; (2) jointly establish a modern laboratory; (3) jointly develop a cross-cultural sc...

  6. Design, Development, and Evaluation of a Mobile Learning Application for Computing Education

    Science.gov (United States)

    Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki

    2018-01-01

    The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…

  7. Toward a framework for computer-mediated collaborative design in medical informatics.

    Science.gov (United States)

    Patel, V L; Kaufman, D R; Allen, V G; Shortliffe, E H; Cimino, J J; Greenes, R A

    1999-09-01

    The development and implementation of enabling tools and methods that provide ready access to knowledge and information are among the central goals of medical informatics. The need for multi-institutional collaboration in the development of such tools and methods is increasingly being recognized. Collaboration involves communication, which typically involves individuals who work together at the same location. With the evolution of electronic modalities for communication, we seek to understand the role that such technologies can play in supporting collaboration, especially when the participants are geographically separated. Using the InterMed Collaboratory as a subject of study, we have analyzed their activities as an exercise in computer- and network-mediated collaborative design. We report on the cognitive, sociocultural, and logistical issues encountered when scientists from diverse organizations and backgrounds use communications technologies while designing and implementing shared products. Results demonstrate that it is important to match carefully the content with the mode of communication, identifying, for example, suitable uses of E-mail, conference calls, and face-to-face meetings. The special role of leaders in guiding and facilitating the group activities can also be seen, regardless of the communication setting in which the interactions occur. Most important is the proper use of technology to support the evolution of a shared vision of group goals and methods, an element that is clearly necessary before successful collaborative designs can proceed.

  8. New trends in networking, computing, e-learning, systems sciences, and engineering

    CERN Document Server

    Sobh, Tarek

    2015-01-01

    This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers form the conference proceedings of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  • Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; • Includes chapters in the most advanced areas of Computing, Informatics, Systems Sciences, and Engineering; • Accessible to a wide range of readership, including professors, researchers, practitioners and...

  9. Approaching Gender Parity: Women in Computer Science at Afghanistan's Kabul University

    Science.gov (United States)

    Plane, Jandelyn

    2010-01-01

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in…

  10. Social dimensions of science-humanitarian collaboration: lessons from Padang, Sumatra, Indonesia.

    Science.gov (United States)

    Shannon, Rachel; Hope, Max; McCloskey, John; Crowley, Dominic; Crichton, Peter

    2014-07-01

    This paper contains a critical exploration of the social dimensions of the science-humanitarian relationship. Drawing on literature on the social role of science and on the social dimensions of humanitarian practice, it analyses a science-humanitarian partnership for disaster risk reduction (DRR) in Padang, Sumatra, Indonesia, an area threatened by tsunamigenic earthquakes. The paper draws on findings from case study research that was conducted between 2010 and 2011. The case study illustrates the social processes that enabled and hindered collaboration between the two spheres, including the informal partnership of local people and scientists that led to the co-production of earthquake and tsunami DRR and limited organisational capacity and support in relation to knowledge exchange. The paper reflects on the implications of these findings for science-humanitarian partnering in general, and it assesses the value of using a social dimensions approach to understand scientific and humanitarian dialogue. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  11. 77 FR 4568 - Annual Computational Science Symposium; Public Conference

    Science.gov (United States)

    2012-01-30

    ...] Annual Computational Science Symposium; Public Conference AGENCY: Food and Drug Administration, HHS... with the Pharmaceutical Users Software Exchange (PhUSE), is announcing a public conference entitled ``The FDA/PhUSE Annual Computational Science Symposium.'' The purpose of the conference is to help the...

  12. Improving Communicative Competence through Synchronous Communication in Computer-Supported Collaborative Learning Environments: A Systematic Review

    Science.gov (United States)

    Huang, Xi

    2018-01-01

    Computer-supported collaborative learning facilitates the extension of second language acquisition into social practice. Studies on its achievement effects speak directly to the pedagogical notion of treating communicative practice in synchronous computer-mediated communication (SCMC): real-time communication that takes place between human beings…

  13. 6th International Conference on Computer Science and its Applications

    CERN Document Server

    Stojmenovic, Ivan; Jeong, Hwa; Yi, Gangman

    2015-01-01

    The 6th FTRA International Conference on Computer Science and its Applications (CSA-14) will be held in Guam, USA, Dec. 17 - 19, 2014. CSA-14 presents a comprehensive conference focused on the various aspects of advances in engineering systems in computer science, and applications, including ubiquitous computing, U-Health care system, Big Data, UI/UX for human-centric computing, Computing Service, Bioinformatics and Bio-Inspired Computing and will show recent advances on various aspects of computing technology, Ubiquitous Computing Services and its application.

  14. 30th International Symposium on Computer and Information Sciences

    CERN Document Server

    Gelenbe, Erol; Gorbil, Gokce; Lent, Ricardo

    2016-01-01

    The 30th Anniversary of the ISCIS (International Symposium on Computer and Information Sciences) series of conferences, started by Professor Erol Gelenbe at Bilkent University, Turkey, in 1986, will be held at Imperial College London on September 22-24, 2015. The preceding two ISCIS conferences were held in Krakow, Poland in 2014, and in Paris, France, in 2013.   The Proceedings of ISCIS 2015 published by Springer brings together rigorously reviewed contributions from leading international experts. It explores new areas of research and technological development in computer science, computer engineering, and information technology, and presents new applications in fast changing fields such as information science, computer science and bioinformatics.   The topics covered include (but are not limited to) advances in networking technologies, software defined networks, distributed systems and the cloud, security in the Internet of Things, sensor systems, and machine learning and large data sets.

  15. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Science.gov (United States)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  16. Detecting and Understanding the Impact of Cognitive and Interpersonal Conflict in Computer Supported Collaborative Learning Environments

    Science.gov (United States)

    Prata, David Nadler; Baker, Ryan S. J. d.; Costa, Evandro d. B.; Rose, Carolyn P.; Cui, Yue; de Carvalho, Adriana M. J. B.

    2009-01-01

    This paper presents a model which can automatically detect a variety of student speech acts as students collaborate within a computer supported collaborative learning environment. In addition, an analysis is presented which gives substantial insight as to how students' learning is associated with students' speech acts, knowledge that will…

  17. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Science.gov (United States)

    Wu, Dongrui; Lance, Brent J; Parsons, Thomas D

    2013-01-01

    Brain-computer interaction (BCI) and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL), active class selection (ACS), and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  18. Collaborative filtering for brain-computer interaction using transfer learning and active class selection.

    Directory of Open Access Journals (Sweden)

    Dongrui Wu

    Full Text Available Brain-computer interaction (BCI and physiological computing are terms that refer to using processed neural or physiological signals to influence human interaction with computers, environment, and each other. A major challenge in developing these systems arises from the large individual differences typically seen in the neural/physiological responses. As a result, many researchers use individually-trained recognition algorithms to process this data. In order to minimize time, cost, and barriers to use, there is a need to minimize the amount of individual training data required, or equivalently, to increase the recognition accuracy without increasing the number of user-specific training samples. One promising method for achieving this is collaborative filtering, which combines training data from the individual subject with additional training data from other, similar subjects. This paper describes a successful application of a collaborative filtering approach intended for a BCI system. This approach is based on transfer learning (TL, active class selection (ACS, and a mean squared difference user-similarity heuristic. The resulting BCI system uses neural and physiological signals for automatic task difficulty recognition. TL improves the learning performance by combining a small number of user-specific training samples with a large number of auxiliary training samples from other similar subjects. ACS optimally selects the classes to generate user-specific training samples. Experimental results on 18 subjects, using both k nearest neighbors and support vector machine classifiers, demonstrate that the proposed approach can significantly reduce the number of user-specific training data samples. This collaborative filtering approach will also be generalizable to handling individual differences in many other applications that involve human neural or physiological data, such as affective computing.

  19. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  20. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  1. Using wikis to stimulate collaborative learning in two online health sciences courses.

    Science.gov (United States)

    Zitzelsberger, Hilde; Campbell, Karen A; Service, Dorothea; Sanchez, Otto

    2015-06-01

    The use of wiki technology fits well in courses that encourage constructive knowledge building and social learning by a community of learners. Pedagogically, wikis have attracted interest in higher education environments because they facilitate the collaborative processes required for developing student group assignments. This article describes a pilot project to assess the implementation of wikis in two online small- and mid-sized elective courses comprising nursing students in third- or fourth-year undergraduate levels within interdisciplinary health sciences courses. The need exists to further develop the pedagogical use of wiki environments before they can be expected to support collaboration among undergraduate nursing students. Adapting wiki implementation to suitable well-matched courses will make adaptation of wikis into nursing curricula more effective and may increase the chances that nursing students will hone the collaborative abilities that are essential in their future professional roles in communities of practice. Copyright 2015, SLACK Incorporated.

  2. The science of computing shaping a discipline

    CERN Document Server

    Tedre, Matti

    2014-01-01

    The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field's champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing's central debates and portrays a broad perspecti

  3. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  4. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  5. Replicated Computations Results (RCR) report for “A holistic approach for collaborative workload execution in volunteer clouds”

    DEFF Research Database (Denmark)

    Vandin, Andrea

    2018-01-01

    “A Holistic Approach for Collaborative Workload Execution in Volunteer Clouds” [3] proposes a novel approach to task scheduling in volunteer clouds. Volunteer clouds are decentralized cloud systems based on collaborative task execution, where clients voluntarily share their own unused computational...

  6. Collaborative Creativity: A Computational Approach: Raw Shaping Form Finding in Higher Education Domain

    NARCIS (Netherlands)

    Wendrich, Robert E.; Guerrero, J.E.

    2013-01-01

    This paper examines the conceptual synthesis processes in conjunction with assistive computational support for individual and collaborative interaction. We present findings from two educational design interaction experiments in product creation processing (PCP). We focus on metacognitive aspects of

  7. The Comparison of Solitary and Collaborative Modes of Game-Based Learning on Students' Science Learning and Motivation

    Science.gov (United States)

    Chen, Ching-Huei; Wang, Kuan-Chieh; Lin, Yu-Hsuan

    2015-01-01

    In this study, we investigated and compared solitary and collaborative modes of game-based learning in promoting students' science learning and motivation. A total of fifty seventh grade students participated in this study. The results showed that students who played in a solitary or collaborative mode demonstrated improvement in learning…

  8. Collaborative Science: Human Sensor Networks for Real-time Natural Disaster Prediction

    Science.gov (United States)

    Halem, M.; Yesha, Y.; Aulov, O.; Martineau, J.; Brown, S.; Conte, T.; CenterHybrid Multicore Productivity Research

    2010-12-01

    We have implemented a ‘Human Sensor Network’ as a real time collaborative science data observing system by collecting and integrating the vast untapped information potential of digital social media data sources occurring during the oil spill situation arising from the Macondo well in the Gulf of Mexico. We collected, and archived blogs, Twitter status updates (aka tweets), photographs posted to Flicker, and videos posted to YouTube related to the Gulf oil spill and processed the meta data, text, and photos to extract quantitative physical data such as locations and estimates of the severity and dispersion of oil being collected on the beaches and marshes, frequencies of observations of tar ball sightings, correlations of sightings from different media, numbers of dead or distressed animals, trends, etc. These data were then introduced into the NOAA operational Gnome oil spill predictive model as time dependent boundary conditions employing a 2-D variational data assimilation scheme. The three participating institutions employed a distributed cloud computing system for the processing and model executions. In this presentation, we conducted preliminary forecast impact tests of the Gnome model with and without the use of social media data using a 2-D variational data assimilation technique. The 2-D VAR is used to adjust the state variables of the model by recursively minimizing the differences between oil spill predictions reaching locations across the entire coastlines of the Gulf of Mexico and the estimated positions of oil derived from analyzed social media data. Ensemble forecasts will be performed to provide estimates of the rates of oil and surface oil distributions emanating from the Deepwater Horizon. We display the derived predictions from the photos and animations from Flicker, YouTube, and extracted content from tweets and blogs in a dynamic representation on very large tiled walls of LCDs at the UCSD Cal IT2 visualization facility. We describe the

  9. Academic computer science and gender: A naturalistic study investigating the causes of attrition

    Science.gov (United States)

    Declue, Timothy Hall

    Far fewer women than men take computer science classes in high school, enroll in computer science programs in college, or complete advanced degrees in computer science. The computer science pipeline begins to shrink for women even before entering college, but it is at the college level that the "brain drain" is the most evident numerically, especially in the first class taken by most computer science majors called "Computer Science 1" or CS-I. The result, for both academia and industry, is a pronounced technological gender disparity in academic and industrial computer science. The study revealed the existence of several factors influencing success in CS-I. First, and most clearly, the effect of attribution processes seemed to be quite strong. These processes tend to work against success for females and in favor of success for males. Likewise, evidence was discovered which strengthens theories related to prior experience and the perception that computer science has a culture which is hostile to females. Two unanticipated themes related to the motivation and persistence of successful computer science majors. The findings did not support the belief that females have greater logistical problems in computer science than males, or that females tend to have a different programming style than males which adversely affects the females' ability to succeed in CS-I.

  10. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  11. Grid Information Technology as a New Technological Tool for e-Science, Healthcare and Life Science

    Directory of Open Access Journals (Sweden)

    Juan Manuel Maqueira Marín

    2007-06-01

    Full Text Available Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science.

  12. Designing and Implementing a Computational Methods Course for Upper-level Undergraduates and Postgraduates in Atmospheric and Oceanic Sciences

    Science.gov (United States)

    Nelson, E.; L'Ecuyer, T. S.; Douglas, A.; Hansen, Z.

    2017-12-01

    In the modern computing age, scientists must utilize a wide variety of skills to carry out scientific research. Programming, including a focus on collaborative development, has become more prevalent in both academic and professional career paths. Faculty in the Department of Atmospheric and Oceanic Sciences at the University of Wisconsin—Madison recognized this need and recently approved a new course offering for undergraduates and postgraduates in computational methods that was first held in Spring 2017. Three programming languages were covered in the inaugural course semester and development themes such as modularization, data wrangling, and conceptual code models were woven into all of the sections. In this presentation, we will share successes and challenges in developing a research project-focused computational course that leverages hands-on computer laboratory learning and open-sourced course content. Improvements and changes in future iterations of the course based on the first offering will also be discussed.

  13. Studies in Mathematics, Volume 22. Studies in Computer Science.

    Science.gov (United States)

    Pollack, Seymour V., Ed.

    The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The…

  14. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  15. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    Science.gov (United States)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design

  16. Rackspace: Significance of Cloud Computing to CERN

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The research collaboration between Rackspace and CERN is contributing to how OpenStack cloud computing will move science work around the world for CERN, and to reducing the barriers between clouds for Rackspace.

  17. Real-time Science and Educational Collaboration Online from the Indian Ocean

    Science.gov (United States)

    Wilson, R. H.; Sager, W. W.

    2007-12-01

    During Summer of 2007, scientists and students (via the web) jointly participated in research during the Ninety East Ridge Expedition (cruise KNOX06RR) . Staff organizers from Joint Oceanographic Institutions" JOI Learning and the Integrated Ocean Drilling Program planned and implemented an interactive website to allow students to directly participate with scientists during the site survey aboard the R/V Roger Revelle. Dr. Will Sager and middle school teacher Rory Wilson collaborated daily during the scientific expedition with science team, ship crew and students. From the outset, students were involved and helped to guide the program; this included coming up with the website name and initial design work. Communication with students included the website, individual and group emails and video conferences with student groups. Seven secondary schools from the USA, Europe, India and Thailand participated actively in the project from June to August. Students viewed daily updates on the website, sent in answers for weekly science challenge questions, and interacted with scientists and crew. Student participants learned about navigation, geophysics and petrology, as well as ship operations and technology. Students and educators tracked the expedition's progress in a multi-media environment. Website statistics were recorded; participation began well and increased during the expedition as more people became engaged with the website. All of the crew and scientists wrote self-profiles to help students learn about the range of ocean careers; several of the scientists and graduate students on board wrote or co- authored website articles for students. During this presentation, we will explore and review the major features of the outreach program using the Sea90e website to demonstrate how this real-time interaction engages students in science learning. We will discuss the benefits of collaboration for science and education in our "classroom at sea."

  18. Curricular Influences on Female Afterschool Facilitators' Computer Science Interests and Career Choices

    Science.gov (United States)

    Koch, Melissa; Gorges, Torie

    2016-10-01

    Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.

  19. Approaching gender parity: Women in computer science at Afghanistan's Kabul University

    Science.gov (United States)

    Plane, Jandelyn

    This study explores the representation of women in computer science at the tertiary level through data collected about undergraduate computer science education at Kabul University in Afghanistan. Previous studies have theorized reasons for underrepresentation of women in computer science, and while many of these reasons are indeed present in Afghanistan, they appear to hinder advancement to degree to a lesser extent. Women comprise at least 36% of each graduating class from KU's Computer Science Department; however, in 2007 women were 25% of the university population. In the US, women comprise over 50% of university populations while only graduating on average 25% women in undergraduate computer science programs. Representation of women in computer science in the US is 50% below the university rate, but at KU, it is 50% above the university rate. This mixed methods study of KU was conducted in the following three stages: setting up focus groups with women computer science students, distributing surveys to all students in the CS department, and conducting a series of 22 individual interviews with fourth year CS students. The analysis of the data collected and its comparison to literature on university/department retention in Science, Technology, Engineering and Mathematics gender representation and on women's education in underdeveloped Islamic countries illuminates KU's uncharacteristic representation of women in its Computer Science Department. The retention of women in STEM through the education pipeline has several characteristics in Afghanistan that differ from countries often studied in available literature. Few Afghan students have computers in their home and few have training beyond secretarial applications before considering studying CS at university. University students in Afghanistan are selected based on placement exams and are then assigned to an area of study, and financially supported throughout their academic career, resulting in a low attrition rate

  20. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  1. Mathematical Language Development and Talk Types in Computer Supported Collaborative Learning Environments

    Science.gov (United States)

    Symons, Duncan; Pierce, Robyn

    2015-01-01

    In this study we examine the use of cumulative and exploratory talk types in a year 5 computer supported collaborative learning environment. The focus for students in this environment was to participate in mathematical problem solving, with the intention of developing the proficiencies of problem solving and reasoning. Findings suggest that…

  2. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  3. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    Science.gov (United States)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations

  4. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  5. Journal of Computer Science and Its Application: About this journal

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: About this journal. Journal Home > Journal of Computer Science and Its Application: About this journal. Log in or Register to get access to full text downloads.

  6. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    Science.gov (United States)

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  7. Enduring Influence of Stereotypical Computer Science Role Models on Women's Academic Aspirations

    Science.gov (United States)

    Cheryan, Sapna; Drury, Benjamin J.; Vichayapai, Marissa

    2013-01-01

    The current work examines whether a brief exposure to a computer science role model who fits stereotypes of computer scientists has a lasting influence on women's interest in the field. One-hundred undergraduate women who were not computer science majors met a female or male peer role model who embodied computer science stereotypes in appearance…

  8. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  9. Computer Science and the Liberal Arts: A Philosophical Examination

    Science.gov (United States)

    Walker, Henry M.; Kelemen, Charles

    2010-01-01

    This article explores the philosophy and position of the discipline of computer science within the liberal arts, based upon a discussion of the nature of computer science and a review of the characteristics of the liberal arts. A liberal arts environment provides important opportunities for undergraduate programs, but also presents important…

  10. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  11. Bringing nursing science to the classroom: a collaborative project.

    Science.gov (United States)

    Reams, Susan; Bashford, Carol

    2009-01-01

    This project resulted as a collaborative effort on the part of a public school system and nursing faculty. The fifth grade student population utilized in this study focused on the skeletal, muscular, digestive, circulatory, respiratory, and nervous systems as part of their school system's existing science and health curriculum. The intent of the study was to evaluate the impact on student learning outcomes as a result of nursing-focused, science-based, hands-on experiential activities provided by nursing faculty in the public school setting. An assessment tool was created for pretesting and posttesting to evaluate learning outcomes resulting from the intervention. Over a two day period, six classes consisting of 25 to 30 students each were divided into three equal small groups and rotated among three interactive stations. Students explored the normal function of the digestive system, heart, lungs, and skin. Improvement in learning using the pretest and posttest assessment tools were documented.

  12. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  13. Is Computer Science Compatible with Technological Literacy?

    Science.gov (United States)

    Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.

    2018-01-01

    Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…

  14. Building a Collaboratory in Environmental and Molecular Science

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an `electronic community of scientists researching and developing innovative environmental preservation and restoration technologies.

  15. Building a Collaboratory in Environmental and Molecular Science

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

    1994-03-01

    A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an 'electronic community of scientists researching and developing innovative environmental preservation and restoration technologies

  16. Remote collaboration system based on large scale simulation

    International Nuclear Information System (INIS)

    Kishimoto, Yasuaki; Sugahara, Akihiro; Li, J.Q.

    2008-01-01

    Large scale simulation using super-computer, which generally requires long CPU time and produces large amount of data, has been extensively studied as a third pillar in various advanced science fields in parallel to theory and experiment. Such a simulation is expected to lead new scientific discoveries through elucidation of various complex phenomena, which are hardly identified only by conventional theoretical and experimental approaches. In order to assist such large simulation studies for which many collaborators working at geographically different places participate and contribute, we have developed a unique remote collaboration system, referred to as SIMON (simulation monitoring system), which is based on client-server system control introducing an idea of up-date processing, contrary to that of widely used post-processing. As a key ingredient, we have developed a trigger method, which transmits various requests for the up-date processing from the simulation (client) running on a super-computer to a workstation (server). Namely, the simulation running on a super-computer actively controls the timing of up-date processing. The server that has received the requests from the ongoing simulation such as data transfer, data analyses, and visualizations, etc. starts operations according to the requests during the simulation. The server makes the latest results available to web browsers, so that the collaborators can monitor the results at any place and time in the world. By applying the system to a specific simulation project of laser-matter interaction, we have confirmed that the system works well and plays an important role as a collaboration platform on which many collaborators work with one another

  17. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  18. The Case for Improving U.S. Computer Science Education

    Science.gov (United States)

    Nager, Adams; Atkinson, Robert

    2016-01-01

    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. School system has disregarded differences within STEM…

  19. Stateless Programming as a Motif for Teaching Computer Science

    Science.gov (United States)

    Cohen, Avi

    2004-01-01

    With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…

  20. Information-computational platform for collaborative multidisciplinary investigations of regional climatic changes and their impacts

    Science.gov (United States)

    Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    Analysis of growing volume of related to climate change data from sensors and model outputs requires collaborative multidisciplinary efforts of researchers. To do it timely and in reliable way one needs in modern information-computational infrastructure supporting integrated studies in the field of environmental sciences. Recently developed experimental software and hardware platform Climate (http://climate.scert.ru/) provides required environment for regional climate change related investigations. The platform combines modern web 2.0 approach, GIS-functionality and capabilities to run climate and meteorological models, process large geophysical datasets and support relevant analysis. It also supports joint software development by distributed research groups, and organization of thematic education for students and post-graduate students. In particular, platform software developed includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also run of integrated into the platform WRF and «Planet Simulator» models, modeling results data preprocessing and visualization is provided. All functions of the platform are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of selection of geographical region of interest (pan and zoom), data layers manipulation (order, enable/disable, features extraction) and visualization of results. Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches. Using it even unskilled user without specific knowledge can perform reliable computational processing and visualization of large meteorological, climatic and satellite monitoring datasets through

  1. The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science

    Science.gov (United States)

    Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.

    2015-10-01

    Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning environment, whereas students in the experimental group participated in online collaborative activities using the Edmodo educational platform in a hybrid learning environment. Students completed the Classroom Community Scale survey as a pretest and posttest. Results indicated that the students who participated in the face-to-face classroom had higher overall sense of community and learning community than students who participated in collaborative activities in the online environment. Results and implications are discussed and suggestions for future research are provided.

  2. A DDC Bibliography on Computers in Information Sciences. Volume II. Information Sciences Series.

    Science.gov (United States)

    Defense Documentation Center, Alexandria, VA.

    The unclassified and unlimited bibliography compiles references dealing specifically with the role of computers in information sciences. The volume contains 239 annotated references grouped under three major headings: Artificial and Programming Languages, Computer Processing of Analog Data, and Computer Processing of Digital Data. The references…

  3. Improving Communicative Competence through Synchronous Communication in Computer-Supported Collaborative Learning Environments: A Systematic Review

    OpenAIRE

    Xi Huang

    2018-01-01

    Computer-supported collaborative learning facilitates the extension of second language acquisition into social practice. Studies on its achievement effects speak directly to the pedagogical notion of treating communicative practice in synchronous computer-mediated communication (SCMC): real-time communication that takes place between human beings via the instrumentality of computers in forms of text, audio and video communication, such as live chat and chatrooms as socially-oriented meaning c...

  4. Science-society collaboration for robust adaptation planning in water management - The Maipo River Basin in Chile

    Science.gov (United States)

    Ocampo Melgar, Anahí; Vicuña, Sebastián; Gironás, Jorge

    2015-04-01

    The Metropolitan Region (M.R.) in Chile is populated by over 6 million people and supplied by the Maipo River and its large number of irrigation channels. Potential environmental alterations caused by global change will extremely affect managers and users of water resources in this semi-arid basin. These hydro-climatological impacts combined with demographic and economic changes will be particularly complex in the city of Santiago, due to the diverse, counterpoised and equally important existing activities and demands. These challenges and complexities request the implementation of flexible plans and actions to adapt policies, institutions, infrastructure and behaviors to a new future with climate change. Due to the inherent uncertainties in the future, a recent research project entitled MAPA (Maipo Adaptation Plan for its initials in Spanish) has formed a collaborative science-society platform to generate insights into the vulnerabilities, challenges and possible mitigation measures that would be necessary to deal with the potential changes in the M.R. This large stakeholder platform conformed by around 30 public, private and civil society organizations, both at the local and regional level and guided by a Robust Decision Making Framework (RDMF) has identified vulnerabilities, future scenarios, performance indicators and mitigation measures for the Maipo River basin. The RDMF used in this project is the XLRM framework (Lempert et al. 2006) that incorporates policy levers (L), exogenous uncertainties (X), measures of performance standards (M) and relationships (R) in an interlinked process. Both stakeholders' expertise and computational capabilities have been used to create hydrological models for the urban, rural and highland sectors supported also by the Water Evaluation and Planning system software (WEAP). The identification of uncertainties and land use transition trends was used to develop future development scenarios to explore possible water management

  5. International Conference on Environment Science (ICES 2012)

    CERN Document Server

    Advances in Computational Environment Science

    2012-01-01

    2012 International Conference on Environment Science and 2012 International Conference on Computer Science (ICES 2012/ICCS 2012) will be held in Australia, Melbourne, 15‐16 March, 2012.Volume 1 contains some new results in computational environment science. There are 47 papers were selected as the regular paper in this volume. It contains the latest developments and reflects the experience of many researchers working in different environments (universities, research centers or even industries), publishing new theories and solving new technological problems on computational environment science.   The purpose of volume 1 is interconnection of diverse scientific fields, the cultivation of every possible scientific collaboration, the exchange of views and the promotion of new research targets as well as the further dissemination, the dispersion, the diffusion of the environment science, including but not limited to Ecology, Physics, Chemistry, Biology, Soil Science, Geology, Atmospheric Science and Geography �...

  6. Learners perceptions of technology for design of a collaborative mLearning module

    Directory of Open Access Journals (Sweden)

    Dorothy Dewitt, Saedah Siraj

    2010-12-01

    Full Text Available In Malaysian schools the learning of science does not reflect the nature of science. An instructional module which could address the need for teaching science through a process of scientific discovery and collaboration is required. A developmental research approach with three phases was used to design a collaborative m-Learning module for a topic in s c i e n c e . I n t h e f i r s t p h a s e o f a n a l y s i s , a s u r v e y o f 1 5 8 s t u d e n t s ’ u s e o f t e c h n o l o g y a n d t h e p e r c e p t i o n o f t h e u s e o f computers and mobile phones was completed. Data from the analysis phase indicated the students’ readiness in using online tools such as discussion forums and text messaging with mobiles for learning. Computers were perceived to be useful for learning, but mobile phones were not. The findings from the first phase were used to determine the learning tools to utilize in the design of the module in the second phase. The online learning tools used are wikis and discussion forums. In addition, text messaging using the mobile phone was also employed for individualized quizzes. The collaborative m-Learning module designed, was evaluated by experts for further improvements. The findings indicate that the experts agree that a collaborative Learning module with a variety of learning tools such as wikis, discussion forum and text messaging, could be used for teaching science. In addition, this module could also be used for teaching other subjects.

  7. Application Architecture of Avian Influenza Research Collaboration Network in Korea e-Science

    Science.gov (United States)

    Choi, Hoon; Lee, Junehawk

    In the pursuit of globalization of the AI e-Science environment, KISTI is fostering to extend the AI research community to the AI research institutes of neighboring countries and to share the AI e-Science environment with them in the near future. In this paper we introduce the application architecture of AI research collaboration network (AIRCoN). AIRCoN is a global e-Science environment for AI research conducted by KISTI. It consists of AI virus sequence information sharing system for sufficing data requirement of research community, integrated analysis environment for analyzing the mutation pattern of AI viruses and their risks, epidemic modeling and simulation environment for establishing national effective readiness strategy against AI pandemics, and knowledge portal for sharing expertise of epidemic study and unpublished research results with community members.

  8. Ambient belonging: how stereotypical cues impact gender participation in computer science.

    Science.gov (United States)

    Cheryan, Sapna; Plaut, Victoria C; Davies, Paul G; Steele, Claude M

    2009-12-01

    People can make decisions to join a group based solely on exposure to that group's physical environment. Four studies demonstrate that the gender difference in interest in computer science is influenced by exposure to environments associated with computer scientists. In Study 1, simply changing the objects in a computer science classroom from those considered stereotypical of computer science (e.g., Star Trek poster, video games) to objects not considered stereotypical of computer science (e.g., nature poster, phone books) was sufficient to boost female undergraduates' interest in computer science to the level of their male peers. Further investigation revealed that the stereotypical broadcast a masculine stereotype that discouraged women's sense of ambient belonging and subsequent interest in the environment (Studies 2, 3, and 4) but had no similar effect on men (Studies 3, 4). This masculine stereotype prevented women's interest from developing even in environments entirely populated by other women (Study 2). Objects can thus come to broadcast stereotypes of a group, which in turn can deter people who do not identify with these stereotypes from joining that group.

  9. A collaborative brain-computer interface for improving human performance.

    Directory of Open Access Journals (Sweden)

    Yijun Wang

    Full Text Available Electroencephalogram (EEG based brain-computer interfaces (BCI have been studied since the 1970s. Currently, the main focus of BCI research lies on the clinical use, which aims to provide a new communication channel to patients with motor disabilities to improve their quality of life. However, the BCI technology can also be used to improve human performance for normal healthy users. Although this application has been proposed for a long time, little progress has been made in real-world practices due to technical limits of EEG. To overcome the bottleneck of low single-user BCI performance, this study proposes a collaborative paradigm to improve overall BCI performance by integrating information from multiple users. To test the feasibility of a collaborative BCI, this study quantitatively compares the classification accuracies of collaborative and single-user BCI applied to the EEG data collected from 20 subjects in a movement-planning experiment. This study also explores three different methods for fusing and analyzing EEG data from multiple subjects: (1 Event-related potentials (ERP averaging, (2 Feature concatenating, and (3 Voting. In a demonstration system using the Voting method, the classification accuracy of predicting movement directions (reaching left vs. reaching right was enhanced substantially from 66% to 80%, 88%, 93%, and 95% as the numbers of subjects increased from 1 to 5, 10, 15, and 20, respectively. Furthermore, the decision of reaching direction could be made around 100-250 ms earlier than the subject's actual motor response by decoding the ERP activities arising mainly from the posterior parietal cortex (PPC, which are related to the processing of visuomotor transmission. Taken together, these results suggest that a collaborative BCI can effectively fuse brain activities of a group of people to improve the overall performance of natural human behavior.

  10. Abstraction ability as an indicator of success for learning computing science?

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2008-01-01

    Computing scientists generally agree that abstract thinking is a crucial component for practicing computer science. We report on a three-year longitudinal study to confirm the hypothesis that general abstraction ability has a positive impact on performance in computing science. Abstraction ability...... is operationalized as stages of cognitive development for which validated tests exist. Performance in computing science is operationalized as grade in the final assessment of ten courses of a bachelor's degree programme in computing science. The validity of the operationalizations is discussed. We have investigated...... the positive impact overall, for two groupings of courses (a content-based grouping and a grouping based on SOLO levels of the courses' intended learning outcome), and for each individual course. Surprisingly, our study shows that there is hardly any correlation between stage of cognitive development...

  11. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  12. The Office of Science Data-Management Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard P.; /SLAC

    2005-10-10

    should favor collaborative proposals involving computer science and application science or, ideally, multiple application sciences. Proposals bringing substantial application science funding should be especially favored. The proposed program has many similarities to the DOE SciDAC program. SciDAC already has a modest data-management component. The SciDAC program partially addresses many issues relevant to data management, and has fostered close collaboration between computer science and application sciences. Serious consideration should be given to integrating the management of the new Office of Science Data-Management Program and that of SciDAC or the successor to SciDAC.

  13. Open Access Research via Collaborative Educational Blogging: A Case Study from Library & Information Science

    Science.gov (United States)

    Rebmann, Kristen Radsliff; Clark, Camden Bernard

    2017-01-01

    This article charts the development of activities for online graduate students in library and information science. Project goals include helping students develop competencies in understanding open access publishing, synthesizing research in the field, and engaging in scholarly communication via collaborative educational blogging. Using a design…

  14. Sunfall: a collaborative visual analytics system for astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.; Aragon, Cecilia R.; Bailey, Stephen J.; Poon, Sarah; Runge, Karl; Thomas, Rollin C.

    2008-07-07

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.

  15. Sunfall: a collaborative visual analytics system for astrophysics

    International Nuclear Information System (INIS)

    Aragon, C R; Bailey, S J; Poon, S; Runge, K; Thomas, R C

    2008-01-01

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project

  16. Sunfall: a collaborative visual analytics system for astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, C R; Bailey, S J; Poon, S; Runge, K; Thomas, R C [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: CRAragon@lbl.gov

    2008-07-15

    Computational and experimental sciences produce and collect ever-larger and complex datasets, often in large-scale, multi-institution projects. The inability to gain insight into complex scientific phenomena using current software tools is a bottleneck facing virtually all endeavors of science. In this paper, we introduce Sunfall, a collaborative visual analytics system developed for the Nearby Supernova Factory, an international astrophysics experiment and the largest data volume supernova search currently in operation. Sunfall utilizes novel interactive visualization and analysis techniques to facilitate deeper scientific insight into complex, noisy, high-dimensional, high-volume, time-critical data. The system combines novel image processing algorithms, statistical analysis, and machine learning with highly interactive visual interfaces to enable collaborative, user-driven scientific exploration of supernova image and spectral data. Sunfall is currently in operation at the Nearby Supernova Factory; it is the first visual analytics system in production use at a major astrophysics project.

  17. Social Networking Adapted for Distributed Scientific Collaboration

    Science.gov (United States)

    Karimabadi, Homa

    2012-01-01

    Share is a social networking site with novel, specially designed feature sets to enable simultaneous remote collaboration and sharing of large data sets among scientists. The site will include not only the standard features found on popular consumer-oriented social networking sites such as Facebook and Myspace, but also a number of powerful tools to extend its functionality to a science collaboration site. A Virtual Observatory is a promising technology for making data accessible from various missions and instruments through a Web browser. Sci-Share augments services provided by Virtual Observatories by enabling distributed collaboration and sharing of downloaded and/or processed data among scientists. This will, in turn, increase science returns from NASA missions. Sci-Share also enables better utilization of NASA s high-performance computing resources by providing an easy and central mechanism to access and share large files on users space or those saved on mass storage. The most common means of remote scientific collaboration today remains the trio of e-mail for electronic communication, FTP for file sharing, and personalized Web sites for dissemination of papers and research results. Each of these tools has well-known limitations. Sci-Share transforms the social networking paradigm into a scientific collaboration environment by offering powerful tools for cooperative discourse and digital content sharing. Sci-Share differentiates itself by serving as an online repository for users digital content with the following unique features: a) Sharing of any file type, any size, from anywhere; b) Creation of projects and groups for controlled sharing; c) Module for sharing files on HPC (High Performance Computing) sites; d) Universal accessibility of staged files as embedded links on other sites (e.g. Facebook) and tools (e.g. e-mail); e) Drag-and-drop transfer of large files, replacing awkward e-mail attachments (and file size limitations); f) Enterprise-level data and

  18. Teaching, Learning, and Collaborating in the Cloud: Applications of Cloud Computing for Educators in Post-Secondary Institutions

    Science.gov (United States)

    Aaron, Lynn S.; Roche, Catherine M.

    2012-01-01

    "Cloud computing" refers to the use of computing resources on the Internet instead of on individual personal computers. The field is expanding and has significant potential value for educators. This is discussed with a focus on four main functions: file storage, file synchronization, document creation, and collaboration--each of which has…

  19. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  20. Sundials in the shade: A study of women's persistence in the first year of a computer science program in a selective university

    Science.gov (United States)

    Powell, Rita Manco

    an inadequate background in computer science, or at least perceived inadequacies in their background, which prevented them from beginning the major on an equal footing with their mostly male peers and caused some to lose confidence and consequently interest in the major. Issues also emanated from their gender-minority status in the Computer and Information Science Department, causing them to be socially isolated from their peers and further weakening their resolve to persist. These findings suggest that female first year students could benefit from multiple pathways into the major designed for students with varying degrees of prior experience with computer science. In addition, a computer science community within the department characterized by more frequent interaction and collaboration with faculty and peers could positively impact women's persistence in the major.