WorldWideScience

Sample records for compressive strain-dependent bending

  1. Compressive strain-dependent bending strength property of Al{sub 2}O{sub 3}-ZrO{sub 2} (1.5 mol% Y{sub 2}O{sub 3}) composites performance by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rojas, A. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico)], E-mail: armando_reyesmx@yahoo.com.mx; Esparza-Ponce, H. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico); De la Torre, S.D. [Centro de Investigacion e Innovacion Tecnologica (CIITEC)-IPN, D.F. Mexico (Mexico); Torres-Moye, E. [Centro de Investigacion en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Cd. de Chihuahua, Chihuahua (Mexico)

    2009-04-15

    Nanometric powders and sintered ceramics of Al{sub 2}O{sub 3}-ZrO{sub 2} (1.5 mol% Y{sub 2}O{sub 3}) prepared by hot isostatic pressing HIP have been studied. A detailed crystallographic study has been performed through X-ray diffraction, Williamson-Hall method, Rietveld method and high-resolution electron microscopy HREM analysis. The crystallographic structure data, such as domain size, lattice parameters, wt% phase, and micro-strain direction have been obtained using Rietveld refinement and Williamson-Hall methods. The results revealed that the compressive strain ({epsilon}) increased from 0.56 to 1.18 (10{sup -3}) as the t-ZrO{sub 2} content increased too. The HREM interface study conducted along the [0 0 0 1]Al{sub 2}O{sub 3}||[0 0 1]ZrO{sub 2} zone axis revealed a micro-strain lattice distortion accumulated at the grain boundary due to the ZrO{sub 2} martensitic phase transformation on cooling, t-ZrO{sub 2} grains coalescence and to the grain growth of {alpha}-Al{sub 2}O{sub 3} which cause elongated tetragonal crystals. Micro-strain lattice distortion is adjusted by the shear displacements of the planes (1 1 0) and (11-bar0) along [1-bar10] and [1-bar1-bar0] crystallographic directions, respectively; these planes are arrested by the (101-bar0) alumina plane. In this case, semi-coherent interfaces were observed along the grain boundary. It is verified that the bending strength increased in connection with the strain accumulation and amount of tetragonal structure.

  2. In situ membrane bending setup for strain-dependent scanning transmission x-ray microscopy investigations.

    Science.gov (United States)

    Finizio, S; Wintz, S; Kirk, E; Raabe, J

    2016-12-01

    We present a setup that allows for the in situ generation of tensile strains by bending x-ray transparent Si 3 N 4 membranes with the application of a pressure difference between the two sides of the membrane, enabling the possibility to employ high resolution space- and time-resolved scanning transmission x-ray microscopy for the investigation of the magneto-elastic coupling.

  3. Strength Tests on Paper Cylinder in Compression, Bending and Shear

    Science.gov (United States)

    Rhodes, Richard V; Lundquist, Eugene E

    1931-01-01

    Static tests on paper cylinders were conducted at the Langley Memorial Aeronautical Laboratory at Langley Field, Virginia, to obtain qualitative information in connection with a study of the strength of stressed-skin fuselages. The effects of radius-thickness ratio and bulkhead spacing were investigated with the cylinders in compression, bending, combined bending and shear, and torsion.

  4. Behavior of sandwich panels subjected to bending fatigue, axial compression loading and in-plane bending

    Science.gov (United States)

    Mathieson, Haley Aaron

    This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels

  5. Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice.

    Directory of Open Access Journals (Sweden)

    Alycia G Berman

    Full Text Available Strain-induced adaption of bone has been well-studied in an axial loading model of the mouse tibia. However, most outcomes of these studies are restricted to changes in bone architecture and do not explore the mechanical implications of those changes. Herein, we studied both the mechanical and morphological adaptions of bone to three strain levels using a targeted tibial loading mouse model. We hypothesized that loading would increase bone architecture and improve cortical mechanical properties in a dose-dependent fashion. The right tibiae of female C57BL/6 mice (8 week old were compressively loaded for 2 weeks to a maximum compressive force of 8.8N, 10.6N, or 12.4N (generating periosteal strains on the anteromedial region of the mid-diaphysis of 1700 με, 2050 με, or 2400 με as determined by a strain calibration, while the left limb served as an non-loaded control. Following loading, ex vivo analyses of bone architecture and cortical mechanical integrity were assessed by micro-computed tomography and 4-point bending. Results indicated that loading improved bone architecture in a dose-dependent manner and improved mechanical outcomes at 2050 με. Loading to 2050 με resulted in a strong and compelling formation response in both cortical and cancellous regions. In addition, both structural and tissue level strength and energy dissipation were positively impacted in the diaphysis. Loading to the highest strain level also resulted in rapid and robust formation of bone in both cortical and cancellous regions. However, these improvements came at the cost of a woven bone response in half of the animals. Loading to the lowest strain level had little effect on bone architecture and failed to impact structural- or tissue-level mechanical properties. Potential systemic effects were identified for trabecular bone volume fraction, and in the pre-yield region of the force-displacement and stress-strain curves. Future studies will focus on a moderate

  6. Bending-Torsion Flutter Calculations Modified by Subsonic Compressibility Corrections

    Science.gov (United States)

    1946-05-01

    the.R’s and I’s are expressed in terms of-the nota- tion of Frazer and Skan (reference $), sind table I.I.. rcp /i-_. ^ tains values for M = 0.7...and of the modes of vibration have been omitted in the calculations. Inclusion of these effects would tend to reduce further the differ- ences...natural angular frequency of torsibnal vibrations around a in vacuum °°h —natural angular frequency of wing in bending

  7. Effects of texture on shear band formation in plane strain tension/compression and bending

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2007-01-01

    model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet......In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain...... are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple...

  8. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    Science.gov (United States)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Residual compressive surface stress increases the bending strength of dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Zhang, Fei; Vanmeensel, Kim; De Munck, Jan; Minakuchi, Shunsuke; Naert, Ignace; Vleugels, Jozef; Van Meerbeek, Bart

    2017-04-01

    To assess the influence of surface treatment and thermal annealing on the four-point bending strength of two ground dental zirconia grades. Fully-sintered zirconia specimens (4.0×3.0×45.0mm 3 ) of Y-TZP zirconia (LAVA Plus, 3M ESPE) and Y-TZP/Al 2 O 3 zirconia (ZirTough, Kuraray Noritake) were subjected to four surface treatments: (1) 'GROUND': all surfaces were ground with a diamond-coated grinding wheel on a grinding machine; (2) 'GROUND+HEAT': (1) followed by annealing at 1100°C for 30min; (3) 'GROUND+Al 2 O 3 SANDBLASTED': (1) followed by sandblasting using Al 2 O 3 ; (4) 'GROUND+CoJet SANDBLASTED': (1) followed by tribochemical silica (CoJet) sandblasting. Micro-Raman spectroscopy was used to assess the zirconia-phase composition and potentially induced residual stress. The four-point bending strength was measured using a universal material-testing machine. Weibull analysis revealed a substantially higher Weibull modulus and slightly higher characteristic strength for ZirTough (Kuraray Noritake) than for LAVA Plus (3M ESPE). For both zirconia grades, the 'GROUND' zirconia had the lowest Weibull modulus in combination with a high characteristic strength. Sandblasting hardly changed the bending strength but substantially increased the Weibull modulus of the ground zirconia, whereas a thermal treatment increased the Weibull modulus of both zirconia grades but resulted in a significantly lower bending strength. Micro-Raman analysis revealed a higher residual compressive surface stress that correlated with an increased bending strength. Residual compressive surface stress increased the bending strength of dental zirconia. Thermal annealing substantially reduced the bending strength but increased the consistency (reliability) of 'GROUND' zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Analysis of the three-point-bend test for materials with unequal tension and compression properties

    Science.gov (United States)

    Chamis, C. C.

    1974-01-01

    Structural resins have moduli and strengths which are different in tension and compression. The three-point-bend test is used extensively in their characterization. An investigation is performed to derive all the equations needed for the analysis and test data reduction of the three-point-bend test. The governing equations are derived using well-known linear structural mechanics principles and are represented graphically. The stress concentration effects in the vicinity of the load point are investigated, and failure stress and failure initiation are examined.

  11. Analysis of three-point-bend test for materials with unequal tension and compression properties

    Science.gov (United States)

    Chamis, C. C.

    1974-01-01

    An analysis capability is described for the three-point-bend test applicable to materials of linear but unequal tensile and compressive stress-strain relations. The capability consists of numerous equations of simple form and their graphical representation. Procedures are described to examine the local stress concentrations and failure modes initiation. Examples are given to illustrate the usefulness and ease of application of the capability. Comparisons are made with materials which have equal tensile and compressive properties. The results indicate possible underestimates for flexural modulus or strength ranging from 25 to 50 percent greater than values predicted when accounting for unequal properties. The capability can also be used to reduce test data from three-point-bending tests, extract material properties useful in design from these test data, select test specimen dimensions, and size structural members.

  12. Compression After Impact Testing of Sandwich Structures Using the Four Point Bend Test

    Science.gov (United States)

    Nettles, Alan T.; Gregory, Elizabeth; Jackson, Justin; Kenworthy, Devon

    2008-01-01

    For many composite laminated structures, the design is driven by data obtained from Compression after Impact (CAI) testing. There currently is no standard for CAI testing of sandwich structures although there is one for solid laminates of a certain thickness and lay-up configuration. Most sandwich CAI testing has followed the basic technique of this standard where the loaded ends are precision machined and placed between two platens and compressed until failure. If little or no damage is present during the compression tests, the loaded ends may need to be potted to prevent end brooming. By putting a sandwich beam in a four point bend configuration, the region between the inner supports is put under a compressive load and a sandwich laminate with damage can be tested in this manner without the need for precision machining. Also, specimens with no damage can be taken to failure so direct comparisons between damaged and undamaged strength can be made. Data is presented that demonstrates the four point bend CAI test and is compared with end loaded compression tests of the same sandwich structure.

  13. Bends and momentum dispersion during final compression in heavy ion fusion drivers

    International Nuclear Information System (INIS)

    Lee, Edward P.; Barnard, John J.

    2002-01-01

    Between the accelerator and fusion chamber the heavy ion beams are subject to a dramatic but vital series of manipulations, some of which are carried out simultaneously and involve large space charge forces. The beams' quality must be maintained at a level sufficient for the fusion application; this general requirement significantly impacts beam line design, especially in the considerations of momentum dispersion. Immediately prior to final focus onto a fusion target, heavy ion driver beams are compressed in length by typically an order of magnitude. This process is simultaneous with bending through large angles to achieve the required target illumination configuration. The large increase in beam current is accommodated by a combination of decreased lattice period, increased beam radius, and increased strength of the beamline quadrupoles. However, the large head-to-tail momentum tilt (up to 5%) needed to compress the pulse results in a very significant dispersion of the pulse centroid from the design axis. General design features are discussed. A principal design goal is to minimize the magnitude of the dispersion while maintaining approximate first order achromaticity through the complete compression/bend system. Configurations of bends and quadrupoles, which achieve this goal while simultaneously maintaining a locally matched beam-envelope, are analyzed

  14. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    Science.gov (United States)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  15. A comparison of conventional compression plates and locking compression plates using cantilever bending in an ilial fracture model.

    Science.gov (United States)

    Bruce, C W; Gibson, T W G; Runciman, R J

    2014-01-01

    The purpose of this study was to compare the stiffness, yield load, ultimate load at failure, displacement at failure, and mode of failure in cantilever bending of locking compression plates (LCP) and dynamic compression plates (DCP) in an acute failure ilial fracture model. Our hypothesis was that the LCP would be superior to the DCP for all of these biomechanical properties. Ten pelves were harvested from healthy dogs euthanatized for reasons unrelated to this study and divided into two groups. A transverse osteotomy was performed and stabilized with either a 6-hole DCP applied in compression or a 6-hole LCP. Pelves were tested in cantilever bending at 20 mm/min to failure and construct stiffness, yield load, ultimate load at failure, displacement at failure, and mode of failure were compared. The mean stiffness of DCP constructs (193 N/mm [95% CI 121 - 264]) and of LCP constructs (224 N/mm [95% CI 152 - 295]) was not significantly different. Mean yield load of DCP constructs (900 N [95% CI 649 -1151]) and of LCP constructs (984 N [95% CI 733 -1235]) was not significantly different. No significant differences were found between the DCP and LCP constructs with respect to mode of failure, displacement at failure, or ultimate load at failure. Our study did not demonstrate any differences between DCP and LCP construct performance in acute failure testing in vitro.

  16. Imperfection analysis of flexible pipe armor wires in compression and bending

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    The work presented in this paper is motivated by a specific failure mode known as lateral wire buckling occurring in the tensile armor layers of flexible pipes. The tensile armor is usually constituted by two layers of initially helically wound steel wires with opposite lay directions. During pipe...... laying in ultra deep waters, a flexible pipe experiences repeated bending cycles and longitudinal compression. These loading conditions are known to impose a danger to the structural integrity of the armoring layers, if the compressive load on the pipe exceeds the total maximum compressive load carrying...... ability of the wires. This may cause the wires to buckle in the circumferential pipe direction, when these are restrained against radial deformations by adjacent layers. In the present paper, a single armoring wire modeled as a long and slender curved beam embedded in a frictionless cylinder bent...

  17. Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-04-01

    Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal

  18. Elastic Modulus of Foamcrete in Compression and Bending at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper will presents the experimental results that have been performed to examine and characterize the mechanical properties of foamcrete at elevated temperatures. Foamcrete of 650 and 1000 kg/m 3 density were cast and tested under compression and bending. The tests were done at room temperature, 100, 200, 300, 400, 500, and 600°C. The results of this study consistently demonstrated that the loss in stiffness for cement based material like foamcrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffnesstemperature relationships are very similar.

  19. Surface crack growth subject to bending and biaxial tension-compression

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2016-01-01

    Full Text Available Fatigue surface crack growth and the in-plane and out-of-plane constraint effects are studied through experiments and computations for aluminium alloy D16T. Subjects for studies are cruciform specimens under different biaxial loading and bending central notched specimens with external semi-elliptical surface crack. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth rate and surface crack paths behaviour is studied under cyclic pure bending and biaxial tension-compression fatigue loading. This work is centered on the relations between crack size on the free surface of specimen considered configurations, COD and aspect ratio under different fatigue loading conditions. For the experimental surface crack paths in tested specimens the T-stress, the local triaxiality parameter h, the out-of-plane TZ factor and the governing parameter for the 3D-fields of the stresses and strains at the crack tip in the form of In-integral were calculated as a function of aspect ratio by finite element analysis to characterization of the constraint effects along semi-elliptical crack front. The plastic stress intensity factor approach is applied to the fatigue crack growth on the free surface of the tested bending and cruciform specimens as well as the deepest point of the semi-elliptical surface crack front. As result fatigue surface crack paths or crack front positions as a function of accumulated number of cycle of loading are obtained.

  20. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Hosson, J.T.M. De

    Quantitative bending and compression tests on micropillars made of two different amorphous alloys, with tip diameters ranging from 93 to 645 rim, are performed in situ in a transmission electron microscope (TEM). Under microcompression each pillar shows an intermittent plastic flow accommodated by

  1. Moisture content and the properties of lodgepole pine logs in bending and compression parallel to the grain

    Science.gov (United States)

    David W. Green; Thomas M. Gorman; Joseph F. Murphy; Matthew B. Wheeler

    2007-01-01

    This study evaluates the effect of moisture content on the properties of 127- to 152.4-mm (5- to 6-in.-) diameter lodgepole pine (Pinus contorta Engelm.) logs that were tested either in bending or in compression parallel to the grain. Lodgepole pine logs were obtained from a dense stand near Seeley Lake, Montana, and sorted into four piles of 30 logs each. Two groups...

  2. Reliability and diagnostic validity of the slump knee bend neurodynamic test for upper/mid lumbar nerve root compression: a pilot study.

    Science.gov (United States)

    Trainor, Kate; Pinnington, Mark A

    2011-03-01

    It has been proposed that neurodynamic examination can assist differential diagnosis of upper/mid lumbar nerve root compression; however, the diagnostic validity of many of these tests has yet to be established. This pilot study aimed to establish the diagnostic validity of the slump knee bend neurodynamic test for upper/mid lumbar nerve root compression in subjects with suspected lumbosacral radicular pain. Two independent examiners performed the slump knee bend test on subjects with radicular leg pain. Inter-tester reliability was calculated using the kappa coefficient. Slump knee bend test results were compared with magnetic resonance imaging findings, and diagnostic accuracy measures were calculated including sensitivity, specificity, predictive values and likelihood ratios. Orthopaedic spinal clinic, secondary care. Sixteen patients with radicular leg pain. All four subjects with mid lumbar nerve root compression on magnetic resonance imaging were correctly identified with the slump knee bend test; however, it was falsely positive in two individuals without the condition. Inter-tester reliability for the slump knee bend test using the kappa coefficient was 0.71 (95% confidence interval 0.33 to 1.0). Diagnostic validity calculations for the slump knee bend test (95% confidence intervals) were: sensitivity, 100% (40 to 100%); specificity, 83% (52 to 98%); positive predictive value, 67% (22 to 96%); negative predictive value, 100% (69 to 100%); positive likelihood ratio, 6.0 (1.58 to 19.4); and negative likelihood ratio, 0 (0 to 0.6). Results indicate good inter-tester reliability and suggest that the slump knee bend test has potential to be a useful clinical test for identifying patients with mid lumbar nerve root compression. Further investigation is needed on larger numbers of patients to confirm these findings. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  3. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  4. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    International Nuclear Information System (INIS)

    Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio

    2014-01-01

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model

  5. Compression-bending of multi-component semi-rigid columns in response to axial loads and conjugate reciprocal extension-prediction of mechanical behaviours and implications for structural design.

    Science.gov (United States)

    Lau, Ernest W

    2013-01-01

    The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Basic functions and bilateral estimatesin the stability problems of elastic non-uniformly compressed rods expressed in terms of bending moments with additional conditions

    Directory of Open Access Journals (Sweden)

    Kupavtsev Vladimir Vladimirovich

    2014-02-01

    Full Text Available The method of two-sided evaluations is extended to the problems of stability of an elastic non-uniformly compressed rod, the variation formulations of which may be presented in terms of internal bending moments with uniform integral conditions. The problems are considered, in which one rod end is fixed and the other rod end is either restraint or pivoted, or embedded into a support which may be shifted in a transversal direction.For the substantiation of the lower evaluations determination, a sequence of functionals is constructed, the minimum values of which are the lower evaluations for the minimum critical value of the loading parameter of the rod, and the calculation process is reduced to the determination of the maximum eigenvalues of modular matrices. The matrix elements are expressed in terms of integrals of basic functions depending on the type of fixation of the rod ends. The basic functions, with the accuracy up to a linear polynomial, are the same as the bending moments arising with the bifurcation of the equilibrium of a rod with a constant cross-section compressed by longitudinal forces at the rod ends. The calculation of the upper evaluation is reduced to the determination of the maximum eigenvalue of the matrix, which almost coincides with one of the elements of the modular matrices. It is noted that the obtained upper bound evaluation is not worse thanthe evaluation obtained by the Ritz method with the use of the same basic functions.

  7. A biomechanical comparison of conventional dynamic compression plates and string-of-pearls™ locking plates using cantilever bending in a canine Ilial fracture model.

    Science.gov (United States)

    Kenzig, Allison R; Butler, James R; Priddy, Lauren B; Lacy, Kristen R; Elder, Steven H

    2017-07-13

    Fracture of the ilium is common orthopedic injury that often requires surgical stabilization in canine patients. Of the various methods of surgical stabilization available, application of a lateral bone plate to the ilium is the most common method of fixation. Many plating options are available, each having its own advantages and disadvantages. The purpose of this study was to evaluate the biomechanical properties of a 3.5 mm String-of-Pearls™ plate and a 3.5 mm dynamic compression plate in a cadaveric canine ilial fracture model. Hemipelves were tested in cantilever bending to failure and construct stiffness, yield load, displacement at yield, ultimate load, and mode of failure were compared. The mean stiffness of dynamic compression plate (116 ± 47 N/mm) and String-of-Pearls™ plate (107 ± 18 N/mm) constructs, mean yield load of dynamic compression plate (793 ± 333 N) and String-of-Pearls™ plate (860 ± 207 N) constructs, mean displacement at yield of dynamic compression plate (8.6 ± 3.0 mm) and String-of-Pearls™ plate (10.2 ± 2.8 mm) constructs, and ultimate load at failure of dynamic compression plate (936 ± 320 N) and String-of-Pearls™ plate (939 ± 191 N) constructs were not significantly different. No differences were found between constructs with respect to mode of failure. No significant biomechanical differences were found between String-of-Pearls™ plate and dynamic compression plate constructs in this simplified cadaveric canine ilial fracture model.

  8. An evaluation of the sandwich beam in four-point bending as a compressive test method for composites

    Science.gov (United States)

    Shuart, M. J.; Herakovich, C. T.

    1978-01-01

    The experimental phase of the study included compressive tests on HTS/PMR-15 graphite/polyimide, 2024-T3 aluminum alloy, and 5052 aluminum honeycomb at room temperature, and tensile tests on graphite/polyimide at room temperature, -157 C, and 316 C. Elastic properties and strength data are presented for three laminates. The room temperature elastic properties were generally found to differ in tension and compression with Young's modulus values differing by as much as twenty-six percent. The effect of temperature on modulus and strength was shown to be laminate dependent. A three-dimensional finite element analysis predicted an essentially uniform, uniaxial compressive stress state in the top flange test section of the sandwich beam. In conclusion, the sandwich beam can be used to obtain accurate, reliable Young's modulus and Poisson's ratio data for advanced composites; however, the ultimate compressive stress for some laminates may be influenced by the specimen geometry.

  9. Health, family strains, dependency, and life satisfaction of older adults.

    Science.gov (United States)

    Chokkanathan, Srinivasan; Mohanty, Jayashree

    2017-07-01

    Using stress process theory and structural equation modelling, this study investigated the complex relationship between health status, family strain, dependency, and the life satisfaction of rural older adults with reported functional impairments in India. Data were extracted from a large-scale study of 903 randomly selected adults aged 61 years and older from 30 rural clusters of India. The sample for this study was confined to 653 older adults who reported functional impairments. Structural equation modelling showed that poor health status indirectly lowered the life satisfaction of older adults through family strains. Moreover, poor health status also indirectly influenced life satisfaction through dependency and family strain (poor health→dependency→family strains→life satisfaction). The findings indicate that for professionals who deal with the health of older adults, exploring relationship strains and dependency is vital to the assessment and intervention of subjective wellbeing. Inter-sectoral coordination and communication between healthcare and social service agencies might facilitate effective management of health problems among older adults. Moreover, taking family strains and dependency into account when caring for older adults with health problems is critical to help improve their quality of life and maintain their wellbeing. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Strain dependent microstructural modifications of BiCrO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Vijayanandhini, E-mail: kvnandhini@gmail.com [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Arredondo, Miryam; Johann, Florian; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Labrugere, Christine [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); CeCaMA, University of Bordeaux, ICMCB, F-33600 Pessac (France); Maglione, Mario [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Vrejoiu, Ionela [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-10-31

    Strain-dependent microstructural modifications were observed in epitaxial BiCrO{sub 3} (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCO{sub STO} [BCO grown on buffered SrTiO{sub 3} (001)] and in-plane compressive strain, BCO{sub NGO} [BCO grown on buffered NdGaO{sub 3} (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCO{sub STO}, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCO{sub STO} films with d ≥ 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCO{sub NGO} films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ∼ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film. - Highlights: • Phase pure

  11. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex

    NARCIS (Netherlands)

    Taherzadeh, Zhila; VanBavel, Ed; de Vos, Judith; Matlung, Hanke L.; van Montfrans, Gert; Brewster, Lizzy M.; Seghers, Leonard; Quax, Paul H. A.; Bakker, Erik N. T. P.

    2010-01-01

    Taherzadeh Z, VanBavel E, de Vos J, Matlung HL, van Montfrans G, Brewster LM, Seghers L, Quax PH, Bakker EN. Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex. Am J Physiol Heart Circ Physiol 298: H1273-H1282, 2010. First published February 12, 2010;

  12. Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures

    DEFF Research Database (Denmark)

    Zhang, Aihua; Peng, Mingzeng; Willatzen, Morten

    2017-01-01

    The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain...

  13. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  14. Bend me, shape me

    CERN Document Server

    2002-01-01

    A Japanese team has found a way to bend and shape silicon substrates by growing a thin layer of diamond on top. The technique has been proposed as an alternative to mechanical bending, which is currently used to make reflective lenses for X-ray systems and particle physics systems (2 paragraphs).

  15. Strain dependence of perfluorinated polymer optical fiber Bragg grating measured at different wavelengths

    Science.gov (United States)

    Ishikawa, Ryo; Lee, Heeyoung; Lacraz, Amédée; Theodosiou, Antreas; Kalli, Kyriacos; Mizuno, Yosuke; Nakamura, Kentaro

    2018-03-01

    We measure the strain dependence of multiple Bragg wavelengths (corresponding to different diffraction orders) of a fiber Bragg grating (FBG) inscribed in a perfluorinated graded-index polymer optical fiber (PFGI-POF) in the wavelength range up to 1550 nm. On the basis of this result, we show that the fractional sensitivity, which has been conventionally used as a wavelength-independent index for fair comparison of the FBG performance measured at different wavelengths, is dependent on wavelength in this range. The reason for this behavior seems to originate from the non-negligible wavelength dependence of refractive index and its strain-dependence coefficient. Using the wavelength dependence of the refractive index already reported for bulk, we deduce the wavelength dependence of the strain coefficient of the refractive index. This information will be a useful archive in implementing PFGI-POF-based strain sensors based on not only FBGs but also Brillouin scattering in the future.

  16. Strain-dependent Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning

    OpenAIRE

    Portugal, George S.; Wilkinson, Derek S.; Kenney, Justin W.; Sullivan, Colleen; Gould, Thomas J.

    2011-01-01

    The effects of nicotine on cognitive processes such as learning and memory may play an important role in the addictive liability of tobacco. However, it remains unknown whether genetic variability modulates the effects of nicotine on learning and memory. The present study characterized the effects of acute, chronic, and withdrawal from chronic nicotine administration on fear conditioning, somatic signs, and the elevated plus maze in 8 strains of inbred mice. Strain-dependent effects of acute ...

  17. Studies of the strain-dependent properties of A15 filamentary conductors at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Luhman, T.; Welch, D.O.

    1980-01-01

    Work at BNL pertaining to the strain response of filamentary bronze-processed superconductors is reviewed. This work includes the intrinsic strain dependence of the critical properties of A15 structure compounds, the nature of the initial internal strain state of composite conductors, and the interplay between these residual strains and applied strains which governs the response of the conductor to external strain. Some factors which can enhance the strain tolerances of filamentary conductors are briefly discussed

  18. Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.

    Science.gov (United States)

    Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun

    2018-03-29

    Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.

  19. Cricket antennae shorten when bending (Acheta domesticus L.).

    Science.gov (United States)

    Loudon, Catherine; Bustamante, Jorge; Kellogg, Derek W

    2014-01-01

    Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100) of subsegments (flagellomeres) that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus) with bending in four different directions: dorsal, ventral, medial, and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension) does not have a lot of slack cuticle to "unfold" and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head.

  20. Cricket antennae shorten when bending (Acheta domesticus L.

    Directory of Open Access Journals (Sweden)

    Catherine eLoudon

    2014-06-01

    Full Text Available Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100 of subsegments (flagellomeres that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus with bending in four different directions: dorsal, ventral, medial and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension does not have a lot of slack cuticle to unfold and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head.

  1. Robotic Arm Comprising Two Bending Segments

    Science.gov (United States)

    Mehling, Joshua S.; Difler, Myron A.; Ambrose, Robert O.; Chu, Mars W.; Valvo, Michael C.

    2010-01-01

    The figure shows several aspects of an experimental robotic manipulator that includes a housing from which protrudes a tendril- or tentacle-like arm 1 cm thick and 1 m long. The arm consists of two collinear segments, each of which can be bent independently of the other, and the two segments can be bent simultaneously in different planes. The arm can be retracted to a minimum length or extended by any desired amount up to its full length. The arm can also be made to rotate about its own longitudinal axis. Some prior experimental robotic manipulators include single-segment bendable arms. Those arms are thicker and shorter than the present one. The present robotic manipulator serves as a prototype of future manipulators that, by virtue of the slenderness and multiple- bending capability of their arms, are expected to have sufficient dexterity for operation within spaces that would otherwise be inaccessible. Such manipulators could be especially well suited as means of minimally invasive inspection during construction and maintenance activities. Each of the two collinear bending arm segments is further subdivided into a series of collinear extension- and compression-type helical springs joined by threaded links. The extension springs occupy the majority of the length of the arm and engage passively in bending. The compression springs are used for actively controlled bending. Bending is effected by means of pairs of antagonistic tendons in the form of spectra gel spun polymer lines that are attached at specific threaded links and run the entire length of the arm inside the spring helix from the attachment links to motor-driven pulleys inside the housing. Two pairs of tendons, mounted in orthogonal planes that intersect along the longitudinal axis, are used to effect bending of each segment. The tendons for actuating the distal bending segment are in planes offset by an angle of 45 from those of the proximal bending segment: This configuration makes it possible to

  2. Effects of the bending resonance of the floors on the vertical vibrations of buildings

    OpenAIRE

    Chesnais, Céline; Boutin, Claude; Hans, Stéphane

    2012-01-01

    Buildings are made up of beams and plates which are much stiffer in tension-compression than in bending. Thus, the vertical modes of a building (governed by the tension-compression of the walls at the macroscopic scale) can appear in the same frequency range as the bending modes of the floors. In the absence of bending resonance, the vertical vibrations are described at the macroscopic scale by the usual equation for beams in tension-compression. When there is resonance, the form of the equat...

  3. Plate girders under bending

    NARCIS (Netherlands)

    Abspoel, R.; Dubina, D.; Ungureanu, V.

    2016-01-01

    In a material economy driven plate girder design, the lever arm between the flanges will increase. This leads to higher stiffness and bending moment resistance, but also to an in-crease of the web slenderness. This means that high strength steels can be used leading to a large reduction of the steel

  4. Repeated stress exposure causes strain-dependent shifts in the behavioral economics of cocaine in rats.

    Science.gov (United States)

    Groblewski, Peter A; Zietz, Chad; Willuhn, Ingo; Phillips, Paul E M; Chavkin, Charles

    2015-03-01

    Cocaine-experienced Wistar and Wistar Kyoto (WKY) rats received four daily repeated forced swim stress sessions (R-FSS), each of which preceded 4-hour cocaine self-administration sessions. Twenty-four hours after the last swim stress, cocaine valuation was assessed during a single-session threshold procedure. Prior exposure to R-FSS significantly altered cocaine responding in Wistar, but not WKY, rats. Behavioral economic analysis of responding revealed that the Wistar rats that had received R-FSS exhibited an increase in the maximum price that they were willing to pay for cocaine (Pmax ). Pre-treatment with the long-lasting kappa opioid receptor (KOR) antagonist norbinaltorphimine prevented the stress-induced increase in Pmax . Thus, R-FSS exposure had strain-dependent effects on cocaine responding during the threshold procedure, and the stress effects on cocaine valuation exhibited by Wistar, but not WKY, required intact KOR signaling. © 2014 Society for the Study of Addiction.

  5. Strain-dependent partial slip on rock fractures under seismic-frequency torsion

    Science.gov (United States)

    Saltiel, Seth; Bonner, Brian P.; Ajo-Franklin, Jonathan B.

    2017-05-01

    Measurements of nonlinear modulus and attenuation of fractures provide the opportunity to probe their mechanical state. We have adapted a low-frequency torsional apparatus to explore the seismic signature of fractures under low normal stress, simulating low effective stress environments such as shallow or high pore pressure reservoirs. We report strain-dependent modulus and attenuation for fractured samples of Duperow dolomite (a carbon sequestration target reservoir in Montana), Blue Canyon Dome rhyolite (a geothermal analog reservoir in New Mexico), and Montello granite (a deep basement disposal analog from Wisconsin). We use a simple single effective asperity partial slip model to fit our measured stress-strain curves and solve for the friction coefficient, contact radius, and full slip condition. These observations have the potential to develop into new field techniques for measuring differences in frictional properties during reservoir engineering manipulations and estimate the stress conditions where reservoir fractures and faults begin to fully slip.

  6. Strain-dependent Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning

    Science.gov (United States)

    Portugal, George S.; Wilkinson, Derek S.; Kenney, Justin W.; Sullivan, Colleen

    2013-01-01

    The effects of nicotine on cognitive processes such as learning and memory may play an important role in the addictive liability of tobacco. However, it remains unknown whether genetic variability modulates the effects of nicotine on learning and memory. The present study characterized the effects of acute, chronic, and withdrawal from chronic nicotine administration on fear conditioning, somatic signs, and the elevated plus maze in 8 strains of inbred mice. Strain-dependent effects of acute nicotine and nicotine withdrawal on contextual fear conditioning, somatic signs, and the elevated plus maze were observed, but no association between the effects of acute nicotine and nicotine withdrawal on contextual fear conditioning were observed, suggesting that different genetic substrates may mediate these effects. The identification of genetic factors that may alter the effects of nicotine on cognition may lead to more efficacious treatments for nicotine addiction. PMID:21822688

  7. Growth Mechanism of Strain-Dependent Morphological Change in PEDOT:PSS Films.

    Science.gov (United States)

    Lee, Yoo-Yong; Choi, Gwang Mook; Lim, Seung-Min; Cho, Ju-Young; Choi, In-Suk; Nam, Ki Tae; Joo, Young-Chang

    2016-04-29

    Understanding the mechanism of the strain-dependent conductivity change in polymers in stretched conditions is important. We observed a strain-induced growth of the conductive regions of PSS films, induced by a coalescence of conductive PEDOT-rich cores. This growth due to coalescence leads to a gradual decrease in the electrical resistivity up to 95%, independent of the thickness of the PSS films. The primary mechanism for the evolution of the PEDOT-rich cores proceeds by the cores growing larger as they consuming relatively smaller cores. This process is caused by a strain-induced local rearrangement of PEDOT segments in the vicinity of PSS shells around the cores and also changes the chemical environment in PEDOT, induced by the electron-withdrawing effects around the PEDOT chains. The strain-induced growth mechanism is beneficial to understanding the phenomenon of polymeric chain rearrangement in mechanical deformation and to modulating the electrical conductivity for practical applications.

  8. Strain-Dependent Solid Surface Stress and the Stiffness of Soft Contacts

    Science.gov (United States)

    Jensen, Katharine E.; Style, Robert W.; Xu, Qin; Dufresne, Eric R.

    2017-10-01

    Surface stresses have recently emerged as a key player in the mechanics of highly compliant solids. The classic theories of contact mechanics describe adhesion with a compliant substrate as a competition between surface energies driving deformation to establish contact and bulk elasticity resisting this. However, it has recently been shown that surface stresses provide an additional restoring force that can compete with and even dominate over elasticity in highly compliant materials, especially when length scales are small compared to the ratio of the surface stress to the elastic modulus, ϒ /E . Here, we investigate experimentally the contribution of surface stresses to the total force of adhesion. We find that the elastic and capillary contributions to the adhesive force are of similar magnitude and that both are required to account for measured adhesive forces between rigid silica spheres and compliant, silicone gels. Notably, the strain dependence of the solid surface stress contributes to the stiffness of soft solid contacts at leading order.

  9. DNA Bending elasticity

    Science.gov (United States)

    Sivak, David Alexander

    DNA bending elasticity on length scales of tens of basepairs is of critical importance in numerous biological contexts. Even the simplest models of DNA bending admit of few simple analytic results, thus there is a need for numerical methods to calculate experimental observables, such as distance distributions, forces, FRET efficiencies, and timescales of particular large-scale motions. We have implemented and helped develop a coarse-grained representation of DNA and various other covalently-linked groups that allows simple calculation of such observables for varied experimental systems. The simple freely-jointed chain (FJC) model and extremely coarse resolution proved useful in understanding DNA threading through nanopores, identifying steric occlusion by other parts of the chain as a prime culprit for slower capture as distance to the pore decreased. Enhanced sampling techniques of a finer resolution discrete wormlike chain (WLC) model permitted calculation of cyclization rates for small chains and identified the ramifications of a thermodynamically-sound treatment of thermal melts. Adding treatment of double-stranded DNA's helical nature and single-stranded DNA provided a model system that helped demonstrate the importance of statistical fluctuations in even highly-stressed DNA mini-loops, and allowed us to verify that even these constructs show no evidence of excitation-induced softening. Additional incorporation of salt-sensitivity to the model allowed us to calculate forces and FRET efficiencies for such mini-loops and their uncircularized precursors, thereby furthering the understanding of the nature of IHF binding and bending of its recognition sequence. Adding large volume-excluding spheres linked to the ends of the dsDNA permits calculation of distance distributions and thus small-angle X-ray scattering, whereby we demonstrated the validity of the WLC in describing bending fluctuations in DNA chains as short as 42 bp. We also make important connections

  10. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation.

    Science.gov (United States)

    Drogue, Benoît; Sanguin, Hervé; Chamam, Amel; Mozar, Michael; Llauro, Christel; Panaud, Olivier; Prigent-Combaret, Claire; Picault, Nathalie; Wisniewski-Dyé, Florence

    2014-01-01

    Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defense and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyzes of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post-inoculation with Azospirillum lipoferum 4B (isolated from Cigalon) or Azospirillum sp. B510 (isolated from Nipponbare) and compared to the respective non-inoculated condition. A total of 7384 genes were significantly regulated, which represent about 16% of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83% of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defense, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signaling highlight the complexity of hormone signaling networks in the Azospirillum

  11. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

    Directory of Open Access Journals (Sweden)

    Benoît eDrogue

    2014-11-01

    Full Text Available Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defence and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyses of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post inoculation with A. lipoferum 4B (isolated from Cigalon or Azospirillum sp. B510 (isolated from Nipponbare and compared to the respective non-inoculated condition. A total of 7,384 genes were significantly regulated, which represent about 16 % of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83 % of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defence, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signalling highlight the complexity of hormone signalling networks in the Azospirillum

  12. Disparate Strain Dependent Thermal Conductivity of Two-dimensional Penta-Structures.

    Science.gov (United States)

    Liu, Huake; Qin, Guangzhao; Lin, Yuan; Hu, Ming

    2016-06-08

    Two-dimensional (2D) carbon allotrope called penta-graphene was recently proposed from first-principles calculations and various similar penta-structures emerged. Despite significant effort having been dedicated to electronic structures and mechanical properties, little research has been focused on thermal transport in penta-structures. Motivated by this, we performed a comparative study of thermal transport properties of three representative pentagonal structures, namely penta-graphene, penta-SiC2, and penta-SiN2, by solving the phonon Boltzmann transport equation with interatomic force constants extracted from first-principles calculations. Unexpectedly, the thermal conductivity of the three penta-structures exhibits diverse strain dependence, despite their very similar geometry structures. While the thermal conductivity of penta-graphene exhibits standard monotonic reduction by stretching, penta-SiC2 possesses an unusual nonmonotonic up-and-down behavior. More interestingly, the thermal conductivity of penta-SiN2 has 1 order of magnitude enhancement due to the strain induced buckled to planar structure transition. The mechanism governing the diverse strain dependence is identified as the competition between the change of phonon group velocity and phonon lifetime of acoustic phonon modes with combined effect from the unique structure transition for penta-SiN2. The disparate thermal transport behavior is further correlated to the fundamentally different bonding nature in the atomic structures with solid evidence from the distribution of deformation charge density and more in-depth molecular orbital analysis. The reported giant and robust tunability of thermal conductivity may inspire intensive research on other derivatives of penta-structures as potential materials for emerging nanoelectronic devices. The fundamental physics understood from this study also solidifies the strategy to engineer thermal transport properties of broad 2D materials by simple mechanical

  13. AA, bending magnet, BLG

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The very particular lattice of the AA required 2 types of dipole (bending magnets; BLG, long and narrow; BST, short and wide). The BLG had a steel length of 4.70 m, a good field width of 0.24 m, and a weight of about 70 t. Jean-Claude Brunet inspects the lower half of a BLG. For the BST magnets see 7811105 and 8006036.

  14. First-principles study of size-, surface- and mechanical strain-dependent electronic properties of wurtzite and zinc-blende InSb nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Xie, Zhong-Xiang, E-mail: xiezxhu@163.com [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Yu, Xia; Wang, Hai-Bin; Deng, Yuan-Xiang [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Ning, Feng, E-mail: fning@gxtc.edu.cn [College of Physics and Electronic Engineering, Guangxi Teachers Education University, Nanning 530001 (China)

    2016-08-06

    Using first-principle calculations with density functional theory, we investigated the modification of electronic properties in zinc-blende (ZB) and wurtzite (WZ) InSb nanowires (NWs) grown along the [111] and [0001] directions for different size, different surface coverage and different mechanical strain. The results show that before the surface passivation, ZBNWs and WZNWs exhibit the metallic character and the semiconductor character, respectively. WZNWs show a crossover from a direct to an indirect as diameter decreases. After the surface passivation, both ZBNWs and WZNWs are found to be direct-gap character. The electronic band structure shows a significant response to changes in surface passivation with pseudo hydrogen and halogen. The band structure with mechanical strain is strongly dependent on the crystal orientation and the NW diameter. In ZBNWs, compressive strain induces the indirect band gap character, whereas tensile strain can not form it. WZNWs have various strain dependence in that both compressive and tensile strain make InSb show a direct band gap character. A brief analysis of these results is given. - Highlights: • InSb nanowires with different surfaces can show the different band structures. • Band gap magnitude of InSb nanowires depends on the suppression of surface states. • Different types of mechanical strains show the different effect on the band structure of the InSb nanowires.

  15. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Proton Medical Research Center, University of Tsukuba, Tsukuba (Japan); Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  16. Strain-dependent effects of clinical echovirus 30 outbreak isolates at the blood-CSF barrier

    Directory of Open Access Journals (Sweden)

    Tobias Dahm

    2018-02-01

    Full Text Available Abstract Background Echovirus (E 30 (E-30 meningitis is characterized by neuroinflammation involving immune cell pleocytosis at the protective barriers of the central nervous system (CNS. In this context, infection of the blood-cerebrospinal fluid barrier (BCSFB, which has been demonstrated to be involved in enteroviral CNS pathogenesis, may affect the tight junction (TJ and adherens junction (AJ function and morphology. Methods We used an in vitro human choroid plexus epithelial (HIBCPP cell model to investigate the effect of three clinical outbreak strains (13-311, 13-759, and 14-397 isolated in Germany in 2013, and compared them to E-30 Bastianni. Conducting transepithelial electrical resistance (TEER, paracellular dextran flux measurement, quantitative real-time polymerase chain reaction (qPCR, western blot, and immunofluorescence analysis, we investigated TJ and AJ function and morphology as well as strain-specific E-30 infection patterns. Additionally, transmission electron and focused ion beam microscopy electron microscopy (FIB-SEM was used to evaluate the mode of leukocyte transmigration. Genome sequencing and phylogenetic analyses were performed to discriminate potential genetic differences among the outbreak strains. Results We observed a significant strain-dependent decrease in TEER with strains E-30 Bastianni and 13-311, whereas paracellular dextran flux was only affected by E-30 Bastianni. Despite strong similarities among the outbreak strains in replication characteristics and particle distribution, strain 13-311 was the only outbreak isolate revealing comparable disruptive effects on TJ (Zonula Occludens (ZO 1 and occludin and AJ (E-cadherin morphology to E-30 Bastianni. Notwithstanding significant junctional alterations upon E-30 infection, we observed both para- and transcellular leukocyte migration across HIBCPP cells. Complete genome sequencing revealed differences between the strains analyzed, but no explicit correlation

  17. Monitoring Composites under Bending Tests with Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Carosena Meola

    2012-01-01

    Full Text Available The attention of the present paper is focused on the use of an infrared imaging device to monitor the thermal response of composite materials under cyclic bending. Three types of composites are considered including an epoxy matrix reinforced with either carbon fibres (CFRP or glass fibres (GFRP and a hybrid composite involving glass fibres and aluminium layers (FRML. The specimen surface, under bending, displays temperature variations pursuing the load variations with cooling down under tension and warming up under compression; such temperature variations are in agreement with the bending moment. It has been observed that the amplitude of temperature variations over the specimen surface depends on the material characteristics. In particular, the presence of a defect inside the material affects the temperature distribution with deviation from the usual bending moment trend.

  18. An analytical study on the bending of prismatic SMA beams

    International Nuclear Information System (INIS)

    Ostadrahimi, Alireza; Arghavani, Jamal; Poorasadion, Saeid

    2015-01-01

    In this study, an analytical solution is presented for pure bending of shape memory alloy (SMA) beams with symmetric cross section as well as symmetric behavior in tension and compression. To this end, a three-dimensional constitutive equation is reduced to one-dimensional form and employed to study the bending response of SMA beams at high (pseudo-elasticity) and low (shape memory effect) temperatures. An analytical expression for bending stress as well as polynomial approximation for shear stress and deflection are obtained. Derived equations for bending are employed to analyze an SMA beam with rectangular cross section and results are compared with those of the finite element method. The results of this work show good agreement when compared with experimental data and finite element results. Furthermore, the existence of several zero-stress fibers during unloading of SMA beams at low temperature is demonstrated. (paper)

  19. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films

    International Nuclear Information System (INIS)

    Park, Myounggu; Kim, Hyonny; Youngblood, Jeffrey P

    2008-01-01

    The strain-dependent electrical resistance characteristics of multi-walled carbon nanotube (MWCNT)/polymer composite films were investigated. In this research, polyethylene oxide (PEO) is used as the polymer matrix. Two representative volume fractions of MWCNT/PEO composite films were selected: 0.56 vol% (near the percolation threshold) and 1.44 vol% (away from the percolation threshold) of MWCNT. An experimental setup which can measure electrical resistance and strain simultaneously and continuously has been developed. Unique and repeatable relationships in resistance versus strain were obtained for multiple specimens with different volume fractions of MWCNT. The overall pattern of electrical resistance change versus strain for the specimens tested consists of linear and nonlinear regions. A resistance change model to describe the combination of linear and nonlinear modes of electrical resistance change as a function of strain is suggested. The unique characteristics in electrical resistance change for different volume fractions imply that MWCNT/PEO composite films can be used as tunable strain sensors and for application into embedded sensor systems in structures

  20. Strain dependent UV degradation of Escherichia coli DNA monitored by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Muntean, Cristina M; Lapusan, Alexandra; Mihaiu, Liora; Stefan, Razvan

    2014-01-05

    In this work we present a method for detection of DNA isolated from nonpathogenic Escherichia coli strains, respectively. Untreated and UV irradiated bacterial DNAs were analyzed by FT-IR spectroscopy, to investigate their screening characteristic features and their structural radiotolerance at 253.7nm. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 800-1800cm(-1). FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Also, UV damage at the DNA molecular level is of interest. Strain dependent UV degradation of DNA from E. coli has been observed. Particularly, alterations in nucleic acid bases, base pairing and base stacking have been found. Also changes in the DNA conformation and deoxyribose were detected. Based on this work, specific E. coli DNA-ligand interactions, drug development and vaccine design for a better understanding of the infection mechanism caused by an interference between pathogenic and nonpathogenic bacteria and for a better control of disease, respectively, might be further investigated using Fourier transform infrared spectroscopy. Besides, understanding the pathways for UV damaged DNA response, like nucleic acids repair mechanisms is appreciated. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Strain-Dependent Effect of Macroautophagy on Abnormally Folded Prion Protein Degradation in Infected Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Daisuke Ishibashi

    Full Text Available Prion diseases are neurodegenerative disorders caused by the accumulation of abnormal prion protein (PrPSc in the central nervous system. With the aim of elucidating the mechanism underlying the accumulation and degradation of PrPSc, we investigated the role of autophagy in its degradation, using cultured cells stably infected with distinct prion strains. The effects of pharmacological compounds that inhibit or stimulate the cellular signal transduction pathways that mediate autophagy during PrPSc degradation were evaluated. The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK, derived from a patient with Gerstmann-Sträussler-Scheinker syndrome, was significantly increased in cultures treated with the macroautophagy inhibitor 3-methyladenine (3MA but substantially reduced in those treated with the macroautophagy inducer rapamycin. The decrease in FK-derived PrPSc levels was mediated, at least in part, by the phosphatidylinositol 3-kinase/MEK signalling pathway. By contrast, neither rapamycin nor 3MA had any apparently effect on PrPSc from either the 22L or the Chandler strain, indicating that the degradation of PrPSc in host cells might be strain-dependent.

  2. Strain-Dependent Solid Surface Stress and the Stiffness of Soft Contacts

    Directory of Open Access Journals (Sweden)

    Katharine E. Jensen

    2017-11-01

    Full Text Available Surface stresses have recently emerged as a key player in the mechanics of highly compliant solids. The classic theories of contact mechanics describe adhesion with a compliant substrate as a competition between surface energies driving deformation to establish contact and bulk elasticity resisting this. However, it has recently been shown that surface stresses provide an additional restoring force that can compete with and even dominate over elasticity in highly compliant materials, especially when length scales are small compared to the ratio of the surface stress to the elastic modulus, ϒ/E. Here, we investigate experimentally the contribution of surface stresses to the total force of adhesion. We find that the elastic and capillary contributions to the adhesive force are of similar magnitude and that both are required to account for measured adhesive forces between rigid silica spheres and compliant, silicone gels. Notably, the strain dependence of the solid surface stress contributes to the stiffness of soft solid contacts at leading order.

  3. Emittance growth of bunched beams in bends

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Raubenheimer, T.O.

    1995-01-01

    Talman [Phys. Rev. Lett. 56, 1429 (1986)] has proposed a novel relativistic effect that occurs when a charged particle beam is bent in the magnetic field from an external dipole. The consequence of this effect is that the space-charge forces from the particles do not exhibit the usual inverse-square energy dependence and some part of them are, in fact, independent of energy. This led to speculation that this effect could introduce significant emittance growth for a bending electron beam. Subsequently, it was shown that this effect's influence on the beam's transverse motion is canceled for a dc beam by a potential depression within the beam (to first order in the beam radius divided by the bend radius). In this paper, we extend the analysis to include short bunch lengths (as compared to the beam pipe dimensions) and find that there is no longer the cancellation for forces both transverse to and in the direction of motion. We provide an estimate for the emittance growth as a function of bend angle, beam radius, and current, and for magnetic compression of an electron bunch

  4. Strain-dependent differences in sensitivity of rat beta-cells to interleukin 1 beta in vitro and in vivo

    DEFF Research Database (Denmark)

    Reimers, J I; Andersen, H U; Mauricio, D

    1996-01-01

    The aim of this study was to investigate whether strain-dependent differences in beta-cell sensitivity to interleukin (IL) 1 beta exist in vitro and in vivo and if so, whether these differences correlate to variations in IL-1 beta-induced islet inducible nitric oxide synthase (iNOS) mRNA expression...

  5. Strain-dependent induction of neutrophil histamine production and cell death by Pseudomonas aeruginosa

    Science.gov (United States)

    Xu, Xiang; Zhang, Hong; Song, Yuanlin; Lynch, Susan V.; Lowell, Clifford A.; Wiener-Kronish, Jeanine P.; Caughey, George H.

    2012-01-01

    Airway diseases often feature persistent neutrophilic inflammation and infection. In cystic fibrosis bronchitis, for example, Pseudomonas aeruginosa is isolated frequently. Previously, this laboratory revealed that neutrophils become major sources of histamine in mice with tracheobronchitis caused by the wall-less bacterium Mycoplasma pulmonis. To test the hypothesis that more-broadly pathogenic P. aeruginosa (which expresses cell wall-associated LPS and novel toxins) has similar effects, we incubated naïve mouse neutrophils with two strains of P. aeruginosa. Strain PAO1 greatly increased neutrophil histamine content and secretion, whereas strain PA103 depressed histamine production by killing neutrophils. The histamine-stimulating capacity of PAO1, but not PA103-mediated toxicity, persisted in heat-killed organisms. In PAO1-infected mice, lung and neutrophil histamine content increased. However, PAO1 did not alter production by mast cells (classical histamine reservoirs), which also resisted PA103 toxicity. To explore mechanisms of neutrophil-selective induction, we measured changes in mRNA encoding histidine decarboxylase (rate-limiting for histamine synthesis), probed involvement of endotoxin-TLR pathways in Myd88-deficient neutrophils, and examined contributions of pyocyanin and exotoxins. Results revealed that PAO1 increased histamine production by up-regulating histidine decarboxylase mRNA via pathways largely independent of TLR, pyocyanin, and type III secretion system exotoxins. PAO1 also increased histidine decarboxylase mRNA in neutrophils purified from infected lung. Stimulation required direct contact with neutrophils and was blocked by phagocytosis inhibitor cytochalasin D. In summary, Pseudomonas-augmented histamine production by neutrophils is strain-dependent in vitro and likely mediated by up-regulation of histidine decarboxylase. These findings raise the possibility that Pseudomonas-stimulated neutrophils can enhance airway inflammation by

  6. The involvement of prostaglandin E2in interleukin-1β evoked anorexia is strain dependent.

    Science.gov (United States)

    Nilsson, Anna; Elander, Louise; Hallbeck, Martin; Örtegren Kugelberg, Unn; Engblom, David; Blomqvist, Anders

    2017-02-01

    From experiments in mice in which the prostaglandin E 2 (PGE 2 ) synthesizing enzyme mPGES-1 was genetically deleted, as well as from experiments in which PGE 2 was injected directly into the brain, PGE 2 has been implicated as a mediator of inflammatory induced anorexia. Here we aimed at examining which PGE 2 receptor (EP 1-4 ) that was critical for the anorexic response to peripherally injected interleukin-1β (IL-1β). However, deletion of neither EP receptor in mice, either globally (for EP 1 , EP 2 , and EP 3 ) or selectively in the nervous system (EP 4 ), had any effect on the IL-1β induced anorexia. Because these mice were all on a C57BL/6 background, whereas previous observations demonstrating a role for induced PGE 2 in IL-1β evoked anorexia had been carried out on mice on a DBA/1 background, we examined the anorexic response to IL-1β in mice with deletion of mPGES-1 on a C57BL/6 background and a DBA/1 background, respectively. We confirmed previous findings that mPGES-1 knock-out mice on a DBA/1 background displayed attenuated anorexia to IL-1β; however, mice on a C57BL/6 background showed the same profound anorexia as wild type mice when carrying deletion of mPGES-1, while displaying almost normal food intake after pretreatment with a cyclooxygenase-2 inhibitor. We conclude that the involvement of induced PGE 2 in IL-1β evoked anorexia is strain dependent and we suggest that different routes that probably involve distinct prostanoids exist by which inflammatory stimuli may evoke an anorexic response and that these routes may be of different importance in different strains of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The physical relationship between infectivity and prion protein aggregates is strain-dependent.

    Directory of Open Access Journals (Sweden)

    Philippe Tixador

    2010-04-01

    Full Text Available Prions are unconventional infectious agents thought to be primarily composed of PrP(Sc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C. They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrP(Sc conformation could encode this 'strain' diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrP(Sc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrP(Sc aggregates from PrP(C. The distribution of PrP(Sc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrP(Sc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12-30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrP(Sc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics.

  8. Tracking the permeable porous network during strain-dependent magmatic flow

    Science.gov (United States)

    Kendrick, J. E.; Lavallée, Y.; Hess, K.-U.; Heap, M. J.; Gaunt, H. E.; Meredith, P. G.; Dingwell, D. B.

    2013-06-01

    Rheological variations have been postulated as the cause of transitions from effusive to explosive volcanic eruption style. Rheology is integrally linked to the composition and textural state (porosity, crystallinity) of magma as well as the stress, temperature and strain rate operative during flow. This study characterises the rheological behaviour and, importantly, the evolution of physical properties of two magmas (with different crystallinity and porosity) from Volcán de Colima (Mexico) - a volcanic system known for its rapid fluctuations in eruption style. Magma samples deformed in a uniaxial press at a constant stress of 2.8, 12 or 24 MPa, a constant temperature of 940-945 °C (comparable to upper conduit or lava dome conditions) to strains of 20 or 30% displayed different mechanical behaviour and significant differences in measured strain rates (10- 2-10- 5 s- 1). The evolution of porosity, permeability, dynamic Young's modulus and dynamic Poisson's ratio illustrate a complex evolution of the samples manifested as strain-hardening, visco-elastic, constant-rate and strain-weakening deformation. Both magmas behave as shear-thinning non-Newtonian liquids and viscosity decreases as a function of strain. We find that strain localisation during deformation leads to the rearrangement and closure of void space (a combination of pores and cracks) followed by preferentially aligned fracturing (in the direction of the maximum principal stress) to form damage zones as well as densification of other areas. In a dome setting, highly viscous, low permeability magmas carry the potential to block volcanic conduits with a magma plug, resulting in the build-up of pressures in the conduit. Above a certain threshold of strain (dependent upon stress/strain rate), the initiation, propagation and coalescence of fractures leads to mechanical degradation of the magma samples, which then supersedes magmatic flow and crystal rearrangement as the dominant form of deformation. This

  9. Crustal strain-dependent serpentinisation in the Porcupine Basin, offshore Ireland

    Science.gov (United States)

    Prada, Manel; Watremez, Louise; Chen, Chen; O'Reilly, Brian M.; Minshull, Timothy A.; Reston, Tim J.; Shannon, Patrick M.; Klaeschen, Dirk; Wagner, Gerlind; Gaw, Viola

    2017-09-01

    Mantle hydration (serpentinisation) at magma-poor rifted margins is thought to play a key role in controlling the kinematics of low-angle faults and thus, hyperextension and crustal breakup. However, because geophysical data principally provide observations of the final structure of a margin, little is known about the evolution of serpentinisation and how this governs tectonics during hyperextension. Here we present new observational evidence on how crustal strain-dependent serpentinisation influences hyperextension from rifting to possible crustal breakup along the axis of the Porcupine Basin, offshore Ireland. We present three new P-wave seismic velocity models that show the seismic structure of the uppermost lithosphere and the geometry of the Moho across and along the basin axis. We use neighbouring seismic reflection lines to our tomographic models to estimate crustal stretching (βc) of ∼2.5 in the north at 52.5° N and >10 in the south at 51.7° N. These values suggest that no crustal embrittlement occurred in the northernmost region, and that rifting may have progressed to crustal breakup in the southern part of the study area. We observed a decrease in mantle velocities across the basin axis from east to west. These variations occur in a region where βc is within the range at which crustal embrittlement and serpentinisation are possible (βc 3-4). Across the basin axis, the lowest seismic velocity in the mantle spatially coincides with the maximum amount of crustal faulting, indicating fault-controlled mantle hydration. Mantle velocities also suggest that the degree of serpentinisation, together with the amount of crustal faulting, increases southwards along the basin axis. Seismic reflection lines show a major detachment fault surface that grows southwards along the basin axis and is only visible where the inferred degree of serpentinisation is >15%. This observation is consistent with laboratory measurements that show that at this degree of

  10. Monitoring static shape memory polymers using a fiber Bragg grating as a vector-bending sensor

    Science.gov (United States)

    Li, Peng; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Leng, Jinsong

    2013-01-01

    We propose and demonstrate a technique for monitoring the recovery deformation of the shape-memory polymers (SMP) using a surface-attached fiber Bragg grating (FBG) as a vector-bending sensor. The proposed sensing scheme could monitor the pure bending deformation for the SMP sample. When the SMP sample undergoes concave or convex bending, the resonance wavelength of the FBG will have red-shift or blue-shift according to the tensile or compressive stress gradient along the FBG. As the results show, the bending sensitivity is around 4.07 nm/cm-1. The experimental results clearly indicate that the deformation of such an SMP sample can be effectively monitored by the attached FBG not just for the bending curvature but also the bending direction.

  11. A theory of the strain-dependent critical field in Nb3Sn, based on anharmonic phonon generation

    CERN Document Server

    Valentinis, D F; Bordini, B; Rossi, L

    2014-01-01

    We propose a theory to explain the strain dependence of the critical properties in A15 superconductors. Starting from the strong-coupling formula for the critical temperature, and assuming that the strain sensitivity stems mostly from the electron-phonon alpha F-2 function, we link the strain dependence of the critical properties to a widening of alpha F-2. This widening is attributed to the nonlinear generation of phonons, which takes place in the anharmonic deformation potential induced by the strain. Based on the theory of sum- and difference-frequency wave generation in nonlinear media, we obtain an explicit connection between the widening of alpha F-2 and the anharmonic energy. The resulting model is fit to experimental datasets for Nb3Sn, and the anharmonic energy extracted from the fits is compared with first-principles calculations.

  12. Enhanced Strain-Dependent Electrical Resistance of Polyurethane Composites with Embedded Oxidized Multiwalled Carbon Nanotube Networks

    Directory of Open Access Journals (Sweden)

    R. Benlikaya

    2013-01-01

    Full Text Available The effect of different chemical oxidation of multiwalled carbon nanotubes with H2O2, HNO3, and KMnO4 on the change of electrical resistance of polyurethane composites with embedded oxidized nanotube networks subjected to elongation and bending has been studied. The testing has shown about twenty-fold increase in the electrical resistance for the composite prepared from KMnO4 oxidized nanotubes in comparison to the composites prepared from the pristine and other oxidized nanotubes. The evaluated sensitivity of KMnO4 treated composite in terms of the gauge factor increases with strain to nearly 175 at the strain 11%. This is a substantial increase, which ranks the composite prepared from KMnO4 oxidized nanotubes among materials as strain gauges with the highest electromechanical sensitivity. The observed differences in electromechanical properties of the composites are discussed on basis of their structure which is examined by the measurements of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope. The possible practical use of the composites is demonstrated by monitoring of elbow joint flexion during two different physical exercises.

  13. Sheet Bending using Soft Tools

    Science.gov (United States)

    Sinke, J.

    2011-05-01

    Sheet bending is usually performed by air bending and V-die bending processes. Both processes apply rigid tools. These solid tools facilitate the generation of software for the numerical control of those processes. When the lower rigid die is replaced with a soft or rubber tool, the numerical control becomes much more difficult, since the soft tool deforms too. Compared to other bending processes the rubber backed bending process has some distinct advantages, like large radius-to-thickness ratios, applicability to materials with topcoats, well defined radii, and the feasibility of forming details (ridges, beads). These advantages may give the process exclusive benefits over conventional bending processes, not only for industries related to mechanical engineering and sheet metal forming, but also for other disciplines like Architecture and Industrial Design The largest disadvantage is that also the soft (rubber) tool deforms. Although the tool deformation is elastic and recovers after each process cycle, the applied force during bending is related to the deformation of the metal sheet and the deformation of the rubber. The deformation of the rubber interacts with the process but also with sheet parameters. This makes the numerical control of the process much more complicated. This paper presents a model for the bending of sheet materials using a rubber lower die. This model can be implemented in software in order to control the bending process numerically. The model itself is based on numerical and experimental research. In this research a number of variables related to the tooling and the material have been evaluated. The numerical part of the research was used to investigate the influence of the features of the soft lower tool, like the hardness and dimensions, and the influence of the sheet thickness, which also interacts with the soft tool deformation. The experimental research was focused on the relation between the machine control parameters and the most

  14. "Compressed" Compressed Sensing

    OpenAIRE

    Reeves, Galen; Gastpar, Michael

    2010-01-01

    The field of compressed sensing has shown that a sparse but otherwise arbitrary vector can be recovered exactly from a small number of randomly constructed linear projections (or samples). The question addressed in this paper is whether an even smaller number of samples is sufficient when there exists prior knowledge about the distribution of the unknown vector, or when only partial recovery is needed. An information-theoretic lower bound with connections to free probability theory and an upp...

  15. Strain-Dependent Edge Structures in MoS2 Layers.

    Science.gov (United States)

    Tinoco, Miguel; Maduro, Luigi; Masaki, Mukai; Okunishi, Eiji; Conesa-Boj, Sonia

    2017-11-08

    Edge structures are low-dimensional defects unavoidable in layered materials of the transition metal dichalcogenides (TMD) family. Among the various types of such structures, the armchair (AC) and zigzag (ZZ) edge types are the most common. It has been predicted that the presence of intrinsic strain localized along these edges structures can have direct implications for the customization of their electronic properties. However, pinning down the relation between local structure and electronic properties at these edges is challenging. Here, we quantify the local strain field that arises at the edges of MoS 2 flakes by combining aberration-corrected transmission electron microscopy (TEM) with the geometrical-phase analysis (GPA) method. We also provide further insight on the possible effects of such edge strain on the resulting electronic behavior by means of electron energy loss spectroscopy (EELS) measurements. Our results reveal that the two-dominant edge structures, ZZ and AC, induce the formation of different amounts of localized strain fields. We also show that by varying the free edge curvature from concave to convex, compressive strain turns into tensile strain. These results pave the way toward the customization of edge structures in MoS 2 , which can be used to engineer the properties of layered materials and thus contribute to the optimization of the next generation of atomic-scale electronic devices built upon them.

  16. EFFECT OF CHANNEL BENDS ON TRANSVERSE MIXING

    African Journals Online (AJOL)

    user

    2017-06-05

    Jun 5, 2017 ... dy, where d is the flow depth, was found to vary laterally in all cross-sections. As the spiral motion due to the second bend develops it displaces the residual spiral motion from the first bend towards the outer bend causing it to decay completely around the middle of this bend. Transverse Tracer Distribution.

  17. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  18. Compression-Based Compressed Sensing

    OpenAIRE

    Rezagah, Farideh Ebrahim; Jalali, Shirin; Erkip, Elza; Poor, H. Vincent

    2016-01-01

    Modern compression algorithms exploit complex structures that are present in signals to describe them very efficiently. On the other hand, the field of compressed sensing is built upon the observation that "structured" signals can be recovered from their under-determined set of linear projections. Currently, there is a large gap between the complexity of the structures studied in the area of compressed sensing and those employed by the state-of-the-art compression codes. Recent results in the...

  19. Compression embedding

    Science.gov (United States)

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  20. BENDING OF REINFORCING BARS TESTING METHOD AND INFLUENCE ON STRUCTURES

    Directory of Open Access Journals (Sweden)

    Hari Warsianto

    2012-02-01

    Full Text Available Reinforcing bars in concrete elements functions as the component carrying tensile stresses after concretecracking. This is due to that fact that concrete exhibit very high compression strength combined with avery low tensile capacity. The tensile stressed are transferred to the bars by the bond between thereinforcement and the concrete.Bars are generally produced in strands 6 to 12 meter in length so that bending for transportation andhandling purposes becomes necessary. At the site bars are straightened, and then sometimes re-bent forassembling purposes. This process will result in a loading and re-loading of steel.The ASTM E-290 mandated that bars have to pass the bending test, whereas reinforcing steel bars arebend to almost 1800 to ensure material ductility. In the past five years the Construction and MaterialLaboratory, Diponegoro University has been questioned with the issue as to how far this bending andstraightening influences the quality and what the significance of testing is.This paper will evaluate theinfluence of bending and straightening and the testing procedure involved.

  1. Strain dependent magnetocaloric effect in La0.67Sr0.33MnO3 thin-films

    Directory of Open Access Journals (Sweden)

    V. Suresh Kumar

    2013-05-01

    Full Text Available The strain dependent magnetocaloric properties of La0.67Sr0.33MnO3 thin films deposited on three different substrates (001 LaAlO3 (LAO, (001 SrTiO3 (STO, and (001 La0.3Sr0.7Al0.65Ta0.35O9 (LSAT have been investigated under low magnetic fields and around magnetic phase transition temperatures. Compared to bulk samples, we observe a remarkable decrease in the ferromagnetic transition temperature that is close to room temperature, closely matched isothermal magnetic entropy change and relative cooling power values in tensile strained La0.67Sr0.33MnO3 films. The epitaxial strain plays a significant role in tuning the peak position of isothermal magnetic entropy change towards room temperature with improved cooling capacity.

  2. Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Denise eManahan-Vaughan

    2011-03-01

    Full Text Available Hippocampal synaptic plasticity is believed to comprise the cellular basis for spatial learning. Strain-dependent differences in synaptic plasticity in the CA1 region have been reported. However, it is not known whether these differences extend to other synapses within the trisynaptic circuit, although there is evidence for morphological variations within that path. We investigated whether Wistar and Hooded Lister (HL rat strains express differences in synaptic plasticity in the dentate gyrus in vivo. We also explored whether they exhibit differences in the ability to engage in spatial learning in an 8-arm radial maze. Basal synaptic transmission was stable over a 24h period in both rat strains, and the input-output relationship of both strains was not significantly different. Paired-pulse analysis revealed significantly less paired-pulse facilitation in the Hooded Lister strain when pulses were given 40-100 msec apart. Low frequency stimulation at 1Hz evoked long-term depression (>24h in Wistar and short-term depression (<2h in HL rats; 200Hz stimulation induced long-term potentiation (>24h in Wistar, and a transient, significantly smaller potentiation (<1h in HL rats, suggesting that HL rats have higher thresholds for expression of persistent synaptic plasticity. Training for 10d in an 8-arm radial maze revealed that HL rats master the working memory task faster than Wistar rats, although both strains show an equivalent performance by the end of the trial period. HL rats also perform more efficiently in a double working and reference memory task. On the other hand, Wistar rats show better reference memory performance on the final (8-10 days of training. Wistar rats were less active and more anxious than HL rats.These data suggest that strain-dependent variations in hippocampal synaptic plasticity occur in different hippocampal synapses. A clear correlation with differences in spatial learning is not evident however.

  3. Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear

    Science.gov (United States)

    Peng, Chong; Xiao, Yuzhe; Wang, Yanzhong; Guo, Wei

    2017-09-01

    The effect of laser shock peening (LSP) on bending fatigue performance of AISI 9310 steel spur gear has been investigated in this study. To help to explain bending fatigue test results, residual stress distribution induced by LSP is studied by means of finite element modelling, results of which are verified by X-ray diffraction analysis. It is found that a compressive layer of desirable depth can be induced on the gear root fillet after LSP, and both magnitude and depth of compressive stress increase with laser energy. The bending fatigue test is conducted using the single-tooth bending method to compare fatigue performance of laser peened teeth and non-peened teeth, which is followed by relevant statistical analysis. S-N curves acquired from the fatigue test reveal that bending fatigue lives of gear teeth has been significantly improved after LSP in comparison with those non-peened teeth, and the bending fatigue limit is enhanced correspondingly. It is noticeable that higher laser energy does not necessarily lead to much better fatigue performance of test gears.

  4. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  5. MIT miniaturized disk bend test

    International Nuclear Information System (INIS)

    Harling, O.K.; Lee, M.; Sohn, D.S.; Kohse, G.; Lau, C.W.

    1983-01-01

    A miniaturized disk bend test (MDBT) using transmission electron microscopy specimens for the determination of various mechanical properties is being developed at MIT. Recent progress in obtaining strengths and ductilities of highly irradiated metal alloys is reviewed. Other mechanical properties can also be obtained using the MDBT approach. Progress in fatigue testing and in determination of the ductile-to-brittle transition temperature is reviewed briefly. 11 figures

  6. Bending Fatigue of Carburized Steel at Very Long Lives

    Science.gov (United States)

    Nelson, D. V.; Long, Z.

    2016-01-01

    The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.

  7. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Dale A [ORNL; Morrell-Falvey, Jennifer L [ORNL; Karve, Abhijit A [ORNL; Lu, Tse-Yuan S [ORNL; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL; Martin, Madhavi Z [ORNL; Jawdy, Sara [ORNL; Weston, David [ORNL; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  8. Dynamical properties and their strain-dependence of ZnSe(ZnSe:N: Zinc-blende and wurtzite

    Directory of Open Access Journals (Sweden)

    Dandan Wang

    2014-06-01

    Full Text Available The lattice dynamical properties of ZnSe and ZnSe with substitutional N incorporation(ZnSe:N are investigated in both the zinc-blend(ZB and wurtzite(WZ structures using first-principles calculations. The optical phonon modes of ZB-ZnSe at the Γ-point locate at 250 cm−1 for LO and 213 cm−1 for TO. The characteristic E2 phonon modes at about 50 cm−1 and the E1 and another E2 phonon modes around 200 cm−1 of WZ-ZnSe are suggested to be the fingerprint for distinguishing the two polytypes of ZnSe. For substitutional N incorporated ZnSe, the N incorporation introduces three new high energy modes above 500 cm−1, and the splitting of them is much larger in the WZ phase than that in ZB phase. The strain dependence of phonon frequency which could be useful for corresponding spectroscopic strain characterization are also studied. The simple linear dependence is determined for ZB-ZnSe, while the situation for WZ-ZnSe looks more complicated.

  9. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  10. Influence of a bending or tensile deformation on the toughness of a Mn-Ni-Mo structural steel

    International Nuclear Information System (INIS)

    Zadno Azizi, G.R.; Montheillet, F.

    1984-01-01

    Bending or tensile deformation on toughness of a steel, used for fabrication of pressurizers or steam generators of PWR reactors, is analyzed. Impact tests are realized on samples taken in the elongated and the compressed zones of 2 sheets with a deformation of 5 and 10% and in 2 test bars with the same deformation. Results show that cold bending increase brittle-ductile transition temperature. Nevertheless this effect is considerably lowered by heat treatment [fr

  11. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion

    OpenAIRE

    Wang, Pu; Huang, Zhen

    2017-01-01

    This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under di...

  12. Compressed Counting Meets Compressed Sensing

    OpenAIRE

    Li, Ping; Zhang, Cun-Hui; Zhang, Tong

    2013-01-01

    Compressed sensing (sparse signal recovery) has been a popular and important research topic in recent years. By observing that natural signals are often nonnegative, we propose a new framework for nonnegative signal recovery using Compressed Counting (CC). CC is a technique built on maximally-skewed p-stable random projections originally developed for data stream computations. Our recovery procedure is computationally very efficient in that it requires only one linear scan of the coordinates....

  13. Garment-Integrated Bend Sensor

    Directory of Open Access Journals (Sweden)

    Guido Gioberto

    2014-09-01

    Full Text Available Garment-integrated sensors equip clothes with a smart sensing capability, while preserving the comfort of the user. However, this benefit can be to the detriment of sensing accuracy due to the unpredictability of garment movement (which affects sensor positioning and textile folds (which can affect sensor orientation. However, sensors integrated directly into garments or fabric structures can also be used to detect the movement of the garment during wearing. Specifically, a textile bend sensor could be used to sense folds in the garment. We tested a garment-integrated stitched sensor for five types of folds, stitched on five different weights of un-stretchable denim fabric and analyzed the effects of fold complexity and fabric stiffness, under un-insulated and insulated conditions. Results show that insulation improves the linearity and repeatability of the sensor response, particularly for higher fold complexity. Stiffer fabrics show greater sensitivity, but less linearity. Sensor response amplitude is larger for more complex fold geometries. The utility of a linear bending response (insulated and a binary shorting response (un-insulated is discussed. Overall, the sensor exhibits excellent repeatability and accuracy, particularly for a fiber-based, textile-integrated sensor.

  14. Single cycle to failure in bending of three standard and five locking plates and plate constructs.

    Science.gov (United States)

    Blake, C A; Boudrieau, R J; Torrance, B S; Tacvorian, E K; Cabassu, J B; Gaudette, G R; Kowaleski, M P

    2011-01-01

    To evaluate the biomechanical properties of standard and locking plates in bending. We hypothesised that titanium (Ti) constructs would have the greatest deformation and that String of Pearl (SOP) constructs would have the greatest strength and stiffness, and would behave differently compared to plates alone. Dynamic compression plates (DCP), stainless steel (SS) limited contact (LC)-DCP®, Ti LC-DCP, locking compression plates (LCP), 10 mm and 11 mm advanced locking plate system (ALPS 10 / 11), SOP and Fixin plates were evaluated individually and as constructs applied to a validated bone model simulating a bridging osteosynthesis. Bending stiffness and strength were compared using one-way ANOVA with post hoc Tukey, and unpaired t-test (p <0.05). The SOP plates had significantly greater stiffness than all other plates; Ti LC-DCP, ALPS 10 and Fixin plates had significantly lower stiffness than all other plates. The SOP constructs had the highest mean bending stiffness, and strength that was significantly different from only the Ti LC-DCP, ALPS 10 and Fixin constructs. The ALPS 10 constructs had the lowest mean bending stiffness, and strength that was significantly different from only ALPS 11 and SOP constructs. Comparison of bending structural stiffness of plates versus constructs showed a significant difference in all plate pairs except for the DCP and ALPS 10. Due to differing plate construct properties inherent to these diverse implant systems, identical approaches to fracture management and plate application cannot be applied.

  15. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...... the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since......-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis....

  16. Compressive beamforming

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Mosegaard, Klaus

    2014-01-01

    Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex...

  17. Analytical investigation in bending characteristic of twisted stacked-tape cable conductor

    International Nuclear Information System (INIS)

    Takayasu, Makoto; Chiesa, Luisa

    2015-01-01

    An analytical model to evaluate bending strains of a twisted stack-tape cable (TSTC) conductor has been developed. Through a comparison with experimental results obtained for a soldered 32-tape YBCO TSTC conductor, it has been found that a Perfect-Slip Model (PSM) taking into account the slipping between tapes in a stacked-tape cable during bending gives much better estimation of the bending performance compared to a No-Slip Model (NSM). In the PSM case the tapes can slip so that the internal longitudinal axial strain can be released. The longitudinal strains of compression and tension regions along the tape are balanced in one twist-pitch and cancel out evenly in a long cable. Therefore, in a cable the strains due to bending can be minimized. This is an important advantage of a TSTC conductor. The effect of the cable diameter size on the bending strain is also expected to be minor, and all tapes composing a TSTC conductor have the same strain response under bending, therefore the cable critical current can be characterized from a single tape behaviour. (paper)

  18. Analytical investigation in bending characteristic of twisted stacked-tape cable conductor

    Science.gov (United States)

    Takayasu, Makoto; Chiesa, Luisa

    2015-12-01

    An analytical model to evaluate bending strains of a twisted stack-tape cable (TSTC) conductor has been developed. Through a comparison with experimental results obtained for a soldered 32-tape YBCO TSTC conductor, it has been found that a Perfect-Slip Model (PSM) taking into account the slipping between tapes in a stacked-tape cable during bending gives much better estimation of the bending performance compared to a No-Slip Model (NSM). In the PSM case the tapes can slip so that the internal longitudinal axial strain can be released. The longitudinal strains of compression and tension regions along the tape are balanced in one twist-pitch and cancel out evenly in a long cable. Therefore, in a cable the strains due to bending can be minimized. This is an important advantage of a TSTC conductor. The effect of the cable diameter size on the bending strain is also expected to be minor, and all tapes composing a TSTC conductor have the same strain response under bending, therefore the cable critical current can be characterized from a single tape behaviour.

  19. In vitro biomechanical comparison of limited contat dynamic compression plate and locking compression plate.

    Science.gov (United States)

    Aguila, A Z; Manos, J M; Orlansky, A S; Todhunter, R J; Trotter, E J; Van der Meulen, M C H

    2005-01-01

    The locking compression plate (LCP) supports biological osteosynthesis by functioning as an internal fixator, rather than as a full or limited contact bone plate which must be adequately contoured and affixed directly to the bone for stable internal fixation of the fracture. In order to help justify the use of the LCP in our veterinary patients, in vitro biomechanical testing was performed comparing the LCP to the conventional limited contact dynamic compression plate (LC-DCP) in canine femurs. We hypothesized that the LCP construct would be at least as stiff under bending and torsional loads as the LC-DCP. The LCP and LC-DCP were applied over a 20-mm osteotomy gap to contralateroal bones within each pair of 14 femora. Non-destructive four-point bending and torsion, and cyclical testing in torsion were performed. The constructs were then loaded to failure in torsion. In medial-lateral and lateral-medial structural bending, significant differences were not found between the LCP and LC-DCP, however, at the gap, the LCP construct was stiffer than the LC-DCP in lateral-medial bending. Significant differences in behaviour over time were not noted between the plate designs during cyclical testing. When loading the constructs to failure in internal rotation, the LC-DCP failed at a significantly lower twist angle (P = .0024) than the LCP. Based on the similar performance with loading, the locking compression plate is a good alternative implant for unstable diaphyseal femoral fracture repair in dogs.

  20. Discontinious Galerkin formulations for thin bending problems

    NARCIS (Netherlands)

    Nguyen, T.D.

    2008-01-01

    A structural thin bending problem is essentially associated with a fourth-order partial differential equation. Within the finite element framework, the numerical solution of thin bending problems demands the use of C^1 continuous shape functions. Elements using these functions are challenging and

  1. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...... range can be adjusted in a post-fabrication thermal oxidation process....

  2. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  3. Anharmonic Bend-Stretch Coupling in Water

    NARCIS (Netherlands)

    Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S.; Cringus, Dan; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2006-01-01

    Following excitation of the H-O-H bending mode of water molecules in solution the stretching mode region is monitored over its entire width. The anharmonic coupling between the two modes results in a substantial change of the transient stretch absorption that decays with the bend depopulation time.

  4. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  5. Speech Compression

    Directory of Open Access Journals (Sweden)

    Jerry D. Gibson

    2016-06-01

    Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.

  6. In-plane and out-of-plane bending tests on carbon steel pipe bends

    International Nuclear Information System (INIS)

    Brouard, D.; Tremblais, A.; Vrillon, B.

    1979-01-01

    The objectives of these tests were to obtain experimental results on bends behaviour in elastic and plastic regime by in plane and out of plane bending. Results were used to improve the computer model, for large distorsion of bends, to be used in a simplified beam type computer code for piping calculations. Tests were made on type ANSI B 169 DN 5 bends in ASTM A 106 Grade B carbon steel. These tests made it possible to measure, for identical bends, in elastic regime, the flexibility factors and, in plastic regime, the total evolution in opening, in closing and out of plane. Flexibility factors of 180 0 bend without flanges are approximately the same in opening and in closing. The end effect due to flanges is not very significant, but it is important for 90 0 bends. In plastic regime, collapse loads or collapse moments of bends depends also of both the end effects and the angle bend. The end effects and the angle bend are more sensitive in opening than in closing. The interest of these tests is to procure some precise evolution curves of identical bends well characterized in geometry and metal strength, deflected in large distorsions. (orig./HP)

  7. Assessment of Bending Fatigue Strength of Crankshaft Sections with Consideration of Quenching Residual Stress

    Science.gov (United States)

    Qin, W. J.; Dong, C.; Li, X.

    2016-03-01

    High-cycle bending fatigue is the primary failure mode of crankshafts in engines. Compressive residual stresses are often introduced by induction quenching to improve the fatigue strength of crankshafts. The residual stresses, which are commonly obtained by numerical methods, such as the finite element method (FEM), should be included in fatigue failure analysis to predict the fatigue strength of crankshafts accurately. In this study, the simulation method and theory of quenching process are presented and applied to investigate the residual stresses of a diesel engine crankshaft. The coupling calculation of temperature, microstructure, and stress fields of the crankshaft section is conducted by FEM. Then, the fatigue strength of the crankshaft section is analytically assessed by Susmel and Lazzarin's criterion based on the critical plane approach that superimposes the residual stresses onto the bending stresses. The resonant bending fatigue tests of the crankshaft sections are conducted, and the tests and analytical assessments yield consistent results.

  8. Compressive Fracture of Brittle Geomaterial: Fractal Features of Compression-Induced Fracture Surfaces and Failure Mechanism

    Directory of Open Access Journals (Sweden)

    L. Ren

    2014-01-01

    Full Text Available Compressive fracture is one of the most common failure patterns in geotechnical engineering. For better understanding of the local failure mechanism of compressive fractures of brittle geomaterials, three compressive fracture tests were conducted on sandstone. Edge cracked semicircular bend specimens were used and, consequently, fresh and unfilled compressive fracture surfaces were obtained. A laser profilometer was employed to measure the topography of each rough fracture surface, followed by fractal analysis of the irregularities of the obtained compression-induced fracture surfaces using the cubic cover method. To carry out a contrastive analysis with the results of compressive fracture tests, three tension mode fracture tests were also conducted and the fractal features of the obtained fracture surfaces were determined. The obtained average result of the fractal dimensions of the compression-induced surfaces was 2.070, whereas the average result was 2.067 for the tension-induced fracture surfaces. No remarkable differences between the fractal dimensions of the compression-induced and tension-induced fracture surfaces may indicate that compressive fracture may occur, at least on the investigative scale of this work, in a similar manner to tension fracture.

  9. The effects of bending on the resistance of elastically stretchable metal conductors, and a comparison with stretching

    Science.gov (United States)

    Graudejus, O.; Li, T.; Cheng, J.; Keiper, N.; Ponce Wong, R. D.; Pak, A. B.; Abbas, J.

    2017-05-01

    Microcracked gold films on elastomeric substrates can function as stretchable and deformable interconnects and sensors. In response to stretch or deformation, the design would seek to minimize the change in resistance for stretchable or deformable interconnects; if used as resistive sensors, a large change in resistance would be desired. This research examines the change in resistance upon bending of a microcracked conductor and compares the results with stretching such a conductor. The resistance depends on the strain in the film, which, for bending, is a function of the bending radius and the location of the film within the structure with respect to the neutral plane. The resistance decreases when the gold conductor is under compression and increases when it is under tension. The decrease in resistance under compression is small compared to the increase in resistance under tension, marginally depending on the bending radius. In contrast, the resistance under tension significantly increases with decreasing bending radius. The mechanics model presented here offers a mechanistic understanding of these observations. These results provide guidance for the design of interconnects for flexible and stretchable electronics and for flexible sensors to monitor the magnitude and direction of bending or stretching.

  10. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  11. Bending crystals. Solid state photomechanical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    semiquinonate ligand, form as long thin needles that are observed to bend reversibly upon irradiation with NIR light. Crystallographic characterization reveals a stacked solid state lattice with planar molecules aligned with metal atoms atop one another.

  12. Big Bend National Park: Acoustical Monitoring 2010

    Science.gov (United States)

    2013-06-01

    During the summer of 2010 (September October 2010), the Volpe Center collected baseline acoustical data at Big Bend National Park (BIBE) at four sites deployed for approximately 30 days each. The baseline data collected during this period will he...

  13. An x-ray diffraction study of concentration and strain dependent interdiffusion in silicon-germanium thin films

    Science.gov (United States)

    Aubertine, Daniel B.

    As SiGe films are introduced into deeply scaled, ultra-fast MOS devices, it is increasingly clear that interdiffusion at Si/SiGe interfaces is a significant problem. Strained Si MOSFET's typically utilize a thin, epitaxial, strained Si channel grown onto a relaxed SiGe layer. For these structures, out-diffusion of Ge from the SiGe layer into the Si channel is a factor limiting the practical thermal exposure during processing. Predicting the degree of intermixing is difficult because the interdiffusion process is potentially influenced by the local Ge concentration, film strain, and non-equilibrium point defect concentrations. Interdiffusion in SiGe is also important from a fundamentally scientific perspective. Systematic studies of the interdiffusion process in SiGe alloys will eventually lead to a deeper understanding of the many physical mechanisms involved. To date, interdiffusion studies in Si-rich SiGe alloys are anecdotal, focusing on interdiffusion at specific Si/SiGe interfaces. This thesis presents work that begins the process of generalizing these measurements by quantifying interdiffusivity in Si-rich alloys as a function of both Ge concentration and compressive biaxial film strain. Interdiffusivity values are measured in SiGe alloys with Ge fractions of 0.075, 0.105, 0.128, 0.172, and 0.192. The activation enthalpy for interdiffusion is found to decrease linearly with Ge concentration by 4.05 +/- 0.25 eV/unit Ge fraction. The prefactor for interdiffusion is found to be proportional to exp(-35XGe). Extrapolating these trends to a Ge fraction of zero yields prefactor and activation enthalpy values of 450 +/- 100 cm2/s and 4.69 +/- 0.05 eV, consistent with accepted values for Si and Ge tracer diffusion in pure Si. Further, a change in compressive biaxial film strain of 0.002 is shown to have no detectable influence on the interdiffusion rates for alloys with Ge fractions of 0.075, 0.105, and 0.172. These results are incorporated into a model that is shown

  14. Slice of a LEP bending magnet

    CERN Multimedia

    This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.

  15. Bunch compression for an FEL at NLCTA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-04-01

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  16. Bending sound in graphene: Origin and manifestation

    International Nuclear Information System (INIS)

    Adamyan, V.M.; Bondarev, V.N.; Zavalniuk, V.V.

    2016-01-01

    Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.

  17. Bending sound in graphene: Origin and manifestation

    Energy Technology Data Exchange (ETDEWEB)

    Adamyan, V.M., E-mail: vadamyan@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Bondarev, V.N., E-mail: bondvic@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Zavalniuk, V.V., E-mail: vzavalnyuk@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Department of Fundamental Sciences, Odessa Military Academy, 10 Fontanska Road, Odessa 65009 (Ukraine)

    2016-11-11

    Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.

  18. Residual stress evaluation in brittle coatings using indentation technique combined with in-situ bending

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Steinbrech, R.W.; Tanabe, Yuji; Hara, Toshiaki

    2000-01-01

    The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m 1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)

  19. Membrane bending by protein-protein crowding.

    Science.gov (United States)

    Stachowiak, Jeanne C; Schmid, Eva M; Ryan, Christopher J; Ann, Hyoung Sook; Sasaki, Darryl Y; Sherman, Michael B; Geissler, Phillip L; Fletcher, Daniel A; Hayden, Carl C

    2012-09-01

    Curved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation. Thus, at present, we lack a sufficient physical explanation of how protein attachment bends membranes efficiently. On the basis of studies of epsin1 and AP180, proteins involved in clathrin-mediated endocytosis, we propose a third general mechanism for bending fluid cellular membranes: protein-protein crowding. By correlating membrane tubulation with measurements of protein densities on membrane surfaces, we demonstrate that lateral pressure generated by collisions between bound proteins drives bending. Whether proteins attach by inserting a helix or by binding lipid heads with an engineered tag, protein coverage above ~20% is sufficient to bend membranes. Consistent with this crowding mechanism, we find that even proteins unrelated to membrane curvature, such as green fluorescent protein (GFP), can bend membranes when sufficiently concentrated. These findings demonstrate a highly efficient mechanism by which the crowded protein environment on the surface of cellular membranes can contribute to membrane shape change.

  20. Positional cloning reveals strain-dependent expression of Trim16 to alter susceptibility to bleomycin-induced pulmonary fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Anguel N Stefanov

    Full Text Available Pulmonary fibrosis is a disease of significant morbidity, with no effective therapeutics and an as yet incompletely defined genetic basis. The chemotherapeutic agent bleomycin induces pulmonary fibrosis in susceptible C57BL/6J mice but not in mice of the C3H/HeJ strain, and this differential strain response has been used in prior studies to map bleomycin-induced pulmonary fibrosis susceptibility loci named Blmpf1 and Blmpf2. In this study we isolated the quantitative trait gene underlying Blmpf2 initially by histologically phenotyping the bleomycin-induced lung disease of sublines of congenic mice to reduce the linkage region to 13 genes. Of these genes, Trim16 was identified to have strain-dependent expression in the lung, which we determined was due to sequence variation in the promoter. Over-expression of Trim16 by plasmid injection increased pulmonary fibrosis, and bronchoalveolar lavage levels of both interleukin 12/23-p40 and neutrophils, in bleomycin treated B6.C3H-Blmpf2 subcongenic mice compared to subcongenic mice treated with bleomycin only, which follows the C57BL/6J versus C3H/HeJ strain difference in these traits. In summary we demonstrate that genetic variation in Trim16 leads to its strain-dependent expression, which alters susceptibility to bleomycin-induced pulmonary fibrosis in mice.

  1. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  2. Slice through an LHC bending magnet

    CERN Multimedia

    Slice through an LHC superconducting dipole (bending) magnet. The slice includes a cut through the magnet wiring (niobium titanium), the beampipe and the steel magnet yokes. Particle beams in the Large Hadron Collider (LHC) have the same energy as a high-speed train, squeezed ready for collision into a space narrower than a human hair. Huge forces are needed to control them. Dipole magnets (2 poles) are used to bend the paths of the protons around the 27 km ring. Quadrupole magnets (4 poles) focus the proton beams and squeeze them so that more particles collide when the beams’ paths cross. There are 1232 15m long dipole magnets in the LHC.

  3. Minimal Bending Energies of Bilayer Polyhedra

    Science.gov (United States)

    Haselwandter, Christoph A.; Phillips, Rob

    2011-01-01

    Motivated by recent experiments on bilayer polyhedra composed of amphiphilic molecules, we study the elastic bending energies of bilayer vesicles forming polyhedral shapes. Allowing for segregation of excess amphiphiles along the ridges of polyhedra, we find that bilayer polyhedra can indeed have lower bending energies than spherical bilayer vesicles. However, our analysis also implies that, contrary to what has been suggested on the basis of experiments, the snub dodecahedron, rather than the icosahedron, generally represents the energetically favorable shape of bilayer polyhedra. PMID:21231425

  4. Pattern transitions in a compressible floating elastic sheet.

    Science.gov (United States)

    Oshri, Oz; Diamant, Haim

    2017-09-13

    Thin rigid sheets floating on a liquid substrate appear, for example, in coatings and surfactant monolayers. Upon uniaxial compression the sheet undergoes transitions from a compressed flat state to a periodic wrinkled pattern to a localized folded pattern. The stability of these states is determined by the in-plane elasticity of the sheet, its bending rigidity, and the hydrostatics of the underlying liquid. Wrinkles and folds, and the wrinkle-to-fold transition, were previously studied for incompressible sheets. In the present work we extend the theory to include finite compressibility. We analyze the details of the flat-to-wrinkle transition, the effects of compressibility on wrinkling and folding, and the compression field associated with pattern formation. The state diagram of the floating sheet including all three states is presented.

  5. Head movements while steering around bends

    NARCIS (Netherlands)

    Erp, J.B.F. van; Oving, A.B.

    2012-01-01

    In this study, the determinants of head motions (rotations) when driving around bends were investigated when drivers viewed the scene through a head-mounted display. The scene camera was either fixed or coupled to head motions along 2 or 3 axes of rotation. Eight participants drove around a

  6. Demonstration model of LEP bending magnet

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    To save iron and raise the flux density, the LEP bending magnet laminations were separated by spacers and the space between the laminations was filled with concrete. This is a demonstration model, part of it with the spaced laminations only, the other part filled with concrete.

  7. Design of a hydraulic bending machine

    Science.gov (United States)

    Steven G. Hankel; Marshall Begel

    2004-01-01

    To keep pace with customer demands while phasing out old and unserviceable test equipment, the staff of the Engineering Mechanics Laboratory (EML) at the USDA Forest Service, Forest Products Laboratory, designed and assembled a hydraulic bending test machine. The EML built this machine to test dimension lumber, nominal 2 in. thick and up to 12 in. deep, at spans up to...

  8. ANALYTICAL BENDING SOLUTION OF ALL CLAMPED ISOTROPIC ...

    African Journals Online (AJOL)

    The analytical bending solution of all clamped rectangular plate on Winkler foundation using characteristic orthogonal polynomials (COPs) was studied. This was achieved by partially integrating the governing differential equation of rectangular plate on elastic foundation four times with respect to its independents x and y ...

  9. Tubular lining material for pipelines having bends

    Energy Technology Data Exchange (ETDEWEB)

    Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.

    1987-03-24

    A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.

  10. Fractional behaviour at cyclic stretch-bending

    NARCIS (Netherlands)

    Emmens, W.C.; van den Boogaard, Antonius H.; Kazantzis, A.V.; de Hosson, J.Th.M.; Kolleck, R

    2010-01-01

    The fractional behaviour at cyclic stretch-bending has been studied by performing tensile tests at long specimens that are cyclically bent at the same time, on mild steel, dual-phase steel, stainless steel, aluminium and brass. Several types of fracture are observed, these are discussed, as are the

  11. Bending rate damping in elastic systems

    Science.gov (United States)

    Banks, H. T.; Wang, Y.; Fabiano, R. H.

    1989-01-01

    Preliminary results of an investigation of the bending rate damping model for elastic structures are presented. A model for which the internal damping term is physically plausible and which can accomodate cantilevered boundary conditions is discussed. The model formulation and mathematical foundations are given, and numerical results are discussed.

  12. Challenging the limits for beam bending designs

    DEFF Research Database (Denmark)

    Goltermann, Per

    2017-01-01

    The traditional design limits of beams in bending have been challenged by testing from very under-reinforced design to over-reinforced and strengthened over-reinforced designs in order to investigate if the current limits could be abolished. The ductility of normally reinforced beam depends...

  13. Can Thermal Bending Fracture Ice Shelves?

    Science.gov (United States)

    MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Willis, I.; Macdonald, G. J.; Lin, J.

    2017-12-01

    Visco-elastic plates will bend if the temperature on one side is cooled. If the plate is constrained to float, as for sea ice floes, this bending will lead to tensile stresses that can fracture the ice. The hydroacoustic regime below sea ice displays increased fracture-sourced noise when air temperatures above the ice cools with the diurnal cycle. The McMurdo Ice Shelf, Antarctica, also displays a massive increase in seismicity during the cooling phase of the diurnal cycle, and this motivates the question: Can surface cooling (or other forcing with thermal consequences) drive through-thickness fracture leading to iceberg calving? Past study of this question for sea ice gives an upper limit of ice-plate thickness (order meters) for which diurnal-scale thermal bending fracture can occur; but could cooling with longer time scales induce fracture of thicker ice plates? Given the seismic evidence of thermal bending fracture on the McMurdo Ice Shelf, the authors examine this question further.

  14. Symmetric bends how to join two lengths of cord

    CERN Document Server

    Miles, Roger E

    1995-01-01

    A bend is a knot securely joining together two lengths of cord (or string or rope), thereby yielding a single longer length. There are many possible different bends, and a natural question that has probably occurred to many is: "Is there a 'best' bend and, if so, what is it?"Most of the well-known bends happen to be symmetric - that is, the two constituent cords within the bend have the same geometric shape and size, and interrelationship with the other. Such 'symmetric bends' have great beauty, especially when the two cords bear different colours. Moreover, they have the practical advantage o

  15. Strain-dependent effects of PB1-F2 of triple-reassortant H3N2 influenza viruses in swine.

    Science.gov (United States)

    Pena, Lindomar; Vincent, Amy L; Loving, Crystal L; Henningson, Jamie N; Lager, Kelly M; Li, Weizhong; Perez, Daniel R

    2012-10-01

    The PB1-F2 protein of the influenza A viruses (IAVs) can act as a virulence factor in mice. Its contribution to the virulence of IAV in swine, however, remains largely unexplored. In this study, we chose two genetically related H3N2 triple-reassortant IAVs to assess the impact of PB1-F2 in virus replication and virulence in pigs. Using reverse genetics, we disrupted the PB1-F2 ORF of A/swine/Wisconsin/14094/99 (H3N2) (Sw/99) and A/turkey/Ohio/313053/04 (H3N2) (Ty/04). Removing the PB1-F2 ORF led to increased expression of PB1-N40 in a strain-dependent manner. Ablation of the PB1-F2 ORF (or incorporation of the N66S mutation in the PB1-F2 ORF, Sw/99 N66S) affected the replication in porcine alveolar macrophages of only the Sw/99 KO (PB1-F2 knockout) and Sw/99 N66S variants. The Ty/04 KO strain showed decreased virus replication in swine respiratory explants, whereas no such effect was observed in Sw/99 KO, compared with the wild-type (WT) counterparts. In pigs, PB1-F2 did not affect virus shedding or viral load in the lungs for any of these strains. Upon necropsy, PB1-F2 had no effect on the lung pathology caused by Sw/99 variants. Interestingly, the Ty/04 KO-infected pigs showed significantly increased lung pathology at 3 days post-infection compared with pigs infected with the Ty/04 WT strain. In addition, the pulmonary levels of interleukin (IL)-6, IL-8 and gamma interferon were regulated differentially by the expression of PB1-F2. Taken together, these results indicate that PB1-F2 modulates virus replication, virulence and innate immune responses in pigs in a strain-dependent fashion.

  16. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors.

    Directory of Open Access Journals (Sweden)

    Graziela Murta Barbosa

    Full Text Available It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P

  17. Intraspecies Variability Affects Heterotypic Biofilms of Porphyromonas gingivalis and Prevotella intermedia: Evidences of Strain-Dependence Biofilm Modulation by Physical Contact and by Released Soluble Factors.

    Science.gov (United States)

    Barbosa, Graziela Murta; Colombo, Andrea Vieira; Rodrigues, Paulo Henrique; Simionato, Maria Regina Lorenzetti

    2015-01-01

    It is well known that strain and virulence diversity exist within the population structure of Porphyromonas gingivalis. In the present study we investigate intra- and inter-species variability in biofilm formation of Porphyromonas gingivalis and partners Prevotella intermedia and Prevotella nigrescens. All strains tested showed similar hydrophobicity, except for P. gingivalis W83 which has roughly half of the hydrophobicity of P. gingivalis ATCC33277. An intraspecies variability in coaggregation of P. gingivalis with P. intermedia was also found. The association P. gingivalis W83/P. intermedia 17 produced the thickest biofilm and strain 17 was prevalent. In a two-compartment system P. gingivalis W83 stimulates an increase in biomass of strain 17 and the latter did not stimulate the growth of P. gingivalis W83. In addition, P. gingivalis W83 also stimulates the growth of P. intermedia ATCC25611 although strain W83 was prevalent in the association with P. intermedia ATCC25611. P. gingivalis ATCC33277 was prevalent in both associations with P. intermedia and both strains of P. intermedia stimulate the growth of P. gingivalis ATCC33277. FISH images also showed variability in biofilm structure. Thus, the outcome of the association P. gingivalis/P. intermedia seems to be strain-dependent, and both soluble factors and physical contact are relevant. The association P. gingivalis-P. nigrescens ATCC33563 produced larger biomass than each monotypic biofilm, and P. gingivalis was favored in consortia, while no differences were found in the two-compartment system. Therefore, in consortia P. gingivalis-P. nigrescens physical contact seems to favor P. gingivalis growth. The intraspecies variability found in our study suggests strain-dependence in ability of microorganisms to recognize molecules in other bacteria which may further elucidate the dysbiosis event during periodontitis development giving additional explanation for periodontal bacteria, such as P. gingivalis and P

  18. A cold mass support system based on the use of oriented fiberglass epoxy rods in bending

    International Nuclear Information System (INIS)

    Green, Michael A.; Corradi, Carol A.; LaMantia, Roberto F.; Zbasnik, Jon P.

    2002-01-01

    This report describes a cold mass support system that uses oriented fiberglass epoxy (other low heat leak oriented fiber material can also be used) rods. In the direction of the rods, where forces are carried in tension or compression, the support system is very stiff. In the other directions, the rods are subjected to bending stresses. When the support rods are put in bending the cold mass support is quite compliant. This type of support system can be used in situation where space for a cold mass support system is limited and where compliance can be tolerated in at least one direction. Break test data for 15.9-mm and 19.1-mm diameter oriented fiberglass rods is presented in this report. The cold mass supports for the DFBX distribution boxes are presented as an example of this type of cold mass support system

  19. Accounting for Fiber Bending Effects in Homogenization of Long Fiber Reinforced Composites

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2015-01-01

    The present work deals with homogenized finite-element models of long fiber reinforced composite materials in the context of studying compressive failure modes such as the formation of kink bands and fiber micro-buckling. Compared to finite-element models with an explicit discretization...... are in good agreement. In cases where the fiber bending stiffness is significant,the homogenized finite-element model exhibits size-scale dependent material behavior, as predicted by the model with explicitly discretized individual fibers....... of the material micro-structure including individual fibers, homogenized models are computationally more efficient and hence more suitable for modeling of larger and complex structure. Nevertheless, the formulation of homogenized models is more complicated, especially if the bending stiffness of the reinforcing...

  20. Interaction of low-frequency axisymmetric ultrasonic guided waves with bends in pipes of arbitrary bend angle and general bend radius.

    Science.gov (United States)

    Verma, Bhupesh; Mishra, Tarun Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-03-01

    The use of ultrasonic guided waves for the inspection of pipes with elbow and U-type bends has received much attention in recent years, but studies for more general bend angles which may also occur commonly, for example in cross-country pipes, are limited. Here, we address this topic considering a general bend angle φ, a more general mean bend radius R in terms of the wavelength of the mode studied and pipe thickness b. We use 3D Finite Element (FE) simulation to understand the propagation of fundamental axisymmetric L(0,2) mode across bends of different angles φ. The effect of the ratio of the mean bend radius to the wavelength of the mode studied, on the transmission and reflection of incident wave is also considered. The studies show that as the bend angle is reduced, a progressively larger extent of mode-conversion affects the transmission and velocity characteristics of the L(0,2) mode. However the overall message on the potential of guided waves for inspection and monitoring of bent pipes remains positive, as bends seem to impact mode transmission only to the extent of 20% even at low bend angles. The conclusions seem to be valid for different typical pipe thicknesses b and bend radii. The modeling approach is validated by experiments and discussed in light of physics of guided waves. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Lithospheric bending and faulting: Application to trenches and mid-ocean ridges

    Science.gov (United States)

    Supak, S. K.; Supak, S. K.; Buck, W. R.; Bohnenstiehl, D. R.

    2001-12-01

    Some aspects of faulting at fast spreading ridges, such as the East Pacific Rise (EPR), are not consistent with the normal faulting traditionally attributed to lithosphere stretching (Buck 2001). After Roger Buck's analytic model predicted faulting from bending at fast spreading ridges and Del Bohnenstiehl's analysis of displacement- length (D to L) ratios showed that fast spreading ridges have substantially smaller D to L than slow spreading ridges (Bohnenstiehl & Kleinrock 2000), lithospheric unbending became a possible explanation for this inconsistency. The mechanics of lithospheric bending have been examined for many years, but analysis has yet to be done on the relationship between bending and the strain required for faulting. Strain is a measure of material deformation, such as compression when an object is squeezed, or elongation when an object is stretched. When a plate such as lithosphere is bent, the concave side is put in compression while the convex side must be put in tension. If the faults occur as a result of bending, it is important to know what strain is large enough to produce the observed fault offsets. The ability to independently estimate strain, without using the fault itself, could be very helpful in understanding fault generation. There are two reasons for trying to understand the generation of faults. First, there is curiosity to explain observed geologic structures. Second, there is the possibility that insight gained in the mechanics of fault generation may help us better understand the earthquake cycle. Due to the controversial nature of bending of lithosphere at fast spreading ridges, it was important to concentrate on an area where bending is widely accepted. Oceanic subduction zones offered the perfect environment in which to evaluate strain at the onset of faulting. The Aleutian Trench was chosen as our first place of interest because the side scan sonar data was readily available from the GLORIA survey of America's Exclusive

  2. Holey fibers for low bend loss

    Science.gov (United States)

    Nakajima, Kazuhide; Saito, Kotaro; Yamada, Yusuke; Kurokawa, Kenji; Shimizu, Tomoya; Fukai, Chisato; Matsui, Takashi

    2013-12-01

    Bending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.

  3. Parallel monostrand stay cable bending fatigue

    DEFF Research Database (Denmark)

    Winkler, Jan Pawel

    This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... deformations is the highest at the neutral axis of the monostrand. Moreover, the results indicate that the midspan and the anchorage of the monostrand are the two locations where the combination of tensile strains and the interwire movement is the most unfavorable. It was also shown that, in the absence...... in significant insight in the flexural behavior of a multistrand assembly in critical locations with respect to bending fatigue, i.e. guide deviator and exit of the socket. The thesis ends with an example of how the outcome of the research work can be used in the estimation of the life-cycle performance...

  4. Combined bending-torsion fatigue reliability. III

    Science.gov (United States)

    Kececioglu, D.; Chester, L. B.; Nolf, C. F., Jr.

    1975-01-01

    Results generated by three, unique fatigue reliability research machines which can apply reversed bending loads combined with steady torque are presented. AISI 4340 steel, grooved specimens with a stress concentration factor of 1.42 and 2.34, and Rockwell C hardness of 35/40 were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and stress-to-failure data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one represents the data best. The effects of the groove, and of the various combined bending-torsion loads, on the S-N and Goodman diagrams are determined. Two design applications are presented which illustrate the direct useability and value of the distributional failure governing strength and cycles-to-failure data in designing for specified levels of reliability and in predicting the reliability of given designs.

  5. Alternating bending-steady torque fatigue reliability

    Science.gov (United States)

    Kececioglu, D.; Chester, L. B.; Dodge, T. M.

    1974-01-01

    Results generated by three unique fatigue reliability research machines which can apply alternating-bending loads combined with steady torque are presented. Six-inch long, AISI steel, grooved specimens with a stress concentration factor of 1.42 and Rockwell C 35/40 hardness were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and staircase-testing data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one best represents the data. The effect of the groove and of the various combined bending-torsion loads on the finite and endurance life strength of such components, as well as on the Goodman diagram, are determined. Design applications are presented.

  6. Torsion and transverse bending of cantilever plates

    Science.gov (United States)

    Reissner, Eric; Stein, Manuel

    1951-01-01

    The problem of combined bending and torsion of cantilever plates of variable thickness, such as might be considered for solid thin high-speed airplane or missile wings, is considered in this paper. The deflections of the plate are assumed to vary linearly across the chord; minimization of the potential energy by means of the calculus of variations then leads to two ordinary linear differential equations for the bending deflections and the twist of the plate. Because the cantilever is analyzed as a plate rather than as a beam, the effect of constraint against axial warping in torsion is inherently included. The application of this method to specific problems involving static deflection, vibration, and buckling of cantilever plates is presented. In the static-deflection problems, taper and sweep are considered.

  7. Effect of confinements: Bending in Paramecium

    Science.gov (United States)

    Eddins, Aja; Yang, Sung; Spoon, Corrie; Jung, Sunghwan

    2012-02-01

    Paramecium is a unicellular eukaryote which by coordinated beating of cilia, generates metachronal waves which causes it to execute a helical trajectory. We investigate the swimming parameters of the organism in rectangular PDMS channels and try to quantify its behavior. Surprisingly a swimming Paramecium in certain width of channels executes a bend of its flexible body (and changes its direction of swimming) by generating forces using the cilia. Considering a simple model of beam constrained between two walls, we predict the bent shapes of the organism and the forces it exerts on the walls. Finally we try to explain how bending (by sensing) can occur in channels by conducting experiments in thin film of fluid and drawing analogy to swimming behavior observed in different cases.

  8. Nuclear fuels accounting interface: River Bend experience

    International Nuclear Information System (INIS)

    Barry, J.E.

    1986-01-01

    This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation

  9. BENDING BEHAVIOUR OF MAGNETIC COTTON YARNS

    OpenAIRE

    LUPU Iuliana G.; GROSU Marian C; CRAMARIUC Bogdan; CRAMARIUC Oana

    2017-01-01

    Magnetic yarns are composite yarns, i.e. they combine elements of various natures and properties, with proven potential for electromagnetic interference (EMI) shielding. In this paper, different mixtures of hard and soft magnetic powder were chosen to cover materials made of cotton yarn. The physical properties and bending behavior of the produced composite yarns were investigated in order to evaluate the yarns for further textile processing.The cotton yarn used as base material was covered w...

  10. Clinical bending of nickel titanium wires

    OpenAIRE

    Stephen Chain; Priyank Seth; Namrata Rastogi; Kenneth Tan; Mayank Gupta; Richa Singh

    2015-01-01

    Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our invento...

  11. AA, assembly of wide bending magnet

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The very particular lattice of the AA required 2 types of dipoles (bending magnets; BST, short and wide; BLG, long and narrow). The wide ones had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. Here we see the copper coils being hoisted onto the lower half of a BST. See also 7811105, 8006050. For a BLG, see 8001044.

  12. Superconducting beam bending magnets at CERN

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The photo shows Gerhard Kesseler with the cyogenic vessels for one of the 10.8 Tesla-metre beam bending magnets. The magnet itself (not visible) is sitting inside the superinsukated helium vessel (white). The next larger shell and the biggest tubular structure (with the largest part behind the person) is the insulation vacuum tank. See CERN Courier 1970 pp. 228-229 CERN Courier 1973 pp. 144-145 Yellow Report CERN 78-03, 1978

  13. Hydrodynamic processes in sharp meander bends and their morphological implications

    NARCIS (Netherlands)

    Blanckaert, K.

    2011-01-01

    The migration rate of sharp meander bends exhibits large variance and indicates that some sharply curved bends tend to stabilize. These observations remain unexplained. This paper examines three hydrodynamic processes in sharp bends with fixed banks and discusses their morphological implications:

  14. Characterization and study of photonic crystal fibres with bends

    International Nuclear Information System (INIS)

    Belhadj, W.; AbdelMalek, F.; Bouchriha, H.

    2006-01-01

    Analysis of a photonic crystal fibre (PRCF) with bends is presented. Using the versatile finite difference time domain method, the modal characteristics of the PCFs are found. Possibilities of employing PCFs with bends in sensing are discussed. It is found that a large evanescent field is present when the bend angle exceeds 45 o

  15. Fuzzy set theory applied to bend sequencing for sheet metal

    NARCIS (Netherlands)

    Ong, S.K.; de Vin, L.J.; de Vin, L.J.; Nee, A.Y.C.; Kals, H.J.J.

    1997-01-01

    Brake forming is widely applied in the high variety and small batch part manufacturing of sheet metal components, for the bending of straight bending lines. Currently, the planning of the bending sequences is a task that has to be performed manually, involving many heuristic criteria. However,

  16. Effects of laser bending on the microstructural constituents

    CSIR Research Space (South Africa)

    Tshabalala, L

    2012-01-01

    Full Text Available This article will illustrate the correlation between microstructural and microhardness changes in high-strength-low-alloy steel that occur as a result of laser-bending. Laser bending is a process of bending metal shapes using the laser beam...

  17. Low-loss adiabatic bend using minimised chip area.

    NARCIS (Netherlands)

    Roeloffzen, C.G.H.; de Ridder, R.M.; Driessen, A.; Leijtens, X.J.M.; Besten, J.H.

    2000-01-01

    For the increasing complexity of integrated optical structures, there is a need of bends, which occupy a chip area as small as possible. The best results with respect to loss can be obtained by adiabatic bends with decreasing radius and variable waveguide width. Detailed simulations using 2D bend

  18. First multi-bend achromat lattice consideration

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Dieter, E-mail: dieter.einfeld@maxlab.lu.se [Lund University, PO Box 118, Lund SE-221 00 (Sweden); Plesko, Mark [COSYLAB, Teslova ulica 30, Ljubljana SI-1000 (Slovakia); Schaper, Joachim [HAWK University of Applied Sciences and Arts, Hohnsen 4, D-31134 Hildesheim (Germany)

    2014-08-27

    The first proposed lattice for a ‘diffraction-limited light source’ is reported. This approach has now more or less been used for the MAX IV project. By the beginning of 1990, three third-generation synchrotron light sources had been successfully commissioned in Grenoble, Berkeley and Trieste (ESRF, ALS and ELETTRA). Each of these new machines reached their target specifications without any significant problems. In parallel, already at that time discussions were underway regarding the next generation, the ‘diffraction-limited light source (DLSR)’, which featured sub-nm rad electron beam emittance, photon beam brilliance exceeding 10{sup 22} and the potential to emit coherent radiation. Also, at about that time, a first design for a 3 GeV DLSR was developed, based on a modified multiple-bend achromat (MBA) design leading to a lattice with normalized emittance of ∊{sub x} = 0.5 nm rad. The novel feature of the MBA lattice was the use of seven vertically focusing bend magnets with different bending angles throughout the achromat cell to keep the radiation integrals and resulting beam emittance low. The baseline design called for a 400 m ring circumference with 12 straight sections of 6 m length. The dynamic aperture behaviour of the DLSR lattice was estimated to produce > 5 h beam lifetime at 100 mA stored beam current.

  19. BENDING BEHAVIOUR OF MAGNETIC COTTON YARNS

    Directory of Open Access Journals (Sweden)

    LUPU Iuliana G.

    2017-05-01

    Full Text Available Magnetic yarns are composite yarns, i.e. they combine elements of various natures and properties, with proven potential for electromagnetic interference (EMI shielding. In this paper, different mixtures of hard and soft magnetic powder were chosen to cover materials made of cotton yarn. The physical properties and bending behavior of the produced composite yarns were investigated in order to evaluate the yarns for further textile processing.The cotton yarn used as base material was covered with hard (barium hexaferrite BaFe12O19 and soft (Black Toner magnetic particles. An in-house developed laboratory equipment has been used to cover the twist cotton yarns with seven mixtures having different amounts of magnetic powder (30% – 50%. The bending behavior of the coated yarns was evaluated based on the average width of cracks which appeared on the yarn surface after repeated flexural tests. The obtained results revealed that usage of a polyurethane adhesive in the coating solution prevents crack formation on the surface of hard magnetic yarns after flexural tests. At the same time, the higher the mass percentage of hard magnetic powder in the mixture, the higher was the cracks’ width. The soft magnetic yarns are more flexible and a smaller crack width is observed on their surface. Both the coating solution composition and the powder diameter are expected to influence the bending behavior of coated yarns.

  20. Forming and Bending of Metal Foams

    Science.gov (United States)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-06-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams.

  1. Operation corrosion test of austenitic steel bends for supercritical coal boilers

    Directory of Open Access Journals (Sweden)

    Cizner J.

    2016-03-01

    Full Text Available Corrosion tests of both annealed and not annealed bends of HR3C and S304H steels in operation conditions of black and brown coal combustion boilers in EPRU and EDE. After a long-term exposure, the samples were assessed gravimetrically and metallographically. The comparison of annealed and unannealed states showed higher corrosion rates in the annealed state; corrosion of the sample surface did not essentially differ for compression and tensile parts of the beams. Detailed assessment of both steels is described in detail in this study.

  2. Effect of combined tensile, bending and torsion deformation on medium carbon steel wire

    Directory of Open Access Journals (Sweden)

    Polyakova Marina

    2017-01-01

    Full Text Available Such schemes of plastic deformation as bending, torsion, tension, compression etc. are considered to be the basic schemes for metal processing methods. Each of these types of deformation has specific influence on microstructure and mechanical properties of the processed metal. For the optimal result of plastic deformation impact on metal structure and properties the mechanism of plastic processing should follow the definite requirements. The effect of different kinds of deformation on medium carbon steel wire was studied using several methods: scanning electron microscopy, atomic force microscopy, dynamic hardness testing. The obtained results can be used in the design of combined methods of deformation processing of carbon steel.

  3. 77 FR 36012 - PPL Bell Bend, LLC; Bell Bend Nuclear Power Plant Combined License Application; Notice of Intent...

    Science.gov (United States)

    2012-06-15

    ... by relocating the power block footprint and other plant components. For purposes of developing the... COMMISSION PPL Bell Bend, LLC; Bell Bend Nuclear Power Plant Combined License Application; Notice of Intent... its Bell Bend Nuclear Power Plant (BBNPP) site, located west of the existing Susquehanna Steam...

  4. 78 FR 4465 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Science.gov (United States)

    2013-01-22

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... Regulations (10 CFR), Subpart C of Part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County...

  5. 76 FR 81992 - PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption

    Science.gov (United States)

    2011-12-29

    ... License Application for Bell Bend Nuclear Power Plant; Exemption 1.0 Background PPL Bell Bend, LLC... for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP... based upon the U.S. EPR reference COL (RCOL) application for UniStar's Calvert Cliffs Nuclear Power...

  6. Unveil Compressed Sensing

    OpenAIRE

    Liu, Xiteng

    2013-01-01

    We discuss the applicability of compressed sensing theory. We take a genuine look at both experimental results and theoretical works. We answer the following questions: 1) What can compressed sensing really do? 2) More importantly, why?

  7. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  8. Recent developments in bend-insensitive and ultra-bend-insensitive fibers

    Science.gov (United States)

    Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre

    2010-02-01

    Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.

  9. Compression induced folding of a sheet: an integrable system.

    Science.gov (United States)

    Diamant, Haim; Witten, Thomas A

    2011-10-14

    The apparently intractable shape of a fold in a compressed elastic film lying on a fluid substrate is found to have an exact solution. Such systems buckle at a nonzero wave vector set by the bending stiffness of the film and the weight of the substrate fluid. Our solution describes the entire progression from a weakly displaced sinusoidal buckling to a single large fold that contacts itself. The pressure decrease is exactly quadratic in the lateral displacement. We identify a complex wave vector whose magnitude remains invariant with compression.

  10. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2011-01-01

    service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension......This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... and flexure and show that localized cable bending has a pronounced influence on the fatigue resistance of cables under dynamic excitations....

  11. Permanent bending and alignment of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Borschel, Christian; Spindler, Susann; Oertel, Michael; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lerose, Damiana [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle/Saale (Germany); Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bochmann, Arne [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Christiansen, Silke H. [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); MPI fuer die Physik des Lichts, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Nietzsche, Sandor [Zentrum fuer Elektronenmikroskopie, Friedrich-Schiller-Universitaet Jena, Ziegelmuehlenweg 1, 07743 Jena (Germany)

    2011-07-01

    Ion beams can be used to bend or re-align nanowires permanently, after they have been grown. We have irradiated ZnO nanowires with ions of different species and energy, achieving bending and alignment in various directions. We study the bending of single nanowires as well as the simultaneous alignment of large ensembles of ZnO nanowires in detail. Computer simulations show that the bending is initiated by ion beam induced damage. Dislocations are identified to relax stresses and make the bending and alignment permanent and resistant against annealing procedures.

  12. Permanent bending and alignment of ZnO nanowires.

    Science.gov (United States)

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  13. Influence of flock coating on bending rigidity of woven fabrics

    Science.gov (United States)

    Ozdemir, O.; Kesimci, M. O.

    2017-10-01

    This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.

  14. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  15. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  16. Hyperspectral data compression

    CERN Document Server

    Motta, Giovanni; Storer, James A

    2006-01-01

    Provides a survey of results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. This work covers topics such as compression architecture, lossless compression, lossy techniques, and more. It also describes a lossless algorithm based on vector quantization.

  17. Compression test assembly

    Science.gov (United States)

    Kariotis, A. H. (Inventor)

    1973-01-01

    A compression test assembly is described which prevents buckling of small diameter rigid specimens undergoing compression testing and permits attachment of extensometers for strain measurements. The test specimen is automatically aligned and laterally supported when compressive force is applied to the end caps and transmitted to the test specimen during testing.

  18. Standard test methods for bend testing of material for ductility

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover bend testing for ductility of materials. Included in the procedures are four conditions of constraint on the bent portion of the specimen; a guided-bend test using a mandrel or plunger of defined dimensions to force the mid-length of the specimen between two supports separated by a defined space; a semi-guided bend test in which the specimen is bent, while in contact with a mandrel, through a specified angle or to a specified inside radius (r) of curvature, measured while under the bending force; a free-bend test in which the ends of the specimen are brought toward each other, but in which no transverse force is applied to the bend itself and there is no contact of the concave inside surface of the bend with other material; a bend and flatten test, in which a transverse force is applied to the bend such that the legs make contact with each other over the length of the specimen. 1.2 After bending, the convex surface of the bend is examined for evidence of a crack or surface irregu...

  19. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum.

    Science.gov (United States)

    Walker, Vincent; Bertrand, Cédric; Bellvert, Floriant; Moënne-Loccoz, Yvan; Bally, René; Comte, Gilles

    2011-01-01

    Most Azospirillum plant growth-promoting rhizobacteria (PGPR) benefit plant growth through source effects related to free nitrogen fixation and/or phytohormone production, but little is known about their potential effects on plant physiology. These effects were assessed by comparing the early impacts of three Azospirillum inoculant strains on secondary metabolite profiles of two different maize (Zea mays) cultivars. After 10d of growth in nonsterile soil, maize methanolic extracts were analyzed by reverse-phase high-performance liquid chromatography (RP-HPLC) and secondary metabolites identified by liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR). Seed inoculation resulted in increased shoot biomass (and also root biomass with one strain) of hybrid PR37Y15 but had no stimulatory effect on hybrid DK315. In parallel, Azospirillum inoculation led to major qualitative and quantitative modifications of the contents of secondary metabolites, especially benzoxazinoids, in the maize plants. These modifications depended on the PGPR strain×plant cultivar combination. Thus, Azospirillum inoculation resulted in early, strain-dependent modifications in the biosynthetic pathways of benzoxazine derivatives in maize in compatible interactions. This is the first study documenting a PGPR effect on plant secondary metabolite profiles, and suggests the establishment of complex interactions between Azospirillum PGPR and maize. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  20. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  1. The spine lateral bending and the dynamic chest compression principles for concomitant orthotic treatment of scoliosis and pectus deformities Los principios de inclinación lateral de la columna vertebral y compresión dinámica del tórax para tratamiento ortótico concomitante de la escoliosis asociada a deformidades pectus Os principios da inclinação lateral da coluna e compressão dinâmica do tórax para tratamento ortótico concomitante da escoliose associada a deformidades pectus

    Directory of Open Access Journals (Sweden)

    Sydney Abrão Haje

    2011-01-01

    Full Text Available OBJECTIVE:To investigate a concomitant orthotic treatment for coexisting scoliosis and pectus deformities. No detailed study on such concomitancy was found in literature. METHODS: A spine bending brace for use day and night, and dynamic chest compressor orthoses for use four hours a day, along with one hour of exercises, were prescribed. From 638 adolescents, 25 met the inclusion criteria for a retrospective study. Two groups of patients were identified: A (15 compliant patients and B (10 non-compliant patients. The mean follow-up was 27 months for group A and 21 months for group B. Pre and post- treatment clinical signs of scoliosis and pectus were photographically compared. The scoliosis had radiologic evaluation by Cobb angle and Nash-Moe classification for vertebral rotation. RESULTS: For both conditions, scoliosis and pectus deformities, the outcome was significantly better in the compliant group (pOBJETIVO: Investigar un tratamiento concomitante con ortesis para las escoliosis y deformidades pectus coexistentes. No se ha encontrado ningún estudio detallado sobre tal aspecto en la literatura. MÉTODOS: Se prescribió un chaleco inclinado para uso día y noche, y ortesis de compresión dinámica del tórax para utilización durante cuatro horas al día, sin ser retirados para una sesión diaria de una hora de ejercicios. De 638 adolescentes, 25 presentaron criterios de inclusión para estudio retrospectivo. Fueron identificados dos grupos de pacientes: A (15 pacientes colaboradores con el tratamiento y B (10 pacientes no colaboradores. El tiempo de seguimiento promedio fue 27 meses para el grupo A y 21 meses para el grupo B. Los signos clínicos del pectus y de la escoliosis, pre y postratamiento, fueron comparados fotográficamente. La escoliosis fue evaluada radiográficamente mediante el ángulo de Cobb y el método de Nash-Moe para la rotación vertebral. RESULTADOS: Para ambas deformidades, escoliosis y deformidades pectus, los

  2. Limit loads for pipe bends under combined pressure and in-plane bending based on finite element limit analysis

    International Nuclear Information System (INIS)

    Oh, Chang Sik; Kim, Yun Jae

    2006-01-01

    In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach

  3. Compressible effect algebras

    Science.gov (United States)

    Gudder, Stan

    2004-08-01

    We define a special type of additive map J on an effect algebra E called a compression. We call J(1) the focus of J and if p is the focus of a compression then p is called a projection. The set of projections in E is denoted by P(E). A compression J is direct if J( a) ≤ a for all a ɛ E. We show that direct compressions are equivalent to projections onto components of cartesian products. An effect algebra E is said to be compressible if every compression on E is uniquely determined by its focus and every compression on E has a supplement. We define and characterize the commutant C(p) of a projection p and show that a compression with focus p is direct if and only if C(p) = E. We show that P(E) is an orthomodular poset. It is proved that the cartesian product of effect algebras is compressible if and only if each component is compressible. We then consider compressible sequential effect algebras, Lüders maps and conditional probabilities.

  4. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  5. Secondary turbulent flow in an infinte bend

    DEFF Research Database (Denmark)

    Christensen, H. Bo; Gislason, Kjartan; Fredsøe, Jørgen

    1999-01-01

    The flow in an infinite circular bend is inverstigated in both the laminar and fully turbulent flow case, by use of laminar flow solver, a k-e turbulence model, and a fully Reynolds stress turbulence model. The topic of the analysis is to investigate whether a counter-rotating secondary flow cell...... is formed near the surface at the outer bank. This cell might help to stabilise the bank and hereby be an important factor for the morphology in a meandering river. In the laminar runs stability criterion related to a Dean number was estabilshed. In the simulations with the k-e model and the Reynolds stress...

  6. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  7. Can human rights law bend mass surveillance?

    Directory of Open Access Journals (Sweden)

    Rikke Frank Joergensen

    2014-02-01

    Full Text Available There is an increasing gap between the right to privacy and contemporary surveillance schemes. As a concrete example, the US surveillance operation PRISM and its impact on European citizens’ right to privacy is discussed. This paper provides a brief introduction to PRISM, continues with an outline of the right to privacy as stipulated in the International Covenant on Civil and Political Rights (ICCPR, the European Convention on Human Rights and the EU Directive on Data Protection, and moves on to discuss whether international human rights law may be used to bend mass surveillance.

  8. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to ......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances......The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  9. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to ......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.......The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  10. Residual stresses in U-bending deformations and expansion joints of heat exchanger tubes

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sun Jae; Jang, Jin Sung; Kuk, Ii Hiun; Bae, Kang Gug; Kim, Sung Chung

    2000-01-01

    Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's rew-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319MPa in axial direction at the position of ψ=0 deg. Tensile residual stresses (+) of 0σ zz =45 MPa and σ θθ =25MPa were introduced in the intrados surface at the position of ψ=0 deg. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of ψ=90 deg, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U-bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction

  11. Advanced device for testing the electrical behavior of conductive coatings on flexible polymer substrates under oscillatory bending: comparison of coatings of sputtered indium-tin oxide and poly3,4ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Königer, Tobias; Münstedt, Helmut

    2008-01-01

    A special device was designed and set up to investigate the electrical behavior of conductive layers on flexible substrates under oscillatory bending. The resistance of conductive coatings can be measured during various oscillatory bending conditions. The bending radius, the amplitude and the frequency can be set to well-defined values. Furthermore, the setup allows us to apply tensile or compressive stress to the coating as well as both stresses alternately. Thus, various bending loads occurring in printable electronics applications can be simulated to investigate the electrical reliability of conductive coatings. In addition, it is possible to simulate different environmental conditions during oscillatory bending by running the device in an environmental chamber. Characterizations of the electrical behavior under oscillatory bending were carried out on commercially available polyethyleneterephthalate (PET) films sputtered with indium-tin oxide (ITO) and coated with poly3,4ethylenedioxythiophene (PEDOT). For coatings of sputtered ITO, a dramatic increase of the resistance is observed for bending radii smaller than 14 mm due to cracks spanning the whole sample width. The higher the amplitude, the more pronounced is the increase of the resistance. Coatings of PEDOT show high stability under oscillatory bending. There is no change in resistance observed for all bending radii and amplitudes applied over a large number of cycles

  12. Long term bending behavior of ultra-high performance concrete (UHPC beams

    Directory of Open Access Journals (Sweden)

    Gheorghe-Alexandru BARBOS

    2015-12-01

    Full Text Available Unlike normal concrete (NC the behavior of ultra-high performance concrete (UHPC is different under long-term efforts, if we refer to creep, shrinkage or long-term deflections. It is well known that UHPC has special properties, like compressive strength higher than 150 MPa and tensile strength higher than 20 MPa - in case of UHPC reinforced with steel-fibers. Nevertheless, UHPC behavior is not completely elucidated in what concerns creep straining or serviceability behavior in case of structural elements. Some studies made on UHPC samples shown that creep is significantly reduced if the concrete is subjected to heat treatment and if it contains steel-fiber reinforcement. Relating thereto, it is important to know how does structural elements made of this type of concrete works in service life under long-term loadings. The results obtained on UHPC samples, regarding creep straining from tension or compression efforts may not be generalized in case of structural elements (e.g. beams, slabs, columns subjected to bending. By performing this study, it was aimed to understand the influence of heat treatment and steel-fiber addition on the rheological phenomena of UHPC bended beams.

  13. Discussion on elastic compressive-flexural-torsional buckling in structural members

    NARCIS (Netherlands)

    Van der Put, T.A.C.M.

    The article of Raven, Blaauwendraad and Vambersky in HERON 53, No. 1 discusses stability checking of torsional buckling in structural members loaded by compressive forces and bending moments. Unfortunately, many important issues are not considered and need to be commented on.

  14. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... of the strain distribution in the strand and helps in identifying potential failure mechanisms along the strand and at the wedge location. Initial analysis of the deformations shows that the bending fatigue behavior of the monostrand may be controlled either by local bending deformations or by relative...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  15. Bending Behavior of Porous Sintered Stainless Steel Fiber Honeycombs

    Science.gov (United States)

    Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong

    2017-02-01

    A novel porous honeycomb-type substrate has been developed using solid-state sintering stainless steel fibers. The porous sintered stainless steel fiber honeycombs (PSSSFH) are composed of a skeleton of sintered stainless steel fibers, three-dimensionally interconnected porous structures and multiple parallel microchannels. The bending behavior of the PSSSFH is investigated using three-point bending tests. Four stages, including an elastic stage, a yielding stage with a plateau, a hardening stage and a failure stage, are observed during the bending process of the PSSSFH. In the initial yielding stage, the bending forces increase slowly with displacement increasing, and then a yielding plateau follows, which is unique compared with other porous materials. Moreover, the structure parameters of the PSSSFH are varied to investigate the influence on the bending strength. It is determined that the multiple parallel microchannels can enhance the bending strength of porous stainless steel fiber sintered substrates (PSSFSS) and do not influence the variation trend of bending strength of PSSFSS with porosity increasing. The open ratio is conducive to increasing the bending strength, and the microchannel diameters ranging from 0.5 mm to 1.5 mm have little influence on the bending strength. In addition, both the increasing of sintering temperature and sintering time can strengthen the PSSSFH.

  16. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  17. zlib compression library

    OpenAIRE

    Gailly, Jean-loup; Adler, Mark

    2004-01-01

    (taken from http://www.gzip.org/ on 2004-12-01) zlib is designed to be a free, general-purpose, legally unencumbered -- that is, not covered by any patents -- lossless data-compression library for use on virtually any computer hardware and operating system. The zlib data format is itself portable across platforms. Unlike the LZW compression method used in Unix compress(1) and in the GIF image format, the compression method currently used in zlib essentially never expands the data. (LZW ca...

  18. Design Study: ELENA Bending Magnet Prototype

    CERN Document Server

    Schoerling, D

    2013-01-01

    The ELENA bending magnet prototype shall prove that the proposed design meets the requirements set by the ELENA beam dynamics. The following points will be discussed in detail: (i) production process of a magnetic yoke diluted with stainless steel plates, (ii) the stability and repeatability of the field homogeneity of such a yoke over the full working range, (iii) choice of soft magnetic steel, (iv) hysteresis effects, (v) mechanical deformations, (vi) thermal insulation to intercept heat load from baking for activation of NEG coating in the vacuum chamber, (vii) end shim design. In order to verify these points the following measurements will be performed: (i) Hall probe scanning, (ii) integrated field homogeneity measurement (DC), (iii) integrated field homogeneity measurement (AC).

  19. Development of miniature bending fatigue specimens

    International Nuclear Information System (INIS)

    Rao, G.R.; Chin, B.A.; Rowcliffe, A.

    1991-01-01

    Two new miniaturized bending fatigue specimens have been designed and developed to aid in the scoping of materials for fusion first-wall and blanket structural applications. One of these is rectangular in shape with a gauge section 6.35 mm in length, while the other is cut from a 3 mm transmission electron microscopy (TEM) disk and has a gauge length of 1.5 mm. Test rules for unirradiated annealed type 316 stainless steel tested at room temperature, 550deg C and 650deg C are presented. A good correlation between miniature and standard subsize fatigue specimen results was obtained. The miniature specimen results show the same dependence of strain range on cycles to failure as the standard subsize specimens with the miniature-disk specimen results falling below all the other results. The results indicate that these specimens provide reliable data that can be used to scope fatigue properties for fusion applications. (orig.)

  20. Biomechanical comparison of a locking compression plate combined with an intramedullary pin or a polyetheretherketone rod in a cadaveric canine tibia gap model.

    Science.gov (United States)

    Beierer, Lucas H; Glyde, Mark; Day, Robert E; Hosgood, Giselle L

    2014-11-01

    To compare the biomechanical properties of a 10-hole 3.5 mm locking compression plate (LCP) with 2 proximal and 2 distal bicortical locked screws reinforced with either a Steinmann pin of 30-40% the medullary diameter or a poly-ether-ether-ketone (PEEK) rod of ∼75% the medullary diameter in a cadaveric tibia gap model. Ex vivo study. Cadaveric canine tibias (n = 8 pair). Each construct had a 10-hole 3.5 mm LCP with 2 screws per fracture fragment using a comminuted tibia gap model. The Steinmann pin constructs had a 2.4 mm intramedullary pin whereas the PEEK-rod constructs had a 6 mm intramedullary PEEK rod placed. Biomechanical testing included non-destructive bi-planar 4 point bending, torsion testing, and destructive axial compression. Testing produced the responses of failure load (N) in axial compression, stiffness (N/mm or N/°) in axial compression, torsion, lateral-medial, and caudal-cranial 4 point bending. Screw position within the PEEK-rods was determined after explantation. The PEEK-rod constructs were significantly stiffer in axial compression (P bending (P torsional loading (P bending (P = .32). The PEEK-rod constructs failed at a significantly higher load than the Steinmann pin constructs (P bending, axial compression, and torsion when compared with Steinmann pin constructs. © Copyright 2014 by The American College of Veterinary Surgeons.

  1. Load tests with a pipe bend DN 425, applying slowly changing bending loads up to occurrence of leak

    International Nuclear Information System (INIS)

    Uhlmann, D.; Hunger, H.

    1990-01-01

    The experimental program deals with the formation of incipient cracks and subsequent crack growth of axially oriented cracks at a pipe bend with a nominal width of DN 425. The pipe bend consists of the ferritic material 20MnMoNi55. The numerical experiments by means of 3 D-FE analyses concentrate on determining the influence of the asymmetric crack depths at the two bend halves, and of the multiple crack fields, on the effective crack strain. (DG) [de

  2. Strength tests of thin-walled elliptic duralumin cylinders in pure bending and in combined pure bending and torsion

    Science.gov (United States)

    Lundquist, Eugene E; Stowell, Elbridge Z

    1942-01-01

    An analysis is presented of the results of tests made by the Massachusetts Institute of Technology and by the National Advisory Committee for Aeronautics on an investigation of the strength of thin-walled circular and elliptic cylinders in pure bending and in combined torsion and bending. In each of the loading conditions, the bending moments were applied in the plane of the major axis of the ellipse.

  3. On the accuracy of analyses for in-plane bending of smooth pipe bends with end constraints

    International Nuclear Information System (INIS)

    Thomson, G.; Spence, J.

    1985-01-01

    The accuracy of theoretical analyses for in-plane bending of smooth pipebends with end constraints is discussed and investigated with a view to explaining and reducing the differences between the major works. An earlier theory of the authors is improved to give more accurate answers for bends with rigid flanges. Flanged bends are then examined in some detail, quantifying for the first time the important influence of the flange rigidity on the bend flexibility and stresses. A summary of some finite element analyses is presented from which it is clear that further work is desirable. (orig.)

  4. Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals.

    Science.gov (United States)

    Shamid, Shaikh M; Dhakal, Subas; Selinger, Jonathan V

    2013-05-01

    We develop a Landau theory for bend flexoelectricity in liquid crystals of bent-core molecules. In the nematic phase of the model, the bend flexoelectric coefficient increases as we reduce the temperature toward the nematic to polar phase transition. At this critical point, there is a second-order transition from high-temperature uniform nematic phase to low-temperature nonuniform polar phase composed of twist-bend or splay-bend deformations. To test the predictions of Landau theory, we perform Monte Carlo simulations to find the director and polarization configurations as functions of temperature, applied electric field, and interaction parameters.

  5. The effect of cracks on the limit load of pipe bends under in-plane bending

    International Nuclear Information System (INIS)

    Griffiths, J.E.

    1976-06-01

    The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound has been established which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into analysis, and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60%. (author)

  6. The effect of cracks on the limit load of pipe bends under in-plane bending

    International Nuclear Information System (INIS)

    Griffiths, J.E.

    1976-06-01

    The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound is established, which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into the analysis. and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60% (author)

  7. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  8. Effect of Bend Radius on Magnitude and Location of Erosion in S-Bend

    Directory of Open Access Journals (Sweden)

    Quamrul H. Mazumder

    2015-01-01

    Full Text Available Solid particle erosion is a mechanical process that removes material by the impact of solid particles entrained in the flow. Erosion is a leading cause of failure of oil and gas pipelines and fittings in fluid handling industries. Different approaches have been used to control or minimize damage caused by erosion in particulated gas-solid or liquid-solid flows. S-bend geometry is widely used in different fluid handling equipment that may be susceptible to erosion damage. The results of a computational fluid dynamic (CFD simulation of diluted gas-solid and liquid-solid flows in an S-bend are presented in this paper. In addition to particle impact velocity, the bend radius may have significant influence on the magnitude and the location of erosion. CFD analysis was performed at three different air velocities (15.24 m/s–45.72 m/s and three different water velocities (0.1 m/s–10 m/s with entrained solid particles. The particle sizes used in the analysis range between 50 and 300 microns. Maximum erosion was observed in water with 10 m/s, 250-micron particle size, and a ratio of 3.5. The location of maximum erosion was observed in water with 10 m/s, 300-micron particle size, and a ratio of 3.5. Comparison of CFD results with available literature data showed reasonable and good agreement.

  9. 36 CFR 7.41 - Big Bend National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed waters...

  10. Kantorovich-Euler Lagrange-Galerkin's method for bending analysis ...

    African Journals Online (AJOL)

    The Euler-Lagrange differential equation is determined for this functional. The Galerkin method is then used to obtain the unknown function f(x). Bending moment curvature relations are used to find the bending moments and their extreme values. The results obtained agree remarkably well with literature. The effectiveness ...

  11. Turbulence characteristics in sharp open-channel bends

    NARCIS (Netherlands)

    Blanckaert, K.; De Vriend, H.J.

    2005-01-01

    In spite of its importance, little is known about the turbulence characteristics in open-channel bends. This paper reports on an experimental investigation of turbulence in one cross section of an open-channel bend. Typical flow features are a bicellular pattern of cross-stream circulation

  12. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter

    2007-01-01

    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the

  13. Gender differences in variability patterns of forward bending

    DEFF Research Database (Denmark)

    Villumsen, Morten; Madeleine, Pascal; Jørgensen, Marie Birk

    2016-01-01

    The variability pattern is highly relevant in the analysis of occupational physical exposures. It is hypothesized that gender differences exist in the variability pattern of forward bending between work and leisure.......The variability pattern is highly relevant in the analysis of occupational physical exposures. It is hypothesized that gender differences exist in the variability pattern of forward bending between work and leisure....

  14. Pacific plate motion change caused the Hawaiian-Emperor Bend

    NARCIS (Netherlands)

    Torsvik, Trond H.; Doubrovine, Pavel V.; Steinberger, Bernhard; Gaina, Carmen; Spakman, Wim; Domeier, Mathew

    2017-01-01

    A conspicuous 60° bend of the Hawaiian-Emperor Chain in the north-western Pacific Ocean has variously been interpreted as the result of an abrupt Pacific plate motion change in the Eocene (∼47 Ma), a rapid southward drift of the Hawaiian hotspot before the formation of the bend, or a combination of

  15. Deposition of a fine powder in horizontal pipelines and bends

    NARCIS (Netherlands)

    Reuvekamp, RJ; Ray, MB; Hoffmann, AC

    The deposition of a very fine powder in a horizontal, lean-phase pneumatic conveying conduit containing a 90degrees bend has been studied experimentally. The total deposition and the deposition pattern were studied as a function of superficial gas velocity, solids loading and bend geometry: one

  16. Rule bending by morally disengaged detectives : an ethnographic study

    NARCIS (Netherlands)

    Loyens, Kim

    2014-01-01

    Rule bending is a well-known practice in policing worldwide, often linked to 'noble cause corruption'. This ethnographic study shows how police detectives sometimes consider to creatively bend rules when rule abidance would lead to other values being jeopardized. This paper illustrates that the

  17. Disk-bend ductility tests for irradiated materials

    International Nuclear Information System (INIS)

    Klueh, R.L.; Braski, D.N.

    1984-01-01

    We modified the HEDL disk-bend test machine and are using it to qualitatively screen alloys that are susceptible to embrittlement caused by irradiation. Tests designed to understand the disk-bend test in relation to a uniaxial test are discussed. Selected results of tests of neutron-irradiated material are also presented

  18. Effect of Channel Bends on Transverse Mixing | Engmann | Nigerian ...

    African Journals Online (AJOL)

    Velocity and tracer concentration measurements made in a meandering channel are used to discuss the effect of bends on the transverse mixing of a conservative tracer introduced into the flow. It is shown that bend induced spiral motion greatly enhance the mixing potential of meandering channel flows; The magnitude of ...

  19. A rotary ultrasonic motor using bending vibration transducers.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-10-01

    A rotary ultrasonic motor using bending vibration transducers is proposed. In each transducer, two orthogonal bending vibrations are superimposed and an elliptical trajectory is generated at the driving foot. Typical output of the prototype is a no-load speed of 58 rpm and maximum torque of 9·5 Nm under an exciting voltage of 200 V(rms).

  20. Effect of epoxy resin on bending momentum in L type corner joins

    Directory of Open Access Journals (Sweden)

    Mehmet Nuri Yıldırım

    2017-11-01

    Full Text Available In the furniture industry, the joining points of frame and box construction furniture according to the loads to be affected by the use place is important for the security of the user and service life of the furniture element. In this direction, it is aimed to determine the diagonal compression and diagonal tensile moment values of "L" type corner joints of box framed construction furniture prepared from solid wood materials. The Pinus Nigra, Fagus Orientalis L and Populus Nigra were used as solid wood materials. Wood-based biscuit joining elements were used in corner joints of the test construction and epoxy resin was used as glue for materials. The static loads were applied to construction according to ASTM-D1037. The results show that, the highest tensile and compression values were obtained from Fagus Orientalis L and the lowest values were obtained from Populus Nigra specimens. In the statistical study, the difference between the tensile and compressive bending moment values of the biscuit connection element was found to be statistically significant. This study indicates that, it is suggested to use of L type joints prepared from Fagus Orientalis L by using epoxy resin and wood based biscuit joining element in frame constructions.

  1. A measurement method for piezoelectric material properties under longitudinal compressive stress–-a compression test method for thin piezoelectric materials

    International Nuclear Information System (INIS)

    Kang, Lae-Hyong; Lee, Dae-Oen; Han, Jae-Hung

    2011-01-01

    We introduce a new compression test method for piezoelectric materials to investigate changes in piezoelectric properties under the compressive stress condition. Until now, compression tests of piezoelectric materials have been generally conducted using bulky piezoelectric ceramics and pressure block. The conventional method using the pressure block for thin piezoelectric patches, which are used in unimorph or bimorph actuators, is prone to unwanted bending and buckling. In addition, due to the constrained boundaries at both ends, the observed piezoelectric behavior contains boundary effects. In order to avoid these problems, the proposed method employs two guide plates with initial longitudinal tensile stress. By removing the tensile stress after bonding a piezoelectric material between the guide layers, longitudinal compressive stress is induced in the piezoelectric layer. Using the compression test specimens, two important properties, which govern the actuation performance of the piezoelectric material, the piezoelectric strain coefficients and the elastic modulus, are measured to evaluate the effects of applied electric fields and re-poling. The results show that the piezoelectric strain coefficient d 31 increases and the elastic modulus decreases when high voltage is applied to PZT5A, and the compression in the longitudinal direction decreases the piezoelectric strain coefficient d 31 but does not affect the elastic modulus. We also found that the re-poling of the piezoelectric material increases the elastic modulus, but the piezoelectric strain coefficient d 31 is not changed much (slightly increased) by re-poling

  2. A bend thickness sensitivity study of Candu feeder piping

    International Nuclear Information System (INIS)

    Li, M.; Aggarwal, M.L.; Meysner, A.; Micelotta, C.

    2005-01-01

    In CANDU reactors, feeder bends close to the connection at the fuel channel may be subjected to the highest Flow Accelerated Corrosion (FAC) and stresses. Feeder pipe stress analysis is crucial in the life extension of aging CANDU plants. Typical feeder pipes are interconnected by upper link plates and spacers. It is well known that the stresses at the bends are sensitive to the local bend thicknesses. It is also known from the authors' study (Li and et al, 2005) that feeder inter linkage effect is significant and cannot be ignored. The field measurement of feeder bend thickness is difficult and may be subjected to uncertainty in accuracy. Hence, it is desirable to know how the stress on a subject feeder could be affected by the bend thickness variation of the neighboring feeders. This effect cannot be evaluated by the traditional 'single' feeder model approach. In this paper, the 'row' and 'combined' models developed in the previous study (Li and et al, 2005), which include the feeder interactions, are used to investigate the sensitivity of bend thickness. A series of random thickness bounded by maximum and minimum measured values were applied to feeders in the model. The results show that an individual feeder is not sensitive to the bend thickness variation of the remaining feeders in the model, but depends primarily on its own bend thickness. The highest stress at a feeder always occurs when the feeder has the smallest possible bend thickness. A minimum acceptable bend thickness for individual feeders can be computed by an iterative computing process. The dependency of field thickness measurement and the amount of required analysis work can be greatly reduced. (authors)

  3. Study on the residual stress relaxation in girth-welded steel pipes under bending load using diffraction methods

    International Nuclear Information System (INIS)

    Hempel, Nico; Nitschke-Pagel, Thomas; Dilger, Klaus

    2017-01-01

    This research is dedicated to the experimental investigation of the residual stress relaxation in girth-welded pipes due to quasi-static bending loads. Ferritic-pearlitic steel pipes are welded with two passes, resulting in a characteristic residual stress state with high tensile residual stresses at the weld root. Also, four-point bending is applied to generate axial load stress causing changes in the residual stress state. These are determined both on the outer and inner surfaces of the pipes, as well as in the pipe wall, using X-ray and neutron diffraction. Focusing on the effect of tensile load stress, it is revealed that not only the tensile residual stresses are reduced due to exceeding the yield stress, but also the compressive residual stresses for equilibrium reasons. Furthermore, residual stress relaxation occurs both parallel and perpendicular to the applied load stress.

  4. 75 FR 71666 - Bend/Ft. Rock Ranger District; Deschutes National Forest; Deschutes County, OR; West Bend...

    Science.gov (United States)

    2010-11-24

    ...; Deschutes County, OR; West Bend Vegetation Management Project EIS AGENCY: Forest Service, USDA. ACTION... INFORMATION: Background. Forested vegetation within the West Bend project area is outside of the Historic... they have the potential to remove important habitat structure, particularly large trees that are...

  5. Testing framework for compression methods

    OpenAIRE

    Štoček, Ondřej

    2008-01-01

    There are many algorithms for data compression. These compression methods often achieve different compression rate and also use computer resources differently. In practice a combination of compression is usually used instead of standalone compression methods. The software tool can be evolved, where we can easily combine existing compression methods to new one and test it consequently. Main goal of this work is to propound such tool and implement it. Further goal is to implement basic library ...

  6. Experimental analysis of Compressed Earth Block (CEB with banana fibers resisting flexural and compression forces

    Directory of Open Access Journals (Sweden)

    Marwan Mostafa

    2016-12-01

    Full Text Available The development of affordable housing is necessary due to the numerous homeless people living in developing countries; the present work is an attempt to alleviate the housing problem facing populations of these countries. Building with Compressed Earthen Blocks (CEBs is becoming more popular due to their low cost and relative abundance of materials. The proposed innovative Banana-Compressed Earth Block (B-CEB consists of ordinary CEB ingredients plus banana fibers, which will be the focus of this study. Banana fibers are widely available worldwide due to agricultural waste from banana cultivation. Additionally, banana fibers are environmentally friendly and present important attributes, such as low density, light weight, low cost, high tensile strength, as well as being water repellent and fire resistant. This kind of waste has a greater chance of being utilized for different applications in construction and building materials in order to enhance the mechanical properties of the CEBs. Such enhancements will raise the number of storeys of a building that can be built with CEBs. Experimental work studies on the classic CEB with no fibers and B-CEB were performed, including an axial compression test and flexural test (three-point bending test by using testing methods according to American Society for Testing and Materials (ASTM standards (ASTM C-67. Also, in order to obtain the load-deflection curve and bending modulus (E from the flexural test, the Linear Variable Differential Transformer (LVDT sensor was placed under the mid-span of the block for vertical displacement measurements. The results of this study will highlight general trends in the strength properties of different design mixes by adding different lengths of banana fibers in the CEBs. These efforts are necessary to ensure that B-CEB technology becomes a more widely accepted building material that will verify the earth building technology for offering affordable houses.

  7. Bending fluidic actuator for smart structures

    Science.gov (United States)

    Che-Ming Chang, Benjamin; Berring, John; Venkataram, Manu; Menon, Carlo; Parameswaran, M.

    2011-03-01

    This paper presents a novel silicone-based, millimeter-scale, bending fluidic actuator (BFA). Its unique parallel micro-channel design enables, for the first time, operation at low working pressure while at the same time having a very limited thickness expansion during pressurization. It also enables the actuator to have the highest ratios of angular displacement over length and torque over volume among previously proposed BFAs. In this work, this parallel micro-channel design is implemented by embedding the BFA with an innovative single winding conduit, which yields a simple, single-component configuration suitable for low-cost production and reliable performance. The BFA design can be easily scaled down to smaller dimensions and can be adapted to applications in restricted space, particularly minimally invasive surgery. In this work, the actuator is manufactured in TC-silicone through poly(methyl methacrylate) molds obtained by using laser cutting technology. Repeated angular displacement measurements on multiple prototypes having different stiffness are carried out. The experimental results are compared with an analytical model, which accurately predicts the performance of the device.

  8. Effects of tanalith-e impregnation substance on bending strengths and modulus of elasticity in bending of some wood types

    Directory of Open Access Journals (Sweden)

    Hakan Keskin

    2016-04-01

    Full Text Available The aim of this study was to investigate the effects of impregnation with Tanalith-E on the bending strengths and modulus of elasticity in bending of some wood types. The test samples prepared from beech, oak, walnut, poplar, ash and pine wood materials - that are of common use in the forest products industry of TURKEY - according to TS 345, were treated with according to ASTM D 1413-76 substantially. Un-impregnated samples according to impregnated wood materials, the bending strengths in beech to 6.83%, 5.12% in ash, 5.93% in pine, the elasticity module values to 7.15% in oak and ash, at a rate of 6.58% in the higher were found. The highest values of bending strengths and modulus of elasticity in bending were obtained in beech and ash woods impregnated with Tanalith-E, whereas the lowest values were obtained in the poplar wood.

  9. Radio frequency pulse compression

    International Nuclear Information System (INIS)

    Farkas, Z.D.

    1988-12-01

    High gradients require peak powers. One possible way to generate high peak powers is to generate a relatively long pulse at a relatively low power and compress it into a shorter pulse with higher peak power. It is possible to compress before dc to rf conversion as is done for the relativistic klystron or after dc to rf conversion as is done with SLED. In this note only radio frequency pulse compression (RFPC) is considered. Three methods of RFPC will be discussed: SLED, BEC, and REC. 3 refs., 8 figs., 1 tab

  10. Compression Fracture of CFRP Laminates Containing Stress Intensifications.

    Science.gov (United States)

    Leopold, Christian; Schütt, Martin; Liebig, Wilfried V; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl; Fiedler, Bodo

    2017-09-05

    with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers.

  11. Experimental and Simulated Investigations of Thin Polymer Substrates with an Indium Tin Oxide Coating under Fatigue Bending Loadings

    Directory of Open Access Journals (Sweden)

    Jiong-Shiun Hsu

    2016-08-01

    Full Text Available Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO film deposited on a transparently flexible polyethylene terephthalate (PET substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film deposited on PET substrates. The sheet resistance of the ITO film, optical transmittance of the ITO-coated PET substrates, and failure scheme within the ITO film were measured to evaluate the mechanical stability of the concerned thin films. The results indicated that compressive and tensile stresses generated distinct failure schemes within an ITO film and both led to increased sheet resistance and optical transmittance. In addition, tensile stress increased the sheet resistance of an ITO film more easily than compressive stress did. However, the influences of both compressive and tensile stress on increased optical transmittance were demonstrated to be highly similar. Increasing the thickness of a PET substrate resulted in increased sheet resistance and optical transmittance regardless of the presence of compressive or tensile stress. Moreover, J-Integral, a method based on strain energy, was used to estimate the interfacial adhesion strength of the ITO-PET film through the simulation approach enabled by a finite element analysis.

  12. Compressed Video Segmentation

    National Research Council Canada - National Science Library

    Kobla, Vikrant; Doermann, David S; Rosenfeld, Azriel

    1996-01-01

    ... changes in content and camera motion. The analysis is performed in the compressed domain using available macroblock and motion vector information, and if necessary, discrete cosine transform (DCT) information...

  13. Mechanical chest compressions.

    Science.gov (United States)

    Pomeroy, Matthew

    2012-09-13

    The authors of this study state that there is a lack of evidence about the efficiency of mechanical devices in producing chest compressions as an adjunct to resuscitation during cardiorespiratory arrest.

  14. Biaxial compression test technique

    Science.gov (United States)

    Hansard, E. T.

    1975-01-01

    Fixture and technique have been developed for predicting behavior of stiffened skin panels under biaxial compressive loading. Tester can load test panel independently in longitudinal and transverse directions. Data can also be obtained in combined mode.

  15. Muon cooling: longitudinal compression.

    Science.gov (United States)

    Bao, Yu; Antognini, Aldo; Bertl, Wilhelm; Hildebrandt, Malte; Khaw, Kim Siang; Kirch, Klaus; Papa, Angela; Petitjean, Claude; Piegsa, Florian M; Ritt, Stefan; Sedlak, Kamil; Stoykov, Alexey; Taqqu, David

    2014-06-06

    A 10  MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas. Phase space compression occurs on the order of microseconds, compatible with the muon lifetime of 2  μs. This paves the way for the preparation of a high-quality low-energy muon beam, with an increase in phase space density relative to a standard surface muon beam of 10^{7}. The achievable phase space compression by using only the longitudinal stage presented here is of the order of 10^{4}.

  16. Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films

    Science.gov (United States)

    Nguyen, Minh D.; Dekkers, Matthijn; Houwman, Evert; Steenwelle, Ruud; Wan, Xin; Roelofs, Andreas; Schmitz-Kempen, Thorsten; Rijnders, Guus

    2011-12-01

    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vector.

  17. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    programs. Examples of such algorithms are the interior point methods [51, 52], Lasso modification to LARS [106, 171], homotopy methods [99], weighted...component analysis . IEEE Signal Processing Letters, 9(2):40–42, 2002. [171] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. A method for...53 7.3 Analysis of the GAME Algorithm . . . . . . . . . . . . . . . . . . . . 57 III Expander-Based Compressed Sensing 61 8 Efficient Compressed

  18. Blind Compressed Sensing

    OpenAIRE

    Gleichman, Sivan; Eldar, Yonina C.

    2011-01-01

    The fundamental principle underlying compressed sensing is that a signal, which is sparse under some basis representation, can be recovered from a small number of linear measurements. However, prior knowledge of the sparsity basis is essential for the recovery process. This work introduces the concept of blind compressed sensing, which avoids the need to know the sparsity basis in both the sampling and the recovery process. We suggest three possible constraints on the sparsity basis that can ...

  19. Creep relaxation of fuel pin bending and ovalling stresses

    International Nuclear Information System (INIS)

    Chan, D.P.; Jackson, R.J.

    1979-06-01

    Analytical methods for calculating fuel pin cladding bending and ovalling stresses due to pin bundle-duct mechanical interaction taking into account nonlinear creep are presented. Calculated results are in close agreement with finite element results by MARC-CDC program. The methods are used to investigate the effect of creep on the FTR fuel cladding bending and ovalling stresses. It is concluded that the cladding of 316 SS 20% CW and reference design has high creep rates in the FTR core region to keep the bending and ovalling stresses to low levels

  20. Investigation of ion induced bending mechanism for nanostructures

    Science.gov (United States)

    Rajput, Nitul S.; Tong, Zhen; Luo, Xichun

    2015-01-01

    Ion induced bending is a promising controlled technique for manipulating nanoscale structures. However, the underlying mechanism of the process is not well understood. In this letter, we report a detailed study of the bending mechanism of Si nanowires (NWs) under Ga+ irradiation. The microstructural changes in the NW due to ion beam irradiation are studied and molecular dynamics simulations are used to explore the ion-NW interaction processes. The simulation results are compared with the microstructural studies of the NW. The investigations inform a generic understanding of the bending process in crystalline materials, which we suggest to be feasible as a versatile manipulation and integration technique in nanotechnology.

  1. Investigation of air-water flow in a horizontal pipe with 90 degree bends using wire mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, R.C.; Yang, S.K., E-mail: robert.bowden@cnl.ca, E-mail: sun-kyu.yang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Wire mesh sensors were used to investigate the void fraction distribution along a 9 meter long, 50.8 mm diameter, horizontal test section that contained two 90 degree bends. Deionised water and compressed air were used as the working fluids, with the bubbly flow regime achieved at a superficial liquid velocity of 3.5 m/s and superficial gas velocities that varied between 0.1 and 1.2 m/s. The effects of superficial gas velocity and axial location on the void fraction distribution were investigated. Bubble and slug flow patterns were identified using a probability density function analysis based on a Gaussian mixture model. (author)

  2. Bauschinger effect on API 5L B and X56 steel plates under repeating bending load

    Science.gov (United States)

    Chandra, Icho Y.; Korda, Akhmad A.

    2017-01-01

    During steel pipe fabrication, hot rolled coil steel will undergo coiling and uncoiling process, where the steel plate is bent repeatedly. When cyclic loading is imposed on steel, tensile and compressive stress will occur in it resulting in softening caused by Bauschinger effect. This research is focused on Bauschinger effect and cyclic loading during coiling and uncoiling process on API 5L B and API 5L X56 steel. Both types of steel were given repeated bend loading with variation in loading cycle and the curvature radius. The steel's response was then observed by using tensile testing, microhardness testing, and microstructure observation. A decrease in yield strength is observed during lower cycles and on smaller radii. After higher loading cycle, the yield strength of the steel was increased. Microhardness testing also reported similar results on the subsurface part of the steel where loading is at its highest.

  3. Safety assessment of pipes with multiple local wall thinning defects under pressure and bending moment

    International Nuclear Information System (INIS)

    Peng Jian; Zhou Changyu; Xue Jilin; Dai Qiao; He Xiaohua

    2011-01-01

    The safety assessment of pipes with local wall thinning defects is highly important in engineering. Most attention has been paid on the safety assessment of pipe with single local wall thinning defect, while the studies about multiple local wall thinning defects are not nearly enough. However, the interaction of multiple local wall thinning defects in some conditions is great, and may have a great impact on the safety assessment. In the present standard API 579/ASME FFS, the safety assessment of pipes with multiple local wall thinning defects is given, while as well as the influence of load condition, the influences of arrangement and relative depth of defects are ignored, which may influence the safety assessment considerably. In this paper, the influence of the interaction between multiple local wall thinning defects on the remaining strength of pipes at different arrangements and depths of defects under different load conditions (pressure, tension-bending moment and compression-bending moment) are studied. A quantified index is defined to describe the interaction between defects quantitatively. For different arrangements and relative depths of defects, based on a limit value 0.05 of the quantified index of the interaction between defects, a relatively systematic safety assessment of pipes with multiple local wall thinning defects under different load conditions has been proposed.

  4. Four-Point Bending Strength Testing of Pultruded Fiberglass Composite Wind Turbine Blade Sections

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Bourne, B; Hughes, S; Zuteck, M. D. (MDZ Consulting)

    2001-07-10

    The ultimate strength of the PS Enterprises pultruded blade section was experimentally determined under four-point bending at the National Renewable Energy Laboratory. Thirteen 8-foot long full-scale blade segments were individually tested to determine their maximum moment carrying capability. Three airfoil-bending configurations were tested: high- and low-pressure skin buckling, and low pressure skin buckling with foam interior reinforcement. Maximum strain was recorded for each sample on the compressive and tensile surfaces of each test blade. Test data are compared to the results of three analytical buckling prediction methods. Based on deviations from the linear strain versus load curve, data indicate a post-buckling region. High-pressure side buckling occurred sooner than low-pressure side buckling. The buckling analyses were conservative for both configurations, but high-pressure side buckling in particular was substantially under-predicted. Both high- and low-pressure buckling configurations had very similar failure loads. These results suggests that a redundant load path may be providing strength to the section in the post-buckling region, making the onset of panel buckling a poor predictor of ultimate strength for the PS Enterprises pultrusion.

  5. Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program

    Energy Technology Data Exchange (ETDEWEB)

    Womack, R.L.; Addison, J.A.

    1996-12-01

    At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.

  6. Effect of centrifugal transverse wakefield for microbunch in bend

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1999-01-01

    We calculate centrifugal force for a short bunch in vacuum moving in a circular orbit and estimate the emittance growth of the beam in a bend due to this force. copyright 1999 American Institute of Physics

  7. Computational Strategies for the Architectural Design of Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul

    2013-01-01

    Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification...... of their stiffness, it is possible to control and pre-calibrate the bending behaviour of a composite element. This material capacity challenges architecture’s existing methods for design, specification and prediction. In this paper, we demonstrate how architects might connect the designed nature of composites...... with the design of bending-active structures, through computational strategies. We report three built structures that develop architecturally oriented design methods for bending-active systems using composite materials. These projects demonstrate the application and limits of the introduction of advanced...

  8. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    Science.gov (United States)

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics. PMID:28773007

  9. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Jang

    2017-06-01

    Full Text Available This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  10. Computational Strategies for the Architectural Design of Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul

    2013-01-01

    with the design of bending-active structures, through computational strategies. We report three built structures that develop architecturally oriented design methods for bending-active systems using composite materials. These projects demonstrate the application and limits of the introduction of advanced......Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification...... of their stiffness, it is possible to control and pre-calibrate the bending behaviour of a composite element. This material capacity challenges architecture’s existing methods for design, specification and prediction. In this paper, we demonstrate how architects might connect the designed nature of composites...

  11. Chikungunya means 'that which bends up', and describes the ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. CHIK virus was first isolated from patients during an epidemic in Tanzania in 1952-53. Chikungunya means 'that which bends up', and describes the symptoms caused by the severe joint pains.

  12. The relationship between torsional rigidity and bending strength ...

    African Journals Online (AJOL)

    torsional buckling resistance of bending members and when members are subjected to torsional loads. This study was based on a series of laboratory experiments on actual sized timber with the focus and emphasis on mechanical properties and ...

  13. When Blood Cells Bend: Understanding Sickle Cell Disease

    Science.gov (United States)

    ... Subscribe April 2012 Print this issue When Blood Cells Bend Understanding Sickle Cell Disease Send us your ... Diabetes? Sound Health Wise Choices Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...

  14. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  15. Theory of bending waves with applications to disk galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J.W.K.

    1982-01-01

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.

  16. Calibration of combined bending-torsion fatigue reliability data reduction

    Science.gov (United States)

    Kececioglu, D.; Mcconnell, J. B.

    1969-01-01

    The combined bending-torsion fatigue reliability research machines are described. Three such machines are presently in operation. The calibration of these machines is presented in depth. Fatigue data generated with these machines for SAE 4340 steel grooved specimens subjected to reversed bending and steady torque loading are given. The data reduction procedure is presented. Finally, some comments are made about notch sensitivity and stress concentration as applied to combined fatigue.

  17. Compression induced folding of a sheet: An integrable system

    Science.gov (United States)

    Diamant, Haim; Witten, Thomas A.

    2012-02-01

    The apparently intractable shape of a fold in a compressed elastic film lying on a fluid substrate is found to have an exact solution. Such systems buckle at a nonzero wave vector set by the bending stiffness of the film and the weight of the substrate fluid. Our solution describes the entire progression from a weakly displaced sinusoidal buckling to a single large fold that contacts itself. The pressure decrease is exactly quadratic in the lateral displacement. We demonstrate a subtle connection to the sine-Gordon problem, which reveals a new symmetry in the folding phenomenon.

  18. A cylindrical standing wave ultrasonic motor using bending vibration transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2011-07-01

    A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms). Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Channel box compression device

    International Nuclear Information System (INIS)

    Nakamizo, Hiroshi; Tanaka, Yuki.

    1996-01-01

    The device of the present invention reduces the volume of spent fuel channel boxes of power plant facilities to eliminate secondary wastes, suppress generation of radiation sources and improve storage space efficiency. The device has a box-like shape. A support frame is disposed on the lateral side of the box for supporting spent channel boxes. A horizontal transferring unit and a vertical transferring compression unit driven by a driving mechanism are disposed in the support frame. Further, the compression unit may have a rotational compression roller so as to move freely in the transferring unit. In addition, the transferring unit and the driving mechanism may be disposed outside of pool water. With such a constitution, since spent channel boxes are compressed and bent by horizontal movement of the transferring unit and the vertical movement of the compression unit, no cut pieces or cut powders are generated. Further, if the transferring unit and the driving mechanism are disposed outside of the pool water, it is not necessary to make them waterproof, which facilitates the maintenance. (I.S.)

  20. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  1. Celiac artery compression syndrome.

    Science.gov (United States)

    Kokotsakis, J N; Lambidis, C D; Lioulias, A G; Skouteli, E T; Bastounis, E A; Livesay, J J

    2000-04-01

    Celiac artery compression syndrome occurs when the median arcuate ligament of the diaphragm causes extrinsic compression of the celiac trunk. We report a case of a 65-year-old woman who presented with a three-month history of postprandial abdominal pain, nausea and some emesis, without weight loss. There was a bruit in the upper mid-epigastrium and the lateral aortic arteriography revealed a significant stenosis of the celiac artery. At operation, the celiac axis was found to be severely compressed anteriorly by fibers forming the inferior margin of the arcuate ligament of the diaphragm. The ligament was cut and a vein by-pass from the supraceliac aorta to the distal celiac artery was performed. The patient remains well and free of symptoms two and a half years since operation.In this report we discuss the indications and the therapeutic options of this syndrome as well as a review of the literature is being given.

  2. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  3. Nonlinear Curvature Expressions for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of Twisted Rotor Blades

    Science.gov (United States)

    Kvaternik, R. G.; Kaza, K. R. V.

    1976-01-01

    The nonlinear curvature expressions for a twisted rotor blade or a beam undergoing transverse bending in two planes, torsion, and extension were developed. The curvature expressions were obtained using simple geometric considerations. The expressions were first developed in a general manner using the geometrical nonlinear theory of elasticity. These general nonlinear expressions were then systematically reduced to four levels of approximation by imposing various simplifying assumptions, and in each of these levels the second degree nonlinear expressions were given. The assumptions were carefully stated and their implications with respect to the nonlinear theory of elasticity as applied to beams were pointed out. The transformation matrices between the deformed and undeformed blade-fixed coordinates, which were needed in the development of the curvature expressions, were also given for three of the levels of approximation. The present curvature expressions and transformation matrices were compared with corresponding expressions existing in the literature.

  4. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.

    Science.gov (United States)

    Gosnell, W Casey; Butcher, Michael T; Maie, Takashi; Blob, Richard W

    2011-10-15

    Studies of limb bone loading in terrestrial mammals have typically found anteroposterior bending to be the primary loading regime, with torsion contributing minimally. However, previous studies have focused on large, cursorial eutherian species in which the limbs are held essentially upright. Recent in vivo strain data from the Virginia opossum (Didelphis virginiana), a marsupial that uses a crouched rather than an upright limb posture, have indicated that its femur experiences appreciable torsion during locomotion as well as strong mediolateral bending. The elevated femoral torsion and strong mediolateral bending observed in D. virginiana might result from external forces such as a medial inclination of the ground reaction force (GRF), internal forces deriving from a crouched limb posture, or a combination of these factors. To evaluate the mechanism underlying the loading regime of opossum femora, we filmed D. virginiana running over a force platform, allowing us to measure the magnitude of the GRF and its three-dimensional orientation relative to the limb, facilitating estimates of limb bone stresses. This three-dimensional analysis also allows evaluations of muscular forces, particularly those of hip adductor muscles, in the appropriate anatomical plane to a greater degree than previous two-dimensional analyses. At peak GRF and stress magnitudes, the GRF is oriented nearly vertically, inducing a strong abductor moment at the hip that is countered by adductor muscles on the medial aspect of the femur that place this surface in compression and induce mediolateral bending, corroborating and explaining loading patterns that were identified in strain analyses. The crouched orientation of the femur during stance in opossums also contributes to levels of femoral torsion as high as those seen in many reptilian taxa. Femoral safety factors were as high as those of non-avian reptiles and greater than those of upright, cursorial mammals, primarily because the load

  5. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  6. Image data compression investigation

    Science.gov (United States)

    Myrie, Carlos

    1989-01-01

    NASA continuous communications systems growth has increased the demand for image transmission and storage. Research and analysis was conducted on various lossy and lossless advanced data compression techniques or approaches used to improve the efficiency of transmission and storage of high volume stellite image data such as pulse code modulation (PCM), differential PCM (DPCM), transform coding, hybrid coding, interframe coding, and adaptive technique. In this presentation, the fundamentals of image data compression utilizing two techniques which are pulse code modulation (PCM) and differential PCM (DPCM) are presented along with an application utilizing these two coding techniques.

  7. A New Static and Fatigue Compression Test Method for Composites

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Goutianos, Stergios; Løgstrup Andersen, Tom

    2011-01-01

    A new test method to determine the compressive properties of composite materials under both static and fatigue loading was developed. The novel fixture is based on the concept of transmitting the load by a fixed ratio of end-to-shear loading. The end-to-shear load ratio is kept fixed during...... the test through a mechanical mechanism, which automatically maintains the gripping pressure. The combined loading method has proven very efficient in static loading and is used in the new fixture which is specially designed for fatigue testing. Optimum gripping (shear loading) and alignment of the test...... coupon are achieved throughout the fatigue life. The fatigue strength obtained is more reliable because bending of the specimen due to poor gripping and alignment is minimised. The application of the new fixture to static and fatigue compression is demonstrated by using unidirectional carbon...

  8. Applications of the IITRI compression test fixture at elevated temperature

    Science.gov (United States)

    Camarda, C. J.

    1979-01-01

    The purpose of the present paper is to describe an application of the IITRI compression test fixture at elevated temperature (589K) was described as well as the present compressive moduli and ultimate strains of HTS/PMR-15 graphite/polyimide material. Considerable care was taken in specimen fabrication to minimize back-to-back strain variations due to specimen bending. The effects of specimen width and temperature were studied for various laminate orientations. The IITRI specimen was analyzed using three dimensional finite elements to determine the magnitude and location of stress concentrations to assess their potential effects on measured moduli and ultimate strains. Stress concentrations are of concern since end constraints, free-edge effects, and thermal effects add to the three dimensional nature of stresses in a specimen.

  9. Mechanical properties of tannin-based rigid foams undergoing compression

    Energy Technology Data Exchange (ETDEWEB)

    Celzard, A., E-mail: Alain.Celzard@enstib.uhp-nancy.fr [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Zhao, W. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, A. [ENSTIB-LERMAB, Nancy-University, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Fierro, V. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France)

    2010-06-25

    The mechanical properties of a new class of extremely lightweight tannin-based materials, namely organic foams and their carbonaceous counterparts are detailed. Scaling laws are shown to describe correctly the observed behaviour. Information about the mechanical characteristics of the elementary forces acting within these solids is derived. It is suggested that organic materials present a rather bending-dominated behaviour and are partly plastic. On the contrary, carbon foams obtained by pyrolysis of the former present a fracture-dominated behaviour and are purely brittle. These conclusions are supported by the differences in the exponent describing the change of Young's modulus as a function of relative density, while that describing compressive strength is unchanged. Features of the densification strain also support such conclusions. Carbon foams of very low density may absorb high energy when compressed, making them valuable materials for crash protection.

  10. Experimental Analysis of Repaired Masonry Elements with Flax-FRCM and PBO-FRCM Composites Subjected to Axial Bending Loads

    Directory of Open Access Journals (Sweden)

    Oscar A. Cevallos

    2015-11-01

    Full Text Available In the construction industry, the use of natural fabrics as a reinforcement for cement-based composites has shown great potential. The use of these sustainable composites to provide strengthening or repair old masonry structures that exhibit structural problems mainly due to a poor tensile strength of the mortar/brick joints is revealed to be a promising area of research. One of the most significant load conditions affecting the mechanical response of masonry structures occurs when axial bending loads are applied on the resistant cross-section. In this study, three different types of masonry elements were built using clay bricks and a lime-based mortar. After 28 days, the samples were subjected to concentric and eccentric compressive loads. In order to produce significant bending effects, the compressive loads were applied with large eccentricity, and a sudden failure characterized the behavior of the unreinforced masonry (URM elements. The tested masonry specimens were repaired using fabric-reinforced cementitious matrix (FRCM composites produced using bi-directional flax and polyparaphenylene benzobisoxazole (PBO fabrics. The mechanical behavior of the URM and repaired samples was compared in terms of load-displacement and moment-curvature responses. Furthermore, the results achieved using flax-FRCM composites were compared with those of using PBO-FRCM composites.

  11. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  12. Compressive CFAR Radar Processing

    NARCIS (Netherlands)

    Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate

  13. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate

  14. Gas compression infrared generator

    International Nuclear Information System (INIS)

    Hug, W.F.

    1980-01-01

    A molecular gas is compressed in a quasi-adiabatic manner to produce pulsed radiation during each compressor cycle when the pressure and temperature are sufficiently high, and part of the energy is recovered during the expansion phase, as defined in U.S. Pat. No. 3,751,666; characterized by use of a cylinder with a reciprocating piston as a compressor

  15. Multiple snapshot compressive beamforming

    DEFF Research Database (Denmark)

    Gerstoft, Peter; Xenaki, Angeliki; Mecklenbrauker, Christoph F.

    2015-01-01

    For sound fields observed on an array, compressive sensing (CS) reconstructs the multiple source signals at unknown directions-of-arrival (DOAs) using a sparsity constraint. The DOA estimation is posed as an underdetermined problem expressing the field at each sensor as a phase-lagged superposition...

  16. Compression of Infrared images

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren

    2017-01-01

    This paper investigates the compression of infrared images with three codecs: JPEG2000, JPEG-XT and HEVC. Results are evaluated in terms of SNR, Mean Relative Squared Error (MRSE) and the HDR-VDP2 quality metric. JPEG2000 and HEVC perform fairy similar and better than JPEG-XT. JPEG2000 performs...

  17. Nonlinear Frequency Compression

    Science.gov (United States)

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-01-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  18. Ultrahigh Pressure Dynamic Compression

    Science.gov (United States)

    Duffy, T. S.

    2017-12-01

    Laser-based dynamic compression provides a new opportunity to study the lattice structure and other properties of geological materials to ultrahigh pressure conditions ranging from 100 - 1000 GPa (1 TPa) and beyond. Such studies have fundamental applications to understanding the Earth's core as well as the interior structure of super-Earths and giant planets. This talk will review recent dynamic compression experiments using high-powered lasers on materials including Fe-Si, MgO, and SiC. Experiments were conducted at the Omega laser (University of Rochester) and the Linac Coherent Light Source (LCLS, Stanford). At Omega, laser drives as large as 2 kJ are applied over 10 ns to samples that are 50 microns thick. At peak compression, the sample is probed with quasi-monochromatic X-rays from a laser-plasma source and diffraction is recorded on image plates. At LCLS, shock waves are driven into the sample using a 40-J laser with a 10-ns pulse. The sample is probed with X-rays form the LCLS free electron laser providing 1012 photons in a monochromatic pulse near 10 keV energy. Diffraction is recorded using pixel array detectors. By varying the delay between the laser and the x-ray beam, the sample can be probed at various times relative to the shock wave transiting the sample. By controlling the shape and duration of the incident laser pulse, either shock or ramp (shockless) loading can be produced. Ramp compression produces less heating than shock compression, allowing samples to be probed to ultrahigh pressures without melting. Results for iron alloys, oxides, and carbides provide new constraints on equations of state and phase transitions that are relevant to the interior structure of large, extrasolar terrestrial-type planets.

  19. Impact of Road Bends on Traffic Flow in a Single-Lane Traffic System

    Directory of Open Access Journals (Sweden)

    Zeng Junwei

    2014-01-01

    Full Text Available Taking the characteristics of road bends as a research object, this work proposes the cellular model (CA with road bends based on the NaSch model, with which the traffic flow is examined under different conditions, such as bend radius, bend arc length, and road friction coefficiency. The simulation results show that, with the increase of the bend radius, the peak flow will be continuously increased, and the fundamental diagram will become more similar to that of the classic NaSch model; the smaller the bend radius is, the easier it is for the occurrence of blockage; for different bend lengths, all the corresponding traffic flows show that the phenomenon of go-and-stop and the bends exert slight inhibitory effect on traffic flow; under the same bend radius, the inhibition effect of the bends on the traffic flow will be weakened with the increase of the friction coefficiency.

  20. Experiment research on ratcheting of pressurized pipe subjected reversed bending

    International Nuclear Information System (INIS)

    Gao Bingjun; Chen Xu; Chen Gang

    2005-01-01

    With a quasi-three point bending apparatus, ratcheting and ratcheting boundary were studied experimentally for pressurized low carbon 20 steel pipes under reversed bending on servo- electro-hydraulic axial-pressure testing system. It is found that ratcheting initiates firstly in hoop direction and that in axial direction follows with the increase of loading but less in magnitude. The circular cross section turns into ellipse as the ratcheting strain accumulates. Ratcheting strain rate grows with the increase of reversed bending load or internal pressure for both different specimen with different loading and same specimen with multi-step loading. In multi-step loading, ratcheting rate suffers from the ratcheting history, especially for that with ratcheting history at higher level loading. As different positions of the specimen endure different bending moment by the quasi-three point bending apparatus, ratcheting boundary is readily determined experimentally. By comparison with that determined by ASME, RCC-MR, it is shown both code are conservative. (authors)

  1. Investigation of span-chordwise bending anisotropy of honeybee forewings

    Directory of Open Access Journals (Sweden)

    JianGuo Ning

    2017-05-01

    Full Text Available In this study, the spanwise and chordwise bending stiffness EI of honeybee forewings were measured by a cantilevered bending test. The test results indicate that the spanwise EI of the forewing is two orders of magnitude larger than the chordwise EI. Three structural aspects result in this span-chordwise bending anisotropy: the distribution of resilin patches, the corrugation along the span and the leading edge vein of the venation. It was found that flexion lines formed by resilin patches revealed through fluorescence microscopy promoted the chordwise bending of the forewing during flapping flight. Furthermore, the corrugation of the wing and leading edge veins of the venation, revealed by micro-computed tomography, determines the relatively greater spanwise EI of the forewing. The span-chordwise anisotropy exerts positive structural and aerodynamic influences on the wing. In summary, this study potentially assists researchers in understanding the bending characteristics of insect wings and might be an important reference for the design and manufacture of bio-inspired wings for flapping micro aerial vehicles.

  2. Experimental Evaluation of Lightweight AAC Masonry Wall Prisms with Ferrocement Layers in Compression and Flexure

    KAUST Repository

    Abdel Mooty, Mohamed

    2012-05-01

    An experimental program is designed to evaluate the performance of lightweight autoclaved aerated concrete masonry wall strengthened using ferrocement layers, in a sandwich structure, under in-plane compression and out-of-plane bending. The 25 mm thick ferrocement mortar is reinforced with steel welded wire mesh of 1 mm diameters at 15 mm spacing. Different types of shear connectors are used to evaluate their effect on failure loads. The effect of different design parameters on the wall strength are considered including wall thickness, mortar strength, and type and distribution of shear connectors. A total of 20 prisms are tested in compression and 5 prisms are tested under bending. The proposed ferrocement strengthening technique is easy to apply on existing wall system and results in significant strength and stiffness enhancement of the tested wall specimens. © (2012) Trans Tech Publications.

  3. A SENSOR AND A METHOD FOR DETERMINING THE DIRECTION AND THE AMPLITUDE OF A BEND

    DEFF Research Database (Denmark)

    2000-01-01

    The present invention relates to an optical based bending sensor. In particular, the present invention relates to a fibre-based bending sensor for the determination of the direction and the amplitude of a bend. The present invention further relates to fibre-based bending sensors using long...... and the cladding modes. Thereby a relative splitting of transmission peaks in the spectrum of the LPG is induced, which is used to determine the bending amplitude and direction....

  4. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    Science.gov (United States)

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Finite Element Analysis on Spread for In-plane Roll-bending Process

    Science.gov (United States)

    Li, Z. J.; Yang, H.

    2010-06-01

    The in-plane roll-bending process is a special wedge rolling with a configuration of two conical rolls which can form strips into open ring products. The spread of a ring is usually not considered in previous radius predicting models by Yang et al. [1] and Xian et al. [5]. However, the spread increases to 10% for a ring with average reduction of 56%, and there is a discrepancy between the predicted radius and the experiment. Spread analysis/calculation has become an urgent problem in radius prediction and precision control of unequal deformation in this process. A finite element (FE) model considering spread effect is established and evaluated by experiments. A comparison between the predicted results with/without considering spread by FE analysis and experiments is carried out. The result shows that the predicted results considering spread are much closer to the experiments than those without considering spread effect. Based on the FE simulation, the spread characteristics of the ring with two types of cross section (including partly and entirely compressed cross section) are investigated. It is found that, there exist three spread regions, including outer positive region, middle negative region and inner positive region for the partly compressed ring; and there are outer positive region and inner negative region for the entirely compressed ring. The spread mostly happens at the outer positive region for both types of ring. The effects of process parameters, such as wedge angle, bite location, friction coefficient and rotational speed of roll, on spread for three aluminum alloys, 3A21O, 5A02O and 2A12T4, are investigated. The results indicate that the spread decreases with an increase in wedge angle, whereas increases with the growth of bite location; the spread remains stable with increasing friction coefficient and fluctuates within 3%-8% with a rise in rotational speed of roll. The spread of the partly compressed ring is less than 6%; large spread (larger than

  6. Biomechanics of lumbosacral spinal fusion in combined compression-torsion loads.

    Science.gov (United States)

    Yang, S W; Langrana, N A; Lee, C K

    1986-11-01

    The current study investigates the stabilizing effects of three different types of spinal fusion to the juxta-free motion segments and to the fused segment of the lumbosacral spine under combined compression-torsion loads. Sixteen fresh human cadaver lumbosacral spines were tested under a simulated physiologic loading condition. The relative movements of the motion segments, as well as the angular rotations and the center of rotation were then computed and analyzed. The average torsional stiffness of the unfused three-motion segment was found to be 2.35 nm/degree. After fusion, the torsional stiffness did not increase significantly. Under the compression-torsional load, the anterior and bilateral-lateral fusions provided adequate stabilizing effect on the fused segment. The posterior fusion provided the least amount of stabilizing effect. These findings are similar to the results of the compression-bending experiment. Whereas the compression-bending loads produced significantly increased stress at the juxta-free segments, the compression-torsional loads did not produce any significant amount of increase in torsional stress at the juxta-free segments.

  7. Effect of bend separation distance on the mass transfer in back-to-back pipe bends arranged in a 180° configuration

    Science.gov (United States)

    Chen, X.; Le, T.; Ewing, D.; Ching, C. Y.

    2016-12-01

    The mass transfer to turbulent flow through back-to-back pipe bends arranged in a 180° configuration with different lengths of pipe between the bends was measured using a dissolving gypsum test section in water. The measurements were performed for bends with a radius of curvature of 1.5 times the pipe diameter ( D) at a Reynolds numbers of 70,000 and Schmidt number of 1280. The maximum mass transfer in the bends decreased from approximately 1.8 times the mass transfer in the upstream pipe when there was no separation distance between the bends to 1.7 times when there was a 1 D or 5 D length of pipe between the bends. The location of the maximum mass transfer was on the inner sidewall downstream of the second bend when there was no separation distance between the bends. This location changed to the inner wall at the beginning of the second bend when there was a 1 D long pipe between the bends, and to the inner sidewall at the end of the first bend when there was a 5 D long pipe between the bends.

  8. Evaluation of River Bend Station Unit 1 Technical Specifications

    International Nuclear Information System (INIS)

    Baxter, D.E.; Bruske, S.J.

    1985-08-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the River Bend Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the requirements of the Final Safety Analysis Report (FSAR) as amended, and the requirements of the Safety Evaluation Report (SER) as supplemented. A comparative audit of the FSAR as amended, and the SER as supplemented was performed with the River Bend T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The River Bend Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR and SER

  9. Platonic scattering cancellation for bending waves in a thin plate

    KAUST Repository

    Farhat, Mohamed

    2014-04-10

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  10. Differential quadrature method of nonlinear bending of functionally graded beam

    Science.gov (United States)

    Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

    2018-02-01

    Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

  11. Real-time resilient focusing through a bending multimode fiber.

    Science.gov (United States)

    Caravaca-Aguirre, Antonio M; Niv, Eyal; Conkey, Donald B; Piestun, Rafael

    2013-05-20

    Multimode optical fibers are attractive for biomedical and sensing applications because they possess a small cross section and can bend over small radii of curvature. However, mode phase-velocity dispersion and random mode coupling change with bending, temperature, and other perturbations, producing scrambling interference among propagating modes; hence preventing its use for focusing or imaging. To tackle this problem we introduce a system capable of re-focusing light through a multimode fiber in 37ms, one order of magnitude faster than demonstrated in previous reports. As a result, the focus spot can be maintained during significant bending of the fiber, opening numerous opportunities for endoscopic imaging and energy delivery applications. We measure the transmission matrix of the fiber by projecting binary-amplitude computer generated holograms using a digital micro-mirror device controlled by a field programmable gate array. The system shows two orders of magnitude enhancements of the focus spot relative to the background.

  12. System effects influencing the bending strength of timber beams

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Källsner, B.

    1998-01-01

    measurements of the strengths of a large number of shorttest pieces cut from the beams such that judgementally each test piece contains only a single defect cluster. The testpiece is spliced to stronger wood beam shafts in both ends. Due to the occurrence of a substantial number of splicefailures in the total...... test series of 197 tests a special maximum likelihood estimation procedure is applied to estimate theparameters. Assuming that the estimated parameters are applicable in the series system model for the full uncutbeams a theoretical bending strength distribution function is obtained in dependence......A stochastic model of hierarchical series system type for the bending strength of spruce beams isdefined from the anticipation that the bending failure takes place at a cross-section with a defect cluster formed by knots or grain irregularities. The parameters of the model are estimated from...

  13. Springback law study and application in incremental bending process

    Science.gov (United States)

    Zhang, Feifei; He, Kai; Dang, Xiaobing; Du, Ruxu

    2018-02-01

    One incremental bending process has been proposed for manufacturing the complex and thick ship-hull plates. The accuracy and efficiency for this novel process is mainly dependent on the loading path and thus the unavoidable springback behavior should be considered in the loading path determination. In this paper, firstly, the numerical simulation method is verified by the corresponding experiment, and then the springback law during the incremental bending process is investigated based on numerical simulation, and later the loading path based on the springback law and the minimum energy method is achieved for specific machining shape. Comparison between the designed curve based on springback law and the new simulation results verifies that the springback law obtained by numerical simulation is believable, so this study provides a new perspective for the further research on incremental bending process.

  14. Yield stress determination from miniaturized disk bend test data

    International Nuclear Information System (INIS)

    Sohn, D.S.; Kohse, G.; Harling, O.K.

    1985-04-01

    Methodology for testing 3.0 mm diameter by 0.25 mm thick disks by bending in a punch and die has been described previously. This paper describes the analysis of load/deflection data from such miniaturized disk bend tests (MDBT) using a finite element simulation. Good simulation has been achieved up to a point just beyond the predominantly elastic response, linear initial region. The load at which deviation from linearity begins has been found to correlate with yield stress, and yield stress has been successfully extracted from disk bend tests of a number of known materials. Although finite element codes capable of dealing with large strains and large rotations have been used, simulation of the entire load/deflection curve up to fracture of the specimen has not yet been achieved

  15. Experimentation and numerical modeling of forging induced bending (FIB) process

    Science.gov (United States)

    Naseem, S.; van den Boogaard, A. H.

    2016-10-01

    Accurate prediction of the final shape using numerical modeling has been a top priority in the field of sheet and bulk forming. Better shape prediction is the result of a better estimation of the physical stress and strain state. For experimental and numerical investigations of such estimations, simple benchmark processes are used. In this paper a benchmark process involving forging (flattening) of sheet metal between punch and die with negative clearance is proposed. The introduced material flow results in bending. Easy measurability of the angle of this bend makes this process suitable for validation purpose. Physical experiments are performed to characterize this bending angle due to flattening. Furthermore a numerical model is developed to capture this phenomenon. The main focus of this paper is the validation of the numerical model in terms of accurate prediction of the physical results.

  16. Finite element analysis of bending performance on polyurethane composite panel

    Science.gov (United States)

    Jia, Minli; Li, Hongqiao; Wang, Xiaoming

    2017-09-01

    The finite element analysis model of polyurethane composite panel (simply named PCP) is established by using ABAQUS software. In view of the PCPs made of different thickness of surface board, their bending performance is carried out on finite element analysis, and the load-deflection curves which come from it are compared with the experimental results. The results show that the values between finite element analysis and experiment agree well with each other. It can be deduced that the established finite element model is fit to simulate the bending test of PCPs. The simulation not only has certain reference significance to the optimal design for the bending performance of PCPs, but also to the choice of PCPs in the practical project.

  17. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  18. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  19. Influence of bending test configuration on cracking behavior of FRC

    DEFF Research Database (Denmark)

    Finazzi, Silvia; Paegle, Ieva; Fischer, Gregor

    2014-01-01

    This paper describes an investigation of the influence of the testing configuration for Fiber Reinforced Concrete in bending and aims at evaluating the influence of the test configuration details on the characterization of the material. Two different types of FRC, Steel Fiber Reinforced Concrete...... (SFRC) and Engineered Cementitious Composites (ECC), were tested and are described in this study. The materials were chosen so that one of them would be strain hardening (ECC) and the other tension softening (SFRC). Notched and un-notched three- and four-point bending tests were carried out to determine...

  20. Origin of bending in uncoated microcantilever - Surface topography?

    International Nuclear Information System (INIS)

    Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S.; Jayapandian, J.; Tyagi, A. K.; Sundar, C. S.

    2014-01-01

    We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography

  1. Test Equal Bending by Gravity for Space and Time

    Science.gov (United States)

    Sweetser, Douglas

    2009-05-01

    For the simplest problem of gravity - a static, non-rotating, spherically symmetric source - the solution for spacetime bending around the Sun should be evenly split between time and space. That is true to first order in M/R, and confirmed by experiment. At second order, general relativity predicts different amounts of contribution from time and space without a physical justification. I show an exponential metric is consistent with light bending to first order, measurably different at second order. All terms to all orders show equal contributions from space and time. Beautiful minimalism is Nature's way.

  2. Flagella bending affects macroscopic properties of bacterial suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Potomkin, M.; Tournus, M.; Berlyand, L. V.; Aranson, I. S.

    2017-05-01

    To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions of bacteria with shear flow and walls or obstacles.

  3. Elastostatic bending of a bimaterial plate with a circular interface

    Science.gov (United States)

    Ogbonna, Nkem

    2015-08-01

    The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.

  4. Bending Mechanical Behavior of Polyester Matrix Reinforced with Fique Fiber

    Science.gov (United States)

    Altoé, Giulio Rodrigues; Netto, Pedro Amoy; Barcelos, Mariana; Gomes, André; Margem, Frederico Muylaert; Monteiro, Sergio Neves

    Environmentally correct composites, made from natural fibers, are among the most investigated and applied today. In this paper, we investigate the mechanical behavior of polyester matrix composites reinforced with continuous fique fibers, through bending tensile tests. Specimens containing 0, 10, 20 and 30% in volume of fique fiber were aligned along the entire length of a mold to create plates of these composites, those plates were cut following the ASTM standard to obtained bending tests specimens. The test was conducted in a Instron Machine and the fractured specimens were analyzed by SEM, the results showed the increase in the materials tensile properties with the increase of fiber amount.

  5. Fingerprints in compressed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge

    2017-01-01

    In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S......[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(log⁡N) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(log⁡log⁡N) query time...

  6. Compressive CFAR Radar Processing

    OpenAIRE

    Anitori, Laura; Baraniuk, Richard; Maleki, Arian; Otten, Matern; van Rossum, Wim

    2013-01-01

    In this paper we investigate the performance of a combined Compressive Sensing (CS) Constant False Alarm Rate (CFAR) radar processor under different interference scenarios using both the Cell Averaging (CA) and Order Statistic (OS) CFAR detectors. Using the properties of the Complex Approximate Message Passing (CAMP) algorithm, we demonstrate that the behavior of the CFAR processor is independent of the combination with the non-linear recovery and therefore its performance can be predicted us...

  7. Recursive Compressed Sensing

    OpenAIRE

    Freris, Nikolaos M.; Öçal, Orhan; Vetterli, Martin

    2013-01-01

    We introduce a recursive algorithm for performing compressed sensing on streaming data. The approach consists of a) recursive encoding, where we sample the input stream via overlapping windowing and make use of the previous measurement in obtaining the next one, and b) recursive decoding, where the signal estimate from the previous window is utilized in order to achieve faster convergence in an iterative optimization scheme applied to decode the new one. To remove estimation bias, a two-step ...

  8. Universal Compressed Sensing

    OpenAIRE

    Jalali, Shirin; Poor, H. Vincent

    2014-01-01

    In this paper, the problem of developing universal algorithms for compressed sensing of stochastic processes is studied. First, R\\'enyi's notion of information dimension (ID) is generalized to analog stationary processes. This provides a measure of complexity for such processes and is connected to the number of measurements required for their accurate recovery. Then a minimum entropy pursuit (MEP) optimization approach is proposed, and it is proven that it can reliably recover any stationary ...

  9. Kalman Filtered Compressed Sensing

    OpenAIRE

    Vaswani, Namrata

    2008-01-01

    We consider the problem of reconstructing time sequences of spatially sparse signals (with unknown and time-varying sparsity patterns) from a limited number of linear "incoherent" measurements, in real-time. The signals are sparse in some transform domain referred to as the sparsity basis. For a single spatial signal, the solution is provided by Compressed Sensing (CS). The question that we address is, for a sequence of sparse signals, can we do better than CS, if (a) the sparsity pattern of ...

  10. In situ electron backscatter diffraction (EBSD) during the compression of micropillars

    International Nuclear Information System (INIS)

    Niederberger, C.; Mook, W.M.; Maeder, X.; Michler, J.

    2010-01-01

    For the first time, in situ electron backscatter diffraction (EBSD) measurements during compression experiments by a modified nanoindenter on micron-sized single crystal pillars are demonstrated here. The experimental setup and the requirements concerning the compression sample are described in detail. EBSD mappings have been acquired before loading, under load and after unloading for consecutive compression cycles on a focused ion beam (FIB) milled GaAs micropillar. In situ EBSD allows for the determination of crystallographic orientation with sub-100 nm spatial resolution. Thereby, it provides highly localized information pertaining to the deformation phenomena such as elastic bending of the micropillar or the formation of deformation twins and plastic orientation gradients due to geometrically necessary dislocations. The most striking features revealed by in situ EBSD are the non-negligible amount of reversible (elastic) bending of the micropillar and the fact that deformation twinning and dislocation glide initiate where the bending is strongest. Due to this high spatial and orientation resolution, in situ EBSD measurements during micromechanical testing are demonstrated to be a promising technique for the investigation of deformation phenomena at the nano- to micro-scale.

  11. Scale adaptive compressive tracking.

    Science.gov (United States)

    Zhao, Pengpeng; Cui, Shaohui; Gao, Min; Fang, Dan

    2016-01-01

    Recently, the compressive tracking (CT) method (Zhang et al. in Proceedings of European conference on computer vision, pp 864-877, 2012) has attracted much attention due to its high efficiency, but it cannot well deal with the scale changing objects due to its constant tracking box. To address this issue, in this paper we propose a scale adaptive CT approach, which adaptively adjusts the scale of tracking box with the size variation of the objects. Our method significantly improves CT in three aspects: Firstly, the scale of tracking box is adaptively adjusted according to the size of the objects. Secondly, in the CT method, all the compressive features are supposed independent and equal contribution to the classifier. Actually, different compressive features have different confidence coefficients. In our proposed method, the confidence coefficients of features are computed and used to achieve different contribution to the classifier. Finally, in the CT method, the learning parameter λ is constant, which will result in large tracking drift on the occasion of object occlusion or large scale appearance variation. In our proposed method, a variable learning parameter λ is adopted, which can be adjusted according to the object appearance variation rate. Extensive experiments on the CVPR2013 tracking benchmark demonstrate the superior performance of the proposed method compared to state-of-the-art tracking algorithms.

  12. Compressed sensing electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Leary, Rowan, E-mail: rkl26@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Saghi, Zineb; Midgley, Paul A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Holland, Daniel J. [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom)

    2013-08-15

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform.

  13. Impedance-matching acoustic bend composed of perforated plates and side pipes

    Science.gov (United States)

    Yang, Yuzhen; Jia, Han; Lu, Wenjia; Sun, Zhaoyong; Yang, Jun

    2017-08-01

    In this article, we propose a design for an impedance-matching acoustic bend. The bending structure is composed of sub-wavelength unit cells containing perforated plates and side pipes that allow the mass density and the bulk modulus of each unit cell to be tuned simultaneously. The refractive index and the impedance of the acoustic bend can therefore be modulated simultaneously to guarantee both the bending effect and high acoustic transmission. The results of simulation of the sound pressure field distribution show that the bending effect of the proposed impedance-matching acoustic bend is very good. Transmission spectra are calculated for both the impedance-matching acoustic bend and an acoustic bend composed of the perforated plates alone for comparison. The results indicate that the impedance-matching acoustic bend successfully improves the impedance ratio while also obviously increasing the transmission.

  14. Secondary flow in sharp open-channel bends

    NARCIS (Netherlands)

    Blanckaert, K.; De Vriend, H.J.

    2004-01-01

    Secondary currents are a characteristic feature of flow in open-channel bends. Besides the classical helical motion (centre-region cell), a weaker and smaller counter-rotating circulation cell (outer-bank cell) is often observed near the outer bank, which is believed to play an important role in

  15. Bending It Like Beckham: How to Visually Fool the Goalkeeper

    NARCIS (Netherlands)

    Dessing, J.C.; Craig, C.M.

    2010-01-01

    Background: As bending free-kicks becomes the norm in modern day soccer, implications for goalkeepers have largely been ignored. Although it has been reported that poor sensitivity to visual acceleration makes it harder for expert goalkeepers to perceptually judge where the curved free-kicks will

  16. A Second Look at Brian Simon's "Bending the Rules"

    Science.gov (United States)

    Cox, Sue

    2016-01-01

    In this article the author revisits an important book: Brian Simon's "Bending the Rules: the Baker reform of education." Written by a key figure in the history of the journal FORUM as well as in the history of education, Simon's book documented the features of the Education Reform Bill of 1987 (the precursor to the Education Reform Act…

  17. Predicting bending stiffness of randomly oriented hybrid panels

    Science.gov (United States)

    Laura Moya; William T.Y. Tze; Jerrold E. Winandy

    2010-01-01

    This study was conducted to develop a simple model to predict the bending modulus of elasticity (MOE) of randomly oriented hybrid panels. The modeling process involved three modules: the behavior of a single layer was computed by applying micromechanics equations, layer properties were adjusted for densification effects, and the entire panel was modeled as a three-...

  18. Photoelastic stress analysis in mitred bend under internal pressure

    International Nuclear Information System (INIS)

    Sawa, Yoshiaki

    1987-01-01

    The stress analysis and stress relaxation in mitred bend subjected to internal pressure have been studied by means of the photoelastic stress freezing method. The experimental results show that stress concentration occurs in the wedge tip of the intersectional plane and it is considerably influenced by the bent angle. Then, the stress relaxation was obtained by planing the wedge tip. (author)

  19. Effect of entry bending moment on exit curvature in asymmetrical ...

    African Journals Online (AJOL)

    user

    increasing the reduction in thickness the average pressure is increased. Keywords: Asymmetrical Rolling; Modified Slab Method; Pressure Difference; Rolling Force; Bending Moment. 1. Introduction. In practice, rolling of plate and sheet asymmetry arises due to inequality in roll radii, roll velocity and interface friction. These.

  20. The Clinch Bend Regional Industrial Site and economic development opportunities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

  1. Analysis of Bending Waves in Phononic Crystal Beams with Defects

    Directory of Open Access Journals (Sweden)

    Yongqiang Guo

    2018-01-01

    Full Text Available Existing investigations on imperfect phononic crystal beams mainly concern periodic multi-span beams carrying either one or two channel waves with random or deterministic disorder in span-length. This paper studies the two channel bending waves in phononic crystal beams consisting of many phases of materials with defects introduced as one structural segment having different cross-sectional dimensions or material parameters. The method of reverberation-ray matrix (MRRM based on the Timoshenko beam theory, which can conduct high-frequency analysis, is extended for the theoretical analysis of dispersion and transmission of bending waves. The supercell technique and the Floquet–Bloch theorem are adopted for modeling the dispersion characteristics, and the whole finite structural model is used to calculate the transmission spectra. Experimental measurements and numerical calculations are provided to validate the displacement transmission obtained by the proposed MRRM, with the effect of damping on transmission spectra being concerned. The high-frequency calculation applicability of the proposed MRRM is also confirmed by comparing the present results with the corresponding ones either using the transfer matrix method (TMM or MRRM based on Euler—Bernoulli beam theory. The influences of defect size, defect form, and unit-cell number on the transmission spectra and the band structures are discussed. The drawn conclusions may be useful for designing or evaluating the defected phononic crystal beams in bending wave control. In addition, our conclusions are especially potential for identifying the defect location through bending wave signals.

  2. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    -twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...

  3. High precision optical fiber alignment using tube laser bending

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens

    2016-01-01

    In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips

  4. Sediment transport in an active erodible channel bend of ...

    Indian Academy of Sciences (India)

    and sediment transport modelling in a curved channel (Chang 1988). ... spiral motion of the flow directed normal to the main flow and the super-elevation of the water surface. The secondary current, which develops upon entering a channel bend, will eventually ... from flume studies and calibrated using the river data.

  5. Asymptotic results for bifurcations in pure bending of rubber blocks

    OpenAIRE

    Coman, Ciprian; Destrade, Michel

    2008-01-01

    International audience; The bifurcation of an incompressible neo-Hookean thick block with a ratio of thickness to length {eta}, subject to pure bending, is considered. The two incremental equilibrium equations corresponding to a nonlinear pre-buckling state of strain are reduced to a fourth-order linear eigenproblem that displays a multiple turning point. It is found that for 0 {infty} dege...

  6. Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons

    DEFF Research Database (Denmark)

    Yang, Yihao; Chen, Hongsheng; Xiao, Sanshui

    2015-01-01

    surface plasmons around 90-degree sharp bends on ultrathin metallic films in the microwave regime. We demonstrate that by judiciously engineering the structure, the dispersion relation can be designed to reduce the scattering. Furthermore, the reflection can be suppressed by proper structural decoration...

  7. Steam bending qualities of eight timber species of Ghana | Ayarkwa ...

    African Journals Online (AJOL)

    Steam bending qualities of eight lesser used timber species of Ghana have been studied and compared with the quality of Mahogany (Khaya spp), a fast diminishing noble species, with the view to providing information for the furniture and glulam industries. Wood samples collected from three ecological forest zones of ...

  8. Flow resistance in a compound gravel-bed bend

    Indian Academy of Sciences (India)

    centrifugal force having a lateral momentum transfer. This force disappears after leaving a bend exit. Thus, the turbulent shear stress is the resistance that the flow has to overcome in transforming from a primary flow into a secondary flow pattern and vice versa. The increase in flow resistance in a meandering path can be ...

  9. Study of sharp bends in anisotropic potassium double tungstate waveguides

    NARCIS (Netherlands)

    Dubbink, T.; Sefünç, Mustafa; Pollnau, Markus; García Blanco, Sonia Maria

    Rare earth ion doped potassium double tungstate gain materials have recently shown a great promise for the development of waveguide amplifiers and lasers exhibiting excellent performance. To enable the use of this material in larger nanophotonic platforms, sharp bends are required. In this work we

  10. Reliability Analysis of Bending, Shear and Deflection Criteria of ...

    African Journals Online (AJOL)

    Reliability analysis of the safety levels of the criteria for bending, shear and deflection of singly reinforced, concrete slabs, have been evaluated over the practical range of thicknesses 100mm to 250mm. The First Order Reliability Method was employed in the evaluation procedure for continuous slabs of equal spans as a ...

  11. Adoption of improved rice varieties by farmers in Bende local ...

    African Journals Online (AJOL)

    The study investigated the adoption of improved rice varieties by farmers in Bende Local Government Area, Abia State, Nigeria. A multi-stage random sampling technique was used to select a total of 120 rice farmers. Descriptive statistics and tobit regression model were employed to analyze the data. Results showed that ...

  12. Bolted flanged connections subjected to longitudinal bending moments

    International Nuclear Information System (INIS)

    Blach, A.E.

    1992-01-01

    Flanges in piping systems and also pressure vessel flanges on tall columns are often subjected to longitudinal bending moments of considerable magnitude, be it from thermal expansion stresses in piping systems or from wind or seismic loadings on tall vertical pressure vessels. Except for the ASME Code, Section III, Subsections NB, NC, and ND, other pressure vessel and piping codes do not contain design ASME Nuclear Power Plant Code (Section III), an empirical formula is given, expressing a longitudinal bending moment in bolted flanged connections in terms of an equivalent internal pressure to be added to the design pressure of the flange. In this paper, an attempt is made to analyse the stresses on flanges and bolting due to external bending moments and to compare flange thicknesses thus obtained with thicknesses required using the equivalent design pressure specified in Subsections NB, NC, and ND. A design method is proposed, based on analysis and experimental work, which may be suitable for flange bending moment analysis when the rules of the Nuclear Power Plant Code are not mandatory. (orig.)

  13. Correlation between pipe bend geometry and allowable pressure in ...

    African Journals Online (AJOL)

    Determination of allowable pressure, which is one of the important criteria to evaluate the acceptability of pipe bends with shape irregularities, is complex as the analytical solution of the problem involves solution of complex differential equations. Artificial Neural Network (ANN) is used in this paper to determine the ...

  14. A Note on Stress Function Discontinuities in Plane Plastic Bending ...

    African Journals Online (AJOL)

    The variational and differential equation formulations of the stress function problem for combined plane bending and torsion of a fully plastic material are discussed. The nature of discontinuities to be expected as well as the actual degree of correspondence between the two formulations is determined. A modification of the ...

  15. Tidal bending of glaciers: a linear viscoelastic approach

    DEFF Research Database (Denmark)

    Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph

    2003-01-01

    In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...

  16. Magnetically assisted bilayer composites for soft bending actuators

    NARCIS (Netherlands)

    Jang, S.H.; Na, Seon Hong; Park, Yong Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically

  17. Bending strategies of convergently-evolved, articulated coralline algae.

    Science.gov (United States)

    Janot, Kyra G; Martone, Patrick T

    2018-03-05

    The evolution of uncalcified genicula in upright, calcified corallines has occurred at least three times independently, resulting in articulated corallines within Corallinoideae, Lithophylloideae, and Metagoniolithoideae. Genicula confer flexibility to otherwise rigid thalli, and the localization of bending at discrete intervals amplifies bending stress in genicular tissue. Genicular morphology must therefore be balanced between maintaining flexibility while mitigating or resisting stress. Genicula in the three articulated lineages differ in both cellular construction and development, which may result in different constraints on morphology. By studying the interaction between flexibility and morphological variation in multiple species, we investigate whether representatives of convergently evolving clades follow similar strategies to generate mechanically successful articulated fronds. By using computational models to explore different bending strategies, we show that there are multiple ways to generate flexibility in upright corallines but that not all morphological strategies are mechanically equivalent. Corallinoids have many joints, lithophylloids have pliant joints, and metagoniolithoids have longer joints - while these strategies can lead to comparable thallus flexibility, they also lead to different levels of stress amplification in bending. Moreover, genicula at greatest risk of stress amplification are typically the strongest, universally mitigating the trade-off between flexibility and stress reduction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Tidal bending of glaciers: a linear viscoelastic approach

    DEFF Research Database (Denmark)

    Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph

    2003-01-01

    glaciers are in the range 0.9-3 GPa. It has therefore been suggested that the elastic-beam model with a single value of E approximate to 1 GPa adequately describes tidal bending of glaciers.In contrast, laboratory experiments with ice give E =93 GPa, i.e. 3-10 times higher than the glacier-derived values...

  19. Timoshenko-Wagner-Kappus Torsion Bending Theory and Wind ...

    Indian Academy of Sciences (India)

    Timoshenko-Wagner-Kappus Torsion Bending. Theory and Wind Tunnel Balance Design. S P Govinda Raju and K R Y Simha. S P Govinda Raju is a. Professor at the. Aero- space Engineering. Department, Indian. Institute of Science,. Bangalore. His interests are fluid mechanics, aircraft design, testing and analysis.

  20. Multiphase fluid structure interaction in bends and T-joints

    NARCIS (Netherlands)

    Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van

    2010-01-01

    Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations

  1. Sediment transport in an active erodible channel bend of ...

    Indian Academy of Sciences (India)

    Spatial variation of sediment transport in an alluvial sand-bed river bend needs to be understood with ... Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar ..... of Water, Environment, Energy and Society (WEES)-2009, New Delhi, India, 1670–1676. Karmaker T, Dutta S ...

  2. Residual bending behaviour of sandwich composites after impact

    NARCIS (Netherlands)

    Baran, Ismet; Weijermars, Wouter

    2018-01-01

    This work investigates the residual mechanical behaviour of composite sandwich panels in bending after impact loading conditions. The sandwich panels were made of an epoxy/glass face sheet with three different core materials: styrene acrylonitrile foam, polyethylene terephthalate foam and Balsa

  3. Bi-2212/Ag tapes and laminates: effects of bending

    International Nuclear Information System (INIS)

    Ilyushechkin, A.Y.; Yamashita, T.; Williams, B.; Mackinnon, I.D.R.

    1999-01-01

    Superconducting Bi-2212 tapes and laminates are fabricated by a combination of dip-coating and partial melt processing. The heat treated tapes have critical current densities (J c ) up to 11 kA cm -2 . We investigate the degradation of critical current (I c ) during bending experiments for both single tapes and tapes with laminate structure. Although degradation of I c is observed in both forms, the characteristics of the degradation differ. It is determined that laminated tapes perform better than single tapes when critical current is measured against bending radius, and laminated tapes tolerate a higher strain for a given reduction in critical current. It is found that increasing the number of Bi-2212 layers increases the total I c of the laminated tape, but degradation of critical current is more pronounced during bending because of the increased total thickness of the laminate structure. It is also found that addition of silver to the Bi-2212 layers reduces critical current degradation during bending for both tapes and laminates. (author)

  4. A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    2015-08-01

    Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.

  5. Timoshenko–Wagner–Kappus Torsion Bending Theory and Wind ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Timoshenko–Wagner–Kappus Torsion Bending Theory and Wind Tunnel Balance Design. S P Govinda Raju K R Y Simha. General Article Volume 7 Issue 10 October 2002 pp 54-58 ...

  6. Effect of entry bending moment on exit curvature in asymmetrical ...

    African Journals Online (AJOL)

    In addition, employing a bending moment at entry of the roll gap in a symmetrical rolling process causes pressure difference on the rolls and warping at the outlet, as happens in an asymmetrical rolling process. Similarly, increasing the roll diameter ratio increases the pressure differences, but the average pressure between ...

  7. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    and clad configurations. The 2-ply sleeve samples show a higher bend momentum compared to those of the 1-ply sleeve samples. This is applicable to both the hybrid mock-up and bare SiC-CMC sleeve samples. Comparatively both the 1- and 2-ply hybrid mock-up samples showed a higher bend stiffness and strength compared with the standard Zr-4 mock-up sample. The characterization of the hybrid mock-up samples showed signs of distress and preliminary signs of fraying at the protective Zr-4 sleeve areas for the 1-ply SiC-CMC sleeve. In addition, the microstructure of the SiC matrix near the cracks at the region of highest compressive bending strain shows significant cracking and flaking. The 2-ply SiC-CMC sleeve samples showed a more bonded, cohesive SiC matrix structure. This cracking and fraying causes concern for increased fretting during the actual use of the design. Tomography was proven as a successful tool to identify open porosity during pre-test characterization. Although there is currently insufficient data to make conclusive statements regarding the overall merit of the hybrid cladding design, preliminary characterization of this novel design has been demonstrated.

  8. Segmental stability and compressive strength of posterior lumbar interbody fusion implants.

    Science.gov (United States)

    Tsantrizos, A; Baramki, H G; Zeidman, S; Steffen, T

    2000-08-01

    Human cadaveric study on initial segmental stability and compressive strength of posterior lumbar interbody fusion implants. To compare the initial segmental stability and compressive strength of a posterior lumbar interbody fusion construct using a new cortical bone spacer machined from allograft to that of titanium threaded and nonthreaded posterior lumbar interbody fusion cages, tested as stand-alone and with supplemental pedicle screw fixation. Cages were introduced to overcome the limitations of conventional allografts. Radiodense cage materials impede radiographic assessment of the fusion, however, and may cause stress shielding of the graft. Multisegmental specimens were tested intact, with posterior lumbar interbody fusion implants inserted into the L4/L5 interbody space and with supplemental pedicle screw fixation. Three posterior lumbar interbody fusion implant constructs (Ray Threaded Fusion Cage, Contact Fusion Cage, and PLIF Allograft Spacer) were tested nondestructively in axial rotation, flexion-extension, and lateral bending. The implant-specimen constructs then were isolated and compressed to failure. Changes in the neutral zone, range of motion, yield strength, and ultimate compressive strength were analyzed. None of the stand-alone implant constructs reduced the neutral zone. Supplemental pedicle screw fixation decreased the neutral zone in flexion-extension and lateral bending. Stand-alone implant constructs decreased the range of motion in flexion and lateral bending. Differences in the range of motion between stand-alone cage constructs were found in flexion and extension (marginally significant). Supplemental posterior fixation further decreased the range of motion in all loading directions with no differences between implant constructs. The Contact Fusion Cage and PLIF Allograft Spacer constructs had a higher ultimate compressive strength than the Ray Threaded Fusion Cage. The biomechanical data did not suggest any implant construct to

  9. Mammographic compression in Asian women.

    Directory of Open Access Journals (Sweden)

    Susie Lau

    Full Text Available To investigate: (1 the variability of mammographic compression parameters amongst Asian women; and (2 the effects of reducing compression force on image quality and mean glandular dose (MGD in Asian women based on phantom study.We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD measurement software (Volpara to assess compression force, compression pressure, compressed breast thickness (CBT, breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA slabs.Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (p0.05.Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  10. Mammographic compression in Asian women

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    Objectives To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. Methods We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35–80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Results Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (p0.05). Conclusions Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD. PMID:28419125

  11. Compressive residual stress relaxation in hardened steel during cyclic and static load

    Science.gov (United States)

    Cseh, D.; Mertinger, V.

    2017-05-01

    The benefits of applied compressive residual stress on fatigue properties of materials is a well-known phenomenon, but not well described in all respects. The fatigue life and the fatigue limit could be improved by targeted created compressive residual stress in the surface layers therefore, diversified surface compressing methods are developed and used in the engineering industry. The relaxation of the compressive residual stress state during a cyclic and static load is determinative for the life time of a componenet. Compressive stress relaxation was experimentally determined during the cyclic and static load. The compressive residual stress was induced by shot penning on the surface of stainless steel, micro alloyed high strength steel and hardened steel specimens. The residual stress state was investigated nondestructively by X-ray diffraction method then these specimens were load. After a certain number of cycles the fatigue load was stopped and the residual stress state was recorded again and again until fracture. To investigate the relaxation process during static load a four-point bending bench was used. The compressive residual stress relaxation was correlated to the applied fatigue stress level, the cycle number the quality of alloys.

  12. Noise variation by compressive stress on the model core of power transformers

    International Nuclear Information System (INIS)

    Mizokami, Masato; Kurosaki, Yousuke

    2015-01-01

    The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise

  13. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  14. Analysis by compression

    DEFF Research Database (Denmark)

    Meredith, David

    MEL is a geometric music encoding language designed to allow for musical objects to be encoded parsimoniously as sets of points in pitch-time space, generated by performing geometric transformations on component patterns. MEL has been implemented in Java and coupled with the SIATEC pattern discov...... discovery algorithm to allow for compact encodings to be generated automatically from in extenso note lists. The MEL-SIATEC system is founded on the belief that music analysis and music perception can be modelled as the compression of in extenso descriptions of musical objects....

  15. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  16. Compression test apparatus

    Science.gov (United States)

    Shanks, G. C. (Inventor)

    1981-01-01

    An apparatus for compressive testing of a test specimen may comprise vertically spaced upper and lower platen members between which a test specimen may be placed. The platen members are supported by a fixed support assembly. A load indicator is interposed between the upper platen member and the support assembly for supporting the total weight of the upper platen member and any additional weight which may be placed on it. Operating means are provided for moving the lower platen member upwardly toward the upper platen member whereby an increasing portion of the total weight is transferred from the load indicator to the test specimen.

  17. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  18. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  19. Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Oh, Young-Jin; Majumdar, Saurin

    2015-01-01

    Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.

  20. Energy transfer in compressible turbulence

    Science.gov (United States)

    Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre

    1995-01-01

    This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.

  1. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  2. Fingerprints in Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

    2013-01-01

    The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries....... That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP...... derivative that captures LZ78 compression and its variations) we get O(loglogN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logNlogℓ) and O...

  3. Respiratory sounds compression.

    Science.gov (United States)

    Yadollahi, Azadeh; Moussavi, Zahra

    2008-04-01

    Recently, with the advances in digital signal processing, compression of biomedical signals has received great attention for telemedicine applications. In this paper, an adaptive transform coding-based method for compression of respiratory and swallowing sounds is proposed. Using special characteristics of respiratory sounds, the recorded signals are divided into stationary and nonstationary portions, and two different bit allocation methods (BAMs) are designed for each portion. The method was applied to the data of 12 subjects and its performance in terms of overall signal-to-noise ratio (SNR) values was calculated at different bit rates. The performance of different quantizers was also considered and the sensitivity of the quantizers to initial conditions has been alleviated. In addition, the fuzzy clustering method was examined for classifying the signal into different numbers of clusters and investigating the performance of the adaptive BAM with increasing the number of classes. Furthermore, the effects of assigning different numbers of bits for encoding stationary and nonstationary portions of the signal were studied. The adaptive BAM with variable number of bits was found to improve the SNR values of the fixed BAM by 5 dB. Last, the possibility of removing the training part for finding the parameters of adaptive BAMs for each individual was investigated. The results indicate that it is possible to use a predefined set of BAMs for all subjects and remove the training part completely. Moreover, the method is fast enough to be implemented for real-time application.

  4. Free compression tube. Applications

    Science.gov (United States)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  5. Compressive Sensing DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Sheikh Mona A

    2009-01-01

    Full Text Available Compressive sensing microarrays (CSMs are DNA-based sensors that operate using group testing and compressive sensing (CS principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed.

  6. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  7. Mammographic compression in Asian women.

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (pAsian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  8. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  9. Effects of bending and heat on the ductility and fracture toughness of flange plate.

    Science.gov (United States)

    2012-05-01

    Bridge fabricators for the Texas Department of Transportation (TxDOT) have occasionally experienced the : formation of cracks in flange plate during bending operations, particularly when heat is applied. Bending the : flange plate is necessary for ce...

  10. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  11. Respiratory monitoring system based on fiber optic macro bending

    Science.gov (United States)

    Purnamaningsih, Retno Wigajatri; Widyakinanti, Astari; Dhia, Arika; Gumelar, Muhammad Raditya; Widianto, Arif; Randy, Muhammad; Soedibyo, Harry

    2018-02-01

    We proposed a respiratory monitoring system for living activities in human body based on fiber optic macro-bending for laboratory scale. The respiration sensor consists of a single-mode optical fiber and operating on a wavelength at around 1550 nm. The fiber optic was integrated into an elastic fabric placed on the chest and stomach of the monitored human subject. Deformations of the flexible textile involving deformations of the fiber optic bending curvature, which was proportional to the chest and stomach expansion. The deformation of the fiber was detected using photodetector and processed using microcontroller PIC18F14K50. The results showed that this system able to display various respiration pattern and rate for sleeping, and after walking and running activities in real time.

  12. Coupled Torsional and Bending Vibrations of Actively Controlled Drillstrings

    Science.gov (United States)

    YIGIT, A. S.; CHRISTOFOROU, A. P.

    2000-06-01

    The dynamics of actively controlled drillstrings is studied. The equations of motion are derived using a lumped parameter model in which the coupling between torsional and bending vibrations is considered. The model also includes the dynamics of the rotary drive system which contains the rotary table, the gearbox and an armature controlled DC motor. The interactions between the drillstring and the borehole which are considered, include the impacts of collars with the borehole wall as well as bit rotation-dependent weight and torque on bit (WOB and TOB). Simulation results obtained by numerically solving the equations of motion are in close qualitative agreement with field and laboratory observations regarding stick-slip oscillations. A linear quadratic regulator (LQR) controller is designed based on a linearized model and is shown to be effective in eliminating this type of oscillations. It is also shown that for some operational parameters the control action may excite large bending vibrations due to coupling with the torsional motion.

  13. Unexpected decoupling of stretching and bending modes in protein gels.

    Science.gov (United States)

    Gibaud, Thomas; Zaccone, Alessio; Del Gado, Emanuela; Trappe, Véronique; Schurtenberger, Peter

    2013-02-01

    We show that gels formed by arrested spinodal decomposition of protein solutions exhibit elastic properties in two distinct frequency domains, both elastic moduli exhibiting a remarkably strong dependence on volume fraction. Considering the large difference between the protein size and the characteristic length of the network we model the gels as porous media and show that the high and low frequency elastic moduli can be respectively attributed to stretching and bending modes. The unexpected decoupling of the two modes in the frequency domain is attributed to the length scale involved: while stretching mainly relates to the relative displacement of two particles, bending involves the deformation of a strand with a thickness of the order of a thousand particle diameters.

  14. Ultrasonic Motor Using Bending Modes with Single Foot

    Directory of Open Access Journals (Sweden)

    Xiaohui Yang

    2013-01-01

    Full Text Available A new ultrasonic motor using bending modes with single foot is proposed in this study. Two groups of PZT elements are clamped between two horns and two ending caps, respectively, by bolts. Two horns are connected by the driving foot in the middle of the motor. Two orthogonal 3rd bending vibrations of the motor are superimposed and generate elliptical movement at the driving foot. The structure and working principle of the proposed motor are introduced. The structure parameters of the motor are obtained via the ANSYS software. A prototype is fabricated and tested using an impedance analyzer and a scanning laser Doppler vibrometer. The maximum mechanical output force and power of the prototype are measured to be 23 N and 2.9 W, respectively.

  15. The oroclinal bend in the South Island, New Zealand

    Science.gov (United States)

    Mortimer, N.

    2014-07-01

    Most of the South Island of New Zealand lies within an Eocene-Recent continental shear zone related to Pacific-Australia plate motion. Macroscopic finite strain in this shear zone has, in the past, been tracked through the deformation of the Dun Mountain Ophiolite Belt. This paper identifies additional sub-vertical basement strain markers including: Buller-Takaka Terrane boundary, Darran Suite and Jurassic volcanic belt within the Median Batholith, Taieri-Wakatipu-Goulter Synform axial trace, Esk Head Melange and bedding form surfaces within the Buller, Takaka and Torlesse terranes. An analysis of the oroclinal bend over the entire Zealandia continent shows that it is a composite feature involving pre- as well as post-Eocene bending of basement structures. Satisfactory paleogeographic reconstructions of Zealandia cannot be made without the use of substantial regional scale, non-rigid intracontinental deformation.

  16. Failure mechanism of PMI foam core sandwich beam in bending

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2015-01-01

    Full Text Available Polymethacrylimide (PMI foams have been widely applied in aerospace engineering as the core material of sandwich structures. This paper proposes a modified model to predict the constitutive relation of PMI foams and compares it to existing testing data. The study is then applied to the investigation of the failure mechanism of PMI foam core sandwich beams in bending. Corresponding bending tests were carried out where a complex failure process was observed through a high-speed camera. Numerical model of the foregoing sandwich beam is developed, in which the maximum principal stress criteria is used to predict damage propagation in PMI foam core. Both results from tests and numerical simulation validate the reliability of the theoretical prediction of the failure of PMI foam core sandwich beam using the proposed modified model of PMI foams. This study provides a theoretic tool for the design of sandwich structures with PMI foam core.

  17. A plant-inspired robot with soft differential bending capabilities.

    Science.gov (United States)

    Sadeghi, A; Mondini, A; Del Dottore, E; Mattoli, V; Beccai, L; Taccola, S; Lucarotti, C; Totaro, M; Mazzolai, B

    2016-12-20

    We present the design and development of a plant-inspired robot, named Plantoid, with sensorized robotic roots. Natural roots have a multi-sensing capability and show a soft bending behaviour to follow or escape from various environmental parameters (i.e., tropisms). Analogously, we implement soft bending capabilities in our robotic roots by designing and integrating soft spring-based actuation (SSBA) systems using helical springs to transmit the motor power in a compliant manner. Each robotic tip integrates four different sensors, including customised flexible touch and innovative humidity sensors together with commercial gravity and temperature sensors. We show how the embedded sensing capabilities together with a root-inspired control algorithm lead to the implementation of tropic behaviours. Future applications for such plant-inspired technologies include soil monitoring and exploration, useful for agriculture and environmental fields.

  18. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  19. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites – Part II

    NARCIS (Netherlands)

    Ropers, Steffen; Sachs, Ulrich; Kardos, Marton; Osswald, Tim A.

    2017-01-01

    A proper description of the bending behavior is crucial to obtain accurate forming simulations, especially for continuous fiber-reinforced thermoplastic composites. These materials exhibit a highly temperature and bending-curvature dependent bending stiffness. These dependencies make the property

  20. Effect of hexane treatment and uniaxial stretching on bending ...

    African Journals Online (AJOL)

    ... β31, defined as the bending piezoelectric stress constant, was calculated. After hexane treatment and uniaxial stretching of the PVDF film, the value of β31 was 5.75 mV/m and 8.00 mV/m for draw ratio of 1.5 and 2.5 was recorded. Fourier transform Infra-red (FTIR) spectrophotometry was used for structural investigations.

  1. Multi layer chromosome organization through DNA bending, bridging and extrusion

    OpenAIRE

    Gruber, S.

    2014-01-01

    All living cells have to master the extraordinarily extended and tangly nature of genomic DNA molecules in particular during cell division when sister chromosomes are resolved from one another and confined to opposite halves of a cell. Bacteria have evolved diverse sets of proteins, which collectively ensure the formation of compact and yet highly dynamic nucleoids. Some of these players act locally by changing the path of DNA through the bending of its double helical backbone. Other proteins...

  2. Concept for a self-correcting sheet metal bending operation

    OpenAIRE

    Damerow, U.; Tabakajew, D.; Borzykh, M.; Schaermann, W.; Homberg, W.; Trächtler, A.

    2014-01-01

    Geometrical deviations can appear in the production of plug contacts used in electrical connection technology and in fittings for the furniture industry. The reasons for this can be a variation in the properties of the semi-finished product, or wear phenomena on the forming machine itself or on the bending tools. When geometrical deviations appear, the process parameters normally have to be adjusted manually. Finding the most appropriate process parameters is currently done manually and is th...

  3. Suitability of sheet bending modelling techniques in CAPP applications

    OpenAIRE

    Streppel, A.H.; de Vin, L.J.; de Vin, L.J.; Brinkman, J.; Brinkman, J.; Kals, H.J.J.

    1993-01-01

    The use of CNC machine tools, together with decreasing lot sizes and stricter tolerance prescriptions, has led to changes in sheet-metal part manufacturing. In this paper, problems introduced by the difference between the actual material behaviour and the results obtained from analytical models and FEM simulations are discussed against the background of the required predictable accuracy in small-batch part manufacturing and FMS environments. The topics are limited to those relevant to bending...

  4. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    OpenAIRE

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward o...

  5. Orbital dynamics in a storage ring with electrostatic bending

    International Nuclear Information System (INIS)

    Mane, S.R.

    2008-01-01

    A storage ring where electrostatic fields contribute to the bending and focusing of the orbital motion has some novel features because, unlike a magnetostatic field, an electrostatic field can change the kinetic energy of the particles. I present analytical formulas to calculate the linear focusing gradient, dispersion, momentum compaction and natural chromaticity for a storage ring with a radial electrostatic field. I solve the formulas explicitly for a weak focusing model.

  6. The proteome of Populus nigra woody root: response to bending

    Science.gov (United States)

    Trupiano, Dalila; Rocco, Mariapina; Renzone, Giovanni; Scaloni, Andrea; Viscosi, Vincenzo; Chiatante, Donato; Scippa, Gabriella S.

    2012-01-01

    Background and Aims Morphological and biomechanical alterations occurring in woody roots of many plant species in response to mechanical stresses are well documented; however, little is known about the molecular mechanisms regulating these important alterations. The first forest tree genome to be decoded is that of Populus, thereby providing a tool with which to investigate the mechanisms controlling adaptation of woody roots to changing environments. The aim of this study was to use a proteomic approach to investigate the response of Populus nigra woody taproot to mechanical stress. Methods To simulate mechanical perturbations, the taproots of 30 one-year-old seedlings were bent to an angle of 90 ° using a steel net. A spatial and temporal two-dimensional proteome map of the taproot axis was obtained. We compared the events occurring in the above-bending, central bending and below-bending sectors of the taproot. Key Results The first poplar woody taproot proteome map is reported here; a total of 207 proteins were identified. Spatial and temporal proteomic analysis revealed that factors involved in plant defence, metabolism, reaction wood formation and lateral root development were differentially expressed in the various sectors of bent vs. control roots, seemingly in relation to the distribution of mechanical forces along the stressed woody taproots. A complex interplay among different signal transduction pathways involving reactive oxygen species appears to modulate these responses. Conclusions Poplar woody root uses different temporal and spatial mechanisms to respond to mechanical stress. Long-term bending treatment seem to reinforce the defence machinery, thereby enabling the taproot to better overcome winter and to be ready to resume growth earlier than controls. PMID:22437664

  7. PREDICTION OF BASALT FIBER REINFORCED CONCRETE PAVEMENT BENDING STRENGTH VALUES

    OpenAIRE

    Hidayet BAYRAKTAR; Ayhan SAMANDAR; Suat SARIDEMİR

    2017-01-01

    This paper proposes the potential of artificial neural network (ANN) system for estimating the bending strength values of the basalt fiber reinforced concrete pavements. Three main influential parameters; namely basalt fiber ratio, density and slump value of the fresh concrete were selected as input data. The model was trained, tested using 400 data sets which were the results of on-site experiment tests. ANN system results were also compared with the experimental test results. The research r...

  8. Wooden models of an AA quadrupole between bending magnets

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    At two points in the AA lattice, a quadrupole (QDN, defocusing, narrow) was tightly wedged between two bending magnets (BST, short, wide). This picture of wooden models lets one imagine the strong interaction between their magnetic fields. There was no way one could calculate with the necessary accuracy the magnetic effects and their consequences for the machine optics. The necessary corrections were made after measurements with a circulating beam, in a tedious iterative procedure, with corrrection coils and shims.

  9. Bending continuous structures with SMAs: a novel robotic fish design

    OpenAIRE

    Rossi, Claudio; Colorado Montaño, Julián; Coral Cuellar, William; Barrientos Cruz, Antonio

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature o...

  10. Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt

    NARCIS (Netherlands)

    Sachs, U.; Akkerman, R.

    2017-01-01

    Bending of single plies or stacks of multiple plies is an essential deformation mechanism during thermoforming of thermoplastic composites. A reliable prediction of the forming process requires an accurate description of the bending behavior. To this end, a characterization method for the bending of

  11. Impact of bending speed and setup on flex cracks in multilayer ceramic capacitors

    DEFF Research Database (Denmark)

    Andersson, Caroline; Kristensen, Ole; Varescon, Elise

    2017-01-01

    A comparison of bending speed and experimental setups using 3-point or 4-point bending for introduction of flex cracks into multilayer ceramic capacitors (MLCCs) in a controlled manner is presented. The impact of bending speed and corresponding strain rates on the formed flex cracks detected by X...

  12. Compression fatigue of Wind Turbine Blade composites materials and damage mechanisms

    DEFF Research Database (Denmark)

    Fraisse, Anthony; Brøndsted, Povl

    driven edgewise bending introduces significant fully reversed cycling at the leading and trailing edges. Therefore, material manufacturer and WTB manufacturer demand test results of highest reliability and reproducibility. However, these equirements for compression-compression and tensioncompression...... laminate architectures have been tested in order to validate the test method. Damage mechanisms and damage progression in compression fatigue have been investigated using 3D X-Ray Tomography and a qualitative explanation of the damage mechanisms is presented....... fatigue properties are a big challenge for the test institutes to meet. Tests are very difficult to perform, as it is nearly impossible to design an optimal test setup. This study shows a newly developed sample geometry and test method in order to obtain representative and reliable results. Two different...

  13. Behaviour of thin-walled cold-formed steel members in eccentric compression

    Science.gov (United States)

    Ungureanu, Viorel; Kotełko, Maria; Borkowski, Łukasz; Grudziecki, Jan

    2018-01-01

    Thin-walled cold-formed steel structures are usually made of members of class 4 cross-sections. Since these sections are prematurely prone to local or distortional buckling and due to the fact they do not have a real post-elastic capacity, the failure at ultimate stage of those members, either in compression or bending, always occurs by forming a local plastic mechanism. The present paper investigates the evolution of the plastic mechanisms and the possibility to use them to characterise the ultimate strength of short thin-walled cold-formed steel members subjected to eccentric compression about minor axis, particularly for members with lipped channel cross-section. Five different types of plastic mechanisms for members in compression with different eccentricities are identified and examined on the basis of FE numerical simulations. Preliminary results of experimental validation of numerical results are presented. The research is based on previous studies and some new investigations of the authors.

  14. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)

    2016-03-29

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  15. TPC data compression

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Jens; Frankenfeld, Ulrich; Lindenstruth, Volker; Plamper, Patrick; Roehrich, Dieter; Schaefer, Erich; W. Schulz, Markus; M. Steinbeck, Timm; Stock, Reinhard; Sulimma, Kolja; Vestboe, Anders; Wiebalck, Arne E-mail: wiebalck@kip.uni-heidelberg.de

    2002-08-21

    In the collisions of ultra-relativistic heavy ions in fixed-target and collider experiments, multiplicities of several ten thousand charged particles are generated. The main devices for tracking and particle identification are large-volume tracking detectors (TPCs) producing raw event sizes in excess of 100 Mbytes per event. With increasing data rates, storage becomes the main limiting factor in such experiments and, therefore, it is essential to represent the data in a way that is as concise as possible. In this paper, we present several compression schemes, such as entropy encoding, modified vector quantization, and data modeling techniques applied on real data from the CERN SPS experiment NA49 and on simulated data from the future CERN LHC experiment ALICE.

  16. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  17. Flow Instability and Secondary Vortex Evolution in 90 Degree Bend

    Science.gov (United States)

    Niu, Lin; Dou, Hua-Shu; Fluid Mechanics Research Team

    2013-11-01

    Three-dimensional incompressible Navier-Stokes equations are employed to simulate the laminar flow in a 90 degree bend with square cross-section. Then, the energy gradient theory is used to analyze the stability of the flow. The Reynolds number based on the channel width and the averaged velocity is 158, 394 and 790, respectively. It is found that at Re = 790, the value of the energy gradient function K increases as the fluid entering the curved section, causing flow instability and forming a pair of secondary vortices; then the secondary vortices gradually stabilizes and the value of K decreases. At the exit of the bend, the total pressure distribution in the cross-section presents serious distortion, which leads to a peak of K. As such, it promotes instability of the flow and causes a transition of two vortices to four vortices. With the flow ahead, the maximum of K in the cross section rises again, resulting in the transition of four vortices to eight vortices. While at low Re (Re = 158 and Re = 394), there is only one pair of vortices in the bend, which are stable, due to low value of K. This study shows that the occurrence of instability is closely related to the evolution of energy gradient function K. Graduate student in Fluid Mechanics.

  18. Adaptive process control for three-point bending

    Science.gov (United States)

    Schaller, T.; Raggenbass, A.; Reissner, J.

    1995-08-01

    The increasing level of competition in the sheet-metal working industry requires measures to reduce costs. There is considerable potential in the simplification of process procedures. Automated handling and the further processing of bent semifinished products require a high level of manufacturing precision in bending processes. However deviations in angles of several degrees from the desired values can arise as a result of material variations within one batch. An adaptive control system is developed in order to avoid expensive further manufacturing steps. This calculates the parameters required for the correction of the process control from variations in process values measured online. These adjustment values must be communicated to the bending machine and set during the ongoing forming process. For larger series of parts the coefficients of the correction matrix are also continuously improved, so that an optimum adaptive correction can be achieved for the current scatter in the material properties. The adaptive correction procedure is particularly effective in combination with the three-point bending technology. The highest levels of angular precision can already be achieved after a short independent optimization phase. However, the current spectrum of parts for a certain manufacturing task and a defined quality requirement should provide the basis for decisions concerning the economy of this process arrangement.

  19. A missing-bending-magnet scheme for PEP

    International Nuclear Information System (INIS)

    Liu, R.Z.; Winick, H.

    1988-01-01

    This article presents a missing-bending-magnet scheme for PEP as a modification that could be considered if PEP were available as a fully dedicated synchrotron radiation source. The scheme can be applied to one or more PEP sextants without changing the rest. By removing some bending magnets, rearranging the remaining magnets, and adding two quadrupoles, ten additional straight sections per sextant can be created, each 5 m or more in length, for insertion devices. Beam lines therefrom, plus possible beam lines from bending magnets would enter a continuous experimental hall instead of individual tunnels and halls for each beam line. This should result in construction cost savings and increased operations efficiency. The ideal beam orbit is unchanged at the two ends and the middle of the sextant. At the end of the curved part of the sextant the lattice functions match those of the long interaction region straight section in the low emittance configuration of PEP. The electron beam characteristics in the newly created straight sections are described, including the enlargement of the horizontal beam size due to the nonzero dispersion. Some disadvantages of the scheme are increased operations complexity due to the need for nine new quadrupole families, increased beam emittance (by 14.5% is one sextant is modified), and reduced dynamic aperture. However, the dynamic aperture is still about as large as the physical aperture and should be adequate for good beam lifetime and injection. (orig.)

  20. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe

    2017-03-01

    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  1. Polarization sensitive beam bending using a spatially variant photonic crystal

    Science.gov (United States)

    Digaum, Jennefir L.; Pazos, Javier; Rumpf, Raymond; Chiles, Jeff; Fathpour, Sasan; Thomas, Jeremy N.; Kuebler, Stephen M.

    2015-02-01

    A spatially-variant photonic crystal (SVPC) that can control the spatial propagation of electromagnetic waves in three dimensions with high polarization sensitivity was fabricated and characterized. The geometric attributes of the SVPC lattice were spatially varied to make use of the directional phenomena of self-collimation to tightly bend an unguided beam coherently through a 90 degree angle. Both the lattice spacing and the fill factor of the SVPC were maintained to be nearly constant throughout the structure. A finite-difference frequency-domain computational method confirms that the SVPC can self-collimate and bend light without significant diffuse scatter caused by the bend. The SVPC was fabricated using multi-photon direct laser writing in the photo-polymer SU-8. Mid-infrared light having a vacuum wavelength of λ0 = 2.94 μm was used to experimentally characterize the SVPCs by scanning the sides of the structure with optical fibers and measuring the intensity of light emanating from each face. Results show that the SVPC is capable of directing power flow of one polarization through a 90-degree turn, confirming the self-collimating and polarization selective light-guiding properties of the structures.

  2. Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams

    Science.gov (United States)

    Yan, Z.; Jiang, L. Y.

    2013-05-01

    Flexoelectricity, referring to a spontaneous electric polarization induced by strain gradient in dielectrics, presents a strong size dependency at the nanoscale. In the current work, the influence of the flexoelectric effect on the mechanical and electrical properties of bending piezoelectric nanobeams with different boundary conditions is investigated. Based on the extended linear piezoelectricity theory and the Euler beam model, analytical solutions of the electroelastic fields in the piezoelectric nanobeams subjected to both electrical and mechanical loads are obtained with the inclusion of the flexoelectric effect. Simulation results show that the flexoelectric effect on the elastic behavior of bending beams is sensitive to the beam boundary conditions and the applied electrical load. In addition, for a cantilever piezoelectric nanobeam, an axial relaxation strain is induced from the piezoelectric and flexoelectric effects, while these effects induce a resultant axial force in both the clamped-clamped and simply supported piezoelectric nanobeams. Results also indicate that the flexoelectric effect plays a significant role in the contact stiffness and electric polarization of piezoelectric beams when their thickness is at the nanoscale. It is found that the flexoelectric effect on the electroelastic responses of piezoelectric nanobeams is more pronounced for the beams with smaller thickness. These results are useful for understanding the fundamental mechanical and physical properties of bending piezoelectric nanobeams.

  3. Mechanical properties and bending strain effect on Cu-Ni sheathed MgB2 superconducting tape

    International Nuclear Information System (INIS)

    Fu, Minyi; Chen, Jiangxing; Jiao, Zhengkuan; Kumakura, H.; Togano, K.; Ding, Liren; Zhang, Yong; Chen, Zhiyou; Han, Hanmin; Chen, Jinglin

    2004-01-01

    The Young's modulus (E) of Cu-Ni sheathed MgB 2 monofilament tape was measured using electric method. It is about 8.05 x 10 10 Pa, the same order of Cu and its alloys. We found that the lower E value of the MgB 2 component seemed to relate to the lower filament density. The benefits of pre-compression in filaments were discussed in terms of improving stress distribution in the wires and tapes during winding and operation of superconducting magnets. The magnetic field dependence of J c was investigated on the sample subjected to various strain levels through bending with different radii at 4.2 K

  4. Experimental and finite-element analysis of the anisotropic response of high-purity α-titanium in bending

    International Nuclear Information System (INIS)

    Nixon, Michael E.; Lebensohn, Ricardo A.; Cazacu, Oana; Liu Cheng

    2010-01-01

    In this paper, we present results of four-point bending tests performed on beams of high-purity α-titanium material. These tests have been performed at room temperature for different beam configurations and loading orientations with respect to the orthotropy axes of the material. Digital image correlation was used to determine local strains in the deformed beams. Experimental results compare very well with the predictions of finite-element simulations obtained using the elastic/plastic model developed by Nixon et al. (2010) . Specifically, we compare local deformations and the cross-sections of each beam for all loading configurations. We show that the model predicts with great accuracy the tension-compression asymmetry and the evolving anisotropy of the material. The experimentally observed upward shift of the neutral axis, as well as the rigidity of the response along the hard to deform c-axes are very well described by the proposed model.

  5. Modelling of the bending behaviour of double floor systems for different contact surfaces

    Directory of Open Access Journals (Sweden)

    Attila PUSKAS

    2014-07-01

    Full Text Available In the practice of prefabricated concrete structures considerable surfaces of intermediate floors are constructed using double floor systems with prefabricated bottom layer and upper layer. This second layer is cast on site. The quality of the prefabricated concrete is often of superior class with respect to the monolithic layer. In the service state of the double floor system, important compressive stresses appear in the upper concrete layer. On the other hand, the bond quality between the concrete layers cast in successive stages raises questions especially in the case of hollow core floor units with no connecting reinforcement in-between. The paper presents results of the numerical models prepared for double floor elements having different thicknesses for the top and bottom layers, subjected to bending. Three situations have been studied: stepped top surface of the prefabricated slab with no connecting reinforcement, broom swept tracks on the prefabricated slab with no connecting reinforcement and broom swept tracks on the prefabricated slab with stirrups connecting the concrete layers. For each situation two different ratios of the thicknesses of the layers have been considered. The results are emphasizing the critical regions of the elements, the differences in crack development and in the behaviour resulting from surface preparation and use of connecting reinforcements.

  6. Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Marko, E-mail: knezevic@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lebensohn, Ricardo A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cazacu, Oana; Revil-Baudard, Benoit [Department of Mechanical and Aerospace Engineering, University of Florida, REEF, 1350 N Poquito Road, Shalimar, FL 32539 (United States); Proust, Gwénaëlle [School of Civil Engineering, University of Sydney, NSW 2006 (Australia); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Nixon, Michael E. [Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542 (United States)

    2013-03-01

    An accurate description of the mechanical response of α-titanium requires consideration of mechanical anisotropy. In this work we adapt a polycrystal self-consistent model embedded in finite elements to simulate deformation of textured α-titanium under quasi-static conditions at room temperature. Monotonic tensile and compressive macroscopic stress–strain curves, electron backscattered diffraction and neutron diffraction data are used to calibrate and validate the model. We show that the model captures with great accuracy the anisotropic strain hardening and texture evolution in the material. Comparisons between predictions and experimental data allow us to elucidate the role that the different plastic deformation mechanisms play in determining microstructure and texture evolution. The polycrystal model, embedded in an implicit finite element code, is then used to simulate geometrical changes in bending experiments of α-titanium bars. These predictions, together with results of a macroscopic orthotropic elasto-plastic model that accounts for evolving anisotropy, are compared with the experiments. Both models accurately capture the experimentally observed upward shift of the neutral axis as well as the rigidity of the material response along hard-to-deform crystallographic direction.

  7. Experimental studies on the flow characteristics in an inclined bend-free OWC device

    Directory of Open Access Journals (Sweden)

    Krishnil Ravinesh Ram

    2016-01-01

    Full Text Available A bend-free rectangular cross-section OWC device was designed and constructed for studying the effect of inclination on the flow characteristics inside the device. The inclination is meant to reduce reflection of waves and induce higher velocities in the turbine section. Experimental measurements were made in a wave channel where the OWC device was tested. An S-type Pitot tube was used to measure dynamic pressure of air in the turbine section at several inclinations. Particle Image Velocimetry (PIV was also done to study the flow of both air and water in the OWC device. In order to focus solely on primary energy capture, no turbine was installed in the OWC device. The dynamic pressure readings were analysed for suction and compression stages. Water volume fluctuations inside the capture chamber were also recorded and compared for different inclinations. The result was an increase in the velocity of air flowing in the capture chamber and hence a rise in the kinetic energy available to the turbine. It was found from experimental studies that as the angle of inclination reduced, the velocity of air in the turbine section increased. The lower angles also caused higher run-up and larger volume of water into the capture chamber.

  8. BENDING VIBRATION AND STABILITY OF A MULTIPLE-NANOBEAM SYSTEM INFLUENCED BY TEMPERATURE CHANGE

    Directory of Open Access Journals (Sweden)

    Danilo Karličić

    2016-04-01

    Full Text Available In this study, we analyzed the bending vibration and stability of a multiple-nanobeam system (MNBS coupled in elastic medium and influenced by temperature change and compressive axial load. The MNBS is modeled as the system consisting of a set of m identical and simply supported nanobeams mutually connected by Winkler’s type elastic layers. According to the Euler - Bernoulli beam and nonlocal thermo-elasticity theory, the system of m coupled partial differential equations is derived and solved by means of the method of separation of variables as well as the trigonometric one. Analytical solutions for natural frequencies and critical buckling loads of elastic MNBS are obtained. The effects of nonlocal parameter, temperature change and the number of nanobeams on the natural frequencies and the buckling loads are investigated through numerical examples. Thus, this work can represent a starting point to examine dynamical behavior and design of complex nanobeam structures, nanocomposites and nanodevices under the influence of various physical fields.

  9. Tight bounds for top tree compression

    DEFF Research Database (Denmark)

    Bille, Philip; Fernstrøm, Finn; Gørtz, Inge Li

    2017-01-01

    We consider compressing labeled, ordered and rooted trees using DAG compression and top tree compression. We show that there exists a family of trees such that the size of the DAG compression is always a logarithmic factor smaller than the size of the top tree compression (even for an alphabet...

  10. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  11. Application specific compression : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  12. Generalized massive optimal data compression

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin

    2018-02-01

    Data compression has become one of the cornerstones of modern astronomical data analysis, with the vast majority of analyses compressing large raw datasets down to a manageable number of informative summaries. In this paper we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.

  13. Compressibility effect in vortex identification

    Czech Academy of Sciences Publication Activity Database

    Kolář, Václav

    2009-01-01

    Roč. 47, č. 2 (2009), s. 473-475 ISSN 0001-1452 R&D Projects: GA AV ČR IAA200600801 Institutional research plan: CEZ:AV0Z20600510 Keywords : vortex * vortex identification * compressible flows * compressibility effect Subject RIV: BK - Fluid Dynamics Impact factor: 0.990, year: 2009

  14. Compressed sensing for body MRI.

    Science.gov (United States)

    Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh

    2017-04-01

    The introduction of compressed sensing for increasing imaging speed in magnetic resonance imaging (MRI) has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This article presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and nonlinear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the article discusses current challenges and future opportunities. 5 J. Magn. Reson. Imaging 2017;45:966-987. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  16. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab

    2018-01-26

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  17. Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method

    International Nuclear Information System (INIS)

    Liu, Guan Yong; Kim, Myung Soo; Baek, Tae Hyun

    2014-01-01

    In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, π/4, π/2, and 3π/4 radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material

  18. Dynamic Finite Element Analysis of Bending-Torsion Coupled Beams Subjected to Combined Axial Load and End Moment

    Directory of Open Access Journals (Sweden)

    Mir Tahmaseb Kashani

    2015-01-01

    Full Text Available The dynamic analysis of prestressed, bending-torsion coupled beams is revisited. The axially loaded beam is assumed to be slender, isotropic, homogeneous, and linearly elastic, exhibiting coupled flexural-torsional displacement caused by the end moment. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the vibration and stability of such beams are explored. Using the closed-form solutions of the uncoupled portions of the governing equations as the basis functions of approximation space, the dynamic, frequency-dependent, interpolation functions are developed, which are then used in conjunction with the weighted residual method to develop the Dynamic Finite Element (DFE of the system. Having implemented the DFE in a MATLAB-based code, the resulting nonlinear eigenvalue problem is then solved to determine the coupled natural frequencies of illustrative beam examples, subjected to various boundary and load conditions. The proposed method is validated against limited available experimental and analytical data, those obtained from an in-house conventional Finite Element Method (FEM code and FEM-based commercial software (ANSYS. In comparison with FEM, the DFE exhibits higher convergence rates and in the absence of end moment it produces exact results. Buckling analysis is also carried out to determine the critical end moment and compressive force for various load combinations.

  19. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion.

    Science.gov (United States)

    Wang, Pu; Huang, Zhen

    2017-01-01

    This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC) members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results.

  20. A unified approach for determining the ultimate strength of RC members subjected to combined axial force, bending, shear and torsion.

    Directory of Open Access Journals (Sweden)

    Pu Wang

    Full Text Available This paper uses experimental investigation and theoretical derivation to study the unified failure mechanism and ultimate capacity model of reinforced concrete (RC members under combined axial, bending, shear and torsion loading. Fifteen RC members are tested under different combinations of compressive axial force, bending, shear and torsion using experimental equipment designed by the authors. The failure mechanism and ultimate strength data for the four groups of tested RC members under different combined loading conditions are investigated and discussed in detail. The experimental research seeks to determine how the ultimate strength of RC members changes with changing combined loads. According to the experimental research, a unified theoretical model is established by determining the shape of the warped failure surface, assuming an appropriate stress distribution on the failure surface, and considering the equilibrium conditions. This unified failure model can be reasonably and systematically changed into well-known failure theories of concrete members under single or combined loading. The unified calculation model could be easily used in design applications with some assumptions and simplifications. Finally, the accuracy of this theoretical unified model is verified by comparisons with experimental results.

  1. Unconventional ordering behavior of semi-flexible polymers in dense brushes under compression.

    Science.gov (United States)

    Milchev, Andrey; Binder, Kurt

    2014-06-07

    Using a coarse-grained bead-spring model for semi-flexible macromolecules which form a polymer brush, the structure and dynamics of the polymers were investigated, varying the chain stiffness and the grafting density. The anchoring conditions for the grafted chains were chosen such that their first bonds were oriented along the normal to the substrate plane. The compression of such a semi-flexible brush by a planar piston was observed to be a two-stage process: for a small compression the chains were shown to contract by "buckling" deformation whereas for a larger compression the chains exhibited a collective (almost uniform) bending deformation. Thus, the stiff polymer brush underwent a 2nd order phase transition of collective bond reorientation. The pressure, required to keep the stiff brush at a given degree of compression, was thereby significantly smaller than for an otherwise identical brush made of entirely flexible polymer chains! While both the brush height and the chain linear dimensions in the z-direction perpendicular to the substrate increased monotonically with an increase in the chain stiffness, the lateral (xy) chain linear dimensions exhibited a maximum at an intermediate chain stiffness. Increasing the grafting density led to a strong decrease of these lateral dimensions which is compatible with an exponential decay. Also the recovery kinetics after removal of the compressing piston were studied, and were found to follow a power-law/exponential decay with time. A simple mean-field theoretical consideration, accounting for the buckling/bending behavior of semi-flexible polymer brushes under compression was suggested.

  2. Tensile and bending fatigue of the adhesive interface to dentin.

    Science.gov (United States)

    Belli, Renan; Baratieri, Luiz Narciso; Braem, Marc; Petschelt, Anselm; Lohbauer, Ulrich

    2010-12-01

    The aim of this study was to evaluate the fatigue limits of the dentin-composite interfaces established either with an etch-and-rinse or an one-step self-etch adhesive systems under tensile and bending configurations. Flat specimens (1.2 mm×5 mm×35 mm) were prepared using a plexiglass mold where dentin sections from human third molars were bonded to a resin composite, exhibiting the interface centrally located. Syntac Classic and G-Bond were used as adhesives and applied according to the manufacturer's instructions. The fluorochrome Rhodamine B was added to the adhesives to allow for fractographic evaluation. Tensile strength was measured in an universal testing machine and the bending strength (n=15) in a Flex machine (Flex, University of Antwerp, Belgium), respectively. Tensile (TFL) and bending fatigue limits (BFL) (n=25) were determined under wet conditions for 10(4) cycles following a staircase approach. Interface morphology and fracture mechanisms were observed using light, confocal laser scanning and scanning electron microscopy. Statistical analysis was performed using three-way ANOVA (mod LSD test, pTensile and bending characteristic strengths at 63.2% failure probability for Syntac were 23.8 MPa and 71.5 MPa, and 24.7 MPa and 72.3 MPa for G-Bond, respectively. Regarding the applied methods, no significant differences were detected between adhesives. However, fatigue limits for G-Bond (TFL=5.9 MPa; BFL=36.2 MPa) were significantly reduced when compared to Syntac (TFL=12.6 MPa; BFL=49.7 MPa). Fracture modes of Syntac were generally of adhesive nature, between the adhesive resin and dentin, while G-Bond showed fracture planes involving the adhesive-dentin interface and the adhesive resin. Cyclic loading under tensile and bending configurations led to a significant strength degradation, with a more pronounced fatigue limit decrease for G-Bond. The greater decrease in fracture strength was observed in the tensile configuration. Copyright © 2010 Academy of

  3. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  4. Effect of contouring on bending structural stiffness and bending strength of the 3.5 titanium SOP implant.

    Science.gov (United States)

    Rutherford, Scott; Ness, Malcolm G

    2012-11-01

    To compare the bending structural stiffness (BSS) and bending strength (BS) of the 3.5 titanium (Ti) string of pearls (SOP) plate and the 3.5 316LVM stainless steel SOP plate; and the effect of contouring on the BSS and BS of the 3.5 Ti SOP plate. In vitro experimental static 4-point bending materials testing. Twenty-five 3.5 mm Ti and five 3.5 mm 316LVM stainless steel SOP locking bone plates. Each plate was tested in 4-point bending until 10 mm of displacement was achieved. BSS and BS were then calculated for each plate. A 2-sample t-test was used to compare the mean BSS and BS of the different groups. The 3.5 Ti SOP plate had lower mean BSS (0.00263 Nm(2) ) but similar mean BS (12.8 Nm) when compared to the 3.5 316LVM SOP (0.00402 Nm(2) , 13.0 Nm). Prebending the 3.5 Ti SOP diminished its mean BSS (0.00224 Nm(2) ) and mean BS (9.4 Nm) when compared to the Ti control. Pretwisting the 3.5 Ti SOP increased its mean BSS (0.00273 Nm(2) ) but decreased its mean BS (12.4 Nm) when compared to the Ti control. The 3.5 Ti SOP is less stiff but of similar strength to the 3.5 316LVM stainless steel SOP. Prebending the Ti SOP significantly lowers its stiffness and strength. Pretwisting the SOP actually increases its stiffness but slightly lowers its strength. © Copyright 2012 by The American College of Veterinary Surgeons.

  5. Compression induced phase transition of nematic brush: A mean-field theory study.

    Science.gov (United States)

    Tang, Jiuzhou; Zhang, Xinghua; Yan, Dadong

    2015-11-28

    Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bending energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.

  6. Finite element modelling of plastic collapse of metallic single mitred pipe bends subject to in-plane bending moments

    International Nuclear Information System (INIS)

    Kochekseraii, Sadegh Babaii

    2004-01-01

    Theoretical analysis based on the finite element (FE) method for plastic collapse of metallic single mitred pipe bends of various geometries, subject to in-plane bending moment, were carried out using both ABAQUS and ANSYS structural FE programs covering both linear small displacement and non-linear large displacement analysis. Parametric surveys presented interesting features including an increase in plastic collapse in-plane bending moments after mitre angles of around 40 deg. . Results obtained using either ANSYS or ABAQUS could not be compared against any available experimental data as they differ significantly in areas like strain hardening and other features of a real material that did not exist in the FE modelling. However, single case comparison with the only reported experimental work, known to the author, showed that large displacement FE analysis led to more realistic predictions. It is, therefore, concluded that despite complex behaviour of a real material as compared to material models available in FE analysis, effective plastic collapse moments can be predicted using the small displacement FE analysis

  7. An Experimental Study of Force Involved in Manual Rebar Bending Process

    Science.gov (United States)

    Deepu, Sasi; Vishnu, Rajendran S.; Harish, Mohan T.; Bhavani, Rao R.

    2018-02-01

    The work presents an experimental method of understanding the force applied during a manual rebar bending process. The study tracks the force with the variation of the angle of bend and the elapsed time from the start to the end of a complete manual rebar bending process. A sample of expert rebar bending labourers are used for conducting the experiment and the data processed to set a performance standard. If a simulator based rebar bending training can be provided for a novice, this standard can be used as a matrix to define how close a novice rebar bender is closing to the expertise.

  8. Fracture Analysis of Debonded Sandwich Columns Under Axial Compression

    DEFF Research Database (Denmark)

    May, A.; Avilés, F.; Berggreen, Christian

    A sandwich structure consists of two strong and stiff face sheets bonded to a weak low density core. The large separation between the face sheets provides increased bending rigidity and strength at low weight cost. Thus, sandwich structures frequently present better mechanical properties than...... monolithic structures of the same weight. The vast range of applications of such materials includes wind turbines, marine, and aerospace industries. In this work, geometrically nonlinear finite element analysis is conducted to investigate the fracture parameters and debond propagation of sandwich columns...... containing a face-to-core debond subjected to axial compression. Bidimensional finite element models of sandwich columns containing different size debonds centered at one face/core interface were developed and used in conjunction with linear elastic fracture mechanics to predict the stress intensity factors...

  9. Evaluation of mammogram compression efficiency

    International Nuclear Information System (INIS)

    Przelaskowski, A.; Surowski, P.; Kukula, A.

    2005-01-01

    Lossy image coding significantly improves performance over lossless methods, but a reliable control of diagnostic accuracy regarding compressed images is necessary. The acceptable range of compression ratios must be safe with respect to as many objective criteria as possible. This study evaluates the compression efficiency of digital mammograms in both numerically lossless (reversible) and lossy (irreversible) manner. Effective compression methods and concepts were examined to increase archiving and telediagnosis performance. Lossless compression as a primary applicable tool for medical applications was verified on a set 131 mammograms. Moreover, nine radiologists participated in the evaluation of lossy compression of mammograms. Subjective rating of diagnostically important features brought a set of mean rates given for each test image. The lesion detection test resulted in binary decision data analyzed statistically. The radiologists rated and interpreted malignant and benign lesions, representative pathology symptoms, and other structures susceptible to compression distortions contained in 22 original and 62 reconstructed mammograms. Test mammograms were collected in two radiology centers for three years and then selected according to diagnostic content suitable for an evaluation of compression effects. Lossless compression efficiency of the tested coders varied, but CALIC, JPEG-LS, and SPIHT performed the best. The evaluation of lossy compression effects affecting detection ability was based on ROC-like analysis. Assuming a two-sided significance level of p=0.05, the null hypothesis that lower bit rate reconstructions are as useful for diagnosis as the originals was false in sensitivity tests with 0.04 bpp mammograms. However, verification of the same hypothesis with 0.1 bpp reconstructions suggested their acceptance. Moreover, the 1 bpp reconstructions were rated very similarly to the original mammograms in the diagnostic quality evaluation test, but the

  10. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  11. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  12. Standard practice for verification of testing frame and specimen alignment under tensile and compressive axial force application

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 Included in this practice are methods covering the determination of the amount of bending that occurs during the application of tensile and compressive forces to notched and unnotched test specimens in the elastic range and to plastic strains less than 0.002. These methods are particularly applicable to the force application rates normally used for tension testing, creep testing, and uniaxial fatigue testing.

  13. Compression-after-Impact and Bend Fatigue Results of Glass/Epoxy Composites with Compliant Interlayer and Needling Interlaminar Enhancements

    Science.gov (United States)

    2017-05-22

    approximate areal density of 10 kg/m2 (2 psf). The impact and CAI panels were cut using a waterjet to nominal dimensions of 101.6 × 152.4 mm (4.00 × 6.00...areas revealed on the c-scans of Fig. 11 and Table 3. The 3-D T.E.A.M. baseline panel has 2% less damage area per aperture (the cut -out area of the

  14. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  15. Mixed lipid bilayers with locally varying spontaneous curvature and bending.

    Science.gov (United States)

    Gueguen, Guillaume; Destainville, Nicolas; Manghi, Manoel

    2014-08-01

    A model of lipid bilayers made of a mixture of two lipids with different average compositions on both leaflets, is developed. A Landau Hamiltonian describing the lipid-lipid interactions on each leaflet, with two lipidic fields ψ 1 and ψ 2, is coupled to a Helfrich one, accounting for the membrane elasticity, via both a local spontaneous curvature, which varies as C 0 + C 1(ψ 1 - ψ 2/2), and a bending modulus equal to κ 0 + κ 1(ψ 1 + ψ 2)/2. This model allows us to define curved patches as membrane domains where the asymmetry in composition, ψ 1 - ψ 2, is large, and thick and stiff patches where ψ 1 + ψ 2 is large. These thick patches are good candidates for being lipidic rafts, as observed in cell membranes, which are composed primarily of saturated lipids forming a liquid-ordered domain and are known to be thick and flat nano-domains. The lipid-lipid structure factors and correlation functions are computed for globally spherical membranes and planar ones and for a whole set of parameters including the surface tension and the coupling in the two leaflet compositions. Phase diagrams are established, within a Gaussian approximation, showing the occurrence of two types of Structure Disordered phases, with correlations between either curved or thick patches, and an Ordered phase, corresponding to the divergence of the structure factor at a finite wave vector. The varying bending modulus plays a central role for curved membranes, where the driving force κ 1 C 0 (2) is balanced by the line tension, to form raft domains of size ranging from 10 to 100 nm. For planar membranes, raft domains emerge via the cross-correlation with curved domains. A global picture emerges from curvature-induced mechanisms, described in the literature for planar membranes, to coupled curvature- and bending-induced mechanisms in curved membranes forming a closed vesicle.

  16. Geologic map of Big Bend National Park, Texas

    Science.gov (United States)

    Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.

    2011-01-01

    The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and

  17. Acoustic emission behavior under bending deformation of YBCO bulk superconductor

    International Nuclear Information System (INIS)

    Yoneda, K.; Ye, J.; Tomita, M.

    2005-01-01

    Bending tests were conducted on U-notched specimens cut from a YBCO bulk superconductor. Acoustic emission (AE) signals obtained under loading parallel or perpendicular to the c-axis were analyzed to investigate the correlation between crack growth behavior and the AE signals. As a result of analyzing log-log plots of strength (σ B ) versus total AE energy (ΣE AE ), a linear relationship was found between ΣE AE and σ B n . Cracks could be broadly divided into two types based on the value of n as an index of crack growth behavior. One type consisted of microcracks originating from cleavage planes and gas holes; these crack propagated parallel to the c-axis and had an n index value of approximately 0.7. The other type was a main crack that originated from the U-notch and had an n index value of approximately 6.5. A sample (A) loaded parallel to the c-axis showed mean bending strength of 74.8MPa. Cracks displaying two different growth patterns of n=0.7 and 6.5 were presented in this sample. Microcracks parallel to the c-axis occurred in the vicinity of 5-10MPa. This sample was characterized by mixed crack growth of a main crack and microcracks. A sample (B) loaded perpendicular to the c-axis displayed mean bending strength of 43MPa. A main crack occurred in the vicinity of 20MPa and displayed a single growth pattern of n=6.5. By analyzing AE signals in this way in the process of conducting a strength evaluation, it was possible to evaluate the failure process of the bulk superconductor in relation to the strength level induced by the applied load

  18. Nodular cast iron fatigue lifetime in cyclic plane bending

    Directory of Open Access Journals (Sweden)

    Marian Kokavec

    2012-05-01

    Full Text Available The fatigue behavior of a component is strongly dependent on the material and its surface condition. Therefore, the manner in which the surface is prepared during component manufacturing (surface roughness, residual stresses etc. has a decisive role in dictating the initiation time for fatigue cracks. The fatigue behavior of the same material, a nodular cast iron, with three different surface conditions (fine ground, sand blast and as-cast has been investigated under cyclic plane bending. The results show differences in fatigue strength, which are associated with the surface conditions. The characteristics of the surface layers of the different test specimens were examined by metallography.

  19. Experimental Method for Determining Forces at Bending of Perforated Plates

    Science.gov (United States)

    Pascu, Adrian; Oleksik, Mihaela; Avrigean, Eugen

    2017-12-01

    This paper describes the method of calculating the forces which appear at the bending of perforated plates with holes of different shapes and placed in different patterns, by means of a dynamometric table which uses resistive tensometric transducers (strain gauges). It also describes an instrument for the recording of data from the dynamometric table, a tool created with the aid of the "TestPoint" software which, beneath the data recording, ensures the filtering and statistic processing of data. The obtained results are displayed in comparative graphs for six types of perforated plates, as well as for an unperforated plate.

  20. Cancellation Effects in CSR Induced Bunch Transverse Dynamics in Bends

    International Nuclear Information System (INIS)

    Li, R.

    2002-01-01

    The partial cancellation between the effect of centrifugal space charge force on transverse bunch dynamics and the potential energy effect has been a long-standing controversial issue in the study of coherent synchrotron radiation (CSR) induced bunch dynamics in bends. In this paper, we clarify our definition of the ''centrifugal space charge force,'' and discuss the meaning of the ''cancellation effect'' and its general application. We further use simulation to demonstrate the cancellation in both steady state and transient regimes, and show the behavior of the effective transverse force

  1. Damping in coupled bending and torsion - An experiment

    Science.gov (United States)

    Umland, Jeffrey W.; Inman, Daniel J.; Banks, H. T.

    1991-01-01

    Traditional experimental modal testing methods are used to determine the damping properties of a Euler-Bernoulli beam with offset inertial tip mass. Both viscous and strain rate damping models are considered in bending and in torsion. A partial differential equation model of the coupled system is used. Eigenfunctions are derived for the coupled system by using a Green's function approach to derive the approximate uncoupled eigenfunctions. These eigenfunctions are used in a decoupled fashion with experimental modal data to estimate the damping parameters of the coupled system. The experimental modal data were obtained from both free and impulse responses using a combined translational and rotational accelerometer.

  2. Breathing, bubbling, and bending: DNA flexibility from multimicrosecond simulations

    Science.gov (United States)

    Zeida, Ari; Machado, Matías Rodrigo; Dans, Pablo Daniel; Pantano, Sergio

    2012-08-01

    Bending of the seemingly stiff DNA double helix is a fundamental physical process for any living organism. Specialized proteins recognize DNA inducing and stabilizing sharp curvatures of the double helix. However, experimental evidence suggests a high protein-independent flexibility of DNA. On the basis of coarse-grained simulations, we propose that DNA experiences thermally induced kinks associated with the spontaneous formation of internal bubbles. Comparison of the protein-induced DNA curvature calculated from the Protein Data Bank with that sampled by our simulations suggests that thermally induced distortions can account for ˜80% of the DNA curvature present in experimentally solved structures.

  3. Phipps Bend Nuclear Energy Project. Community impact assessment. Final report

    International Nuclear Information System (INIS)

    Snapp, P.C.; Teilhet, A.; Newsom, R.; Bond, M.; Garland, M.

    1977-01-01

    In late 1977, the Tennessee Valley Authority (TVA) proposed to build a 2 unit nuclear plant at Phipps Bend on the Holston River east of Surgoinsville, Tennessee. Total estimated cost is 1.6 billion dollars, with a generating capacity of 2,600,000 kilowatts. The facility will have an impact on Hawkins, Greene and Sullivan counties with 2,500 construction employees, a permanent work force of 300, increased availability of energy to stimulate new capital investment and the local government will need to deal with these. This report analyzed the facilities of each community in the impacted area and recommended certain action for infrastructure acquisition or improvements

  4. Experimental investigations on dynamic effects in impact notch bending tests

    International Nuclear Information System (INIS)

    Boehme, W.

    1985-06-01

    The dynamic behaviour of three point bending samples under impact stresses is examined experimentally. Various measuring processes, above all the shadow optics etching process are used. A quasi-static analysis is made by a simple spring/mass model to describe the stress behaviour quantitatively. Based on this, the dynamic effects in model experiments are measured quantitatively with dynamic correction functions and are discussed with reference to the wave processes in the sample. A systematic view of the effect of the many system parameters on the dynamic stress behaviour is obtained. Finally, examples show that the results of this model investigation can be transferred to other experimental conditions. (orig./HP) [de

  5. Bending Under Tension Test with Direct Friction Measurement

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.

    2006-01-01

    A special Bending-Under-Tension (BUT) transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all...... measured directly, thus enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication...... in drawing of stainless steel showing the influence of varying process conditions and the performance of different lubricants....

  6. A program to research emittance growth in bends

    International Nuclear Information System (INIS)

    Bohn, C.L.

    1996-01-01

    A research program to explore the phenomenon of emittance growth in bends due to noninertial space-charge effects has been defined and initiated. The program combines theoretical, numerical, and experimental investigations. This paper summarizes the motivation of the work and highlights CEBAF close-quote s need for immediate results. The program close-quote s key elements, some of which qualitatively differ from the standard approach used to investigate the production and effects of coherent synchrotron radiation in synchrotrons and storage rings, are enumerated and discussed. copyright 1996 American Institute of Physics

  7. Four point bending setup for characterization of semiconductor piezoresistance

    DEFF Research Database (Denmark)

    Richter, Jacob; Arnoldus, Morten Berg; Hansen, Ole

    2008-01-01

    characterization. As a proof of concept, we show measurements of the piezocoefficient pi44 in p-type silicon at three different doping concentrations in the temperature range from T=30 °C to T=80 °C. The extracted piezocoefficients are determined with an uncertainty of 1.8%. ©2008 American Institute of Physics...... bending fixture is manufactured in polyetheretherketon and a dedicated silicon chip with embedded piezoresistors fits in the fixture. The fixture is actuated by a microstepper actuator and a high sensitivity force sensor measures the applied force on the fixture and chip. The setup includes heaters...

  8. Compressed baryonic matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Jürgen Eschke

    2012-02-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the Facility for Antiproton and Ion Research (FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifcations of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/Fm, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45 AGeV. Hadronic, leptonic and photonic observables will be measured in a large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. This requires the development of novel detector systems, trigger and data acquisition concepts as well as in- novative real-time reconstruction techniques. A key observable of the physics program is a precise measurement of lowmass vector mesons and charmonium in their leptonic decay channel. In CBM, electrons will be identified using a gaseous RICH detector combined with several TRD detectors positioned after a system of silicon tracking stations which are located inside a magnetic dipole field. The concept of the RICH detector, results on R & D as well as feasibility studies and invariant mass distributions of charmonium will be discussed.

  9. The Compressed Baryonic Matter Experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Heuser J.M.

    2011-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the international research centre FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifications of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/m, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45A GeV. Hadronic, leptonic and photonic observables have to be measured with large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. Two versions of the experiment are being studied, optimized for either electron-hadron or muon identification, combined with silicon detector based charged-particle tracking and micro-vertex detection. The research programme will start at SIS-100 with ion beams between 2 and 11A GeV, and protons up to energies of 29 GeV using the HADES detector and an initial configuration of the CBM experiment. The CBM physics requires the development of novel detector systems, trigger and data acquisition concepts as well as innovative real-time reconstruction techniques. Progress with feasibility studies of the experiment and the development of its detector systems are discussed.

  10. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  11. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  12. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  13. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  14. Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion.

    Science.gov (United States)

    Maquer, Ghislain; Schwiedrzik, Jakob; Huber, Gerd; Morlock, Michael M; Zysset, Philippe K

    2015-02-01

    Computer tomography (CT)-based finite element (FE) models assess vertebral strength better than dual energy X-ray absorptiometry. Osteoporotic vertebrae are usually loaded via degenerated intervertebral discs (IVD) and potentially at higher risk under forward bending, but the influences of the IVD and loading conditions are generally overlooked. Accordingly, magnetic resonance imaging was performed on 14 lumbar discs to generate FE models for the healthiest and most degenerated specimens. Compression, torsion, bending, flexion and extension conducted experimentally were used to calibrate both models. They were combined with CT-based FE models of 12 lumbar vertebral bodies to evaluate the effect of disc degeneration compared to a loading via endplates embedded in a stiff resin, the usual experimental paradigm. Compression and lifting were simulated, load and damage pattern were evaluated at failure. Adding flexion to the compression (lifting) and higher disc degeneration reduces the failure load (8-14%, 5-7%) and increases damage in the vertebrae. Under both loading scenarios, decreasing the disc height slightly increases the failure load; embedding and degenerated IVD provides respectively the highest and lowest failure load. Embedded vertebrae are more brittle, but failure loads induced via IVDs correlate highly with vertebral strength. In conclusion, osteoporotic vertebrae with degenerated IVDs are consistently weaker-especially under lifting, but clinical assessment of their strength is possible via FE analysis without extensive disc modelling, by extrapolating measures from the embedded situation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Geometric Results for Compressible Magnetohydrodynamics

    OpenAIRE

    Arter, Wayne

    2013-01-01

    Recently, compressible magnetohydrodynamics (MHD) has been elegantly formulated in terms of Lie derivatives. This paper exploits the geometrical properties of the Lie bracket to give new insights into the properties of compressible MHD behaviour, both with and without feedback of the magnetic field on the flow. These results are expected to be useful for the solution of MHD equations in both tokamak fusion experiments and space plasmas.

  16. Compressive spectroscopy by spectral modulation

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Stern, Adrian

    2017-05-01

    We review two compressive spectroscopy techniques based on modulation in the spectral domain that we have recently proposed. Both techniques achieve a compression ratio of approximately 10:1, however each with a different sensing mechanism. The first technique uses a liquid crystal cell as a tunable filter to modulate the spectral signal, and the second technique uses a Fabry-Perot etalon as a resonator. We overview the specific properties of each of the techniques.

  17. Mechano sorptive behaviour of notched beams in bending

    DEFF Research Database (Denmark)

    Jensen, Signe Kamp; Hoffmeyer, Preben

    1996-01-01

    and by neglecting deformation due to shear. Compression stresses perpendicular to grain in excess of 6 MPa were found in the vicinity of the notch following a period of adsorption. Similarly, small tension stresses of the order 1 MPa were registered in this area when the specimens were at their most dry condition...

  18. Methods for determining the carrying capacity of eccentrically compressed concrete elements

    Directory of Open Access Journals (Sweden)

    Starishko Ivan Nikolaevich

    2014-04-01

    Full Text Available The author presents the results of calculations of eccentrically compressed elements in the ultimate limit state of bearing capacity, taking into account all possiblestresses in the longitudinal reinforcement from the R to the R , caused by different values of eccentricity longitudinal force. The method of calculation is based on the simultaneous solution of the equilibrium equations of the longitudinal forces and internal forces with the equilibrium equations of bending moments in the ultimate limit state of the normal sections. Simultaneous solution of these equations, as well as additional equations, reflecting the stress-strain limit state elements, leads to the solution of a cubic equation with respect to height of uncracked concrete, or with respect to the carrying capacity. According to the author it is a significant advantage over the existing methods, in which the equilibrium equations using longitudinal forces obtained one value of the height, and the equilibrium equations of bending moments - another. Theoretical studies of the author, in this article and the reasons to calculate specific examples showed that a decrease in the eccentricity of the longitudinal force in the limiting state of eccentrically compressed concrete elements height uncracked concrete height increases, the tension in the longitudinal reinforcement area gradually (not abruptly goes from a state of tension compression, and load-bearing capacity of elements it increases, which is also confirmed by the experimental results. Designed journalist calculations of eccentrically compressed elements for 4 cases of eccentric compression, instead of 2 - as set out in the regulations, fully cover the entire spectrum of possible cases of the stress-strain limit state elements that comply with the European standards for reinforced concrete, in particular Eurocode 2 (2003.

  19. AC loss characteristics of Bi-2223 HTS tapes under bending

    International Nuclear Information System (INIS)

    Kim, Hae-Joon; Kim, J.H.; Cho, J.W.; Sim, K.D.; Kim, S.; Oh, S.S.; Kwag, D.S.; Kim, H.J.; Bae, J.H.; Seong, K.C.

    2006-01-01

    Superconductor is developed for applications in high-power devices such as power-transmission cables, transformers, motors and generators. In such applications, HTS tapes are subjected to various kinds of stress or strain. AC loss is also important consideration for many large-scale superconducting devices. In the fabrication of the devices, the critical current (I c ) of the high temperature superconductor degrades due to many reasons including the tension applied by bending and thermal contraction. These mechanical loads reduce the I c of superconducting wire and the I c degradation affects the AC loss of the wire. The I c degradation and AC loss of Bi-2223 HTS tape were measured under tension and bending conditions at 77 K and self-field. Moreover, the frequency characteristics of AC loss was measured at the 30-480 Hz. As a result, self-field penetrates the deeper into the conductor at the lower frequency, which means higher self-field losses per cycle

  20. Large Eddy Simulation of Supercritical CO2 Through Bend Pipes

    Science.gov (United States)

    He, Xiaoliang; Apte, Sourabh; Dogan, Omer

    2017-11-01

    Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.

  1. Bending-Induced Giant Polarization in Ferroelectric MEMS Diaphragm

    KAUST Repository

    Wang, Zhihong

    2016-09-09

    The polarization induced by the strain gradient, i.e. the flexoelectric effect, has been observed in a micromachined Pb(Zr0.52Ti0.48)O3 (PZT) diaphragms. Applying air pressure to bend a flat diaphragm which initially does not exhibit any electromechanical coupling can induce a resonance peak in its impedance spectrum. This result supposes that bending, thus the strain gradient in the diaphragm causes polarization in PZT film. We also investigated the switching behaviors of the polarization in response to an external electric field in a bent diaphragm and further quantified the polarization induced by the strain gradient. The effective flexoelectric coefficient of the PZT film has been calculated as large as 2.0 × 10−4 C/m. A giant flexoelectric polarization of the order of 1 μC/cm2 was characterized which is of the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. The suggested explanation for the giant polarization is the large strain gradient in the diaphragm and the strain gradient induced reorientation of the polar nanodomains.

  2. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  3. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2015-01-01

    This book, now in a revised and updated second edition, explains the theory of special and general relativity in detail without approaching Einstein's life or the historical background. The text is formulated in such a way that the reader will be able to understand the essence intuitively, and new sections have been added on time machines, the twin paradoxes, and tensors. The first part of the book focuses on the essentials of special relativity. It explains the famous equivalence between mass and energy and tells why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies". General relativity is then addressed, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending under gravity. The climax of the book is the Einstein equation of gravity, which describes the way in which matter bends space-time. The read...

  4. Evaluation of bending moment and deflection of cantilever supported excavations

    Directory of Open Access Journals (Sweden)

    Seyed Hamid Yasrebi

    2017-11-01

    Full Text Available In many conditions, because of several restrictions, cantilever walls are the only way to stabilize the excavations. It is no doubt that one of the most important parameters in design of such walls is wall stiffness. Therefore, in this study, a large number of case histories are collected and the most commonly used range of wall thickness and stiffness are determined based on this database. In addition, validation of limit equilibrium method (LEM in granular soils showed that this method can only estimate bending moment of rigid walls. Therefore, for more accurate estimating, a new equation is presented for the most commonly used range of wall stiffness and various types of granular soils. Moreover, LEM based equation is replaced with a modified version. The new equation was successfully validated using 70 numerical models and results lied in range of 85% to 115% times the predicted values obtained from FEM. According to the results, in loose and very loose soils, the common cantilever walls can only stabilize the excavations with depth less than 10 m. While if depth is more than 15 m, soil type should be dense or very dense with “E” more than about 70 MPa. The results also show that the effect of wall stiffness is negligible in bending moments less than 2000 kN.m.

  5. Inertia and Double Bending of Light from Equivalence

    Science.gov (United States)

    Shuler, Robert L., Jr.

    2010-01-01

    Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.

  6. Bending continuous structures with SMAs: a novel robotic fish design.

    Science.gov (United States)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-12-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  7. A broadband low-reflection bending waveguide for airborne sound

    Science.gov (United States)

    Kan, Weiwei; Liang, Bin; Tian, Cong; Shen, Zhonghua; Cheng, Jianchun

    2017-06-01

    We design a bending waveguide capable to transmit broadband airborne sound with high efficiency while maintaining the wavefront undisturbed. Based on coordinate transformation, analytical formulae are derived to predict the parameter distribution of the required constituent materials composing the waveguide. A practical implementation is presented by employing acoustic metafluids that are formed with periodically arranged slabs of subwavelength dimensions in air-filled acoustic chambers. By studying the acoustic properties of the unit structures in the quasi-static limit, it is demonstrated that the effective mass density and bulk modulus of the proposed metamaterial can be modulated independently by tuning the geometry parameters and the temperature in the chamber. By virtue of the free-modulated features, the range of realizable effective parameters with metafluid are substantially broadened, and the corresponding acoustic impedance can be perfectly matched to the background medium. The performance of the bending waveguide is verified by demonstrating the low-reflection transmission of broadband sound and the ability of keeping the wavefront undisturbed. According to the effective medium theory, our scheme offers the flexibility to further raise the upper limit of the operating frequency with smaller size individual elements. The proposed design with the advantage of feasibility and effectiveness in broadband shows potential for a wide range of wave-steering applications.

  8. Bending continuous structures with SMAs: a novel robotic fish design

    International Nuclear Information System (INIS)

    Rossi, C; Colorado, J; Coral, W; Barrientos, A

    2011-01-01

    In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.

  9. Bending mode flutter in a transonic linear cascade

    Science.gov (United States)

    Govardhan, Raghuraman; Jutur, Prahallada

    2017-11-01

    Vibration related issues like flutter pose a serious challenge to aircraft engine designers. The phenomenon has gained relevance for modern engines that employ thin and long fan blade rows to satisfy the growing need for compact and powerful engines. The tip regions of such blade rows operate with transonic relative flow velocities, and are susceptible to bending mode flutter. In such cases, the flow field around individual blades of the cascade is dominated by shock motions generated by the blade motions. In the present work, a new transonic linear cascade facility with the ability to oscillate a blade at realistic reduced frequencies has been developed. The facility operates at a Mach number of 1.3, with the central blade being oscillated in heave corresponding to the bending mode of the rotor. The susceptibility of the blade to undergo flutter at different reduced frequencies is quantified by the cycle-averaged power transfer to the blade calculated using the measured unsteady load on the oscillating blade. These measurements show fluid excitation (flutter) at low reduced frequencies and fluid damping (no flutter) at higher reduced frequencies. Simultaneous measurements of the unsteady shock motions are done with high speed shadowgraphy to elucidate the differences in shock motions between the excitation and damping cases.

  10. Tectonic stress evolution in the Pan-African Lufilian Arc and its foreland (Katanga, DRC): orogenic bending, late orogenic extensional collapse and transition to rifting

    Science.gov (United States)

    Kipata, M. L.; Delvaux, D.; Sebagenzi, M. N.; Cailteux, J.; Sintubin, M.

    2012-04-01

    Between the paroxysm of the Lufilian orogeny at ~ 550 Ma and the late Neogene to Quaternary development of the south-western branch of the East African rift system, the tectonic evolution of the Lufilian Arc and Kundelungu foreland in the Katanga region of the Democratic Republic of Congo remains poorly unknown although it caused important Cu-dominated mineral remobilizations leading to world-class ore deposits. This long period is essentially characterized by brittle tectonic deformations that have been investigated by field studies in open mines spread over the entire arc and foreland. Paleostress tensors were computed for a database of 1450 fault-slip data by interactive stress tensor inversion and data subset separation, and the relative succession of 8 brittle deformation events established. The oldest brittle structures observed are related to the Lufilian brittle compressional climax (stage 1). They have been re-oriented during the orogenic bending that led to the arcuate shape of the belt. Unfolding the stress directions from the first stage allows to reconstruct a consistent NE-SW direction of compression for this stage. Constrictional deformation occurred in the central part of the arc, probably during orogenic bending (Stage 2). After the orogenic bending, a sequence of 3 deformation stages marks the progressive onset of late-orogenic extension: strike-slip deformations (stages 3-4) and late-orogenic arc-parallel extension (stage 5). It is proposed that these 3 stages correspond to orogenic collapse. In early Mesozoic, NW-SE compression was induced by a transpressional inversion, interpreted as induced by far-field stresses generated at the southern active margin of Gondwana (stage 6). Since then, this region was affected by rift-related extension, successively in a NE-SW direction (stage 7, Tanganyika trend) and NW-SE direction (stage 8, Moero trend).

  11. High-energy synchrotron X-ray diffraction measurements of simple bending of pseudoelastic NiTi shape memory alloy wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baozhuo; Young, Marcus L.

    2016-05-23

    Many technological applications of austenitic shape memory alloys (SMAs) involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity. In this paper, we investigated the effect of mechanical bending of pseudoelastic NiTi SMA wires using high-energy synchrotron radiation X-ray diffraction (SR-XRD). Differential scanning calorimetry was performed to identify the phase transformation temperatures. Scanning electron microscopy images show that micro-cracks in compressive regions of the wire propagate with increasing bend angle, while tensile regions tend not to exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (${\\bar 1}12$), (${\\bar 1}03$), (${\\bar 1}11$), and (101) planes, intensities and residual strain values exhibit strong anisotropy, depending upon whether the sample is in compression or tension during bending.

  12. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  13. 29 CFR 1917.154 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  14. Numerical method for the prediction of bending properties of glass-epoxy composites

    Directory of Open Access Journals (Sweden)

    Stamenović Marina R.

    2007-01-01

    Full Text Available Mechanical properties of composite materials are conditioned by their structure and depend on the characteristics of structural components. In this paper is presented a numerical model by which the bending properties can be predicted on the basis of known mechanical properties of tension and pressure. Determining the relationship between these properties is justified having in mind the mechanics of fracture during bending, where the fracture takes place on the outer layer which is subjected to bending while the break ends on the layer subjected to pressure. The paper gives the values of tension, pressure and bending properties obtained by the corresponding mechanical test. A comparison of the numerical results of bending properties obtained on the basis of the model with the experimental ones, shows their satisfactory agreement. Therefore, this model can be used for some future research to predict bending properties without experiments.

  15. Analysis of critical current-bend strain relationships in composite Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Luhman, T.; Welch, D.O.

    1979-01-01

    In order to be used successfully in fusion magnets, Nb 3 Sn conductors must meet several mechanical strain criteria, including tolerance to bending strains encountered during magnet construction. Since Nb 3 Sn is extremely brittle much information has been generated regarding the sensitivity of these conductros to tensile strain. A recent comparison of critical current-bend and tensile test data indicates that the strain required to initiate compound cracking during bending is significantly less than the strain required to do so by tensile of critical current on bending strains in monofilamentary Nb 3 Sn wires is calculated and compared with experimental data. The calculation takes into account a shift in the composite's neutral axis which occurs during bending. The analysis correctly predicts the observed depdndence of the critical current on bending strains

  16. Theoretical analysis on shear-bending deflection of a ring-shape piezoelectric plate

    Directory of Open Access Journals (Sweden)

    Zejun Yu

    2016-02-01

    Full Text Available In this paper, the electromechanical coupling field in shear-bending mode for a ring-shape piezoelectric plate was theoretically established. According to the classical small bending elastic plate theory and piezoelectric constitutive equations, the analytical solution to the bending deformation of the piezo-actuator under electric field and a concentrated or uniformly distributed mechanical load was achieved. The mechanism for generating bending deformation is attributed to axisymmetric shear strain, which further induces the bending deformation of the single ring-shape piezoelectric plate. This mechanism is significant different from that of piezoelectric bimorph or unimorph actuators reported before. Our analysis offers guidance for the optimum design of a ring-shape shear-bending piezo-actuator.

  17. Reflection and mode conversion of guided waves at bends in pipes

    Science.gov (United States)

    Aristégui, Christophe; Cawley, Peter; Lowe, Mike

    2000-05-01

    Cylindrical guided waves propagating along a pipe wall can be used in a long-range test for corrosion and other defects. This method has been successfully developed for the detection of corrosion in pipes and is now in commercial use. It has been found that in some cases, it is possible to test round a bend in the pipe, while in other cases, there is severe signal loss at the bend so the region beyond the bend cannot be inspected reliably. This paper presents a systematic study of the effect of bends on the transmission of the axially symmetric L(0, 2) mode. The effect of the bend radius to pipe diameter ratio on the reflection and transmission of the incident mode and mode conversion to other modes is studied using finite element analysis, and the results are verified with experiments on small bore copper pipes. The work therefore determines the conditions under which testing beyond a bend will be feasible.

  18. Evaluation of bending rigidity behaviour of ultrasonic seaming on woven fabrics

    Science.gov (United States)

    Şevkan Macit, Ayşe; Tiber, Bahar

    2017-10-01

    In recent years ultrasonic seaming that is shown as an alternative method to conventional seaming has been investigated by many researchers. In our study, bending behaviour of this alternative method is examined by changing various parameters such as fabric type, seam type, roller type and seaming velocity. For this purpose fifteen types of sewn fabrics were tested according to bending rigidity test standard before and after washing processes and results were evaluated through SPSS statistical analyze programme. Consequently, bending length values of the ultrasonically sewn fabrics are found to be higher than the bending length values of conventionally sewn fabrics and the effects of seam type on bending length are seen statistically significant. Also it is observed that bending length values are in relationship with the rest of the parameters excluding roller type.

  19. Numerical and experimental study on multi-pass laser bending of AH36 steel strips

    Science.gov (United States)

    Fetene, Besufekad N.; Kumar, Vikash; Dixit, Uday S.; Echempati, Raghu

    2018-02-01

    Laser bending is a process of bending of plates, small sized sheets, strips and tubes, in which a moving or stationary laser beam heats the workpiece to achieve the desired curvature due to thermal stresses. Researchers studied the effects of different process parameters related to the laser source, material and workpiece geometry on laser bending of metal sheets. The studies are focused on large sized sheets. The workpiece geometry parameters like sheet thickness, length and width also affect the bend angle considerably. In this work, the effects of width and thickness on multi-pass laser bending of AH36 steel strips were studied experimentally and numerically. Finite element model using ABAQUS® was developed to investigate the size effect on the prediction of the bend angle. Microhardness and flexure tests showed an increase in the flexural strength as well as microhardness in the scanned zone. The microstructures of the bent strips also supported the physical observations.

  20. Effect of Ovality in Inlet Pigtail Pipe Bends Under Combined Internal Pressure and In-Plane Bending for Ni-Fe-Cr B407 Material

    Directory of Open Access Journals (Sweden)

    Ramaswami P.

    2017-09-01

    Full Text Available The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h. By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.

  1. Single-molecule fluorescence resonance energy transfer shows uniformity in TATA binding protein-induced DNA bending and heterogeneity in bending kinetics.

    Science.gov (United States)

    Blair, Rebecca H; Goodrich, James A; Kugel, Jennifer F

    2012-09-25

    TATA binding protein (TBP) is a key component of the eukaryotic RNA polymerase II transcription machinery that binds to TATA boxes located in the core promoter regions of many genes. Structural and biochemical studies have shown that when TBP binds DNA, it sharply bends the DNA. We used single-molecule fluorescence resonance energy transfer (smFRET) to study DNA bending by human TBP on consensus and mutant TATA boxes in the absence and presence of TFIIA. We found that the state of the bent DNA within populations of TBP-DNA complexes is homogeneous; partially bent intermediates were not observed. In contrast to the results of previous ensemble studies, TBP was found to bend a mutant TATA box to the same extent as the consensus TATA box. Moreover, in the presence of TFIIA, the extent of DNA bending was not significantly changed, although TFIIA did increase the fraction of DNA molecules bound by TBP. Analysis of the kinetics of DNA bending and unbending revealed that on the consensus TATA box two kinetically distinct populations of TBP-DNA complexes exist; however, the bent state of the DNA is the same in the two populations. Our smFRET studies reveal that human TBP bends DNA in a largely uniform manner under a variety of different conditions, which was unexpected given previous ensemble biochemical studies. Our new observations led to us to revise the model for the mechanism of DNA binding by TBP and for how DNA bending is affected by TATA sequence and TFIIA.

  2. An evaluation of the sandwich beam compression test method for composites

    Science.gov (United States)

    Shuart, M. J.

    1981-01-01

    The sandwich beam in a four-point bending compressive test method for advanced composites is evaluated. Young's modulus and Poisson's ratio were obtained for graphite/polyimide beam specimens tested at 117 K, room temperature, and 589 K. Tensile elastic properties obtained from the specimens were assumed to be equal to the compressive elastic properties and were used in the analysis. Strain gages were used to record strain data. A three-dimensional finite-element model was used to examine the effects of the honeycomb core on measured composite mechanical properties. Results of the analysis led to the following conclusions: (1) a near uniaxial compressive stress state existed in the top cover and essentially all the compressive load was carried by the top cover; (2) laminate orientation, test temperature, and type of honeycomb core material were shown to affect the type of beam failure; and (3) the test method can be used to obtain compressive elastic constants over the temperature range 117 to 589 K.

  3. Reconciliation and interpretation of Big Bend National Park particulate sulfur source apportionment: results from the Big Bend Regional Aerosol and Visibility Observational Study--part I.

    Science.gov (United States)

    Schichtel, Bret A; Gebhart, Kristi A; Malm, William C; Barna, Michael G; Pitchford, Marc L; Knipping, Eladio M; Tombach, Ivar H

    2005-11-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) study was an intensive monitoring study from July through October 1999 followed by extensive assessments to determine the causes and sources of haze in Big Bend National Park, located in Southwestern Texas. Particulate sulfate compounds are the largest contributor of haze at Big Bend, and chemical transport models (CTMs) and receptor models were used to apportion the sulfate concentrations at Big Bend to North American source regions and the Carbón power plants, located 225 km southeast of Big Bend in Mexico. Initial source attribution methods had contributions that varied by a factor of > or =2. The evaluation and comparison of methods identified opposing biases between the CTMs and receptor models, indicating that the ensemble of results bounds the true source attribution results. The reconciliation of these differences led to the development of a hybrid receptor model merging the CTM results and air quality data, which allowed a nearly daily source apportionment of the sulfate at Big Bend during the BRAVO study. The best estimates from the reconciliation process resulted in sulfur dioxide (SO2) emissions from U.S. and Mexican sources contributing approximately 55% and 38%, respectively, of sulfate at Big Bend. The distribution among U.S. source regions was Texas, 16%; the Eastern United States, 30%; and the Western United States, 9%. The Carbón facilities contributed 19%, making them the largest single contributing facility. Sources in Mexico contributed to the sulfate at Big Bend on most days, whereas contributions from Texas and Eastern U.S. sources were episodic, with their largest contributions during Big Bend sulfate episodes. On the 20% of the days with the highest sulfate concentrations, U.S. and Mexican sources contributed approximately 71% and 26% of the sulfate, respectively. However, on the 20% of days with the lowest sulfate concentrations, Mexico contributed 48% compared with 40

  4. Perceptual Image Compression in Telemedicine

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  5. Bending Moment Decrease of Reinforced Concrete Beam Supported by Additional CFRP

    Directory of Open Access Journals (Sweden)

    Mykolas Daugevičius

    2011-04-01

    Full Text Available The calculation method of reinforced concrete beam with additional CFRP composite is proposed in this article. This method estimates tangential angular concrete deformations in tensioned beam layers between steel and bonded carbon fiber reinforced polymer. The horizontal slip of CFRP composite reduce beam bending moment capacity. An additional coefficient to reduce CFRP resultant force is necessary for better precision of bending moment capacity. Also, various calculation methods of bending moment capacity are considered. Article in Lithuanian

  6. Photoelastic investigation of the stresses in mitred bent-cylinders under bending, 2

    International Nuclear Information System (INIS)

    Sawa, Yoshiaki

    1984-01-01

    The states of stress distribution in mitred bend subjected to inplane uniform bending moment have been studied systematically by means of photoelastic stress freezing method. The relations between the stress concentration factor of fiber stress σsub(l) and of hoop stress σsub(theta) near the bent part and the angle of mitred bend are thoroughly investigated. The effects of fillet radius of the bent-part and wall thickness on the stress concentration factors are also discussed. (author)

  7. Mechanical behaviour of low-cost dynamic compression plates correlates with manufacturing quality standards.

    Science.gov (United States)

    Aluede, Edward; McDonald, Erik; Jergesen, Harry; Penoyar, Thomas; Calvert, Kayla

    2014-01-01

    This study compares the mechanical properties of low-cost stainless steel dynamic compression plates (DCPs) from developing-world manufacturers, adhering to varying manufacturing quality standards, with those of high-cost DCPs manufactured for use in the developed world. Standard-design ten-hole DCPs from six developing-world manufacturers and high-cost DCPs from two manufacturers in the developed world were studied. Nine plates from each manufacturer underwent mechanical testing: six in four-point monotonic bending to assess strength and stiffness and three in four-point bending fatigue. Statistical comparisons of the group means of monotonic bending test data were made, and a qualitative comparison was performed to assess failures in fatigue. Low-cost DCPs from manufacturers with at least one manufacturing quality standard had significantly higher bending strength and fewer failures in fatigue than did those from low-cost manufacturers with no recognised quality standards. High-cost DCPs demonstrated greater bending strength than did those in both low-cost groups. There were no differences in stiffness and fatigue failure between high-cost DCPs and those low-cost DCPs with quality standards. However, high-cost DCPs were significantly less stiff and had fewer fatigue failures than low-cost DCPs manufactured without such standards. Significant differences were found in the mechanical properties of ten-hole DCP plates from selected manufacturers in the developing and developed worlds. These differences correlated with reported quality certification in the manufacturing process. Mechanical analysis of low-cost implants may provide information useful in determining which manufacturers produce implants with the best potential for benefit relative to cost.

  8. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF ENERGY Research and Development Strategies for Compressed & Cryo- Compressed... Fuel Cell Technologies Program, will be hosting two days of workshops on compressed and cryo-compressed... perspectives, and overviews of carbon fiber development and recent costs analyses. The cryo-compressed hydrogen...

  9. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  10. Involvement of Sodium Nitroprusside (SNP in the Mechanism That Delays Stem Bending of Different Gerbera Cultivars

    Directory of Open Access Journals (Sweden)

    Aung H. Naing

    2017-11-01

    Full Text Available Longevity of cut flowers of many gerbera cultivars (Gerbera jamesonii is typically short because of stem bending; hence, stem bending that occurs during the early vase life period is a major problem in gerbera. Here, we investigated the effects of sodium nitroprusside (SNP on the delay of stem bending in the gerbera cultivars, Alliance, Rosalin, and Bintang, by examining relative fresh weight, bacterial density in the vase solution, transcriptional analysis of a lignin biosynthesis gene, antioxidant activity, and xylem blockage. All three gerbera cultivars responded to SNP by delaying stem bending, compared to the controls; however, the responses were dose- and cultivar-dependent. Among the treatments, SNP at 20 mg L-1 was the best to delay stem bending in Alliance, while dosages of 10 and 5 mg L-1 were the best for Rosalin and Bintang, respectively. However, stem bending in Alliance and Rosalin was faster than in Bintang, indicating a discrepancy influenced by genotype. According to our analysis of the role of SNP in the delay of stem bending, the results revealed that SNP treatment inhibited bacterial growth and xylem blockage, enhanced expression levels of a lignin biosynthesis gene, and maintained antioxidant activities. Therefore, it is suggested that the cause of stem bending is associated with the above-mentioned parameters and SNP is involved in the mechanism that delays stem bending in the different gerbera cultivars.

  11. Evaluation of cold bending and mechanical properties of helical (SAWH) and longitudinal (SAWL) seam pipes

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Gilmar Zacca; Sanandres, Simon Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Pipeline Engineering Division; Pinto, Percy Saavedra; Mello, Marcelo [Tubos Soldados Atlantico, Sao Paulo, SP (Brazil)

    2009-07-01

    The present work is a part of a comprehensive program that aims to evaluate the helical seam pipe application in pipeline construction and compare with the traditional longitudinal seam pipe that have been used in Brazil. One of the biggest concerns is the cold bending process once the Brazilian land profile is very sinuous, different than other countries where helical seam pipes have been used successfully. At this work, two pipes were used, one helical seam and one longitudinal seam, both API 5L X70 with 28 inch of diameter and 0.469 inch wall thickness. The results of cold bending tests comparing both types of pipe and the mechanical properties from the straight pipe with the bend section are shown. The research methodology includes dimensional analysis, microstructural evaluation and mechanical tests that were performed on the straight pipe and bend areas. The cold bending parameters used to obtain a bend according the design and construction standards requirements are also presented. The results showed that the cold bending process produces a helical seam pipe bend with the most critical radius allowed by the standards, without presenting any evidence of wrinkles, out-of-roundness above the limits or any type of mechanical damage. Both pipes tested met the standards requirements in terms of bending and mechanical properties. The results of this study provide technical information for future helical seam pipe application in Brazil. (author)

  12. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Directory of Open Access Journals (Sweden)

    Khaled Elgeneidy

    2018-02-01

    Full Text Available This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices.

  13. Light bending by nonlinear electrodynamics under strong electric and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Young; Lee, Taekoon, E-mail: jykim@kunsan.ac.kr, E-mail: tlee@kunsan.ac.kr [Department of Physics, Kunsan National University, Daihakro 558, Kunsan 573-701 (Korea, Republic of)

    2011-11-01

    We calculate the bending angles of light under the strong electric and magnetic fields by a charged black hole and a magnetized neutron star according to the nonlinear electrodynamics of Euler-Heisenberg interaction. The bending angle of light by the electric field of charged black hole is computed from geometric optics and a general formula is derived for light bending valid for any orientation of the magnetic dipole. The astronomical significance of the light bending by magnetic field of a neutron star is discussed.

  14. Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting

    Science.gov (United States)

    Wu, Fengqin; Han, Dezhuan; Hu, Xinhua; Liu, Xiaohan; Zi, Jian

    2009-05-01

    We show theoretically that a complete band gap for surface plasmon-polaritons (SPPs) can exist in a flat metal surface coated with a two-dimensional periodic array of dielectric cylinders. Based on the SPP band gap, gap-governed SPP waveguides, bends and splitters at telecom wavelengths can be achieved by introducing line defects. Numerical simulations show that the proposed SPP waveguides have a very low loss, while SPP bends and splitters can bend and split guided SPPs efficiently. The proposed SPP waveguides, bends and splitters could thus be exploited to construct compact integrated optical circuits in the emerging field of plasmonics.

  15. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2016-01-01

    Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black......, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block...

  16. Plasma heating by adiabatic compression

    International Nuclear Information System (INIS)

    Ellis, R.A. Jr.

    1972-01-01

    These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)

  17. Compressibility effects in planar wakes

    Science.gov (United States)

    Hickey, Jean-Pierre; Hussain, Fazle; Wu, Xiaohua

    2010-11-01

    Far-field, temporally evolving planar wakes are studied by DNS to evaluate the effect of compressibility on the flow. A high-order predictor-corrector code was developed and fully validated against canonical compressible test cases. In this study, wake simulations are performed at constant Reynolds number for three different Mach numbers: Ma= 0.2, 0.8 and 1.2. The domain is doubly periodic with a non-reflecting boundary in the cross-flow and is initialized by a randomly perturbed laminar profile. The compressibility of the flow modifies the observed structures which show greater three-dimensionality. A self-similar period develops in which the square of the wake half-width increase linearly with time and the Reynolds stress statistics at various times collapse using proper scaling parameters. The growth-rate increases with increasing compressibility of the flow: an observation which is substantiated by experimental results but is in stark contrast with the high-speed mixing-layer. As the growth-rate is related to the mixing ability of the flow, the impact of compressibility is of fundamental importance. Therefore, we seek an explanation of the modified growth-rate by investigating the turbulent kinetic energy equation. From the analysis, it can be conjectured that the pressure-strain term might play a role in the modified growth-rate.

  18. Radiologic image compression -- A review

    International Nuclear Information System (INIS)

    Wong, S.; Huang, H.K.; Zaremba, L.; Gooden, D.

    1995-01-01

    The objective of radiologic image compression is to reduce the data volume of and to achieve a lot bit rate in the digital representation of radiologic images without perceived loss of image quality. However, the demand for transmission bandwidth and storage space in the digital radiology environment, especially picture archiving and communication systems (PACS) and teleradiology, and the proliferating use of various imaging modalities, such as magnetic resonance imaging, computed tomography, ultrasonography, nuclear medicine, computed radiography, and digital subtraction angiography, continue to outstrip the capabilities of existing technologies. The availability of lossy coding techniques for clinical diagnoses further implicates many complex legal and regulatory issues. This paper reviews the recent progress of lossless and lossy radiologic image compression and presents the legal challenges of using lossy compression of medical records. To do so, the authors first describe the fundamental concepts of radiologic imaging and digitization. Then, the authors examine current compression technology in the field of medical imaging and discuss important regulatory policies and legal questions facing the use of compression in this field. The authors conclude with a summary of future challenges and research directions. 170 refs

  19. An analytical study of double bend achromat lattice

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali Akbar, E-mail: fakhri@rrcat.gov.in; Kant, Pradeep; Singh, Gurnam; Ghodke, A. D. [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-03-15

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  20. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2013-01-01

    This book explains the theory of special and general relativity in detail, without digressions such as information on Einstein's life or the historical background. However, complicated calculations are replaced with figures and thought experiments, the text being formulated in such a way that the reader will be able to understand the gist intuitively. The first part of the book focuses on the essentials of special relativity. Explanations are provided of the famous equivalence between mass and energy and of why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies", simply because besides the speed of light, the electric charge itself is also absolute, leading to the relativity of other physical quantities. General relativity is then introduced, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending und...