WorldWideScience

Sample records for compressive strain-dependent bending

  1. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  2. Effects of texture on shear band formation in plane strain tension/compression and bending

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2007-01-01

    In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain ...... shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed....

  3. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    Science.gov (United States)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Effect of nonlinear stress-strain relationship on bending strength of isotropic graphite

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Oku, Tatsuo

    1978-05-01

    Four-point bending tests were made on rectangular isotropic 7477PT graphite specimens of different sizes to observe the relation between load and outermost fiber strain. Analytical methods, allowing for nonlinear stress-strain relationships different between tension and compression, were developed for calculating the fiber stress distribution in a beam and the failure probability based on the Weibull statistical theory for bending fracture. With increase of the stress, the stress-strain curves for tension deviate from the linearity and also from those for compression. The true bending strengths of the rectangular bars are 10 -- 20 percent lower than elastic bending strengths. Revised Weibull theory gives failure probability distributions agreeing with measured ones, compared with the theory based on elastic behavior. (auth.)

  5. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    Science.gov (United States)

    Wereley, Norman M.; Perez, Colette; Choi, Young T.

    2018-05-01

    This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  6. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    Directory of Open Access Journals (Sweden)

    Norman M. Wereley

    2018-05-01

    Full Text Available This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect of magnetorheological elastomeric foams (MREFs. Isotropic MREF samples (i.e., no oriented particle chain structures, fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4 into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol% were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%, the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10% were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  7. Mechanical behavior of iron aluminides: A comparison of nanoindentation, compression and bending of micropillars

    Energy Technology Data Exchange (ETDEWEB)

    Zamanzade, Mohammad, E-mail: m.zamanzade@matsci.uni-sb.de [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Velayarce, Jorge Rafael [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Abad, Oscar Torrents [INM-Leibniz Institute for New Materials and Saarland University, Saarbrücken (Germany); Motz, Christian [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Barnoush, Afrooz [Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2016-01-15

    Various local testing methods, namely, nanoindentation, compression and bending tests of micropillars were used to better understand the influence of ternary Cr atoms on the extrinsic and intrinsic mechanical properties of Fe{sub 3}Al intermetallics with the D0{sub 3} super lattice. Using such local techniques enables us to quantify the influence of Cr on the enhancement of the Young´s modulus. Furthermore, the effect of Cr on the yield stress, strain hardening and appearance of slip traces was studied based on the stress–strain curves and secondary electron micrographs of the bended and compressed pillars.

  8. Strain Dependence of Photoluminescense of Individual Carbon Nanotubes

    Science.gov (United States)

    Nikolaev, Pavel N.; Leeuw, Tonya K.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, Bruce; Arepalli, Sivaram

    2007-01-01

    We have investigated strain dependence of photoluminescense (PL) spectra of single wall carbon nanotubes (SWNT). Nanotubes were sparsely dispersed in a thin PMMA film applied to acrylic bar, and strained in both compression and extension by bending this bar in either direction in a homebuilt four-point bending rig. The average surface strain was measured with high accuracy by a resistive strain gage applied on top of the film. The near infrared imaging and spectroscopy were performed on the inverted microscope equipped with high numerical aperture reflective objective lens and InGaAs CCD cameras. PL was excited with a diode laser at either 658, 730 or 785 nm, linearly polarized in the direction of the strain. We were able to measure (n,m) types and orientation of individual nanotubes with respect to strain direction and strain dependence of their PL maxima. It was found that PL peak shifts with respect to the values measured in SDS micelles are a sum of three components. First, a small environmental shift due to difference in the dielectric constant of the surrounding media, that is constant and independent of the nanotube type. Second, shift due to isotropic compression of the film during drying. Third, shifts produced by the uniaxial loading of the film in the experiment. Second and third shifts follow expression based on the first-order expansion of the TB hamiltonian. Their magnitude is proportional to the nanotube chiral angle and strain, and direction is determined by the nanotube quantum number. PL strain dependence measured for a number of various nanotube types allows to estimate TB carbon-carbon transfer integral.

  9. Compressive strain-dependent bending strength property of Al2O3-ZrO2 (1.5 mol% Y2O3) composites performance by HIP

    International Nuclear Information System (INIS)

    Reyes-Rojas, A.; Esparza-Ponce, H.; De la Torre, S.D.; Torres-Moye, E.

    2009-01-01

    Nanometric powders and sintered ceramics of Al 2 O 3 -ZrO 2 (1.5 mol% Y 2 O 3 ) prepared by hot isostatic pressing HIP have been studied. A detailed crystallographic study has been performed through X-ray diffraction, Williamson-Hall method, Rietveld method and high-resolution electron microscopy HREM analysis. The crystallographic structure data, such as domain size, lattice parameters, wt% phase, and micro-strain direction have been obtained using Rietveld refinement and Williamson-Hall methods. The results revealed that the compressive strain (ε) increased from 0.56 to 1.18 (10 -3 ) as the t-ZrO 2 content increased too. The HREM interface study conducted along the [0 0 0 1]Al 2 O 3 ||[0 0 1]ZrO 2 zone axis revealed a micro-strain lattice distortion accumulated at the grain boundary due to the ZrO 2 martensitic phase transformation on cooling, t-ZrO 2 grains coalescence and to the grain growth of α-Al 2 O 3 which cause elongated tetragonal crystals. Micro-strain lattice distortion is adjusted by the shear displacements of the planes (1 1 0) and (11-bar0) along [1-bar10] and [1-bar1-bar0] crystallographic directions, respectively; these planes are arrested by the (101-bar0) alumina plane. In this case, semi-coherent interfaces were observed along the grain boundary. It is verified that the bending strength increased in connection with the strain accumulation and amount of tetragonal structure

  10. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Rupture prediction for induction bends under opening mode bending with emphasis on strain localization

    International Nuclear Information System (INIS)

    Mitsuya, Masaki; Sakanoue, Takashi

    2015-01-01

    This study focuses on the opening mode of induction bends; this mode represents the deformation outside a bend. Bending experiments on induction bends are shown and the manner of failure of these bends was investigated. Ruptures occur at the intrados of the bends, which undergo tensile stress, and accompany the local reduction of wall thickness, i.e., necking that indicates strain localization. By implementing finite element analysis (FEA), it was shown that the rupture is dominated not by the fracture criterion of material but by the initiation of strain localization that is a deformation characteristic of the material. These ruptures are due to the rapid increase of local strain after the initiation of strain localization and suddenly reach the fracture criterion. For the evaluation of the deformability of the bends, a method based on FEA that can predict the displacement at the rupture is proposed. We show that the yield surface shape and the true stress–strain relationship after uniform elongation have to be defined on the basis of the actual properties of the bend material. The von Mises yield criterion, which is commonly used in cases of elastic–plastic FEA, could not predict the rupture and overestimated the deformability. In contrast, a yield surface obtained by performing tensile tests on a biaxial specimen could predict the rupture. The prediction of the rupture was accomplished by an inverse calibration method that determined the true stress-strain relationship after uniform elongation. As an alternative to the inverse calibration, a simple extrapolation method of the true stress-strain relationship after uniform elongation which can predict the rupture is proposed. - Highlights: • A method based on FEA that can predict the displacement at the rupture is proposed. • The yield surface shape and the true stress–strain have to be defined precisely. • The von Mises yield criterion overestimated the deformability. • The ruptures are due to the

  12. Size scale dependence of compressive instabilities in layered composites in the presence of stress gradients

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    The compressive strength of unidirectionally or layer-wise reinforced composite materials in direction parallel to their reinforcement is limited by micro-buckling instabilities. Although the inherent compressive strength of a given material micro-structure can easily be determined by assessing its...... compressive stress but also on spatial stress or strain gradients, rendering failure initiation size scale dependent. The present work demonstrates and investigates the aforementioned effect through numerical simulations of periodically layered structures withnotches and holes under bending and compressive...... loads, respectively. The presented results emphasize the importance of the reinforcing layer thickness on the load carrying capacity of the investigated structures, at a constant volumetric fraction of the reinforcement. The observed strengthening at higher values of the relative layer thickness...

  13. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  14. Mechanical properties and bending strain effect on Cu-Ni sheathed MgB2 superconducting tape

    International Nuclear Information System (INIS)

    Fu, Minyi; Chen, Jiangxing; Jiao, Zhengkuan; Kumakura, H.; Togano, K.; Ding, Liren; Zhang, Yong; Chen, Zhiyou; Han, Hanmin; Chen, Jinglin

    2004-01-01

    The Young's modulus (E) of Cu-Ni sheathed MgB 2 monofilament tape was measured using electric method. It is about 8.05 x 10 10 Pa, the same order of Cu and its alloys. We found that the lower E value of the MgB 2 component seemed to relate to the lower filament density. The benefits of pre-compression in filaments were discussed in terms of improving stress distribution in the wires and tapes during winding and operation of superconducting magnets. The magnetic field dependence of J c was investigated on the sample subjected to various strain levels through bending with different radii at 4.2 K

  15. Comparison of femoropopliteal artery stents under axial and radial compression, axial tension, bending, and torsion deformations.

    Science.gov (United States)

    Maleckis, Kaspars; Deegan, Paul; Poulson, William; Sievers, Cole; Desyatova, Anastasia; MacTaggart, Jason; Kamenskiy, Alexey

    2017-11-01

    High failure rates of Peripheral Arterial Disease (PAD) stenting appear to be associated with the inability of certain stent designs to accommodate severe biomechanical environment of the femoropopliteal artery (FPA) that bends, twists, and axially compresses during limb flexion. Twelve Nitinol stents (Absolute Pro, Supera, Lifestent, Innova, Zilver, Smart Control, Smart Flex, EverFlex, Viabahn, Tigris, Misago, and Complete SE) were quasi-statically tested under bench-top axial and radial compression, axial tension, bending, and torsional deformations. Stents were compared in terms of force-strain behavior, stiffness, and geometrical shape under each deformation mode. Tigris was the least stiff stent under axial compression (6.6N/m axial stiffness) and bending (0.1N/m) deformations, while Smart Control was the stiffest (575.3N/m and 105.4N/m, respectively). Under radial compression Complete SE was the stiffest (892.8N/m), while Smart Control had the lowest radial stiffness (211.0N/m). Viabahn and Supera had the lowest and highest torsional stiffness (2.2μNm/° and 959.2μNm/°), respectively. None of the 12 PAD stents demonstrated superior characteristics under all deformation modes and many experienced global buckling and diameter pinching. Though it is yet to be determined which of these deformation modes might have greater clinical impact, results of the current analysis may help guide development of new stents with improved mechanical characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments.

    Science.gov (United States)

    Poulson, William; Kamenskiy, Alexey; Seas, Andreas; Deegan, Paul; Lomneth, Carol; MacTaggart, Jason

    2018-02-01

    High failure rates of femoropopliteal artery (FPA) interventions are often attributed in part to severe mechanical deformations that occur with limb movement. Axial compression and bending of the FPA likely play significant roles in FPA disease development and reconstruction failure, but these deformations are poorly characterized. The goal of this study was to quantify axial compression and bending of human FPAs that are placed in positions commonly assumed during the normal course of daily activities. Retrievable nitinol markers were deployed using a custom-made catheter system into 28 in situ FPAs of 14 human cadavers. Contrast-enhanced, thin-section computed tomography images were acquired with each limb in the standing (180 degrees), walking (110 degrees), sitting (90 degrees), and gardening (60 degrees) postures. Image segmentation and analysis allowed relative comparison of spatial locations of each intra-arterial marker to determine axial compression and bending using the arterial centerlines. Axial compression in the popliteal artery (PA) was greater than in the proximal superficial femoral artery (SFA) or the adductor hiatus (AH) segments in all postures (P = .02). Average compression in the SFA, AH, and PA ranged from 9% to 15%, 11% to 19%, and 13% to 25%, respectively. The FPA experienced significantly more acute bending in the AH and PA segments compared with the proximal SFA (P < .05) in all postures. In the walking, sitting, and gardening postures, average sphere radii in the SFA, AH, and PA ranged from 21 to 27 mm, 10 to 18 mm, and 8 to 19 mm, whereas bending angles ranged from 150 to 157 degrees, 136 to 147 degrees, and 137 to 148 degrees, respectively. The FPA experiences significant axial compression and bending during limb flexion that occur at even modest limb angles. Moreover, different segments of the FPA appear to undergo significantly different degrees of deformation. Understanding the effects of limb flexion on axial compression and

  17. Modeling and Calculation of Dent Based on Pipeline Bending Strain

    Directory of Open Access Journals (Sweden)

    Qingshan Feng

    2016-01-01

    Full Text Available The bending strain of long-distance oil and gas pipelines can be calculated by the in-line inspection tool which used inertial measurement unit (IMU. The bending strain is used to evaluate the strain and displacement of the pipeline. During the bending strain inspection, the dent existing in the pipeline can affect the bending strain data as well. This paper presents a novel method to model and calculate the pipeline dent based on the bending strain. The technique takes inertial mapping data from in-line inspection and calculates depth of dent in the pipeline using Bayesian statistical theory and neural network. To verify accuracy of the proposed method, an in-line inspection tool is used to inspect pipeline to gather data. The calculation of dent shows the method is accurate for the dent, and the mean relative error is 2.44%. The new method provides not only strain of the pipeline dent but also the depth of dent. It is more benefit for integrity management of pipeline for the safety of the pipeline.

  18. Strain Rate Dependent Behavior and Modeling for Compression Response of Hybrid Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    S.M. Ibrahim

    Full Text Available Abstract This paper investigates the stress-strain characteristics of Hybrid fiber reinforced concrete (HFRC composites under dynamic compression using Split Hopkinson Pressure Bar (SHPB for strain rates in the range of 25 to 125 s-1. Three types of fibers - hooked ended steel fibers, monofilament crimped polypropylene fibers and staple Kevlar fibers were used in the production of HFRC composites. The influence of different fibers in HFRC composites on the failure mode, dynamic increase factor (DIF of strength, toughness and strain are also studied. Degree of fragmentation of HFRC composite specimens increases with increase in the strain rate. Although the use of high percentage of steel fibers leads to the best performance but among the hybrid fiber combinations studied, HFRC composites with relatively higher percentage of steel fibers and smaller percentage of polypropylene and Kevlar fibers seem to reflect the equally good synergistic effects of fibers under dynamic compression. A rate dependent analytical model is proposed for predicting complete stress-strain curves of HFRC composites. The model is based on a comprehensive fiber reinforcing index and complements well with the experimental results.

  19. Comparison of bending strain effect on the critical current degradation of Bi-2223 tapes through different measurement techniques

    International Nuclear Information System (INIS)

    Shin, Hyung-Seop; Dizon, John R.C.; Katagiri, Kazumune; Kuroda, Tsuneo

    2006-01-01

    Unlike in the tests under tension, transverse compression and torsion, the bending test of HTS tapes requires lots of time and effort since the sample should be bent or mounted successively onto sample holders having different bending radius at room temperature, and then cooled down to measure the critical current, I c , up to 77 K at each step. In this process, the effect of repeated thermal cycle on the I c degradation can not be ignored. The establishment of a practical and effective measurement method of the critical current as a function of bending strain for HTS tapes should be considered. A ρ-shaped sample holder which provides a series of bending strains to HTS tapes was newly devised. In this case, the connection of Bi-2223 tapes to current terminal blocks was done mechanically. Using this sample holder, the bending strain effect on the I c degradation behavior in Bi-2223 tapes in the easy bending mode was investigated, and discussed them comparing with other data obtained by different testing methods, namely, the conventional bending method using FRP sample holders and the Goldacker-type continuous bending test rig. Commercially available Bi-2223 tapes which have different reinforcing structures were supplied for this study. By using the newly devised ρ-shaped sample holder, it was possible to obtain a bending strain characteristic of I c in Bi-2223 tapes at one time cooling which lessened the testing time significantly when compared with other testing methods and supply good reproducible data. The I c degradation behavior in Bi-2223 tapes was similar to the cases using FRP sample holders although it showed slightly higher I c values

  20. Compressive strain-dependent bending strength property of Al{sub 2}O{sub 3}-ZrO{sub 2} (1.5 mol% Y{sub 2}O{sub 3}) composites performance by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rojas, A. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico)], E-mail: armando_reyesmx@yahoo.com.mx; Esparza-Ponce, H. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico); De la Torre, S.D. [Centro de Investigacion e Innovacion Tecnologica (CIITEC)-IPN, D.F. Mexico (Mexico); Torres-Moye, E. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico)

    2009-04-15

    Nanometric powders and sintered ceramics of Al{sub 2}O{sub 3}-ZrO{sub 2} (1.5 mol% Y{sub 2}O{sub 3}) prepared by hot isostatic pressing HIP have been studied. A detailed crystallographic study has been performed through X-ray diffraction, Williamson-Hall method, Rietveld method and high-resolution electron microscopy HREM analysis. The crystallographic structure data, such as domain size, lattice parameters, wt% phase, and micro-strain direction have been obtained using Rietveld refinement and Williamson-Hall methods. The results revealed that the compressive strain ({epsilon}) increased from 0.56 to 1.18 (10{sup -3}) as the t-ZrO{sub 2} content increased too. The HREM interface study conducted along the [0 0 0 1]Al{sub 2}O{sub 3}||[0 0 1]ZrO{sub 2} zone axis revealed a micro-strain lattice distortion accumulated at the grain boundary due to the ZrO{sub 2} martensitic phase transformation on cooling, t-ZrO{sub 2} grains coalescence and to the grain growth of {alpha}-Al{sub 2}O{sub 3} which cause elongated tetragonal crystals. Micro-strain lattice distortion is adjusted by the shear displacements of the planes (1 1 0) and (11-bar0) along [1-bar10] and [1-bar1-bar0] crystallographic directions, respectively; these planes are arrested by the (101-bar0) alumina plane. In this case, semi-coherent interfaces were observed along the grain boundary. It is verified that the bending strength increased in connection with the strain accumulation and amount of tetragonal structure.

  1. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe

    2017-03-01

    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  2. Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.

  3. Analysis of critical current-bend strain relationships in composite Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Luhman, T.; Welch, D.O.

    1979-01-01

    In order to be used successfully in fusion magnets, Nb 3 Sn conductors must meet several mechanical strain criteria, including tolerance to bending strains encountered during magnet construction. Since Nb 3 Sn is extremely brittle much information has been generated regarding the sensitivity of these conductros to tensile strain. A recent comparison of critical current-bend and tensile test data indicates that the strain required to initiate compound cracking during bending is significantly less than the strain required to do so by tensile of critical current on bending strains in monofilamentary Nb 3 Sn wires is calculated and compared with experimental data. The calculation takes into account a shift in the composite's neutral axis which occurs during bending. The analysis correctly predicts the observed depdndence of the critical current on bending strains

  4. Performance of composite I-beams under axial compression and bending load modes

    International Nuclear Information System (INIS)

    Khalid, Y.A.; Ali, F.A.; Sahari, B.B.; Saad, E.M.A.

    2005-01-01

    An experimental and finite-element analyses for glass/epoxy composite I-beams have been carried out. Four, six, eight and 10 layers of woven fabric glass/epoxy composite I-beams were fabricated by a hand lay-up (molding) process. Quasi-static axial crushing and bending loading modes were used for this investigation. The load-displacement response was obtained and the energy absorption values were calculated for all the composite I-beams. Three tests were done for each composite I-beams type and each loading case for the results conformation. The second part of this study includes the elastic behavior of composite I-beams of the same dimensions and materials using finite-element analysis. The woven fabric glass/epoxy composite I-beams mechanical properties have been obtained from tensile tests. Results from this investigation show that the load required and the specific energy absorption for composite I-beams under axial compression load were higher than those for three and four point bending. On the other hand, the loads required for composite I-beams under four point bending were higher than those for three point bending, while the specific energy absorption for composite I-beams under three point bending were higher than those for four point bending. The first crushing loads difference between the experimental and finite-element results fell in the 3.6-10.92% range for axial compression tests, while fell in the 1.44-12.99% and 4.94-22.0% range for three and four point bending, respectively

  5. Analytical investigation in bending characteristic of twisted stacked-tape cable conductor

    International Nuclear Information System (INIS)

    Takayasu, Makoto; Chiesa, Luisa

    2015-01-01

    An analytical model to evaluate bending strains of a twisted stack-tape cable (TSTC) conductor has been developed. Through a comparison with experimental results obtained for a soldered 32-tape YBCO TSTC conductor, it has been found that a Perfect-Slip Model (PSM) taking into account the slipping between tapes in a stacked-tape cable during bending gives much better estimation of the bending performance compared to a No-Slip Model (NSM). In the PSM case the tapes can slip so that the internal longitudinal axial strain can be released. The longitudinal strains of compression and tension regions along the tape are balanced in one twist-pitch and cancel out evenly in a long cable. Therefore, in a cable the strains due to bending can be minimized. This is an important advantage of a TSTC conductor. The effect of the cable diameter size on the bending strain is also expected to be minor, and all tapes composing a TSTC conductor have the same strain response under bending, therefore the cable critical current can be characterized from a single tape behaviour. (paper)

  6. Analytical investigation in bending characteristic of twisted stacked-tape cable conductor

    Science.gov (United States)

    Takayasu, Makoto; Chiesa, Luisa

    2015-12-01

    An analytical model to evaluate bending strains of a twisted stack-tape cable (TSTC) conductor has been developed. Through a comparison with experimental results obtained for a soldered 32-tape YBCO TSTC conductor, it has been found that a Perfect-Slip Model (PSM) taking into account the slipping between tapes in a stacked-tape cable during bending gives much better estimation of the bending performance compared to a No-Slip Model (NSM). In the PSM case the tapes can slip so that the internal longitudinal axial strain can be released. The longitudinal strains of compression and tension regions along the tape are balanced in one twist-pitch and cancel out evenly in a long cable. Therefore, in a cable the strains due to bending can be minimized. This is an important advantage of a TSTC conductor. The effect of the cable diameter size on the bending strain is also expected to be minor, and all tapes composing a TSTC conductor have the same strain response under bending, therefore the cable critical current can be characterized from a single tape behaviour.

  7. Bending strain study of Bi-2223/Ag tapes using Hall sensor magnetometry

    International Nuclear Information System (INIS)

    Lahtinen, M.; Paasi, J.; Sarkaniemi, J.; Han, Z.; Freltoft, T.

    1996-01-01

    The influence of room temperature bending on critical current (I c ) of Bi-2223/Ag tapes is studied by Hall sensor magnetometry, four-point method and scanning electron microscopy. Hall sensor magnetometry allows one to assess tape homogeneity and the amount of mechanical damage caused by bending. The microstructure of the Bi-2223 ceramic is found to strongly affect the tape behavior under bending strain. In a tape with moderate I c = 6.1 A at 77 K and a porous ceramic core, crack propagation took place normal to the Ag-ceramic interface, whereas in tapes with dense core, I c above 10 A at 77 K, cracks propagated in the tape plane. In monofilamentary tapes core homogeneity correlated with good bending strain performance. In multifilamentary tapes crack propagation between filaments was prohibited by the Ag matrix, thus leading to enhanced strain tolerance. In the high I c tapes studied, bending to 25 mm radius resulted in 1%--2% I c degradation

  8. Piezo films with adjustable anisotropic strain for bending actuators with tunable bending profiles

    International Nuclear Information System (INIS)

    Wapler, Matthias C; Stürmer, Moritz; Brunne, Jens; Wallrabe, Ulrike

    2014-01-01

    We present a method to produce in-plane polarized piezo films with a freely adjustable ratio of the strains in orthogonal in-plane directions. They can be used in piezo bending actuators with a tunable curvature profile. The strains are obtained as mean strains from a periodic polarization pattern produced by a suitable doubly interdigitated electrode structure. This mechanism is demonstrated for several examples using PZT sheets. We further discuss how this tuning and the parameters of the electrode layout affect the overall magnitude of the displacement. (paper)

  9. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)

    2003-10-21

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.

  10. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    International Nuclear Information System (INIS)

    Biermann, Mark L; Walters, Matthew; Diaz-Barriga, James; Rabinovich, W S

    2003-01-01

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain

  11. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  12. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  13. A new strain based brick element for plate bending

    Directory of Open Access Journals (Sweden)

    L. Belounar

    2014-03-01

    Full Text Available This paper presents the development of a new three-dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending. The developed element has the three essential external degrees of freedom (U, V and W at each of the eight corner nodes as well as at the centroidal node. The displacement field of the developed element is based on assumed functions for the various strains satisfying the compatibility equations and the static condensation technique is used for the internal node. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element.

  14. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  15. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shervin, Shahab; Asadirad, Mojtaba [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Materials Science and Engineering Program, University of Houston, Houston, Texas 77204 (United States); Kim, Seung-Hwan; Ravipati, Srikanth; Lee, Keon-Hwa [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Bulashevich, Kirill [STR Group, Inc., Engels av. 27, P.O. Box 89, 194156, St. Petersburg (Russian Federation); Ryou, Jae-Hyun, E-mail: jryou@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006 (United States); Materials Science and Engineering Program, University of Houston, Houston, Texas 77204 (United States); Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, Texas 77204 (United States)

    2015-11-09

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  16. Bend strain tolerances of a Nb3Sn conductor proposed for use in the magnetic fusion energy program

    International Nuclear Information System (INIS)

    Luhman, T.; Welch, D.O.; Suenaga, M.

    1980-01-01

    Bend strain tolerances were studied on a 2869 filament bronze-processed Nb 3 Sn wire conductor in magnetic fields to 8 T. Relative values of the wire's current transfer length to twist pitch were shown to influence the bend-strain tolerance. Low matrix resistivities, associated with Sn-depleted bronzes following heat-treatments of 48 h at 725 0 C, produce current transfer lengths less than the twist pitch, 10 mm. The resulting bend-strain tolerances, at 10 -12 ohm.cm, are improved over those found for shorter heat-treatment times. Results from bend-fatigue experiments were divided into two domains separated by the strain value required to produce compound cracking, epsilon/sub f//sup B/. Applied bending strains less than epsilon/sub f//sup B/ were found to increase zero strain critical current values and this increase was independent of the number of fatigue cycles. When applying strains large enough to produce cracking in the compounds critical currents decreased from their asreacted values tending to reach a minimum after several fatigue cycles. Evidence exists for a neutral axis shift during bending and slight differences between tensile and bend strain tolerances are accounted for in terms of such a shift

  17. Rate Dependence of the Compressive Response of Ti Foams

    Directory of Open Access Journals (Sweden)

    Nik Petrinic

    2012-06-01

    Full Text Available Titanium foams of relative density ranging from 0.3 to 0.9 were produced by titanium powder sintering procedures and tested in uniaxial compression at strain rates ranging from 0.01 to 2,000 s−1. The material microstructure was examined by X-ray tomography and Scanning Electron Microscopy (SEM observations. The foams investigated are strain rate sensitive, with both the yield stress and the strain hardening increasing with applied strain rate, and the strain rate sensitivity is more pronounced in foams of lower relative density. Finite element simulations were conducted modelling explicitly the material’s microstructure at the micron level, via a 3D Voronoi tessellation. Low and high strain rate simulations were conducted in order to predict the material’s compressive response, employing both rate-dependant and rate-independent constitutive models. Results from numerical analyses suggest that the primary source of rate sensitivity is represented by the intrinsic sensitivity of the foam’s parent material.

  18. Magnetic attachment for implant overdentures: influence of contact relationship with the denture base on stability and bending strain.

    Science.gov (United States)

    Yang, Tsung-Chieh; Maeda, Yoshinobu; Gonda, Tomoya; Wada, Masahiro

    2013-01-01

    This study evaluated how the contact height between the magnetic attachment and denture base influences stability and bending strain. An implant modified with strain gauges and a magnetic attachment mounted in an acrylic resin block were used to characterize systems with varying degrees or heights of contact with the abutment. Bending strain under lateral loading increased significantly as the contact height decreased. In the no contact and resilient contact groups, magnetic assemblies separated at reduced bending strain in all loading conditions. The contact height of the magnetic attachment influenced the stability and the amount of bending strain on the implant.

  19. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies

    International Nuclear Information System (INIS)

    Xu, Jun; Liu, Binghe; Wang, Xinyi; Hu, Dayong

    2016-01-01

    Highlights: • An anisotropic model to describe mechanical behaviors of LIB is established. • SOC dependency is included in the mechanical model of the jellyroll. • Dynamic effect is considered in the model for LIB. - Abstract: Highly nonlinear structures and constituent materials and hazardous experiment situations have resulted in a pressing need for a numerical mechanical model for lithium-ion battery (LIB). However, such a model is still not well established. In this paper, an anisotropic homogeneous model describing the jellyroll and the battery shell is established and validated through compression, indentation, and bending tests at quasi-static loadings. In this model, state-of-charge (SOC) dependency of the LIB is further included through an analogy with the strain-rate effect. Moreover, with consideration of the inertia and strain-rate effects, the anisotropic homogeneous model is extended into the dynamic regime and proven capable of predicting the dynamic response of the LIB using the drop-weight test. The established model may help to predict extreme cases with high SOCs and crashing speeds with an over 135% improved accuracy compared to traditional models. The established coupled strain rate and SOC dependencies of the numerical mechanical model for the LIB aims to provide a solid step toward unraveling and quantifying the complicated problems for research on LIB mechanical integrity.

  20. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.

    Science.gov (United States)

    Monn, Michael A; Kesari, Haneesh

    2017-12-01

    The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of mechanical strain on magnetic characteristics of spin valves

    International Nuclear Information System (INIS)

    Ac, V; Anwarzai, B; Luby, S; Majkova, E

    2008-01-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity H c and magnetic field H ip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, H c , H ip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 x 10 -6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output

  2. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Directory of Open Access Journals (Sweden)

    Khaled Elgeneidy

    2018-02-01

    Full Text Available This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices.

  3. Applied strain dependence of critical current and internal lattice strain for BaHfO_3-doped GdBa_2Cu_3O_y coated conductors

    International Nuclear Information System (INIS)

    Usami, Takashi; Yoshida, Yutaka; Ichino, Yusuke; Sugano, Michinaka; Machiya, Shutaro; Ibi, Akira; Izumi, Teruo

    2016-01-01

    The strain effect of REBa_2Cu_3O_y (REBCO: RE = Y, Gd, Sm)-coated conductors (CCs) on critical current (I_c) is one of the most fundamental factors for superconducting coil applications. In this study, we aim to clarify the effect of artificial pinning center shapes on the strain effect in BHO-doped GdBCO CCs. To achieve this, we fabricated a Pure-GdBCO CC, a BHO nanorod-doped GdBCO CC and a multilayered-GdBCO (ML-GdBCO) CC, and carried out bending tests. As the result, the strain dependence of I_c for each CC showed an upward convex and the peak strain of the BHO-doped GdBCO CC shifts towards the compressive strain independent of the BHO shapes. In addition, the strain sensitivity of I_c in the GdBCO CCs including BHO becomes smaller. To clarify the difference between the strain sensitivity of I_c and the peak strain among the CCs, we evaluated the residual strain and the slopes of the internal lattice strains against the applied tensile strain (β). From this measurement, the residual strains for the Pure-GdBCO CC and the ML-GdBCO CC were almost the same. In addition, there was no change in the β value between the Pure-GdBCO and ML-GdBCO CCs. These results suggest that the changes in peak strain and strain sensitivity were not related to the internal lattice strain. (author)

  4. The dependence of electronic transport on compressive deformation of C{sub 60} molecule

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University (China)], E-mail: lihuilmy@hotmail.com; Zhang, X.Q. [Physics Department, Ocean University of China, Qingdao (China)

    2008-06-02

    The dependence of electronic transport on compressive deformation of C{sub 60} molecule is studied theoretically in this work. Brenner's 'second generation' empirical potential is used to describe the many-body short-range interatomic interactions for C{sub 60} in the molecular dynamics simulations. Our results demonstrate that C{sub 60} can be compressed up to a strain {epsilon}=0.31 before collapsing. Electronic transport under an applied bias is calculated by using a self-consistent field approach coupled with non-equilibrium Green's function (NEGF) formalism. The transmission probability, conductance gap, and conductance spectrum are found to be sensitive to the compression. The peak value of conductance decreases with the increase of strain until the C{sub 60} is compressed up to a strain {epsilon}=0.31.

  5. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  6. Finite Element Analysis for Bending Process of U-Bending Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Dong; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    ASTM G30 suggests that the applied strain can be calculated by dividing thickness by a bend radius. It should be noted, however, that the formula is reliable under an assumption that the ratio of thickness to bend radius is less than 0.2. Typically, to increase the applied stress/strain, the ratio of thickness to bend radius becomes larger than 0.2. This suggests that the estimated strain values by ASTM G30 are not reliable to predict the actual residual strain state of the highly deformed U-bend specimen. For this reason, finite element analysis (FEA) for the bending process of Ubend specimens was conducted by using a commercial finite element analysis software ABAQUS. ver.6.14- 2;2014. From the results of FEA, PWSCC initiation time and U-bend specimen size can be determined exactly. Since local stress and strain have a significant effect on the initiation of PWSCC, it was inappropriate to apply results of ASTM G30 to the PWSCC test directly. According to results of finite element analysis (FEA), elastic relaxation can cause inaccuracy in intended final residual stress. To modify this inaccuracy, additional process reducing the spring back is required. However this additional process also may cause uncertainty of stress/strain state. Therefore, the U-bending specimen size which is not creating uncertainty should be optimized and selected. With the bending radius of 8.3 mm, the thickness of 3 mm and the roller distance of 32.6 mm, calculated maximum stress and strain were 670 MPa and 0.21, respectively.

  7. Strain rate dependency of laser sintered polyamide 12

    Directory of Open Access Journals (Sweden)

    Cook J.E.T.

    2015-01-01

    Full Text Available Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10−3 to 10+3 s−1 at room temperature, and the dependence on these parameters is presented.

  8. Lattice strains in gold and rhenium under nonhydrostatic compression to 37 GPa

    International Nuclear Information System (INIS)

    Duffy, Thomas S.; Shen, Guoyin; Heinz, Dion L.; Shu, Jinfu; Ma, Yanzhang; Mao, Ho-Kwang; Hemley, Russell J.; Singh, Anil K.

    1999-01-01

    Using energy-dispersive x-ray diffraction techniques together with the theory describing lattice strains under nonhydrostatic compression, the behavior of a layered sample of gold and rhenium has been studied at pressures of 14-37 GPa. For gold, the uniaxial stress component t is consistent with earlier studies and can be described by t=0.06+0.015P where P is the pressure in GPa. The estimated single-crystal elastic moduli are in reasonable agreement with trends based on extrapolated low-pressure data. The degree of elastic anisotropy increases as α, the parameter which characterizes stress-strain continuity across grain boundaries, is reduced from 1.0 to 0.5. For rhenium, the apparent equation of state has been shown to be strongly influenced by nonhydrostatic compression, as evidenced by its dependence on the angle ψ between the diffracting plane normal and the stress axis. The bulk modulus obtained by inversion of nonhydrostatic compression data can differ by nearly a factor of 2 at angles of 0 degree sign and 90 degree sign . On the other hand, by a proper choice of ψ, d spacings corresponding to quasihydrostatic compression can be obtained from data obtained under highly nonhydrostatic conditions. The uniaxial stress in rhenium over the pressure range from 14-37 GPa can be described by t=2.5+0.09P. The large discrepancy between x-ray elastic moduli and ultrasonic data and theoretical calculations indicates that additional factors such as texturing or orientation dependence of t need to be incorporated to more fully describe the strain distribution in hexagonal-close-packed metals. (c) 1999 The American Physical Society

  9. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains.

    Science.gov (United States)

    Hosseini, Hadi S; Clouthier, Allison L; Zysset, Philippe K

    2014-04-01

    Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towards the prediction of extended vertebral

  10. Temperature dependence of the mechanical properties of melt-processed Dy-Ba-Cu-O bulk superconductors evaluated by three point bending tests

    International Nuclear Information System (INIS)

    Katagiri, K; Nyilas, A; Sato, T; Hatakeyama, Y; Hokari, T; Teshima, H; Iwamoto, A; Mito, T

    2006-01-01

    Dy-Ba-Cu-O bulk superconductor has an excellent capability of trapping magnetic flux and lower heat conductivity at cryogenic temperatures as compared with Y-Ba-Cu-O bulk superconductor. The Young's modulus and the bending strength in the range from room temperature to 7 K were measured by the three-point bending tests using specimens cut from a melt-processed Dy-Ba-Cu-O bulk superconductor. They were tested in a helium gas flow type cryostat at Forschungszentrum Karlsruhe and in a liquid nitrogen bath at Iwate University. The Young's modulus was calculated by either the slope of stress-strain curve or that of the load-deflection curve of the specimen. Although the bending strength measured in the two institutes coincided well, there was a significant discrepancy in the Young's modulus. The Young's modulus and bending strength increased with decrease of temperature down to 7 K. The amount of increase in the Young's modulus and the bending strength were about 32% and 36% of those at room temperature, respectively. The scatter of data for each run was significant and did not depend on temperature. The temperature dependence of the Young's modulus coincided with that in Y-Ba-Cu-O obtained by ultrasonic velocity. The temperature dependence of the Young's modulus and the bending strength was discussed from the view point of interatomic distance of the bulk crystal

  11. Mechanics of the Compression Wood Response: II. On the Location, Action, and Distribution of Compression Wood Formation.

    Science.gov (United States)

    Archer, R R; Wilson, B F

    1973-04-01

    A new method for simulation of cross-sectional growth provided detailed information on the location of normal wood and compression wood increments in two tilted white pine (Pinus strobus L.) leaders. These data were combined with data on stiffness, slope, and curvature changes over a 16-week period to make the mechanical analysis. The location of compression wood changed from the under side to a flank side and then to the upper side of the leader as the geotropic stimulus decreased, owing to compression wood action. Its location shifted back to a flank side when the direction of movement of the leader reversed. A model for this action, based on elongation strains, was developed and predicted the observed curvature changes with elongation strains of 0.3 to 0.5%, or a maximal compressive stress of 60 to 300 kilograms per square centimeter. After tilting, new wood formation was distributed so as to maintain consistent strain levels along the leaders in bending under gravitational loads. The computed effective elastic moduli were about the same for the two leaders throughout the season.

  12. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Kong, Deli; Xin, Tianjiao; Shu, Xinyu; Zheng, Kun; Xiao, Lirong; Sha, Xuechao; Lu, Yan; Han, Xiaodong, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Ze [Department of Materials Science, Zhejiang University, Hangzhou 310008 (China); Zou, Jin, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2016-04-11

    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.

  13. Long term bending behavior of ultra-high performance concrete (UHPC beams

    Directory of Open Access Journals (Sweden)

    Gheorghe-Alexandru BARBOS

    2015-12-01

    Full Text Available Unlike normal concrete (NC the behavior of ultra-high performance concrete (UHPC is different under long-term efforts, if we refer to creep, shrinkage or long-term deflections. It is well known that UHPC has special properties, like compressive strength higher than 150 MPa and tensile strength higher than 20 MPa - in case of UHPC reinforced with steel-fibers. Nevertheless, UHPC behavior is not completely elucidated in what concerns creep straining or serviceability behavior in case of structural elements. Some studies made on UHPC samples shown that creep is significantly reduced if the concrete is subjected to heat treatment and if it contains steel-fiber reinforcement. Relating thereto, it is important to know how does structural elements made of this type of concrete works in service life under long-term loadings. The results obtained on UHPC samples, regarding creep straining from tension or compression efforts may not be generalized in case of structural elements (e.g. beams, slabs, columns subjected to bending. By performing this study, it was aimed to understand the influence of heat treatment and steel-fiber addition on the rheological phenomena of UHPC bended beams.

  14. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors.

    Science.gov (United States)

    Tavassolizadeh, Ali; Rott, Karsten; Meier, Tobias; Quandt, Eckhard; Hölscher, Hendrik; Reiss, Günter; Meyners, Dirk

    2016-11-11

    Magnetostrictive tunnel magnetoresistance (TMR) sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJ)s with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner-Wohlfarth (SW) model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of -3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and -311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and -260 for tensile and compressive stresses, respectively, under a -3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.

  15. The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-02-01

    Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.

  16. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    International Nuclear Information System (INIS)

    Wang, S.; Wang, M.P.; Chen, C.; Xiao, Z.; Jia, Y.L.; Li, Z.; Wang, Z.X.

    2014-01-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compression axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different

  17. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  18. Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Wichmann, Malte H G; Buschhorn, Samuel T; Boeger, Lars; Schulte, Karl; Adelung, Rainer

    2008-01-01

    In the present work, a direction sensitive bending strain sensor consisting of a single block of epoxy/multi-wall carbon nanotube composite was developed. Moreover, the manufacturing could be realized in a straightforward single-step processing route. The directional sensitivity to bending deformations is related to the change in electrical resistance, which becomes positive or negative, depending on the direction of bending deflection. This effect is achieved by generating a gradient in electrical conductivity throughout the material. The resistance versus strain behaviour of these devices is investigated in detail and related to the microstructure of the nanocomposites.

  19. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Hosson, J.T.M. De

    Quantitative bending and compression tests on micropillars made of two different amorphous alloys, with tip diameters ranging from 93 to 645 rim, are performed in situ in a transmission electron microscope (TEM). Under microcompression each pillar shows an intermittent plastic flow accommodated by

  20. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors

    Directory of Open Access Journals (Sweden)

    Ali Tavassolizadeh

    2016-11-01

    Full Text Available Magnetostrictive tunnel magnetoresistance (TMR sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJs with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner–Wohlfarth (SW model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of −3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and −311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and −260 for tensile and compressive stresses, respectively, under a −3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.

  1. Strain-dependent magnetic anisotropy in GaMnAs on InGaAs templates

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim; Glunk, Michael; Schwaiger, Stephan; Dreher, Lukas; Schoch, Wladimir; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm, 89069 Ulm (Germany)

    2008-07-01

    We have systematically studied the influence of strain on the magnetic anisotropy of GaMnAs by means of HRXRD reciprocal space mapping and angle-dependent magnetotransport. For this purpose, a series of GaMnAs layers with Mn contents of {proportional_to}5% was grown by low-temperature MBE on relaxed InGaAs/GaAs templates with different In concentrations, enabling us to vary the strain in the GaMnAs layers continuously from tensile to compressive, including the unstrained state. Considering both, as-grown and annealed samples, the anisotropy parameter describing the uniaxial out-of-plane magnetic anisotropy has been found to vary linearly with hole density and strain. As a consequence, the out-of-plane direction gradually undergoes a transition from a magnetic hard axis to a magnetic easy axis from compressive to tensile strain.

  2. Relationship between strain stored by compressive deformation and crystallographic orientation in a pure aluminum

    International Nuclear Information System (INIS)

    Takayama, Y; Watanabe, H; Yoshimura, T

    2015-01-01

    In order to investigate relationship between stored strain and crystallographic orientation, 99.99% purity aluminum cubes were compressed with uniaxial or with plane strain state up to a nominal strain of 30%. The aluminum cubes were examined on the same surface before and after compression by SEM/EBSD technique. Stored strain was estimated by Kernel Average Misorientation (KAM) derived from the EBSD analysis, and Taylor factor (TF) was measured before the compressive deformation. The analysis revealed that KAM value or the stored strain decreases until a certain value of TF and then increases with increment of TF. (paper)

  3. A measurement method for piezoelectric material properties under longitudinal compressive stress–-a compression test method for thin piezoelectric materials

    International Nuclear Information System (INIS)

    Kang, Lae-Hyong; Lee, Dae-Oen; Han, Jae-Hung

    2011-01-01

    We introduce a new compression test method for piezoelectric materials to investigate changes in piezoelectric properties under the compressive stress condition. Until now, compression tests of piezoelectric materials have been generally conducted using bulky piezoelectric ceramics and pressure block. The conventional method using the pressure block for thin piezoelectric patches, which are used in unimorph or bimorph actuators, is prone to unwanted bending and buckling. In addition, due to the constrained boundaries at both ends, the observed piezoelectric behavior contains boundary effects. In order to avoid these problems, the proposed method employs two guide plates with initial longitudinal tensile stress. By removing the tensile stress after bonding a piezoelectric material between the guide layers, longitudinal compressive stress is induced in the piezoelectric layer. Using the compression test specimens, two important properties, which govern the actuation performance of the piezoelectric material, the piezoelectric strain coefficients and the elastic modulus, are measured to evaluate the effects of applied electric fields and re-poling. The results show that the piezoelectric strain coefficient d 31 increases and the elastic modulus decreases when high voltage is applied to PZT5A, and the compression in the longitudinal direction decreases the piezoelectric strain coefficient d 31 but does not affect the elastic modulus. We also found that the re-poling of the piezoelectric material increases the elastic modulus, but the piezoelectric strain coefficient d 31 is not changed much (slightly increased) by re-poling

  4. Behavior of quenched and tempered steels under high strain rate compression loading

    International Nuclear Information System (INIS)

    Meyer, L.W.; Seifert, K.; Abdel-Malek, S.

    1997-01-01

    Two quenched and tempered steels were tested under compression loading at strain rates of ε = 2.10 2 s -1 and ε = 2.10 3 s -1 . By applying the thermal activation theory, the flow stress at very high strain rates of 10 5 to 10 6 s -1 is derived from low temperature and high strain rate tests. Dynamic true stress - true strain behaviour presents, that stress increases with increasing strain until a maximum, then it decreases. Because of the adiabatic process under dynamic loading the maximum flow stress will occur at a lower strain if the strain rate is increased. Considering strain rate, strain hardening, strain rate hardening and strain softening, a constitutive equation with different additive terms is successfully used to describe the behaviour of material under dynamic compression loading. Results are compared with other models of constitutive equations. (orig.)

  5. Bending sound in graphene: Origin and manifestation

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V.M., E-mail: vadamyan@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Bondarev, V.N., E-mail: bondvic@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Zavalniuk, V.V., E-mail: vzavalnyuk@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Department of Fundamental Sciences, Odessa Military Academy, 10 Fontanska Road, Odessa 65009 (Ukraine)

    2016-11-11

    Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.

  6. Bending sound in graphene: Origin and manifestation

    International Nuclear Information System (INIS)

    Adamyan, V.M.; Bondarev, V.N.; Zavalniuk, V.V.

    2016-01-01

    Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.

  7. Compressive failure model for fiber composites by kink band initiation from obliquely aligned, shear-dislocated fiber breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bai, J.; Phoenix, S.L. [Cornell University, Ithaca, NY (United States). Dept. of Theoretical and Applied Mechanics

    2005-04-01

    Predicting compressive failure of a unidirectional fibrous composite is a longstanding and challenging problem that we study from a new perspective. Motivated by previous modelling of tensile failure as well as experimental observations on compressive failures in single carbon fibers, we develop a new micromechanical model for the compressive failure process in unidirectional, planar composites. As the compressive load is increased, random fiber failures are assumed to occur due to statistically distributed flaws, analogous to what occurs in tension. These breaks are often shear-mode failures with slanted surfaces that induce shear dislocations, especially when they occur in small groups aligned obliquely. Our model includes interactions of dislocated and neighboring intact fibers through a system of fourth-order, differential equations governing transverse deformation, and also allows for local matrix plastic yielding and debonding from the fiber near and within the dislocation arrays. Using the Discrete Fourier Transform method, we find a 'building-block' analytical solution form, which naturally embodies local length scales of fiber microbuckling and instability. Based on the influence function, superposition approach, a computationally efficient scheme is developed to model the evolution of fiber and matrix stresses. Under increasing compressive strain the simulations show that matrix yielding and debonding crucially lead to large increases in bending strains in fibers next to small groups of obliquely aligned, dislocated breaks. From the paired locations of maximum fiber bending in flanking fibers, the triggering of an unstable kink band becomes realistic. The geometric features of the kink band, such as the fragment lengths and orientation angles, will depend on the fiber and matrix mechanical and geometric properties. In carbon fiber-polymer matrix systems our model predicts a much lower compressive failure stress than obtained from Rosen

  8. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  9. Out-of-Plane Strain Effects on Physically Flexible FinFET CMOS

    KAUST Repository

    Ghoneim, Mohamed T.

    2016-05-18

    We present a comprehensive electrical performance assessment of hafnium silicate (HfSiOₓ) high-κ dielectric and titanium-nitride (TiN) metal-gate-integrated FinFET-based complementary-metal-oxide-semiconductor (CMOS) on flexible silicon on insulator. The devices were fabricated using the state-of-the-art CMOS technology and then transformed into flexible form by using a CMOS-compatible maskless deep reactive-ion etching technique. Mechanical out-of-plane stresses (compressive and tensile) were applied along and across the transistor channel lengths through a bending range of 0.5-5 cm radii for n-type and p-type FinFETs. Electrical measurements were carried out before and after bending, and all the bending measurements were taken in the actual flexed (bent) state to avoid relaxation and stress recovery. Global stress from substrate bending affects the devices in different ways compared with the well-studied uniaxial/biaxial localized strain. The global stress is dependent on the type of channel charge carriers, the orientation of the bending axis, and the physical gate length of the device. We, therefore, outline useful insights on the design strategies of flexible FinFETs in future free-form electronic applications.

  10. Conceptual design of bend, compression, and final focus components of ILSE [Induction Linac System Experiment

    International Nuclear Information System (INIS)

    Lee, E.P.; Fong, C.; Mukherjee, S.; Thur, W.

    1989-03-01

    The Induction Linac System Experiment (ILSE) includes a 180/degree/ bend system, drift compression line and a final focus, which test the analogous features of a heavy ion driver for inertial fusion. These components are novel in their transport of a space-charge-dominated ion beam with large head-to-tail velocity tilt. Their conceptual design is presented, including calculations of the beam envelope, momentum dispersion, and engineering design of magnets, vacuum system, diagnostics, alignment, and support. 3 refs., 5 figs

  11. Quantification of photoinduced bending of dynamic molecular crystals: from macroscopic strain to kinetic constants and activation energies.

    Science.gov (United States)

    Chizhik, Stanislav; Sidelnikov, Anatoly; Zakharov, Boris; Naumov, Panče; Boldyreva, Elena

    2018-02-28

    Photomechanically reconfigurable elastic single crystals are the key elements for contactless, timely controllable and spatially resolved transduction of light into work from the nanoscale to the macroscale. The deformation in such single-crystal actuators is observed and usually attributed to anisotropy in their structure induced by the external stimulus. Yet, the actual intrinsic and external factors that affect the mechanical response remain poorly understood, and the lack of rigorous models stands as the main impediment towards benchmarking of these materials against each other and with much better developed soft actuators based on polymers, liquid crystals and elastomers. Here, experimental approaches for precise measurement of macroscopic strain in a single crystal bent by means of a solid-state transformation induced by light are developed and used to extract the related temperature-dependent kinetic parameters. The experimental results are compared against an overarching mathematical model based on the combined consideration of light transport, chemical transformation and elastic deformation that does not require fitting of any empirical information. It is demonstrated that for a thermally reversible photoreactive bending crystal, the kinetic constants of the forward (photochemical) reaction and the reverse (thermal) reaction, as well as their temperature dependence, can be extracted with high accuracy. The improved kinematic model of crystal bending takes into account the feedback effect, which is often neglected but becomes increasingly important at the late stages of the photochemical reaction in a single crystal. The results provide the most rigorous and exact mathematical description of photoinduced bending of a single crystal to date.

  12. Effect of temperature and strain rate on the compressive behaviour of supramolecular polyurethane

    Directory of Open Access Journals (Sweden)

    Tang Xuegang

    2015-01-01

    Full Text Available Supramolecular polyurethanes (SPUs possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics. A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10−3 to 104 s−1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested.

  13. Transfer induced compressive strain in graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget; Mackenzie, David; Caridad, Jose

    2014-01-01

    We have used spatially resolved micro Raman spectroscopy to map the full width at half maximum (FWHM) of the graphene G-band and the 2D and G peak positions, for as-grown graphene on copper catalyst layers, for transferred CVD graphene and for micromechanically exfoliated graphene, in order...... to characterize the effects of a transfer process on graphene properties. Here we use the FWHM(G) as an indicator of the doping level of graphene, and the ratio of the shifts in the 2D and G bands as an indicator of strain. We find that the transfer process introduces an isotropic, spatially uniform, compressive...... strain in graphene, and increases the carrier concentration....

  14. Elastic Modulus of Foamcrete in Compression and Bending at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper will presents the experimental results that have been performed to examine and characterize the mechanical properties of foamcrete at elevated temperatures. Foamcrete of 650 and 1000 kg/m 3 density were cast and tested under compression and bending. The tests were done at room temperature, 100, 200, 300, 400, 500, and 600°C. The results of this study consistently demonstrated that the loss in stiffness for cement based material like foamcrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffnesstemperature relationships are very similar.

  15. A 2-DOF microstructure-dependent model for the coupled torsion/bending instability of rotational nanoscanner

    Science.gov (United States)

    Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.

    2016-10-01

    It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.

  16. Strain-dependent characterization of electrode and polymer network of electrically activated polymer actuators

    Science.gov (United States)

    Töpper, Tino; Osmani, Bekim; Weiss, Florian M.; Winterhalter, Carla; Wohlfender, Fabian; Leung, Vanessa; Müller, Bert

    2015-04-01

    Fecal incontinence describes the involuntary loss of bowel content and affects about 45 % of retirement home residents and overall more than 12 % of the adult population. Artificial sphincter implants for treating incontinence are currently based on mechanical systems with failure rates resulting in revision after three to five years. To overcome this drawback, artificial muscle sphincters based on bio-mimetic electro-active polymer (EAP) actuators are under development. Such implants require polymer films that are nanometer-thin, allowing actuation below 24 V, and electrodes that are stretchable, remaining conductive at strains of about 10 %. Strain-dependent resistivity measurements reveal an enhanced conductivity of 10 nm compared to 30 nm sputtered Au on silicone for strains higher than 5 %. Thus, strain-dependent morphology characterization with optical microscopy and atomic force microscopy could demonstrate these phenomena. Cantilever bending measurements are utilized to determine elastic/viscoelastic properties of the EAP films as well as their long-term actuation behavior. Controlling these properties enables the adjustment of growth parameters of nanometer-thin EAP actuators.

  17. A knitted glove sensing system with compression strain for finger movements

    Science.gov (United States)

    Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun

    2018-05-01

    Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.

  18. Axial and transverse stress-strain characterization of the EU dipole high current density Nb{sub 3}Sn strand

    Energy Technology Data Exchange (ETDEWEB)

    Nijhuis, A; Ilyin, Y; Abbas, W [Faculty of Science and Technology, Low Temperature Division, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)], E-mail: a.nijhuis@tnw.utwente.nl

    2008-06-15

    We have measured the critical current (I{sub c}) of a high current density Nb{sub 3}Sn strand subjected to spatial periodic bending, periodic contact stress and uniaxial strain. The strand is destined for the cable-in-conduit conductors (CICC) of the European dipole (EDIPO) 12.5 T superconducting magnet test facility. The spatial periodic bending was applied on the strand, using the bending wavelengths from 5 to 10 mm with a peak bending strain of 1.5%, a periodic contact stress with a periodicity of 4.7 mm and a stress level exceeding 250 MPa. For the uniaxial strain characterization, the voltage-current characteristics were measured with an applied axial strain from -0.9% to +0.3%, with a magnetic field from 6 to 14 T, temperature from 4.2 to 10 K and currents up to almost 900 A. In addition the axial stiffness was determined by a tensile axial stress-strain test. The characterization of the strand is essential for understanding the behaviour of the strand under mainly axial thermal stress variation during cool down and transverse electromagnetic forces during charging, which is essential for the design of the CICC for the dipole magnet. The strand appears to be fully reversible in the compressive regime during the axial strain testing, while in the tensile regime, the behaviour is already irreversibly degraded when reaching the maximum in the critical current versus strain characteristic. The degradation is accentuated by an immediate decrease of the n value by a factor of 2. The parameters for the improved deviatoric strain description are derived from the I{sub c} data, giving the accuracy of the scaling with a standard deviation of 4 A, which is by far within the expected deviation for the large scale strand production of such a high J{sub c} strand. The I{sub c} versus the applied bending strain follows the low resistivity limit, indicative of full interfilament current transfer, while a strong decrease is observed at a peak bending strain of {approx}0

  19. Strain analysis of I-c(epsilon) characteristic of YBCO coated conductor measured by a Walters spring

    OpenAIRE

    Sugano, M; Choi, S; Miyazoe, A; Miyamatsu, K; Ando, T; Itoh, K; Kiyoshi, T; Wada, H; Selvamanickam, V

    2008-01-01

    lc-strain characteristic of YBCO coated conductor was measured using a Walters spring (WASP). In this technique, additional bending and thermal strains induced to the YBCO layer should be considered. In order to produce different initial bending strain to the YBCO layer, the conductor was wound around the springs with different diameters and in the different bending directions. The clear evidence was obtained that -strain curves using a WASP strongly depend on the initial bending strain state...

  20. Parameters Determination of Yoshida Uemori Model Through Optimization Process of Cyclic Tension-Compression Test and V-Bending Springback

    Directory of Open Access Journals (Sweden)

    Serkan Toros

    Full Text Available Abstract In recent years, the studies on the enhancement of the prediction capability of the sheet metal forming simulations have increased remarkably. Among the used models in the finite element simulations, the yield criteria and hardening models have a great importance for the prediction of the formability and springback. The required model parameters are determined by using the several test results, i.e. tensile, compression, biaxial stretching tests (bulge test and cyclic tests (tension-compression. In this study, the Yoshida-Uemori (combined isotropic and kinematic hardening model is used to determine the performance of the springback prediction. The model parameters are determined by the optimization processes of the cyclic test by finite element simulations. However, in the study besides the cyclic tests, the model parameters are also evaluated by the optimization process of both cyclic and V-die bending simulations. The springback angle predictions with the model parameters obtained by the optimization of both cyclic and V-die bending simulations are found to mimic the experimental results in a better way than those obtained from only cyclic tests. However, the cyclic simulation results are found to be close enough to the experimental results.

  1. Basic functions and bilateral estimatesin the stability problems of elastic non-uniformly compressed rods expressed in terms of bending moments with additional conditions

    Directory of Open Access Journals (Sweden)

    Kupavtsev Vladimir Vladimirovich

    2014-02-01

    Full Text Available The method of two-sided evaluations is extended to the problems of stability of an elastic non-uniformly compressed rod, the variation formulations of which may be presented in terms of internal bending moments with uniform integral conditions. The problems are considered, in which one rod end is fixed and the other rod end is either restraint or pivoted, or embedded into a support which may be shifted in a transversal direction.For the substantiation of the lower evaluations determination, a sequence of functionals is constructed, the minimum values of which are the lower evaluations for the minimum critical value of the loading parameter of the rod, and the calculation process is reduced to the determination of the maximum eigenvalues of modular matrices. The matrix elements are expressed in terms of integrals of basic functions depending on the type of fixation of the rod ends. The basic functions, with the accuracy up to a linear polynomial, are the same as the bending moments arising with the bifurcation of the equilibrium of a rod with a constant cross-section compressed by longitudinal forces at the rod ends. The calculation of the upper evaluation is reduced to the determination of the maximum eigenvalue of the matrix, which almost coincides with one of the elements of the modular matrices. It is noted that the obtained upper bound evaluation is not worse thanthe evaluation obtained by the Ritz method with the use of the same basic functions.

  2. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    Science.gov (United States)

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  3. Failure behaviour of carbon/carbon composite under compression

    Energy Technology Data Exchange (ETDEWEB)

    Tushtev, K.; Grathwohl, G. [Universitaet Bremen, Advanced Ceramics, Bremen (Germany); Koch, D. [Deutsches Zentrum fuer Luft- und Raumfahrt, Institut fuer Bauweisen- und Konstruktionsforschung, Keramische Verbundstrukturen, Stuttgart (Germany); Horvath, J.

    2012-11-15

    In this work the properties of Carbon/Carbon-material are investigated under quasi-static compression and model-like characterized. The investigated material was produced by pyrolysis of a Carbon/Carbon - composite of bidirectionally reinforced fabric layers. For the compression tests, a device to prevent additional bending stress was made. The stress-strain behaviour of this material has been reproduced in various publications. This will be discussed on the fracture behaviour and compared the experimental results from the compression tests with the characteristics of tensile and shear tests. The different compression and tensile properties of stiffness, poisson and strength were assessed. Differences between the tensile and compression behaviour resulting from on-axis tests by micro buckling and crack closure and off-axis experiments by superimposed pressure normal stresses that lead to increased shear friction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Temperature dependence of dynamic behavior of commercially pure titanium by the compression test

    International Nuclear Information System (INIS)

    Lee, Su Min; Seo, Song Won; Park, Kyoung Joon; Min, Oak Key

    2003-01-01

    The mechanical behavior of a Commercially Pure Titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000 .deg. C with interval of 200 deg. C and a strain-rate range of 1900∼2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystallization temperature. The modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystallization temperature

  5. Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet

    International Nuclear Information System (INIS)

    Dimple; Jena, Nityasagar; De Sarkar, Abir

    2017-01-01

    Strain and temperature induced tunability in the thermoelectric properties in monolayer MoS 2 (ML-MoS 2 ) has been demonstrated using density functional theory coupled to semi-classical Boltzmann transport theory. Compressive strain, in general and uniaxial compressive strain (along the zig-zag direction), in particular, is found to be most effective in enhancing the thermoelectric power factor, owing to the higher electronic mobility and its sensitivity to lattice compression along this direction. Variation in the Seebeck coefficient and electronic band gap with strain is found to follow the Goldsmid–Sharp relation. n-type doping is found to raise the relaxation time-scaled thermoelectric power factor higher than p-type doping and this divide widens with increasing temperature. The relaxation time-scaled thermoelectric power factor in optimally n-doped ML-MoS 2 is found to undergo maximal enhancement under the application of 3% uniaxial compressive strain along the zig-zag direction, when both the ( direct ) electronic band gap and the Seebeck coefficient reach their maximum, while the electron mobility drops down drastically from 73.08 to 44.15 cm 2 V −1 s −1 . Such strain sensitive thermoelectric responses in ML-MoS 2 could open doorways for a variety of applications in emerging areas in 2D-thermoelectrics, such as on-chip thermoelectric power generation and waste thermal energy harvesting. (paper)

  6. On the relative importance of bending and compression in cervical spine bilateral facet dislocation.

    Science.gov (United States)

    Nightingale, Roger W; Bass, Cameron R; Myers, Barry S

    2018-03-08

    Cervical bilateral facet dislocations are among the most devastating spine injuries in terms of likelihood of severe neurological sequelae. More than half of patients with tetraparesis had sustained some form of bilateral facet fracture dislocation. They can occur at any level of the sub-axial cervical spine, but predominate between C5 and C7. The mechanism of these injuries has long been thought to be forceful flexion of the chin towards the chest. This "hyperflexion" hypothesis comports well with intuition and it has become dogma in the clinical literature. However, biomechanical studies of the human cervical spine have had little success in producing this clinically common and devastating injury in a flexion mode of loading. The purpose of this manuscript is to review the clinical and engineering literature on the biomechanics of bilateral facet dislocations and to describe the mechanical reasons for the causal role of compression, and the limited role of head flexion, in producing bilateral facet dislocations. Bilateral facet dislocations have only been produced in experiments where compression is the primary loading mode. To date, no biomechanical study has produced bilateral facet dislocations in a whole spine by bending. Yet the notion that it is primarily a hyper-flexion injury persists in the clinical literature. Compression and compressive buckling are the primary causes of bilateral facet dislocations. It is important to stop using the hyper-flexion nomenclature to describe this class of cervical spines injuries because it may have a detrimental effect on designs for injury prevention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Determination of parameters for a stress-strain constitutive equation considering time-dependent behavior of Toki granite

    International Nuclear Information System (INIS)

    Hirano, Toru; Seno, Yasuhiro; Nakama, Shigeo; Okubo, Seisuke

    2008-01-01

    Toki granite was tested to obtain parameters for the constitutive equation. The testing method was uniaxial compressive loading at the moderate a constant strain rate that is decreased after yielding to obtain the complete stress-strain curve. In addition, two kinds of the strain rate were alternately switched to obtain the parameter n from one specimen. The n represents the strength time-dependence in the constitutive equation. The second parameter m can be obtained by fitting the experimental stress-strain curve to the calculated curve. The m accounts for the behavior after yielding. According to the results, Toki granite has n=52 and m=60, showing relatively weak time-dependence of creep failure. (author)

  8. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    Science.gov (United States)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  9. Triaxial extensometer for volumetric strain measurement in a hydro-compression loading test for foam materials

    International Nuclear Information System (INIS)

    Feng, Bo; Xu, Ming-long; Zhao, Tian-fei; Zhang, Zhi-jun; Lu, Tian-jian

    2010-01-01

    A new strain gauge-based triaxial extensometer (radial extensometers x, y and axial extensometer z) is presented to improve the volumetric strain measurement in a hydro-compression loading test for foam materials. By the triaxial extensometer, triaxial deformations of the foam specimen can be measured directly, from which the volumetric strain is determined. Sensitivities of the triaxial extensometer are predicted using a finite-element model, and verified through experimental calibrations. The axial extensometer is validated by conducting a uniaxial compression test in aluminium foam and comparing deformation measured by the axial extensometer to that by the advanced optical 3D deformation analysis system ARAMIS; the result from the axial extensometer agrees well with that from ARAMIS. A new modus of two-wire measurement and transmission in a hydrostatic environment is developed to avoid the punching and lead sealing techniques on the pressure vessel for the hydro-compression test. The effect of hydrostatic pressure on the triaxial extensometer is determined through an experimental test. An application in an aluminium foam hydrostatic compression test shows that the triaxial extensometer is effective for volumetric strain measurement in a hydro-compression loading test for foam materials

  10. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.

    Science.gov (United States)

    Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro

    2017-11-24

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.

  11. Strain-dependent diffusion behavior of H within tungsten

    International Nuclear Information System (INIS)

    Ding, Wenyi; He, Haiyan; Liu, Changsong; Ding, Rui; Chen, Junling; Pan, Bicai

    2014-01-01

    The diffusion behaviors of H in tungsten, a promising material serving as the first wall facing the plasma in nuclear reactors, under either biaxial strain or isotropic strain are theoretically studied. We find that under the isotropic strain, an individual H atom may diffuse along all pathways, and under the biaxial strain, it preferably migrates along the direction perpendicular to the loaded strain. Moreover, in the case of either the isotropic or the biaxial strain, the loaded compressive strain weakens the diffusion of H, while the loaded tensile strain enhances the diffusion of H in bulk W.

  12. Strain-dependent diffusion behavior of H within tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenyi; He, Haiyan [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Ding, Rui; Chen, Junling [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Pan, Bicai, E-mail: bcpan@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-06-15

    The diffusion behaviors of H in tungsten, a promising material serving as the first wall facing the plasma in nuclear reactors, under either biaxial strain or isotropic strain are theoretically studied. We find that under the isotropic strain, an individual H atom may diffuse along all pathways, and under the biaxial strain, it preferably migrates along the direction perpendicular to the loaded strain. Moreover, in the case of either the isotropic or the biaxial strain, the loaded compressive strain weakens the diffusion of H, while the loaded tensile strain enhances the diffusion of H in bulk W.

  13. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression

    International Nuclear Information System (INIS)

    Trębacz, Hanna; Zdunek, Artur; Cybulska, Justyna; Pieczywek, Piotr

    2013-01-01

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.

  14. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)

    Science.gov (United States)

    Frohn, Peter; Engel, Bernd; Groth, Sebastian

    2018-05-01

    Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.

  15. Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode

    International Nuclear Information System (INIS)

    Mazlan, S A; Ekreem, N B; Olabi, A G

    2008-01-01

    This paper presents an experimental investigation of two different magnetorheological (MR) fluids, namely, water-based and hydrocarbon-based MR fluids in compression mode under various applied currents. Finite element method magnetics was used to predict the magnetic field distribution inside the MR fluids generated by a coil. A test rig was constructed where the MR fluid was sandwiched between two flat surfaces. During the compression, the upper surface was moved towards the lower surface in a vertical direction. Stress-strain relationships were obtained for arrangements of equipment where each type of fluid was involved, using compression test equipment. The apparent compressive stress was found to be increased with the increase in magnetic field strength. In addition, the apparent compressive stress of the water-based MR fluid showed a response to the compressive strain of greater magnitude. However, during the compression process, the hydrocarbon-based MR fluid appeared to show a unique behaviour where an abrupt pressure drop was discovered in a region where the apparent compressive stress would be expected to increase steadily. The conclusion is drawn that the apparent compressive stress of MR fluids is influenced strongly by the nature of the carrier fluid and by the magnitude of the applied current

  16. First-principles study of size-, surface- and mechanical strain-dependent electronic properties of wurtzite and zinc-blende InSb nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Xie, Zhong-Xiang, E-mail: xiezxhu@163.com [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Yu, Xia; Wang, Hai-Bin; Deng, Yuan-Xiang [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Ning, Feng, E-mail: fning@gxtc.edu.cn [College of Physics and Electronic Engineering, Guangxi Teachers Education University, Nanning 530001 (China)

    2016-08-06

    Using first-principle calculations with density functional theory, we investigated the modification of electronic properties in zinc-blende (ZB) and wurtzite (WZ) InSb nanowires (NWs) grown along the [111] and [0001] directions for different size, different surface coverage and different mechanical strain. The results show that before the surface passivation, ZBNWs and WZNWs exhibit the metallic character and the semiconductor character, respectively. WZNWs show a crossover from a direct to an indirect as diameter decreases. After the surface passivation, both ZBNWs and WZNWs are found to be direct-gap character. The electronic band structure shows a significant response to changes in surface passivation with pseudo hydrogen and halogen. The band structure with mechanical strain is strongly dependent on the crystal orientation and the NW diameter. In ZBNWs, compressive strain induces the indirect band gap character, whereas tensile strain can not form it. WZNWs have various strain dependence in that both compressive and tensile strain make InSb show a direct band gap character. A brief analysis of these results is given. - Highlights: • InSb nanowires with different surfaces can show the different band structures. • Band gap magnitude of InSb nanowires depends on the suppression of surface states. • Different types of mechanical strains show the different effect on the band structure of the InSb nanowires.

  17. Effect of grain boundary complexions on the deformation behavior of Ni bicrystal during bending creep.

    Science.gov (United States)

    Reddy, K Vijay; Pal, Snehanshu

    2018-03-07

    The dependence of creep deformation behavior of nickel bicrystal specimens on grain boundary (GB) complexion was investigated by performing a simulated bending creep test using molecular dynamics methods. Strain burst phenomena were observed during the low temperature [500 K, i.e., creep process. Atomic strain and dislocation analyses showed that the time of occurrence of strain burst depends on how easily GB migration happens in bicrystal specimens. Specimens with kite monolayer segregation GB complexion were found to be stable at low temperature (500 K), whereas specimens with split-kite GB complexion were stable at a comparatively higher temperature (900 K). In case of further elevated creep temperatures, e.g., 1100 K and 1300 K, split-kite GB complexion becomes unstable and leads to early failure of the specimen at those temperatures. Additionally, it was observed that split-kite bilayer segregation and normal kite GB complexions exhibit localized increases in elastic modulus during bending creep process, occurring at temperatures of 1100 K and 1300 K, respectively, due to the formation of interpenetrating icosahedral clusters. Graphical abstract Representative creep curves during bending creep deformation of various grain boundary complexions at 900 K.

  18. Simulation of Shear and Bending Cracking in RC Beam: Material Model and its Application to Impact

    Science.gov (United States)

    Mokhatar, S. N.; Sonoda, Y.; Zuki, S. S. M.; Kamarudin, A. F.; Noh, M. S. Md

    2018-04-01

    This paper presents a simple and reliable non-linear numerical analysis incorporated with fully Lagrangian method namely Smoothed Particle Hydrodynamics (SPH) to predict the impact response of the reinforced concrete (RC) beam under impact loading. The analysis includes the simulation of the effects of high mass low-velocity impact load falling on beam structures. Three basic ideas to present the localized failure of structural elements are: (1) the accurate strength of concrete and steel reinforcement during the short period (dynamic), Dynamic Increase Factor (DIF) has been employed for the effect of strain rate on the compression and tensile strength (2) linear pressure-sensitive yield criteria (Drucker-Prager type) with a new volume dependent Plane-Cap (PC) hardening in the pre-peak regime is assumed for the concrete, meanwhile, shear-strain energy criterion (Von-Mises) is applied to steel reinforcement (3) two kinds of constitutive equation are introduced to simulate the crushing and bending cracking of the beam elements. Then, these numerical analysis results were compared with the experimental test results.

  19. Experimental Study and Modelling of Poly (Methyl Methacrylate) and Polycarbonate Compressive Behavior from Low to High Strain Rates

    Science.gov (United States)

    El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.

    2018-03-01

    This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.

  20. Thickness dependent properties of CMR Manganite thin films on lattice mismatched substrates: Distinguishing Strain and Interface Effects

    Science.gov (United States)

    Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh

    2007-03-01

    Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.

  1. Morphological evolution and internal strain mapping of pomelo peel using X-ray computed tomography and digital volume correlation

    KAUST Repository

    Wang, B.; Pan, B.; Lubineau, Gilles

    2017-01-01

    , and the evolution of both bundles bending and large strain domain from endocarp to mesocarp are explored. Based on the experimental results, the microstructure-related mechanical properties of pomelo peels in response to compressive loading that demonstrates nearly

  2. Bending behavior of thermoplastic composite sheets viscoelasticity and temperature dependency in the draping process

    CERN Document Server

    Ropers, Steffen

    2017-01-01

    Within the scope of this work, Steffen Ropers evaluates the viscoelastic and temperature-dependent nature of the bending behavior of thermoplastic composite sheets in order to further enhance the predictability of the draping simulation. This simulation is a useful tool for the development of robust large scale processes for continuously fiber-reinforced polymers (CFRP). The bending behavior thereby largely influences the size and position of wrinkles, which are one of the most common processing defects for continuously fiber-reinforced parts. Thus, a better understanding of the bending behavior of thermoplastic composite sheets as well as an appropriate testing method along with corresponding material models contribute to a wide-spread application of CFRPs in large scale production. Contents Thermoplastic Prepregs Draping Simulation of Thermoplastic Prepregs Bending Characterization of Textile Composites Modeling of Bending Behavior Target Groups Researchers and students in the field of polymer, lightweight,...

  3. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  4. Tension–compression asymmetry in an extruded Mg alloy AM30: Temperature and strain rate effects

    International Nuclear Information System (INIS)

    Zachariah, Z.; Tatiparti, Sankara Sarma V.; Mishra, S.K.; Ramakrishnan, N.; Ramamurty, U.

    2013-01-01

    The effect of strain rate, ε, and temperature, T, on the tension–compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 °C in compression) as well as dislocation-mediated plasticity (above 250 °C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 °C with ε varying between 10 −2 and 10 s −1 . In most of the cases, the stress–strain responses in tension and compression are distinctly different; with compression responses ‘concaving upward,’ due to {101-bar 2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 °C. This results in significant levels of TCA at T −1 , suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 °C; however at T=400 °C, as ε increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T>250 °C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA

  5. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation of compressive strain by 0.41 ± 0.04 GPa. The strain relief promises a marked reduction in threading dislocation for subsequent epitaxial growth.

  6. Methods for determining the carrying capacity of eccentrically compressed concrete elements

    Directory of Open Access Journals (Sweden)

    Starishko Ivan Nikolaevich

    2014-04-01

    Full Text Available The author presents the results of calculations of eccentrically compressed elements in the ultimate limit state of bearing capacity, taking into account all possiblestresses in the longitudinal reinforcement from the R to the R , caused by different values of eccentricity longitudinal force. The method of calculation is based on the simultaneous solution of the equilibrium equations of the longitudinal forces and internal forces with the equilibrium equations of bending moments in the ultimate limit state of the normal sections. Simultaneous solution of these equations, as well as additional equations, reflecting the stress-strain limit state elements, leads to the solution of a cubic equation with respect to height of uncracked concrete, or with respect to the carrying capacity. According to the author it is a significant advantage over the existing methods, in which the equilibrium equations using longitudinal forces obtained one value of the height, and the equilibrium equations of bending moments - another. Theoretical studies of the author, in this article and the reasons to calculate specific examples showed that a decrease in the eccentricity of the longitudinal force in the limiting state of eccentrically compressed concrete elements height uncracked concrete height increases, the tension in the longitudinal reinforcement area gradually (not abruptly goes from a state of tension compression, and load-bearing capacity of elements it increases, which is also confirmed by the experimental results. Designed journalist calculations of eccentrically compressed elements for 4 cases of eccentric compression, instead of 2 - as set out in the regulations, fully cover the entire spectrum of possible cases of the stress-strain limit state elements that comply with the European standards for reinforced concrete, in particular Eurocode 2 (2003.

  7. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  8. Emittance growth of bunched beams in bends

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Raubenheimer, T.O.

    1995-01-01

    Talman [Phys. Rev. Lett. 56, 1429 (1986)] has proposed a novel relativistic effect that occurs when a charged particle beam is bent in the magnetic field from an external dipole. The consequence of this effect is that the space-charge forces from the particles do not exhibit the usual inverse-square energy dependence and some part of them are, in fact, independent of energy. This led to speculation that this effect could introduce significant emittance growth for a bending electron beam. Subsequently, it was shown that this effect's influence on the beam's transverse motion is canceled for a dc beam by a potential depression within the beam (to first order in the beam radius divided by the bend radius). In this paper, we extend the analysis to include short bunch lengths (as compared to the beam pipe dimensions) and find that there is no longer the cancellation for forces both transverse to and in the direction of motion. We provide an estimate for the emittance growth as a function of bend angle, beam radius, and current, and for magnetic compression of an electron bunch

  9. High-temperature irradiation effects on mechnical properties of HTGR graphites

    International Nuclear Information System (INIS)

    Oku, Tatsuo; Eto, Motokuni; Fujisaki, Katsuo

    1978-04-01

    The irradiation effects on stress-strain relation, Young's modulus, tensile strength, bending strength and compressive strength of HTGR graphites were studied in irradiation temperature ranges of 200 - 300 0 C and 800 - 1400 0 C and in neutron fluences up to 7.4 x 10 20 n/cm 2 and 3 x 10 21 n/cm 2 (> 0.18 MeV). Fracture criteria and strain energy to fracture of the unirradiated and the irradiated graphites were also examined. (1) Neutron fluence dependences are similar in Young's modulus, tensile strength and bending strength. (2) The change of compressive strength and of tensile and bending strengths with neutron fluence differ; the former varies with graphite kind. (3) At lower irradiation temperatures the bending fracture strain energy decreases with increasing neutron fluence and at higher irradiation temperatures it increases. (4) The fracture criteria of graphites deviates from the constant strain energy theory (α = 0.5) and the constant strain theory (α = 1), shifting from α asymptotically equals 0.5 to α asymptotically equals 1 with increasing irradiation temperature. (auth.)

  10. Mechano sorptive behaviour of notched beams in bending

    DEFF Research Database (Denmark)

    Jensen, Signe Kamp; Hoffmeyer, Preben

    1996-01-01

    Short term bending tests with end-notched beams at constant or varying moisture content have shown an apparent contradictory dependency between moisture content and strength. The higher the moisture content the higher the strength. Varying moisture results in particularly significant differences...... and by neglecting deformation due to shear. Compression stresses perpendicular to grain in excess of 6 MPa were found in the vicinity of the notch following a period of adsorption. Similarly, small tension stresses of the order 1 MPa were registered in this area when the specimens were at their most dry condition...

  11. Substrate-induced strain in carbon nanodisks

    International Nuclear Information System (INIS)

    Osváth, Z.; Vértesy, Z.; Lábár, J.; Nemes-Incze, P.; Horváth, Z.E.; Biró, L.P.

    2014-01-01

    Graphitic nanodisks of typically 20–50 nm in thickness, produced by the so-called Kvaerner Carbon Black and Hydrogen Process were dispersed on gold substrate and investigated by atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and confocal Raman spectroscopy. The roughness of the gold surface was drastically changed by annealing at 400 °C. AFM measurements show that this change in the surface roughness induces changes also in the topography of the nanodisks, as they closely follow the corrugation of the gold substrate. This leads to strained nanodisks, which is confirmed also by confocal Raman microscopy. We found that the FE-SEM contrast obtained from the disks depends on the working distance used during the image acquisition by In-lens detection, a phenomenon which we explain by the decrease in the amount of electrons reaching the detector due to diffraction. This process may affect the image contrast in the case of other layered materials, like hexagonal boron nitride, and other planar hybrid nanostructures, too. - Highlights: • Bending of carbon nanodisks is induced by the roughness of the gold substrate. • Confocal Raman microscopy shows a compressive strain induced in the nanodisks. • The electron microscopy contrast of nanodisks depends on the working distance

  12. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    Science.gov (United States)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  13. Effects of static strain aging on residual stress stability and alternating bending strength of shot peened AISI 4140

    Energy Technology Data Exchange (ETDEWEB)

    Menig, R.; Schulze, V.; Voehringer, O. [Inst. fuer Werkstoffkunde 1, Univ. Karlsruhe (TH), Karlsruhe (Germany)

    2002-07-01

    Increases of residual stress stability and alternating bending strength of shot peened AISI 4140 are obtained by successive annealing treatments. This is caused by static strain aging effects, which lead to pinning of dislocations by carbon atoms and very small carbides. It will be shown that by well directed annealing of a quenched and tempered AISI 4140 it is possible to maximize the positive effects of static strain aging, without causing extended thermal residual stress relaxation. The amount of yield stress increases caused by static strain aging is quantified using tensile tests. Static strain aging is also found to be responsible for an increase of the quasi static and cyclic surface yield strength present after shot peening. (orig.)

  14. Four-Point Bending Strength Testing of Pultruded Fiberglass Composite Wind Turbine Blade Sections

    International Nuclear Information System (INIS)

    Musial, W.; Bourne, B; Hughes, S; Zuteck, M. D.

    2001-01-01

    The ultimate strength of the PS Enterprises pultruded blade section was experimentally determined under four-point bending at the National Renewable Energy Laboratory. Thirteen 8-foot long full-scale blade segments were individually tested to determine their maximum moment carrying capability. Three airfoil-bending configurations were tested: high- and low-pressure skin buckling, and low pressure skin buckling with foam interior reinforcement. Maximum strain was recorded for each sample on the compressive and tensile surfaces of each test blade. Test data are compared to the results of three analytical buckling prediction methods. Based on deviations from the linear strain versus load curve, data indicate a post-buckling region. High-pressure side buckling occurred sooner than low-pressure side buckling. The buckling analyses were conservative for both configurations, but high-pressure side buckling in particular was substantially under-predicted. Both high- and low-pressure buckling configurations had very similar failure loads. These results suggests that a redundant load path may be providing strength to the section in the post-buckling region, making the onset of panel buckling a poor predictor of ultimate strength for the PS Enterprises pultrusion

  15. Compressive and bending behavior of sandwich panels with Octet truss core fabricated from wires

    International Nuclear Information System (INIS)

    Lim, Ji Hyun; Nah, Seong Jun; Kang, Ki Ju; Koo, Man Hoe

    2005-01-01

    Ultra light metal structures have been studied for several years because of their superior specific stiffness, strength and potential of multi functions. Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels having Octet truss cores. Wires bent in a shape of triangular wave were assembled to construct an Octet truss core and it was bonded with two face sheets to be a sandwich panel. The bending and compressive strength and stiffness were estimated through elementary mechanics for the sandwich specimens with two kinds of face sheets and the results were compared with the ones measured by experiments. Some aspects of assembling and mechanical behavior were discussed compared with Kagome core fabricated from wire, which had been introduced in the authors' previous work

  16. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running

    Science.gov (United States)

    McDonald, Kirsty A.; Stearne, Sarah M.; Alderson, Jacqueline A.; North, Ian; Pires, Neville J.; Rubenson, Jonas

    2016-01-01

    Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running. PMID:27054319

  17. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running.

    Directory of Open Access Journals (Sweden)

    Kirsty A McDonald

    Full Text Available Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert, and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption and the arch (energy production during recoil. This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.

  18. The Role of Arch Compression and Metatarsophalangeal Joint Dynamics in Modulating Plantar Fascia Strain in Running.

    Science.gov (United States)

    McDonald, Kirsty A; Stearne, Sarah M; Alderson, Jacqueline A; North, Ian; Pires, Neville J; Rubenson, Jonas

    2016-01-01

    Elastic energy returned from passive-elastic structures of the lower limb is fundamental in lowering the mechanical demand on muscles during running. The purpose of this study was to investigate the two length-modulating mechanisms of the plantar fascia, namely medial longitudinal arch compression and metatarsophalangeal joint (MPJ) excursion, and to determine how these mechanisms modulate strain, and thus elastic energy storage/return of the plantar fascia during running. Eighteen runners (9 forefoot and 9 rearfoot strike) performed three treadmill running trials; unrestricted shod, shod with restricted arch compression (via an orthotic-style insert), and barefoot. Three-dimensional motion capture and ground reaction force data were used to calculate lower limb kinematics and kinetics including MPJ angles, moments, powers and work. Estimates of plantar fascia strain due to arch compression and MPJ excursion were derived using a geometric model of the arch and a subject-specific musculoskeletal model of the plantar fascia, respectively. The plantar fascia exhibited a typical elastic stretch-shortening cycle with the majority of strain generated via arch compression. This strategy was similar in fore- and rear-foot strike runners. Restricting arch compression, and hence the elastic-spring function of the arch, was not compensated for by an increase in MPJ-derived strain. In the second half of stance the plantar fascia was found to transfer energy between the MPJ (energy absorption) and the arch (energy production during recoil). This previously unreported energy transfer mechanism reduces the strain required by the plantar fascia in generating useful positive mechanical work at the arch during running.

  19. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    Science.gov (United States)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  20. Four-point bending protocols to study the effects of dynamic strain in osteoblastic cells in vitro.

    Science.gov (United States)

    Galea, Gabriel L; Price, Joanna S

    2015-01-01

    Strain engendered within bone tissue by mechanical loading of the skeleton is a major influence on the processes of bone modeling and remodeling and so a critical determinant of bone mass and architecture. The cells best placed to respond to strain in bone tissue are the resident osteocytes and osteoblasts. To address the mechanisms of strain-related responses in osteoblast-like cells, our group uses both in vivo and in vitro approaches, including a system of four-point bending of the substrate on which cells are cultured. A range of cell lines can be studied using this system but we routinely compare their responses to those in primary cultures of osteoblast-like cells derived from explants of mouse long bones. These cells show a range of well-characterized responses to physiological levels of strain, including increased proliferation, which in vivo is a feature of the osteogenic response.

  1. arXiv Black hole superradiance and polarization-dependent bending of light

    CERN Document Server

    Plascencia, Alexis D.

    2018-04-27

    An inhomogeneous pseudo-scalar field configuration behaves like an optically active medium. Consequently, if a light ray passes through an axion cloud surrounding a Kerr black hole, it may experience a polarization-dependent bending. We explore the size and relevance of such effect considering both the QCD axion and a generic axion-like particle.

  2. arXiv Black hole superradiance and polarization-dependent bending of light

    CERN Document Server

    Plascencia, Alexis D.

    2017-01-01

    An inhomogeneous pseudo-scalar field configuration behaves like an optically active medium. Consequently, if a light ray passes through an axion cloud surrounding a Kerr black hole, it may experience a polarization-dependent bending. We explore the size and relevance of such effect considering both the QCD axion and a generic axion-like particle.

  3. Bending energy of buckled edge dislocations

    Science.gov (United States)

    Kupferman, Raz

    2017-12-01

    The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.

  4. Tension–compression asymmetry in an extruded Mg alloy AM30: Temperature and strain rate effects

    Energy Technology Data Exchange (ETDEWEB)

    Zachariah, Z. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Tatiparti, Sankara Sarma V.; Mishra, S.K.; Ramakrishnan, N. [General Motors Technical Center, ITPL, Whitefield, Bangalore 560066 (India); Ramamurty, U., E-mail: ramu@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2013-06-10

    The effect of strain rate, ε, and temperature, T, on the tension–compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 °C in compression) as well as dislocation-mediated plasticity (above 250 °C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 °C with ε varying between 10{sup −2} and 10 s{sup −1}. In most of the cases, the stress–strain responses in tension and compression are distinctly different; with compression responses ‘concaving upward,’ due to {101-bar 2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 °C. This results in significant levels of TCA at T<250 °C, reducing substantially at high temperatures. At T=150 and 250 °C, high ε leads to high TCA, in particular at T=250 °C and ε=10 s{sup −1}, suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 °C; however at T=400 °C, as ε increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T>250 °C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA.

  5. Atomistic simulation of rapid compression of fractured silicon carbide

    International Nuclear Information System (INIS)

    Romano, A.; Li, J.; Yip, S.

    2006-01-01

    Deformation mechanisms of a crack in silicon carbide under high-rate compression are investigated by molecular dynamics simulation. The penny-shaped crack is in tension throughout the simulation while a variable compression is applied in an in-plane direction. Two different mechanisms of crack-tip response are observed: (1) At low tension, a disordered band forms from the crack surface in the direction orthogonal to the compression, which grows as the compressional force is increased in a manner suggesting a stress-induced transition from an ordered to a disordered phase. Moreover the crack is observed to close. (2) At a tension sufficient to allow the crack to remain open, the compressional stress induces formation of disordered regions along the boundaries of the opened crack, which grow and merge into a band as the compression proceeds. This process is driven by bending of the initial crack, which transforms into a curved slit. This mechanism induces incorporation of fragments of perfect crystal into the disordered band. Similar mechanisms have been experimentally observed to occur in porous SiC under high-strain rate compression

  6. Determination of post-shakedown quantities of a pipe bend via the simplified theory of plastic zones compared with load history dependent incremental analysis

    Science.gov (United States)

    Vollrath, Bastian; Hübel, Hartwig

    2018-01-01

    The Simplified Theory of Plastic Zones (STPZ) may be used to determine post-shakedown quantities such as strain ranges and accumulated strains at plastic or elastic shakedown. The principles of the method are summarized. Its practical applicability is shown by the example of a pipe bend subjected to constant internal pressure along with cyclic in-plane bending or/and cyclic radial temperature gradient. The results are compared with incremental analyses performed step-by-step throughout the entire load history until the state of plastic shakedown is achieved.

  7. Strain reduced critical current in Bi-2223/Ag superconductors under axial tension and compression

    International Nuclear Information System (INIS)

    Haken, B. ten; Godeke, A.; Kate, H.H.J. ten

    1997-01-01

    The critical current of Ag sheathed Bi(Pb)SrCaCuO-2223 tape conductors is investigated as a function of various strain components. A reduction of the critical current occurs due to both tensile or a compressive strain. The critical current reduction is qualitatively similar with the results as observed in Bi-2212 conductors. An axial compression leads to an immediate critical current reduction. The critical current in an axially elongated sample remains nearly constant up to a certain limit typically close to 0.3% strain. For a larger elongation the critical current reduces rapidly. A transverse pressure acting on the tape surface leads also to an irreversible critical current reduction. This behavior is compared with the influence of an axial compression with an effective Young's modulus. The deformation induced critical current reductions in Bi-2223 conductors can be described by a model that is already proposed for Bi-2212 conductors. This model is based on the irreversible nature of the critical current reduction due to a certain deformation

  8. Mechanosensing of stem bending and its interspecific variability in five neotropical rainforest species.

    Science.gov (United States)

    Coutand, Catherine; Chevolot, Malia; Lacointe, André; Rowe, Nick; Scotti, Ivan

    2010-02-01

    In rain forests, sapling survival is highly dependent on the regulation of trunk slenderness (height/diameter ratio): shade-intolerant species have to grow in height as fast as possible to reach the canopy but also have to withstand mechanical loadings (wind and their own weight) to avoid buckling. Recent studies suggest that mechanosensing is essential to control tree dimensions and stability-related morphogenesis. Differences in species slenderness have been observed among rainforest trees; the present study thus investigates whether species with different slenderness and growth habits exhibit differences in mechanosensitivity. Recent studies have led to a model of mechanosensing (sum-of-strains model) that predicts a quantitative relationship between the applied sum of longitudinal strains and the plant's responses in the case of a single bending. Saplings of five different neotropical species (Eperua falcata, E. grandiflora, Tachigali melinonii, Symphonia globulifera and Bauhinia guianensis) were subjected to a regimen of controlled mechanical loading phases (bending) alternating with still phases over a period of 2 months. Mechanical loading was controlled in terms of strains and the five species were subjected to the same range of sum of strains. The application of the sum-of-strain model led to a dose-response curve for each species. Dose-response curves were then compared between tested species. The model of mechanosensing (sum-of-strain model) applied in the case of multiple bending as long as the bending frequency was low. A comparison of dose-response curves for each species demonstrated differences in the stimulus threshold, suggesting two groups of responses among the species. Interestingly, the liana species B. guianensis exhibited a higher threshold than other Leguminosae species tested. This study provides a conceptual framework to study variability in plant mechanosensing and demonstrated interspecific variability in mechanosensing.

  9. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel

    International Nuclear Information System (INIS)

    Larsson, C.; Clausen, B.; Holden, T.M.; Bourke, M.A.M.

    2004-01-01

    Strain pole figures representative of residual intergranular strains were determined from an -2.98% uniaxially compressed austenitic stainless steel sample. The measurements were made using neutron diffraction on the recently commissioned Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory, USA. The measurements were compared with predictions from an elasto-plastic self-consistent model and found to be in good agreement

  10. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, C. [Division of Engineering Materials, Department of Mechanical Engineering, Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: clarsson@cfl.rr.com; Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holden, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-09-15

    Strain pole figures representative of residual intergranular strains were determined from an -2.98% uniaxially compressed austenitic stainless steel sample. The measurements were made using neutron diffraction on the recently commissioned Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory, USA. The measurements were compared with predictions from an elasto-plastic self-consistent model and found to be in good agreement.

  11. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  12. The internal strain parameter of gallium arsenide measured by energy-dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Cousins, C.S.G.; Sheldon, B.J.; Webster, G.E.; Gerward, L.; Selsmark, B.; Staun Olsen, J.

    1989-01-01

    The internal strain parameter of GaAs has been measured by observing the stress-dependence of the integrated intensity of the weak 006 reflection, with the compressive stress along the [1anti 10] axis. An energy-dispersive technique was employed so that the reflection could be obtained at a photon energy close to the minimum in the structure factor, thereby approaching closely the strictly-forbidden condition that applies at any energy in the diamond structure. A value anti A=-0.138±0.005, equivalent to a bond-bending parameter ζ=0.55=0.02, has been found. This is in good agreement with recent theoretical calculations and indirect determinations related to the bandstructure of GaAs. (orig.)

  13. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  14. Mechanical failure of anodized aluminum under three and four-point bending tests

    International Nuclear Information System (INIS)

    Bargui, M.; Bensalah, W.; Elleuch, K.; Ayedi, H.F.

    2013-01-01

    Highlights: • We study the flexural behavior of anodic oxide layers formed on aluminum. • Three and four-point bending tests were used as techniques. • Changing the beam configuration will change the flexural response. - Abstract: In this work, three and four-point bending tests were adopted as methods for characterizing anodized aluminum beams in a sulfuric acid bath. The failure behavior of sandwich beams having aluminum oxide face sheets and aluminum core were tested. In so doing, many configurations were adopted by anodizing aluminum beams on one and both sides to investigate faces in place of tension and compression. Bending tests showed different behaviors. When the oxide was only on the top side of the beam (working in compression) a slight sudden decrease of the load was observed. This fact was absent on beams with oxide layers working in tensile. The bending behavior of sandwich beams was similar to those with oxide on top sides but with much higher loads. The mechanical failure of the oxide was mainly caused by its failure when it is placed in compression beneath the loading rollers. Finally, a morphological study of the aluminum oxide layers after bending tests was conducted by optical microscopy

  15. Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement.

    Science.gov (United States)

    Ouyang, Yang; Liu, Jianxia; Xu, Xiaofeng; Zhao, Yujia; Zhou, Ai

    2018-04-11

    A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG) fabricated by electric arc discharge (EAD) is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m -1 and -51.5 pm/m -1 , respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.

  16. Strain analysis of different diameter Morse taper implants under overloading compressive conditions

    Directory of Open Access Journals (Sweden)

    Carolina Guimarães CASTRO

    2015-01-01

    Full Text Available The aim of this study was to evaluate the amount of deformation from compression caused by different diameters of Morse taper implants and the residual deformation after load removal. Thirty Morse taper implants lacking external threads were divided into 3 groups (n = 10 according to their diameter as follows: 3.5 mm, 4.0 mm and 5.0 mm. Two-piece abutments were fixed into the implants, and the samples were subjected to compressive axial loading up to 1500 N of force. During the test, one strain gauge remained fixed to the cervical portion of each implant to measure the strain variation. The strain values were recorded at two different time points: at the maximum load (1500 N and 60 seconds after load removal. To calculate the strain at the implant/abutment interface, a mathematical formula was applied. Data were analyzed using a one-way Anova and Tukey’s test (α = 0.05. The 5.0 mm diameter implant showed a significantly lower strain (650.5 μS ± 170.0 than the 4.0 mm group (1170.2 μS ± 374.7 and the 3.5 mm group (1388.1 μS ± 326.6 (p < 0.001, regardless of the load presence. The strain values decreased by approximately 50% after removal of the load, regardless of the implant diameter. The 5.0 mm implant showed a significantly lower strain at the implant/abutment interface (943.4 μS ± 504.5 than the 4.0 mm group (1057.4 μS ± 681.3 and the 3.5 mm group (1159.6 μS ± 425.9 (p < 0.001. According to the results of this study, the diameter influenced the strain around the internal and external walls of the cervical region of Morse taper implants; all diameters demonstrated clinically acceptable values of strain.

  17. Bending Characteristics of Foldable Touch Display Panel with a Protection Structure Design

    Directory of Open Access Journals (Sweden)

    Hsien-Chie Cheng

    2015-01-01

    Full Text Available The study proposes and demonstrates an enhancement of a touch display panel (TDP through a polymer-based protection structure to achieve higher bendability and reliability. The bending performance of the TDP without or with the protection structure designs is addressed using three-dimensional geometry-nonlinear finite element analysis and mechanical testing. The elastic properties of the components in the TDP structure are derived from nanoindentation and uniaxial tensile/compressive testing. The calculated results are compared with each other and also against the experimental bending fatigue test data. At last, a design guideline and optimal factor setting for enhanced bending performance are sought through parametric FE analysis and Taguchi experimental design, respectively. The optimal design is compared with the original in terms of bending stress. The simulation results show that bending would create significant tensile and compressive bending stresses on the indium tin oxide/dielectric layers, which are the main cause of several commonly observed failures, such as thin film cracking and delamination, in a thin rigid film coating on a thick compliant substrate. It also turns out that a substrate with a lower stiffness has a better mechanical stability against bending stress.

  18. Strain dependent microstructural modifications of BiCrO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Vijayanandhini, E-mail: kvnandhini@gmail.com [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Arredondo, Miryam; Johann, Florian; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Labrugere, Christine [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); CeCaMA, University of Bordeaux, ICMCB, F-33600 Pessac (France); Maglione, Mario [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Vrejoiu, Ionela [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-10-31

    Strain-dependent microstructural modifications were observed in epitaxial BiCrO{sub 3} (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCO{sub STO} [BCO grown on buffered SrTiO{sub 3} (001)] and in-plane compressive strain, BCO{sub NGO} [BCO grown on buffered NdGaO{sub 3} (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCO{sub STO}, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCO{sub STO} films with d ≥ 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCO{sub NGO} films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ∼ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film. - Highlights: • Phase pure

  19. Processing of plane strain compression test results for investigation of AISI-304 stainless steel constitutive behavior

    International Nuclear Information System (INIS)

    Aksenov, Sergey A.; Puzino, Yuriy A.; Bober, Stanislav A.; Kliber, Jiri

    2015-01-01

    The paper is oriented toward the determination of constitutive equation constants by the inverse analysis of plane strain compression test results. The interpretation of such results is complicated by the inhomogeneity of strain rate distribution in the specimen caused by rigid ends, the lateral spreading of a specimen friction and the variation of temperature during the test. The results of plane strain compression tests of AISI-304 stainless steel are presented and significant deviations of temperature are observed at higher strain rates. Finite element simulation was performed to estimate the inhomogeneity of strain rate within the specimen and evaluate the effect of friction on the test results. Constitutive equations of the material were obtained by inverse analysis minimizing the deviations between the measured load values and the ones predicted by numerical simulation. Keywords: PSCT, AISI-304, Gleeble, constitutive equations, hot forming, FEM, inverse analysis.

  20. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.

    Science.gov (United States)

    Römgens, Anne M; van Donkelaar, Corrinus C; Ito, Keita

    2013-11-01

    Cartilaginous tissues such as the intervertebral disk are predominantly loaded under compression. Yet, they contain abundant collagen fibers, which are generally assumed to contribute to tensile loading only. Fiber tension is thought to originate from swelling of the proteoglycan-rich nucleus. However, in aged or degenerate disk, proteoglycans are depleted, whereas collagen content changes little. The question then rises to which extend the collagen may contribute to the compressive stiffness of the tissue. We hypothesized that this contribution is significant at high strain magnitudes and that the effect depends on fiber orientation. In addition, we aimed to determine the compression of the matrix. Bovine inner and outer annulus fibrosus specimens were subjected to incremental confined compression tests up to 60 % strain in radial and circumferential direction. The compressive aggregate modulus was determined per 10 % strain increment. The biochemical composition of the compressed specimens and uncompressed adjacent tissue was determined to compute solid matrix compression. The stiffness of all specimens increased nonlinearly with strain. The collagen-rich outer annulus was significantly stiffer than the inner annulus above 20 % compressive strain. Orientation influenced the modulus in the collagen-rich outer annulus. Finally, it was shown that the solid matrix was significantly compressed above 30 % strain. Therefore, we concluded that collagen fibers significantly contribute to the compressive stiffness of the intervertebral disk at high strains. This is valuable for understanding the compressive behavior of collagen-reinforced tissues in general, and may be particularly relevant for aging or degenerate disks, which become more fibrous and less hydrated.

  1. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  2. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  3. Effective bending strain estimated from I c test results of a D-shaped Nb3Al CICC coil fabricated with a react-and-wind process for the National Centralized Tokamak

    International Nuclear Information System (INIS)

    Ando, T.; Kizu, K.; Miura, Y.M.; Tsuchiya, K.; Matsukawa, M.; Tamai, H.; Ishida, S.; Koizumi, N.; Okuno, K.

    2005-01-01

    Japan National Centralized Tokamak (NCT) is a superconducting tokamak proposed as a modification to JT-60U. As part of the R and D for the National Centralized Tokamak, a two-turn, approximately 2 m tall, D-shaped Nb 3 Al coil was wound and tested using a full-size cable-in-conduit conductor (CICC). The Nb 3 Al cable-in-conductor was bent following the heat treatment reaction with a maximum bending strain of 0.4% to simulate the react-and-wind fabrication. The comparison of the coil performance to the measured strand data shows that the effective axial strain of the conductor strands is essentially zero despite the 0.4% bending strain of the conductor. This suggests that the strands in the cable slipped relatively to each other during bending of the conduit, thus reducing the effective strain transmitted to the strands. This result is very encouraging for the low-cost fabrication of high-current-density fusion coils using the react-and-wind method

  4. Load tests with a pipe bend DN 425, applying slowly changing bending loads up to occurrence of leak

    International Nuclear Information System (INIS)

    Uhlmann, D.; Hunger, H.

    1990-01-01

    The experimental program deals with the formation of incipient cracks and subsequent crack growth of axially oriented cracks at a pipe bend with a nominal width of DN 425. The pipe bend consists of the ferritic material 20MnMoNi55. The numerical experiments by means of 3 D-FE analyses concentrate on determining the influence of the asymmetric crack depths at the two bend halves, and of the multiple crack fields, on the effective crack strain. (DG) [de

  5. Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire

    Science.gov (United States)

    Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi

    2017-11-01

    Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.

  6. Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement

    Directory of Open Access Journals (Sweden)

    Yang Ouyang

    2018-04-01

    Full Text Available A phase-shifted eccentric core fiber Bragg grating (PS-ECFBG fabricated by electric arc discharge (EAD is presented and demonstrated. It is composed of a fraction of eccentric core fiber fusion spliced in between two pieces of commercial single mode fibers, where a PS-FBG was written. The EAD in this work could flexibly change the amount of phase-shift by changing the discharge number or discharge duration. Because of the offset location of the eccentric core and the ultra-narrow resonant peak of the PS-ECFBG, it has a higher accuracy for measuring the directional bend. The elongation and compression of the eccentric core keep the magnitude of phase shift still unchanged during the bending process. The bending sensitivities of the PS-ECFBG at two opposite most sensitive directions are 57.4 pm/m−1 and −51.5 pm/m−1, respectively. Besides, the PS-ECFBG has the potential to be a tunable narrow bandpass filter, which has a wider bi-directional adjustable range because of the bending responses. The strain and temperature sensitivities of the PS-ECFBG are experimentally measured as well, which are 0.70 pm/με and 8.85 pm/°C, respectively.

  7. Four-point bend apparatus for in situ micro-Raman stress measurements

    Science.gov (United States)

    Ward, Shawn H.; Mann, Adrian B.

    2018-06-01

    A device for in situ use with a micro-Raman microscope to determine stress from the Raman peak position was designed and validated. The device is a four-point bend machine with a micro-stepping motor and load cell, allowing for fine movement and accurate readings of the applied force. The machine has a small footprint and easily fits on most optical microscope stages. The results obtained from silicon are in good agreement with published literature values for the linear relationship between stress and peak position for the 520.8 cm‑1 Raman peak. The device was used to examine 4H–SiC and a good linear relationship was found between the 798 cm‑1 Raman peak position and stress, with the proportionality coefficient being close to the theoretical value of 0.0025. The 777 cm‑1 Raman peak also showed a linear dependence on stress, but the dependence was not as strong. The device examines both the tensile and compressive sides of the beam in bending, granting the potential for many materials and crystal orientations to be examined.

  8. Ge nanobelts with high compressive strain fabricated by secondary oxidation of self-assembly SiGe rings

    DEFF Research Database (Denmark)

    Lu, Weifang; Li, Cheng; Lin, Guangyang

    2015-01-01

    Curled Ge nanobelts were fabricated by secondary oxidation of self-assembly SiGe rings, which were exfoliated from the SiGe stripes on the insulator. The Ge-rich SiGe stripes on insulator were formed by hololithography and modified Ge condensation processes of Si0.82Ge0.18 on SOI substrate. Ge...... nanobelts under a residual compressive strain of 2% were achieved, and the strain should be higher before partly releasing through bulge islands and breakage of the curled Ge nanobelts during the secondary oxidation process. The primary factor leading to compressive strain is thermal shrinkage of Ge...... nanobelts, which extrudes to Ge nanobelts in radial and tangent directions during the cooling process. This technique is promising for application in high-mobility Ge nano-scale transistors...

  9. Mechanical properties of tannin-based rigid foams undergoing compression

    Energy Technology Data Exchange (ETDEWEB)

    Celzard, A., E-mail: Alain.Celzard@enstib.uhp-nancy.fr [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Zhao, W. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, A. [ENSTIB-LERMAB, Nancy-University, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Fierro, V. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France)

    2010-06-25

    The mechanical properties of a new class of extremely lightweight tannin-based materials, namely organic foams and their carbonaceous counterparts are detailed. Scaling laws are shown to describe correctly the observed behaviour. Information about the mechanical characteristics of the elementary forces acting within these solids is derived. It is suggested that organic materials present a rather bending-dominated behaviour and are partly plastic. On the contrary, carbon foams obtained by pyrolysis of the former present a fracture-dominated behaviour and are purely brittle. These conclusions are supported by the differences in the exponent describing the change of Young's modulus as a function of relative density, while that describing compressive strength is unchanged. Features of the densification strain also support such conclusions. Carbon foams of very low density may absorb high energy when compressed, making them valuable materials for crash protection.

  10. Assessing Impact Direction in 3-point Bending of Human Femora: Incomplete Butterfly Fractures and Fracture Surfaces,.

    Science.gov (United States)

    Isa, Mariyam I; Fenton, Todd W; Deland, Trevor; Haut, Roger C

    2018-01-01

    Current literature associates bending failure with butterfly fracture, in which fracture initiates transversely at the tensile surface of a bent bone and branches as it propagates toward the impact surface. The orientation of the resulting wedge fragment is often considered diagnostic of impact direction. However, experimental studies indicate bending does not always produce complete butterfly fractures or produces wedge fragments variably in tension or compression, precluding their use in interpreting directionality. This study reports results of experimental 3-point bending tests on thirteen unembalmed human femora. Complete fracture patterns varied following bending failure, but incomplete fractures and fracture surface characteristics were observed in all impacted specimens. A flat, billowy fracture surface was observed in tension, while jagged, angular peaks were observed in compression. Impact direction was accurately reconstructed using incomplete tension wedge butterfly fractures and tension and compression fracture surface criteria in all thirteen specimens. © 2017 American Academy of Forensic Sciences.

  11. Suppressing molecular vibrations in organic semiconductors by inducing strain.

    Science.gov (United States)

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-04-04

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm(2) V(-1) s(-1) by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices.

  12. The thermoviscoplastic response of polycrystalline tungsten in compression

    International Nuclear Information System (INIS)

    Lennon, A.M.; Ramesh, K.T.

    2000-01-01

    The thermomechanical response of commercially pure polycrystalline tungsten was investigated over a wide range of strain rates and temperatures. The material was examined in two forms: one an equiaxed recrystallized microstructure and the other a heavily deformed extruded microstructure that was loaded in compression along the extrusion axis. Low strain rate (10 -3 -10 0 s -1 ) compression experiments were conducted on an MTS servo-hydraulic load frame equipped with an infra-red furnace capable of sustaining specimen temperatures in excess of 600 C. High strain rate (10 3 -10 4 s -1 ) experiments were performed on a compression Kolsky bar equipped with an infra-red heating system capable of developing specimen temperatures as high as 800 C. Pressure-shear plate impact experiments were used to obtain shear stress versus shear strain curves at very high rates (∝10 4 -10 5 s -1 ). The recrystallized material was able to sustain very substantial plastic deformations in compression (at room temperature), with a flow stress that appears to be rate-dependent. Intergranular microcracks were developed during the compressive deformations. Under quasi-static loadings a few relatively large axial splitting cracks were formed, while under dynamic loadings a very large number of small, uniformly distributed microcracks (that did not link up to form macrocracks) were developed. The rate of nucleation of microcracks increased dramatically with strain rate. The extruded tungsten is also able to sustain large plastic deformations in compression, with a flow stress that increases with the rate of deformation. The strain hardening of the extruded material is lower than that of the recrystallized material, and is relatively insensitive to the strain rate. (orig.)

  13. Interplay between tip-induced band bending and voltage-dependent surface corrugation on GaAs(110) surfaces

    NARCIS (Netherlands)

    Raad, de G.J.; Bruls, D.M.; Koenraad, P.M.; Wolter, J.H.

    2002-01-01

    Atomically resolved, voltage-dependent scanning tunneling microscopy (STM) images of GaAs(110) are compared to the results of a one-dimensional model used to calculate the amount of tip-induced band bending for a tunneling junction between a metal and a semiconductor. The voltage-dependent changes

  14. Analytic examination of mechanism for compressive residual stress introduction with low plastic strain using peening

    International Nuclear Information System (INIS)

    Ishibashi, Ryo; Hato, Hisamitsu; Miyazaki, Katsumasa; Yoshikubo, Fujio

    2016-01-01

    Our goal for this study was to understand the cause of the differences in surface properties between surfaces processed using water jet peening (WJP) and shot peening (SP) and to examine the compressive residual stress introduction process with low plastic strain using SP. The dynamic behaviors of stress and strain in surfaces during these processes were analyzed through elasto-plastic calculations using a finite-element method program, and the calculated results were compared with measured results obtained through experiments. Media impacting a surface results in a difference in the hardness and microstructure of the processed surface. During SP, a shot deforms the surface locally with stress concentration in the early stages of the impact, while shock waves deform the surface evenly throughout the wave passage across the surface during WJP. A shot with a larger diameter creates a larger impact area on the surface during shot impact. Thus, SP with a large-diameter shot suppresses the stress concentration under the same kinetic energy condition. As the shot diameter increases, the equivalent plastic strain decreases. On the other hand, the shot is subject to size restriction since the calculated results indicate the compressive residual stress at the surface decreased and occasionally became almost zero as the shot diameter increased. Thus, compressive residual stress introduction with low plastic strain by using SP is considered achievable by using shots with a large diameter and choosing the appropriate peening conditions. (author)

  15. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab

    2018-01-26

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  16. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon Hwa; Asadirad, Mojtaba; Kim, Seung Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon-Seop; Ryou, Jae-Hyun

    2018-01-01

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  17. The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites

    International Nuclear Information System (INIS)

    Shadlou, Shahin; Ahmadi-Moghadam, Babak; Taheri, Farid

    2014-01-01

    Highlights: • The epoxy/graphene nanocomposites were studied at various strain rates. • The variations in constitutive stress–strain response were scrutinized. • Positive reinforcing attributes of graphene diminished at higher strain rates. • Graphene particles have higher efficiency under compression loading than tension. • A new modification factor for Halpin–Tsai model was proposed. - Abstract: The effect of strain rate on the mechanical behavior of epoxy reinforced with graphene nanoplatelets (GNPs) is investigated. Nanocomposites containing various amounts of GNP are prepared and tested at four different strain rates (0.01, 0.1, 1 and 10/s) under compressive and tensile loading regimes. The results show that incorporation of GNP highly affects the behavior of epoxy. The fracture surfaces of tensile specimens are also investigated using scanning electron microscopy (SEM) to discern the surface features and dispersion state of GNP. Finally, the predictive capability of some of the available models for evaluating the strength of nanocomposites are assessed and compared against the experimental results. Moreover, a modification factor to the widely used Halpin–Tsai model is proposed to improve the accuracy of the model when evaluating the Young’s modulus of nanocomposites at various strain rates

  18. Modeling and Analysis of Size-Dependent Structural Problems by Using Low- Order Finite Elements with Strain Gradient Plasticity

    International Nuclear Information System (INIS)

    Park, Moon Shik; Suh, Yeong Sung; Song, Seung

    2011-01-01

    An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers

  19. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  20. Role of stacking fault energy on the deformation characteristics of copper alloys processed by plane strain compression

    International Nuclear Information System (INIS)

    El-Danaf, Ehab A.; Al-Mutlaq, Ayman; Soliman, Mahmoud S.

    2011-01-01

    Highlights: → Different compositions of Cu-Zn and Cu-Al alloys are plane strain compressed. → Strain hardening rates, microstructure and texture evolution are documented. → SFE has an indirect effect rather a critical dislocation density controls twinning. → Cu-Al exhibited the need for higher dislocation density for twin initiation. → Onset of twinning occurs in the copper alloys tested with a normalized SFE ≤ 10-3. - Abstract: Samples of Cu-Al and Cu-Zn alloys with different compositions were subjected to large strains under plane strain compression (PSC), a process that simulates the rolling operation. Four compositions in the Cu-Al system, namely 1, 2, 4.7 and 7 wt.% Al and three compositions in the Cu-Zn system of 10, 20 and 30 wt.% Zn, were investigated. Adding Al or Zn to Cu effectively lowers the stacking fault energy (SFE) of the alloy and changes the deformation mechanism from dislocation slipping to dislocation slipping and deformation twinning. True stress-true strain responses in PSC were documented and the strain hardening rates were calculated and correlated to the evolved microstructure. The onset of twinning in low SFE alloys was not directly related to the low value of SFE, but rather to build up of a critical dislocation density during strain hardening in the early stage of deformation (ε < 0.1). The evolution of texture was documented for the Cu-Al samples using X-ray diffraction for samples plane strain compressed to true axial strains of 0.25, 0.5, 0.75 and 1.0. Orientation distribution function (ODF) plots were generated and quantitative information on the volume fraction of ideal rolling orientations were depicted and correlated with the stacking fault energy.

  1. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2014-12-01

    Full Text Available Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation.

  2. A transparent bending-insensitive pressure sensor

    Science.gov (United States)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  3. Stress-strain effects on powder-in-tube MgB2 tapes and wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Takaya, Ryuya; Kasaba, Koichi; Tachikawa, Kyoji; Yamada, Yutaka; Shimura, Satoshi; Koshizuka, Naoki; Watanabe, Kazuo

    2005-01-01

    The effects of stress-strain on the critical current, I c , of ex situ powder-in-tube (PIT)-processed Ni-sheathed MgB 2 tapes and round wires as well as in situ PIT-processed Cu-sheathed wires at 4.2 K in a magnetic field up to 5 T have been studied. The effect of In powder addition on the Ni-sheathed MgB 2 wire was not so clear compared with that in the tape, in which the irreversible strain, ε irr , for the I c degradation onset increases significantly by the addition. This is attributed to the difference in the microstructure of the core associated with cold workings. A peak and gradual degradation behaviour of I c with strain beyond ε irr was found in the wire, whereas no evident peak and a steep degradation behaviour was found in the tape. As a possible reason, the difference in the triaxial residual stress state at 4.2 K due to the difference in geometry of the cross-section is suspected. The transverse compression tests revealed that I c of the wire did not degrade up to 270 MPa. Again, the effect of In addition was minimal. The Young's modulus of MgB 2 , 31-41 GPa, at room temperature was estimated by a tensile test of Cu sheath wire using a high-accuracy extensometer and the law of mixtures. The tensile strain dependence of I c in the Cu sheath wire was similar to that in the Ni-sheathed wire, ε irr being 0.4%. However, the stress corresponding to ε irr , 50 MPa, was about 1/10 of that for the Ni-sheath wire and the irreversible transverse compressive stress, 150 MPa, was also lower. The effect of bending strain on the I c in Cu-sheathed wire was compared with that of the tensile strain

  4. In-plane and out-of-plane bending tests on carbon steel pipe bends

    International Nuclear Information System (INIS)

    Brouard, D.; Tremblais, A.; Vrillon, B.

    1979-01-01

    The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)

  5. Accounting for Fiber Bending Effects in Homogenization of Long Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2015-01-01

    The present work deals with homogenized finite-element models of long fiber reinforced composite materials in the context of studying compressive failure modes such as the formation of kink bands and fiber micro-buckling. Compared to finite-element models with an explicit discretization of the ma......The present work deals with homogenized finite-element models of long fiber reinforced composite materials in the context of studying compressive failure modes such as the formation of kink bands and fiber micro-buckling. Compared to finite-element models with an explicit discretization...... of the material micro-structure including individual fibers, homogenized models are computationally more efficient and hence more suitable for modeling of larger and complex structure. Nevertheless, the formulation of homogenized models is more complicated, especially if the bending stiffness of the reinforcing...... fibers is to be taken into account. In that case, so-called higher order strain terms need to be considered. In this paper, important relevant works from the literature are discussed and numerical results from a new homogenization model are presented. The new model accounts for two independent...

  6. Flexible and Compressible PEDOT:PSS@Melamine Conductive Sponge Prepared via One-Step Dip Coating as Piezoresistive Pressure Sensor for Human Motion Detection.

    Science.gov (United States)

    Ding, Yichun; Yang, Jack; Tolle, Charles R; Zhu, Zhengtao

    2018-05-09

    Flexible and wearable pressure sensor may offer convenient, timely, and portable solutions to human motion detection, yet it is a challenge to develop cost-effective materials for pressure sensor with high compressibility and sensitivity. Herein, a cost-efficient and scalable approach is reported to prepare a highly flexible and compressible conductive sponge for piezoresistive pressure sensor. The conductive sponge, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)@melamine sponge (MS), is prepared by one-step dip coating the commercial melamine sponge (MS) in an aqueous dispersion of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Due to the interconnected porous structure of MS, the conductive PEDOT:PSS@MS has a high compressibility and a stable piezoresistive response at the compressive strain up to 80%, as well as good reproducibility over 1000 cycles. Thereafter, versatile pressure sensors fabricated using the conductive PEDOT:PSS@MS sponges are attached to the different parts of human body; the capabilities of these devices to detect a variety of human motions including speaking, finger bending, elbow bending, and walking are evaluated. Furthermore, prototype tactile sensory array based on these pressure sensors is demonstrated.

  7. Numerical and analytical investigation of steel beam subjected to four-point bending

    Science.gov (United States)

    Farida, F. M.; Surahman, A.; Sofwan, A.

    2018-03-01

    A One type of bending tests is four-point bending test. The aim of this test is to investigate the properties and behavior of materials with structural applications. This study uses numerical and analytical studies. Results from both of these studies help to improve in experimental works. The purpose of this study is to predict steel beam behavior subjected to four-point bending test. This study intension is to analyze flexural beam subjected to four-point bending prior to experimental work. Main results of this research are location of strain gauge and LVDT on steel beam based on numerical study, manual calculation, and analytical study. Analytical study uses linear elasticity theory of solid objects. This study results is position of strain gauge and LVDT. Strain gauge is located between two concentrated loads at the top beam and bottom beam. LVDT is located between two concentrated loads.

  8. Particle size dependent confinement and lattice strain effects in LiFePO4.

    Science.gov (United States)

    Shahid, Raza; Murugavel, Sevi

    2013-11-21

    We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.

  9. A theoretical study on pure bending of hexagonal close-packed metal sheet

    Science.gov (United States)

    Mehrabi, Hamed; Yang, Chunhui

    2018-05-01

    Hexagonal close-packed (HCP) metals have quite different mechanical behaviours in comparison to conventional cubic metals such as steels and aluminum alloys [1, 2]. They exhibit a significant tension-compression asymmetry in initial yielding and subsequent plastic hardening. The reason for this unique behaviour can be attributed to their limited symmetric crystal structure, which leads to twining deformation [3-5]. This unique behaviour strongly influences sheet metal forming of such metals, especially for roll forming, in which the bending is dominant. Hence, it is crucial to represent constitutive relations of HCP metals for accurate estimation of bending moment-curvature behaviours. In this paper, an analytical model for asymmetric elastoplastic pure bending with an application of Cazacu-Barlat asymmetric yield function [6] is presented. This yield function considers the asymmetrical tension-compression behaviour of HCP metals by using second and third invariants of the stress deviator tensor and a specified constant, which can be expressed in terms of uniaxial yield stresses in tension and compression. As a case study, the analytical model is applied to predict the moment-curvature behaviours of AZ31B magnesium alloy sheets under uniaxial loading condition. Furthermore, the analytical model is implemented as a user-defined material through the UMAT interface in Abaqus [7, 8] for conducting pure bending simulations. The results show that the analytical model can reasonably capture the asymmetric tension-compression behaviour of the magnesium alloy. The predicted moment-curvature behaviour has good agreement with the experimental results. Furthermore, numerical results show a better accuracy by the application of the Cazacu-Barlat yield function than those using the von-Mises yield function, which are more conservative than analytical results.

  10. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  11. Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation

    Directory of Open Access Journals (Sweden)

    H. Munoz

    2017-08-01

    Full Text Available The complete stress–strain characteristics of sandstone specimens were investigated in a series of quasi-static monotonic uniaxial compression tests. Strain patterns development during pre- and post-peak behaviours in specimens with different aspect ratios was also examined. Peak stress, post-peak portion of stress–strain, brittleness, characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio. Strain patterns of the rocks were obtained by applying three-dimensional (3D digital image correlation (DIC technique. Unlike conventional strain measurement using strain gauges attached to specimen, 3D DIC allowed not only measuring large strains, but more importantly, mapping the development of field strain throughout the compression test, i.e. in pre- and post-peak regimes. Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime. However, in post-peak regime, strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone. The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation. Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.

  12. The role of surface roughness on dislocation bending and stress evolution in low mobility AlGaN films during growth

    Science.gov (United States)

    Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan

    2018-04-01

    The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.

  13. Rate-independent dissipation and loading direction effects in compressed carbon nanotube arrays

    International Nuclear Information System (INIS)

    Raney, J R; Fraternali, F; Daraio, C

    2013-01-01

    Arrays of nominally-aligned carbon nanotubes (CNTs) under compression deform locally via buckling, exhibit a foam-like, dissipative response, and can often recover most of their original height. We synthesize millimeter-scale CNT arrays and report the results of compression experiments at different strain rates, from 10 −4 to 10 −1 s −1 , and for multiple compressive cycles to different strains. We observe that the stress–strain response proceeds independently of the strain rate for all tests, but that it is highly dependent on loading history. Additionally, we examine the effect of loading direction on the mechanical response of the system. The mechanical behavior is modeled using a multiscale series of bistable springs. This model captures the rate independence of the constitutive response, the local deformation, and the history-dependent effects. We develop here a macroscopic formulation of the model to represent a continuum limit of the mesoscale elements developed previously. Utilizing the model and our experimental observations we discuss various possible physical mechanisms contributing to the system’s dissipative response. (paper)

  14. Tests for development of estimation technology of reactor core deformation. Report No.1: fundamental mechanical properties of wrapper tube (test report)

    International Nuclear Information System (INIS)

    Nishiura, Takeo; Shimazaki, Yuji; Horikiri, Morito

    1998-10-01

    Mechanical properties such as local contact compression stiffness, bending stiffness, deformation properties, material properties, and friction properties of a wrapper tube structure were clarified experimentally, which can be used as the basic data for development of estimation technology of reactor core deformation. Contents of the Tests data as follows: (1) Effects of load supporting boundary conditions, whether or not a contact-proof pad is attached, and length of duct, on cross section deformation of wrapper tube were made clear as the local contact compression stiffness characteristics. (2) Bending stiffness does not depend on the difference of load supporting boundary conditions. The property of cross section deformation under bending load was obtained. (3) The deformation modes and the strain distributions were obtained by the deformation tests of wrapper tube. (4) The stress-strain diagrams including plastic range under various strain variation rates were obtained by the material tests at room temperature. (5) The static and the dynamic friction coefficients by various contact angles and the contact loads between contact-proof pads of two wrapper tubes were obtained by friction property tests. (author)

  15. Bending-Induced Giant Polarization in Ferroelectric MEMS Diaphragm

    KAUST Repository

    Wang, Zhihong

    2016-09-09

    The polarization induced by the strain gradient, i.e. the flexoelectric effect, has been observed in a micromachined Pb(Zr0.52Ti0.48)O3 (PZT) diaphragms. Applying air pressure to bend a flat diaphragm which initially does not exhibit any electromechanical coupling can induce a resonance peak in its impedance spectrum. This result supposes that bending, thus the strain gradient in the diaphragm causes polarization in PZT film. We also investigated the switching behaviors of the polarization in response to an external electric field in a bent diaphragm and further quantified the polarization induced by the strain gradient. The effective flexoelectric coefficient of the PZT film has been calculated as large as 2.0 × 10−4 C/m. A giant flexoelectric polarization of the order of 1 μC/cm2 was characterized which is of the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. The suggested explanation for the giant polarization is the large strain gradient in the diaphragm and the strain gradient induced reorientation of the polar nanodomains.

  16. Compression-rate-dependent nonlinear mechanics of normal and impaired porcine knee joints.

    Science.gov (United States)

    Rodriguez, Marcel Leonardo; Li, LePing

    2017-11-14

    The knee joint performs mechanical functions with various loading and unloading processes. Past studies have focused on the kinematics and elastic response of the joint with less understanding of the rate-dependent load response associated with viscoelastic and poromechanical behaviors. Forty-five fresh porcine knee joints were used in the present study to determine the loading-rate-dependent force-compression relationship, creep and relaxation of normal, dehydrated and meniscectomized joints. The mechanical tests of all normal intact joints showed similar strong compression-rate-dependent behavior: for a given compression-magnitude up to 1.2 mm, the reaction force varied 6 times over compression rates. While the static response was essentially linear, the nonlinear behavior was boosted with the increased compression rate to approach the asymptote or limit at approximately 2 mm/s. On the other hand, the joint stiffness varied approximately 3 times over different joints, when accounting for the maturity and breed of the animals. Both a loss of joint hydration and a total meniscectomy greatly compromised the load support in the joint, resulting in a reduction of load support as much as 60% from the corresponding intact joint. However, the former only weakened the transient load support, but the latter also greatly weakened the equilibrium load support. A total meniscectomy did not diminish the compression-rate-dependence of the joint though. These findings are consistent with the fluid-pressurization loading mechanism, which may have a significant implication in the joint mechanical function and cartilage mechanobiology.

  17. Study of transport and micro-structural properties of magnesium di-boride strand under react and bend mode and bend and react mode

    International Nuclear Information System (INIS)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Pradhan, Subrata

    2015-01-01

    I-V characterization of commercial multi-filamentary Magnesium Di-Boride (MgB 2 ) wire of diameter 0.83 mm were studied in cryocooler based self-field characterization system under both react and bent mode and bent and react mode for a range of temperature 6 K - 25 K. This study is of practical technical relevance where the heat treatment of the superconducting wire makes the sample less flexible for winding in magnet and in other applications. There are limited reported data, available on degradation of MgB 2 wire with bending induced strain in react and wind and wind and react method. In the present work the bending diameter were varied from 80 mm to 20 mm in the interval of 10 mm change of bending diameter and for each case critical current (Ic) of the strand is measured for the above range of temperature. An ETP copper made customized sample holder for mounting the MgB 2 strand was fabricated and is thermally anchored to the cooling stage of the cryocooler. It is seen from the experimental data that in react and bent mode the critical current degrades from 105 A to 87 A corresponding to bending diameter of 80 mm and 20 mm respectively. The corresponding bending strain was analytically estimated and compared with the simulation result. It is also observed that in react and bent mode, the degradation of the transport property of the strand is less as compared to react and bent mode. For bent and react mode in the same sample, the critical current (Ic) was measured to be ∼145 A at 15 K for bending diameter of 20 mm. Apart from studying the bending induced strain on MgB 2 strand, the tensile test of the strand at RT was carried out. The electrical characterizations of the samples were accompanied by the microstructure analyses of the bent strand to examine the bending induced degradation in the grain structure of the strand. All these experimental findings are expected to be used as input to fabricate prototype MgB 2 based magnet. (author)

  18. Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes

    OpenAIRE

    Hassan A. Alshahrani; Mehdi H. Hojjati

    2016-01-01

    In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was develo...

  19. Uniaxial Compression of Cellular Materials at a 10-1 s-1 Strain Rate Simultaneously with Synchrotron X-ray Computed Tomographic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Brian M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-01

    The topic is presented as a series of slides. Motivation for the work included the following: X-ray tomography is a fantastic technique for characterizing a material’s starting structure as well as for non-destructive, in situ experiments to investigate material response; 3D X-ray tomography is needed to fully characterize the morphology of cellular materials; and synchrotron micro-CT can capture 3D images without pausing experiment. Among the conclusions reached are these: High-rate radiographic and tomographic imaging (0.25 s 3D frame rate) using synchrotron CT can capture full 3D images of hyper-elastic materials at a 10-2 strain rate; dynamic true in situ uniaxial loading can be accurately captured; the three stages of compression can be imaged: bending, buckling, and breaking; implementation of linear modeling is completed; meshes have been imported into LANL modeling codes--testing and validation is underway and direct comparison and validation between in situ data and modeled mechanical response is possible.

  20. Gain compression and its dependence on output power in quantum dot lasers

    Science.gov (United States)

    Zhukov, A. E.; Maximov, M. V.; Savelyev, A. V.; Shernyakov, Yu. M.; Zubov, F. I.; Korenev, V. V.; Martinez, A.; Ramdane, A.; Provost, J.-G.; Livshits, D. A.

    2013-06-01

    The gain compression coefficient was evaluated by applying the frequency modulation/amplitude modulation technique in a distributed feedback InAs/InGaAs quantum dot laser. A strong dependence of the gain compression coefficient on the output power was found. Our analysis of the gain compression within the frame of the modified well-barrier hole burning model reveals that the gain compression coefficient decreases beyond the lasing threshold, which is in a good agreement with the experimental observations.

  1. Strain-rate dependent plasticity in thermo-mechanical transient analysis

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.

    1980-01-01

    The thermo-mechanical transient behavior of fuel element cladding and other reactor components is generally governed by the strain-rate properties of the material. Relevant constitutive modeling requires extensive material data in the form of strain-rate response as function of true-stress, temperature, time and environmental conditions, which can then be fitted within a theoretical framework of an inelastic constitutive model. In this paper, we present a constitutive formulation that deals continuously with the entire strain-rate range and has the desirable advantage of utilizing existing material data. The derivation makes use of strain-rate sensitive stress-strain curve and strain-rate dependent yield surface. By postulating a strain-rate dependent on Mises yield function and a strain-rate dependent kinematic hardening rule, we are able to derive incremental stress-strain relations that describe the strain-rate behavior in the entire deformation range spanning high strain-rate plasticity and creep. The model is sufficiently general as to apply to any materials and loading histories for which data is available. (orig.)

  2. Effect of large compressive strain on low field electrical transport in La0.88Sr0.12MnO3 thin films

    International Nuclear Information System (INIS)

    Prasad, Ravikant; Gaur, Anurag; Siwach, P K; Varma, G D; Kaur, A; Singh, H K

    2007-01-01

    We have investigated the effect of large in-plane compressive strain on the electrical transport in La 0.88 Sr 0.12 MnO 3 in thin films. For achieving large compressive strain, films have been deposited on single crystal LaAlO 3 (LAO, a = 3.798 A) substrate from a polycrystalline bulk target having average in-plane lattice parameter a av = (a b + b b )/2 = 3.925 A. The compressive strain was further relaxed by varying the film thickness in the range ∼6-75 nm. In the film having least thickness (∼6 nm) large increase (c = 3.929 A) in the out-of-plane lattice parameter is observed which gradually decreases towards the bulk value (c bulk = 3.87 A) for ∼75 nm thick film. This shows that the film having the least thickness is under large compressive strain, which partially relaxes with increasing film thickness. The T IM of the bulk target ∼145 K goes up to ∼235 K for the ∼6 nm thin film and even for partially strain relaxed ∼75 nm thick film T IM is as high as ∼200 K. This enhancement in T IM is explained in terms of suppression of Jahn-Teller distortion of the MnO 6 octahedra by the large in-plane compressive strain. We observe a large enhancement in the low field magnetoresistance (MR) just below T IM in the films having partial strain relaxation. Thick films of 6 and 20 nm have MR ∼14% at 3 kOe that almost doubles in 35 nm film to ∼27%. Similar enhancement is also obtained in the case of the temperature coefficient of resistivity. The near doubling of low field MR is explained in terms of delocalization of weakly localized carriers around T IM by small magnetic fields

  3. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.

    Science.gov (United States)

    Butcher, Michael T; White, Bartholomew J; Hudzik, Nathan B; Gosnell, W Casey; Parrish, John H A; Blob, Richard W

    2011-08-01

    Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are related to the difference in limb posture between upright mammals and sprawling reptiles, and that the loading patterns observed in non-avian reptiles may be ancestral for tetrapod vertebrates. To evaluate whether non-cursorial mammals show loading patterns more similar to those of sprawling lineages, we measured in vivo strains in the femur during terrestrial locomotion of the Virginia opossum (Didelphis virginiana), a marsupial that uses more crouched limb posture than most mammals from which bone strains have been recorded, and which belongs to a clade phylogenetically between reptiles and the eutherian mammals studied previously. The presence of substantial torsion in the femur of opossums, similar to non-avian reptiles, would suggest that this loading regime likely reflects an ancestral condition for tetrapod limb bone design. Strain recordings indicate the presence of both bending and appreciable torsion (shear strain: 419.1 ± 212.8 με) in the opossum femur, with planar strain analyses showing neutral axis orientations that placed the lateral aspect of the femur in tension at the time of peak strains. Such mediolateral bending was unexpected for a mammal running with near-parasagittal limb kinematics. Shear strains were similar in magnitude to peak compressive axial strains, with opossum femora experiencing similar bending loads but higher levels of torsion compared with most previously studied mammals. Analyses of peak femoral strains led to estimated safety factor ranges of 5.1-7.2 in bending and 5.5-7.3 in torsion, somewhat higher than typical mammalian values

  4. Impact of bending speed and setup on flex cracks in multilayer ceramic capacitors

    DEFF Research Database (Denmark)

    Andersson, Caroline; Kristensen, Ole; Varescon, Elise

    2017-01-01

    A comparison of bending speed and experimental setups using 3-point or 4-point bending for introduction of flex cracks into multilayer ceramic capacitors (MLCCs) in a controlled manner is presented. The impact of bending speed and corresponding strain rates on the formed flex cracks detected by X...

  5. Modification of strain and 2DEG density induced by wafer bending of AlGaN/GaN heterostructure: Influence of edges caused by processing

    Directory of Open Access Journals (Sweden)

    Ashu Wang

    2018-03-01

    Full Text Available Due to the piezoelectricity, the density of 2DEG (NS formed in the AlGaN/GaN heterostructure can be altered when it is deformed externally, which may be exploited to develop pressure sensors and to enhance the performance of power devices by stress engineering based on the heterostructure. In this paper, a 3D electro-mechanical simulation is presented to study how the induced strains and NS for the AlGaN/GaN wafer under bending exerted uniaxial stress are influenced by the edges caused by processing: the fabrication of the mesa used for isolation, the ohmic contact metal, the gate metal, and the passivation. Results show that the influences are dependent on distance between the edges, depth of the edges, and direction of the exerted uniaxial stress.

  6. External pneumatic intermittent compression for treatment of dependent pregnancy edema.

    Science.gov (United States)

    Jacobs, M K; McCance, K L; Stewart, M L

    1982-01-01

    A portable external pneumatic intermittent compression (EPIC) device has been successful in reducing peripheral edema. This study explored the effectiveness of EPIC for treating dependent pregnancy edema. In the study, 42 healthy pregnant women received EPIC for 30 minutes at 40 torr while in the left lateral recumbent position: Group One with mid-thigh boots, and Group Two with below-knee boots. Prior to compression, descriptive data were gathered, leg circumference measurements made, and surface skin temperatures recorded for three sites per leg. Vital signs were taken and pedal edema subjectively indexed. Following compression, circumferences, skin temperatures, vital signs, and edema indices were rerecorded. Three volumes were calculated for each leg using a mathematical model of leg segments as conical frustum units. Mean volume reductions for each leg were significant. The mid-thigh-length boots produced greater mean volume decreases. The volume decrease for calf, lower leg, and foot frustum units were significant. EPIC holds promise as a useful treatment for dependent pregnancy edema.

  7. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since...... exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...

  8. Compression deformation behaviors of sheet metals at various clearances and side forces

    OpenAIRE

    Zhan Mei; Wang Xianxian; Cao Jian; Yang He

    2015-01-01

    Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. I...

  9. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  10. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    International Nuclear Information System (INIS)

    Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio

    2014-01-01

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model

  11. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  12. Conduction gap in graphene strain junctions: direction dependence

    International Nuclear Information System (INIS)

    Nguyen, M Chung; Nguyen, V Hung; Dollfus, P; Nguyen, Huy-Viet

    2014-01-01

    It has been shown in a recent study (Nguyen et al 2014 Nanotechnology 25 165201) that unstrained/strained graphene junctions are promising candidates to improve the performance of graphene transistors which is usually hindered by the gapless nature of graphene. Although the energy bandgap of strained graphene still remains zero, the shift of Dirac points in the k-space due to strain-induced deformation of graphene lattice can lead to the appearance of a finite conduction gap of several hundred meV in strained junctions with a strain of only a few per cent. However, since it depends essentially on the magnitude of the Dirac point shift, this conduction gap strongly depends on the direction of applied strain and the transport direction. In this work, a systematic study of conduction-gap properties with respect to these quantities is presented and the results are carefully analyzed. Our study provides useful information for further investigations to exploit graphene-strained junctions in electronic applications and strain sensors. (paper)

  13. Dynamic Behavior of AA2519-T8 Aluminum Alloy Under High Strain Rate Loading in Compression

    Science.gov (United States)

    Olasumboye, A. T.; Owolabi, G. M.; Odeshi, A. G.; Yilmaz, N.; Zeytinci, A.

    2018-02-01

    In this study, the effects of strain rate on the dynamic behavior, microstructure evolution and hence, failure of the AA2519-T8 aluminum alloy were investigated under compression at strain rates ranging from 1000 to 3500 s-1. Cylindrical specimens of dimensions 3.3 mm × 3.3 mm (L/D = 1) were tested using the split-Hopkinson pressure bar integrated with a digital image correlation system. The microstructure of the alloy was assessed using optical and scanning electron microscopes. Results showed that the dynamic yield strength of the alloy is strain rate dependent, with the maximum yield strength attained by the material being 500 MPa. The peak flow stress of 562 MPa was attained by the material at 3500 s-1. The alloy also showed a significant rate of strain hardening that is typical of other Al-Cu alloys; the rate of strain hardening, however, decreased with increase in strain rate. It was determined that the strain rate sensitivity coefficient of the alloy within the range of high strain rates used in this study is approximately 0.05 at 0.12 plastic strain; a more significant value than what was reported in literature under quasi-static loading. Micrographs obtained showed potential sites for the evolution of adiabatic shear band at 3500 s-1, with a characteristic circular-shaped surface profile comprising partially dissolved second phase particles in the continuous phase across the incident plane of the deformed specimen. The regions surrounding the site showed little or no change in the size of particles. However, the constituent coarse particles were observed as agglomerations of fractured pieces, thus having a shape factor different from those contained in the as-received alloy. Since the investigated alloy is a choice material for military application where it can be exposed to massive deformation at high strain rates, this study provides information on its microstructural and mechanical responses to such extreme loading condition.

  14. Simulating Stresses Associated with the Bending of Wood Using a Finite Element Method

    Directory of Open Access Journals (Sweden)

    Milan Gaff

    2015-02-01

    Full Text Available This article examines the stress-strain curves of various thicknesses of soft and hard wood when bent during three-point loading. The finite element method was used to simulate the course of stresses that occurred during the bending of these materials. Reference curves obtained by bending real specimens offered a basis for simulation. The results showed that with increasing material thickness, deflection values decreased and the proportionality limit increased; eventually, the bendability coefficient value decreased and the loading force necessary for bending increased. Moreover, it was apparent when bending hard materials that higher loading forces were necessary for different materials of the same thickness. It is possible to determine the stress-strain curves without having to perform experiments (except for indispensable reference ones under real conditions.

  15. Bending and tensile deformation of metallic nanowires

    International Nuclear Information System (INIS)

    McDowell, Matthew T; Leach, Austin M; Gall, Ken

    2008-01-01

    Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects

  16. Mechanical properties of amorphous indium–gallium–zinc oxide thin films on compliant substrates for flexible optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, D.W., E-mail: DWM172@bham.ac.uk [University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham, B15 2TT (United Kingdom); Waddingham, R.; Flewitt, A.J. [University of Cambridge, Electrical Engineering Division, Department of Engineering, J J Thomson Avenue, Cambridge CB3 0FA,United Kingdom (United Kingdom); Sierros, K.A. [West Virginia University, Mechanical & Aerospace Engineering, Morgantown, WV 26506 (United States); Bowen, J. [Open University, Department of Engineering and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Kukureka, S.N. [University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2015-11-02

    Amorphous indium–gallium–zinc-oxide (a-IGZO) thin films were deposited using RF magnetron sputtering on polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) flexible substrates and their mechanical flexibility investigated using uniaxial tensile and buckling tests coupled with in situ optical microscopy. The uniaxial fragmentation test demonstrated that the crack onset strain of the IGZO/PEN was ~ 2.9%, which is slightly higher than that of IGZO/PET. Also, uniaxial tensile crack density analysis suggests that the saturated crack spacing of the film is strongly dependent on the mechanical properties of the underlying polymer substrate. Buckling test results suggest that the crack onset strain (equal to ~ 1.2%, of the IGZO/polymer samples flexed in compression to ~ 5.7 mm concave radius of curvature) is higher than that of the samples flexed with the film being in tension (convex bending) regardless whether the substrate is PEN or PET. The saturated crack density of a-IGZO film under the compression buckling mode is smaller than that of the film under the tensile buckling mode. This could be attributed to the fact that the tensile stress encouraged this crack formation originating from surface defects in the coating. It could also be due to the buckling delamination of the thin coating from the substrate at a lower strain than that at which a crack initiates during flexing in compression. These results provide useful information on the mechanical reliability of a-IGZO films for the development of flexible electronics. - Highlights: • Mechanical flexibility of IGZO thin films investigated by uniaxial tensile and buckling tests • Uniaxial fragmentation gives crack onset strain for IGZO/PEN of 2.9% (higher than for IGZO/PET.) • Saturated crack spacing strongly dependent on mechanical properties of polymer substrate • Crack onset strain in concave bending higher than in convex bending for both substrates.

  17. Mechanical properties of amorphous indium–gallium–zinc oxide thin films on compliant substrates for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Mohammed, D.W.; Waddingham, R.; Flewitt, A.J.; Sierros, K.A.; Bowen, J.; Kukureka, S.N.

    2015-01-01

    Amorphous indium–gallium–zinc-oxide (a-IGZO) thin films were deposited using RF magnetron sputtering on polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) flexible substrates and their mechanical flexibility investigated using uniaxial tensile and buckling tests coupled with in situ optical microscopy. The uniaxial fragmentation test demonstrated that the crack onset strain of the IGZO/PEN was ~ 2.9%, which is slightly higher than that of IGZO/PET. Also, uniaxial tensile crack density analysis suggests that the saturated crack spacing of the film is strongly dependent on the mechanical properties of the underlying polymer substrate. Buckling test results suggest that the crack onset strain (equal to ~ 1.2%, of the IGZO/polymer samples flexed in compression to ~ 5.7 mm concave radius of curvature) is higher than that of the samples flexed with the film being in tension (convex bending) regardless whether the substrate is PEN or PET. The saturated crack density of a-IGZO film under the compression buckling mode is smaller than that of the film under the tensile buckling mode. This could be attributed to the fact that the tensile stress encouraged this crack formation originating from surface defects in the coating. It could also be due to the buckling delamination of the thin coating from the substrate at a lower strain than that at which a crack initiates during flexing in compression. These results provide useful information on the mechanical reliability of a-IGZO films for the development of flexible electronics. - Highlights: • Mechanical flexibility of IGZO thin films investigated by uniaxial tensile and buckling tests • Uniaxial fragmentation gives crack onset strain for IGZO/PEN of 2.9% (higher than for IGZO/PET.) • Saturated crack spacing strongly dependent on mechanical properties of polymer substrate • Crack onset strain in concave bending higher than in convex bending for both substrates

  18. Monitoring static shape memory polymers using a fiber Bragg grating as a vector-bending sensor

    Science.gov (United States)

    Li, Peng; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Leng, Jinsong

    2013-01-01

    We propose and demonstrate a technique for monitoring the recovery deformation of the shape-memory polymers (SMP) using a surface-attached fiber Bragg grating (FBG) as a vector-bending sensor. The proposed sensing scheme could monitor the pure bending deformation for the SMP sample. When the SMP sample undergoes concave or convex bending, the resonance wavelength of the FBG will have red-shift or blue-shift according to the tensile or compressive stress gradient along the FBG. As the results show, the bending sensitivity is around 4.07 nm/cm-1. The experimental results clearly indicate that the deformation of such an SMP sample can be effectively monitored by the attached FBG not just for the bending curvature but also the bending direction.

  19. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.

    Science.gov (United States)

    Gosnell, W Casey; Butcher, Michael T; Maie, Takashi; Blob, Richard W

    2011-10-15

    Studies of limb bone loading in terrestrial mammals have typically found anteroposterior bending to be the primary loading regime, with torsion contributing minimally. However, previous studies have focused on large, cursorial eutherian species in which the limbs are held essentially upright. Recent in vivo strain data from the Virginia opossum (Didelphis virginiana), a marsupial that uses a crouched rather than an upright limb posture, have indicated that its femur experiences appreciable torsion during locomotion as well as strong mediolateral bending. The elevated femoral torsion and strong mediolateral bending observed in D. virginiana might result from external forces such as a medial inclination of the ground reaction force (GRF), internal forces deriving from a crouched limb posture, or a combination of these factors. To evaluate the mechanism underlying the loading regime of opossum femora, we filmed D. virginiana running over a force platform, allowing us to measure the magnitude of the GRF and its three-dimensional orientation relative to the limb, facilitating estimates of limb bone stresses. This three-dimensional analysis also allows evaluations of muscular forces, particularly those of hip adductor muscles, in the appropriate anatomical plane to a greater degree than previous two-dimensional analyses. At peak GRF and stress magnitudes, the GRF is oriented nearly vertically, inducing a strong abductor moment at the hip that is countered by adductor muscles on the medial aspect of the femur that place this surface in compression and induce mediolateral bending, corroborating and explaining loading patterns that were identified in strain analyses. The crouched orientation of the femur during stance in opossums also contributes to levels of femoral torsion as high as those seen in many reptilian taxa. Femoral safety factors were as high as those of non-avian reptiles and greater than those of upright, cursorial mammals, primarily because the load

  20. Hydrostatic Pressurization of Lung Surfactant Microbubbles: Observation of a Strain-Rate Dependent Elasticity.

    Science.gov (United States)

    Thomas, Alec N; Borden, Mark A

    2017-11-28

    The microbubble offers a unique platform to study lung surfactant mechanics at physiologically relevant geometry and length scale. In this study, we compared the response of microbubbles (∼15 μm initial radius) coated with pure dipalmitoyl-phosphatidylcholine (DPPC) versus naturally derived lung surfactant (SURVANTA) when subjected to linearly increasing hydrostatic pressure at different rates (0.5-2.3 kPa/s) at room temperature. The microbubbles contained perfluorobutane gas and were submerged in buffered saline saturated with perfluorobutane at atmospheric pressure. Bright-field microscopy showed that DPPC microbubbles compressed spherically and smoothly, whereas SURVANTA microbubbles exhibited wrinkling and smoothing cycles associated with buckling and collapse. Seismograph analysis showed that the SURVANTA collapse amplitude was constant, but the collapse rate increased with the pressurization rate. An analysis of the pressure-volume curves indicated that the dilatational elasticity increased during compression for both shell types. The initial dilatational elasticity for SURVANTA was nearly twice that of DPPC at higher pressurization rates (>1.5 kPa/s), producing a pressure drop of up to 60 kPa across the film prior to condensation of the perfluorobutane core. The strain-rate dependent stiffening of SURVANTA shells likely arises from their composition and microstructure, which provide enhanced in-plane monolayer rigidity and lateral repulsion from surface-associated collapse structures. Overall, these results provide new insights into lung surfactant mechanics and collapse behavior during compression.

  1. Local buckling failure analysis of high-strength pipelines

    Institute of Scientific and Technical Information of China (English)

    Yan Li; Jian Shuai; Zhong-Li Jin; Ya-Tong Zhao; Kui Xu

    2017-01-01

    Pipelines in geological disaster regions typically suffer the risk of local buckling failure because of slender structure and complex load.This paper is meant to reveal the local buckling behavior of buried pipelines with a large diameter and high strength,which are under different conditions,including pure bending and bending combined with internal pressure.Finite element analysis was built according to previous data to study local buckling behavior of pressurized and unpressurized pipes under bending conditions and their differences in local buckling failure modes.In parametric analysis,a series of parameters,including pipe geometrical dimension,pipe material properties and internal pressure,were selected to study their influences on the critical bending moment,critical compressive stress and critical compressive strain of pipes.Especially the hardening exponent of pipe material was introduced to the parameter analysis by using the Ramberg-Osgood constitutive model.Results showed that geometrical dimensions,material and internal pressure can exert similar effects on the critical bending moment and critical compressive stress,which have different,even reverse effects on the critical compressive strain.Based on these analyses,more accurate design models of critical bending moment and critical compressive stress have been proposed for high-strength pipelines under bending conditions,which provide theoretical methods for highstrength pipeline engineering.

  2. Experimental and Simulated Investigations of Thin Polymer Substrates with an Indium Tin Oxide Coating under Fatigue Bending Loadings

    Directory of Open Access Journals (Sweden)

    Jiong-Shiun Hsu

    2016-08-01

    Full Text Available Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO film deposited on a transparently flexible polyethylene terephthalate (PET substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film deposited on PET substrates. The sheet resistance of the ITO film, optical transmittance of the ITO-coated PET substrates, and failure scheme within the ITO film were measured to evaluate the mechanical stability of the concerned thin films. The results indicated that compressive and tensile stresses generated distinct failure schemes within an ITO film and both led to increased sheet resistance and optical transmittance. In addition, tensile stress increased the sheet resistance of an ITO film more easily than compressive stress did. However, the influences of both compressive and tensile stress on increased optical transmittance were demonstrated to be highly similar. Increasing the thickness of a PET substrate resulted in increased sheet resistance and optical transmittance regardless of the presence of compressive or tensile stress. Moreover, J-Integral, a method based on strain energy, was used to estimate the interfacial adhesion strength of the ITO-PET film through the simulation approach enabled by a finite element analysis.

  3. Salt-Dependent DNA-DNA Spacings in Intact Bacteriophage lambda Reflect Relative Importance of DNA Self-Repulsion and Bending Energies

    Energy Technology Data Exchange (ETDEWEB)

    X Qiu; D Rau; V Parsegian; L Fang; C Knobler; W Gelbart

    2011-12-31

    Using solution synchrotron x-ray scattering, we measure the variation of DNA-DNA d spacings in bacteriophage {lambda} with mono-, di-, and polyvalent salt concentrations, for wild-type [48.5 x 10{sup 3} base pairs (bp)] and short-genome-mutant (37.8 kbp) strains. From the decrease in d spacings with increasing salt, we deduce the relative contributions of DNA self-repulsion and bending to the energetics of packaged phage genomes. We quantify the DNA-DNA interaction energies within the intact phage by combining the measured d spacings in the capsid with measurements of osmotic pressure in DNA assemblies under the same salt conditions in bulk solution. In the commonly used Tris-Mg buffer, the DNA-DNA interaction energies inside the phage capsids are shown to be about 1 kT/bp, an order of magnitude larger than the bending energies.

  4. Orientation dependence of the deformation microstructure in compressed aluminum

    DEFF Research Database (Denmark)

    Le, G.M.; Godfrey, A.; Hong, Chuanshi

    2012-01-01

    The orientation dependence of the deformation microstructure has been investigated in aluminum compressed to 20% reduction. The dislocation boundaries formed can be classified, as for tension, into one of three types: dislocation cells (Type 2), and extended planar boundaries near (Type 1...

  5. 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis.

    Science.gov (United States)

    Tang, Dalin; Yang, Chun; Kobayashi, Shunichi; Zheng, Jie; Woodard, Pamela K; Teng, Zhongzhao; Billiar, Kristen; Bach, Richard; Ku, David N

    2009-06-01

    Heart attack and stroke are often caused by atherosclerotic plaque rupture, which happens without warning most of the time. Magnetic resonance imaging (MRI)-based atherosclerotic plaque models with fluid-structure interactions (FSIs) have been introduced to perform flow and stress/strain analysis and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. For coronary arteries, cyclic bending associated with heart motion and anisotropy of the vessel walls may have significant influence on flow and stress/strain distributions in the plaque. FSI models with cyclic bending and anisotropic vessel properties for coronary plaques are lacking in the current literature. In this paper, cyclic bending and anisotropic vessel properties were added to 3D FSI coronary plaque models so that the models would be more realistic for more accurate computational flow and stress/strain predictions. Six computational models using one ex vivo MRI human coronary plaque specimen data were constructed to assess the effects of cyclic bending, anisotropic vessel properties, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. Our results indicate that cyclic bending and anisotropic properties may cause 50-800% increase in maximum principal stress (Stress-P1) values at selected locations. The stress increase varies with location and is higher when bending is coupled with axial stretch, nonsmooth plaque structure, and resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (9.8% decrease in maximum velocity, 2.5% decrease in flow rate, 15% increase in maximum flow shear stress). Inclusion of cyclic bending, anisotropic vessel material properties, accurate plaque structure, and axial stretch in computational FSI models should lead to a considerable improvement of accuracy of computational stress/strain predictions for coronary plaque vulnerability

  6. Tensile strain induced narrowed bandgap of TiO{sub 2} films: Utilizing the two-way shape memory effect of TiNiNb substrate and in-situ mechanical bending

    Energy Technology Data Exchange (ETDEWEB)

    Du, Minshu, E-mail: dms1223@126.com [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China); Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712 (United States); Cui, Lishan; Wan, Qiong [Department of Materials Science and Engineering, China University of Petroleum at Beijing, Beijing, 102249 (China)

    2016-05-15

    Graphical abstract: - Highlights: • Imposed tensile strain to anatase TiO{sub 2} nanofilm by using the two-way shape memory effect of NiTiNb substrate. • Imposed tensile strain to rutile TiO{sub 2} thin film by in-situ mechanical bending. • Tauc plot based on the PEC-tested auction spectrum was utilized to precisely determine the bandgap of TiO{sub 2}. • Tensile strain narrowed the bandgap of anatase TiO{sub 2} by 60 meV and rutile TiO{sub 2} by 70 meV. • Tensile strain contributes to a 1.5 times larger photocurrent for the water oxidation reaction. - Abstract: Elastic strain is one of the methods to alter the band gap of semiconductors. However, relevant experimental work is limited due to the difficulty in imposing strain. Two new methods for imposing tensile strain to TiO{sub 2} film were introduced here. One is by utilizing the two-way shape memory effect of NiTiNb substrate, and the other method is in-situ mechanical bending. The former method succeeded in imposing 0.4% tensile strain to anatase TiO{sub 2} nanofilm, and strain narrowed the bandgap of TiO{sub 2} by 60 meV. The latter method enabled rutile TiO{sub 2} thin film under the 0.5% biaxially tensile-strained state, which contributes to a narrowed bandgap with ΔE{sub g} of 70 meV. Also, photocurrents of both strained TiO{sub 2} films increased by 1.5 times compared to the strain-free films, which indirectly verified the previous DFT prediction proposed by Thulin and Guerra in 2008 that tensile strain could improve the mobility and separation of photo-excite carriers.

  7. Surface strain engineering through Tb doping to study the pressure dependence of exciton-phonon coupling in ZnO nanoparticles

    International Nuclear Information System (INIS)

    Sharma, A.; Dhar, S.; Singh, B. P.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.

    2013-01-01

    A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ≈14 GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ≈8 GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14 GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material

  8. Surface strain engineering through Tb doping to study the pressure dependence of exciton-phonon coupling in ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.; Dhar, S., E-mail: dhar@phy.iitb.ac.in; Singh, B. P. [Physics Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Nayak, C.; Bhattacharyya, D. [Applied Spectroscopy Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Jha, S. N. [Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (India)

    2013-12-07

    A compressive hydrostatic strain has been found to develop in the ZnO lattice as a result of accumulation of Tb ions on the surface of the nanoparticles for Tb mole-fraction less than 0.04. This hydrostatic strain can be controlled up to ≈14 GPa by varying the Tb mole-fraction. Here, we have utilized this novel technique of surface strain engineering through Tb doping for introducing hydrostatic compressive strain in the lattice to study the pressure dependent electronic and vibrational properties of ZnO nanoparticles. Our study reveals that when subjected to pressure, nanoparticles of ZnO behave quite differently than bulk in many aspects. Unlike bulk ZnO, which is reported to go through a wurtzite to rock-salt structural phase transition at ≈8 GPa, ZnO nanoparticles do not show such transition and remain in wurtzite phase even at 14 GPa of pressure. Furthermore, the Grüneisen parameters for the optical phonon modes are found to be order of magnitude smaller in ZnO nanoparticles as compared to bulk. Our study also suggests an increase of the dielectric constant with pressure, which is opposite to what has been reported for bulk ZnO. Interestingly, it has also been found that the exciton-phonon interaction depends strongly upon pressure in this system. The exciton-phonon coupling has been found to decrease as pressure increases. A variational technique has been adopted to theoretically calculate the exciton-LO phonon coupling coefficient in ZnO nanoparticles as a function of pressure, which shows a good agreement with the experimental results. These findings imply that surface engineering of ZnO nanoparticles with Tb could indeed be an efficient tool to enhance and control the optical performance of this material.

  9. Mechanical behavior and microstructure during compression of semi-solid ZK60-RE magnesium alloy at high solid content

    International Nuclear Information System (INIS)

    Shan Weiwei; Luo Shoujing

    2007-01-01

    Mechanical behavior during compression of semi-solid ZK60-RE magnesium alloy at high solid content is researched in this paper. The alloy was prepared from ZK60 alloy and rare earth elements by casting, equal channel angular extruding, and liquidus forging. Semi-solid isothermal pre-treatment was carried out to make the grains globular before the compression. Here, several groups of true strain-true stress curves with different variables during compression are given to make comparisons of their mechanical behaviors. Liquid paths were the most essential to deformation, and its variation during compression depends on the strain rate. Here, thixotropic strength is defined as the true stress at the first peak in the true stress-true strain curve

  10. Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion.

    Science.gov (United States)

    Araneo, Rodolfo; Falconi, Christian

    2013-07-05

    Quasi-1D piezoelectric nanostructures may offer unprecedented sensitivity for transducing minuscule input mechanical forces into high output voltages due to both scaling laws and increased piezoelectric coefficients. However, until now both theoretical and experimental studies have suggested that, for a given mechanical force, lateral bending of piezoelectric nanowires results in lower output electric potentials than vertical compression. Here we demonstrate that this result only applies to nanostructures with a constant cross-section. Moreover, though it is commonly believed that the output electric potential of a strained piezo-semiconductive device can only be reduced by the presence of free charges, we show that the output piezopotential of laterally bent tapered nanostructures, with typical doping levels and very small input forces, can be even increased up to two times by free charges.Our analyses confirm that, though not optimal for piezoelectric energy harvesting, lateral bending of tapered nanostructures with typical doping levels can be ideal for transducing tiny input mechanical forces into high and accessible piezopotentials. Our results provide guidelines for designing high-performance piezo-nano-devices for energy harvesting, mechanical sensing, piezotronics, piezo-phototronics, and piezo-controlled chemical reactions, among others.

  11. Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion

    International Nuclear Information System (INIS)

    Araneo, Rodolfo; Falconi, Christian

    2013-01-01

    Quasi-1D piezoelectric nanostructures may offer unprecedented sensitivity for transducing minuscule input mechanical forces into high output voltages due to both scaling laws and increased piezoelectric coefficients. However, until now both theoretical and experimental studies have suggested that, for a given mechanical force, lateral bending of piezoelectric nanowires results in lower output electric potentials than vertical compression. Here we demonstrate that this result only applies to nanostructures with a constant cross-section. Moreover, though it is commonly believed that the output electric potential of a strained piezo-semiconductive device can only be reduced by the presence of free charges, we show that the output piezopotential of laterally bent tapered nanostructures, with typical doping levels and very small input forces, can be even increased up to two times by free charges. Our analyses confirm that, though not optimal for piezoelectric energy harvesting, lateral bending of tapered nanostructures with typical doping levels can be ideal for transducing tiny input mechanical forces into high and accessible piezopotentials. Our results provide guidelines for designing high-performance piezo-nano-devices for energy harvesting, mechanical sensing, piezotronics, piezo-phototronics, and piezo-controlled chemical reactions, among others. (paper)

  12. Elevated temperature stress strain behavior of beryllium powder product

    International Nuclear Information System (INIS)

    Abeln, S.P.; Field, R.; Mataya, M.C.

    1995-01-01

    Several grades of beryllium powder product were tested under isothermal conditions in compression over a temperature range of room temperature to 1000 C and a strain rate range from 0.001 s -1 to 1 s -1 . Samples were compressed to a total strain of 1 (64% reduction in height). It is shown that all the grades are strain rate sensitive and that strain rate sensitivity increases with temperature. Yield points were exhibited by some grades up to a temperature of 500 C, and appeared to be primarily dependent on prior thermal history which determined the availability of mobile dislocations. Serrated flow in the form of stress drops was seen in all the materials tested and was most pronounced at 500 C. The appearance and magnitude of the stress drops were dependent on accumulated strain, strain rate, sample orientation, and composition. The flow stress and shape of the flow curves differed significantly from grade to grade due to variations in alloy content, the size and distribution of BeO particles, aging precipitates, and grain size. The ductile-brittle transition temperature (DBTT) was determined for each grade of material and shown to be dependent on composition and thermal treatment. Structure/property relationships are discussed using processing history, microscopy (light and transmission), and property data

  13. Combined tension and bending testing of tapered composite laminates

    Science.gov (United States)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  14. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure

    International Nuclear Information System (INIS)

    Huang, Lin; Jiang, Lin; Topping, Troy D.; Dai, Chen; Wang, Xin; Carpenter, Ryan; Haines, Christopher; Schoenung, Julie M.

    2017-01-01

    In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk tungsten materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS). The results show that the application of a high pressure of 1 GPa during SPS significantly accelerates the densification process. Concurrently, the second phase oxide nanoparticles with an average grain size of 108 nm, which are distributed within the interiors of the W grains, simultaneously provide strengthening and plasticity by inhibiting grain growth, and generating, blocking, and storing dislocations. - Graphical abstract: In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk W materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS).

  15. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    Directory of Open Access Journals (Sweden)

    Gawedzki Waclaw

    2015-10-01

    Full Text Available Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  16. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.

    Science.gov (United States)

    Gao, Li-Lan; Wei, Chao-Lei; Zhang, Chun-Qiu; Gao, Hong; Yang, Nan; Dong, Li-Min

    2017-08-01

    The quasi-static and ratcheting properties of trabecular bone were investigated by experiments and theoretical predictions. The creep tests with different stress levels were completed and it is found that both the creep strain and creep compliance increase rapidly at first and then increase slowly as the creep time goes by. With increase of compressive stress the creep strain increases and the creep compliance decreases. The uniaxial compressive tests show that the applied stress rate makes remarkable influence on the compressive behaviors of trabecular bone. The Young's modulus of trabecular bone increases with increase of stress rate. The stress-strain hysteresis loops of trabecular bone under cyclic load change from sparse to dense with increase of number of cycles, which agrees with the change trend of ratcheting strain. The ratcheting strain rate rapidly decreases at first, and then exhibits a relatively stable and small value after 50cycles. Both the ratcheting strain and ratcheting strain rate increase with increase of stress amplitude or with decrease of stress rate. The creep model and the nonlinear viscoelastic constitutive model of trabecular bone were proposed and used to predict its creep property and rate-dependent compressive property. The results show that there are good agreements between the experimental data and predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Wrinkles and creases in the bending, unbending and eversion of soft sectors

    Science.gov (United States)

    Sigaeva, Taisiya; Mangan, Robert; Vergori, Luigi; Destrade, Michel; Sudak, Les

    2018-04-01

    We study what is clearly one of the most common modes of deformation found in nature, science and engineering, namely the large elastic bending of curved structures, as well as its inverse, unbending, which can be brought beyond complete straightening to turn into eversion. We find that the suggested mathematical solution to these problems always exists and is unique when the solid is modelled as a homogeneous, isotropic, incompressible hyperelastic material with a strain-energy satisfying the strong ellipticity condition. We also provide explicit asymptotic solutions for thin sectors. When the deformations are severe enough, the compressed side of the elastic material may buckle and wrinkles could then develop. We analyse, in detail, the onset of this instability for the Mooney-Rivlin strain energy, which covers the cases of the neo-Hookean model in exact nonlinear elasticity and of third-order elastic materials in weakly nonlinear elasticity. In particular, the associated theoretical and numerical treatment allows us to predict the number and wavelength of the wrinkles. Guided by experimental observations, we finally look at the development of creases, which we simulate through advanced finite-element computations. In some cases, the linearized analysis allows us to predict correctly the number and the wavelength of the creases, which turn out to occur only a few per cent of strain earlier than the wrinkles.

  18. Strain effect on the phase diagram of Ba-122

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kazumasa [IFW Dresden (Germany); Nagoya University (Japan); Grinenko, Vadim; Kurth, Fritz; Efremov, Dmitriy; Drechsler, Stefan-Ludwig; Engelmann, Jan; Aswartham, Saicharan; Wurmehl, Sabine; Moench, Ingolf; Huehne, Ruben [IFW Dresden (Germany); Langer, Marco; Erbe, Manuela; Haenisch, Jens; Holzapfel, Bernhard [IFW Dresden (Germany); Karlsruhe Institute of Technology (KIT) (Germany); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, Nagasaka (Japan); Ahrens, Eike [TU Dresden (Germany); Ikuta, Hiroshi [Nagoya University (Japan)

    2015-07-01

    Thin films offer a possibility for tuning superconducting (SC) properties without external pressure or chemical doping. In-plane strain controls the Neel temperature of the antiferromagnetic (AF) transition and the SC transition temperature or even induce superconductivity in the parent compound. We studied the electronic and magnetic properties of Co, Ru, and P doped Ba-122 thin films in different strain states. We have found that the strain shifts nearly rigidly the whole phase diagram including the AF region and the SC dome in the direction of higher or lower substitution levels depending on the direction of strain (i.e. compressive or tensile). In particular, we found that the strain affects the band structure similarly as Co doping despite that the crystal structure changes differently. As a result tensile or compressive strain acts as additional el or h doping, respectively.

  19. Strain-Dependent Edge Structures in MoS2 Layers.

    Science.gov (United States)

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  20. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  1. Influence of sequential room-temperature compressive creep on flow stress of TA2

    Science.gov (United States)

    Mengyuan, Zhang; Boqin, Gu; Jiahui, Tao

    2018-03-01

    This paper studied the sequential room temperature compressive creep and its effects on compressive properties of TA2 with stress-control loading pattern by using cylindrical compressive test specimen. The significant time-dependent deformation under constant load was observed in the TA2 at room temperature, and the deformation was dependent on the loading process under the same loading stress rate. It was also found that the occurrence of room temperature compressive creep obviously enhanced the subsequent yielding strength and flow stress of TA2 due to the increase of network dislocation density. And the effects of room temperature creep on the strain rate-stress behavior could be explained by the local mobile dislocation density model.

  2. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing

    International Nuclear Information System (INIS)

    Uchic, Michael D.; Dimiduk, Dennis M.

    2005-01-01

    A methodology for performing uniaxial compression tests on samples having micron-size dimensions is presented. Sample fabrication is accomplished using focused ion beam milling to create cylindrical samples of uniform cross-section that remain attached to the bulk substrate at one end. Once fabricated, samples are tested in uniaxial compression using a nanoindentation device outfitted with a flat tip, and a stress-strain curve is obtained. The methodology can be used to examine the plastic response of samples of different sizes that are from the same bulk material. In this manner, dimensional size effects at the micron scale can be explored for single crystals, using a readily interpretable test that minimizes imposed stretch and bending gradients. The methodology was applied to a single-crystal Ni superalloy and a transition from bulk-like to size-affected behavior was observed for samples 5 μm in diameter and smaller

  3. Design of process parameters for the incremental tube forming (ITF) by FEM to control product properties

    Science.gov (United States)

    Nazari, Esmaeil; Löbbe, Christian; Gallus, Stefan; Izadyar, S. Ahmad; Tekkaya, A. Erman

    2018-05-01

    The incremental tube forming (ITF) is a process combination of the kinematic tube bending and spinning to shape high strength and tailored tubes with variable diameters and thicknesses. In contrast to conventional bending methods, the compressive stress superposition by the spinning process facilitates low bending stresses, so that geometrical errors are avoided and the shape accuracy is improved. The study reveals the interaction of plastic strains of the rolling and bending process through an explicit FEM investigation. For this purpose, the three-dimensional machine set-up is discretized and modeled in terms of the fully disclosed spinning process during the gradual deflection of the tube end for bending. The analysis shows that, depending on the forming tool shape, the stress superposition is accompanied by high plastic strains. Furthermore, this phenomenon is explained by the three dimensional normal and shear strains during the incremental spinning. Analyzing the strains history also shows a nonlinearity between the strains by bending and spinning. It is also shown that process parameters like rotational velocity of the spinning rolls have a huge influence on the deformation pattern. Finally, the method is used for the manufacturing of an example product, which reveals the high process flexibility. In one clamp a component with a graded wall thickness and outside diameter along the longitudinal axis is produced.

  4. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  5. Linezolid-Dependent Function and Structure Adaptation of Ribosomes in a Staphylococcus epidermidis Strain Exhibiting Linezolid Dependence

    OpenAIRE

    Kokkori, Sofia; Apostolidi, Maria; Tsakris, Athanassios; Pournaras, Spyros; Stathopoulos, Constantinos; Dinos, George

    2014-01-01

    Linezolid-dependent growth was recently reported in Staphylococcus epidermidis clinical strains carrying mutations associated with linezolid resistance. To investigate this unexpected behavior at the molecular level, we isolated active ribosomes from one of the linezolid-dependent strains and we compared them with ribosomes isolated from a wild-type strain. Both strains were grown in the absence and presence of linezolid. Detailed biochemical and structural analyses revealed essential differe...

  6. Controlled manipulation of flexible carbon nanotubes through shape-dependent pushing by atomic force microscopy.

    Science.gov (United States)

    Yang, Seung-Cheol; Qian, Xiaoping

    2013-09-17

    A systematic approach to manipulating flexible carbon nanotubes (CNTs) has been developed on the basis of atomic force microscope (AFM) based pushing. Pushing CNTs enables efficient transport and precise location of individual CNTs. A key issue for pushing CNTs is preventing defective distortion in repetitive bending and unbending deformation. The approach presented here controls lateral movement of an AFM tip to bend CNTs without permanent distortion. The approach investigates possible defects caused by tensile strain of the outer tube under uniform bending and radial distortion by kinking. Using the continuum beam model and experimental bending tests, dependency of maximum bending strain on the length of bent CNTs and radial distortion on bending angles at a bent point have been demonstrated. Individual CNTs are manipulated by limiting the length of bent CNTs and the bending angle. In our approach, multiwalled CNTs with 5-15 nm diameter subjected to bending deformation produce no outer tube breakage under uniform bending and reversible radial deformation with bending angles less than 110°. The lateral tip movement is determined by a simple geometric model that relies on the shape of multiwalled CNTs. The model effectively controls deforming CNT length and bending angle for given CNT shape. Experimental results demonstrate successful manipulation of randomly dispersed CNTs without visual defects. This approach to pushing can be extended to develop a wide range of CNT based nanodevice applications.

  7. Microstructure and strain distribution in freestanding Si membrane strained by Si{sub x}N{sub y} deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gao Hongye, E-mail: qgaohongye@msn.com [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Ikeda, Ken-ichi; Hata, Satoshi; Nakashima, Hideharu [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Wang Dong; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2010-09-25

    Research highlights: {yields} Strain is introduced by deposition of amorphous Si{sub x}N{sub y} to improve the carrier mobility for a relatively large-size freestanding semiconductor film, which can be used for the fabrication of relatively large devices such like a bipolar junction transistor. However, standard Raman spectroscopy and X-ray diffraction cannot provide sufficient lateral resolution to the strain in a relatively long (x {mu}m in length) and thin (x nm in thickness) freestanding semiconductor film. {yields} In present research, strain in a bridge-shaped freestanding Si membrane (FSSM) was measured by convergent-beam electron diffraction (CBED) and finite element method (FEM). Compressive strain distribution was shown in three dimensions (3D) in FSSM, where no threading dislocation or stacking fault was found. Relaxation of the strain in FSSM in 3D was discussed based on a comparison of the strain magnitudes in FSSM as measured by CBED and FEM. - Abstract: Strain in a bridge-shaped freestanding Si membrane (FSSM) induced by depositing an amorphous Si{sub x}N{sub y} layer was measured by convergent-beam electron diffraction (CBED). CBED results show that the strain magnitude depends negatively on the FSSM thickness. FEM is a supplement of the result of CBED due to the relaxation of TEM samples during fabricating. The FEM analysis results ascertain the strain property in three dimensions, and show that the strain magnitude depends negatively on the length of FSSM, and the magnitude of the compressive strain in FSSM increases as the position is closer to the upper Si/Si{sub x}N{sub y} interface.

  8. On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium

    Science.gov (United States)

    Kovtanyuk, L. V.; Panchenko, G. L.

    2017-11-01

    The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.

  9. Microscopic fracture of filaments and its relation to the critical current under bending deformation in (Bi,Pb)2Sr2Ca2Cu3O10 composite superconducting tapes

    International Nuclear Information System (INIS)

    Hojo, Masaki; Nakamura, Mitsuhiro; Matsuoka, Tomoe; Tanaka, Mototsugu; Ochiai, Shojiro; Sugano, Michinaka; Osamura, Kozo

    2003-01-01

    The strain dependence of the critical current, I c , of (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10 (Bi2223)/Ag/Ag-Mg composite superconducting tapes has been studied both experimentally and analytically under bending deformation. Tests have been carried out for one type of tape used in the VAMAS bending round-robin programme. The complex stress-strain behaviour of each component was first analysed in tension. This was done by comparing the stress-strain curves of composite tapes with those of Ag and Ag-Mg alloy tapes. Here, the plastic deformation (work hardening) of Ag and Ag-Mg alloy, and the thermal residual strain due to the manufacturing process were taken into account. The fracture strain of Bi2223 filaments was inversely determined as 0.08% to meet the global tensile stress-strain curve of the composite tape. The calculated stress-strain curves finally agreed well with the experimental results when the as-supplied bending strain was taken into account. Then, the analysis was modified to fit the bending deformation. Here, the movement of the neutral axis due to the non-symmetric and elastic-plastic stress-strain curves of the components and their Bauschinger effect were taken into account. The relative decrease of I c with the increase in the Bi2223 tape curvature was calculated from the volume fraction of the broken filaments. The calculated I c agreed well with the experimental results when the movement of the neutral axis and the Bauschinger effect were taken into account. Microscopic observation of the spatial distribution of the filament fracture indicated that the damage occurred at the outermost layer on the tensile side when the curvature was small, and then the damage front shifted to the inside layers. The observed fracture behaviour of the Bi2223 filament agreed well with the estimated location based on the above analysis

  10. Lagrangian investigations of vorticity dynamics in compressible turbulence

    Science.gov (United States)

    Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji

    2017-10-01

    In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.

  11. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  12. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    Science.gov (United States)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  13. Intrinsic strength of sodium borosilicate glass fibers by using a two-point bending technique

    International Nuclear Information System (INIS)

    Nishikubo, Y; Yoshida, S; Sugawara, T; Matsuoka, J

    2011-01-01

    Flaws existing on glass surface can be divided into two types, extrinsic and intrinsic. Although the extrinsic flaws are generated during processing and using, the intrinsic flaws are regarded as structural defects which result from thermal fluctuation. It is known that the extrinsic flaws determine glass strength, but effects of the intrinsic flaws on the glass strength are still unclear. Since it is considered that the averaged bond-strength and the intrinsic flaw would affect the intrinsic strength, the intrinsic strength of glass surely depends on the glass composition. In this study, the intrinsic failure strain of the glass fibers with the compositions of 20Na 2 O-40xB 2 O 3 -(80-40x)SiO 2 (mol%, x = 0, 0.5, 1.0, 1.5) were measured by using a two-point bending technique. The failure strength was estimated from the failure strain and Young's modulus of glass. It is elucidated that two-point bending strength of glass fiber decreases with increasing B 2 O 3 content in glass. The effects of the glass composition on the intrinsic strength are discussed in terms of elastic and inelastic deformation behaviors prior to fracture.

  14. Contact force and mechanical loss of multistage cable under tension and bending

    Science.gov (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  15. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  16. Biomechanics of the classic metaphyseal lesion: finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Kleinman, Paul K. [Boston Children' s Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States); Coats, Brittany [University of Utah, Department of Mechanical Engineering, Salt Lake City, UT (United States)

    2017-11-15

    The classic metaphyseal lesion (CML) is strongly associated with infant abuse, but the biomechanics responsible for this injury have not been rigorously studied. Radiologic and CT-pathological correlates show that the distal tibial CML always involves the cortex near the subperiosteal bone collar, with variable extension of the fracture into the medullary cavity. Therefore, it is reasonable to assume that the primary site of bone failure is cortical, rather than intramedullary. This study focuses on the strain patterns generated from finite element modeling to identify loading scenarios and regions of the cortex that are susceptible to bone failure. A geometric model was constructed from a normal 3-month-old infant's distal tibia and fibula. The model's boundary conditions were set to mimic forceful manipulation of the ankle with eight load modalities (tension, compression, internal rotation, external rotation, dorsiflexion, plantar flexion, valgus bending and varus bending). For all modalities except internal and external rotation, simulations showed increased cortical strains near the subperiosteal bone collar. Tension generated the largest magnitude of cortical strain (24%) that was uniformly distributed near the subperiosteal bone collar. Compression generated the same distribution of strain but to a lesser magnitude overall (15%). Dorsiflexion and plantar flexion generated high (22%) and moderate (14%) localized cortical strains, respectively, near the subperiosteal bone collar. Lower cortical strains resulted from valgus bending, varus bending, internal rotation and external rotation (8-10%). The highest valgus and varus bending cortical strains occurred medially. These simulations suggest that the likelihood of the initial cortical bone failure of the CML is higher along the margin of the subperiosteal bone collar when the ankle is under tension, compression, valgus bending, varus bending, dorsiflexion and plantar flexion, but not under internal

  17. Biomechanics of the classic metaphyseal lesion: finite element analysis

    International Nuclear Information System (INIS)

    Tsai, Andy; Kleinman, Paul K.; Coats, Brittany

    2017-01-01

    The classic metaphyseal lesion (CML) is strongly associated with infant abuse, but the biomechanics responsible for this injury have not been rigorously studied. Radiologic and CT-pathological correlates show that the distal tibial CML always involves the cortex near the subperiosteal bone collar, with variable extension of the fracture into the medullary cavity. Therefore, it is reasonable to assume that the primary site of bone failure is cortical, rather than intramedullary. This study focuses on the strain patterns generated from finite element modeling to identify loading scenarios and regions of the cortex that are susceptible to bone failure. A geometric model was constructed from a normal 3-month-old infant's distal tibia and fibula. The model's boundary conditions were set to mimic forceful manipulation of the ankle with eight load modalities (tension, compression, internal rotation, external rotation, dorsiflexion, plantar flexion, valgus bending and varus bending). For all modalities except internal and external rotation, simulations showed increased cortical strains near the subperiosteal bone collar. Tension generated the largest magnitude of cortical strain (24%) that was uniformly distributed near the subperiosteal bone collar. Compression generated the same distribution of strain but to a lesser magnitude overall (15%). Dorsiflexion and plantar flexion generated high (22%) and moderate (14%) localized cortical strains, respectively, near the subperiosteal bone collar. Lower cortical strains resulted from valgus bending, varus bending, internal rotation and external rotation (8-10%). The highest valgus and varus bending cortical strains occurred medially. These simulations suggest that the likelihood of the initial cortical bone failure of the CML is higher along the margin of the subperiosteal bone collar when the ankle is under tension, compression, valgus bending, varus bending, dorsiflexion and plantar flexion, but not under internal

  18. Analysis of stress- strain distribution of dowel and glue line in L-type furniture joint by means of finite element method

    Directory of Open Access Journals (Sweden)

    mossayeb dalvand

    2017-08-01

    Full Text Available In this study 3D stress-strain distribution of dowel and glue line on L-type joints made of plywood doweled was investigated. Members of joints made of 11-ply hardwood plywood (Hornbeam, Beech and Alder that were 19 mm in thickness. In this study effect of beech dowels in three levels diameters (6, 8 and 10 mm and penetration of depth (9, 13 and 17 mm on bending moment capacity of L-type joints under compression loading was investigated as experimental test, then stress-strain distribution of wood dowel and glue line in specimens were simulated by means of ANSYS 15 software with finite element method (FEM.Results have shown that bending moment resistance increased with increasing dowel diameter from 6 to 8 mm, but downward trend was observed with increasing 8 to 10 mm in dowel diameter. Bending moment resistance increased with increasing penetration depth. Also, result obtained of simulation by means of ANSYS software have shown that stress-strain in dowel and glue line increased with increasing diameter of dowel and Increasing stress in joints made of diameter dowel 10 mm due to fracture in joints and decrease in resistance once. According to results obtained of model analysis, the ultimate stress of dowel and glue line occurred in the area that joints were contacted.

  19. Investigation into springback characteristics of two HSS sheets during cold v-bending

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Gang; Gao, Wei-Ran [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2013-12-16

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn.

  20. Comparison of J estimating procedures for a solid subjected to bending loads

    International Nuclear Information System (INIS)

    Smith, E.

    1982-01-01

    A. Zahoor and M.F. Kanninen have recently developed a simple procedure for estimating the magnitude of the J-integral for through-wall cracks in pipes subjected to bending loads. This paper gives consideration to their procedure, but to check its predictions against available numerical results, it is explored in detail for the case of a crack in a solid deforming under plane-strain bending conditions. In this case, an implicit assumption in the procedure is that the plastic rotation depends on the ligament size, and not on any other geometrical dimension. This assumption is strictly valid only for deep cracks, and this paper shows the degree of inaccuracy obtained when it is applied to shallow cracks. The assumption is also shown to correlate with the existence of a unique relation, independent of geometrical parameters, between the ligament net-sectionstress and the J-integral, and also with the existence of C.E. Turner's plastic /eta/ factors. 12 refs

  1. Investigation into springback characteristics of two HSS sheets during cold v-bending

    International Nuclear Information System (INIS)

    Fang, Gang; Gao, Wei-Ran

    2013-01-01

    Considering the safety and the light-weight structure, there is an increasing requirement of high strength steel (HSS) sheets in the automotive industry. The high-precise prediction of the springback depends on constitutive equations and their corresponding material parameters. In order to investigate the springback of HSS sheets, DP590 and B280VK, their constitutive behaviors were analyzed based on the sheet tension tests. With respect to the constitutive equation, the Voce model is more proper to two hot-rolled steels, DP590 and B280VK, than the Swift model. Two steels are all saturated hardening, and the degree of hardening decreases with the strain. The cold v-banding tests of two HSS sheets were carried out for evaluation of springback characteristics. Results of v-bending experiments showed that the springback angle increases with the bending along 45°, 90° and 0° to the rolling direction of steel in turn

  2. Design and construction of a strain gage compression load cell to measure rolling forces

    International Nuclear Information System (INIS)

    Schoeffer, L.; Borchardt, I.G.; Carvalho, L.F.A.

    1978-05-01

    A complete detailed mechanical desion of a strain gauge compression load cell is presented. This cell was specialy designed to measure rolling forces at conventional duo or trio industrial roughing stands. The stands, in general, have little space (height) to adjust to the cells. Moreover the contact stands surfaces are very rough. Do to this facts, load cells of elastic cilindrical geometries are not recommended for accuracies better than 8%. This work describes the complete design and the construction of a circular (membrane) steel plate load cell. A prototype of 300 KN (approximately 30t) capacity, with 2% accuracies and with a height of 6 cm was constructed and tested. The design proposed is a general one and permits the construction of small load cells to measure any compression load [pt

  3. Limit moments for non circular cross-section (elliptical) pipe bends

    International Nuclear Information System (INIS)

    Spence, J.

    1977-01-01

    A number of experiment studies have been reported or are underway which investigate limit moments applied to pipe bends. Some theoretical work is also available. However, most of the work has been confined to nominally circular cross-section bends and little account has been taken of the practical problem of manufacturing tolerances. Many methods of manufacture result in bends which are not circular in cross-section but have an oval or elliptical shape. The present paper extends previous analyses on circular bends to cater for initially elliptical cross-sections. The loading is primarily in plane bending but out of plane is also considered and several independent methods are presented. No previous information is known to the authors. Upper and lower bound limit moments are derived first of all from existing linear elastic analyses and secondly upper bound moments are derived via a plastic analogy from existing stationary creep results. It is also shown that the creep information on design factors for bends can be used to obtain a reasonable estimate of the complete moment/strain behaviour of a bend or indeed a system. (Auth.)

  4. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    International Nuclear Information System (INIS)

    Rui Li

    2008-01-01

    Within the realm of classical electrodynamics, the curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. As an application of this canonical formulation, in this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of the particles in the distribution is derived from the Hamiltonian of the particles in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase-space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping-induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions. Our study demonstrates clearly the time delay (or retardation) of the behavior of the effective longitudinal CSR force on a bunch in responding to the change of the bunch length in a magnetic bend. Our result also shows that the effective longitudinal CSR force for a bunch under full compression can have sensitive dependence on the transverse position of the test particle in the bunch for certain parameter regimes

  5. Linezolid-Dependent Function and Structure Adaptation of Ribosomes in a Staphylococcus epidermidis Strain Exhibiting Linezolid Dependence

    Science.gov (United States)

    Kokkori, Sofia; Apostolidi, Maria; Tsakris, Athanassios; Pournaras, Spyros

    2014-01-01

    Linezolid-dependent growth was recently reported in Staphylococcus epidermidis clinical strains carrying mutations associated with linezolid resistance. To investigate this unexpected behavior at the molecular level, we isolated active ribosomes from one of the linezolid-dependent strains and we compared them with ribosomes isolated from a wild-type strain. Both strains were grown in the absence and presence of linezolid. Detailed biochemical and structural analyses revealed essential differences in the function and structure of isolated ribosomes which were assembled in the presence of linezolid. The catalytic activity of peptidyltransferase was found to be significantly higher in the ribosomes derived from the linezolid-dependent strain. Interestingly, the same ribosomes exhibited an abnormal ribosomal subunit dissociation profile on a sucrose gradient in the absence of linezolid, but the profile was restored after treatment of the ribosomes with an excess of the antibiotic. Our study suggests that linezolid most likely modified the ribosomal assembly procedure, leading to a new functional ribosomal population active only in the presence of linezolid. Therefore, the higher growth rate of the partially linezolid-dependent strains could be attributed to the functional and structural adaptations of ribosomes to linezolid. PMID:24890589

  6. A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes

    International Nuclear Information System (INIS)

    Chacón, Enrique; Tarazona, Pedro; Bresme, Fernando

    2015-01-01

    We present a new computational approach to quantify the area per lipid and the area compressibility modulus of biological membranes. Our method relies on the analysis of the membrane fluctuations using our recently introduced coupled undulatory (CU) mode [Tarazona et al., J. Chem. Phys. 139, 094902 (2013)], which provides excellent estimates of the bending modulus of model membranes. Unlike the projected area, widely used in computer simulations of membranes, the CU area is thermodynamically consistent. This new area definition makes it possible to accurately estimate the area of the undulating bilayer, and the area per lipid, by excluding any contributions related to the phospholipid protrusions. We find that the area per phospholipid and the area compressibility modulus features a negligible dependence with system size, making possible their computation using truly small bilayers, involving a few hundred lipids. The area compressibility modulus obtained from the analysis of the CU area fluctuations is fully consistent with the Hooke’s law route. Unlike existing methods, our approach relies on a single simulation, and no a priori knowledge of the bending modulus is required. We illustrate our method by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers using the coarse grained MARTINI force-field. The area per lipid and area compressibility modulus obtained with our method and the MARTINI forcefield are consistent with previous studies of these bilayers

  7. Orientation dependent slip and twinning during compression and tension of strongly textured magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Samman, T., E-mail: al-samman@imm.rwth-aachen.de [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Li, X. [Institut fuer Metallkunde und Metallphysik, RWTH Aachen, Kopernikusstr. 14, D-52064 Aachen (Germany); Chowdhury, S. Ghosh [CSIR National Metallurgical Laboratory, MST Division, Jamshedpur 831007 (India)

    2010-06-15

    Over recent years there have been a remarkable number of studies dealing with compression of magnesium. A literature search, however, shows a noticeably less number of papers concerned with tension and a very few papers comparing both modes, systematically, in one study. The current investigation reports the anisotropic deformation behavior and concomitant texture and microstructure evolution investigated in uniaxial tension and compression tests in two sample directions performed on an extruded commercial magnesium alloy AZ31 at different Z conditions. For specimens with the loading direction parallel to the extrusion axis, the tension-compression strength anisotropy was pronounced at high Z conditions. Loading at 45{sup o} from the extrusion axis yielded a tension-compression strength behavior that was close to isotropic. During tensile loading along the extrusion direction the extrusion texture resists twinning and favors prismatic slip (contrary to compression). This renders the shape change maximum in the basal plane and equal to zero along the c-axis, which resulted in the orientation of individual grains remaining virtually intact during all tension tests at different Z conditions. For the other investigated sample direction, straining was accommodated along the c-axis, which was associated with a lattice rotation, and thus, a change of crystal orientation. Uniaxial compression at a low Z condition (400 deg. C/10{sup -4} s{sup -1}) yielded a desired texture degeneration, which was explained on the basis of a more homogeneous partitioning of slip systems that reduces anisotropy and enhanced dynamic recrystallization (DRX), which counteracts the strong deformation texture. The critical strains for the nucleation of DRX in tensiled specimens at the highest investigated Z condition (200 deg. C/10{sup -2} s{sup -1}) were found to range between 4% and 5.6%.

  8. Model for field-induced reorientation strain in magnetic shape memory alloy with tensile and compressive loads

    International Nuclear Information System (INIS)

    Zhu Yuping; Dui Guansuo

    2008-01-01

    A model based on the micromechanical and the thermodynamic theory is presented for field-induced martensite reorientation in magnetic shape memory alloy (MSMA) single crystals. The influence of variants morphology and the material property to constitutive behavior is considered. The nonlinear and hysteretic strain and magnetization response of MSMA are investigated for two main loading cases, namely the magnetic field-induced reorientation of variants under constant compressive stress and tensile stress. The predicted results have shown that increasing tensile loading reduces the required field for actuation, while increasing compressive loads result in the required magnetic field growing considerably. It is helpful to design the intelligent composite with MSMA fibers

  9. Bending of conjugated molecular wires and its effect on electron conduction properties

    International Nuclear Information System (INIS)

    Das, Bidisa

    2010-01-01

    The electronic structure and electron transport properties of simple conjugated molecular wires like oligophenylene ethynylene (OPE) and oligophenylene vinylene (OPV) are studied under compression. If artificially confined to a given shorter length, the oligomers tend to bend and bending causes a loss in the overlap of the conjugated molecular orbitals. Theoretical modeling of electronic transport has been carried out for all undistorted and compressed OPE/OPV oligomers. OPV exists in step-like or V-like conformations and they have the same stability with very similar frontier molecular orbitals. The conductances of these molecular wires are calculated when inserted between two gold probes and the conductances for OPV are found to be comparable to OPE when the interfaces are same. The conductance decreases with bending due to the gradual loss in overlap of the molecular orbitals. It is also found that the conductances of the molecular wires decrease very strongly if the terminal sulfur atom is simultaneously bonded to hydrogen and a gold surface, thus reflecting the importance of the interface in determining the conductance in two-probe systems. From the conductance studies it may be concluded that if one or more benzene rings of OPE are rotated from coplanar conditions, the orthogonal molecular orbitals may completely block the electronic transport, rendering the molecule insulating.

  10. Uniaxial-Strain-Orientation Dependence of the Competition between Mott and Charge Ordered Phases and their Corresponding Superconductivity of β-(BDA-TTP)2I3

    Science.gov (United States)

    Nuruzzaman, Md.; Yokogawa, Keiichi; Yoshino, Harukazu; Yoshimoto, Haruo; Kikuchi, Koichi; Kaihatsu, Takayuki; Yamada, Jun-ichi; Murata, Keizo

    2012-12-01

    We studied the electronic transport properties of the charge transfer salt β-(BDA-TTP)2I3 [BDA-TTP: 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] by applying uniaxial strains along the three crystallographic axes, and obtained three corresponding temperature-pressure phase diagrams. Three phase diagrams were quite dependent on the direction of compression. Following the preceding paper by Kikuchi et al., we speculate that the insulating states are of 1/2-filled Mott insulators for the a- and b-axes compressions, and of 1/4-filled charge ordered states for the c-axis compression as well as hydrostatic pressure. The superconducting phase under uniaxial strain was realized with Tc = 5 K at 1.9 GPa along the a-axis and with Tc = 5.6 K at 1.75 GPa along the b-axis. Superconductivity was also reproduced with a Tc of 9.5 K at 1.0 GPa for the c-axis compressions in the range of 0.85 to 1.53 GPa as previously reported. We studied tentative measurement on upper critical fields, Bc2's of these superconductivities and found that the extrapolated values, Bc2(0)'s, exceeded Pauli-limit by about 2--3 times. However, at least in terms of Bc2, the difference in superconductivity associated with two different insulating states was not clear.

  11. Analysis of Variscan dynamics; early bending of the Cantabria-Asturias Arc, northern Spain

    Science.gov (United States)

    Kollmeier, J. M.; van der Pluijm, B. A.; Van der Voo, R.

    2000-08-01

    Calcite twinning analysis in the Cantabria-Asturias Arc (CAA) of northern Spain provides a basis for evaluating conditions of Variscan stress and constrains the arc's structural evolution. Twinning typically occurs during earliest layer-parallel shortening, offering the ability to define early conditions of regional stress. Results from the Somiedo-Correcilla region are of two kinds: early maximum compressive stress oriented layer-parallel and at high angles to bedding strike (D1 σ1) and later twin producing compression oriented sub-parallel to strike (D2 σ1). When all D1 compressions are rotated into a uniform east-west reference orientation, a quite linear, north-south trending fold-thrust belt results showing a slight deflection of the southern zone to the south-southeast. North-south-directed D2 σ1 compression was recorded prior to bending of the belt. Calcite twinning data elucidate earliest structural conditions that could not be obtained by other means, whereas the kinematics of arc tightening during D2 is constrained by paleomagnetism. A large and perhaps protracted D2 σ1 is suggested by our results, as manifested by approximately 50% arc tightening prior to acquisition of paleomagnetic remagnetizations throughout the CAA. Early east-west compression (D1 σ1) likely resulted from the Ebro-Aquitaine massif docking to Laurussia whereas the north-directed collision of Africa (D2 σ1) produced clockwise bending in the northern zone, radial folding in the hinge, and rotation of thrusts in the southern zone.

  12. Orientation-dependent chemistry and band-bending of Ti on polar ZnO surfaces.

    Science.gov (United States)

    Borghetti, Patrizia; Mouchaal, Younes; Dai, Zongbei; Cabailh, Gregory; Chenot, Stéphane; Lazzari, Rémi; Jupille, Jacques

    2017-04-19

    Orientation-dependent reactivity and band-bending are evidenced upon Ti deposition (1-10 Å) on polar ZnO(0001)-Zn and ZnO(0001[combining macron])-O surfaces. At the onset of the Ti deposition, a downward band-bending was observed on ZnO(0001[combining macron])-O while no change occurred on ZnO(0001)-Zn. Combining this with the photoemission analysis of the Ti 2p core level and Zn L 3 (L 2 )M 45 M 45 Auger transition, it is established that the Ti/ZnO reaction is of the form Ti + 2ZnO → TiO 2 + 2Zn on ZnO(0001)-Zn and Ti + yZnO → TiZn x O y + (y - x)Zn on ZnO(0001[combining macron])-O. Consistently, upon annealing thicker Ti adlayers, the metallic zinc is removed to leave ZnO(0001)-Zn surfaces covered with a TiO 2 -like phase and ZnO(0001[combining macron])-O surfaces covered with a defined (Ti, Zn, O) compound. Finally, a difference in the activation temperature between the O-terminated (500 K) and Zn-terminated (700 K) surfaces is observed, which is tentatively explained by different electric fields in the space charge layer at ZnO surfaces.

  13. Coupling between shear and bending in the analysis of beam problems: Planar case

    Science.gov (United States)

    Shabana, Ahmed A.; Patel, Mohil

    2018-04-01

    The interpretation of invariants, such as curvatures which uniquely define the bending and twist of space curves and surfaces, is fundamental in the formulation of the beam and plate elastic forces. Accurate representations of curve and surface invariants, which enter into the definition of the strain energy equations, is particularly important in the case of large displacement analysis. This paper discusses this important subject in view of the fact that shear and bending are independent modes of deformation and do not have kinematic coupling; this is despite the fact that kinetic coupling may exist. The paper shows, using simple examples, that shear without bending and bending without shear at an arbitrary point and along a certain direction are scenarios that higher-order finite elements (FE) can represent with a degree of accuracy that depends on the order of interpolation and/or mesh size. The FE representation of these two kinematically uncoupled modes of deformation is evaluated in order to examine the effect of the order of the polynomial interpolation on the accuracy of representing these two independent modes. It is also shown in this paper that not all the curvature vectors contribute to bending deformation. In view of the conclusions drawn from the analysis of simple beam problems, the material curvature used in several previous investigations is evaluated both analytically and numerically. The problems associated with the material curvature matrix, obtained using the rotation of the beam cross-section, and the fundamental differences between this material curvature matrix and the Serret-Frenet curvature matrix are discussed.

  14. Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    International Nuclear Information System (INIS)

    Steinle-Neumann, Gerd; Stixrude, Lars; Cohen, Ronald E.

    2001-01-01

    High-pressure structural distortions of the hexagonal close-packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane-wave method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments

  15. In situ electron backscatter diffraction (EBSD) during the compression of micropillars

    International Nuclear Information System (INIS)

    Niederberger, C.; Mook, W.M.; Maeder, X.; Michler, J.

    2010-01-01

    For the first time, in situ electron backscatter diffraction (EBSD) measurements during compression experiments by a modified nanoindenter on micron-sized single crystal pillars are demonstrated here. The experimental setup and the requirements concerning the compression sample are described in detail. EBSD mappings have been acquired before loading, under load and after unloading for consecutive compression cycles on a focused ion beam (FIB) milled GaAs micropillar. In situ EBSD allows for the determination of crystallographic orientation with sub-100 nm spatial resolution. Thereby, it provides highly localized information pertaining to the deformation phenomena such as elastic bending of the micropillar or the formation of deformation twins and plastic orientation gradients due to geometrically necessary dislocations. The most striking features revealed by in situ EBSD are the non-negligible amount of reversible (elastic) bending of the micropillar and the fact that deformation twinning and dislocation glide initiate where the bending is strongest. Due to this high spatial and orientation resolution, in situ EBSD measurements during micromechanical testing are demonstrated to be a promising technique for the investigation of deformation phenomena at the nano- to micro-scale.

  16. Measurement of Strain and Strain Rate during the Impact of Tennis Ball Cores

    Directory of Open Access Journals (Sweden)

    Ben Lane

    2018-03-01

    Full Text Available The aim of this investigation was to establish the strains and strain rates experienced by tennis ball cores during impact to inform material characterisation testing and finite element modelling. Three-dimensional surface strains and strain rates were measured using two high-speed video cameras and corresponding digital image correlation software (GOM Correlate Professional. The results suggest that material characterisation testing to a maximum strain of 0.4 and a maximum rate of 500 s−1 in tension and to a maximum strain of −0.4 and a maximum rate of −800 s−1 in compression would encapsulate the demands placed on the material during impact and, in turn, define the range of properties required to encapsulate the behavior of the material during impact, enabling testing to be application-specific and strain-rate-dependent properties to be established and incorporated in finite element models.

  17. Effect of pre-strain on microstructure of Ni-Ti orthodontic archwires

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, J. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of); Zebarjad, S.M. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)], E-mail: Zebarjad@um.ac.ir; Sajjadi, S.A. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)

    2008-01-25

    One of the most important applications of shape memory alloy is in medicine, especially orthodontic archwires. In this category Ni-Ti orthodontic archwires is one of the oldest used materials. Biocompatibility, corrosion resistance, super elasticity, etc. are its outstanding properties. In spite of the importance of dependency of pre-strain on microstructure of Ni-Ti there are limited sources concentrated on the subject. For this reason the main purpose of the current study is determination of the effect of pre-strain on microstructure of Ni-Ti orthodontic archwires. In this regard, three-point bending was performed on the orthodontic archwire specimens to apply different amount of strain. The microstructures were compared with the un-strained wire using optical and scanning electron microscopes. The results showed that the stable phase depends strongly on the value of pre-strain. Increasing pre-strain causes to decrease martensite laths and leads the microstructure toward austenite phase.

  18. Effect of pre-strain on microstructure of Ni-Ti orthodontic archwires

    International Nuclear Information System (INIS)

    Jafari, J.; Zebarjad, S.M.; Sajjadi, S.A.

    2008-01-01

    One of the most important applications of shape memory alloy is in medicine, especially orthodontic archwires. In this category Ni-Ti orthodontic archwires is one of the oldest used materials. Biocompatibility, corrosion resistance, super elasticity, etc. are its outstanding properties. In spite of the importance of dependency of pre-strain on microstructure of Ni-Ti there are limited sources concentrated on the subject. For this reason the main purpose of the current study is determination of the effect of pre-strain on microstructure of Ni-Ti orthodontic archwires. In this regard, three-point bending was performed on the orthodontic archwire specimens to apply different amount of strain. The microstructures were compared with the un-strained wire using optical and scanning electron microscopes. The results showed that the stable phase depends strongly on the value of pre-strain. Increasing pre-strain causes to decrease martensite laths and leads the microstructure toward austenite phase

  19. User's guide to MITRE, a stress analysis program for Mitred pipe bends

    International Nuclear Information System (INIS)

    Beveridge, D.C.; Carmichael, G.D.T.

    1977-12-01

    The MITRE computer program calculates the flexibility factor, circumferential and longitudinal inside and outside surface bending stress ratio, pressure stresses, and total stresses around the mitre section at both the mid and edge section locations of a pressurised multimitred bend under in and/or out of plane bending. Additionally, the circumferential and longitudinal strains, equivalent stress (Mises and Tresca), principal stresses, and total stresses perpendicular and parallel to the edge section at the inside and outside surfaces are calculated for the edge section. The stresses sustained by single mitres subjected to internal pressure can also be evaluated for bends with either 'long' or 'short' leg lengths. Results are tabulated and plotted in graphical form on the line printer. (author)

  20. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    Science.gov (United States)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  1. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki

    2000-01-01

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  2. Measurement of internal forces in superconducting accelerator magnets with strain gauge transducers

    International Nuclear Information System (INIS)

    Goodzeit, C.L.; Anerella, M.D.; Ganetis, G.L.

    1988-01-01

    An improved method has been developed for the measurement of internal forces in superconducting accelerator magnets, in particular the compressive stresses in coils and the end restraint forces on the coils. The transducers have been designed to provide improved sensitivity to purely mechanical strain by using bending mode deflections for sensing the applied loads. Strain gauge resistance measurements are made with a new system that eliminates sources of errors due to spurious resistance changes in interconnecting wiring and solder joints. The design of the transducers and their measurement system is presented along with a discussion of the method of compensation for thermal and magnetic effects, methods of calibration with typical calibration data, and measured effect in actual magnets of the thermal stress changes from cooldown and the Lorentz forces during magnet excitation. 13 figs., 1 tab

  3. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    International Nuclear Information System (INIS)

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  4. Phonon dispersion evolution in uniaxially strained aluminum crystal

    Science.gov (United States)

    Parthasarathy, Ranganathan; Misra, Anil; Aryal, Sitaram; Ouyang, Lizhi

    2018-04-01

    The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the Δ , Λ and Σ lines of the first Brillouin zone under tension, transverse phonon branches along the Λ line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry Δ line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.

  5. High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karamched, Phani S., E-mail: phani.karamched@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-01-15

    Cross-correlation-based analysis of electron back-scatter diffraction (EBSD) patterns has been used to obtain high angular resolution maps of lattice rotations and elastic strains near carbides in a directionally solidified superalloy MAR-M-002. Lattice curvatures were determined from the EBSD measurements and used to estimate the distribution of geometrically necessary dislocations (GNDs) induced by the deformation. Significant strains were induced by thermal treatment due to the lower thermal expansion coefficient of the carbide inclusions compared to that of the matrix. In addition to elastic strains the mismatch was sufficient to have induced localized plastic deformation in the matrix leading to a GND density of 3 x 10{sup 13} m{sup -2} in regions around the carbide. Three-point bending was then used to impose strain levels within the range {+-}12% across the height of the bend bar. EBSD lattice curvature measurements were then made at both carbide-containing and carbide-free regions at different heights across the bar. The average GND density increases with the magnitude of the imposed strain (both in tension and compression), and is markedly higher near the carbides particles. The higher GND densities near the carbides (order of 10{sup 14} m{sup -2}) are generated by the large strain gradients produced around the plastically rigid inclusion during mechanical deformation with some minor contribution from the pre-existing residual deformation caused by the thermal mismatch between carbide and nickel matrix.

  6. Yield strengths of tungsten-base composites determined from bend tests

    International Nuclear Information System (INIS)

    Zukas, E.G.; Eash, D.T.

    1976-08-01

    The variation in yield strength with either strain rate or temperature was determined for a number of tungsten-base composites by use of the simple three-point bend test. The yield strengths were comparable with those obtained in standard tensile tests. Additional studies on 1019 steel, either in the as-rolled or annealed condition, gave results in agreement with handbook values, as did two aluminum alloys. These results demonstrate that the bend test deserves wider acceptance in materials testing programs

  7. Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai, E-mail: kaizhou@aliyun.com; Liu, Bin; Shao, Shaofeng; Yao, Yijun

    2017-04-04

    Molecular dynamics simulations are used to investigate uniaxial tension and compression of nanocrystalline copper with mean grain sizes of 3.8–11.9 nm. The simulation results show an apparent asymmetry in the flow stress, with nanocrystalline copper stronger in compression than in tension. The asymmetry exhibits a maximum at the mean grain size of about 10 nm. The dominant mechanism of the asymmetry depends on the mean grain size. At small grain sizes, grain-boundary based plasticity dominates the asymmetry, while for large grain sizes the asymmetry mainly arises from the pressure dependent dislocation emission from grain boundaries. - Highlights: • The tension–compression asymmetry in strength exhibits a maximum at the mean grain size of about 10 nm. • The main mechanisms govern the asymmetry are grain-boundary mediated plasticity and dislocation based plasticity. • The above-mentioned mechanisms are both grain size and pressure dependent. • The transition of the asymmetry with the mean grain size is not influenced by strain rate.

  8. A bend thickness sensitivity study of Candu feeder piping

    International Nuclear Information System (INIS)

    Li, M.; Aggarwal, M.L.; Meysner, A.; Micelotta, C.

    2005-01-01

    In CANDU reactors, feeder bends close to the connection at the fuel channel may be subjected to the highest Flow Accelerated Corrosion (FAC) and stresses. Feeder pipe stress analysis is crucial in the life extension of aging CANDU plants. Typical feeder pipes are interconnected by upper link plates and spacers. It is well known that the stresses at the bends are sensitive to the local bend thicknesses. It is also known from the authors' study (Li and et al, 2005) that feeder inter linkage effect is significant and cannot be ignored. The field measurement of feeder bend thickness is difficult and may be subjected to uncertainty in accuracy. Hence, it is desirable to know how the stress on a subject feeder could be affected by the bend thickness variation of the neighboring feeders. This effect cannot be evaluated by the traditional 'single' feeder model approach. In this paper, the 'row' and 'combined' models developed in the previous study (Li and et al, 2005), which include the feeder interactions, are used to investigate the sensitivity of bend thickness. A series of random thickness bounded by maximum and minimum measured values were applied to feeders in the model. The results show that an individual feeder is not sensitive to the bend thickness variation of the remaining feeders in the model, but depends primarily on its own bend thickness. The highest stress at a feeder always occurs when the feeder has the smallest possible bend thickness. A minimum acceptable bend thickness for individual feeders can be computed by an iterative computing process. The dependency of field thickness measurement and the amount of required analysis work can be greatly reduced. (authors)

  9. Pressurizer safety valve serviceability enhancement by spring compression stability

    Energy Technology Data Exchange (ETDEWEB)

    Ratiu, M.D.; Moisidis, N.T. [California Consulting Engineering and Technology (CALCET), San Leandro, California (United States)

    2007-07-01

    The proactive maintenance of the spring-loaded-self-actuated Pressurizer Safety Valve (PSV) has caused frequent concerns pertaining the spring self actuated reliability due to set point drift, spurious openings, and seat leakage. The exhaustive testing performed on a Crosby PSV model 6M6 has revealed that the principal cause of these malfunctions is the spring compression elastic instability during service. The spring lateral deformations measurements performed validated the analytical shapes for spring compression: symmetrical bending - for coaxial supported ends - restraining any support displacement, and asymmetrical bending induced by the potential misalignment of the supported top end. The source of the spring compression instability appears on the tested Crosby PSV induced by the top end lateral displacement during long term operation. The testing with restrained displacement at the spring top has shown consistent set-point reproducibility, less than +/- 1 per cent. To eliminate the asymmetrical spring buckling, a design review of the PSV is proposed including the guided fixture at the top and the decrease of spring coil slenderness ratio H/D, corresponding to the general analytical elastic stability for the asymmetrical compression. (authors)

  10. Pressurizer safety valve serviceability enhancement by spring compression stability

    International Nuclear Information System (INIS)

    Ratiu, M.D.; Moisidis, N.T.

    2007-01-01

    The proactive maintenance of the spring-loaded-self-actuated Pressurizer Safety Valve (PSV) has caused frequent concerns pertaining the spring self actuated reliability due to set point drift, spurious openings, and seat leakage. The exhaustive testing performed on a Crosby PSV model 6M6 has revealed that the principal cause of these malfunctions is the spring compression elastic instability during service. The spring lateral deformations measurements performed validated the analytical shapes for spring compression: symmetrical bending - for coaxial supported ends - restraining any support displacement, and asymmetrical bending induced by the potential misalignment of the supported top end. The source of the spring compression instability appears on the tested Crosby PSV induced by the top end lateral displacement during long term operation. The testing with restrained displacement at the spring top has shown consistent set-point reproducibility, less than +/- 1 per cent. To eliminate the asymmetrical spring buckling, a design review of the PSV is proposed including the guided fixture at the top and the decrease of spring coil slenderness ratio H/D, corresponding to the general analytical elastic stability for the asymmetrical compression. (authors)

  11. Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry

    International Nuclear Information System (INIS)

    Leighton, Glenn J T; Huang, Zhaorong

    2010-01-01

    One of the major difficulties in measuring the piezoelectric coefficient d 33,f for thin films is the elimination of the contribution from substrate bending. We show by theoretical analysis and experimental measurements that by bonding thin film piezoelectric samples to a substantial holder, the substrate bending can be minimized to a negligible level. Once the substrate bending can be effectively eliminated, single-beam laser scanning vibrometry can be used to measure the precise strain distribution of a piezoelectric thin film under converse actuation. A significant strain increase toward the inside edge of the top electrode (assuming a fully covered bottom electrode) and a corresponding strain peak in the opposite direction just outside the electrode edge were observed. These peaks were found to increase with the increasing Poisson's ratio and transverse piezoelectric coefficient of the piezoelectric thin film. This is due to the non-continuity of the electric field at the edge of the top electrode, which leads to the concentration of shear stress and electric field in the vicinity of the electrode edge. The measured d 33,f was found to depend not only on the material properties such as the electromechanical coefficients of the piezoelectric thin films and elastic coefficients of the thin film and the substrate, but also on the geometry factors such as the thickness of the piezoelectric films, the dimensions of the electrode, and also the thickness of the substrate

  12. Strain dependence of interfacial antiferromagnetic coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices

    Science.gov (United States)

    Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; Guo, Er-Jia; Rata, Diana; Dörr, Kathrin

    2015-03-01

    We have investigated the magnetic response of La0.7Sr0.3MnO3/SrRuO3 superlattices to biaxial in-plane strain applied in-situ. Superlattices grown on piezoelectric substrates of 0.72PbMg1/3Nb2/3O3-0.28PbTiO3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of μ0HAF = 1.8 T is found to change by μ0 ΔHAF / Δɛ ~ -520 mT %-1 under reversible biaxial strain (Δɛ) at 80 K in a [La0.7Sr0.3MnO3(22 Å)/SrRuO3(55 Å)]15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic order in the manganite layers which are under as-grown tensile strain. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface, since the enhanced magnetic order of Mn spins leads to a larger net coupling of SrRuO3 layers at the interface. We discuss our experimental findings taken into account both the strain-dependent orbital occupation in a single-ion picture and the enhanced Mn order at the interface. This work was supported by the DFG within the Collaborative Research Center SFB 762 ``Functionality of Oxide Interfaces.''

  13. Tunable strain gauges based on two-dimensional silver nanowire networks

    International Nuclear Information System (INIS)

    Ho, Xinning; Cheng, Chek Kweng; Tey, Ju Nie; Wei, Jun

    2015-01-01

    Strain gauges are used in various applications such as wearable strain gauges and strain gauges in airplanes or structural health monitoring. Sensitivity of the strain gauge required varies, depending on the application of the strain gauge. This paper reports a tunable strain gauge based on a two-dimensional percolative network of silver nanowires. By varying the surface coverage of the nanowire network and the waviness of the nanowires in the network, the sensitivity of the strain gauge can be controlled. Hence, a tunable strain gauge can be engineered, based on demands of the application. A few applications are demonstrated. The strain gauge can be adhered to the human neck to detect throat movements and a glove integrated with such a strain gauge can detect the bending of the forefinger. Other classes of two-dimensional percolative networks of one-dimensional materials are also expected to exhibit similar tunable properties. (paper)

  14. Band gap engineering of MoS{sub 2} upon compression

    Energy Technology Data Exchange (ETDEWEB)

    López-Suárez, Miquel, E-mail: miquel.lopez@nipslab.org [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia (Italy); Neri, Igor [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia (Italy); INFN Sezione di Perugia, via Pascoli, 06123 Perugia (Italy); Rurali, Riccardo [Institut de Ciència de Materials de Barcelona (ICMAB–CSIC) Campus de Bellaterra, 08193 Bellaterra, Barcelona (Spain)

    2016-04-28

    Molybdenum disulfide (MoS{sub 2}) is a promising candidate for 2D nanoelectronic devices, which shows a direct band-gap for monolayer structure. In this work we study the electronic structure of MoS{sub 2} upon both compressive and tensile strains with first-principles density-functional calculations for different number of layers. The results show that the band-gap can be engineered for experimentally attainable strains (i.e., ±0.15). However, compressive strain can result in bucking that can prevent the use of large compressive strain. We then studied the stability of the compression, calculating the critical strain that results in the on-set of buckling for free-standing nanoribbons of different lengths. The results demonstrate that short structures, or few-layer MoS{sub 2}, show semi-conductor to metal transition upon compressive strain without bucking.

  15. Yield stress determination from miniaturized disk bend test data

    International Nuclear Information System (INIS)

    Sohn, D.S.; Kohse, G.; Harling, O.K.

    1985-04-01

    Methodology for testing 3.0 mm diameter by 0.25 mm thick disks by bending in a punch and die has been described previously. This paper describes the analysis of load/deflection data from such miniaturized disk bend tests (MDBT) using a finite element simulation. Good simulation has been achieved up to a point just beyond the predominantly elastic response, linear initial region. The load at which deviation from linearity begins has been found to correlate with yield stress, and yield stress has been successfully extracted from disk bend tests of a number of known materials. Although finite element codes capable of dealing with large strains and large rotations have been used, simulation of the entire load/deflection curve up to fracture of the specimen has not yet been achieved

  16. Crack initiation and fracture features of Fe–Co–B–Si–Nb bulk metallic glass during compression

    Directory of Open Access Journals (Sweden)

    S. Lesz

    2016-01-01

    Full Text Available The aim of the paper was investigation crack initiation and fracture features developed during compression of Fe-based bulk metallic glass (BMG. These Fe-based BMG has received great attention as a new class of structural material due to an excellent properties (e.g. high strength and high elasticity and low costs. However, the poor ductility and brittle fracture exhibited in BMGs limit their structural application. At room temperature, BMGs fails catastrophically without appreciable plastic deformation under tension and only very limited plastic deformation is observed under compression or bending. Hence a well understanding of the crack initiation and fracture morphology of Fe-based BMGs after compression is of much importance for designing high performance BMGs. The raw materials used in this experiment for the production of BMGs were pure Fe, Co, Nb metals and nonmetallic elements: Si, B. The Fe–Co–B–Si–Nb alloy was cast as rods with three different diameters. The structure of the investigated BMGs rod is amorphous. The measurement of mechanical properties (Young modulus - E, compressive stress - σc, elastic strain - ε, unitary elastic strain energy – Uu were made in compression test. Compression test indicates the rods of Fe-based alloy to exhibit high mechanical strength. The development of crack initiation and fracture morphology after compression of Fe-based BMG were examined with scanning electron microscope (SEM. Fracture morphology of rods has been different on the cross section. Two characteristic features of the compressive fracture morphologies of BMGs were observed. One is the smooth region. Another typical feature of the compressive fracture morphology of BMGs is the vein pattern. The veins on the compressive fracture surface have an obvious direction as result of initial displace of sample along shear bands. This direction follows the direction of the displacement of a material. The formation of veins on the

  17. Conversion of fracture toughness testing values from small scale three point bending test specimens to small scale yielding state (SSY) by elastic-plastic stress analysis

    International Nuclear Information System (INIS)

    Ikonen, K.

    1993-07-01

    The report describes the work performed for achieving readiness to calculate fracture toughness dependence on dimension effects and loading conditions in fracture test specimens and real structures. In the report two- and three-dimensional computer codes developed and calculational methods applied are described. One of the main goals is to converse fracture toughness from small scale three point bending test specimens to case of a depth crack in plane strain i.e. to small scale yielding state (SSY) by numerical elastic-plastic stress analysis. Thickness effect of a test specimens and effect of a crack depth are separately investigated. Tests of three point bending specimens with and without sidegrooves and curved crack front are numerically simulated and experimental and computed results are compared. J-integral is calculated along crack front and also from force-deflection dependence of the beam. For the analyses the computing system was thoroughly automatized. Measuring capacity of three point bending test specimens was tried to evaluate. (orig.) (7 refs., 54 figs.)

  18. Health, family strains, dependency, and life satisfaction of older adults.

    Science.gov (United States)

    Chokkanathan, Srinivasan; Mohanty, Jayashree

    2017-07-01

    Using stress process theory and structural equation modelling, this study investigated the complex relationship between health status, family strain, dependency, and the life satisfaction of rural older adults with reported functional impairments in India. Data were extracted from a large-scale study of 903 randomly selected adults aged 61 years and older from 30 rural clusters of India. The sample for this study was confined to 653 older adults who reported functional impairments. Structural equation modelling showed that poor health status indirectly lowered the life satisfaction of older adults through family strains. Moreover, poor health status also indirectly influenced life satisfaction through dependency and family strain (poor health→dependency→family strains→life satisfaction). The findings indicate that for professionals who deal with the health of older adults, exploring relationship strains and dependency is vital to the assessment and intervention of subjective wellbeing. Inter-sectoral coordination and communication between healthcare and social service agencies might facilitate effective management of health problems among older adults. Moreover, taking family strains and dependency into account when caring for older adults with health problems is critical to help improve their quality of life and maintain their wellbeing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Analysis of stress-strain behavior in Bi2223 composite tapes

    International Nuclear Information System (INIS)

    Sugano, M.; Osamura, K.; Nyilas, A.

    2004-01-01

    Tensile test was carried out for Bi2223/Ag/Ag alloy composite tapes at RT, 77 and 7 K. Two yielding points are observed in the stress-strain curves. From the stress-strain behavior of the components and critical current (I c ) as a function of tensile strain, it was found that the microscopic reason for these yieldings is attributed to yielding of Ag alloy and fracture of Bi2223, respectively. The strain at the second yielding has temperature dependence and it becomes larger with decreasing measured temperature. From the thermo-mechanical analysis, it can be explained by temperature dependence of compressive residual strain of Bi2223. Reversible recovery of I c was found during loading-unloading test. The relationship between the reversible strain limit and the intrinsic strain of Bi2223 was discussed

  20. Compression of thick laminated composite beams with initial impact-like damage

    Science.gov (United States)

    Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.

    1992-01-01

    While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.

  1. Stress state dependence of transient irradiation creep in 20% cold worked 316 stainless steel

    International Nuclear Information System (INIS)

    Foster, J.P.; Gilbert, E.R.

    1998-01-01

    Irradiation creep tests were performed in fast reactors using the stress states of uniaxial tension, biaxial tension, bending and torsion. In order to compare the saturated transient strain irradiation creep component, the test data were converted to equivalent strain and equivalent stress. The saturated transient irradiation creep component was observed to depend on the stress state. The highest value was exhibited by the uniaxial tension stress state, and the lowest by the torsion stress state. The biaxial tension and bending stress state transient component values were intermediate. This behavior appears to be related to the dislocation or microscopic substructure resulting from fabrication processing and the applied stress direction. (orig.)

  2. Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, Elaheh [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Javanbakht, Mehran, E-mail: mehranjavanbakht@gmail.com [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Fuel and Solar Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Mozaffari, Sayed Ahmad [Fuel and Solar Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Thin Layer and Nanotechnology Laboratory, Department of Chemical Technology, Iranian Research Organization for Science and Technology (IROST), Tehran (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • SO{sub 3}H-graphene supported PtFeCo alloy nanoparticles were prepared. • Co:Fe atomic ratio plays important role in the electrocatalytic performance. • PtCoFe/SG with 7:3 Co:Fe atomic ratio is optimized for PEMFCs. • Power density of 530 mW cm{sup −2} with 0.1 mg cm{sup −2} Pt loading was obtained at 75 °C. - Abstract: The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO{sub 3}− groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm{sup −2} Pt) reaches to a maximum of 530 mW cm{sup −2} at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.

  3. Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene

    International Nuclear Information System (INIS)

    Lohrasbi, Elaheh; Javanbakht, Mehran; Mozaffari, Sayed Ahmad

    2017-01-01

    Highlights: • SO_3H-graphene supported PtFeCo alloy nanoparticles were prepared. • Co:Fe atomic ratio plays important role in the electrocatalytic performance. • PtCoFe/SG with 7:3 Co:Fe atomic ratio is optimized for PEMFCs. • Power density of 530 mW cm"−"2 with 0.1 mg cm"−"2 Pt loading was obtained at 75 °C. - Abstract: The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO_3− groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm"−"2 Pt) reaches to a maximum of 530 mW cm"−"2 at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.

  4. Fuzzy model for Laser Assisted Bending Process

    Directory of Open Access Journals (Sweden)

    Giannini Oliviero

    2016-01-01

    Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.

  5. Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number

    DEFF Research Database (Denmark)

    Jafeen, Mohamed J.M.; Careem, Mohamed A.; Skaarup, Steen

    2010-01-01

    Polypyrrole films have been characterized by simultaneous cyclic voltammetry driven force-displacement measurements. The aim was to clarify the role of cations in the electrolyte on the speed of response and on the strain of the film. The strain as a function of actuation frequency was studied in...... frequencies, the strain depends almost exclusively on insertion of strongly solvated cations and therefore depends on the hydration number of the cations: Li+ (hydration number ~5.4) gives more strain than Na+ (~4.4) and much more than Cs+ (~0) as predicted by the model....

  6. Methodology for definition of bending radius and pullback force in HDD (Horizontal Directional Drilling) operations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Danilo Machado L. da; Rodrigues, Marcos V. [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Venaas, Asle [Det Norske Veritas (DNV), Oslo (Norway); Medeiros, Antonio Roberto de [Subsea 7 (Brazil)

    2009-12-19

    Bending is a primary loading experienced by pipelines during installation and operation. Significant bending in the presence of tension is experienced during installation by the S-lay method, as the pipe conforms to the curvature of the stinger and beyond in the over bend region. Bending in the presence of external pressure is experienced in the sag bend of all major installation methods (e.g., reeling, J-lay, S-lay) as well as in free-spans on the sea floor. Bending is also experienced by pipelines during installation by horizontal directional drilling. HDD procedures are increasingly being utilized around the world not only for crossings of rivers and other obstacles but also for shore approach of offshore pipelines. During installation the pipeline experience a combination of tensile, bending, and compressive stresses. The magnitude of these stresses is a function of the approach angle, bending radius, pipe diameter, length of the borehole, and the soil properties at the site. The objective of this paper is to present an overview of some aspects related to bending of the product pipe during HDD operations, which is closely related to the borehole path as the pipeline conforms to the curvature of the hole. An overview of the aspects related to tensile forces is also presented. The combined effect of bending and tensile forces during the pullback operation is discussed. (author)

  7. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.

    Science.gov (United States)

    Kieser, Jules A; Weller, Sarah; Swain, Michael V; Neil Waddell, J; Das, Raj

    2013-07-01

    Despite numerous studies on high impact fractures of ribs, little is known about compressive rib injuries. We studied rib fractures from a biomechanical and morphological perspective using 15, 5th ribs of domestic pigs Sus scrofa, divided into two groups, desiccated (representing post-mortem trauma) and fresh ribs with intact periosteum (representing peri-mortem trauma). Ribs were axially compressed and subjected to four-point bending in an Instron 3339 fitted with custom jigs. Morphoscopic analysis of resultant fractures consisted of standard optical methods, micro-CT (μCT) and scanning electron microscopy (SEM). During axial compression, fresh ribs had slightly higher strength because of energy absorption capabilities of their soft and fluidic components. In flexure tests, dry ribs showed typical elastic-brittle behaviour with long linear load-extension curves, followed by relatively short non-linear elastic (hyperelastic) behaviour and brittle fracture. Fresh ribs showed initial linear-elastic behaviour, followed by strain softening, visco-plastic responses. During the course of loading, dry bone showed minimal observable damage prior to the onset of unstable fracture. In contrast, fresh bone showed buckling-like damage features on the compressive surface and cracking parallel to the axis of the bone. Morphologically, all dry ribs fractured precipitously, whereas all but one of the fresh ribs showed incomplete fracture. The mode of fracture, however, was remarkably similar for both groups, with butterfly fractures predominating (7/15, 46.6% dry and wet). Our study highlights the fact that under controlled loading, despite seemingly similar butterfly fracture morphology, fresh ribs (representing perimortem trauma) show a non-catastrophic response. While extensive strain softening observed for the fresh bone does show some additional micro-cracking damage, it appears that the periosteum may play a key role in imparting the observed pseudo-ductility to the ribs

  8. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features

    International Nuclear Information System (INIS)

    Deo, Omkar; Neithalath, Narayanan

    2010-01-01

    Research highlights: → Identified the relevant pore structure features of pervious concretes, provided methodologies to extract those, and quantified the influence of these features on compressive response. → A model for stress-strain relationship of pervious concretes, and relationship between model parameters and parameters of the stress-strain relationship developed. → Statistical model for compressive strength as a function of pore structure features; and a stochastic model for the sensitivity of pore structure features in strength prediction. - Abstract: Properties of a random porous material such as pervious concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the material structure-compressive response relationships in pervious concretes. Several pervious concrete mixtures with different pore structure features are proportioned and subjected to static compression tests. The pore structure features such as pore area fractions, pore sizes, mean free spacing of the pores, specific surface area, and the three-dimensional pore distribution density are extracted using image analysis methods. The compressive stress-strain response of pervious concretes, a model to predict the stress-strain response, and its relationship to several of the pore structure features are outlined. Larger aggregate sizes and increase in paste volume fractions are observed to result in increased compressive strengths. The compressive response is found to be influenced by the pore sizes, their distributions and spacing. A statistical model is used to relate the compressive strength to the relevant pore structure features, which is then used as a base model in a Monte-Carlo simulation to evaluate the sensitivity of the predicted compressive strength to the model terms.

  9. Compressive response and deformation mechanisms of vertically aligned helical carbon nanotube forests

    Science.gov (United States)

    Scheffer, V. C.; Thevamaran, R.; Coluci, V. R.

    2018-01-01

    We study the dynamic compressive response of vertically aligned helical carbon nanotube forests using a mesoscale model. To describe the compressive response, the model includes the helical geometry of the constituent coils, the entanglement between neighboring coils, and the sideway interactions among coils. Coarse-grained simulations show forest densification and stress localization, which are caused by different deformation mechanisms such as coil packing, buckling, and crushing. We find that these mechanisms depend on the initial overlap between coils and lead to a nonlinear stress-strain behavior that agrees with recent impact experiments. The nonlinear stress-strain behavior was shown to be composed of an initial linear increase of stress in strain followed by an exponential growth. These regimes are an outcome of the characteristics of both the individual coils and the entangled morphology of the forests.

  10. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.

    Science.gov (United States)

    Enns-Bray, William S; Ferguson, Stephen J; Helgason, Benedikt

    2018-05-03

    There is currently a knowledge gap in scientific literature concerning the strain rate dependent properties of trabecular bone at intermediate strain rates. Meanwhile, strain rates between 10 and 200/s have been observed in previous dynamic finite element models of the proximal femur loaded at realistic sideways fall speeds. This study aimed to quantify the effect of strain rate (ε̇) on modulus of elasticity (E), ultimate stress (σ u ), failure energy (U f ), and minimum stress (σ m ) of trabecular bone in order to improve the biofidelity of material properties used in dynamic simulations of sideways fall loading on the hip. Cylindrical cores of trabecular bone (D = 8 mm, L gauge  = 16 mm, n = 34) from bovine proximal tibiae and distal femurs were scanned in µCT (10 µm), quantifying apparent density (ρ app ) and degree of anisotropy (DA), and subsequently impacted within a miniature drop tower. Force of impact was measured using a piezoelectric load cell (400 kHz), while displacement during compression was measured from high speed video (50,000 frames/s). Four groups, with similar density distributions, were loaded at different impact velocities (0.84, 1.33, 1.75, and 2.16 m/s) with constant kinetic energy (0.4 J) by adjusting the impact mass. The mean strain rates of each group were significantly different (p < 0.05) except for the two fastest impact speeds (p = 0.09). Non-linear regression models correlated strain rate, DA, and ρ app with ultimate stress (R 2  = 0.76), elastic modulus (R 2  = 0.63), failure energy (R 2  = 0.38), and minimum stress (R 2  = 0.57). These results indicate that previous estimates of σ u could be under predicting the mechanical properties at strain rates above 10/s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Optical-fiber strain sensors with asymmetric etched structures.

    Science.gov (United States)

    Vaziri, M; Chen, C L

    1993-11-01

    Optical-fiber strain gauges with asymmetric etched structures have been analyzed, fabricated, and tested. These sensors are very sensitive with a gauge factor as high as 170 and a flat frequency response to at least 2.7 kHz. The gauge factor depends on the asymmetry of the etched structures and the number of etched sections. To understand the physical principles involved, researchers have used structural analysis programs based on a finite-element method to analyze fibers with asymmetric etched structures under tensile stress. The results show that lateral bends are induced on the etched fibers when they are stretched axially. To relate the lateral bending to the optical attenuation, we have also employed a ray-tracing technique to investigate the dependence of the attenuation on the structural deformation. Based on the structural analysis and the ray-tracing study parameters affecting the sensitivity have been studied. These results agree with the results of experimental investigations.

  12. Morphological evolution and internal strain mapping of pomelo peel using X-ray computed tomography and digital volume correlation

    KAUST Repository

    Wang, B.

    2017-10-15

    Cellular microstructures within natural materials enlighten and promote the development of novel materials and structures in the industrial and engineering fields. Characterization of the microstructures and mechanical properties of these natural materials can help to understand the morphology-related mechanical properties and guide the structural optimization in industrial design. Among these natural cellular materials, pomelo peels, having a foam-like hierarchical microstructure, represent an ideal model for developing materials with high energy absorption efficiency. In this work, by combining X-ray tomographic imaging technique and digital volume correlation (DVC), in-situ stepwise uniaxial compression tests were performed to quantify the internal morphological evolution and kinematic responses of pomelo peel samples during compression. Via these experiments, the varying microstructure features and thus diverse resistance to compression from endocarp to exocarp are examined, and the evolution of both bundles bending and large strain domain from endocarp to mesocarp are explored. Based on the experimental results, the microstructure-related mechanical properties of pomelo peels in response to compressive loading that demonstrates nearly linear morphology-mechanics relationship were revealed.

  13. 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions

    International Nuclear Information System (INIS)

    Pone, J. Denis N.; Halleck, Phillip M.; Mathews, Jonathan P.

    2010-01-01

    Sequestration of carbon dioxide in unmineable coal seams is an option to combat climate change and an opportunity to enhance coalbed methane production. Prediction of sequestration potential in coal requires characterization of porosity, permeability, sorption capacity and the magnitude of swelling due to carbon dioxide uptake or shrinkage due to methane and water loss. Unfortunately, the majority of data characterizing coal-gas systems have been obtained from powdered, unconfined coal samples. Little is known about confined coal behavior during carbon dioxide uptake and methane desorption. The present work focuses on the characterization of lithotype specific deformation, and strain behavior during CO 2 uptake at simulated in-situ stress conditions. It includes the evaluation of three-dimensional strain induced by the confining stress, the sorption, and the desorption of carbon dioxide. X-ray computed tomography allowed three-dimensional characterization of the bituminous coal deformation samples under hydrostatic stress. The application of 6.9 MPa of confining stress contributes an average of - 0.34% volumetric strain. Normal strains due to confining stress were - 0.08%, - 0.15% and - 0.11% along the x, y and z axes respectively. Gas injection pressure was 3.1 MPa and the excess sorption was 0.85 mmol/g. Confined coal exposed to CO 2 for 26 days displays an average volumetric expansion of 0.4%. Normal strains due to CO 2 sorption were 0.11%, 0.22% and 0.11% along x, y and z axes. Drainage of the CO 2 induced an average of - 0.33% volumetric shrinkage. Normal strains due to CO 2 desorption were - 0.23%, - 0.08% and - 0.02% along x, y and z axes. Alternating positive and negative strain values observed along the sample length during compression, sorption and desorption respectively emphasized that both localized compression/compaction and expansion of coal will occur during CO 2 sequestration. (author)

  14. Assessment of compressive failure process of cortical bone materials using damage-based model.

    Science.gov (United States)

    Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R

    2017-02-01

    The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Masadeh, A S; Bozin, E S; Farrow, C L; Paglia, G; Juhas, P; Billinge, S J. L.; Karkamkar, A; Kanatzidis, M G [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1116 (United States)

    2007-09-15

    The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2 to 4 nm, has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is {approx}50%. The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2 nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach.

  16. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  17. Influence of flock coating on bending rigidity of woven fabrics

    Science.gov (United States)

    Ozdemir, O.; Kesimci, M. O.

    2017-10-01

    This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.

  18. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  19. Bunch compression for an FEL at NLCTA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-04-01

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  20. The ratchet–shakedown diagram for a thin pressurised pipe subject to additional axial load and cyclic secondary global bending

    International Nuclear Information System (INIS)

    Bradford, R.A.W.; Tipping, D.J.

    2015-01-01

    The ratchet and shakedown boundaries are derived analytically for a thin cylinder composed of elastic-perfectly plastic Tresca material subject to constant internal pressure with capped ends, plus an additional constant axial load, F, and a cycling secondary global bending load. The analytic solution is in good agreement with solutions found using the linear matching method. When F is tensile, ratcheting can occur for sufficiently large cyclic bending loads in which the pipe gets longer and thinner but its diameter remains the same. When F is compressive, ratcheting can occur in which the pipe diameter increases and the pipe gets shorter, but its wall thickness remains the same. When subject to internal pressure and cyclic bending alone (F = 0), no ratcheting is possible, even for arbitrarily large bending loads, despite the presence of the axial pressure load. The reason is that the case with a primary axial membrane stress exactly equal to half the primary hoop membrane stress is equipoised between tensile and compressive axial ratcheting, and hence does not ratchet at all. This remarkable result appears to have escaped previous attention. - Highlights: • A thin cylinder is subject to pressure and cyclic global bending and additional axial load. • Ratchet and shakedown boundaries are derived analytically and using LMM. • Good agreement is found. • No ratcheting occurs for zero additional axial load.

  1. Determination of friction coefficient in unconfined compression of brain tissue.

    Science.gov (United States)

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  3. Context-dependent JPEG backward-compatible high-dynamic range image compression

    Science.gov (United States)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  4. Unconventional strain-dependent conductance oscillations in pristine phosphorene.

    Science.gov (United States)

    Ray, S J; Kamalakar, M Venkata

    2018-05-16

    Phosphorene is a single elemental, two-dimensional semiconductor that has quickly emerged as a high mobility material for transistors and optoelectronic devices. In addition, being a 2D material it can sustain high levels of strain, enabling sensitive modification of its electronic properties. In this paper, we investigate the strain dependent electronic properties of phosphorene nanocrystals. By performing extensive calculations we determine the electrical conductance as a function of uniaxial, as well as biaxial strain stimuli and uncover a unique zone phase diagram. This enables us to uncover conductance oscillations in pristine phosphorene for the first time, by the simple application of strain. We show that such unconventional current-voltage behaviour is tuneable by the nature of strain, and that an additional gate voltage can modulate the amplitude (peak to valley ratio) of the observed phenomena and its switching efficiency. Furthermore, we show that the switching is highly robust against doping and defects. Our detailed results present new leads for innovation in strain based gauging and high-frequency nanoelectronic switches of phosphorene.

  5. Span-Dependent Distributions of the Bending Strength of Spruce Timber

    DEFF Research Database (Denmark)

    Ditlevsen, Ove; Källsner, Bo

    2005-01-01

    Tests data of bending strengths of a large number of timber beams of different spans obtained at the Swedish Institute for Wood Technology Research reveal a statistical structure that can be represented in a simple probabilistic model of series system type. A particular feature of the data from one...

  6. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  7. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation.

    Science.gov (United States)

    Hanassy, S; Botvinnik, A; Flash, T; Hochner, B

    2015-05-13

    The bend propagation involved in the stereotypical reaching movement of the octopus arm has been extensively studied. While these studies have analyzed the kinematics of bend propagation along the arm during its extension, possible length changes have been ignored. Here, the elongation profiles of the reaching movements of Octopus vulgaris were assessed using three-dimensional reconstructions. The analysis revealed that, in addition to bend propagation, arm extension movements involve elongation of the proximal part of the arm, i.e., the section from the base of the arm to the propagating bend. The elongations are quite substantial and highly variable, ranging from an average strain along the arm of -0.12 (i.e. shortening) up to 1.8 at the end of the movement (0.57 ± 0.41, n = 64 movements, four animals). Less variability was discovered in an additional set of experiments on reaching movements (0.64 ± 0.28, n = 30 movements, two animals), where target and octopus positions were kept more stationary. Visual observation and subsequent kinematic analysis suggest that the reaching movements can be broadly segregated into two groups. The first group involves bend propagation beginning at the base of the arm and propagating towards the arm tip. In the second, the bend is formed or present more distally and reaching is achieved mainly by elongation and straightening of the segment proximal to the bend. Only in the second type of movements is elongation significantly positively correlated with the distance of the bend from the target. We suggest that reaching towards a target is generated by a combination of both propagation of a bend along the arm and arm elongation. These two motor primitives may be combined to create a broad spectrum of reaching movements. The dynamical model, which recapitulates the biomechanics of the octopus muscular hydrostatic arm, suggests that achieving the observed elongation requires an extremely low ratio of longitudinal to transverse muscle

  8. Mass transfer coefficient factor in pipe bend - 3 D CFD analysis

    International Nuclear Information System (INIS)

    Prasad, Mahendra; Gaikwad, Avinash J.; Madasamy, P.; Krishnamohan, T.V.; Velumurugan, S.; Sridharan, Arunkumar; Parida, Smrutiranjan

    2015-01-01

    In power industries Flow Accelerated Corrosion (FAC) has been a concern for pipe wall thinning where high velocity fluid at elevated temperatures is used. Even straight pipes are found to have non uniform corrosion and this is enhanced in junctions such as bends, orifices etc. Mass transfer coefficient (MTC) which defines the amount of corrosion changes from its value in straight pipe (with same fluid parameters) for flow in bends, orifice etc due to changes in velocity profile in axial direction. In this paper, 3 D computational fluid dynamics (CFD) simulation is carried out for an experiment on 58° bend angle and 2D bend radius circular carbon steel pipe carrying water at 120°C under neutral pH conditions. The turbulent model K-ω with shear stress transport was used for this purpose. The mass transfer boundary layer (MTBL) thickness δ mtbl depends on Schmidt number (Sc), as δ mtbl ∼ δ h /(Sc 1/3 ). MTBL is significantly smaller than hydrodynamic boundary layer δ h for large Sc, hence boundary layer meshing was carried out deep into δ mtbl . Uniform velocity was applied at the inlet. The flow velocity was 3 m/s at room temperature while the experimental fluid velocity was 7 m/s. Lower value of fluid velocity is chosen due to the limitations of grid size since it depends inversely on fluid velocity. The ratio of MTC in bend to straight pipe is not strongly dependent on Sc. CFD simulation at lower temperature is sufficient to get approximate MTC in bends. The ratio of the mass transfer coefficient at some locations in bend to the straight pipe coefficient (MTCR) is determined through simulation. The MTC increased in the extrados of the bend towards the outlet. (author)

  9. Longitudinally Jointed Edge-wise Compression Honeycomb Composite Sandwich Coupon Testing and FE Analysis: Three Methods of Strain Measurement, and Comparison

    Science.gov (United States)

    Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn; hide

    2013-01-01

    Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.

  10. Two-way shape memory effect induced by repetitive compressive loading cycles

    International Nuclear Information System (INIS)

    Kim, Hyun-Chul; Yoo, Young-Ik; Lee, Jung-Ju

    2009-01-01

    The NiTi alloy can be trained by repetitive loading or heating cycles. As a result of the training, a two-way shape memory effect (TWSME) can be induced. Considerable research has been reported regarding the TWSME trained by tensile loading. However, the TWSME trained by compressive loading has not been investigated nearly as much. In this paper, the TWSME is induced by compressive loading cycles and the two-way shape memory strain is evaluated by using two types of specimen: a solid cylinder type and a tube type. The TWSME trained by compressive loading is different from that trained by tensile loading owing to the severe tension/compression asymmetry as described in previous research. After repetitive compressive loading cycles, strain variation upon cooling is observed, and this result proves that the TWSME is induced by compressive loading cycles. By performing compressive loading cycles, plastic deformation in NiTi alloy occurs more than for tensile loading cycles, which brings about the appearance of TWSME. It can be said that the TWSME is induced by compressive loading cycles more easily. The two-way shape memory strain increases linearly as the maximum strain of compressive loading cycles increases, regardless of the shape and the size of the NiTi alloy; this two-way shape memory strain then shows a tendency towards saturation after some repeated cycles

  11. Proposal of failure criterion applicable to finite element analysis results for wall-thinned pipes under bending load

    Energy Technology Data Exchange (ETDEWEB)

    Meshii, Toshiyuki, E-mail: meshii@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui (Japan); Ito, Yoshiaki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Limit bending load (LBL) of wall-thinned pipe by large strain FEA was considered. Black-Right-Pointing-Pointer Net section yield load had sufficient margin to LBL. Black-Right-Pointing-Pointer LBL for collapse was the load when volume with nominal thickness yielded. Black-Right-Pointing-Pointer LBL for cracking was the load when flawed section stress exceeded tensile strength. Black-Right-Pointing-Pointer Failure criterion considering above was named Domain Collapse Criterion. - Abstract: In this work, a failure criterion applicable to large strain Finite Element Analysis (FEA) results was proposed in order to predict both the fracture mode (collapse or cracking) and the limit bending load of wall-thinned straight pipes. This work was motivated from the recent experimental results of ; that is, fracture mode is not always collapse, and the fracture mode affects the limit bending load. The key finding in comparing their test results and a detailed large strain FEA results was that the Mises stress distribution at the limit bending load of a flawed cylinder was similar to that of a flawless cylinder; specifically, in case of collapse, the Mises stress exceeded the true yield stress of a material for the whole 'volume' of a cylinder with a nominal wall thickness. Based on this finding, a failure criterion applicable to large strain FEA results of wall-thinned straight pipes under a bending load that can predict both fracture mode and limit bending load was proposed and was named the Domain Collapse Criterion (DCC). DCC predicts the limit bending load as the lower value of either the M{sub c}{sup FEA}, which is the load at which the Mises stress exceeds the true yield strength of a straight pipe for the whole 'volume' with a nominal wall thickness (fracture mode: collapse), or the M{sub c}{sup FEAb}, which is the load at which the Mises stress in a section of the flaw ligament exceeds the true tensile stress

  12. Bending Characteristics Change of Long-Period fiber Grating due to Co-doping of Boron for Optical fiber Sensors

    International Nuclear Information System (INIS)

    Moon, Dae Seung; Chung, Young Joo

    2005-01-01

    In long-period fiber grating (LPFG) to be made up optical fiber sensors, resonance coupling occurs between the forward-propagating core mode and cladding modes at the wavelength that satisfy the Phase matching condition. The resonance wavelength and the coupling strength depends strongly on the external environment like temperature, strain, and ambient index. These characteristics can be utilized for various applications as optical fiber sensors. Fabrication of optical fiber gratings is typically based on the photosensitivity effect, i.e. the permanent change of the refractive index upon irradiation of the UV beam, and therefore, fabrication of the optical fiber with high phososensitivity is an important part of the research on optical fiber gratings. In this work, we measured the effort of to-doping of boron on the index difference between the core and cladding of the optical fiber and the sensitivity of the LPFC to the temperature and bending changes. We observed that the index difference between the core and the cladding decreased by (1.69x10 -4 /SCCM) and the temperature sensitivity of the resonance wavelength shirt decreased by (0.01145nm/ .deg. C/SCCM). The dependence or the bending-induced changes or the transmission characteristics of LPFG on the tore-cladding index difference was investigated experimentally. The measurement results indicate that the bending sensitivity increases as the index difference decreases

  13. Electrostatic bending response of a charged helix

    Science.gov (United States)

    Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.

    2018-04-01

    We explore the electrostatic bending response of a chain of charged particles confined on a finite helical filament. We analyze how the energy difference Δ E between the bent and the unbent helical chain scales with the length of the helical segment and the radius of curvature and identify features that are not captured by the standard notion of the bending rigidity, normally used as a measure of bending tendency in the linear response regime. Using Δ E to characterize the bending response of the helical chain we identify two regimes with qualitatively different bending behaviors for the ground state configuration: the regime of small and the regime of large radius-to-pitch ratio, respectively. Within the former regime, Δ E changes smoothly with the variation of the system parameters. Of particular interest are its oscillations with the number of charged particles encountered for commensurate fillings which yield length-dependent oscillations in the preferred bending direction of the helical chain. We show that the origin of these oscillations is the nonuniformity of the charge distribution caused by the long-range character of the Coulomb interactions and the finite length of the helix. In the second regime of large values of the radius-to-pitch ratio, sudden changes in the ground state structure of the charges occur as the system parameters vary, leading to complex and discontinuous variations in the ground state bending response Δ E .

  14. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  15. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    Science.gov (United States)

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  16. 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pone, J. Denis N.; Halleck, Phillip M.; Mathews, Jonathan P. [Department of Energy and Mineral Engineering and The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-01

    Sequestration of carbon dioxide in unmineable coal seams is an option to combat climate change and an opportunity to enhance coalbed methane production. Prediction of sequestration potential in coal requires characterization of porosity, permeability, sorption capacity and the magnitude of swelling due to carbon dioxide uptake or shrinkage due to methane and water loss. Unfortunately, the majority of data characterizing coal-gas systems have been obtained from powdered, unconfined coal samples. Little is known about confined coal behavior during carbon dioxide uptake and methane desorption. The present work focuses on the characterization of lithotype specific deformation, and strain behavior during CO{sub 2} uptake at simulated in-situ stress conditions. It includes the evaluation of three-dimensional strain induced by the confining stress, the sorption, and the desorption of carbon dioxide. X-ray computed tomography allowed three-dimensional characterization of the bituminous coal deformation samples under hydrostatic stress. The application of 6.9 MPa of confining stress contributes an average of - 0.34% volumetric strain. Normal strains due to confining stress were - 0.08%, - 0.15% and - 0.11% along the x, y and z axes respectively. Gas injection pressure was 3.1 MPa and the excess sorption was 0.85 mmol/g. Confined coal exposed to CO{sub 2} for 26 days displays an average volumetric expansion of 0.4%. Normal strains due to CO{sub 2} sorption were 0.11%, 0.22% and 0.11% along x, y and z axes. Drainage of the CO{sub 2} induced an average of - 0.33% volumetric shrinkage. Normal strains due to CO{sub 2} desorption were - 0.23%, - 0.08% and - 0.02% along x, y and z axes. Alternating positive and negative strain values observed along the sample length during compression, sorption and desorption respectively emphasized that both localized compression/compaction and expansion of coal will occur during CO{sub 2} sequestration. (author)

  17. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice.

    Directory of Open Access Journals (Sweden)

    Satoru Tomita

    Full Text Available In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB, which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i the difference between homo- and hetero-lactic fermentative species and ii strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol. Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods.

  18. Magnetic field-induced elastic bending in bilayers of Tb1−xDyxFe2−y and Pb(Zr1−zTiz)O3

    International Nuclear Information System (INIS)

    Jin, Tao; Qichao, Wu; Ning, Zhang

    2014-01-01

    Magnetic field-induced strain in the magnetoelectric bilayers of Tb 1−x Dy x Fe 2−y and Pb(Zr 1−z Ti z )O 3 was studied. A butterfly shaped strain curve was observed on the surface of Pb(Zr 1−z Ti z )O 3 . The shape of the strain curve was found to be related to the sample thickness and the volume fraction occupied by the ferroelectrics in the bilayer. Theoretical analysis and experimental results showed that magnetoelastic bending in the bilayer composites was largely responsible for the butterfly strain curve. - Highlights: • Butterfly strain curves were observed on the PZT surface for bilayers of TDF and PZT. • The strain curve is related to the sample thickness and the volume fraction of the PZT. • A physics model depicting the field-controlled bending of the bilayers was developed. • The magnetoelastic bending was found to account for the butterfly strain curve

  19. Influence of strain on dislocation core in silicon

    Science.gov (United States)

    Pizzagalli, L.; Godet, J.; Brochard, S.

    2018-05-01

    First principles, density functional-based tight binding and semi-empirical interatomic potentials calculations are performed to analyse the influence of large strains on the structure and stability of a 60? dislocation in silicon. Such strains typically arise during the mechanical testing of nanostructures like nanopillars or nanoparticles. We focus on bi-axial strains in the plane normal to the dislocation line. Our calculations surprisingly reveal that the dislocation core structure largely depends on the applied strain, for strain levels of about 5%. In the particular case of bi-axial compression, the transformation of the dislocation to a locally disordered configuration occurs for similar strain magnitudes. The formation of an opening, however, requires larger strains, of about 7.5%. Furthermore, our results suggest that electronic structure methods should be favoured to model dislocation cores in case of large strains whenever possible.

  20. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    Science.gov (United States)

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  1. Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations

    Science.gov (United States)

    Giri, Ashutosh; Hopkins, Patrick E.

    2017-12-01

    Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.

  2. On the bending of structural materials with plastic anisotropic effect

    Science.gov (United States)

    Lachugin, D. V.; Pavilaynen, G. V.

    2018-05-01

    The study of a deformation features of metal alloys which are sensitive to tension or compression loading is an important technical challenge in the design and creation of a new shipbuilding and aircraft constructions. We use a mathematical model for the elastic-plastic bending of such material where SD(strength-different) parameter is taken into account. The problem is solved analytically and numerically. As an example of the material with the SD-effect the steel alloy is considered.

  3. A Constitutive Model for Unsaturated soils based on a Compressibility Framework dependent on Suction and Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Sitarenios Panagiotis

    2016-01-01

    Full Text Available The Modified Cam Clay model is extended to account for the behaviour of unsaturated soils using Bishop’s stress. To describe the Loading – Collapse behaviour, the model incorporates a compressibility framework with suction and degree of saturation dependent compression lines. For simplicity, the present paper describes the model in the triaxial stress space with characteristic simulations of constant suction compression and triaxial tests, as well as wetting tests. The model reproduces an evolving post yield compressibility under constant suction compression, and thus, can adequately describe a maximum of collapse.

  4. Mercury toxicokinetics--dependency on strain and gender

    DEFF Research Database (Denmark)

    Ekstrand, Jimmy; Nielsen, Jesper B; Havarinasab, Said

    2010-01-01

    regulated by non-H-2 genes and gender. Lymph nodes lacked the strain- and gender-dependent Hg accumulation profile of kidney, liver and spleen. After 15 days without Hg A.SW mice showed a 4-fold higher WBR and liver Hg concentration, but 11-fold higher renal Hg concentration, showing the key role...

  5. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses

    Directory of Open Access Journals (Sweden)

    Ji-Won Kim

    2018-03-01

    Full Text Available Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5 and mid-strain (10−5 to 10−3 ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1 grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2 the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3 the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4 increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  6. Compression behavior of a ferritic-martensitic Cr-Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Pantleon, Wolfgang

    2012-01-01

    The compression behavior of a ferritic-martensitic Cr-Mo steel is characterized for strain rates ranging from 10-4 s-1 to 10-1 s-1 and engineering strains up to 40%. Adiabatic heating causes a reduction in flow stress during continuous compression at a strain rate of 10-1 s-1. No reduction...... in the flow stress is observed if interrupted compression tests are performed with loading and holding steps. Two work-hardening stages with work-hardening rates decreasing linearly with the flow stress are identified and interpreted in terms of the KocksMecking model. The microstructural evolution...

  7. Time dependent variation of carrying capacity of prestressed precast beam

    Science.gov (United States)

    Le, Tuan D.; Konečný, Petr; Matečková, Pavlína

    2018-04-01

    The article deals with the evaluation of the precast concrete element time dependent carrying capacity. The variation of the resistance is inherited property of laboratory as well as in-situ members. Thus the specification of highest, yet possible, laboratory sample resistance is important with respect to evaluation of laboratory experiments based on the test machine loading capabilities. The ultimate capacity is evaluated through the bending moment resistance of a simply supported prestressed concrete beam. The probabilistic assessment is applied. Scatter of random variables of compressive strength of concrete and effective height of the cross section is considered. Monte Carlo simulation technique is used to investigate the performance of the cross section of the beam with changes of tendons’ positions and compressive strength of concrete.

  8. The effect of compressive stress on the Young's modulus of unirradiated and irradiated nuclear graphites

    International Nuclear Information System (INIS)

    Oku, T.; Usui, T.; Ero, M.; Fukuda, Y.

    1977-01-01

    The Young's moduli of unirradiated and high temperature (800 to 1000 0 C) irradiated graphites for HTGR were measured by the ultrasonic method in the direction of applied compressive stress during and after stressing. The Young's moduli of all the tested graphites decreased with increasing compressive stress both during and after stressing. In order to investigate the reason for the decrease in Young's modulus by applying compressive stress, the mercury pore diameter distributions of a part of the unirradiated and irradiated specimens were measured. The change in pore distribution is believed to be associated with structural changes produced by irradiation and compressive stressing. The residual strain, after removing the compressive stress, showed a good correlation with the decrease in Young's modulus caused by the compressive stress. The decrease in Young's modulus by applying compressive stress was considered to be due to the increase in the mobile dislocation density and the growth or formation of cracks. The results suggest, however, that the mechanism giving the larger contribution depends on the brand of graphite, and in anisotropic graphite it depends on the direction of applied stress and the irradiation conditions. (author)

  9. Superplastic boronizing of duplex stainless steel under dual compression method

    International Nuclear Information System (INIS)

    Jauhari, I.; Yusof, H.A.M.; Saidan, R.

    2011-01-01

    Highlights: → Superplastic boronizing. → Dual compression method has been developed. → Hard boride layer. → Bulk deformation was significantly thicker the boronized layer. → New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  10. Superplastic boronizing of duplex stainless steel under dual compression method

    Energy Technology Data Exchange (ETDEWEB)

    Jauhari, I., E-mail: iswadi@um.edu.my [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Yusof, H.A.M.; Saidan, R. [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-25

    Highlights: {yields} Superplastic boronizing. {yields} Dual compression method has been developed. {yields} Hard boride layer. {yields} Bulk deformation was significantly thicker the boronized layer. {yields} New data on boronizing could be expanded the application of DSS in industries. - Abstract: In this work, SPB of duplex stainless steel (DSS) under compression method is studied with the objective to produce ultra hard and thick boronized layer using minimal amount of boron powder and at a much faster boronizing time as compared to the conventional process. SPB is conducted under dual compression methods. In the first method DSS is boronized using a minimal amount of boron powder under a fix pre-strained compression condition throughout the process. The compression strain is controlled in such a way that plastic deformation is restricted at the surface asperities of the substrate in contact with the boron powder. In the second method, the boronized specimen taken from the first mode is compressed superplastically up to a certain compressive strain under a certain strain rate condition. The process in the second method is conducted without the present of boron powder. As compared with the conventional boronizing process, through this SPB under dual compression methods, a much harder and thicker boronized layer thickness is able to be produced using a minimal amount of boron powder.

  11. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  12. Strain-engineering of the topological insulator HgTe

    International Nuclear Information System (INIS)

    Leubner, Philipp

    2017-01-01

    demonstrated as well. Strain in bulk layers lifts the degeneracy of the Γ 8 bands at k=0. Tensile strain opens an energy gap, compressive strain shifts the touching points of the valence- and conduction band to positions in the Brillouin zone with finite k. Such a situation has been realized for the first time in the course of this work. For QWs in the inverted regime, it is demonstrated that compressive strain can be used to significantly enhance the thermal energy gap of the two-dimensional electron gas (2DEG). An examination of the temperature dependence of the subband ordering in QWs revealed that the band gap is only temperature-stable for appropriate sample parameters and temperature regimes. The band inversion is always lifted for sufficiently high temperatures. An enhancement of the stability of quantum-spin-Hall edge state conductance is expected for enlarged band gaps. Detailed low-temperature magnetotransport studies have been carried out on QWs and bulk layers. The Fermi energy in the 2DEG has been adjusted by means of a top gate electrode. The strain-induced transition from semi-metallic to semiconducting characteristics in wide QWs was shown. The magnitude of the semi-metallic overlap of valence- and conduction band was determined by an analysis of the two-carrier conductance and is in agreement with band structure calculations. The band gap of the semiconducting sample was determined by measurements of the temperature dependence of the conductance at the charge-neutrality point. The influence of the band gap on the stability of QSH edge state conductance has been investigated on a set of six samples. The band gap of the set spans a range of 10 to 55 meV. The latter value has been achieved in a highly compressively strained QW, has been confirmed by temperature-dependent conductance measurements, and is the highest ever reported in the inverted regime. Studies of the carrier mobility reveal a degradation of the sample quality with increasing Zn-fraction in the

  13. Strain-engineering of the topological insulator HgTe

    Energy Technology Data Exchange (ETDEWEB)

    Leubner, Philipp

    2017-07-24

    thickness of at least 50 nm) was demonstrated as well. Strain in bulk layers lifts the degeneracy of the Γ{sub 8} bands at k=0. Tensile strain opens an energy gap, compressive strain shifts the touching points of the valence- and conduction band to positions in the Brillouin zone with finite k. Such a situation has been realized for the first time in the course of this work. For QWs in the inverted regime, it is demonstrated that compressive strain can be used to significantly enhance the thermal energy gap of the two-dimensional electron gas (2DEG). An examination of the temperature dependence of the subband ordering in QWs revealed that the band gap is only temperature-stable for appropriate sample parameters and temperature regimes. The band inversion is always lifted for sufficiently high temperatures. An enhancement of the stability of quantum-spin-Hall edge state conductance is expected for enlarged band gaps. Detailed low-temperature magnetotransport studies have been carried out on QWs and bulk layers. The Fermi energy in the 2DEG has been adjusted by means of a top gate electrode. The strain-induced transition from semi-metallic to semiconducting characteristics in wide QWs was shown. The magnitude of the semi-metallic overlap of valence- and conduction band was determined by an analysis of the two-carrier conductance and is in agreement with band structure calculations. The band gap of the semiconducting sample was determined by measurements of the temperature dependence of the conductance at the charge-neutrality point. The influence of the band gap on the stability of QSH edge state conductance has been investigated on a set of six samples. The band gap of the set spans a range of 10 to 55 meV. The latter value has been achieved in a highly compressively strained QW, has been confirmed by temperature-dependent conductance measurements, and is the highest ever reported in the inverted regime. Studies of the carrier mobility reveal a degradation of the sample

  14. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites – Part II

    NARCIS (Netherlands)

    Ropers, Steffen; Sachs, Ulrich; Kardos, Marton; Osswald, Tim A.

    2017-01-01

    A proper description of the bending behavior is crucial to obtain accurate forming simulations, especially for continuous fiber-reinforced thermoplastic composites. These materials exhibit a highly temperature and bending-curvature dependent bending stiffness. These dependencies make the property

  15. Möbius semiconductor nanostructures and deformation potential strain effects

    DEFF Research Database (Denmark)

    Lassen, Benny; Willatzen, Morten; Gravesen, Jens

    2011-01-01

    A discussion of Möbius nanostructures is presented with focus on (1) the accuracy of the approximate differential-geometry formalism by Gravesen and Willatzen and (2) to assess the influence of bending-induced strain on Schrödinger equation eigenstates in semiconductor Möbius structures....... The differential-geometry model assumed complete confinement of a quantum-mechanical particle to a zero-thickness Möbius structure where the shape was computed based on minimization of elastic bending energy only and imposing the relevant boundary conditions. In the latter work, while bending was accounted...... for in finding the shape of the Möbius structure it was, for simplicity, neglected altogether in determining the direct strain influence on electronic eigenstates. However, as is well-known, deformation-potential strain effects In many semiconductor materials can lead to important changes in not only the energy...

  16. Stress-Strain Analysis in TiN Nanocoating Deposited on Polymer with respect to Au Nanointerlayer

    Directory of Open Access Journals (Sweden)

    Magdalena Kopernik

    2014-01-01

    Full Text Available The multiscale analysis in the authors’ finite element code confirmed possibility of fracture, because of not sufficiently high level of compressive residual stress in the TiN deposited by physical deposition method and varied mechanical properties of the thin film and substrate. The residual stress cannot be identified by X-ray technique for amorphous polymer and layer with domains of crystalline TiN. It is assumed that the buffer biocompatible thin film of Au in the TiN/Bionate II material system will alter the evolution of residual stress and, therefore, will allow to determine the residual stress in profilometry studies, and helps to improve toughness of the connection between TiN and Bionate II. The introduction of Au nanocoating in the material system results in bending of the sample and a compressive residual stress in the TiN coating. Results of finite element simulation show improvement of connection between the polymer and TiN, and an increase of compressive residual stress in the coating by introduction of Au nanointerlayer results in reduction of stress and strain in the substrate (close to the boundary between substrate and coating.

  17. Compression of laminated composite beams with initial damage

    Science.gov (United States)

    Breivik, Nicole L.; Gurdal, Zafer; Griffin, O. H., Jr.

    1993-01-01

    The effect of isolated damage modes on the compressive strength and failure characteristics of laminated composite test specimens were evaluated experimentally and numerically. In addition to specimens without initial damage, specimens with three types of initial damage were considered: (1) specimens with short delaminations distributed evenly through the specimen thickness, (2) specimens with few long delaminations, and (3) specimens with local fiber damage in the surface plies under the three-point bend contact point. It was found that specimens with short multiple delamination experienced the greatest reduction in compression strength compared to the undamaged specimens. Single delaminations far from the specimen surface had little effect on the final compression strength, and moderate strength reduction was observed for specimens with localized surface ply damage.

  18. Single-mode hole-assisted fiber as a bending-loss insensitive fiber

    Science.gov (United States)

    Nakajima, Kazuhide; Shimizu, Tomoya; Matsui, Takashi; Fukai, Chisato; Kurashima, Toshio

    2010-12-01

    We investigate the design and characteristics of a single-mode and low bending loss HAF both numerically and experimentally. An air filling fraction S is introduced to enable us to design a HAF with desired characteristics more easily. We show that we can expect to realize a single-mode and low bending loss HAF by considering the S dependence of the bending loss α b and cutoff wavelength λ c as well as their relative index difference Δ dependence. We also show that the mode-field diameter (MFD) and chromatic dispersion characteristics of the single-mode and low bending loss HAF can be tailored by optimizing the distance between the core and the air holes. We also investigate the usefulness of the fabricated HAFs taking the directly modulated transmission and multipath interference (MPI) characteristics into consideration. We show that the designed HAF has sufficient applicability to both analog and digital transmission systems. Our results reveal that the single-mode and low bending loss HAF is beneficial in terms of developing a future fiber to the home (FTTH) network as well as for realizing flexible optical wiring.

  19. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  20. Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain

    Science.gov (United States)

    Sattari, Farhad; Mirershadi, Soghra

    2018-01-01

    We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.

  1. Assessment of structural integrity of Monju steel liner against sodium leakage and combustion. Strain criterion of the liner material

    Energy Technology Data Exchange (ETDEWEB)

    Asayama, T.; Koi, M. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2001-07-01

    In a postulated condition of sodium leakage and combustion in the secondary heat transfer system of the prototype Japanese fast breeder reactor Monju, thermal stresses raise in steel liners installed to prevent sodium from contacting to concrete. Excessive strain due to the thermal stresses leads to failure of the liner. This paper proposes a strain criterion below that the mechanical integrity of liner is assured. In-plane thermal expansion causes membrane strain and out-of-plane expansion causes bending strain. Therefore, failure modes to be taken into account are tensile fracture and bending fracture. The strain criterion can be determined based on tensile and bending tests. Tensile tests and three-point bending tests were performed at the temperature range from room temperature to 1000 C. Fracture elongation was measured in both tests. Uniform elongation was also measured in tensile tests. Various factors that can affect the above experimental results, multi-axiality, environmental effects, and creep were examined. Based on the above results, the strain criterion was determined. The criterion is 10% for membrane strain and 30% for membrane plus bending strain in the temperature range of 350 C to 1000 C. For the temperatures less than 350 C, the half of those values is used. (author)

  2. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.

    Science.gov (United States)

    Liu, Yanhui; Zhu, Guoqing; Yang, Huazhe; Wang, Conger; Zhang, Peihua; Han, Guangting

    2018-01-01

    This paper presents a study of the bending flexibility of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body. To investigate the relationship between the bending load and structure parameter (monofilament diameter and braid-pin number), biodegradable polydioxanone biliary stents derived from braiding method were covered with membrane prepared via electrospinning method, and nine FCBPBSs were then obtained for bending test to evaluate the bending flexibility. In addition, by the finite element method, nine numerical models based on actual biliary stent were established and the bending load was calculated through the finite element method. Results demonstrate that the simulation and experimental results are in good agreement with each other, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. Furthermore, the stress distribution on FCBPBSs was studied, and the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the bending simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dynamic compressive constitutive relation and shearing instability of metallic neodymium

    International Nuclear Information System (INIS)

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang; Hou Yanjun; Wu Shanxing

    2011-01-01

    Highlights: → Dynamic constitutive relation of Nd was determined in first compression of SHPB. → Deformation of Nd in multi-compression of SHPB were recorded by high-speed camera. → Constitutive relation of Nd was adjusted in modeling large deformation of Nd. → Results of SDDM investigation of recovered Nd specimens showed shearing fracture. → Shearing instability of Nd was estimated with constitutive relation. - Abstract: Based on static tests on MTS and dynamic tests on split Hopkinson pressure bar (SHPB) during the first loading, this study determined the dynamic compressive constitutive relation of metallic Nd. Based on large deformations of metallic Nd specimens generated by the multi-compressive loadings during SHPB tests, and recorded by a high-speed camera, the results of numerical simulations for SHPB test processes were used to extend the determined constitutive relation from small strain to large strain. The shearing instability strain in dynamic compressive deformations of metallic Nd was estimated with the extended constitutive relation according to the criterion given by Batra and Wei, and was compared with the average strain of recovered specimens.

  4. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  5. Structural and electronic properties of armchair graphene nanoribbons under uniaxial strain

    Science.gov (United States)

    Qu, Li-Hua; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent

    2014-02-01

    We theoretically investigate the structures, relative stabilities and electronic properties of the armchair graphene nanoribbons (AGNRs) under uniaxial strain via first-principles calculations. The results show that, although each bond length decreases (increases) with increasing compression (tension) strain especially for the axial bonds a1, a4 and a7, the ribbon geometrical width d increases (decreases) with increasing compression (tension) strain due to the rotation of the zigzag bonds a2, a3, a5 and a6. For each nanoribbon, as expected, the lowest average energy corresponds to the unstrained state and the larger contract (elongate) deformation corresponds to the higher average energy. At a certain strain, the average energy increases with decreasing the ribbon width n. The average energy increases quadratically with the absolute value of the uniaxial strain, showing an elastic behavior. The dependence of the band gap on the strain is sensitive to the ribbon width n which can be classified into three distinct families n=3I, 3I+1 and 3I+2, where I is an integer. The ribbon width leads to oscillatory band gaps due to quantum confinement effect.

  6. Ratcheting failure of pressurised straight pipes and elbows under reversed bending

    International Nuclear Information System (INIS)

    Vishnuvardhan, S.; Raghava, G.; Gandhi, P.; Saravanan, M.; Goyal, Sumit; Arora, Punit; Gupta, Suneel K.; Bhasin, Vivek

    2013-01-01

    Ratcheting studies were carried out on Type 304LN stainless steel straight pipes and elbows subjected to steady internal pressure and cyclic bending load. The internal pressure for all the straight pipes was 35 MPa and in the case of elbows the internal pressure was varied for different elbows, ranging from 27.6 MPa to 39.2 MPa. Cyclic bending load was applied on the specimens by subjecting them to different levels of load-line displacement. The specimens have undergone significant ratchet swelling (ballooning), ovalization and consequent thinning of the cross-section during ratcheting. The straight pipes failed either by occurrence of through-wall crack accompanied by simultaneous ballooning, or bursting with simultaneous ballooning. All the elbows failed by occurrence of through-wall crack accompanied by simultaneous ballooning. Ratcheting behaviour of straight pipes and elbows were compared and it was generally inferred that ratcheting was more pronounced in straight pipes than in elbows. -- Graphical abstract: Strain history for the specimen QCE-RAT-6-L1. Highlights: • Studies were carried out under combined internal pressure and cyclic bending. • Ratcheting strains were measured at critical locations of the specimens. • Quantified the percentage of ballooning, ovalization and reduction in thickness. • Modes of ratcheting failure of straight pipes and elbows are studied. • Inferred that ratcheting is more pronounced in straight pipes than in elbows

  7. Confined compression and torsion experiments on a pHEMA gel in various bath concentrations.

    Science.gov (United States)

    Roos, Reinder W; Petterson, Rob; Huyghe, Jacques M

    2013-06-01

    The constitutive behaviour of cartilaginous tissue is the result of complex interaction between electrical, chemical and mechanical forces. Electrostatic interactions between fixed charges and mobile ions are usually accounted for by means of Donnan osmotic pressure. Recent experimental data show, however, that the shear modulus of articular cartilage depends on ionic concentration even if the strain is kept constant. Poisson-Boltzmann simulations suggest that this dependence is intrinsic to the double-layer around the proteoglycan chains. In order to verify this premise, this study measures whether--at a given strain--this ionic concentration-dependent shear modulus is present in a polymerized hydroxy-ethyl-methacrylate gel or not. A combined 1D confined compression and torque experiment is performed on a thin cylindrical hydrogel sample, which is brought in equilibrium with, respectively, 1, 0.1 and 0.03 M NaCl. The sample was placed in a chamber that consists of a stainless steel ring placed on a sintered glass filter, and on top a sintered glass piston. Stepwise ionic loading was cascaded by stepwise 1D compression, measuring the total stress after equilibration of the sample. In addition, a torque experiment was interweaved by applying a harmonic angular displacement and measuring the torque, revealing the relation between aggregate shear modulus and salt concentration at a given strain.

  8. X-Ray Radiography of Three-Point Bending of Single Human Trabecula

    Czech Academy of Sciences Publication Activity Database

    Jiroušek, Ondřej; Doktor, Tomáš; Kytýř, Daniel; Zlámal, Petr

    2012-01-01

    Roč. 45, S1 (2012), s. 261-261 ISSN 0021-9290 R&D Projects: GA ČR(CZ) GAP105/10/2305 Institutional support: RVO:68378297 Keywords : microspheres * strain measurement * three-point bending * trabecular bone * X-ray radiography Subject RIV: FI - Traumatology, Orthopedics Impact factor: 2.716, year: 2012

  9. Identification of non-linear kinematic hardening with bending and unbending tests in anisotropic sheet-metals

    International Nuclear Information System (INIS)

    Brunet, M.; Morestin, F.; Godereaux, S.

    2000-01-01

    An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)

  10. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    Science.gov (United States)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  11. A Study on U-bending Technology using Rotary Draw Bending

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ok-gyu; Kim, Won-seok [BHI Co., Gyunsang-Namdo (Korea, Republic of); Ku, Tae-wan [Pusan National Univ., Busan (Korea, Republic of)

    2014-10-15

    In the steam generator, heat transfer phenomenon for producing the steam between the primary system of the nuclear reactor and the secondary one occurs around the heat transfer tube. That is, the primary coolant with high temperature(320 .deg.. C) and high pressure(157Kgf/cm2) derived from the reactor flows in the heat transfer tube, and the secondary one runs out that tube. Therefore, it is able to mention that the heat transfer tube itself is a boundary of the heat transfer phenomenon. The heat transfer tube bundle of each steam generator used for the PWR and the PHWR(Pressurized Heavy Water Reactor) is generally composed of about 8,000-13,000 U-tubes. And these tubes are the core component as the structural and heat transfer material in the steam generator, which is in charge of cooling about 70% of the cooling surface of the primary system. For achieving the U-bending process with the thin walled tube, generally, a mandrel could be inserted in the tube according to the bending radius. But when the bending radius is small, the tube U-bending process could be also performed without the mandrel. In this study, numerical and experimental investigations on the U-bending process for producing the heat transfer tubes by using the straight and long tubes were carried out with the consideration of the elastic recovery after the U-bending. In the numerical approach, finite element analysis scheme was adopted with a commercial code, ABAQUS Implicit/Explicit. As the precedent study, the related experiment was also performed to verify the predicted results on the ovality and the minimum wall thickness of the U-bending heat transfer tube. Furthermore, its bending process was also conducted to analyze the deformation behavior for the Alloy 690 tube. In this study, the U-bending process was considered to simulate and manufactured the heat transfer tube used for the steam generator. To investigate the deformation behavior of the U-bending process, and a series of the

  12. Residual stress and bending strength of ZnO films deposited on polyimide sheet by RF sputtering system

    Energy Technology Data Exchange (ETDEWEB)

    Kusaka, Kazuya, E-mail: kusaka@tokushima-u.ac.jp [Institute of Technology and Science, Tokushima University, 2-1, Minamijosanjima, Tokushima, Tokushima 7708506 (Japan); Maruoka, Yutaka, E-mail: ymaruoka1116@gmail.com [Graduate School of Advanced Technology and Science, Tokushima University, 2-1, Minamijosanjima, Tokushima, Tokushima 7708506 (Japan); Matsue, Tatsuya, E-mail: tmatsue@mat.niihama-nct.ac.jp [Department of Environmental Materials Engineering National Institute of Technology, NIIHAMA College, 7-1, Yakumo-cho, Niihama, Ehime 7928580 (Japan)

    2016-05-15

    Zinc oxide (ZnO) films were deposited on a soft polyimide sheet substrate by radio frequency sputtering with a ZnO powder target, and the films' crystal orientations and residual stress were investigated using x-ray diffraction as a function of substrate temperature. C-axis oriented ZnO films were achieved using this ZnO powder target method. The ZnO films exhibited high compressive residual stresses between −0.7 and −1.4 GPa. Finally, the authors examined the strength of the obtained film by applying tensile bending loads. No cracks were observed on the surfaces of the ZnO films after a bending test using cylinders with diameters >25 mm. After a bending test using a cylinder with a diameter of 19 mm, large cracks were formed on the films. Therefore, the authors concluded that the tensile bending strength of the obtained films was greater than ∼420 MPa.

  13. Empirical Correlation of the Morphology of Coiled Carbon Nano tubes with Their Response to Axial Compression

    International Nuclear Information System (INIS)

    Barber, J.R.; Boyles, J.S.; Bottomley, L.A.; Ferri, A.A.

    2014-01-01

    The mechanical response of thirteen different helical multi-walled carbon nano coils to axial compression is reported. Each nano coil was attached to the apex of a cantilever probe tip; its dimensions and orientation relative to the tip apex were determined with scanning electron microscopy. The atomic force microscope was employed to apply a cyclic axial load on the nano coil. Its mechanical response was determined by simultaneous collection of the thermal resonance frequency, displacement, and oscillation amplitude of the cantilever-nano tube system in real time. Depending upon compression parameters, each coil underwent buckling, bending, and slip-stick motion. Characteristic features in the thermal resonance spectrum and in the force and oscillation amplitude curves for each of these responses to induced stress are presented. Following compression studies, the structure and morphology of each nano coil were determined by transmission electron microscopy. The compression stiffness of each nano coil was estimated from the resonant frequency of the cantilever at the point of contact with the substrate surface. From this value, the elastic modulus of the nano coil was computed and correlated with the coiled carbon nano tube’s morphology.

  14. Structure and properties of copper after large strain deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, Kinga; Molak, Rafal M.; Pakiela, Zbigniew

    2010-05-15

    Structure and properties of Cu in dependence on strain (from {epsilon}{proportional_to} 0.9 to {epsilon}{proportional_to} 15) during multi-axial compression processing at room temperature was investigated. The evolution of dislocation structure, misorientation distribution and crystallite size were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The mechanical properties of yield strength (YS), ultimate tensile strength (UTS) and uniform elongation was performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). The structure-flow stress relationship of multi-axial compression processing material at strains {epsilon}{proportional_to} 3.5 and {epsilon}{proportional_to} 5.5 is discussed. It is found that processing does not produce any drastic changes in deformation structure and the microstructural refinement is slow. These results indicate that dynamic recrystallization plays an important role during multi-axial compression process in this range of deformation (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Changes in Regional t2 Relaxation in Compressed Cartilage: a Microscopic MRI (µMRI) Study

    Science.gov (United States)

    Alhadlaq, Hisham; Xia, Yang

    2004-10-01

    T2-anisotropy of articular cartilage in magnetic field has its origin on the proton dipolar interactions and the collagen matrix organization, which influences T2 with a dependency as (3s^2(θ)-1). Seven specimens from a beagle humeral head were compressed at 12% and 20% strain values in μMRI experiments. T2 mappings at two orientations (0r and 55r) before and during compression were conducted on a Bruker AMX 300 NMR. Under load, the 2D cartilage maps at the magic angle lost its usual homogenous appearance. T2 values were averaged at the superficial zone (SZ), the transitional zone (TZ), and the radial zone (RZ). At 0r and relative to uncompressed tissue, SZ T2 was significantly lower, and RZ T2 increased significantly at both strain rates (12% and 20%). At 55r and relative to uncompressed tissue, ``bulk'' T2 and RZ T2 were significantly lower at only 20% strain. However, SZ T2 and TZ T2 were significantly lower at both strain rates. In addition, relative to 12% strain, SZ T2 was significantly lower at 0r; and ``bulk'' T2 and TZ T2 were significantly lower at 55r. The results demonstrate the modifications in collagen fiber organization as the dipolar interaction is altered due to tissue compression.

  16. Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness.

    NARCIS (Netherlands)

    Vergroesen, P.P.A.; van der Veen, A.J.; van Royen, B.J.; Kingma, I.; Smit, T.H.

    2014-01-01

    Purpose Intervertebral discs exhibit time-dependent deformation (creep), which could influence the relation between applied stress and intradiscal pressure. This study investigates the effect of prolonged dynamic loading on intradiscal pressure, disc height and compressive stiffness, and examines

  17. Effect of bronze on the compression of Nb3Sn in multifilamentary conductors

    International Nuclear Information System (INIS)

    Rupp, G.

    1978-01-01

    Nb 3 Sn in multifilamentary conductors is subject to compressive strain as a result of the relatively small thermal contraction of the filaments as compared to bronze. The critical current Isub(c) is consequently degraded. The critical current increases, when an external tensile stress is applied, and passes through a maximum. The ratio of the maximum critical current to the initial critical current increases with the flux density and reaches a value of two at a flux density of 16 T for technical conductors. The strain epsilonsub(m), at which Isub(c) maximum is reached, lies between 0.4% and 0.7% for the conductors investigated and depends on the material parameters. For a constant ratio of bronze to filament cross section this strain epsilonsub(m) is reduced as the Nb 3 Sn layer thickness is increased and can be determined approximately by a graphical method from the stress-strain diagram. Epsilonsub(m) is to a large extent dependent on the metallurgical properties of bronze, which vary to a considerable extent depending upon the heat treatment. (author)

  18. Crack initiation life analysis in notched pipe under cyclic bending loads

    International Nuclear Information System (INIS)

    Lee, Joon Seong; Kwak, Sang Log; Kim, Young Jin; Park, Youn Won

    2001-01-01

    In order to improve leak-before-break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but crack initiation cycle was higher than the experimental result

  19. Crack initiation life analysis in notched pipe under cyclic bending loads

    International Nuclear Information System (INIS)

    Goak, S. R.; Kim, Y. J.; Lee, J. S.; Park, Y. W.

    2000-01-01

    In order to improve LBB(Leak-Before-Break) methodology, more precisely the crack growth evaluation, a benchmark problem was proposed by the CEA Saclay. The aim of this benchmark analysis was to evaluate the crack growth in a notched pipe under cyclic bending loads. The proposed benchmark analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result

  20. Comparative assessment of intrinsic mechanical stimuli on knee cartilage and compressed agarose constructs.

    Science.gov (United States)

    Completo, A; Bandeiras, C; Fonseca, F

    2017-06-01

    A well-established cue for improving the properties of tissue-engineered cartilage is mechanical stimulation. However, the explicit ranges of mechanical stimuli that correspond to favorable metabolic outcomes are elusive. Usually, these outcomes have only been associated with the applied strain and frequency, an oversimplification that can hide the fundamental relationship between the intrinsic mechanical stimuli and the metabolic outcomes. This highlights two important key issues: the firstly is related to the evaluation of the intrinsic mechanical stimuli of native cartilage; the second, assuming that the intrinsic mechanical stimuli will be important, deals with the ability to replicate them on the tissue-engineered constructs. This study quantifies and compares the volume of cartilage and agarose subjected to a given magnitude range of each intrinsic mechanical stimulus, through a numerical simulation of a patient-specific knee model coupled with experimental data of contact during the stance phase of gait, and agarose constructs under direct-dynamic compression. The results suggest that direct compression loading needs to be parameterized with time-dependence during the initial culture period in order to better reproduce each one of the intrinsic mechanical stimuli developed in the patient-specific cartilage. A loading regime which combines time periods of low compressive strain (5%) and frequency (0.5Hz), in order to approach the maximal principal strain and fluid velocity stimulus of the patient-specific cartilage, with time periods of high compressive strain (20%) and frequency (3Hz), in order to approach the pore pressure values, may be advantageous relatively to a single loading regime throughout the full culture period. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    Science.gov (United States)

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  2. Strain-dependent profile of misfolded prion protein aggregates.

    Science.gov (United States)

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V; Soto, Claudio

    2016-02-15

    Prions are composed of the misfolded prion protein (PrP(Sc)) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrP(Sc) aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrP(Sc) aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrP(Sc) aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrP(Sc) aggregates and the incubation periods for the strains studied. The relative presence of PrP(Sc) in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrP(Sc) aggregates in prion-induced neurodegeneration.

  3. A Constitutive Model for Unsaturated soils based on a Compressibility Framework dependent on Suction and Degree of Saturation

    OpenAIRE

    Sitarenios Panagiotis; Kavvadas Michael

    2016-01-01

    The Modified Cam Clay model is extended to account for the behaviour of unsaturated soils using Bishop’s stress. To describe the Loading – Collapse behaviour, the model incorporates a compressibility framework with suction and degree of saturation dependent compression lines. For simplicity, the present paper describes the model in the triaxial stress space with characteristic simulations of constant suction compression and triaxial tests, as well as wetting tests. The model reproduces an evo...

  4. The effect of transverse shear on the face sheets failure modes of sandwich beams loaded in three points bending

    OpenAIRE

    BOUROUIS FAIROUZ; MILI FAYCAL

    2012-01-01

    Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion...

  5. Reliability improvement of a-Si:H thin film transistors on plastic substrate with saturation in deep state after multiple bending cycles

    International Nuclear Information System (INIS)

    Lee, M.H.; Chen, P.-G.; Hsu, C.-C.

    2013-01-01

    For flexible electronic applications, the disordered bonds of a-Si:H may generate a redistribution of trapped states with mechanical strain. During mechanical strain, the deep states are redistributed in a Gaussian distribution and are dissimilar to ordinary acceptor-like deep states, which manifest with exponential distributions. The redistributed deep states may saturate with multiple mechanical bending cycles, and it would improve the reliability with drain current stress of a-Si:H TFTs (thin film transistors) on flexible substrates. We conclude that it is possible to produce low-cost and highly uniform active-matrix organic light emitting diodes systems for use in flexible display applications using a-Si:H TFTs array backplanes. - Highlights: • The stress stability of a-Si:H TFTs (thin-film transistors) was improved after bending cycles. • The saturated deep states after bending were confirmed. • The simulation and extracted gap state density of a-Si:H TFT under strain was calculated

  6. Salt dependence of compression normal forces of quenched polyelectrolyte brushes

    Science.gov (United States)

    Hernandez-Zapata, Ernesto; Tamashiro, Mario N.; Pincus, Philip A.

    2001-03-01

    We obtained mean-field expressions for the compression normal forces between two identical opposing quenched polyelectrolyte brushes in the presence of monovalent salt. The brush elasticity is modeled using the entropy of ideal Gaussian chains, while the entropy of the microions and the electrostatic contribution to the grand potential is obtained by solving the non-linear Poisson-Boltzmann equation for the system in contact with a salt reservoir. For the polyelectrolyte brush we considered both a uniformly charged slab as well as an inhomogeneous charge profile obtained using a self-consistent field theory. Using the Derjaguin approximation, we related the planar-geometry results to the realistic two-crossed cylinders experimental set up. Theoretical predictions are compared to experimental measurements(Marc Balastre's abstract, APS March 2001 Meeting.) of the salt dependence of the compression normal forces between two quenched polyelectrolyte brushes formed by the adsorption of diblock copolymers poly(tert-butyl styrene)-sodium poly(styrene sulfonate) [PtBs/NaPSS] onto an octadecyltriethoxysilane (OTE) hydrophobically modified mica, as well as onto bare mica.

  7. Noise variation by compressive stress on the model core of power transformers

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Masato, E-mail: mizokami.g76.masato@jp.nssmc.com; Kurosaki, Yousuke

    2015-05-01

    The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise.

  8. Noise variation by compressive stress on the model core of power transformers

    International Nuclear Information System (INIS)

    Mizokami, Masato; Kurosaki, Yousuke

    2015-01-01

    The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise

  9. Improving bending stress in spur gears using asymmetric gears and shape optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2010-01-01

    Bending stress plays a significant role in gear design wherein its magnitude is controlled by the nominal bending stress and the stress concentration due to the geometrical shape. The bending stress is indirectly related to shape changes made to the cutting tool. This work shows that the bending...... stress can be reduced significantly by using asymmetric gear teeth and by shape optimizing the gear through changes made to the tool geometry. However, to obtain the largest possible stress reduction a custom tool must be designed depending on the number of teeth, but the stress reductions found...

  10. Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression.

    Science.gov (United States)

    Milchev, Andrey; Binder, Kurt

    2014-06-07

    Using a coarse-grained bead-spring model for semi-flexible macromolecules which form a polymer brush, the structure and dynamics of the polymers were investigated, varying the chain stiffness and the grafting density. The anchoring conditions for the grafted chains were chosen such that their first bonds were oriented along the normal to the substrate plane. The compression of such a semi-flexible brush by a planar piston was observed to be a two-stage process: for a small compression the chains were shown to contract by "buckling" deformation whereas for a larger compression the chains exhibited a collective (almost uniform) bending deformation. Thus, the stiff polymer brush underwent a 2nd order phase transition of collective bond reorientation. The pressure, required to keep the stiff brush at a given degree of compression, was thereby significantly smaller than for an otherwise identical brush made of entirely flexible polymer chains! While both the brush height and the chain linear dimensions in the z-direction perpendicular to the substrate increased monotonically with an increase in the chain stiffness, the lateral (xy) chain linear dimensions exhibited a maximum at an intermediate chain stiffness. Increasing the grafting density led to a strong decrease of these lateral dimensions which is compatible with an exponential decay. Also the recovery kinetics after removal of the compressing piston were studied, and were found to follow a power-law/exponential decay with time. A simple mean-field theoretical consideration, accounting for the buckling/bending behavior of semi-flexible polymer brushes under compression was suggested.

  11. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    Directory of Open Access Journals (Sweden)

    Guoai He

    2017-02-01

    Full Text Available Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs to high angle grain boundaries (HAGBs and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary.

  12. Failure mode and dynamic behavior of nanophase iron under compression

    Energy Technology Data Exchange (ETDEWEB)

    Jia, D.; Ramesh, K.T.; Ma, E.

    1999-12-17

    Materials with ultra-fine grains down to the nanophase range (<100 nm) have been attracting considerable interest because of their unique properties compared with conventional materials. In general, the understanding of the deformation behavior of ultrafine- and nano-grained metals and alloys is still in the rudimentary stage. In this paper, the authors report on the compressive deformation behavior and failure mode of near full-density (99.2% of theoretical density) elemental Fe with an average grain size of 80 nm. Even less is known about the behavior of ultrafine- or nano-grained alloys under dynamic loading of high strain rates. Such response is relevant to possible applications of these alloys under impact conditions, such as for kinetic energy penetrators currently under investigation. The authors will present the results of high-strain-rate (Kolsky bar) tests for nano-Fe and compare them with those obtained in quasi-static compression tests of the same material. The authors demonstrate that little strain rate sensitivity is observable in the rate of 10{sup {minus}4} to 3 x 10{sup +3} s{sup {minus}1}, in sharp contrast to the strong rate sensitivity known for conventional coarse-grained bcc Fe. The weak rate dependence is correlated with shear banding as the dominant deformation and failure mechanism. This strain rate hardening behavior, together with the high strength, absence of strain hardening, and failure mechanism observed, are discussed in the context of potential applications for penetrator materials.

  13. Accuracy of data processing in ceramics bend tests

    International Nuclear Information System (INIS)

    Grushevskij, Ya.L.

    1979-01-01

    Described is the approximation and differentiation technique for loading-deformation charts being used to determine the bending strength of ceramics with provision for the nonlinearity of the deformation charts and differences in mechanical behaviuor of material during tension and compression. A relation between the strength calculation accuracy and experimental data reading errors has been established for such ceramic mateirals as Al 2 O 3 +15 % ZrSiO 4 , Y 2 O 3 +2.8% Al, etc. The negligence of the found aspects of mechanical material behaviuor was shown to result in errors two or three times higher than those introduced by the experiment results processing method

  14. Conductivity-Dependent Strain Response of Carbon Nanotube Treated Bacterial Nanocellulose

    Directory of Open Access Journals (Sweden)

    S. Farjana

    2013-01-01

    Full Text Available This paper reports the strain sensitivity of flexible, electrically conductive, and nanostructured cellulose which was prepared by modification of bacterial cellulose with double-walled carbon nanotubes (DWCNTs and multiwalled carbon nanotubes (MWCNTs. The electrical conductivity depends on the modifying agent and its dispersion process. The conductivity of the samples obtained from bacterial cellulose (BNC pellicles modified with DWCNT was in the range from 0.034 S·cm−1 to 0.39 S·cm−1, and for BNC pellicles modified with MWCNTs it was from 0.12 S·cm−1 to 1.6 S·cm−1. The strain-induced electromechanical response, resistance versus strain, was monitored during the application of tensile force in order to study the sensitivity of the modified nanocellulose. A maximum gauge factor of 252 was found from the highest conductive sample treated by MWCNT. It has been observed that the sensitivity of the sample depends on the conductivity of the modified cellulose.

  15. Strain localization and elastic-plastic coupling during deformation of porous sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Issen, Kathleen A. [Clarkson Univ., Potsdam, NY (United States). Mechanical and Aeronautical Engineering; Holcomb, David J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Olsson, William A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Ingraham, Mathew D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-12

    Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli, C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.

  16. Loads from Compressive Strain Caused by Mining Activity Illustrated with the Example of Two Buildings in Silesia

    Science.gov (United States)

    Kadela, Marta; Chomacki, Leszek

    2017-10-01

    The soil’s load on retention walls or underground elements of engineering structures consists of three basic types of pressure: active pressure (p a ), passive pressure (p b ) and at-rest pressure (p 0 ). In undisturbed areas without any mining, due to lack of activity in the soil, specific forces from the soil are stable and unchanging throughout the structure’s life. Mining activity performed at a certain depth activates the soil. Displacements take place in the surface layer of the rock mass, which begins to act on the structure embedded in it, significantly changing the original stress distribution. Deformation of the subgrade, mainly horizontal strains, becomes a source of significant additional actions in the contact zone between the structure and the soil, constituting an additional load for the structure. In order to monitor the mining influence in the form of compressive load on building walls, an observation line was set up in front of two buildings located in Silesia (in Mysłowice). In 2013, some mining activity took place directly under those buildings, with expected horizontal strains of εx = -5.8 mm/m. The measurement results discussed in this paper showed that, as predicted, the buildings were subjected only to horizontal compressive strains with the values parallel to the analysed wall being less than -4.0 ‰ for first building and -1.5‰ for second building, and values perpendicular to the analysed wall being less than -6.0‰ for first building and -4.0‰ for second building (the only exception was the measurement in line 8-13, where εx = -17.04‰ for first building and -4.57‰ for second building). The horizontal displacement indicate that the impact of mining activity was greater on first building. This is also confirmed by inspections of the damage.

  17. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    addition of excess fuel to achieve equalizing peak firing pressure, even if some of the compression pressure differences are attributed to differences in cylinder and piston geometry, clearance, and kinematics. The combination of high-pressure fuel injection and turbocharging should produce better mixing of fuel and air in lean mixtures. Test results documented modest improvements in heat rate and efficiency and significant improvements in emissions. The feasibility of a closed-loop control of waste-gate setting, which will maintain an equivalence ratio set point, has been demonstrated. This capability allows more direct tuning to enhance combustion stability, heat rate, or emissions. The project has documented the strong dependence of heat rate on load. The feasibility of directly measuring power and torque using the GMRC Rod Load Monitor (RLM) has been demonstrated. This capability helps to optimize heat rate while avoiding overload. The crankshaft Strain Data Capture Module (SDCM) has shown the sensitivity to changes in operating conditions and how they influence crankshaft bending strain. The results indicate that: balancing reduces the frequency of high-strain excursions, advanced timing directly increases crankshaft dynamic strain, reduced speed directly reduces strain, and high-pressure fuel injection reduces crankshaft strain slightly. The project demonstrated that when the timing is advanced, the heat rate is reduced, and when the timing is retarded, the heat rate is increased. One reason why timing is not advanced as much as it might be is the potential for detonation on hot days. A low-cost knock detector was demonstrated that allowed active control to use timing to allow the heat rate benefit to be realized safely. High flow resistance losses in the pulsation control systems installed on some compressors have been shown to hurt efficiency of both compressor and engine/compressor system. Improved pulsation control systems have the potential to recover almost 10

  18. Transparent conductive-polymer strain sensors for touch input sheets of flexible displays

    International Nuclear Information System (INIS)

    Takamatsu, Seiichi; Takahata, Tomoyuki; Muraki, Masato; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2010-01-01

    A transparent conductive polymer-based strain-sensor array, designed especially for touch input sheets of flexible displays, was developed. A transparent conductive polymer, namely poly(3, 4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), was utilized owing to its strength under repeated mechanical bending. PEDOT:PSS strain sensors with a thickness of 130 nm exhibited light transmittance of 92%, which is the same as the transmittance of ITO electrodes widely used in flat panel displays. We demonstrated that the sensor array on a flexible sheet was able to sustain mechanical bending 300 times at a bending radius of 5 mm. The strain sensor shows a gauge factor of 5.2. The touch point on a flexible sheet could be detected from histograms of the outputs of the strain sensors when the sheet was pushed with an input force of 5 N. The touch input could be detected on the flexible sheet with a curved surface (radius of curvature of 20 mm). These results show that the developed transparent conductive polymer-based strain-sensor array is applicable to touch input sheets of mechanically bendable displays.

  19. Measurement of the through thickness compression of a battery separator

    Science.gov (United States)

    Yan, Shutian; Huang, Xiaosong; Xiao, Xinran

    2018-04-01

    The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.

  20. Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theory

    DEFF Research Database (Denmark)

    El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    The existence of characteristic strain rates in rate-dependent material models, corresponding to rate-independent model behavior, is studied within a back stress based rate-dependent higher order strain gradient crystal plasticity model. Such characteristic rates have recently been observed...... for steady-state processes, and the present study aims to demonstrate that the observations in fact unearth a more widespread phenomenon. In this work, two newly proposed back stress formulations are adopted to account for the strain gradient effects in the single slip simple shear case, and characteristic...... rates for a selected quantity are identified through numerical analysis. Evidently, the concept of a characteristic rate, within the rate-dependent material models, may help unlock an otherwise inaccessible parameter space....

  1. Range of motion, sacral screw and rod strain in long posterior spinal constructs: a biomechanical comparison between S2 alar iliac screws with traditional fixation strategies.

    Science.gov (United States)

    Sutterlin, Chester E; Field, Antony; Ferrara, Lisa A; Freeman, Andrew L; Phan, Kevin

    2016-12-01

    S1 screw failure and L5/S1 non-union are issues with long fusions to S1. Improved construct stiffness and S1 screw offloading can help avoid this. S2AI screws have shown to provide similar stiffness to iliac screws when added to L3-S1 constructs. We sought to examine and compare the biomechanical effects on an L2-S1 pedicle screw construct of adding S2AI screws, AxiaLIF, L5-S1 interbody support via transforaminal lumbar interbody fusion (TLIF), and to examine the effect of the addition of cross connectors to each of these constructs. Two S1 screws and one rod with strain gauges (at L5/S1) were used in L2-S1 screw-rod constructs in 7 L1-pelvis specimens (two with low BMD). ROM, S1 screw and rod strain were assessed using a pure-moment flexibility testing protocol. Specimens were tested intact, and then in five instrumentation states consisting of: (I) Pedicle screws (PS) L2-S1; (II) PS + S2AI screws; (III) PS + TLIF L5/S1; (IV) PS + AxiaLIF L5/S1; (V) PS + S2AI + AxiaLIF L5/S1. The five instrumentation conditions were also tested with crosslinks at L2/3 and S1/2. Tests were conducted in flexion-extension, lateral bending and axial torsion with no compressive preload. S2A1 produces reduced S1 screw strain for flexion-extension, lateral bending and axial torsion, as well as reduced rod strain in lateral bending and axial torsion in comparison to AxiaLIF and interbody instrumentation, at the expense of increased rod flexion-extension strain. Cross-connectors may have a role in further reduction of S1 screw and rod strain. From a biomechanical standpoint, the use of the S2AI technique is at least equivalent to traditional iliac screws, but offers lower prominence and ease of assembly compared to conventional sacroiliac stabilization.

  2. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  3. Adjustable Tooling for Bending Brake

    Science.gov (United States)

    Ellis, J. M.

    1986-01-01

    Deep metal boxes and other parts easily fabricated. Adjustable tooling jig for bending brake accommodates spacing blocks and either standard male press-brake die or bar die. Holds spacer blocks, press-brake die, bar window die, or combination of three. Typical bending operations include bending of cut metal sheet into box and bending of metal strip into bracket with multiple inward 90 degree bends. By increasing free space available for bending sheet-metal parts jig makes it easier to fabricate such items as deep metal boxes or brackets with right-angle bends.

  4. Why Wet Kaolin can be used as a Crustal Analog and its Application to Fault Evolution at Restraining Bends

    Science.gov (United States)

    Cooke, M. L.; van der Elst, N.; Schottenfeld, M. T.

    2010-12-01

    To simulate geologic deformation on observable time and length scales within the lab, a subset of analog modelers have used wet kaolin. Unlike the more often used sand, wet kaolin beautifully exhibits detailed fault structures. Furthermore, faults within the kaolin are more readily reactivated than those in sand. The low plasticity of kaolin (compared to other clays) gives it low shear strength. Consequently, the clay is a suitable analog material if we assume that the wet kaolin deforms by coulomb frictional failure. Koalin generally deforms as a Bingham solid and exhibits more complex deformation than the perfectly plastic behavior assumed with Coulomb failure. We performed fall cone and rheometric tests on wet kaolin to refine our quantitative understanding of its rheology. We use North American wet kaolin with density 1.65-1.7 g/cm3 and water content of 37.5-38.5%. The fall cone tests reveal that the undrained shear strength (100-160 Pa) is greater than previously measured with a viscometer. The rheometer tests show that the wet koalin exhibits many of the same properties of crustal materials including: 1) elastic behavior at low strains, 2) stress relaxation at near-failure strains, 3) creep under static load, 4) yield strength sensitive to strain rate and 5) rate and state dependent failure. Armed with quantitative values for this complex deformation, we can better scale the length and strain rate of the wet koalin experiments to specific crustal settings. Experiments of deformation around restraining bends show features very similar to those found in natural examples. The detailed fault structures produced in the wet kaolin can be analyzed to understand the evolution of active faulting at restraining bends.

  5. A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine

    Directory of Open Access Journals (Sweden)

    Chang Hwan Choi

    2014-10-01

    Full Text Available Recently, the rebar bending methodology started to change from field processing to utilizing rebar bending machines at plant sites prior to transport to the construction locations. Computerized control of rebar plant bending machines provides more accurate and faster bending of rebars than the low quality inefficient field processing alternative. The bending process involves plastic deformation of rebars, where bending stress beyond the yield point of the material is applied. When the bending stress is removed, spring back is caused by the elastic restoring stress. Therefore, an accurate numerical analysis of the spring-back process is required to reduce the bending process errors. The most sensitive factors affecting the spring-back process are the bending radius, the bending angle, the diameter of the rebar, the friction coefficient, and the yielding strength of material. In this paper, we suggest a numerical modeling method using these factors. The finite element modeling of the dynamic mechanical behavior of the material during bending is performed using a commercial dynamic analysis program “DAFUL.” We use the least squares approach to derive the spring-back deflection as a function of the rebar bending parameters.

  6. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  7. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  8. Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin.

    Science.gov (United States)

    Forien, Jean-Baptiste; Fleck, Claudia; Cloetens, Peter; Duda, Georg; Fratzl, Peter; Zolotoyabko, Emil; Zaslansky, Paul

    2015-06-10

    The tough bulk of dentin in teeth supports enamel, creating cutting and grinding biostructures with superior failure resistance that is not fully understood. Synchrotron-based diffraction methods, utilizing micro- and nanofocused X-ray beams, reveal that the nm-sized mineral particles aligned with collagen are precompressed and that the residual strains vanish upon mild annealing. We show the link between the mineral nanoparticles and known damage propagation trajectories in dentin, suggesting a previously overlooked compression-mediated toughening mechanism.

  9. Load-bearing evaluation of spinal posterior column by measuring surface strain from lumbar pedicles. An in vitro study.

    Science.gov (United States)

    Sun, Peidong; Zhao, Weidong; Bi, Zhenyu; Wu, Changfu; Ouyang, Jun

    2012-01-01

    An understanding of the load transfer within spinal posterior column of lumbar spine is necessary to determine the influence of mechanical factors on potential mechanisms of the motion-sparing implant such as artificial intervertebral disc and the dynamic spine stabilization systems. In this study, a new method has been developed for evaluating the load bearing of spinal posterior column by the surface strain of spinal pedicle response to the loading of spinal segment. Six cadaveric lumbar spine segments were biomechanically evaluated between levels L1 and L5 in intact condition and the strain gauges were pasted to an inferior surface of L2 pedicles. Multidirectional flexibility testing used the Panjabi testing protocol; pure moments for the intact condition with overall spinal motion and unconstrained intact moments of ±8 Nm were used for flexion-extension and lateral bending testing. High correlation coefficient (0.967-0.998) indicated a good agreement between the load of spinal segment and the surface strain of pedicle in all loading directions. Principal compressive strain could be observed in flexion direction and tensile strain in extension direction, respectively. In conclusion, the new method seems to be effective for evaluating posterior spinal column loads using pedicles' surface strain data collected during biomechanical testing of spine segments.

  10. Effects of Long-Term Static Bending Deformation on a Barrier Thin Film for Flexible Organic Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Hung-I Lu

    2018-03-01

    Full Text Available The objective of this study is to investigate the effect of long-term static bending on the encapsulation properties of a commercial barrier thin film for flexible optoelectronic devices. Encapsulation properties of the barrier film are evaluated under long-term static bending at various radii of curvature. Experimental results reveal that no significantly detrimental effect on the water vapor transmission rate (WVTR at 40 °C and 90% RH is found for compressive bending up to 1000 h and for tensile bending up to 100 h with a radius of curvature of 5 mm or larger. However, WVTR of the barrier thin film is significantly increased and cracks are found in the barrier film when subjected to tensile bending of a radius of 10 mm or 5 mm for 1000 h. The expected WVTR of the given barrier thin film is numerically computed using a three-dimensional (3D finite element model. Numerical results indicate that, with the presence of cracks in the barrier thin film, the WVTR increases for an apparent increase in moisture entrances. The WVTR calculated by the 3D cracking model concurs with the experimental results.

  11. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    International Nuclear Information System (INIS)

    Rodenbough, Philip P.; Song, Junhua; Chan, Siu-Wai; Walker, David; Clark, Simon M.; Kalkan, Bora

    2015-01-01

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size

  12. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbough, Philip P. [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Chemistry Department, Columbia University, New York, New York 10027 (United States); Song, Junhua; Chan, Siu-Wai, E-mail: sc174@columbia.edu [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Walker, David [Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 (United States); Clark, Simon M. [ARC Center of Excellence for Core to Crust Fluid Systems and Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2019, Australia and The Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales 2232 (Australia); Kalkan, Bora [Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.

  13. Experimental and theoretical analysis of integrated circuit (IC) chips on flexible substrates subjected to bending

    Science.gov (United States)

    Chen, Ying; Yuan, Jianghong; Zhang, Yingchao; Huang, Yonggang; Feng, Xue

    2017-10-01

    The interfacial failure of integrated circuit (IC) chips integrated on flexible substrates under bending deformation has been studied theoretically and experimentally. A compressive buckling test is used to impose the bending deformation onto the interface between the IC chip and the flexible substrate quantitatively, after which the failed interface is investigated using scanning electron microscopy. A theoretical model is established based on the beam theory and a bi-layer interface model, from which an analytical expression of the critical curvature in relation to the interfacial failure is obtained. The relationships between the critical curvature, the material, and the geometric parameters of the device are discussed in detail, providing guidance for future optimization flexible circuits based on IC chips.

  14. Bacterial survival following shock compression in the GigaPascal range

    Science.gov (United States)

    Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.

    2017-09-01

    The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for

  15. Damage law identification of a quasi brittle ceramic from a b ending test using digital image correlation

    Directory of Open Access Journals (Sweden)

    Meille S.

    2010-06-01

    Full Text Available The quasi brittle ceramics show a non linear mechanical behaviour resulting most of the time in a dissymetry between their tensile and compressive stress-strain laws. The characterization of their fracture strengths might be biased if elastic linear formulae are used to analyze classical tests like bending tests. Based on Digital Image Correlation (DIC, a methodology is proposed to characterize materials with dissymmetric behaviours. Applying specific DIC decomposition functions for bending, compressive and tensile tests, a stress-strain model and its damage law are identified for aluminium titanate, a damageable micro cracked ceramic. This identification method using DIC can obviously be applied to other quasi brittle materials.

  16. Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures

    DEFF Research Database (Denmark)

    Zhang, Aihua; Peng, Mingzeng; Willatzen, Morten

    2017-01-01

    The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain, in the frame......The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain......, in the framework of the 6 × 6 k·p Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields...... to elucidate the effects of the piezoelectric potential and the deformation potential on the strain-dependent luminescence. The experimentally measured photoluminescence variatio½n as a function of pressure can be qualitatively explained by the theoretical results....

  17. Numerical method for the prediction of bending properties of glass-epoxy composites

    Directory of Open Access Journals (Sweden)

    Stamenović Marina R.

    2007-01-01

    Full Text Available Mechanical properties of composite materials are conditioned by their structure and depend on the characteristics of structural components. In this paper is presented a numerical model by which the bending properties can be predicted on the basis of known mechanical properties of tension and pressure. Determining the relationship between these properties is justified having in mind the mechanics of fracture during bending, where the fracture takes place on the outer layer which is subjected to bending while the break ends on the layer subjected to pressure. The paper gives the values of tension, pressure and bending properties obtained by the corresponding mechanical test. A comparison of the numerical results of bending properties obtained on the basis of the model with the experimental ones, shows their satisfactory agreement. Therefore, this model can be used for some future research to predict bending properties without experiments.

  18. Analysis of pipe mitred bends using beam models - by finite element method

    International Nuclear Information System (INIS)

    Salles, A.C.S.L. de.

    1984-01-01

    The formulation of a recently proposed displacement based straight pipe element for the analysis of pipe mitred bends is summarized in this work. The element kinematics includes axial, bending, torsional and ovalisation displacements, all varying cubically along the axis of the element. Interaction effects between angle adjoined straight pipe section are modeled including the appropriate additional strain terms in the stiffness matrix formulation and by using a penalty procedure to enforce continuity of pipe skin flexural rotations at the common helical edge. The element model capabilities are ilustrated in some sample analysis and the results are compared with other available experimental, analytical or more complex numerical models. (Author) [pt

  19. Dynamic restoration mechanism and physically based constitutive model of 2050 Al–Li alloy during hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruihua; Liu, Qing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Jinfeng, E-mail: lijinfeng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xiang, Sheng [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Chen, Yonglai; Zhang, Xuhu [Aerospace Research Institute of Materials and Processing Technology, Beijing 100076 (China)

    2015-11-25

    Dynamic restoration mechanism of 2050 Al–Li alloy and its constitutive model were investigated by means of hot compression simulation in the deformation temperature ranging from 340 to 500 °C and at strain rates of 0.001–10 s{sup −1}. The microstructures of the compressed samples were observed using optical microscopy and transmission electron microscopy. On the base of dislocation density theory and Avrami kinetics, a physically based constitutive model was established. The results show that dynamic recovery (DRV) and dynamic recrystallization (DRX) are co-responsible for the dynamic restoration during the hot compression process under all compression conditions. The dynamic precipitation (DPN) of T1 and σ phases was observed after the deformation at 340 °C. This is the first experimental evidence for the DPN of σ phase in Al–Cu–Li alloys. The particle stimulated nucleation of DRX (PSN-DRX) due to the large Al–Cu–Mn particle was also observed. The error analysis suggests that the established constitutive model can adequately describe the flow stress dependence on strain rate, temperature and strain during the hot deformation process. - Highlights: • The experimental evidence for the DPN of σ phase in Al–Cu–Li alloys was found. • The PSN-DRX due to the large Al–Cu–Mn particle was observed. • A novel method was proposed to calculated the stress multiplier α.

  20. Infection of inbred rat strains with Rift Valley fever virus: development of a congenic resistant strain and observations on age-dependence of resistance.

    Science.gov (United States)

    Anderson, G W; Rosebrock, J A; Johnson, A J; Jennings, G B; Peters, C J

    1991-05-01

    A congenic rat strain (WF.LEW) was derived from the susceptible Wistar-Furth (WF) (background strain) and the resistant LEW (donor strain) inbred strains and was used to evaluate the phenotypic expression of a dominant Mendelian gene that confers resistance to fatal hepatic disease caused by the ZH501 strain of Rift Valley fever virus (RVFV). Resistance to hepatic disease developed gradually with age, with full expression at approximately 10 weeks in the WF.LEW and LEW rat strains. The ZH501 strain caused fatal hepatitis in WF rats regardless of age. However, resistance to the SA75 RVFV strain (relatively non-pathogenic for adult rats), was age- and dose-dependent in both WF and LEW rats. The resistance gene transferred to the newly derived WF.LEW congenic rat strain appears to amplify age-dependent resistance of adult rats, resulting in protection against fatal hepatic disease caused by the virulent ZH501 strain. The congenic rat strain will be a valuable asset in elucidating the mechanism of resistance to Rift Valley fever virus governed by the dominant Mendelian gene.

  1. Closed-form plastic collapse loads of pipe bends under combined pressure and in-plane bending

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed

  2. Context and strain-dependent behavioral response to stress

    Directory of Open Access Journals (Sweden)

    Baum Amber E

    2008-06-01

    Full Text Available Abstract Background This study posed the question whether strain differences in stress-reactivity lead to differential behavioral responses in two different tests of anxiety. Strain differences in anxiety-measures are known, but strain differences in the behavioral responses to acute prior stress are not well characterized. Methods We studied male Fisher 344 (F344 and Wistar Kyoto (WKY rats basally and immediately after one hour restraint stress. To distinguish between the effects of novelty and prior stress, we also investigated behavior after repeated exposure to the test chamber. Two behavioral tests were explored; the elevated plus maze (EPM and the open field (OFT, both of which are thought to measure activity, exploration and anxiety-like behaviors. Additionally, rearing, a voluntary behavior, and grooming, a relatively automatic, stress-responsive stereotyped behavior were measured in both tests. Results Prior exposure to the test environment increased anxiety-related measures regardless of prior stress, reflecting context-dependent learning process in both tests and strains. Activity decreased in response to repeated testing in both tests and both strains, but prior stress decreased activity only in the OFT which was reversed by repeated testing. Prior stress decreased anxiety-related measures in the EPM, only in F344s, while in the OFT, stress led to increased freezing mainly in WKYs. Conclusion Data suggest that differences in stressfulness of these tests predict the behavior of the two strains of animals according to their stress-reactivity and coping style, but that repeated testing can overcome some of these differences.

  3. Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening

    Science.gov (United States)

    Kreyca, Johannes; Kozeschnik, Ernst

    2018-01-01

    A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.

  4. Stress strain flow curves for Cu-OFP

    International Nuclear Information System (INIS)

    Sandstroem, Rolf; Hallgren, Josefin

    2009-04-01

    Stress strain curves of oxygen free copper alloyed with phosphorus Cu-OFP have been determined in compression and tension. The compression tests were performed at room temperature for strain rates between 10 -5 and 10 -3 1/s. The tests in tension covered the temperature range 20 to 175 deg C for strain rates between 10 -7 and 5x10 -3 1/s. The results in compression and tension were close for similar strain rates. A model for stress strain curves has been formulated using basic dislocation mechanisms. The model has been set up in such a way that fitting of parameters to the curves is avoided. By using a fundamental creep model as a basis a direct relation to creep data has been established. The maximum engineering flow stress in tension is related to the creep stress giving the same strain rate. The model reproduces the measured flow curves as function of temperature and strain rate in the investigated interval. The model is suitable to use in finite-element computations of structures in Cu-OFP

  5. Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa

    Science.gov (United States)

    Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.

    2014-05-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  6. Experimental investigation of dynamic compression and spallation of cerium at pressures up to 6 GPa

    International Nuclear Information System (INIS)

    Zubareva, A N; Kolesnikov, S A; Utkin, A V

    2014-01-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  7. The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy

    Science.gov (United States)

    Livescu, Veronica; Cady, Carl M.; Cerreta, Ellen K.; Henrie, Benjamin L.; Gray, George T.

    The deformation in compression of pure magnesium and AZ31B magnesium alloy, both with a strong basal pole texture, has been investigated as a function of temperature, strain rate, and specimen orientation. The mechanical response of both metals is highly dependent upon the orientation of loading direction with respect to the basal pole. Specimens compressed along the basal pole direction have a high sensitivity to strain rate and temperature and display a concave down work hardening behavior. Specimens loaded perpendicularly to the basal pole have a yield stress that is relatively insensitive to strain rate and temperature and a work hardening behavior that is parabolic and then linearly upwards. Both specimen orientations display a mechanical response that is sensitive to temperature and strain rate. Post mortem characterization of the pure magnesium was conducted on a subset of specimens to determine the microstructural and textural evolution during deformation and these results are correlated with the observed work hardening behavior and strain rate sensitivities were calculated.

  8. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge.

    Science.gov (United States)

    Niu, Zhiqiang; Zhou, Weiya; Chen, Xiaodong; Chen, Jun; Xie, Sishen

    2015-10-21

    Based on polyaniline-single-walled carbon nanotubes -sponge electrodes, highly compressible all-solid-state supercapacitors are prepared with an integrated configuration using a poly(vinyl alcohol) (PVA)/H2 SO4 gel as the electrolyte. The unique configuration enables the resultant supercapacitors to be compressed as an integrated unit arbitrarily during 60% compressible strain. Furthermore, the performance of the resultant supercapacitors is nearly unchanged even under 60% compressible strain. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In vitro quantification of strain patterns in the craniofacial skeleton due to masseter and temporalis activities.

    Science.gov (United States)

    Maloul, Asmaa; Regev, Eran; Whyne, Cari M; Beek, Marteen; Fialkov, Jeffrey A

    2012-09-01

    Many complications in craniofacial surgery can be attributed to a lack of characterization of facial skeletal strain patterns. This study aimed to delineate human midfacial strain patterns under uniform muscle loading. The left sides of 5 fresh-frozen human cadaveric heads were dissected of all soft tissues except the temporalis and masseter muscles. Tensile forces were applied to the free mandibular ends of the muscles. Maxillary alveolar arches were used to restrain the skulls. Eight strain gauges were bonded to the surface of the midface to measure the strain under single muscle loading conditions (100 N). Maxillary strain gauges revealed a biaxial load state for both muscles. Thin antral bone experienced high maximum principal tensile strains (maximum of 685.5 με) and high minimum principal compressive strains (maximum of -722.44 με). Similar biaxial patterns of lower magnitude were measured on the zygoma (maximum of 208.59 με for maximum principal strains and -78.11 με for minimum principal strains). Results, consistent for all specimens and counter to previously accepted concepts of biomechanical behavior of the midface under masticatory muscle loading, included high strain in the thin maxillary antral wall, rotational bending through the maxilla and zygoma, and a previously underestimated contribution of the temporalis muscle. This experimental model produced repeatable strain patterns quantifying the mechanics of the facial skeleton. These new counterintuitive findings underscore the need for accurate characterization of craniofacial strain patterns to address problems in the current treatment methods and develop robust design criteria.

  10. Finite element modeling of penetration of rigid cylindrical bar impacting on a clamped circular plate, employing a strain rate dependent flow rate and a Gruneisen equation of state

    International Nuclear Information System (INIS)

    Tariq, M.; Khan, I.A.

    2003-01-01

    A time dependent Finite Element simulation of penetration of a rigid cylindrical bar impacting on a copper plate is conducted, to demonstrate how material behavior appears to change when Johnson-Cook plasticity rule is employed along with a Gruneisen, equation of state with cubic shock velocity-particle relationship, and defining pressure both for compressed and expanded materials, as compared to the behavior when only isotropic strain-hardening model is employed. The bar impacts the plate with a velocity of 1000 m/s, and penetrates the plate, a portion of it coming out of the other side. Results are obtained and compared taking both an isotropic strain-hardening model, and a model incorporating Johnson-Cook flow rule along with Gruneisen equation of state. (author)

  11. In-situ bending under tension shear fracture analysis and microstructure “earthquake” of DP780 dual phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yixi, E-mail: yxzhao@sjtu.edu.cn [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, Sheng [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Dan, Wenjiao; Zhang, Weigang [Innovation Center for Advanced Ship and Deep-Sea Exploration, Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Shuhui [State Key Laboratory of Mechanical System and Vibration, Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-05-17

    Dual phase (DP) steels consist of hard brittle martensite phase and soft ductile ferrite phase. With a novel bending under tension test system, in-situ symmetrical bending under tension experiments were carried out and photomicrographs of bending surface were recorded. The microstructure “earthquake” of DP780 dual phase steels was observed in the bending under tension process. By analyzing the in-situ images serious, the initiation, coalescence of cavities and propagation of micro-cracks until final fracture were analyzed. The micro-cracks form only in the outside surface of bending radius, and mainly appear near the phase boundary of ferrite and martensite. Micro-cracks coalesce and propagate in the direction perpendicular to the stretching direction approximately, and at the phase boundary of martensite and ferrite. Furthermore, digital image correlation technology was used in this study to analysis the strain distribution between ferrite and martensite during the bending under tension deformation and fracture.

  12. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    Science.gov (United States)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  13. Remarkable strain-induced magnetic anisotropy in epitaxial Co2MnGa (0 0 1) films

    International Nuclear Information System (INIS)

    Pechan, Michael J.; Yu, Chengtao; Carr, David; Palmstroem, Chris J.

    2005-01-01

    Remarkably large, strain-induced anisotropy is observed in the thin-film Heusler alloy Co 2 MnGa. 30 nm Co 2 MnGa (0 0 1) films have been epitaxially grown on different interlayers/substrates with varied strain, and investigated with ferromagnetic resonance. The film grown on ErAs/InGaAs/InP experiences tension strain, resulting in an out-of-plane strain-induced anisotropy (∼1.1x10 6 erg/cm 3 ) adding to the effects of shape anisotropy. In contrast, the film grown on ScErAs/GaAs, experiences a compression strain, resulting in an out-of-plane strain-induced anisotropy (∼3.3x10 6 erg/cm 3 ) which almost totally cancels the effects of shape anisotropy, thus rendering the film virtually isotropic. This results in the formation of stripe domains in remanence. In addition, small, but well-defined 2-fold and 4-fold in-plane anisotropy coexist in each sample with weak, but interesting strain dependence. Transport measurement shows small (<1%) magnetoresistance effects in the compression film, but negligible magnetoresistance in the relaxed and tension strained samples

  14. Uniaxial compression test series on Bullfrog Tuff

    International Nuclear Information System (INIS)

    Price, R.H.; Jones, A.K.; Nimick, K.G.

    1982-04-01

    Nineteen uniaxial compressive experiments were performed on samples of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole USW-G1 at Yucca Mountain on the Nevada Test Site. The water saturated samples were deformed at a nominal strain rate of 10 -5 sec -1 , atmospheric pressure and room temperature. Resultant unconfined compressive strengths, axial strains to failure, Young's moduli and Poisson's ratios ranged from 4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa and .08 to .16, respectively

  15. Semi-confined compression of microfabricated polymerized biomaterial constructs

    International Nuclear Information System (INIS)

    Moraes, Christopher; Likhitpanichkul, Morakot; Simmons, Craig A; Sun, Yu; Zhao, Ruogang

    2011-01-01

    Mechanical forces are critical parameters in engineering functional tissue because of their established influence on cellular behaviour. However, identifying ideal combinations of mechanical, biomaterial and chemical stimuli to obtain a desired cellular response requires high-throughput screening technologies, which may be realized through microfabricated systems. This paper reports on the development and characterization of a MEMS device for semi-confined biomaterial compression. An array of these devices would enable studies involving mechanical deformation of three-dimensional biomaterials, an important parameter in creating physiologically relevant microenvironments in vitro. The described device has the ability to simultaneously apply a range of compressive mechanical stimuli to multiple polymerized hydrogel microconstructs. Local micromechanical strains generated within the semi-confined hydrogel cylinders are characterized and compared with those produced in current micro- and macroscale technologies. In contrast to previous work generating unconfined compression in microfabricated devices, the semi-confined compression model used in this work generates uniform regions of strain within the central portion of each hydrogel, demonstrated here to range from 20% to 45% across the array. The uniform strains achieved simplify experimental analysis and improve the utility of the compression platform. Furthermore, the system is compatible with a wide variety of polymerizable biomaterials, enhancing device versatility and usability in tissue engineering and fundamental cell biology studies

  16. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  17. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique

    International Nuclear Information System (INIS)

    Motz, C.; Schoeberl, T.; Pippan, R.

    2005-01-01

    Micro-sized bending beams with thicknesses, t, from 7.5 down to 1.0 μm were fabricated with the focused ion beam technique from a copper single crystal with an {1 1 1} orientation. The beams were loaded with a nano-indenter and the force vs. displacement curves were recorded. A strong size effect was found where the flow stress reaches almost 1 GPa for the thinnest beams. A common strain gradient plasticity approach was used to explain the size effect. However, the strong t -1.14 dependence of the flow stress could not be explained by this model. Additionally, the combination of two other dislocation mechanisms is discussed: the limitation of available dislocation sources and a dislocation pile-up at the beam centre. The contribution of the pile-up stress to the flow stress gives a t -1 dependence, which is in good agreement with the experimental results

  18. A diagnostic study in patients with sciatica establishing the importance of localization of worsening of pain during coughing, sneezing and straining to assess nerve root compression on MRI.

    Science.gov (United States)

    Verwoerd, Annemieke J H; Mens, Jan; El Barzouhi, Abdelilah; Peul, Wilco C; Koes, Bart W; Verhagen, Arianne P

    2016-05-01

    To test whether the localization of worsening of pain during coughing, sneezing and straining matters in the assessment of lumbosacral nerve root compression or disc herniation on MRI. Recently the diagnostic accuracy of history items to assess disc herniation or nerve root compression on magnetic resonance imaging (MRI) was investigated. A total of 395 adult patients with severe sciatica of 6-12 weeks duration were included in this study. The question regarding the influence of coughing, sneezing and straining on the intensity of pain could be answered on a 4 point scale: no worsening of pain, worsening of back pain, worsening of leg pain, worsening of back and leg pain. Diagnostic odds ratio's (DORs) were calculated for the various dichotomization options. The DOR changed into significant values when the answer option was more narrowed to worsening of leg pain. The highest DOR was observed for the answer option 'worsening of leg pain' with a DOR of 2.28 (95 % CI 1.28-4.04) for the presence of nerve root compression and a DOR of 2.50 (95 % CI 1.27-4.90) for the presence of a herniated disc on MRI. Worsening of leg pain during coughing, sneezing or straining has a significant diagnostic value for the presence of nerve root compression and disc herniation on MRI in patients with sciatica. This study also highlights the importance of the formulation of answer options in history taking.

  19. Plastic loads of pipe bends under combined pressure and out-of-plane bending

    International Nuclear Information System (INIS)

    Lee, Kuk Hee; Kim, Yun Jae; Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong

    2007-01-01

    Based on three-Dimensional (3-D) FE limit analyses, this paper provides plastic limit and TES(Twice- Elastic-Slope) loads for pipe bends under combined pressure and out-of-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic.perfectly-plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide TES plastic loads. A wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and TES plastic load solutions for pipe bends under out-of-plane bending are proposed

  20. Bend-imitating theory and electron scattering in sharply-bent quantum nanowires

    International Nuclear Information System (INIS)

    Vakhnenko, O.O.

    2011-01-01

    The concept of bend-imitating description as applied to the one-electron quantum mechanics in sharply-bent ideal electron waveguides and its development into a self consistent theory are presented. In the framework of bend-imitating approach, the investigation of the electron scattering in a doubly-bent 2D quantum wire with S-like bend has been made, and the explicit dependences of the transmission and reflection coefficients on geometrical parameters of a structure, as well as on the electron energy, have been obtained. The total elimination of the mixing between the scattering channels of a S-like bent quantum wire is predicted.

  1. Estimates of plastic loads for pipe bends under combined in-plane and out-of-plane bending moment

    International Nuclear Information System (INIS)

    Kim, Nak Hyun; Oh, Chang Sik; Kim, Yun Jae

    2008-01-01

    This paper provides a method to estimate plastic loads (defined by twice-elastic-slope) for pipe bends under combined in-plane and out-of-plane bending moment, based on detailed 3-D FE limit analyses using elastic-perfectly plastic materials. Because closing bending moment is always lower than opening bending moment, the combination of in-plane closing bending and out-of-plane bending moment becomes the most significant case. Due to conservatism of each bending moments, the resultant moment provided by ASME B and PV code is unduly conservative. However, the concept of the resultant moment is still valid. In this paper, FE results show that the accurate solutions of bending moments provide better estimates of plastic loads of pipe bend under combined in-plane bending and out-of-plane bending moment

  2. Tuning decoherence in superconducting transmon qubits by mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, Jan; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey; Lisenfeld, Juergen [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    Two-level tunneling systems (TLS) are formed by structural defects in disordered materials. They gained recent attention as an important decoherence source in superconducting qubits, where they appear on surface oxides and at film interfaces. Although the most advanced qubits do not show avoided level crossings arising from a strong coupling to individual TLS, they commonly display a pronounced frequency dependence of relaxation rates, with distinguishable peaks that may point towards weak resonant coupling to single TLS. Previously, we have shown that TLS are tunable via an applied mechanical strain. Here, we employ this method to test whether the characteristic decoherence spectrum of a transmon qubit sample responds to changes in the applied strain, as it can be expected when the decohering bath is formed of atomic TLS. In our experiment, we will employ a highly coherent X-mon qubit sample and tune the strain by bending the qubit chip via a piezo actuator. Our latest results will be presented.

  3. Mechanical response of AA7075 aluminum alloy over a wide range of temperatures and strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Cassada, W.A. [Reynolds Metals Co., Chester, VA (United States). Corp. Res. and Dev.; Cady, C.M.; Gray, G.T. III

    2000-07-01

    The influence of temperature and strain rate on the flow stress and work hardening rate of a 7075 aluminum alloy was studied under compressive loading over the temperature range from 23 C to 470 C, and strain rates from 0.001 s{sup -1} and 2100 s{sup -1}. While the temperature dependence of the flow stress was found to be most significant at temperatures below 300 C, the strain rate dependence of the flow stress was found to be pronounced at temperatures above 23 C. Concurrently, the work hardening rate decreases significantly with increasing temperature between 23 C and 300 C and increases slightly at higher temperatures. The minimum work hardening rate is observed to occur at temperatures between 200 C and 300 C and shift to higher temperatures with increasing strain rate. A negative strain rate dependence of work hardening rate was observed at 23 C, although a positive strain rate dependence of work hardening rate occurs at higher temperatures. Analysis of the experimental data revealed three deformation regimes. (orig.)

  4. STRAIN LOCALIZATION PECULIARITIES AND DISTRIBUTION OF ACOUSTIC EMISSION SOURCES IN ROCK SAMPLES TESTED BY UNIAXIAL COMPRESSION AND EXPOSED TO ELECTRIC PULSES

    Directory of Open Access Journals (Sweden)

    V. A. Mubassarova

    2014-01-01

    Full Text Available Results of uniaxial compression tests of rock samples in electromagnetic fields are presented. The experiments were performed in the Laboratory of Basic Physics of Strength, Institute of Continuous Media Mechanics, Ural Branch of RAS (ICMM. Deformation of samples was studied, and acoustic emission (AE signals were recorded. During the tests, loads varied by stages. Specimens of granite from the Kainda deposit in Kyrgyzstan (similar to samples tested at the Research Station of RAS, hereafter RS RAS were subject to electric pulses at specified levels of compression load. The electric pulses supply was galvanic; two graphite electrodes were fixed at opposite sides of each specimen. The multichannel Amsy-5 Vallen System was used to record AE signals in the six-channel mode, which provided for determination of spatial locations of AE sources. Strain of the specimens was studied with application of original methods of strain computation based on analyses of optical images of deformed specimen surfaces in LaVISION Strain Master System.Acoustic emission experiment data were interpreted on the basis of analyses of the AE activity in time, i.e. the number of AE events per second, and analyses of signals’ energy and AE sources’ locations, i.e. defects.The experiment was conducted at ICMM with the use of the set of equipment with advanced diagnostic capabilities (as compared to earlier experiments described in [Zakupin et al., 2006a, 2006b; Bogomolov et al., 2004]. It can provide new information on properties of acoustic emission and deformation responses of loaded rock specimens to external electric pulses.The research task also included verification of reproducibility of the effect (AE activity when fracturing rates responded to electrical pulses, which was revealed earlier in studies conducted at RS RAS. In terms of the principle of randomization, such verification is methodologically significant as new effects, i.e. physical laws, can be considered

  5. Compression fatigue of Wind Turbine Blade composites materials and damage mechanisms

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Brøndsted, Povl

    According to the new IEC 61400-5-rev0 recommendation, which is under preparation it will be required to qualify wind turbine blade (WTB) composite materials in fatigue at R=0.1, R=-1, and R=10. As a minimum fatigue at R=-1 is required. This is a consequence of the ever-growing blades, where gravity...... driven edgewise bending introduces significant fully reversed cycling at the leading and trailing edges. Therefore, material manufacturer and WTB manufacturer demand test results of highest reliability and reproducibility. However, these equirements for compression-compression and tensioncompression...

  6. Dependence of electronic properties of germanium on the in-plane biaxial tensile strains

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Yu, Z.Y., E-mail: yuzhongyuan30@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Liu, Y.M.; Lu, P.F. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Gao, T. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Li, M.; Manzoor, S. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China)

    2013-10-15

    The hybrid HSE06 functional with the spin–orbit coupling effects is used to calculate the habituation of the electronic properties of Ge on the (0 0 1), (1 1 1), (1 0 1) in-plane biaxial tensile strains (IPBTSs). Our motivation is to explore the nature of electronic properties of tensile-strained Ge on different substrate orientations. The calculated results demonstrate that one of the most effective and practical approaches for transforming Ge into a direct transition semiconductor is to introduce (0 0 1) IPBTS to Ge. At 2.3% (0 0 1) IPBTS, Ge becomes a direct bandgap semiconductor with 0.53 eV band gap, in good agreement with the previous theoretical and experimental results. We find that the (1 1 1) and (1 0 1) IPBTSs are not efficient since the shear strain and inner displacement of atoms introduced by them quickly decrease the indirect gap of Ge. By investigating the dependence of valence band spin–orbit splitting on strain, we prove that the dependency relationship and the coupled ways between the valence-band states of tensile-strained Ge are closely related to the symmetry of strain tensor, i.e., the symmetry of the substrate orientation. The first- and second-order coefficients describing the dependence of indirect gap, direct gap, the valence band spin–orbit coupling splitting, and heavy-hole–light-hole splitting of Ge on IPBTSs have been obtained by the least squares polynomial fitting. These coefficients are significant to quantitatively modulate the electronic properties of Ge by tensile strain and design tensile-strained Ge devices by semiconductor epitaxial technique.

  7. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  8. Simplified elastoplastic fatigue analysis

    International Nuclear Information System (INIS)

    Autrusson, B.; Acker, D.; Hoffmann, A.

    1987-01-01

    Oligocyclic fatigue behaviour is a function of the local strain range. The design codes ASME section III, RCC-M, Code Case N47, RCC-MR, and the Guide issued by PNC propose simplified methods to evaluate the local strain range. After having briefly described these simplified methods, we tested them by comparing the results of experimental strains with those predicted by these rules. The experiments conducted for this study involved perforated plates under tensile stress, notched or reinforced beams under four-point bending stress, grooved specimens under tensile-compressive stress, and embedded grooved beams under bending stress. They display a relative conservatism depending on each case. The evaluation of the strains of rather inaccurate and sometimes lacks conservatism. So far, the proposal is to use the finite element codes with a simple model. The isotropic model with the cyclic consolidation curve offers a good representation of the real equivalent strain. There is obviously no question of representing the cycles and the entire loading history, but merely of calculating the maximum variation in elastoplastic equivalent deformations with a constant-rate loading. The results presented testify to the good prediction of the strains with this model. The maximum equivalent strain will be employed to evaluate fatigue damage

  9. A 1D constitutive model for shape memory alloy using strain and temperature as control variables and including martensite reorientation and asymmetric behaviors

    International Nuclear Information System (INIS)

    Jaber, M Ben; Mehrez, S; Ghazouani, O

    2014-01-01

    In this paper, a new 1D constitutive model for shape memory alloy using strain and temperature as control variables is presented. The new formulation is restricted to the 1D stress case and takes into account the martensite reorientation and the asymmetry of the SMA behavior in tension and compression. Numerical implementation of the new model in a finite element code was conducted. The numerical results for superelastic behavior in tension and compression tests are presented and were compared to experimental data taken from the literature. Other numerical tests are presented, showing the model’s ability to reproduce the main aspects of SMA behavior such as the shape memory effect and the martensite reorientation under cyclic loading. Finally, to demonstrate the utility of the new constitutive model, a dynamic test of a bi-clamped SMA bending beam under forced oscillation is described. (paper)

  10. Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

    Directory of Open Access Journals (Sweden)

    Tae-Jun Kim

    2015-09-01

    Full Text Available In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

  11. Internal-strain effect on the valence band of strained silicon and its correlation with the bond angles

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Yanagisawa, Susumu; Kadekawa, Yukihiro [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2014-02-14

    By means of the first-principles density-functional theory, we investigate the effect of relative atom displacement in the crystal unit cell, namely, internal strain on the valence-band dispersion of strained silicon, and find close correlation of this effect with variation in the specific bond angles due to internal strain. We consider the [111] ([110]) band dispersion for (111) ((110)) biaxial tensility and [111] ([110]) uniaxial compression, because remarkably small values of hole effective mass m* can be obtained in this dispersion. Under the practical condition of no normal stress, biaxial tensility (uniaxial compression) involves additional normal compression (tensility) and internal strain. With an increase in the internal-strain parameter, the energy separation between the highest and second-highest valence bands becomes strikingly larger, and the highest band with conspicuously small m* extends remarkably down to a lower energy region, until it intersects or becomes admixed with the second band. This is closely correlated with the change in the specific bond angles, and this change can reasonably explain the above enlargement of the band separation.

  12. Strain characterization of FinFETs using Raman spectroscopy

    International Nuclear Information System (INIS)

    Kaleli, B.; Hemert, T. van; Hueting, R.J.E.; Wolters, R.A.M.

    2013-01-01

    Metal induced strain in the channel region of silicon (Si) fin-field effect transistor (FinFET) devices has been characterized using Raman spectroscopy. The strain originates from the difference in thermal expansion coefficient of Si and titanium-nitride. The Raman map of the device region is used to determine strain in the channel after preparing the device with the focused ion beam milling. Using the Raman peak shift relative to that of relaxed Si, compressive strain values up to – 0.88% have been obtained for a 5 nm wide silicon fin. The strain is found to increase with reducing fin width though it scales less than previously reported results from holographic interferometry. In addition, finite-element method (FEM) simulations have been utilized to analyze the amount of strain generated after thermal processing. It is shown that obtained FEM simulated strain values are in good agreement with the calculated strain values obtained from Raman spectroscopy. - Highlights: ► Strain is characterized in nanoscale devices with Raman spectroscopy. ► There is a fin width dependence of the originated strain. ► Strain levels obtained from this technique is in correlation with device simulations

  13. Compressive properties of silica aerogel at 295, 76, and 20K

    International Nuclear Information System (INIS)

    Arvidson, J.M.; Scull, L.L.

    1986-01-01

    Specimens of silica aerogel were tested in compression at 295, 76, and 20 K in a helium gas environment. The properties reported include Young's modulus, the proportional limit, and yield strength. Compressive stress-versus-strain curves at these temperatures are also given. A test apparatus was developed specifically to determine the compressive properties of low strength materials. To measure specimen strain a concentric, overlapping-cylinder, capacitance extensometer was developed. This frictionless device has the capability to conduct variable temperature tests at any temperature from 1.8 to 295 K. Results from the compression tests indicate that at low temperatures the material is not only stronger, but tougher. During 295-K compression tests, the samples fractured and, in some cases, crumbled. After 76- or 20-K compression tests, the specimens remained intact

  14. Recent developments in bend-insensitive and ultra-bend-insensitive fibers

    Science.gov (United States)

    Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre

    2010-02-01

    Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.

  15. First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET

    International Nuclear Information System (INIS)

    Hahn, Herwig; Reuters, Ben; Wille, Ada; Ketteniss, Nico; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver

    2012-01-01

    One current focus of research is the realization of GaN-based enhancement-mode devices. A novel approach for the realization of enhancement-mode behaviour is the utilization of polarization matching between the barrier and the GaN buffer. Yet, the utilization of a quaternary barrier combining polarization engineering together with a large conduction band offset has not been demonstrated so far. Here, epitaxially grown, compressively strained AlInGaN is applied as a nearly polarization-matched barrier layer on GaN resulting in enhancement-mode operation. The insulated-gate devices are fabricated gate-first with Al 2 O 3 as gate dielectric. Passivated metal insulator semiconductor heterostructure field effect transistors yielded threshold voltages (V th ) of up to +1 V. The devices withstand negative and positive gate-biased stress and a positive V th is maintained even after long-time negative bias stress. (paper)

  16. Response of a uniform optical fiber Bragg grating to strain with a non-smooth distribution: measurements and simulations

    Science.gov (United States)

    Detka, Małgorzata

    2017-08-01

    The paper presents results of numerical analyses of the response of a uniform fiber Bragg grating subjected to a strain with non-smooth profile. Results of measurements of the response of the grating to a compressive strain correspond well with results of the simulation and show, that the induced strain profile of the grating causes a widening of its reflection spectrum with a considerable shape irregularity, dependent on the location of the point where slope of the strain profile changes abruptly, and on the maximum value of the strain.

  17. Spherical time dependent Thomas-Fermi calculation of the dynamical evolution of hot and compressed nuclei

    International Nuclear Information System (INIS)

    Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.

    1985-01-01

    We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)

  18. The compressibility mechanism of Li3Na3In2F12 garnet

    DEFF Research Database (Denmark)

    Grzechnik, Andrzej; Balic Zunic, Tonci; Makovicky, Emil

    2006-01-01

    The high pressure behaviour of Li3Na3In2F12 garnet (Ia¯3d, Z = 8) is studied up to 9.2 GPa at room temperature in diamond anvil cells using xray diffraction. Its equation of state to 9.2 GPa and the pressure dependences of the structural parameters to 4.07 GPa are determined from synchrotron angle......-dispersive powder and laboratory single-crystal data, respectively. No indication of any structural phase transition in this material has been found up to 9.2 GPa. The fitting of the Murnaghan equation of state yields B0 = 36.2(5) GPa, B0 = 5.38(18), and V0 = 2051.76(0.69) °A 3. The compressibility mechanism of Li3......Na3In2F12 is attributed to the substantial bending of the In-F-Li angles linking the InF6 octahedra and LiF4 tetrahedra. The most compressible polyhedral units are the NaF8 triangulated dodecahedra. These results are discussed in relation to previous high pressure photoluminescence measurements...

  19. Occipital bending in schizophrenia.

    Science.gov (United States)

    Maller, Jerome J; Anderson, Rodney J; Thomson, Richard H; Daskalakis, Zafiris J; Rosenfeld, Jeffrey V; Fitzgerald, Paul B

    2017-01-01

    To investigate the prevalence of occipital bending (an occipital lobe crossing or twisting across the midline) in subjects with schizophrenia and matched healthy controls. Occipital bending prevalence was investigated in 37 patients with schizophrenia and 44 healthy controls. Ratings showed that prevalence was nearly three times higher among schizophrenia patients (13/37 [35.1%]) than in control subjects (6/44 [13.6%]). Furthermore, those with schizophrenia had greater normalized gray matter volume but less white matter volume and had larger brain-to-cranial ratio. The results suggest that occipital bending is more prevalent among schizophrenia patients than healthy subjects and that schizophrenia patients have different gray matter-white matter proportions. Although the cause and clinical ramifications of occipital bending are unclear, the results infer that occipital bending may be a marker of psychiatric illness.

  20. Elastic properties of graphene: A pseudo-beam model with modified internal bending moment and its application

    Science.gov (United States)

    Xia, Z. M.; Wang, C. G.; Tan, H. F.

    2018-04-01

    A pseudo-beam model with modified internal bending moment is presented to predict elastic properties of graphene, including the Young's modulus and Poisson's ratio. In order to overcome a drawback in existing molecular structural mechanics models, which only account for pure bending (constant bending moment), the presented model accounts for linear bending moments deduced from the balance equations. Based on this pseudo-beam model, an analytical prediction is accomplished to predict the Young's modulus and Poisson's ratio of graphene based on the equation of the strain energies by using Castigliano second theorem. Then, the elastic properties of graphene are calculated compared with results available in literature, which verifies the feasibility of the pseudo-beam model. Finally, the pseudo-beam model is utilized to study the twisting wrinkling characteristics of annular graphene. Due to modifications of the internal bending moment, the wrinkling behaviors of graphene sheet are predicted accurately. The obtained results show that the pseudo-beam model has a good ability to predict the elastic properties of graphene accurately, especially the out-of-plane deformation behavior.

  1. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tensio...... of principal overall strain. For other orientations surface instabilities are seen when non-associated plastic flow is taken into account. Compared to tension, smaller compressive deformations are needed in order to initiate a surface instability....

  2. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.

    Science.gov (United States)

    Van Toen, Carolyn; Carter, Jarrod W; Oxland, Thomas R; Cripton, Peter A

    2014-12-01

    The tolerance of the spine to bending moments, used for evaluation of injury prevention devices, is often determined through eccentric axial compression experiments using segments of the cadaver spine. Preliminary experiments in our laboratory demonstrated that eccentric axial compression resulted in "unexpected" (artifact) moments. The aim of this study was to evaluate the static and dynamic effects of test configuration on bending moments during eccentric axial compression typical in cadaver spine segment testing. Specific objectives were to create dynamic equilibrium equations for the loads measured inferior to the specimen, experimentally verify these equations, and compare moment responses from various test configurations using synthetic (rubber) and human cadaver specimens. The equilibrium equations were verified by performing quasi-static (5 mm/s) and dynamic experiments (0.4 m/s) on a rubber specimen and comparing calculated shear forces and bending moments to those measured using a six-axis load cell. Moment responses were compared for hinge joint, linear slider and hinge joint, and roller joint configurations tested at quasi-static and dynamic rates. Calculated shear force and bending moment curves had similar shapes to those measured. Calculated values in the first local minima differed from those measured by 3% and 15%, respectively, in the dynamic test, and these occurred within 1.5 ms of those measured. In the rubber specimen experiments, for the hinge joint (translation constrained), quasi-static and dynamic posterior eccentric compression resulted in flexion (unexpected) moments. For the slider and hinge joints and the roller joints (translation unconstrained), extension ("expected") moments were measured quasi-statically and initial flexion (unexpected) moments were measured dynamically. In the cadaver experiments with roller joints, anterior and posterior eccentricities resulted in extension moments, which were unexpected and expected, for those

  3. Drift Compression and Final Focus for Intense Heavy Ion Beams with Non-periodic, Time-dependent Lattice

    International Nuclear Information System (INIS)

    Hong Qin; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.

    2005-01-01

    In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the sam e focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the Integrated Beam Experiment (IBX) being designed by the Heavy Ion Fusion Virtual National Laboratory

  4. Strain distribution of confined Ge/GeO2 core/shell nanoparticles engineered by growth environments

    Science.gov (United States)

    Wei, Wenyan; Yuan, Cailei; Luo, Xingfang; Yu, Ting; Wang, Gongping

    2016-02-01

    The strain distributions of Ge/GeO2 core/shell nanoparticles confined in different host matrix grown by surface oxidation are investigated. The simulated results by finite element method demonstrated that the strains of the Ge core and the GeO2 shell strongly depend on the growth environments of the nanoparticles. Moreover, it can be found that there is a transformation of the strain on Ge core from tensile to compressive strain during the growth of Ge/GeO2 core/shell nanoparticles. And, the transformation of the strain is closely related with the Young's modulus of surrounding materials of Ge/GeO2 core/shell nanoparticles.

  5. Strain engineering of Dirac cones in graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra, E-mail: pandey@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Si, Mingsu [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-05-26

    6,6,12-graphyne, one of the two-dimensional carbon allotropes with the rectangular lattice structure, has two kinds of non-equivalent anisotropic Dirac cones in the first Brillouin zone. We show that Dirac cones can be tuned independently by the uniaxial compressive strain applied to graphyne, which induces n-type and p-type self-doping effect, by shifting the energy of the Dirac cones in the opposite directions. On the other hand, application of the tensile strain results into a transition from gapless to finite gap system for the monolayer. For the AB-stacked bilayer, the results predict tunability of Dirac-cones by in-plane strains as well as the strain applied perpendicular to the plane. The group velocities of the Dirac cones show enhancement in the resistance anisotropy for bilayer relative to the case of monolayer. Such tunable and direction-dependent electronic properties predicted for 6,6,12-graphyne make it to be competitive for the next-generation electronic devices at nanoscale.

  6. Bunch Compression Stability Dependence on RF Parameters

    CERN Document Server

    Limberg, T

    2005-01-01

    In present designs for FEL's with high electron peak currents and short bunch lengths, higher harmonic RF systems are often used to optimize the final longitudinal charge distributions. This opens degrees of freedom for the choice of RF phases and amplitudes to achieve the necessary peak current with a reasonable longitudinal bunch shape. It had been found empirically that different working points result in different tolerances for phases and amplitudes. We give an analytical expression for the sensitivity of the compression factor on phase and amplitude jitter for a bunch compression scheme involving two RF systems and two magnetic chicanes as well numerical results for the case of the European XFEL.

  7. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed; Hendam, Ahmed; Fahmy, Ezzat; Abou Zeid, Mohamed; Haroun, Medhat

    2012-01-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  8. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed

    2012-05-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  9. Initial Measurements of CSR from a Bunch-Compressed Beam at APS

    CERN Document Server

    Lumpkin, Alex H; Borland, M; Sereno, N S

    2005-01-01

    The interest in bunch compression to generate higher peak current electron beams with low emittance continues in the free-electron laser (FEL) community. At the Advanced Photon source (APS) we have both an rf thermionic gun and an rf photocathode (PC) gun on the S-band linac. At the 150-MeV point in the linac, we have a flexible chicane bunch compressor whose four dipoles bend the beam in the horizontal plane. There is also a vertical bend dipole after the chicane that allows measurement of energy and horizontal beam size at the imaging screen station to study possible effects on emittance due to coherent synchrotron radiation (CSR) in the chicane. A far-infrared (FIR) coherent radiation monitor is located downstream of the chicane as well. We have begun recommissioning of this device with coherent transition radiation (CTR), but we also have directly observed CSR from the bunch-compressed beam as it transits the vertical dipole and goes into the down leg. The unique geometry allows simultaneous tracking of b...

  10. Foam behavior of solid glass spheres – Zn22Al2Cu composites under compression stresses

    International Nuclear Information System (INIS)

    Aragon-Lezama, J.A.; Garcia-Borquez, A.; Torres-Villaseñor, G.

    2015-01-01

    Solid glass spheres – Zn22Al2Cu composites, having different densities and microstructures, were elaborated and studied under compression. Their elaboration process involves alloy melting, spheres submersion into the liquid alloy and finally air cooling. The achieved composites with densities 2.6884, 2.7936 and 3.1219 g/cm 3 were studied in casting and thermally induced, fine-grain matrix microstructures. Test samples of the composites were compressed at a 10 −3 s −1 strain rate, and their microstructure characterized before and after compression by using optical and scanning electron microscopes. Although they exhibit different compression behavior depending on their density and microstructure, all of them show an elastic region at low strains, reach their maximum stress (σ max ) at hundreds of MPa before the stress fall or collapse up to a lowest yield point (LYP), followed by an important plastic deformation at nearly constant stress (σ p ): beyond this plateau, an extra deformation can be limitedly reached only by a significant stress increase. This behavior under compression stresses is similar to that reported for metal foams, being the composites with fine microstructure which nearest behave to metal foams under this pattern. Nevertheless, the relative values of the elastic modulus, and maximum and plateau stresses do not follow the Ashby equations by changing the relative density. Generally, the studied composites behave as foams under compression, except for their peculiar parameters values (σ max , LYP, and σ p )

  11. High strain rate studies in rock

    International Nuclear Information System (INIS)

    Grady, D.

    1977-01-01

    Dynamic compression studies using high velocity impact are usually considered to involve a catastrophic process of indeterminate loading rate by which a material is brough to a shock compressed state. Although this is frequently the case, methods are also available to control the rate of strain during the shock compression process. One of the most accurate of these methods makes use of the anomalous nonlinear elastic property of glass to transform an initial shock or step wave input into a ramp wave of known amplitude and duration. Fused silica is the most carefully calibrated material for this purpose and, when placed between the test specimen and the impact projectile, can provide loading strain rates in the range of 10 4 /s to 10 6 /s for final stress states of approximately 3.9 GPa or less.Ramp wave compression experiments have been conducted on dolomite at strain rates of 3 x 10 4 /s. Both initial yielding and subsequent deformation at this strain rate agrees well with previous shock wave studies (epsilon-dotapprox.10 6 /s) and differs substantially from quasi-static measurements (epsilon-dotapprox.10 -4 /s). The ramp wave studies have also uncovered a pressure-induced phase transition in dolomite initiating at 4.0 GPa

  12. Understanding the anisotropic strain effects on lithium diffusion in graphite anodes: A first-principles study

    Science.gov (United States)

    Ji, Xiang; Wang, Yang; Zhang, Junqian

    2018-06-01

    The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.

  13. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  14. Effect of strain rate on cavity closure during compression between flat platens using superplastic tin-lead alloy

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Al-Tamimi, M.M.

    2011-01-01

    Superplasticity is a feature of a material or alloy which allows the material to deform plastically to an extremely large strain at low values of stress under certain loading conditions of strain rate and temperature. Eutectic tin-lead alloy is a practical material for research investigations as it possesses a superplastic behavior at room temperature and low strain rate which makes it a useful tool in simulating the ordinary engineering materials at high strain rate and temperature. This alloy has been extensively used as a model material to simulate behavior of engineering materials at high strain rates and temperatures. In this paper, superplastic tin-lead alloy was used at room temperature to simulate the closure of cavities in steels at high temperatures in the hot region under dynamic loading (high strain rate) under the effect of compressive loads using flat platens (open dies). Hollow specimens having different values of bore diameter (D/sub b/) to outer diameter (D/sub out/), of the same height and volume were investigated under different values of height reduction percentages ranging from 20% to 80% , and the percentage of cavity closure at each reduction percentage was determined. It was found that the cavity closure percentage increases or decreases at slow rate for reduction percentage in height less than 40% and increases more rapidly for reduction percentages in height above this value. Furthermore, specimens having smaller values of ratio (D/sub b//D/sub out/) resulted in higher percentage of cavity closure than specimens having higher ratios at the same value of reduction in height percentage. Complete cavity closure has occurred in specimens having the ratios of 0.1 and 0.2 at 75% reduction in height. (author)

  15. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga

    International Nuclear Information System (INIS)

    Murray, S. J.; Marioni, M.; Allen, S. M.; O'Handley, R. C.; Lograsso, T. A.

    2000-01-01

    Field-induced strains of 6% are reported in ferromagnetic Ni-Mn-Ga martensites at room temperature. The strains are the result of twin boundary motion driven largely by the Zeeman energy difference across the twin boundary. The strain measured parallel to the applied magnetic field is negative in the sample/field geometry used here. The strain saturates in fields of order 400 kA/m and is blocked by a compressive stress of order 2 MPa applied orthogonal to the magnetic field. The strain versus field curves exhibit appreciable hysteresis associated with the motion of the twin boundaries. A simple model accounts quantitatively for the dependence of strain on magnetic field and external stress using as input parameters only measured quantities. (c) 2000 American Institute of Physics

  16. Dynamic strain measurements in a sliding microstructured contact

    International Nuclear Information System (INIS)

    Bennewitz, Roland; David, Jonathan; Lannoy, Charles-Francois de; Drevniok, Benedict; Hubbard-Davis, Paris; Miura, Takashi; Trichtchenko, Olga

    2008-01-01

    A novel experiment is described which measures the tangential strain development across the contact between a PDMS (polydimethylsiloxane) block and a glass surface during the initial stages of sliding. The surface of the PDMS block has been microfabricated to take the form of a regular array of pyramidal tips at 20 μm separation. Tangential strain is measured by means of light scattering from the interface between the block and surface. Three phases are observed in all experiments: initial shear deformation of the whole PDMS block, a pre-sliding tangential compression of the tip array with stepwise increase of the compressive strain, and sliding in stick-slip movements as revealed by periodic variation of the strain. The stick-slip sliding between the regular tip array and the randomly rough counter surface always takes on the periodicity of the tip array. The fast slip can cause either a sudden increase or a sudden decrease in compressive strain

  17. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Proton Medical Research Center, University of Tsukuba, Tsukuba (Japan); Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  18. The temperature--dependent expression of GST of Schistosoma japonicum (Philippine strain).

    Science.gov (United States)

    Cai, Z H; Song, G C; Xu, Y X; Liu, S X

    1993-03-01

    Obtained from pSj5, the cDNA gene encoding GST antigen of Schistosoma japonicum (Philippine strain) was ligated with efficient temperature-dependent PBV220 vector which was constructed in CAPM, and then introduced into host bacterium-DH5 alpha (E. coli) by transformation. Transformants were selected by ampicillin and recombinant clones were identified by restriction mapping. The result showed that recombinant clone 43 was the one carrying recombinant plasmid PBV 220 with the correct insertion of the gene fragment. The GST expression ability of clone 43 was investigated by GST enzymic activity assay and SDS-PAGE. A relatively high level of GST enzymic activity was expressed by this clone under the temperature-dependent condition, that is, cultured at 30 degrees C and expressed at 42 degrees C. A more strongly stained 26 kDa protein band was identified by SDS-PAGE. The result indicated that GST of S. japonicum (Philippine strain) could be expressed not only by IPTG induction, but also by the temperature-dependent method.

  19. Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene

    Science.gov (United States)

    Yang, C. H.; Zhang, J. Y.; Wang, G. X.; Zhang, C.

    2018-06-01

    By using the Kubo formula, the optical conductivity of strained black phosphorene was studied. The anisotropic band dispersion gives rise to an orientation dependent optical conductivity. The energy gap can be tuned by the uniaxial and biaxial strains which can be observed from the interband optical conductivity polarized along the armchair (x ) direction. The preferential conducting direction is along the x direction. The dependence of the intraband optical conductivity along the zigzag (y ) direction on the Fermi energy and strain exhibits increasing or decreasing monotonously. However, along the x direction this dependence is complicated which originates from the carriers' inverse-direction movements obtained by two types of the nearest phosphorus atom interactions. The modification of the biaxial strain on the energy structure and optical-absorption property is more effective. The imaginary part of the total optical conductivity (Im σ ) can be negative around the threshold of the interband optical transition by modifying the chemical potential. Away from this frequency region, Im σ exhibits positive value. It can be used in the application of the surface plasmon propagations in multilayer dielectric structures.

  20. Magnetic field-induced elastic bending in bilayers of Tb{sub 1−x}Dy{sub x}Fe{sub 2−y} and Pb(Zr{sub 1−z}Ti{sub z})O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tao; Qichao, Wu; Ning, Zhang, E-mail: zhangning@njnu.edu.cn

    2014-09-01

    Magnetic field-induced strain in the magnetoelectric bilayers of Tb{sub 1−x}Dy{sub x}Fe{sub 2−y} and Pb(Zr{sub 1−z}Ti{sub z})O{sub 3} was studied. A butterfly shaped strain curve was observed on the surface of Pb(Zr{sub 1−z}Ti{sub z})O{sub 3}. The shape of the strain curve was found to be related to the sample thickness and the volume fraction occupied by the ferroelectrics in the bilayer. Theoretical analysis and experimental results showed that magnetoelastic bending in the bilayer composites was largely responsible for the butterfly strain curve. - Highlights: • Butterfly strain curves were observed on the PZT surface for bilayers of TDF and PZT. • The strain curve is related to the sample thickness and the volume fraction of the PZT. • A physics model depicting the field-controlled bending of the bilayers was developed. • The magnetoelastic bending was found to account for the butterfly strain curve.

  1. Context-dependent colonization dynamics: Regional reward contagion drives local compression in aquatic beetles.

    Science.gov (United States)

    Pintar, Matthew R; Resetarits, William J

    2017-09-01

    Habitat selection by colonizing organisms is an important factor in determining species abundance and community dynamics at multiple spatial scales. Many organisms select habitat patches based on intrinsic patch quality, but patches exist in complex landscapes linked by dispersal and colonization, forming metapopulations and metacommunities. Perceived patch quality can be influenced by neighbouring patches through spatial contagion, wherein perceived quality of one patch can extend beyond its borders and either increase or decrease the colonization of neighbouring patches and localities. These spatially explicit colonization dynamics can result in habitat compression, wherein more colonists occupy a patch or locality than in the absence of spatial context dependence. Previous work on contagion/compression focused primarily on the role of predators in driving colonization patterns. Our goal was to determine whether resource abundance can drive multi-scale colonization dynamics of aquatic beetles through the processes of contagion and compression in naturally colonized experimental pools. We established two levels (high/low quality) of within-patch resource abundances (leaf litter) using an experimental landscape of mesocosms, and assayed colonization by 35 species of aquatic beetles. Patches were arranged in localities (sets of two patches), which consisted of a combination of two patch-level resource levels in a 2 × 2 factorial design, allowing us to assay colonization at both locality and patch levels. We demonstrate that patterns of species abundance and richness of colonizing aquatic beetles are determined by patch quality and context-dependent processes at multiple spatial scales. Localities that consisted of at least one high-quality patch were colonized at equivalent rates that were higher than localities containing only low-quality patches, displaying regional reward contagion. In localities that consisted of one high- and one low-quality patch, reward

  2. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    Science.gov (United States)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  3. Strain induced magnetism in La0.5Ca0.5MnO3 systems

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, Thomas; Nolle, Daniela; Schuetz, Gisela; Goering, Eberhard [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany); Aydogdu, Guelguen; Habermeier, Hanns-Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The La{sub 1-x}Ca{sub x}MnO{sub 3} exhibits, besides the double exchange relate magneto resistive effects, many interesting properties as a function of the doping level. Depending on the doping level x the system may exhibit ferromagnetism, antiferromagnetism, orbital ordering, and charge ordering. Epitaxial tensile and compressive strains are very important for the fine tuning of the lattice degree of freedom and therefore for the magnetic nearest neighbor coupling. By *adjusting* tensile and compressive strain with corresponding substrates one can switch between FM and AFM coupling between the FM ordered ab-planes. In order to investigate the influence of different substrates and relaxation effects element specific XMCD measurements were performed on La{sub 0.5}Ca{sub 0.5}MnO{sub 3} systems.

  4. Patterns through elastic instabilities, from thin sheets to twisted ribbons

    Science.gov (United States)

    Damman, Pascal

    Sheets embedded in a given shape by external forces store the exerted work in elastic deformations. For pure tensile forces, the work is stored as stretching energy. When the forces are compressive, several ways to store the exerted work, combining stretching and bending deformations can be explored. For large deflections, the ratio of bending, Eh3ζ2 /L4 and stretching, Ehζ4 /L4 energies, suggests that strain-free solutions should be favored for thin sheets, provided ζ2 >>h2 (where E , ζ , Land h are the elastic modulus, the deflection, a characteristic sheet size and its thickness). For uniaxially constrained sheets deriving from the Elastica, strain-free solutions are obvious, i.e., buckles, folds or wrinkles grow to absorb the stress of compression. In contrast, crumpled sheets exhibit ``origami-like'' solutions usually described as an assembly of flat polygonal facets delimitated by ridges focusing strains are observed. This type of solutions is particularly interesting since a faceted morphology is isometric to the undeformed sheet, except at those narrow ridges. In some cases however, the geometric constraints imposed by the external forces do not allow solutions with negligible strain in the deformed state. For instance, considering a circular sheet on a small drop, so thin that bending becomes negligible, i.e., Eh3 / γL2 geometry and a competition between various energy terms, involving stretching and bending modes.

  5. Mechanical response of melt-spun amorphous filaments

    International Nuclear Information System (INIS)

    Leal, A A; Reifler, F A; Hufenus, R; Mohanty, G; Michler, J

    2014-01-01

    High-speed melt spinning of a cyclo-olefin polymer (COP) and a copolyamide (CoPA) have been performed. Differential scanning calorimetry curves of the resulting monofilaments show that they remain in an amorphous state even after hot drawing. Wide angle x-ray diffraction patterns of undrawn and drawn COP filaments show that although the material remains in an amorphous state, a degree of orientation is induced in the polymer after drawing. The amorphous filaments show an enhanced bending recovery with respect to different semi-crystalline monofilaments commercially available. However, single fiber axial compressive testing indicates that the amorphous filaments exhibit a compressive modulus value which is 50% lower than what is observed for a reference semi-crystalline PET filament. Analysis of the compressive strains applied by the bending recovery test indicates that while the maximum applied strains remain well within the region of elastic deformation of the amorphous materials, the threshold between elastic and plastic deformation is reached for the semi-crystalline materials. (paper)

  6. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang

    2016-01-01

    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  7. Bending the law: tidal bending and its effects on ice viscosity and flow

    Science.gov (United States)

    Rosier, S.; Gudmundsson, G. H.

    2017-12-01

    Many ice shelves are subject to strong ocean tides and, in order to accommodate this vertical motion, the ice must bend within the grounding zone. This tidal bending generates large stresses within the ice, changing its effective viscosity. For a confined ice shelf, this is particularly relevant because the tidal bending stresses occur along the sidewalls, which play an important role in the overall flow regime of the ice shelf. Hence, tidal bending stresses will affect both the mean and time-varying components of ice shelf flow. GPS measurements reveal strong variations in horizontal ice shelf velocities at a variety of tidal frequencies. We show, using full-Stokes viscoelastic modelling, that inclusion of tidal bending within the model accounts for much of the observed tidal modulation of horizontal ice shelf flow. Furthermore, our model shows that in the absence of a vertical tidal forcing, the mean flow of the ice shelf is reduced considerably.

  8. Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects

    International Nuclear Information System (INIS)

    Vardoulakis, I.; Kourkoulis, S.K.; Exadaktylos, G.

    1998-01-01

    A gradient bending theory is developed based on a strain energy function that includes the classical Bernoulli-Euler term, the shape correction term (microstructural length scale) introduced by Timoshenko, and a term associated with surface energy (micromaterial length scale) accounting for the bending moment gradient effect. It is shown that the last term is capable to interpret the size effect in three-point bending (3PB), namely the decrease of the failure load with decreasing beam length for the same aspect ratio. This theory is used to describe the mechanical behaviour of Dionysos-Pentelikon marble in 3PB. Series of tests with prismatic marble beams of the same aperture but with different lengths were conducted and it was concluded that the present theory predicts well the size effect. (orig.)

  9. Effects of Induction Heat Bending Process on Microstructure and Corrosion Properties of ASME SA312 Gr.TP304 Stainless Steel Pipes

    International Nuclear Information System (INIS)

    Kim, Nam In; Kim, Young Sik; Kim, Kyung Soo; Chang, Hyun Young; Park, Heung Bae; Sung, Gi Ho; Sung, Gi Ho

    2015-01-01

    The usage of bending products recently have increased since many industries such as automobile, aerospace, shipbuilding, and chemical plants need the application of pipings. Bending process is one of the inevitable steps to fabricate the facilities. Induction heat bending is composed of compressive bending process by local heating and cooling. This work focused on the effect of induction heat bending process on the properties of ASME SA312 Gr. TP304 stainless steel pipes. Tests were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. In order to determine intergranular corrosion resistance, Double Loop Electrochemical Potentiokinetic Reactivation (DL-EPR) test and ASTM A262 practice A and C tests were done. Every specimen revealed non-metallic inclusion free under the criteria of 1.5i of the standard and the induction heat bending process did not affect the non-metallic inclusion in the alloys. Also, all the bended specimens had finer grain size than ASTM grain size number 5 corresponding to the grain sizes of the base metal and thus the grain size of the pipe bended by induction heat bending process is acceptable. Hardness of transition start, bend, and transition end areas of ASME SA312 TP304 stainless steel was a little higher than that of base metal. Intergranular corrosion behavior was determined by ASTM A262 practice A and C and DL-EPR test, and respectively step structure, corrosion rate under 0.3 mm/y, and Degree of Sensitization (DOS) of 0.001 - 0.075 % were obtained. That is, the induction heat bending process didn't affect the intergranular corrosion behavior of ASME SA312 TP304 stainless steel

  10. Light squeezing through arbitrarily shaped plasmonic channels and sharp bends

    International Nuclear Information System (INIS)

    Alu, Andrea; Engheta, Nader

    2008-01-01

    We propose a mechanism for optical energy squeezing and anomalous light transmission through arbitrarily-shaped plasmonic ultranarrow channels and bends connecting two larger plasmonic metal-insulator-metal waveguides. It is shown how a proper design of subwavelength optical channels at cutoff, patterned by plasmonic implants and connecting larger plasmonic waveguides, may allow enhanced resonant transmission inspired by the anomalous properties of epsilon-near-zero (ENZ) metamaterials. The resonant transmission is shown to be only weakly dependent on the channel length and its specific geometry, such as possible presence of abruptions and bends

  11. A New Kind of Bend Sensor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new kind of bend sensor is introduced.It can be used to detect the bend angle of an object or inclination between two objects.It has characteristics of small size, lightweight, high reliability, fine flexibility and plasticity.When this bend sensor is used with a proper converting circuit, it can implement dynamic measuring the bend angle of an object conveniently.The application of the bend sensor in dataglove is also described.

  12. The role of creep in stress strain curves for copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Hallgren, Josefin

    2012-01-01

    Highlights: ► A dislocation based model takes into account both dynamic and static recovery. ► Tests at constant load and at constant strain rate modelled without fitting parameters. ► The model can describe primary and secondary creep of Cu-OFP from 75 to 250 °C. ► The temperature and strain rate dependence of stress strain curves can be modelled. ► Intended for the slow strain rates in canisters for storage of nuclear waste. - Abstract: A model for plastic deformation in pure copper taking work hardening, dynamic recovery and static recovery into account, has been formulated using basic dislocation mechanisms. The model is intended to be used in finite-element computations of the long term behaviour of structures in Cu-OFP for storage of nuclear waste. The relation between the strain rate and the maximum flow stress in the model has been demonstrated to correspond to strain rate versus stress in creep tests for oxygen free copper alloyed with phosphorus Cu-OFP. A further development of the model can also represent the primary and secondary stage of creep curves. The model is compared to stress strain curves in compression and tension for Cu-OFP. The compression tests were performed at room temperature for strain rates between 5 × 10 −5 and 5 × 10 −3 s −1 . The tests in tension covered the temperature range 20–175 °C for strain rates between 1 × 10 −7 and 1 × 10 −4 s −1 . Consequently, it is demonstrated that the model can represent mechanical test data that have been generated both at constant load and at constant strain rate without the use of any fitting parameters.

  13. Dislocation structures and mechanical behaviour of Ge single crystals deformed by compression

    International Nuclear Information System (INIS)

    Nyilas, K.; Dupas, C.; Kruml, T.; Zsoldos, L.; Ungar, T.; Martin, J.L.

    2004-01-01

    Stress-strain curves of germanium interrupted by dip tests reveal that the internal stresses ascend parallel to the applied stress in a strain-rate dependent way. To understand this peculiar behaviour, the dislocation microstructure has been characterized. Transmission electron microscopy images show that regions of high dislocation activity along the primary slip system are separated by dislocation-free zones. X-ray microdiffraction reveals that the dislocation density is fluctuating on a 100 μm scale. X-ray reciprocal-space mapping, together with scanning microdiffraction, shows that misoriented mosaic blocks are forming owing to the boundary conditions in the compression test. These preliminary results reveal deformation heterogeneity both at macroscopic and mesoscopic scales

  14. Temperature dependence of bending strength for plasma sprayed zirconia coating; Plasuma yosha zirconia himaku no magetsuyosa no ondo izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Sakuma, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)] Mizutani, T. [Tokyo Inst. of Tech. (Japan)] Kishimoto, K. [Tokyo Inst. of Tech. (Japan). Faculty of Engineering] Saito, M. [Toshiba Corp. (Japan). Heavy Apparatus Engineering Lab.

    1998-02-01

    Plasma sprayed zirconia applying to the thermal barrier coating in gas turbine has been developing for protecting the hot parts such as blades and nozzles from high-temperature enviroments. In this paper, four point bending tests under various temperature conditions are conducted on plasma sprayed zirconia and its mechanical properties are examined. Results show that the bending strength at room temperature for plasma sprayed zirconia is much lower than that of sintered zirconia and is decreased with the increase in temperature. However, Weibull modulus at each temperature is relatively large and the dispersion of bending strength is very small in comparison with that of sintered zirconia. It is also clarified by the SEM observations of fracture surface that many defects such as debonding and microcrack are responsible for the lower bending strength. 9 refs., 8 figs., 1 tab.

  15. Upper limit for the effect of elastic bending stress on the saturation magnetization of La0.8Sr0.2MnO3

    KAUST Repository

    Wang, Q.

    2018-01-31

    Using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La0.8Sr0.2MnO3 (LSMO) epitaxial film grown on a SrTiO3 substrate. The elastic bending strain of +/- 0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La1-xPrx)(1-y),Ca-y,MnO3 (LPCMO) films for which strain of +/- 0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none) and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.

  16. Band bending at the heterointerface of GaAs/InAs core/shell nanowires monitored by synchrotron X-ray photoelectron spectroscopy

    Science.gov (United States)

    Khanbabaee, B.; Bussone, G.; Knutsson, J. V.; Geijselaers, I.; Pryor, C. E.; Rieger, T.; Demarina, N.; Grützmacher, D.; Lepsa, M. I.; Timm, R.; Pietsch, U.

    2016-10-01

    Unique electronic properties of semiconductor heterostructured nanowires make them useful for future nano-electronic devices. Here, we present a study of the band bending effect at the heterointerface of GaAs/InAs core/shell nanowires by means of synchrotron based X-ray photoelectron spectroscopy. Different Ga, In, and As core-levels of the nanowire constituents have been monitored prior to and after cleaning from native oxides. The cleaning process mainly affected the As-oxides and was accompanied by an energy shift of the core-level spectra towards lower binding energy, suggesting that the As-oxides turn the nanowire surfaces to n-type. After cleaning, both As and Ga core-levels revealed an energy shift of about -0.3 eV for core/shell compared to core reference nanowires. With respect to depth dependence and in agreement with calculated strain distribution and electron quantum confinement, the observed energy shift is interpreted by band bending of core-levels at the heterointerface between the GaAs nanowire core and the InAs shell.

  17. Residual stresses in U-bending deformations and expansion joints of heat exchanger tubes

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sun Jae; Jang, Jin Sung; Kuk, Ii Hiun; Bae, Kang Gug; Kim, Sung Chung

    2000-01-01

    Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's rew-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319MPa in axial direction at the position of ψ=0 deg. Tensile residual stresses (+) of 0σ zz =45 MPa and σ θθ =25MPa were introduced in the intrados surface at the position of ψ=0 deg. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of ψ=90 deg, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U-bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction

  18. The creep bending of short radius pipe bends

    International Nuclear Information System (INIS)

    Spence, John

    1975-01-01

    In existing and proposed liquid metal fast breeder reactor design the pipework has considerable importance. Parts of the LMFBR include thin walled short radius bends which are expected to operate in the creep regime. In linear elasticity it is known that the assumption of long radius bends is not too severe as far as the flexibility characteristics are concerned although some modifications are necessary for accurate determination of the stresses. No data exists for nonlinear creep. Current work is aimed at elucidating the effect of the various assumptions common to linear elastic theory in so far as they affect the creep characteristics of bends on systems. Herein an energy based analysis using a simple n power constitutive law for stationary creep is employed to derive basic design data for flexibilities and stresses which will be necessary before complete systems can be assessed for creep. The analysis shows on comparison with the long radius work that the assumption of R>r is not much more restrictive in creep than for linear elasticity. Flexibilities for short radius bends appear to be well approximated by the long radius values. Thus the attractive reference stress information already derived may be used directly to find deformations without a complete knowledge of the constitutive relationship. However, stresses are somewhat different. Fortunately the maximum deviation occurs at relatively low levels of stress, the peak stresses being in fair agreement. When n=1 the present results reduce essentially to those obtained from existing linear elastic theory

  19. Anisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young's modulus

    KAUST Repository

    Huang, Xiaohu; Li, Guanghai; Kong, Lingbing; Huang, Yizhong; Wu, Tao

    2013-01-01

    Understanding and measuring the size-dependent surface strain of nanowires are essential to their applications in various emerging devices. Here, we report on the diameter-dependent surface strain and Young's modulus of single-crystalline Co

  20. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    Science.gov (United States)

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial

  1. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    Science.gov (United States)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance

  2. A theoretical/experimental approach to determining the residual strength of corroded pipelines under combined pressure/bending loads

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Roy, S.; Grigory, S.C.; Pagalthivarthi, K.V.; Maple, J.

    1992-01-01

    This paper reported on a study that examined the feasibility of developing a theoretically valid methodology for assessing the residual strength of corroded oil pipelines in combined pressure loading and axial bending conditions. Bending can occur due to local subsidence that can occur in moist soil, resulting in bending stresses that can equal or exceed the pressure-related stresses. The study involved a series of pipe testing, finite element analyses and shell theory modelling. The experiment performed to validate the modelling involved an artificially degraded 20 inch diameter X52 steel pipe that was subjected to pressure and bending loadings. The integration of the 3 technical activities demonstrated the feasibility of the proposed analysis methodology for determining the potential failure of oil and gas pipelines with metal loss. Predictions were found to be in good agreement with experimental results when the methodology was combined with criteria such as the instability of the effective plastic strain. 1 ref., 7 figs.

  3. Foam behavior of solid glass spheres – Zn22Al2Cu composites under compression stresses

    Energy Technology Data Exchange (ETDEWEB)

    Aragon-Lezama, J.A., E-mail: alja@correo.azc.uam.mx [Departamento de Materiales, Universidad Autónoma Metropolitana-A, Avenida San Pablo 180, Colonia Reynosa Tamaulipas, 02200 México, D.F., México (Mexico); Garcia-Borquez, A., E-mail: a.garciaborquez@yahoo.com.mx [Ciencia de Materiales, ESFM – Instituto Politécnico Nacional, Edif. 9, Unid. Prof. A. Lopez Mateos, Colonia Lindavista, 07738 México, D.F., México (Mexico); Torres-Villaseñor, G., E-mail: gtorres@unam.mx [Departamento de Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo., P 70-360, México, D.F., México (Mexico)

    2015-06-25

    Solid glass spheres – Zn22Al2Cu composites, having different densities and microstructures, were elaborated and studied under compression. Their elaboration process involves alloy melting, spheres submersion into the liquid alloy and finally air cooling. The achieved composites with densities 2.6884, 2.7936 and 3.1219 g/cm{sup 3} were studied in casting and thermally induced, fine-grain matrix microstructures. Test samples of the composites were compressed at a 10{sup −3} s{sup −1} strain rate, and their microstructure characterized before and after compression by using optical and scanning electron microscopes. Although they exhibit different compression behavior depending on their density and microstructure, all of them show an elastic region at low strains, reach their maximum stress (σ{sub max}) at hundreds of MPa before the stress fall or collapse up to a lowest yield point (LYP), followed by an important plastic deformation at nearly constant stress (σ{sub p}): beyond this plateau, an extra deformation can be limitedly reached only by a significant stress increase. This behavior under compression stresses is similar to that reported for metal foams, being the composites with fine microstructure which nearest behave to metal foams under this pattern. Nevertheless, the relative values of the elastic modulus, and maximum and plateau stresses do not follow the Ashby equations by changing the relative density. Generally, the studied composites behave as foams under compression, except for their peculiar parameters values (σ{sub max}, LYP, and σ{sub p})

  4. Design and optimization of a bend-and-sweep compliant mechanism

    International Nuclear Information System (INIS)

    Tummala, Y; Frecker, M I; Wissa, A A; Hubbard Jr, J E

    2013-01-01

    A novel contact aided compliant mechanism called bend-and-sweep compliant mechanism is presented in this paper. This mechanism has nonlinear stiffness properties in two orthogonal directions. An angled compliant joint (ACJ) is the fundamental element of this mechanism. Geometric parameters of ACJs determine the stiffness of the compliant mechanism. This paper presents the design and optimization of bend-and-sweep compliant mechanism. A multi-objective optimization problem was formulated for design optimization of the bend-and-sweep compliant mechanism. The objectives of the optimization problem were to maximize or minimize the bending and sweep displacements, depending on the situation, while minimizing the von Mises stress and mass of each mechanism. This optimization problem was solved using NSGA-II (a genetic algorithm). The results of this optimization for a single ACJ during upstroke and downstroke are presented in this paper. Results of two different loading conditions used during optimization of a single ACJ for upstroke are presented. Finally, optimization results comparing the performance of compliant mechanisms with one and two ACJs are also presented. It can be inferred from these results that the number of ACJs and the design of each ACJ determines the stiffness of the bend-and-sweep compliant mechanism. These mechanisms can be used in various applications. The goal of this research is to improve the performance of ornithopters by passively morphing their wings. In order to achieve a bio-inspired wing gait called continuous vortex gait, the wings of the ornithopter need to bend, and sweep simultaneously. This can be achieved by inserting the bend-and-sweep compliant mechanism into the leading edge wing spar of the ornithopters. (paper)

  5. Effect of couple-stress on the pure bending of a prismatic bar

    International Nuclear Information System (INIS)

    Tzung, F.; Kao, B.; Ho, F.; Tang, P.

    1981-02-01

    An evaluation of the applicability of the couple-stress theory to the stress analysis of graphite structures is performed by solving a pure bending problem. The differences between solutions from the couple-stress theory and from the classical theory of elasticity are compared. It is found that the differences are sufficient to account for the inconsistencies which have often been observed between the classical elasticity theory and actual behavior of graphite under bend and tensile loadings. An experimental procedure to measure the material constants in the couple-stress theory is also suggested. The linear couple-stress theory, the origins of which go back to the turn of the last century, adds linear relations between couple-stresses and rotation gradients to the classical stress-strain law. By adopting the classical assumption that the plane cross section remains plane after deformation, the pure-bending problem is reduced to a plane couple-stress problem with traction-free boundary conditions. A general solution for an isotropic elastic prismatic bar under pure bending is then obtained using the Airy stress function and another stress function wich accounts for the couple-stresss. For a cylindrical bar, it reduces to a simple series solution. The moment-curvature and stress-curvature relations derived for a cylindrical bar from the general solution are used to examine the effect of couple-stresses. Numerical compilation of relations indicates that the couple stress parameters can be practically determined by measuring the moment-curvature ratio of various diametered specimens under bending. Although there is not sufficient data for such evaluation at present, it appears that the theory is consistent with the limited bend and tensile strength data of cylindrical specimens for H-451 graphite

  6. Stress/strain characteristics of Cu alloy sheath in situ processed MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Kasaba, Koichi; Shoji, Yoshitaka

    2005-01-01

    The mechanical properties of copper and copper alloy (Cu-Zr, Cu-Be and Cu-Cr) sheath in situ PIT-processed MgB 2 superconducting wires were studied at room temperature (RT) and 4.2 K. The effects of stress-strain on the critical current (I c ) of the wires have also been studied at 4.2 K and in magnetic fields up to 5 T. It has been clarified that alloying the Cu sheath significantly increases the yield and flow stresses of the wires at both RT and 4.2 K. The 0.5% flow stresses of the Cu alloy sheath wire were 147-237 MPa, whereas that of Cu was 55 MPa. At RT, serration corresponding to multiple cracking was observed around a strain of 0.4% and the stress-strain curves saturated beyond that point. The strain dependence of I c prior to the critical strain (ε irr ) was different depending on the magnetic field; being almost constant at 2 T and increasing with strain at 5 T. The I c decreased beyond ε irr , which is much larger for Cu alloy sheath wires as compared to Cu sheath wire. This is due to the difference in the residual compressive strain in the MgB 2 core during cooling from the heat-treatment temperature to 4.2 K, which is determined through relaxation by yielding in the sheath materials. The transverse compression tests revealed that the I c of the Cu alloy sheath wire did not degrade up to 314 MPa, which is also higher than that of Cu sheath wire. (author)

  7. Forming and bending of metal foams

    International Nuclear Information System (INIS)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-01-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams

  8. Built for speed: strain in the cartilaginous vertebral columns of sharks.

    Science.gov (United States)

    Porter, M E; Diaz, Candido; Sturm, Joshua J; Grotmol, Sindre; Summers, A P; Long, John H

    2014-02-01

    In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  10. Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve

    Science.gov (United States)

    Fouladi, A. Ahmadi

    2016-07-01

    We theoretically investigated the spin-dependent transport through a T-shaped graphene nanoribbon (TsGNR) based spin-valve consisting of armchair graphene sandwiched between two semi-infinite ferromagnetic armchair graphene nanoribbon leads in the presence of an applied uniaxial strain. Based on a tight-binding model and standard nonequilibrium Green's function technique, it is demonstrated that the tunnel magnetoresistance (TMR) for the system can be increased about 98% by tuning the uniaxial strain. Our results show that the absolute values of TMR around the zero bias voltage for compressive strain are larger than tensile strain. In addition, the TMR of the system can be nicely controlled by GNR width.

  11. Internal residual strain mapping in carburized chrome molybdenum steel after quenching by neutron strain scanning

    International Nuclear Information System (INIS)

    Sakaida, Yoshihisa; Serizawa, Takanobu; Manzanka, Michiya

    2011-01-01

    A hollow circular cylinder specimen with an annular U-notch of chrome molybdenum steel with 0.20 mass% C (SCM420) was carburized in carrier gas and quenched in oil bath. In order to determine the case depth, the specimen was cut off and carbon content and Vickers hardness gradients were measured experimentally near the carburized surface. The residual strain mapping in the interior of carburized cylinder was conducted nondestructively by neutron strain scanning. In this study, the neutron diffraction from Fe-211 plane was used for strain scanning. The neutron wavelength was tuned to 0.1654nm so that diffraction angle became about 90deg. Radial, hoop and axial residual strains were measured by scanning diffracting volume along the axial direction of cylinder specimen. Each residual strain was calculated from lattice spacing change. Unstressed lattice spacing was determined experimentally using reference coupon specimens that were cut from the interior of same carburized cylinder. As a result, the diffraction peak width at half height, FWHM, near the carburized surface was about 3.7 times wider than that of coupon specimens. On the other hand, the most peak widths in the interior equaled to that of coupon specimens. Peak width broadened slightly as the diffracting volume approached the carburized case layer. From the center to the quarter of cylinder specimen, the hoop and axial strains were tensile, and the radial one was compressive in the interior. From the quarter to the edge of the cylinder specimen, the hoop tensile strain increased, radial and axial strains changed to tensile and compressive, respectively. Therefore, the interior of the cylinder specimen was found to be deformed elastically to balance the existence of compressive residual stresses in the carburized case layer. (author)

  12. Tensile and compressive behavior of Borsic/aluminum

    Science.gov (United States)

    Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.

    1977-01-01

    The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.

  13. Mechanical behaviour of nickel foams: three-dimensional morphology, non-linear models and fracture; Caracterisation et simulation numerique du comportement mecanique des mousses de nickel: morphologie tridimensionnelle, reponse elastoplastique et rupture

    Energy Technology Data Exchange (ETDEWEB)

    Dillard, Th.

    2004-03-15

    The deformation behaviour and failure of nickel foams were studied during loading by using X-ray microtomography. Strut alignment and stretching are observed in tension whereas strut bending followed by strut buckling are observed in compression. Strain localisation, that occurs during compression tests, depends on nickel weight distribution in the foam. Fracture in tension first takes place at cell nodes and the crack propagates cell by cell. The damaged area in front of a crack is about five cells wide. A detailed description of the three-dimensional morphology is also presented. One third of the cells are dodecahedral and 57 % of the faces are pentagonal. The most frequent cell is composed of two quadrilaterals, two hexagons and eight pentagons. The dimensions of the equivalent ellipsoid of each cell are identified and cell orientation are determined. The geometrical aspect ratio is linked to the mechanical anisotropy of the foam. In tension, a uniaxial analytical model, based on elastoplastic strut bending, is developed. The whole stress-strain curve of the foam is predicted according to its specific weight and its anisotropy. It is found that the non-linear regime of the macroscopic curve of the foam is not only due to the elastoplastic bending of the struts. The model is also extended to two-phase foams and the influence of the hollow struts is analysed. The two-phase foams model is finally applied to oxidized nickel foams and compared with experimental data. The strong increase in the rigidity of nickel foams with an increasing rate of oxidation, is well described by the model. However, a fracture criterion must also be introduced to take into account the oxide layer cracking. A phenomenological compressible continuum plasticity model is also proposed and identified in tension. The identification of the model is carried out using experimental strain maps obtained by a photo-mechanical technique. A validation of the model is provided by investigating the

  14. Stress-dependent crystal structure of lanthanum strontium cobalt ferrite by in situ synchrotron X-ray diffraction

    Science.gov (United States)

    Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.

    2018-02-01

    Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.

  15. Femoral Neck Strain during Maximal Contraction of Isolated Hip-Spanning Muscle Groups

    Directory of Open Access Journals (Sweden)

    Saulo Martelli

    2017-01-01

    Full Text Available The aim of the study was to investigate femoral neck strain during maximal isometric contraction of the hip-spanning muscles. The musculoskeletal and the femur finite-element models from an elderly white woman were taken from earlier studies. The hip-spanning muscles were grouped by function in six hip-spanning muscle groups. The peak hip and knee moments in the model were matched to corresponding published measurements of the hip and knee moments during maximal isometric exercises about the hip and the knee in elderly participants. The femoral neck strain was calculated using full activation of the agonist muscles at fourteen physiological joint angles. The 5%±0.8% of the femoral neck volume exceeded the 90th percentile of the strain distribution across the 84 studied scenarios. Hip extensors, flexors, and abductors generated the highest tension in the proximal neck (2727 με, tension (986 με and compression (−2818 με in the anterior and posterior neck, and compression (−2069 με in the distal neck, respectively. Hip extensors and flexors generated the highest neck strain per unit of joint moment (63–67 με·m·N−1 at extreme hip angles. Therefore, femoral neck strain is heterogeneous and muscle contraction and posture dependent.

  16. Bending transition in the penetration of a flexible intruder in a two-dimensional dense granular medium.

    Science.gov (United States)

    Algarra, Nicolas; Karagiannopoulos, Panagiotis G; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2018-02-01

    We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L/L_{c}, which is the ratio of the length of the flexible beam L to L_{c}, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium. We show, moreover, that the dynamics of the bending transition in the course of the penetration experiment is gradual and is accompanied by a symmetry breaking of the granular packing fraction in the vicinity of the fiber. Together with the progressive bending of the fiber, a cavity grows downstream of the fiber and the accumulation of grains upstream of the fiber leads to the development of a jammed cluster of grains. We discuss our experimental results in the framework of a simple model of bending-induced compaction and we show that the rate of the bending transition only depends on the control parameter L/L_{c}.

  17. Bending transition in the penetration of a flexible intruder in a two-dimensional dense granular medium

    Science.gov (United States)

    Algarra, Nicolas; Karagiannopoulos, Panagiotis G.; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2018-02-01

    We study the quasistatic penetration of a flexible beam into a two-dimensional dense granular medium lying on a horizontal plate. Rather than a buckling-like behavior we observe a transition between a regime of crack-like penetration in which the fiber only shows small fluctuations around a stable straight geometry and a bending regime in which the fiber fully bends and advances through series of loading and unloading steps. We show that the shape reconfiguration of the fiber is controlled by a single nondimensional parameter L /Lc , which is the ratio of the length of the flexible beam L to Lc, a bending elastogranular length scale that depends on the rigidity of the fiber and on the departure from the jamming packing fraction of the granular medium. We show, moreover, that the dynamics of the bending transition in the course of the penetration experiment is gradual and is accompanied by a symmetry breaking of the granular packing fraction in the vicinity of the fiber. Together with the progressive bending of the fiber, a cavity grows downstream of the fiber and the accumulation of grains upstream of the fiber leads to the development of a jammed cluster of grains. We discuss our experimental results in the framework of a simple model of bending-induced compaction and we show that the rate of the bending transition only depends on the control parameter L /Lc .

  18. Limit loads for pipe bends under combined pressure and in-plane bending based on finite element limit analysis

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach

  19. Structure and strain relaxation effects of defects in In{sub x}Ga{sub 1–x}N epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, S. L., E-mail: sr583@cam.ac.uk; Fu, W. Y.; Massabuau, F. C.-P.; Kappers, M. J.; McAleese, C.; Oehler, F.; Humphreys, C. J.; Sahonta, S.-L. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moram, M. A. [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Dusane, R. O. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2014-09-14

    The formation of trench defects is observed in 160 nm-thick In{sub x}Ga{sub 1–x}N epilayers with x≤0.20, grown on GaN on (0001) sapphire substrates using metalorganic vapour phase epitaxy. The trench defect density increases with increasing indium content, and high resolution transmission electron microscopy shows an identical structure to those observed previously in InGaN quantum wells, comprising meandering stacking mismatch boundaries connected to an I₁-type basal plane stacking fault. These defects do not appear to relieve in-plane compressive strain. Other horizontal sub-interface defects are also observed within the GaN pseudosubstrate layer of these samples and are found to be pre-existing threading dislocations which form half-loops by bending into the basal plane, and not basal plane stacking faults, as previously reported by other groups. The origins of these defects are discussed and are likely to originate from a combination of the small in-plane misorientation of the sapphire substrate and the thermal mismatch strain between the GaN and InGaN layers grown at different temperatures.

  20. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    Science.gov (United States)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of