WorldWideScience

Sample records for compression ignition sici

  1. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  2. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  3. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  4. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  5. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2014-09-01

    Full Text Available A rapid compression machine (RCM test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution ratio of 35% to 65%. A new type of hydraulic piston is used to address the problem in which the hydraulic buffer adversely affects the rapid compression process. Auto-ignition performance tests of the RCM are then performed using a DME–O2–N2 mixture. The two-stage ignition delay and negative temperature coefficient (NTC behavior of the mixture are observed. The effects of driving gas pressure, compression ratio, initial pressure, and nitrogen dilution ratio on the two-stage ignition delay are investigated. Results show that both the first-stage and overall ignition delays tend to increase with increasing driving gas pressure. The driving gas pressure within a certain range does not significantly influence the compressed pressure. With increasing compression ratio, the first-stage ignition delay is shortened, whereas the second-stage ignition delay is extended. With increasing initial pressure, both the first-stage and second-stage ignition delays are shortened. The second-stage ignition delay is shortened to a greater extent than that of the first-stage. With increasing nitrogen dilution ratio, the first-stage ignition delay is shortened, whereas the second-stage is extended. Thus, overall ignition delay presents different trends under various compression ratios and compressed pressure conditions.

  6. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  7. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    OpenAIRE

    Qiang Zhang; Wuqiang Long; Jiangping Tian; Yicong Wang; Xiangyu Meng

    2014-01-01

    In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI) for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature j...

  8. Ohmic ignition of Neo-Alcator tokamak with adiabatic compression

    International Nuclear Information System (INIS)

    Inoue, Nobuyuki; Ogawa, Yuichi

    1992-01-01

    Ohmic ignition condition on axis of the DT tokamak plasma heated by minor radius and major radius adiabatic compression is studied assuming parabolic profiles for plasma parameters, elliptic plasma cross section, and Neo-Alcator confinement scaling. It is noticeable that magnetic compression reduces the necessary total plasma current for Ohmic ignition device. Typically in compact ignition tokamak of the minor radius of 0.47 m, major radius of 1.5 m and on-axis toroidal field of 20 T, the plasma current of 6.8 MA is sufficient for compression plasma, while that of 11.7 MA is for no compression plasma. Another example with larger major radius is also described. In such a device the large flux swing of Ohmic transformer is available for long burn. Application of magnetic compression saves the flux swing and thereby extends the burn time. (author)

  9. Prechamber Compression-Ignition Engine Performance

    Science.gov (United States)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  10. Influence of several factors on ignition lag in a compression-ignition engine

    Science.gov (United States)

    Gerrish, Harold C; Voss, Fred

    1932-01-01

    This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.

  11. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad; Bakor, Radwan; AlRamadan, Abdullah; Almansour, Mohammed; Sim, Jaeheon; Ahmed, Ahfaz; Viollet, Yoann; Chang, Junseok

    2018-01-01

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  12. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad

    2018-04-03

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  13. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    Science.gov (United States)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  14. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    Science.gov (United States)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  15. Confinement requirements for OHMIC-compressive ignition of a Spheromak plasma

    International Nuclear Information System (INIS)

    Olson, R.; Gilligan, J.; Miley, G.

    1980-01-01

    The Moving Plasmoid Reactor (MPR) is an attractive alternative magnetic fusion scheme in which Spheromak plasmoids are envisioned to be formed, compressed, burned, and expanded as the plasmoids translate through a series of linear reactor modules. Although auxiliary heating of the plasmoids may be possible, the MPR scenario would be especially interesting if ohmic decay and compression along were sufficient to heat the plasmoids to an ignition temperature. In the present work, we will study the transport conditions under which a Spheromak plasmoid could be expected to reach ignition via a combination of ohmic and compression heating

  16. Confinement requirements for ohmic-compressive ignition of a Spheromak plasma

    International Nuclear Information System (INIS)

    Olson, R.E.; Miley, G.H.

    1981-01-01

    The Moving Plasmoid Reactor (MPR) is an attractive alternative magnetic fusion scheme in which Spheromak plasmoids are envisioned to be formed, compressed, burned, and expanded as the plasmoids translate through a series of linear reactor modules. Although auxiliary heating of the plasmoids may be possible, the MPR scenario would be especially interesting if ohmic decay and compression alone is sufficient to heat the plasmoids to an ignition temperature. In the present work, we examine the transport conditions under which a Spheromak plasmoid can be expected to reach ignition via a combination of ohmic and compression heating

  17. Optimization of operating conditions in the early direct injection premixed charge compression ignition regime

    NARCIS (Netherlands)

    Boot, M.D.; Luijten, C.C.M.; Rijk, E.P.; Albrecht, B.A.; Baert, R.S.G.

    2009-01-01

    Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a

  18. Neutral-beam requirements for compression-boosted ignited tokamak plasmas

    International Nuclear Information System (INIS)

    Cohn, D.R.; Jassby, D.L.; Kreischer, K.

    1977-12-01

    Neutral-beam energies of 200 to 500-keV D 0 may be required to insure adequate penetration into the center of ignition-sized tokamak plasmas. However, the beam energy requirement can be reduced by using a start-up scenario in which the final plasma is formed by major-radius compression of a beam-heated plasma whose density-radius product, na, is determined by satisfactory neutral-beam penetration. ''Compression boosting'' is attractive only for plasmas in which ntau/sub E/ increases with na, because a major-radius compression C increases na by C 3 / 2 . The dependence on C of beam energy and beam power for plasmas which obey ''empirical scaling laws'' of the type ntau/sub E/ varies as (na) 2 is analyzed. The dependences on C of stored magnetic energy and TF-coil power dissipation are also determined. It is found that a compression ratio of 1.5 to attain the ignited plasma permits adequate penetration by 150-keV D 0 beams

  19. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  20. Using gasoline in an advanced compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, R.F.; Ariztegui, J.; Dubois, T.; Hamje, H.D.C.; Pellegrini, L.; Rickeard, D.J.; Rose, K.D. [CONCAWE, Brussels (Belgium); Heuser, B. [RWTH Aachen Univ. (Germany). Inst. for Combustion Engines; Schnorbus, T.; Kolbeck, A.F. [FEV GmbH, Aachen (Germany)

    2013-06-01

    Future vehicles will be required to improve their efficiency, reduce both regulated and CO{sub 2} emissions, and maintain acceptable driveability, safety, and noise. To achieve this overall performance, they will be configured with more advanced hardware, sensors, and control technologies that will also enable their operation on a broader range of fuel properties. Fuel flexibility has already been demonstrated in previous studies on a compression ignition bench engine and a demonstration vehicle equipped with an advanced engine management system, closed-loop combustion control, and air-path control strategies. An unresolved question is whether engines of this sort can also operate on market gasoline while achieving diesel-like efficiency and acceptable emissions and noise levels. In this study, a compression ignition bench engine having a higher compression ratio, optimised valve timing, advanced engine management system, and flexible fuel injection could be operated on a European gasoline over full to medium part loads. The combustion was sensitive to EGR rates, however, and optimising all emissions and combustion noise was a considerable challenge at lower loads. (orig.)

  1. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  2. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  3. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    Science.gov (United States)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  4. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  5. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  6. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  7. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad; Viollet, Yoann; Elwardani, Ahmed Elsaid; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have

  8. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...... were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio depended on the equivalence ratio used. A lower equivalence ratio requires a higher compression ratio...... before the fuel is burned completely, due to lower in-cylinder temperatures and lower reaction rates. The study provided some insight in the importance of operating at the correct compression ratio, as well as the operational limitations and emission characteristics of HCCI combustion. HCCI combustion...

  9. Gasoline compression ignition approach to efficient, clean and affordable future engines

    KAUST Repository

    Kalghatgi, Gautam

    2017-04-03

    The worldwide demand for transport fuels will increase significantly but will still be met substantially (a share of around 90%) from petroleum-based fuels. This increase in demand will be significantly skewed towards commercial vehicles and hence towards diesel and jet fuels, leading to a probable surplus of lighter low-octane fuels. Current diesel engines are efficient but expensive and complicated because they try to reduce the nitrogen oxide and soot emissions simultaneously while using conventional diesel fuels which ignite very easily. Gasoline compression ignition engines can be run on gasoline-like fuels with a long ignition delay to make low-nitrogen-oxide low-soot combustion very much easier. Moreover, the research octane number of the optimum fuel for gasoline compression ignition engines is likely to be around 70 and hence the surplus low-octane components could be used without much further processing. Also, the final boiling point can be higher than those of current gasolines. The potential advantages of gasoline compression ignition engines are as follows. First, the engine is at least as efficient and clean as current diesel engines but is less complicated and hence could be cheaper (lower injection pressure and after-treatment focus on control of carbon monoxide and hydrocarbon emissions rather than on soot and nitrogen oxide emissions). Second, the optimum fuel requires less processing and hence would be easier to make in comparison with current gasoline or diesel fuel and will have a lower greenhouse-gas footprint. Third, it provides a path to mitigate the global demand imbalance between heavier fuels and lighter fuels that is otherwise projected and improve the sustainability of refineries. The concept has been well demonstrated in research engines but development work is needed to make it feasible on practical vehicles, e.g. on cold start, adequate control of exhaust carbon monoxide and hydrocarbons and control of noise at medium to high loads

  10. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  11. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    Science.gov (United States)

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  12. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-01-15

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  13. Development of a simulation model for compression ignition engine running with ignition improved blend

    Directory of Open Access Journals (Sweden)

    Sudeshkumar Ponnusamy Moranahalli

    2011-01-01

    Full Text Available Department of Automobile Engineering, Anna University, Chennai, India. The present work describes the thermodynamic and heat transfer models used in a computer program which simulates the diesel fuel and ignition improver blend to predict the combustion and emission characteristics of a direct injection compression ignition engine fuelled with ignition improver blend using classical two zone approach. One zone consists of pure air called non burning zone and other zone consist of fuel and combustion products called burning zone. First law of thermodynamics and state equations are applied in each of the two zones to yield cylinder temperatures and cylinder pressure histories. Using the two zone combustion model the combustion parameters and the chemical equilibrium composition were determined. To validate the model an experimental investigation has been conducted on a single cylinder direct injection diesel engine fuelled with 12% by volume of 2- ethoxy ethanol blend with diesel fuel. Addition of ignition improver blend to diesel fuel decreases the exhaust smoke and increases the thermal efficiency for the power outputs. It was observed that there is a good agreement between simulated and experimental results and the proposed model requires low computational time for a complete run.

  14. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.

  15. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M.

    2014-01-01

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3 He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3 He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R cm ) from the downshift of the shock-produced D 3 He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR

  16. Fuel octane effects in the partially premixed combustion regime in compression ignition engines

    NARCIS (Netherlands)

    Hildingsson, L.; Kalghatgi, G.T.; Tait, N.; Johansson, B.H.; Harrison, A.

    2009-01-01

    Previous work has showed that it may be advantageous to use fuels of lower cetane numbers compared to today's diesel fuels in compression ignition engines. The benefits come from the longer ignition delays that these fuels have. There is more time available for the fuel and air to mix before

  17. LES/FMDF of turbulent jet ignition in a rapid compression machine

    Science.gov (United States)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  18. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  19. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  20. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Gaurav [Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States); Raju, Mandhapati P. [General Motor R and D Tech Center, Warren, MI 48090 (United States); Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluid dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)

  1. Controlled auto-ignition characteristics of methane-air mixture in a rapid intake compression and expansion machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyubaek; Jeong, Dongsoo [Engine Research Team, Eco-Machinery Research Division, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-701 (Korea); Moon, Gunfeel [Department of Clean Environmental system, University of Science and Technology, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea); Bae, Choongsik [Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2010-10-15

    The characteristics of controlled auto-ignition (CAI) were investigated with a methane-air mixture and simulated residual gas, that represents internal exhaust gas recirculation (IEGR). Supply systems were additionally installed on the conventional rapid compression machine (RCM), and this modified machine - a rapid intake compression and expansion machine (RICEM) - was able to simulate an intake stroke for the evaluation of controlled auto-ignition with fuel-air mixture. The fuel-air mixture and the simulated residual gas were introduced separately into the combustion chamber through the spool valves. Various IEGR rates and temperatures of the IEGR gas were tested. The initial reaction and the development in controlled auto-ignition combustion were compared with spark-ignited combustion by visualization with a high-speed digital camera. Under the controlled auto-ignition operation, multi-point ignition and faster combustion were observed. With increasing the temperature of IEGR gas, the auto-ignition timing was advanced and burning duration was shortened. The higher rate of IEGR had the same effects on the combustion of the controlled auto-ignition. However, this trend was reversed with more than 47 per cent of IEGR. (author)

  2. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-11

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF

  3. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    International Nuclear Information System (INIS)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-01-01

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10 4 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities

  4. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

    OpenAIRE

    Hao Liu; Hongguang Zhang; Zhicheng Shi; Haitao Lu; Guangyao Zhao; Baofeng Yao

    2014-01-01

    A rapid compression machine (RCM) test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution ratio of 35% to 65%. A new type of hydraulic piston is used to address the problem in which the hydraul...

  5. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  6. A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions

    International Nuclear Information System (INIS)

    Kavuri, Chaitanya; Paz, Jordan; Kokjohn, Sage L.

    2016-01-01

    Highlights: • Targeting high load-low speed, optimizations of RCCI and GCI strategies were performed. • The two strategies were compared in terms of performance, controllability and stability. • The optimum cases had high gross indicated efficiency (∼47%) and low NOx emissions. • RCCI strategy showed better combustion control but had higher soot emissions. • GCI strategy was relatively more sensitive to fluctuations in charge conditions. - Abstract: Past research has shown that Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) combustion are promising approaches to improve efficiency and reduce pollutant emissions. However, the benefits have generally been confined to mid-load operating conditions. To enable practical application, these approaches must be able to operate over the entire engine map. A particularly challenging area is high load, low speed operation. Accordingly, the present work uses detailed CFD modeling and engine experiments to compare RCCI and GCI combustion strategies at a high load, low speed condition. Computational optimizations of RCCI and GCI combustion were performed at 20 bar gross indicated mean effective pressure (IMEP) and 1300 rev/min. The optimum points from the two combustion strategies were verified using engine experiments and were used to make the comparisons between RCCI and GCI combustion. The comparison showed that both the strategies had very similar combustion characteristics with a near top dead center injection initiating combustion. A parametric study was performed to identify the key input parameters that control combustion for the RCCI and GCI strategies. For both strategies, the combustion phasing could be controlled by the start of injection (SOI) timing of the near TDC injection. The short ignition delay of diesel fuel gave the RCCI strategy better control over combustion than the GCI strategy, but also had a simultaneous tradeoff with soot emissions. With the GCI

  7. THE EFFECT OF VARIABLE COMPRESSION RATIO ON FUEL CONSUMPTION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2002-02-01

    Full Text Available Due to lack of energy sources in the world, we are obliged to use our current energy sources in the most efficient way. Therefore, in the automotive industry, research works to manufacture more economic cars in terms of fuelconsumption and environmental friendly cars, at the same time satisfying the required performance have been intensively increasing. Some positive results have been obtained by the studies, aimed to change the compression ratio according to the operating conditions of engine. In spark ignition engines in order to improve the combustion efficiency, fuel economy and exhaust emission in the partial loads, the compression ratio must be increased; but, under the high load and low speed conditions to prevent probable knock and hard running compression ratio must be decreased slightly. In this paper, various research works on the variable compression ratio with spark ignition engines, the effects on fuel economy, power output and thermal efficiency have been investigated. According to the results of the experiments performed with engines having variable compression ratio under the partial and mid-load conditions, an increase in engine power, a decrease in fuel consumption, particularly in partial loads up to 30 percent of fuel economy, and also severe reductions of some exhaust emission values were determined.

  8. Application of Dimethyl Ether in Compression Ignition Engines

    DEFF Research Database (Denmark)

    Hansen, Kim Rene

    -Marathon. The diesel engine test results from 1995 showed that DME is a superb diesel fuel. DME is easy to ignite by compression ignition and it has a molecular structure that results in near-zero emission of particulates when burned. These are features of a fuel that are highly desirable in a diesel engine....... The challenges with DME as a diesel engine fuel are mainly related to poor lubricity and incompatibility with a range of elastomers commonly used for seals in fuel injection systems. This means that although DME burns well in a diesel engine designing a fuel injection system for DME is challenging. Since...... then studies have revealed that the injection pressure for DME does not have to be as high as with diesel to achieve satisfactory performance. This opens for a larger range of possibilities when designing injection systems. In the period from 2004 to 2009 the DME engine was perfected for use in the car DTU...

  9. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Korakianitis, T.; Namasivayam, A.M.; Crookes, R.J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2011-02-15

    Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO{sub x}) emissions, while producing lower emissions of carbon dioxide (CO{sub 2}), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO{sub x} emissions. High NO{sub x} emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO{sub x} and CO{sub 2} emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is

  10. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  11. Approaches to Improve Mixing in Compression Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Boot, M.D.

    2010-04-20

    This thesis presents three approaches to suppress soot emissions in compression ignition (CI) engines. First, a fuel chemistry approach is proposed. A particular class of fuels - cyclic oxygenates - is identified which is capable of significantly reducing engine-out soot emissions. By means of experiments in 'closed' and optical engines, as well as on an industrial burner, two possible mechanisms are identified that could account for the observed reduction in soot: a) an extended ignition delay (ID) and b) a longer flame lift-length (FLoL). Further analysis of the available data suggests that both mechanisms are related to the inherently low reactivity of the fuel class in question. These findings are largely in line with data found in literature. In the second approach, it is attempted to reduce soot by adopting an alternative combustion concept: early direct injection premixed charge compression ignition (EDI PCCI). In this concept, fuel is injected relatively early in the compression stroke instead of conventional, close to top-dead-center (TDC), injection schemes. While the goal of soot reduction can indeed be achieved via this approach, an important drawback must be addressed before this concept can be considered practically viable. Due to the fact that combustion chamber temperature and pressure is relatively low early in the compression stroke, fuel impingement against the cylinder liner (wall-wetting) often occurs. Consequently, high levels of unburned hydrocarbons (UHC), oil dilution and poor efficiency are observed. Several strategies, combining a limited engine modification with dedicated air management and fueling settings, are investigated to tackle this drawback. All of these strategies, and especially their combination, resulted in significantly lower UHC emissions and improved fuel economy. Although UHC emissions are typically a tell-tale sign of wall-wetting, as mentioned earlier, the relation between these two has long been hypothetical

  12. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  13. Numerical parametric investigations of a gasoline fuelled partially-premixed compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Arash [Islamic Azad University, Miyaneh Branch, Miyaneh (Iran, Islamic Republic of); Khalilarya, Shahram; Jafarmadar, Samad; Khatamenjhad, Hassan [Department of Mechanical Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Fathi, Vahid [Islamic Azad University, Ajagshir Branch, Ajabshir (Iran, Islamic Republic of)

    2011-07-01

    Parametric studies of a heavy duty direct injection (DI) gasoline fueled compression ignition (CI) engine combustion are presented. Gasoline because of its higher ignition delay has much lower soot emission in comparison with diesel fuel. Using double injection strategy reduces the maximum heat release rate that leads to nitrogen oxides (NOx) emission reduction. A three dimensional computational fluid dynamics (CFD) code was employed and compared with experimental data. The model results show a good agreement with experimental data. The effect of injection characteristics such as, injection duration, main SOI timing, and nozzle hole size investigated on combustion and emissions.

  14. Homogeneous Charge Compression Ignition Combustion: Challenges and Proposed Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Izadi Najafabadi

    2013-01-01

    Full Text Available Engine and car manufacturers are experiencing the demand concerning fuel efficiency and low emissions from both consumers and governments. Homogeneous charge compression ignition (HCCI is an alternative combustion technology that is cleaner and more efficient than the other types of combustion. Although the thermal efficiency and NOx emission of HCCI engine are greater in comparison with traditional engines, HCCI combustion has several main difficulties such as controlling of ignition timing, limited power output, and weak cold-start capability. In this study a literature review on HCCI engine has been performed and HCCI challenges and proposed solutions have been investigated from the point view of Ignition Timing that is the main problem of this engine. HCCI challenges are investigated by many IC engine researchers during the last decade, but practical solutions have not been presented for a fully HCCI engine. Some of the solutions are slow response time and some of them are technically difficult to implement. So it seems that fully HCCI engine needs more investigation to meet its mass-production and the future research and application should be considered as part of an effort to achieve low-temperature combustion in a wide range of operating conditions in an IC engine.

  15. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    International Nuclear Information System (INIS)

    Sawada, H.; Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S.; Shiroto, T.; Ohnishi, N.; Sunahara, A.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.

    2016-01-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm"2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  16. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H. [Department of Physics, University of Nevada Reno, Reno, Nevada 89557 (United States); Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Shiroto, T.; Ohnishi, N. [Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi (Japan); Sunahara, A. [Institute of Laser Technology, Nishi-ku, Osaka (Japan); Beg, F. N. [University of California San Diego, La Jolla, California 92093 (United States); Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Pérez, F. [LULI, Ecole Polytechnique, Palaiseau, Cedex (France); Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  17. Compression ignition of light naphtha and its multicomponent surrogate under partially premixed conditions

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, B.; Chang, J.; Sarathy, M.; Johansson, B.

    2017-01-01

    Light naphtha is the light distillate from crude oil and can be used in compression ignition (CI) engines; its low boiling point and octane rating (RON = 64.5) enable adequate premixing. This study investigates the combustion characteristics of light naphtha (LN) and its multicomponent surrogate

  18. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  19. Over compression influence to the performances of the spark ignition engines

    Science.gov (United States)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  20. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    Science.gov (United States)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  1. Use of a non-edible vegetable oils as an alternative fuel in compression ignition engines

    International Nuclear Information System (INIS)

    Jayaraj, S.; Ramadhas, A.S.; Muraleedharan, C.

    2006-01-01

    Shortage of petroleum fuels is assumed predominance globally and hence efforts are being made in every country to look for alternative fuels, especially for running internal compression ignition engines. However, the limited availability of edible vegetable oils in excess amounts is a limiting factors, which limits their large usage as an alternative fuel. A remedy for this is the use of non-edible oils obtained mainly from seeds, which are otherwise dumped as waste material. An effort is made here to use rubber seed oil as fuel in compression ignition engine at various proportions, mixed with diesel oil. The performance and emission characteristics of the engine are measured under dual fuel operation. The compression ignition engine could be run satisfactorily without any noticeable problem, even with 100% rubber seed oil. A multi-layer artificial neural network model was developed for predicting the performance and emission characteristics of the engine under dual fuel operation. Experimental data has been used to train the network. The predicted engine performance and emission characteristics obtained by neural network model are validated by using the experimental data. The neural network model is found to be quite efficient in predicting engine performance and emission characteristics. It has been found that 60-80% diesel replacement by rubber seed oil is the optimum in order to get maximum engine performance and minimum exhaust emission

  2. Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

    KAUST Repository

    Vallinayagam, R.; AlRamadan, Abdullah S.; Vedharaj, S; An, Yanzhao; Sim, Jaeheon; Chang, Junseok; Johansson, Bengt

    2018-01-01

    Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NO) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI

  3. Pulse heating and ignition for off-centre ignited targets

    International Nuclear Information System (INIS)

    Mahdy, A.I.; Takabe, H.; Mima, K.

    1999-01-01

    An off-centre ignition model has been used to study the ignition conditions for laser targets related to the fast ignition scheme. A 2-D hydrodynamic code has been used, including alpha particle heating. The main goal of the study is the possibility of obtaining a high gain ICF target with fast ignition. In order to determine the ignition conditions, samples with various compressed core densities having different spark density-radius product (i.e. areal density) values were selected. The study was carried out in the presence of an external heating source, with a constant heating rate. A dependence of the ignition conditions on the heating rate of the external pulse is demonstrated. For a given set of ignition conditions, our simulation showed that an 11 ps pulse with 17 kJ of injected energy into the spark area was required to achieve ignition for a compressed core with a density of 200 g/cm 3 and 0.5 g/cm 2 spark areal density. It is shown that the ignition conditions are highly dependent on the heating rate of the external pulse. (author)

  4. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, Existing Non-Emergency Compression Ignition Stationary RICE >500 HP, and New and Reconstructed 4SLB Burn Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2b Table 2b to Subpart ZZZZ of Part 63...

  5. Comparative study of oxihydrogen injection in turbocharged compression ignition engines

    Science.gov (United States)

    Barna, L.; Lelea, D.

    2018-01-01

    This document proposes for analysis, comparative study of the turbocharged, compression-ignition engine, equipped with EGR valve, operation in case the injection in intake manifold thereof a maximum flow rate of 1l/min oxyhydrogen resulted of water electrolysis, at two different injection pressures, namely 100 Pa and 3000 Pa, from the point of view of flue gas opacity. We found a substantial reduction of flue gas opacity in both cases compared to conventional diesel operation, but in different proportions.

  6. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  7. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Science.gov (United States)

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...

  8. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2016-01-01

    This study discusses the model of operation of a dual-fuel compression-ignition engine, powered by gaseous fuel with an initial dose of diesel fuel as the ignition inhibitor. The study used a zero-dimensional multiphase mathematical model of a dual-fuel engine to simulate the impact of enhancing

  9. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  10. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  11. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  12. Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Pinaki; Probst, Daniel; Pei, Yuanjiang; Zhang, Yu; Traver, Michael; Cleary, David; Som, Sibendu

    2017-03-28

    Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most

  13. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.

    2016-12-30

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  14. Compression Ignition Engines - revolutionary technology that has civilized frontiers all over the globe from the Industrial Revolution into the 21st Century

    Directory of Open Access Journals (Sweden)

    Stephen Anthony Ciatti

    2015-06-01

    Full Text Available The history, present and future of the compression ignition engine is a fascinating story that spans over 100 years, from the time of Rudolf Diesel to the highly regulated and computerized engines of the 21st Century. The development of these engines provided inexpensive, reliable and high power density machines to allow transportation, construction and farming to be more productive with less human effort than in any previous period of human history. The concept that fuels could be consumed efficiently and effectively with only the ignition of pressurized and heated air was a significant departure from the previous coal-burning architecture of the 1800s. Today, the compression ignition engine is undergoing yet another revolution. The equipment that provides transport, builds roads and infrastructure, and harvests the food we eat needs to meet more stringent requirements than ever before. How successfully 21st Century engineers are able to make compression ignition engine technology meet these demands will be of major influence in assisting developing nations (with over 50% of the world’s population achieve the economic and environmental goals they seek.

  15. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad; Farooq, Aamir; Sim, Jaeheon; Viollet, Yoann; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  16. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad

    2016-04-05

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  17. An investigation of partially premixed compression ignition combustion using gasoline and spark assistance

    OpenAIRE

    Benajes Calvo, Jesus Vicente; García Martínez, Antonio; Doménech Llopis, Vicente; Durret, Russell

    2013-01-01

    Nowadays the automotive scientific community and companies are focusing part of their efforts on the investigation of new combustion modes in Compression Ignition (Cl) engines, mainly based on the use of locally lean air fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduce pollutant formation. However these combustion concepts have some shortcomings, related to combustion phasing control and combustion stability under th...

  18. 75 FR 37310 - Control of Emissions From New and In-Use Nonroad Compression-Ignition Engines

    Science.gov (United States)

    2010-06-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1039 Control of Emissions From New and In-Use Nonroad Compression- Ignition Engines CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End... for my engines in model year 2014 and earlier? * * * * * Table 2 of Sec. 1039.102--Interim Tier 4...

  19. Linear induction accelerator requirements for ion fast ignition

    International Nuclear Information System (INIS)

    Logan, G.

    1998-01-01

    Fast ignition (fast heating of DT cores afief compression) reduces driver energy (by 10 X or more) by reducing the implosion velocity and energy for a given fuel compression ratio. For any type of driver that can deliver the ignition energy fast enough, fast ignition increases the target gain compared to targets using fast implosions for central ignition, as long as the energy to heat the core after compression is comparable to or less than the slow compression energy, and as long as the coupling efficiency of the fast ignitor beam to heat the core is comparable to the overall efficiency of compressing the core (in terms of beam energy-to-DT-efficiency). Ion driven fast ignition, compared to laser-driven fast ignition, has the advantage of direct (dE/dx) deposition of beam energy to the DT, eliminating inefficiencies for conversion into hot electrons, and direct ion heating also has a more favorable deposition profile with the Bragg-peak near the end of an ion range chosen to be deep inside a compressed DT core. While Petawatt laser experiments at LLNL have demonstrated adequate light-to-hot-electron conversion efficiency, it is not yet known if light and hot electrons can channel deeply enough to heat a small portion of a IOOOxLD compressed DT core to ignition. On the other hand, lasers with chirped-pulse amplification giving thousand-fold pulse compressions have been demonstrated to produce the short pulses, small focal spots and Petawatt peak powers approaching those required for fast ignition, whereas ion accelerators that can produce sufficient beam quality for similar compression ratios and focal spot sizes of ion bunches have not yet been demonstrated, where an imposed coherent velocity tilt plays the analogous role for beam compression as does frequency chirp with lasers. Accordingly, it is the driver technology, not the target coupling physics, that poses the main challenge to ion-driven fast ignition. As the mainline HIF program is concentrating on

  20. Possibility to Increase Biofuels Energy Efficiency used for Compression Ignition Engines Fueling

    Directory of Open Access Journals (Sweden)

    Calin D. Iclodean

    2014-02-01

    Full Text Available The paper presents the possibilities of optimizing the use of biofuels in terms of energy efficiency in compression ignition (CI engines fueling. Based on the experimental results was determinate the law of variation of the rate of heat released by the combustion process for diesel fuel and different blends of biodiesel. Using this law, were changed parameters of the engine management system (fuel injection law and was obtain increased engine performance (in terms of energy efficiency for use of different biofuel blends.

  1. An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

    KAUST Repository

    Wakale, Anil Bhaurao; Mohamed, Samah; Naser, Nimal; Jaasim, Mohammed; Banerjee, Raja; Im, Hong G.; Sarathy, Mani

    2018-01-01

    Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.

  2. An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

    KAUST Repository

    Wakale, Anil Bhaurao

    2018-04-03

    Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.

  3. Modeling of heat release and emissions from droplet combustion of multi component fuels in compression ignition engines

    DEFF Research Database (Denmark)

    Ivarsson, Anders

    emissions from the compression ignition engines (CI engines or diesel engines) are continuously increased. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. The complex combustion process of a compression ignition engine may be divided...... it is well suited for optical line of sight diagnostics in both pre and post combustion regions. The work also includes some preliminary studies of radiant emissions from helium stabilized ethylene/air and methane/oxygen flames. It is demonstrated that nano particles below the sooting threshold actually...... of ethylene/air flames well known from the experimental work, was used for the model validation. Two cases were helium stabilized flames with φ = 1 and 2.14. The third case was an unstable flame with φ = 2.14. The unstable case was used to test whether a transient model would be able to predict the frequency...

  4. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Balloul, Iyad; Pradel, Gérard

    2016-01-01

    Highlights: • Reactivity controlled compression ignition regime utilized from 25% to 35% load. • Dual-mode reduces the regeneration periods of the diesel particulate filter. • The use of near-term available biofuels allows good performance and emissions. • Dual-mode leads to 2% greater efficiency than diesel combustion at high engine speeds. - Abstract: This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region

  5. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  6. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  7. Validation of a zero-dimensional and two-phase combustion model for dual-fuel compression ignition engine simulation

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2017-01-01

    Increasing demands for the reduction of exhaust emissions and the pursuit to reduce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of

  8. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  9. Target design for shock ignition

    International Nuclear Information System (INIS)

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  10. 76 FR 20550 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels

    Science.gov (United States)

    2011-04-13

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels CFR Correction In Title 40 of the Code of Federal Regulations, Part... service, whichever comes first. (2) For vessels with no Category 3 engines, a vessel that has been...

  11. N-decane-air end-gas auto-ignition induced by flame propagation in a constant volume chamber: Influence of compression history

    OpenAIRE

    Quintens , Hugo; Strozzi , Camille; Zitoun , Ratiba; Bellenoue , Marc

    2017-01-01

    International audience; The present study aims at characterizing the end-gas auto-ignition of n-decane – air mixtures induced by a flame propagation in a constant volume chamber. A numerical tool is developed, and the study is first focused on academic compressions, e.g. at constant rate of pressure rise. Thermodynamic conditions of transition from deflagration to auto-ignition are first determined, and the involved physical processes are highlighted. A square section combustion chamber is th...

  12. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France); Cavadiasa, Simeon [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)

    2008-11-15

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured. The inlet temperature was changed from 25 to 70 C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels that were investigated were PRF40 and n-heptane. These three parameters appeared to decrease the ignition delays, with the inlet temperature having the least influence and the compression ratio the most. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. The same kinetic mechanism is used to better understand the underlying chemical and physical phenomena that make the influence of a certain parameter change according to the operating conditions. This can be useful for the control of the auto-ignition process in an HCCI engine. (author)

  13. A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio

    International Nuclear Information System (INIS)

    Benajes, Jesús; Pastor, José V.; García, Antonio; Boronat, Vicente

    2016-01-01

    Highlights: • RCCI with CR 12.75 reaches up to 80% load fulfilling mechanical limits. • Ultra-low levels in NOx and soot emissions are obtained in the whole engine map. • Ultra-high levels of CO and uHC have been measured overall at low load. • RCCI improves fuel consumption from 25% to 80% engine loads comparing with CDC. - Abstract: Reactivity Controlled Compression Ignition concept offers an ultra-low nitrogen oxide and soot emissions with a high thermal efficiency. This work investigates the capabilities of this low temperature combustion concept to work on the whole map of a medium duty engine proposing strategies to solve its main challenges. In this sense, an extension to high loads of the concept without exceeding mechanical stress as well as a mitigation of carbon oxide and unburned hydrocarbons emissions at low load together with a fuel consumption penalty have been identified as main Reactivity Controlled Compression Ignition drawbacks. For this purpose, a single cylinder engine derived from commercial four cylinders medium-duty engine with an adapted compression ratio of 12.75 is used. Commercial 95 octane gasoline was used as a low reactivity fuel and commercial diesel as a high reactivity fuel. Thus, the study consists of two different parts. Firstly, the work is focused on the development and evaluation of an engine map trying to achieve the maximum possible load without exceeding a pressure rise rate of 15 bar/CAD. The second part holds on improving fuel consumption and carbon oxide and unburned hydrocarbons emissions at low load. Results suggest that it is possible to achieve up to 80% of nominal conventional diesel combustion engine load without overpassing the constraints of pressure rise rate (below 15 bar/CAD) and maximum pressure peak (below 190 bar) while obtaining ultra-low levels of nitrogen oxide and soot emissions. Regarding low load challenges, it has developed a particular methodology sweeping the gasoline-diesel blend together

  14. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  15. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    OpenAIRE

    Machrafi, Hatim; Cavadias

    2008-01-01

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured, The inlet temperature was changed from 25 to 70 degrees C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels t...

  16. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  17. 76 FR 25246 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Science.gov (United States)

    2011-05-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule document 2011-8794 appearing on pages 20550-20551 in the issue of Wednesday, April 13, 2011, make the following correction: Sec. 1042...

  18. 76 FR 26620 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Science.gov (United States)

    2011-05-09

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule correction document C1-2011-8794 appearing on page 25246 in the issue of Wednesday, May 4, 2011, make the following correction: Sec. 1042.901...

  19. Effect of biodiesel on the performance and combustion parameters of a turbocharged compression ignition engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Baluch, A.H.; Chao, H.

    2009-01-01

    Direct injection compression ignition engines have proved to be the best option in heavy duty applications like transportation and power generation ,but rapid depleting sources of conventional fossil fuels, their rising prices and ever increasing environmental issues are the major concerns. Alternative fuels, particularly bio fuels are receiving increasing attention during the last few years. Biodiesel has already been commercialized in the transport sector. In the present work, a turbocharged intercooled and DI diesel engine has been alternatively fuelled with biodiesel and its 20% blend with commercial diesel. The experimental results show that BSFC, maximum combustion pressure and start of injection angle increase; on the other hand BSEC, maximum rate of pressure rise, ignition lag and premixed combustion amount decrease however HRR duration remains almost unaffected in the case of biodiesel as compared to commercial diesel. (author)

  20. Analysis of cyclic variations during mode switching between spark ignition and controlled auto-ignition combustion operations

    OpenAIRE

    Chen, T; Zhao, H; Xie, H; He, B

    2014-01-01

    © IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research...

  1. Ignition studies of two low-octane gasolines

    KAUST Repository

    Javed, Tamour

    2017-07-24

    Low-octane gasolines (RON ∼ 50–70 range) are prospective fuels for gasoline compression ignition (GCI) internal combustion engines. GCI technology utilizing low-octane fuels has the potential to significantly improve well-to-wheel efficiency and reduce the transportation sector\\'s environmental footprint by offsetting diesel fuel usage in compression ignition engines. In this study, ignition delay times of two low-octane FACE (Fuels for Advanced Combustion Engines) gasolines, FACE I and FACE J, were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2, of ∼ 70 and sensitivity, S = RON–MON, of ∼ 3. However, the molecular compositions of the two gasolines are notably different. Experimental ignition delay time results showed that the two gasolines exhibited similar reactivity over a wide range of test conditions. Furthermore, ignition delay times of a primary reference fuel (PRF) surrogate (n-heptane/iso-octane blend), having the same AKI as the FACE gasolines, captured the ignition behavior of these gasolines with some minor discrepancies at low temperatures (T < 700 K). Multi-component surrogates, formulated by matching the octane ratings and compositions of the two gasolines, emulated the autoignition behavior of gasolines from high to low temperatures. Homogeneous charge compression ignition (HCCI) engine simulations were used to show that the PRF and multi-component surrogates exhibited similar combustion phasing over a wide range of engine operating conditions.

  2. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  3. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  4. Compression Ratio and Catalyst Aging Effects on Aqueous Ethanol Ignition (Year 2): Part 1. Compression Ratio Effects on Aqueous Ethanol Ignition

    Science.gov (United States)

    2009-09-01

    The lean burning of water ethanol blends has the potential to reduce NOx, CO, and HC emissions while reducing the ethanol fermentation production cost of distillation and dehydration. The torch style ignition produced by the catalytic igniter allows ...

  5. Fuels for homogeneous charge compression ignition (HCCI) engines. Automotive fuels survey. Part 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.

    2001-01-01

    Homogeneous charge compression ignition (HCCI) is a third mode of operation for internal combustion engines, beside spark ignition and conventional compression ignition. This report concentrates on the requirements that HCCI operation puts on fuels for these engines. For readers with limited time available, this summary describes the main findings. Policy makers that need some more background information may turn directly to chapter 7, 'Fuels for HCCI engines'. The rest of this report can be considered as a reference guide for more detailed information. The driving force to investigate HCCI engines is the potential of low emissions and simultaneously high energy efficiency. HCCI is gaining attention the last few years. However, HCCI engines are still in the research phase. After many experiments with prototype engines, people have now started working on computer simulations of the combustion process, to obtain a fundamental understanding of HCCI combustion and to steer future engine developments. In HCCI engines, an air/fuel mixture is prepared before it enters the combustion chamber. The homogeneous mixture is in the combustion chamber compressed to auto-ignition. Unlike in conventional engines, combustion starts at many different locations simultaneously and the speed of combustion is very high, so there is no flame front. Lean air/fuel mixtures (excess air) are used to control combustion speed. Because of the excess air, combustion temperature is relatively low, resulting in low NOx emissions. When the fuel is vaporised to a truly homogeneous mixture, complete combustion results in low particulate emissions. The most important advantages of HCCI engines are: - Emissions of NOx and particulates are very low. - Energy efficiency is high. It is comparable to diesel engines. - Many different fuels (one at a time) can be used in the HCCI concept. There are also some hurdles to overcome: - Controlling combustion is difficult, it complicates engine design

  6. DT ignition in a Z pinch compressed by an imploding liner

    International Nuclear Information System (INIS)

    Bilbao, L.; Bernal, L.; Linhart, J.G.; Verri, G.

    2001-01-01

    It has been shown that an m=0 instability of a Z pinch carrying a current of the order of 10 MA with a rise time of less than 10 ns can generate a spark capable of igniting a fusion detonation in the adjacent DT plasma channel. A possible method for generating such currents, necessary for the implosion of an initial large radius, low temperature Z pinch, can be a radial implosion of a cylindrical fast liner. The problem has been addressed in previous publications without considering the role played by an initially impressed m=0 perturbation, a mechanism indispensable for the generation of a spark. The liner-Z pinch dynamics can be solved at several levels of physical model completeness. The first corresponds to a zero dimensional model in which the liner has a given mass per unit length and a zero thickness, the plasma is compressed adiabatically and is isotropic, and there are no energy losses or Joule heating. The second level is one dimensional. The Z pinch plasma is described by the full set of MHD, two-fluid equations. The liner is treated first as thin and incompressible, and subsequently it is assumed that it has a finite thickness and is composed of a heavy ion plasma, having an artificial but realistic equation of state. Both plasma and liner are considered uniform in the Z direction and only DT reactions are considered. It is shown that, given sufficient energy and speed of the liner, the Z pinch can reach a volume ignition. The third level is two dimensional. Plasma and liner are treated as in the second level but either the Z pinch or the liner is perturbed by an m=0 non-uniformity. Provided the liner energy is high enough and the initial m=0 perturbation is correctly chosen, the final neck plasma can act as a spark for DT ignition. It is also shown that the liner energy required for generating a spark and the subsequent detonation propagation are considerably less than in the case of volume ignition. (author)

  7. Antiproton fast ignition for inertial confinement fusion

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1999-01-01

    With 180 MJ/microg, antiprotons offer the highest stored energy per unit mass of any known entity. The use of antiprotons to promote fast ignition in an inertial confinement fusion (ICF) capsule and produce high target gains with only modest compression of the main fuel is investigated. Unlike standard fast ignition where the ignition energy is supplied by energetic, short pulse laser, the energy here is supplied through the ionization energy deposited when antiprotons annihilate at the center of a compressed fuel capsule. This can be considered in-situ fast ignition as it obviates the need for the external injection of the ignition energy. In the first of two candidate schemes, the antiproton package is delivered by a low-energy ion beam. In the second, autocatalytic scheme, the antiprotons are preemplaced at the center of the capsule prior to compression. In both schemes, the author estimates that ∼10 12 antiprotons are required to initiate fast ignition in a typical ICF capsule and show that incorporation of a thin, heavy metal shell is desirable to enhance energy deposition within the ignitor zone. In addition to eliminating the need for a second, energetic fast laser and vulnerable final optics, this scheme would achieve central ignition without reliance on laser channeling through halo plasma or Hohlraum debris. However, in addition to the practical difficulties of storage and manipulation of antiprotons at low energy, the other large uncertainty for the practicality of such a speculative scheme is the ultimate efficiency of antiproton production in an external, optimized facility. Estimates suggest that the electrical wall plug energy per pulse required for the separate production of the antiprotons is of the same order as that required for the conventional slow compression driver

  8. Gaseous and particle emissions from an ethanol fumigated compression ignition engine

    International Nuclear Information System (INIS)

    Surawski, Nicholas C.; Ristovski, Zoran D.; Brown, Richard J.; Situ, Rong

    2012-01-01

    Highlights: ► Ethanol fumigation system fitted on a direct injection compression ignition engine. ► Ethanol substitutions up to 40% (by energy) were achieved. ► Gaseous and particle emissions were measured at intermediate speed. ► PM and NO emissions significantly reduced, whilst CO and HC increased. ► The number of particles emitted generally higher with ethanol fumigation. - Abstract: A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM 2.5 ) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10% to 40% (by energy). With ethanol fumigation, NO and PM 2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM 2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles

  9. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  10. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter

    International Nuclear Information System (INIS)

    Pisani, F.

    2000-02-01

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  11. Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines

    KAUST Repository

    Alabbad, Mohammed; Issayev, Gani; Badra, Jihad; Voice, Alexander K.; Giri, Binod; Djebbi, Khalil; Ahmed, Ahfaz; Sarathy, Mani; Farooq, Aamir

    2017-01-01

    Naphtha, a low-octane distillate fuel, has been proposed as a promising low-cost fuel for advanced compression ignition engine technologies. Experimental and modelling studies have been conducted in this work to assess autoignition characteristics of naphtha for use in advanced engines. Ignition delay times of a certified straight-run naphtha fuel, supplied by Haltermann Solutions, were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 60 bar, 620–1223 K, ϕ = 0.5, 1 and 2). The Haltermann straight-run naphtha (HSRN) has research octane number (RON) of 60 and motor octane number (MON) of 58.3, with carbon range spanning C3–C9. Reactivity of HSRN was compared, via experiments and simulations, with three suitably formulated surrogates: a two-component PRF (n-heptane/iso-octane) surrogate, a three-component TPRF (toluene/n-heptane/iso-octane) surrogate, and a six-component surrogate. All surrogates reasonably captured the ignition delays of HSRN at high and intermediate temperatures. However, at low temperatures (T < 750 K), the six-component surrogate performed the best in emulating the reactivity of naphtha fuel. Temperature sensitivity and rate of production analyses revealed that the presence of cyclo-alkanes in naphtha inhibits the overall fuel reactivity. Zero-dimensional engine simulations showed that PRF is a good autoignition surrogate for naphtha at high engine loads, however, the six-component surrogate is needed to match the combustion phasing of naphtha at low engine loads.

  12. Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines

    KAUST Repository

    Alabbad, Mohammed

    2017-11-24

    Naphtha, a low-octane distillate fuel, has been proposed as a promising low-cost fuel for advanced compression ignition engine technologies. Experimental and modelling studies have been conducted in this work to assess autoignition characteristics of naphtha for use in advanced engines. Ignition delay times of a certified straight-run naphtha fuel, supplied by Haltermann Solutions, were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 60 bar, 620–1223 K, ϕ = 0.5, 1 and 2). The Haltermann straight-run naphtha (HSRN) has research octane number (RON) of 60 and motor octane number (MON) of 58.3, with carbon range spanning C3–C9. Reactivity of HSRN was compared, via experiments and simulations, with three suitably formulated surrogates: a two-component PRF (n-heptane/iso-octane) surrogate, a three-component TPRF (toluene/n-heptane/iso-octane) surrogate, and a six-component surrogate. All surrogates reasonably captured the ignition delays of HSRN at high and intermediate temperatures. However, at low temperatures (T < 750 K), the six-component surrogate performed the best in emulating the reactivity of naphtha fuel. Temperature sensitivity and rate of production analyses revealed that the presence of cyclo-alkanes in naphtha inhibits the overall fuel reactivity. Zero-dimensional engine simulations showed that PRF is a good autoignition surrogate for naphtha at high engine loads, however, the six-component surrogate is needed to match the combustion phasing of naphtha at low engine loads.

  13. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  14. Improving the performance of a compression ignition engine by directing flow of inlet air

    Science.gov (United States)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  15. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  16. Use of a single-zone thermodynamic model with detailed chemistry to study a natural gas fueled homogeneous charge compression ignition engine

    International Nuclear Information System (INIS)

    Zheng Junnian; Caton, Jerald A.

    2012-01-01

    Highlights: ► Auto-ignition characteristics of a natural gas fueled HCCI engine. ► Engine speed had the greatest effect on the auto-ignition process. ► Increases of C 2 H 6 or C 3 H 8 improved the auto-ignition process. ► Engine performance was not sensitive to small changes in C 2 H 6 or C 3 H 8 . ► Nitric oxides concentrations decreased as engine speed or EGR level was increased. - Abstract: A single zone thermodynamic model with detailed chemical kinetics was used to simulate a natural gas fueled homogeneous charge compression ignition (HCCI) engine. The model employed Chemkin and used chemical kinetics for natural gas with 53 species and 325 reactions. This simulation was used to complete analyses for a modified 0.4 L single cylinder engine. The engine possessed a compression ratio of 21.5:1, and had a bore and stroke of 86 and 75 mm, respectively. Several sets of parametric studies were completed to investigate the minimal initial temperature, engine performance, and nitric oxide emissions of HCCI engine operation. The results show significant changes in combustion characteristics with varying engine operating conditions. Effects of varying equivalence ratios (0.3–1.0), engine speeds (1000–4000 RPM), EGR (0–40%), and fuel compositions were determined and analyzed in detail. In particular, every 0.1 increase in equivalence ratio or 500 rpm increase in engine speed requires about a 5 K higher initial temperature for complete combustion, and leads to around 0.7 bar increase in IMEP.

  17. Progress of impact ignition

    International Nuclear Information System (INIS)

    Murakami, M.; Nagatomo, H.; Johzaki, T.

    2010-11-01

    In impact ignition scheme, a portion of the fuel (the impactor) is accelerated to a super-high velocity, compressed by convergence, and collided with a precompressed main fuel. This collision generates shock waves in both the impactor and the main fuel. Since the density of the impactor is generally much lower than that of the main fuel, the pressure balance ensures that the shock-heated temperature of the impactor is significantly higher than that of the main fuel. Hence, the impactor can reach ignition temperature and thus become an igniter. Here we report major new results on recent impact ignition research: (1) A maximum velocity ∼ 1000 km/s has been achieved under the operation of NIKE KrF laser at Naval Research Laboratory (laser wavelength=0.25μm) in the use of a planar target made of plastic and (2) We have performed two-dimensional simulation for burn and ignition to show the feasibility of the impact ignition. (author)

  18. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  19. Progress Toward Ignition on the National Ignition Facility

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    2011-01-01

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is ∼0.5 cm diameter by ∼1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a ∼2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer

  20. Physics of ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lindl, J.D.

    1989-01-01

    The implosion of an ICF capsule must accomplish both compression of the main fuel to several hundred grams per cubic centimeter and heating and compression of the central region of the fuel to ignition. This report discusses the physics of these conditions

  1. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  2. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  3. Ignition experiment - alternatives

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1979-10-01

    This report comprises three short papers on cost estimates, integral burn time and alternative versions of Tokamak ignition experiments. These papers were discussed at the ZEPHYR workshop with participants from IPP Garching, MIT Cambridge and PPPL Princeton (Garching July 30 - August 2 1979) (Chapters A, B, C). It is shown, that starting from a practical parameter independent minimum integral burn time of Tokamak ignition experiments (some 10 3 s) by adding a shield for protection of the magnet insulation (permitted neutron dose 10 9 rad) an integral burn time of some 10 4 s can be achieved for only about 30% more outlay. For a substantially longer integral burn time the outlay approaches rather quickly that for a Tokamak reactor. Some examples for alternatives to ZEPHYR are being given, including some with low or no compression. In a further chapter D some early results of evaluating an ignition experiment on the basis of the energy confinement scaling put forward by Coppi and Mazzucato are presented. As opposed to the case of the Alcator scaling used in chapters A through C the minimum integral burn time of Tokamak ignition experiments here depends on the plasma current. Provided neutral injectors up to about 160 keV are available compression boosting is not required with this scaling. The results presented have been obtained neglecting the effects of the toroidal field ripple. (orig.) 891 HT/orig. 892 RKD [de

  4. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour

    2016-12-29

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times. Such measurements may potentially be affected by some non-ideal phenomena. The purpose of this work is to measure long ignition delay times for fuels exhibiting negative temperature coefficient (NTC) and to assess the impact of shock tube non-idealities on ignition delay data. Ignition delay times of n-heptane and n-hexane were measured over the temperature range of 650 – 1250 K and pressures near 1.5 atm. Driver gas tailoring and long length of shock tube driver section were utilized to measure ignition delay times as long as 32 ms. Measured ignition delay times agree with chemical kinetic models at high (> 1100 K) and low (< 700 K) temperatures. In the intermediate temperature range (700 – 1100 K), however, significant discrepancies are observed between the measurements and homogeneous ignition delay simulations. It is postulated, based on experimental observations, that localized ignition kernels could affect the ignition delay times at the intermediate temperatures, which lead to compression (and heating) of the bulk gas and result in expediting the overall ignition event. The postulate is validated through simple representative computational fluid dynamic simulations of post-shock gas mixtures which exhibit ignition advancement via a hot spot. The results of the current work show that ignition delay times measured by shock tubes may be affected by non-ideal phenomena for certain conditions of temperature, pressure and fuel reactivity. Care must, therefore, be exercised in using such data for chemical kinetic model development and validation.

  5. Impact of Biodiesel Blends and Di-Ethyl-Ether on the Cold Starting Performance of a Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Adrian Clenci

    2016-04-01

    Full Text Available The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. Many studies have been conducted to assess the impact of biodiesel use on engine performances. Most of them were carried out in positive temperature conditions. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. Since diesel engine behavior at negative temperatures is an important quality criterion of the engine’s operation, one goal of this paper is to assess the starting performance at −20 °C of a common automotive compression ignition engine, fueled with different blends of fossil diesel fuel and biodiesel. Results showed that increasing the biodiesel blend ratio generated a great deterioration in engine startability. Another goal of this study was to determine the biodiesel blend ratio limit at which the engine would not start at −20 °C and, subsequently, to investigate the impact of Di-Ethyl-Ether (DEE injection into the intake duct on the engine’s startability, which was found to be recovered.

  6. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal

    2017-04-21

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better understand fuel properties of the full boiling range fuel. An advanced distillation column (ADC) provides a more realistic representation of volatility characteristics, which can be modeled using equilibrium thermodynamic methods. The temperature reported is that of the liquid, as opposed to the vapor temperature in conventional ASTM D86 distillation standard. Various FACE (fuels for advanced combustion engines) gasolines were distilled and various cuts were obtained. The separated fractions were then tested in an ignition quality tester (IQT) to see the effect of chemical composition of different fractions on their ignition delay time. Fuels with lower aromatic content showed decreasing ignition delay time with increasing boiling point (i.e., molecular weight). However, fuels with higher aromatic content showed an initial decrease in ignition delay time with increasing boiling point, followed by drastic increase in ignition delay time due to fractions containing aromatics. This study also provides an understanding on contribution of different fractions to the ignition delay time of the fuel, which provides insights into fuel stratification utilized in gasoline compression ignition (GCI) engines to tailor heat release rates.

  7. Modelling auto ignition of hydrogen in a jet ignition pre-chamber

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353 (Australia)

    2010-04-15

    Spark-less jet ignition pre-chambers are enablers of high efficiencies and load control by quantity of fuel injected when coupled with direct injection of main chamber fuel, thus permitting always lean burn bulk stratified combustion. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the pre-chamber, where it mixes with the air entering from the main chamber. Combustion of the air and fuel mixture then starts within the pre-chamber because of the high temperature of the hot glow plug, and then jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. The paper describes the operation of the spark-less jet ignition pre-chamber coupling CFD and CAE engine simulations to allow component selection and engine performance evaluation. (author)

  8. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, D. A., E-mail: shaughnessy2@llnl.gov; Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Despotopulos, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, Nevada 89154 (United States)

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  9. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  10. A study of diesel-hydrogen fuel exhaust emissions in a compression ignition engine/generator assembly

    International Nuclear Information System (INIS)

    Karri, V.; Hafez, H.A.; Kirkegaard, J.F.

    2006-01-01

    A compression engine and duel-fuel supply system was studied in order to determine the influence of hydrogen gas on a diesel engine's exhaust system. Commercially available solenoid valves and pulse actuators were used in a customized mechatronic control unit (MICU) to inject the hydrogen gas into the cylinders during the experiments. The MICU was designed as a generic external attachment. Diesel fuel was used to ignite the hydrogen gas-air mixture after compression. Various different electrical loads were then applied using an alternator in order to stimulate the engine governor and control diesel flow. Results of the study showed that measured carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO x ) loads of exhaust emissions increased, while emissions of carbon dioxide (CO 2 ) decreased. Results also showed that higher temperatures and levels of NO x occurred when hydrogen was mixed with the induced air. It was concluded that higher levels of hydrogen may be needed to reduce emissions. 17 refs., 5 tabs., 2 figs

  11. Boosted performance of a compression-ignition engine with a displaced piston

    Science.gov (United States)

    Moore, Charles S; Foster, Hampton H

    1936-01-01

    Performance tests were made using a rectangular displacer arranged so that the combustion air was forced through equal passages at either end of the displacer into the vertical-disk combustion chamber of a single-cylinder, four-stroke-cycle compression-ignition test engine. After making tests to determine optimum displacer height, shape, and fuel-spray arrangement, engine-performance tests were made at 1,500 and 2,000 r.p.m. for a range of boost pressures from 0 to 20 inches of mercury and for maximum cylinder pressures up to 1,150 pounds per square inch. The engine operation for boosted conditions was very smooth, there being no combustion shock even at the highest maximum cylinder pressures. Indicated mean effective pressures of 240 pounds per square inch for fuel consumptions of 0.39 pound per horsepower-hour have been readily reproduced during routine testing at 2,000 r.p.m. at a boost pressure of 20 inches of mercury.

  12. Straight vegetable oils usage in a compression ignition engine - A review

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.; Murthy, M.S. [Mechanical Engineering Department, National Institute of Technology, Silchar 788010, Assam (India)

    2010-12-15

    The ever increasing fossil fuel usage and cost, environmental concern has forced the world to look for alternatives. Straight vegetable oils in compression ignition engine are a ready solution available, however, with certain limitations and with some advantages as reported by many researchers. A comprehensive and critical review is presented specifically pertaining to straight vegetable oils usage in diesel engine. A detailed record of historical events described. Research carried out specifically under Indian conditions and international research work on the usage of straight vegetable oils in the diesel engine is separately reviewed. Many researchers have reported that straight vegetable oils in small percentage blends with diesel when used lower capacity diesel engines have shown great promise with regards to the thermal performance as well exhaust emissions. This has been explained in detail. Finally based on the review of international as well as Indian research a SWOT analysis is carried out. The review concludes that there is still scope for research in this area. (author)

  13. Fast-shock ignition: a new approach to inertial confinement fusion

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2013-03-01

    Full Text Available  A new concept for inertial confinement fusion called fast-shock ignition (FSI is introduced as a credible scheme in order to obtain high target gain. In the proposed model, the separation of fuel ignition into two successive steps, under the suitable conditions, reduces required ignitor energy for the fuel ignition. The main procedure in FSI concept is compressing the fuel up to stagnation. Then, two high intensity short pulse laser spikes with energy and power lower than those required for shock ignition (SI and fast ignition (FI with a proper delay time are launched at the fuel which increases the central hot-spot temperature and completes the ignition of the precompressed fuel. The introduced semi-analytical model indicates that with fast-shock ignition, the total required energy for compressing and igniting the fuel can be slightly reduced in comparison to pure shock ignition. Furthermore, for fuel mass greater than , the target energy gain increases up to 15 percent and the contribution of fast ignitor under the proper conditions could be decreased about 20 percent compared with pure fast ignition. The FSI scheme is beneficial from technological considerations for the construction of short pulse high power laser drivers. The general advantages of fast-shock ignition over pure shock ignition in terms of figure of merit can be more than 1.3.

  14. A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics

    Directory of Open Access Journals (Sweden)

    Chao Jin

    2015-01-01

    Full Text Available Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI and low temperature combustion (LTC modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.

  15. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  16. Attempt of multiple stage injection with EGR for high load operation of a premixed compression ignition engine; Tadan funsha ni yoru yokongo asshuku chakka kikan no unten ryoiki kakudai

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T.; Miyamoto, T.; Akagawa, H. [New ACE Institute Co. Ltd., Tsukuba (Japan); Tsujimura, K. [Chiba Institute of Technology, Chiba (Japan)

    2000-01-25

    By injecting fuel at the very early stage of compression stroke and thus creating homogeneous lean mixture before ignition, (PREDIC ; PREmixed lean DIesel Combustion), simultaneous reduction of NO{sub x} and smoke was obtained. However, since increasing the mixture equivalence ratio cause knocking, it was difficult to operate at higher load conditions. In this study, in order to reduce combustion rate at high load conditions in a premixed compression ignition engine, multiple stage injection method and EGR were combined, and heterogeneous mixture was made before ignition. The engine test results showed that NO{sub x} emissions could be reduced to less than 50 ppm, without knocking even at full load conditions. In addition, smoke emissions were also maintained below invisible level. It can be understood that the premixing of fuel was advanced, smoke was reduced, and EGR rate was increased, resulting lower heat release rate and NO{sub x} emissions. (author)

  17. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    Science.gov (United States)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  18. Modelling for Fuel Optimal Control of a Variable Compression Engine

    OpenAIRE

    Nilsson, Ylva

    2007-01-01

    Variable compression engines are a mean to meet the demand on lower fuel consumption. A high compression ratio results in high engine efficiency, but also increases the knock tendency. On conventional engines with fixed compression ratio, knock is avoided by retarding the ignition angle. The variable compression engine offers an extra dimension in knock control, since both ignition angle and compression ratio can be adjusted. The central question is thus for what combination of compression ra...

  19. Volume ignition of laser driven fusion pellets and double layer effects

    International Nuclear Information System (INIS)

    Cicchitelli, L.; Eliezer, S.; Goldsworthy, M.P.; Green, F.; Hora, H.; Ray, P.S.; Stening, R.J.; Szichman, H.

    1988-01-01

    The realization of an ideal volume compression of laser-irradiated fusion pellets opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition, have received less attention and are re-evaluated in view of the experimental verification generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh-Taylor instabilities. (author)

  20. Magnetically Assisted Fast Ignition

    OpenAIRE

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.

    2015-01-01

    Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation andtransport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of300 g cm−3 and areal density of 0.49 g cm−2 at the core are taken. When a 20 MG static magnetic field isimposed across a conventional cone-free target, the energy coupling from the laser to the core is enhancedby sevenfold and reaches 14%. This value even exceeds that obtained u...

  1. Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

    KAUST Repository

    Vallinayagam, R.

    2018-04-03

    Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NO) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at 180 CAD (aTDC) and 30 CAD (aTDC), respectively. In the presented work, intake air temperature is used as control parameter to maintain combustion stability at idle and low load condition, while the intake air pressure is maintained at 1 bar (ambient). The engine is equipped with variable valve cam phasers that can phase both inlet and exhaust valves from the original timing. For the maximum cam phasing range (56 CAD) at a valve lift of 0.3 mm, the maximum allowable positive valve overlap was 20 CAD. In the present study, the exhaust cam is phased to 26 CAD and 6 CAD and the corresponding NVO is noted to be 10 CAD and 30 CAD, respectively. With exhaust cam phasing adjustment, the exhaust valve is closed early to retain hot residual gases inside the cylinder. As such, the in-cylinder temperature is increased and a reduction in the required intake air temperature to control combustion phasing is possible. For a constant combustion phasing of 3 CAD (aTDC), a minimum load of indicated mean effective pressure (IMEP) = 1 bar is attained for gasoline (RON = 91) at HCCI and PPC modes. The coefficient of variance was observed to below 5% at these idle and low load conditions. At the minimum load point, the

  2. Ignition delay time correlation of fuel blends based on Livengood-Wu description

    KAUST Repository

    Khaled, Fathi; Badra, Jihad; Farooq, Aamir

    2017-01-01

    observed for combustion phasing in homogeneous charge compression ignition (HCCI) predictions between simulations performed with detailed chemistry and calculations using the developed ignition delay correlation.

  3. Development of a pre-ignition submodel for hydrogen engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Sadiq [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2005-10-15

    In hydrogen-fuelled spark ignition engine applications, the onset of pre-ignition remains one of the prime limitations that needs to be addressed to avoid its incidence and achieve superior performance. This paper describes a new pre-ignition submodel for engine modelling codes. The effects of changes in key operating variables, such as compression ratio, spark timing, intake pressure, and temperature on pre-ignition limiting equivalence ratios are established both analytically and experimentally. With the established pre-ignition model, it is possible not only to investigate whether pre-ignition is observed with changing operating and design parameters, but also to evaluate those parameters' effects on the maximum possible pre-ignition intensity. (author)

  4. Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Terry, Matthew R.; Perkins, L. John; Sepke, Scott M.

    2012-01-01

    Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes “day one” NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

  5. Effects of ethanol added fuel on exhaust emissions and combustion in a premixed charge compression ignition diesel engine

    Directory of Open Access Journals (Sweden)

    Kim Yungjin

    2015-01-01

    Full Text Available The use of diesel engines for vehicle has been increasing recently due to its higher thermal efficiency and lower CO2 emission level. However, in the case of diesel engine, NOx increases in a high temperature combustion region and particulate matter is generated in a fuel rich region. Therefore, the technique of PCCI (premixed charge compression ignition is often studied to get the peak combustion temperature down and to make a better air-fuel mixing. However it also has got a limited operating range and lower engine power produced by the wall wetting and the difficulty of the ignition timing control. In this research, the effect of injection strategies on the injected fuel behavior, combustion and emission characteristics in a PCCI engine were investigated to find out the optimal conditions for fuel injection, and then ethanol blended diesel fuel was used to control the ignition timing. As a result, the combustion pressures and ROHR (rate of heat release of the blended fuel became lower, however, IMEP showed fewer differences. Especially in the case of triple injection, smoke could be reduced a little and NOx emission decreased a lot by using the ethanol blended fuel simultaneously without much decreasing of IMEP compared to the result of 100% diesel fuel.

  6. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part II: modeling HCCI combustion in small scales with detailed homogeneous gas phase chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry

    2002-10-01

    Operational maps for crankshaft-equipped miniature homogeneous charge compression ignition engines are established using performance estimation, detailed chemical kinetics, and diffusion models for heat transfer and radical loss. In this study, radical loss was found to be insignificant. In contrast, heat transfer was found to be increasingly significant for 10, 1, and 0.1 W engines, respectively. Also, temperature-pressure trajectories and ignition delay time maps are used to explore relationships between engine operational parameters and HCCI. Lastly, effects of engine operating conditions and design on the indicated fuel conversion efficiency are investigated. (author)

  7. Shock ignition targets: gain and robustness vs ignition threshold factor

    Science.gov (United States)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  8. Physical studies of fast ignition in China

    International Nuclear Information System (INIS)

    He, X T; Cai, Hong-bo; Wu, Si-zhong; Cao, Li-hua; Zhang, Hua; He, Ming-qing; Chen, Mo; Wu, Jun-feng; Zhou, Cang-tao; Zhou, Wei-Min; Shan, Lian-qiang; Wang, Wei-wu; Zhang, Feng; Bi, Bi; Zhao, Zong-qing; Gu, Yu-qiu; Zhang, Bao-han; Wang, Wei; Fang, Zhi-heng; Lei, An-le

    2015-01-01

    Fast ignition approach to inertial confinement fusion is one of the important goals today, in addition to central hot spot ignition in China. The SG-IIU and PW laser facilities are coupled to investigate the hot spot formation for fast ignition. The SG-III laser facility is almost completed and will be coupled with tens kJ PW lasers for the demonstration of fast ignition. In recent years, for physical studies of fast ignition, we have been focusing on the experimental study of implosion symmetry, M-band radiation preheating and mixing, advanced fast ignition target design, and so on. In addition, the modeling capabilities and code developments enhanced our ability to perform the hydro-simulation of the compression implosion, and the particle-in-cell (PIC) and hybrid-PIC simulation of the generation, transport and deposition of relativistic electron beams. Considerable progress has been achieved in understanding the critical issues of fast ignition. (paper)

  9. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  10. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    Science.gov (United States)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  11. Innovative ICF scheme-impact fast ignition

    International Nuclear Information System (INIS)

    Murakami, M.; Nagatomo, H.; Sakaiya, T.; Karasik, M.; Gardner, J.; Bates, J.

    2007-01-01

    A totally new ignition scheme for ICF, impact fast ignition (IFI), is proposed [1], in which the compressed DT main fuel is to be ignited by impact collision of another fraction of separately imploded DT fuel, which is accelerated in the hollow conical target. Two-dimensional hydrodynamic simulation results in full geometry are presented, in which some key physical parameters for the impact shell dynamics such as 10 8 cm/s of the implosion velocity, 200- 300 g/cm 3 of the compressed density, and the converted temperature beyond 5 keV are demonstrated. As the first step toward the proof-of-principle of IFI, we have conducted preliminary experiments under the operation of GEKKO XII/HYPER laser system to achieve a hyper-velocity of the order of 108 cm/s. As a result we have observed a highest velocity, 6.5 x 10 7 cm/s, ever achieved. Furthermore, we have also done the first integrated experiments using the target and observed substantial amount of neutron yields. Reference: [1] M. Murakami and Nagatomo, Nucl. Instrum. Meth. Phys. Res. A 544(2005) 67

  12. Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2015-01-01

    Full Text Available In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injection strategies and cycle average combustion and work output profiles. Hypothesized physical mechanisms based on these correlations were then compared with trends in cycle-by-cycle predictability as revealed by sample entropy. The results of these comparisons help to clarify how fuel injection strategy can interact with prior cycle effects to affect combustion stability and so contribute to design control methods for HCCI engines.

  13. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  14. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    OpenAIRE

    SENDILVELAN S.; SUNDAR RAJ C.

    2017-01-01

    Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize ...

  15. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine

    International Nuclear Information System (INIS)

    Jain, Ayush; Singh, Akhilendra Pratap; Agarwal, Avinash Kumar

    2017-01-01

    Highlights: • NOx and PM emissions were lowest at 700 bar fuel injection pressure (FIP). • PCCI showed lower knocking than compression ignition combustion mode. • Increasing FIP reduced emissions of nitrogen oxides and smoke opacity in PCCI mode. • Increasing FIP reduced nucleation mode particle concentration. • Increasing FIP with advanced main injection timings improved PCCI combustion. - Abstract: This experimental study focuses on developing new combustion concept for compression ignition (CI) engines by achieving partially homogeneous charge, leading to low temperature combustion (LTC). Partially premixed charge compression ignition (PCCI) combustion is a single-stage phenomenon, with combustion shifting towards increasingly premixed combustion phase, resulting in lower in-cylinder temperatures. PCCI leads to relatively lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) simultaneously. To investigate combustion, performance and emission characteristics of the PCCI engine, experiments were performed in a mineral diesel fueled single cylinder research engine, which was equipped with flexible fuel injection equipment (FIE). Effects of fuel injection pressure (FIP) were investigated by changing the FIP from 400 bar to 1000 bar. Experiments were carried out by varying start of main injection (SoMI) timings (from 12° to 24° before top dead center (bTDC)), when using single pilot injection. This experimental study included detailed investigations of particulate characteristics such as particulate number-size distribution using engine exhaust particle sizer (EEPS), particulate bound trace metal analysis using inductively coupled plasma-optical emission spectrometer (ICP-OES), and soot morphology using transmission electron microscopy (TEM). PCCI combustion improved with increasing FIP (up to 700 bar) due to superior fuel atomization however further increasing FIP deteriorated PCCI combustion and engine performance due to intense

  16. Gain curves and hydrodynamic modeling for shock ignition

    International Nuclear Information System (INIS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-01-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  17. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seshaiah, N. [Mechanical Engineering Department, M.I.T.S, Madanapalle, Angallu-517325, A.P. (India)

    2010-07-01

    Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene), and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  18. Self-ignition and oxidation of various hydrocarbons between 600 and 1000 K at high pressure: experimental study with fast compression machine and modeling; Autoinflammation et oxydation de divers hydrocarbures entre 600 et 1000 K a haute pression: etude experimentale en machine a compression rapide et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ribaucour, M.

    2002-12-01

    Low- and intermediate-temperature oxidation and self-ignition of hydrocarbons play a major role in spark ignition, diesel and HCCI (homogenous charge compression ignition) engines. A deep understanding of the chemistry linked with both phenomena is necessary to improve the engines efficiency and to reduce the formation of pollutants. This document treats of works about the self-ignition and oxidation at high pressure of various hydrocarbons between 600 and 1000 deg. K. The experimental tool used is a fast compression machine fitted with a fast sampling system for the measurement of self-ignition delays and of the concentrations of intermediate oxidation products. The advantages and limitations of this tool are discussed. The self-ignition of various hydrocarbons is compared using pre-defined data which characterize the phenomenologies like cold flames, negative temperature coefficients and self-ignition limits. The hydrocarbons considered are pure or binary mixtures of alkanes, pent-1-ene and n-butyl-benzene. The development of high pressure oxidation reaction schemes of alkanes between 600 and 1000 deg. K is described. It is directly based on the analysis of intermediate oxidation products. This methodology is also applied to pent-1-ene and n-butyl-benzene. The construction of detailed thermo-kinetic models of oxidation and the modeling of phenomena are made for n-butane, n-heptane, for the 3 pentane isomers, for pent-1-ene and n-butyl-benzene. Finally, the perspectives of future works are evoked. They concern new modeling and new methodologies to be applied in more predictive thermo-kinetic models and the reduction of detailed models in order to include them inside fluid dynamics codes. (J.S.)

  19. Validation of a zero-dimensional and 2-phase combustion model for dual-fuel compression ignition engine simulation

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2017-01-01

    Full Text Available Increasing demands for the reduction of exhaust emissions and the pursuit to re-duce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of liquid fuel injected directly into the cylinder acts as the ignition inhibitor of the gaseous fuel. Achieving the optimum combustion process in such an engine requires the application of advanced control algorithms which require mathematical modelling support. In response to the growing demand for new simulation tools, a 0-D model of a dual-fuel engine was proposed and validated. The validation was performed in a broad range of engine operating points, including various speeds and load condition, as well as different natural gas/diesel blend ratios. It was demonstrated that the average model calculation error within the entire cycle did not exceed 6.2%, and was comparable to the measurement results cycle to cycle variations. The maximum model calculation error in a single point of a cycle was 15% for one of the complex (multipoint injection cases. In other cases, it did not exceed 11%.

  20. Shock ignition of thermonuclear fuel: principles and modelling

    International Nuclear Information System (INIS)

    Atzeni, S.; Ribeyre, X.; Schurtz, G.; Schmitt, A.J.; Canaud, B.; Betti, R.; Perkins, L.J.

    2014-01-01

    Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1 MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined. (special topic)

  1. Fast ignition: Physics progress in the US fusion energy program and prospects for achieving ignition

    International Nuclear Information System (INIS)

    Key, M.; Andersen, C.; Cowan, T.

    2003-01-01

    Fast ignition (FI) has significant potential advantages for inertial fusion energy and it is therefore being studied as an exploratory concept in the US fusion energy program. FI is based on short pulse isochoric heating of pre-compressed DT by intense beams of laser accelerated MeV electrons or protons. Recent experimental progress in the study of these two heating processes is discussed. The goal is to benchmark new models in order to predict accurately the requirements for full-scale fast ignition. An overview is presented of the design and experimental testing of a cone target implosion concept for fast ignition. Future prospects and conceptual designs for larger scale FI experiments using planned high energy petawatt upgrades of major lasers in the US are outlined. A long-term road map for FI is defined. (author)

  2. Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2016-06-01

    Full Text Available For a compression ignition (CI free piston engine linear generator (FPLG, injection timing is one of the most important parameters that affect its performance, especially for the one-stroke starting operation mode. In this paper, two injection control strategies are proposed using piston position and velocity signals. It was found experimentally that the injection timing’s influence on the compression ratio, the peak in-cylinder gas pressure and the indicated work (IW is different from that of traditional reciprocating CI engines. The maximum IW of the ignition starting cylinder, say left cylinder (LC and the right cylinder (RC are 132.7 J and 138.1 J, respectively. The thermal-dynamic model for simulating the working processes of the FPLG are built and verified by experimental results. The numerical simulation results show that the running instability and imbalance between LC and RC are the obvious characters when adopting the injection strategy of the velocity feedback. These could be solved by setting different triggering velocity thresholds for the two cylinders. The IW output from the FPLG under this strategy is higher than that of adopting the position feedback strategy, and the maximum IW of the RC could reach 162.3 J. Under this strategy, the prototype is able to achieve better starting conditions and could operate continuously for dozens of cycles.

  3. Physics of laser-plasma interaction for shock ignition of fusion reactions

    International Nuclear Information System (INIS)

    Tikhonchuk, V T; Colaïtis, A; Vallet, A; Llor Aisa, E; Duchateau, G; Nicolaï, Ph; Ribeyre, X

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions. (paper)

  4. Studies on biogas-fuelled compression ignition engine under dual fuel mode.

    Science.gov (United States)

    Mahla, Sunil Kumar; Singla, Varun; Sandhu, Sarbjot Singh; Dhir, Amit

    2018-04-01

    Experimental investigation has been carried out to utilize biogas as an alternative source of energy in compression ignition (CI) engine under dual fuel operational mode. Biogas was inducted into the inlet manifold at different flow rates along with fresh air through inlet manifold and diesel was injected as a pilot fuel to initiate combustion under dual fuel mode. The engine performance and emission characteristics of dual fuel operational mode were analyzed at different biogas flow rates and compared with baseline conventional diesel fuel. Based upon the improved performance and lower emission characteristics under the dual fuel operation, the optimum flow rate of biogas was observed to be 2.2 kg/h. The lower brake thermal efficiency (BTE) and higher brake-specific energy consumption (BSEC) were noticed with biogas-diesel fuel under dual fuel mode when compared with neat diesel operation. Test results showed reduced NO x emissions and smoke opacity level in the exhaust tailpipe emissions. However, higher hydrocarbon (HC) and carbon monoxide (CO) emissions were noticed under dual fuel mode at entire engine loads when compared with baseline fossil petro-diesel. Hence, the use of low-cost gaseous fuel such as biogas would be an economically viable proposition to address the current and future problems of energy scarcity and associated environmental concerns.

  5. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  6. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    Science.gov (United States)

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  7. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, M.A.R. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2004-12-01

    The present energy situation has stimulated active research interest in non-petroleum and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Researchers have found that hydrogen presents the best and an unprecedented solution to the energy crises and pollution problems, due to its superior combustion qualities and availability. This paper discusses analytically and provides data on the effect of compression ratio, equivalence ratio and engine speed on the engine performance, emissions and pre-ignition limits of a spark ignition engine operating on hydrogen fuel. These data are important in order to understand the interaction between engine performance and emission parameters, which will help engine designers when designing for hydrogen. (author)

  8. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  9. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    Science.gov (United States)

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  10. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  11. Combustion and emissions characteristics of a compression ignition engine fueled with n-butanol blends

    Science.gov (United States)

    Yusri, I. M.; Mamat, R.; Ali, O. M.; Aziz, A.; Akasyah, M. K.; Kamarulzaman, M. K.; Ihsan, C. K.; Mahmadul, H. M.; Rosdi, S. M.

    2015-12-01

    The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using 4-cylinder, 4-stroke common rail direct injection CI engine to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.

  12. ANALYSIS OF OPERATING PARAMETERS AND INDICATORS OF A COMPRESSION IGNITION ENGINE FUELLED WITH LPG

    Directory of Open Access Journals (Sweden)

    Krzysztof GARBALA

    2016-12-01

    Full Text Available This article presents the possibilities for using alternative fuels to power vehicles equipped with compression ignition (CI engines (diesel. Systems for using such fuels have been discussed. Detailed analysis and research covered the LPG STAG autogas system, which is used to power dual-fuel engine units (LPG+diesel. A description of the operation of the autogas system and installation in a vehicle has been presented. The basic algorithms of the controller, which is an actuating element of the whole system, have been discussed. Protection systems of a serial production engine unit to guarantee its factorycontrolled durability standards have been presented. A long-distance test drive and examinations of the engine over 150,000 km in a Toyota Hilux have been performed. Operating parameters and performance indicators of the engine with STAG LPG+diesel fuelling have been verified. Directions and perspectives for the further development of such a system in diesel-powered cars have been also indicated.

  13. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    A. Gharehghani

    2012-01-01

    Full Text Available Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOx emissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.

  14. Effect of diesel pre-injection timing on combustion and emission characteristics of compression ignited natural gas engine

    International Nuclear Information System (INIS)

    Xu, Min; Cheng, Wei; Zhang, Hongfei; An, Tao; Zhang, Shaohua

    2016-01-01

    Highlights: • Pre-injection timing on combustion and emission of CING engine are studied. • Closely pre-injection operations leads to increase of combustion intensity. • Early pre-injection operations leads to lower combustion intensity. • Early pre-injection modes provide better NO x emission. - Abstract: Pre-injection strategy is considered to be one of the most important ways to improve diesel engine performance, emission and combustion. It is the same important factor in pilot diesel compression ignition natural gas (CING) engine. In this study, effects of pre-injection timing on combustion and emission performances were experimentally studied in a CING engine which was modified from a turbocharged six-cylinder diesel engine. The experiments were conducted at constant speed of 1400 rpm and different engine loads with a constant fuel injection pressure of 1100 bar. Main injection timing was fixed at 10 °CA BTDC in the advance process of pre-injection timing. The cylinder pressure, heart release rate (HRR), pressure rise rate (PRR), start of combustion (SOC) and coefficient of variation (COV IMEP ), as well as NO x , HC and CO emissions were analyzed. The results indicated that closely pre-injection operations lead to the advance of SOC which intensified combustion of in-cylinder mixture, thereby resulting in higher cylinder pressure, HRR and PRR, as well higher NO x emissions and lower HC and CO emissions. However, early pre-injection operations lead to lower cylinder pressure, HRR and PRR due to decreasing in combustion intensity. Pre-injection timing of 70 °CA BTDC is a conversion point in which influence of pre-injection fuel on ignition and combustion of natural gas nearly disappeared and lowest NO x emission could be obtained. Compared with single injection ignition mode, NO x emissions at the conversion point were reduced by 33%, 38% and 7% at engine load of 38%, 60% and 80% respectively. This is important for the conditions that ignition fuel

  15. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  16. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  17. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part I: performance estimation and design considerations unique to small dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry

    2002-10-01

    Research and development activities pertaining to the development of a 10 W, homogeneous charge compression ignition free-piston engine-compressor are presented. Emphasis is place upon the miniature engine concept and design rationale. Also, a crankcase-scavenged, two-stroke engine performance estimation method (slider-crank piston motion) is developed and used to explore the influence of engine operating conditions and geometric parameters on power density and establish plausible design conditions. The minimization of small-scale effects such as enhanced heat transfer, is also explored. (author)

  18. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    Science.gov (United States)

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  19. On the possibility of D-3He fusion based on fast - ignition inertial confinement scheme

    International Nuclear Information System (INIS)

    Nakao, Y.; Hegi, K.; Ohmura, T.; Katsube, M.; Kudo, K.; Johzaki, T.; Ohta, M.

    2007-01-01

    Although nuclear fusion reactors adopting D 3 He fuel could provide many advantages, such as low neutron generation and efficient conversion of output fusion energy, the achievement of ignition is a difficult problem. It is therefore of particular importance to find some methods or schemes that relax the ignition requirements. In inertial confinement scheme, the use of pure D 3 He fuel is impractical because of the excessive requirement on driver energy. A small amount of DT fuel as 'igniter' is hence indispensable [1]. Our previous burn simulation [1] for DT/D 3 He fuels compressed to 5000 times the liquid density showed that substantial fuel gains (∼500) are obtained from fuels having parameters ρ R D T = 3 g/cm 2 , ρ R t otal 14 g/cm 2 and a central spark temperature of 5 keV. The driver energy needed to achieve these gains is estimated to be ∼30 MJ when the coupling efficiency is 10%; in this case the target gain is ∼50. Subsequent implosion simulation [2], however, showed that after void closure the central DT fuel is ignited while the bulk of the main D 3 He fuel is still imploding with high velocities. This pre-ignition of DT fuel leads to a low compression of the main fuel and prevents the DT/D 3 He fuel from obtaining required gain. These difficulties associated with the pre-ignition of DT fuel could be resolved or mitigated if other ignition schemes such as fast-ignition [3] and/or impact-ignition [4] are adopted, because in these schemes compression and ignition phases are separated. Furthermore, the reduction of driver energy can be expected. In the present study, we examine the possibility of D 3 He fusion in the fast-ignition scheme. Simulations until now have been made for a DT/D 3 He fuel compressed to 5000 times the liquid density by using FIBMET (2D fusion ignition and burning code) [5] and a newly developed neutron diffusion code. DT igniter was assumed to be placed at a corner of the compressed fuel. The ρ R values and temperature of

  20. Fast-ignition heavy-ion fusion target by jet impact

    International Nuclear Information System (INIS)

    Velarde, P.; Ogando, F.; Eliezer, S.; Martinez-Val, J.M.

    2005-01-01

    A new target design for HIF, based on the fast-ignition principles, is proposed. Unlike the previous designs proposed so far, in this case just one energy source is needed to drive the whole process to ignition. The ultra-fast deposition of energy onto the compressed core is produced in this case by hypervelocity jets generated during the process. The collision of jets converts their kinetic energy into thermal energy of the nuclear fuel, which is expected to produce ignition under proper design. The process is studied in this paper, describing its most relevant features like jet production and later collision

  1. Fast ignition: Dependence of the ignition energy on source and target parameters for particle-in-cell-modelled energy and angular distributions of the fast electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bellei, C.; Divol, L.; Kemp, A. J.; Key, M. H.; Larson, D. J.; Strozzi, D. J.; Marinak, M. M.; Tabak, M.; Patel, P. K. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2013-05-15

    The energy and angular distributions of the fast electrons predicted by particle-in-cell (PIC) simulations differ from those historically assumed in ignition designs of the fast ignition scheme. Using a particular 3D PIC calculation, we show how the ignition energy varies as a function of source-fuel distance, source size, and density of the pre-compressed fuel. The large divergence of the electron beam implies that the ignition energy scales with density more weakly than the ρ{sup −2} scaling for an idealized beam [S. Atzeni, Phys. Plasmas 6, 3316 (1999)], for any realistic source that is at some distance from the dense deuterium-tritium fuel. Due to the strong dependence of ignition energy with source-fuel distance, the use of magnetic or electric fields seems essential for the purpose of decreasing the ignition energy.

  2. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  3. On the effect of Di-Ethyl-Ether (DEE) injection upon the cold starting of a biodiesel fuelled compression ignition engine

    Science.gov (United States)

    Clenci, Adrian; Niculescu, Rodica; Iorga-Simǎn, Victor; Tricǎ, Alina; Danlos, Amélie

    2017-02-01

    The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. This paper is a consequence of a study on assessing the cold-starting performance of a compression ignition engine fueled with different blends of fossil diesel fuel and biodiesel. Through experimental investigations, it was found that the engine starting at -20°C was no longer possible in the case of using B50 (50% diesel + 50% biofuel made from sunflower oil). In order to "force" the engine starting in this particular situation, Di-Ethyl-Ether (DEE) was injected into the intake manifold. DEE being a highly flammable substance, the result was a sudden and explosive engine starting, the peak pressure in the monitored cylinder in the first successful engine cycle being almost twice the one which is usually considered as normal. Thus, to explain the observed phenomena, we launched this work relying on the analysis of the in-cylinder instantaneous pressure evolution, which was acquired during cranking, stabilizing and idling phases. Moreover, since the cause of the sudden and explosive engine starting was the DEE, by using a CFD approach, we also obtained results regarding the inter-cylinder distribution of the injected DEE.

  4. Prediction of an optimum biodiesel-diesel blended fuel for compression ignition engine using GT-power

    International Nuclear Information System (INIS)

    Shah, A.N.; Shah, F.H.; Shahid, E.M.; Gardezi, S.A.R.

    2014-01-01

    This paper describes the development of a turbocharged direct-injection compression ignition (CI) engine model using fluid-dynamic engine simulation codes through a simulating tool known as GT Power. The model was first fueled with diesel, and then with various blends of biodiesel and diesel by allotting suitable parameters to predict an optimum blended fuel. During the optimization, main focus was on the engine performance, combustion, and one of the major regulated gaseous pollutants known as oxides of nitrogen (NOx). The combustion parameters such as Premix Duration (DP), Main Duration (DM), Premix Fraction (FP), Main Exponent (EM) and ignition delay (ID) affect the start of injection (SOI) angle, and thus played significant role in the prediction of optimum blended fuel. The SOI angle ranging from 5.2 to 5.7 degree crank angle (DCA) measured before top dead center (TDC) revealed an optimum biodiesel-diesel blend known as B20 (20% biodiesel and 80% diesel by volume). B20 exhibited the minimum possible NOx emissions, better combustion and acceptable engine performance. Moreover, experiments were performed to validate the simulated results by fueling the engine with B20 fuel and operating it on AC electrical dynamometer. Both the experimental and simulated results were in good agreement revealing maximum deviations of only 3%, 3.4%, 4.2%, and 5.1% for NOx, maximum combustion pressure (MCP), engine brake power (BP), and brake specific fuel consumption (BSFC), respectively. Meanwhile, a positive correlation was found between MCP and NOx showing that both the parameters are higher at lower speeds, relative to higher engine speeds. (author)

  5. Study of emissions for a compression ignition engine fueled with a mix of DME and diesel

    Science.gov (United States)

    Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete

    2017-10-01

    Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

  6. Homogeneous charge compression ignition compared with Otto-Atkinson in a passenger car size engine

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Andreas

    2000-07-01

    The use of Homogeneous Charge Compression Ignition (HCCI) was investigated in an ordinary SI (spark ignition) engine, in this case a modified Volvo 850, working on one cylinder only, the others towed. The major purpose of this study was to examine whether there were the same kind of throttle losses in this engine as in a Diesel engine (Volvo TD 100). One reason for throttling is that HCCI causes very cold exhaust gases. The Diesel engine has a larger cylinder volume (1.6 compared to 0.5 litre), working at low engine speed (1000 rpm) and only two valves with comparably small area. The smaller Volvo 850 engine has four valves and was in this examination working at up to 3500 rpm. To make the engine run by HCCI following modifications were made. The compression was set to 20:1 by changing the piston. To affect the ignition an electrical heater was installed near the air inlet. Mixing iso-octane (ON 100) and N-heptane (ON 0) set the octane number. A couple of camshafts with different cam-profiles were used to achieve the right valve opening duration depending on which kind of combustion that was studied. There could then also be a comparison between Otto and HCCI combustion both working with wide-open throttle. To obtain comparable indicated mean effective pressure (IMEP) the engine was working with late (LIVC) or early inlet valve closing (EIVC) at SI combustion. Measurements were taken involving in-cylinder pressure, temperature, speed, fuel-consumption, emissions etc. Regarding emissions there were special consideration taken to hydrocarbon and NO{sub x}, which are known to be extremely high respectively low with HCCI combustion. Important questions that should be answered were: * How does higher engine speed affect the combustion ?, * How does the engine size affect emissions ?, * How much is the valve area affecting gas exchange losses ?, and * How high is the efficiency with HCCI compared with Otto (LIVC/EIVC) ?. The best results are achieved at an indicated mean

  7. Shock ignition of high gain inertial fusion capsules

    International Nuclear Information System (INIS)

    Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.

    2010-01-01

    Complete text of publication follows. Inertial Confinement Fusion relies on the compression of small amounts of an equimolar mix of Deuterium and Tritium (DT) up to volumic masses of several hundreds of g/cm 3 . Such high densities are obtained by means of the implosion of a spherical shell made of cryogenic DT fuel. In the conventional scheme a hot spot is formed in the central part of the pellet at the end of the implosion. If the pressure of this hot spot is large enough (several hundreds of Gbars), thermonuclear heating occurs with a characteristic time shorter than the hydrodynamic confinement time and the target self ignites. Since the central hot spot pressure results from the conversion of the shell kinetic energy into thermal energy, the threshold for the ignition of a given mass of DT is a direct function of the implosion velocity. Typical implosion velocities for central self ignition are of the order of 400 km/s. Such high velocities imply both a strong acceleration of the shell and the use of large aspect ration shells in order to optimize the hydrodynamic efficiency of the implosion, at least in direct drive. These two features strongly enhance the risk of shell beak up at time of acceleration under the Rayleigh-Taylor instability. Furthermore the formation of the hot spot may itself the unstable, this reducing its effective mass. High compression may be achieved at much lower velocities, thus reducing the energy budget and enhancing the implosion safety, but the corresponding fuel assembly requires an additional heating in order to reach ignition. This heating may be obtained from a 70-100 kJ laser pulse, delivered in 10-15 ps (Fast Ignition). An alternative idea is to boost up the central pressure of a target imploded at a sub-ignition velocity by means of a convergent strong shock launched at the end of the compression phase. This Shock Ignition (SI) concept has been suggested in 1983 by Scherbakov et al. More recently, R. Betti et al. developed

  8. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    He, X. T., E-mail: xthe@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China); Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240 (China); Institute of Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Li, J. W.; Wang, L. F.; Liu, J.; Lan, K.; Ye, W. H. [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China); Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871 (China); IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240 (China); Fan, Z. F.; Wu, J. F. [Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100094 (China)

    2016-08-15

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiation ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.

  9. Nova Upgrade program: ignition and beyond

    International Nuclear Information System (INIS)

    Storm, E.; Campbell, E.M.; Hogan, W.J.; Lindl, J.D.

    1993-01-01

    The Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion (ICF) Program is addressing the critical physics and technology issues directed toward demonstrating and exploiting ignition and propagating burn to high gain with ICF targets for both defense and civilian applications. Nova is the primary U.S. facility employed in the study of the X-ray-driven (indirect drive) approach to ICF. Nova's principal objective is to demonstrate that laser-driven hohlraums can achieve the conditions of driver-target coupling efficiency, driver irradiation symmetry, driver pulseshaping, target preheat, and hydrodynamic stability required by hot-spot ignition and fuel compression to realize a fusion gain. (author)

  10. Performance, emission and combustion analysis of a compression ignition engine using biofuel blends

    Directory of Open Access Journals (Sweden)

    Ors Ilker

    2017-01-01

    Full Text Available This study aimed to investigate the effects on performance, emission, and combustion characteristics of adding biodiesel and bioethanol to diesel fuel. Diesel fuel and blend fuels were tested in a water-cooled compression ignition engine with direct injection. Test results showed that brake specific fuel consumption and volumetric efficiency increased by about 30.6% and 3.7%, respectively, with the addition of bioethanol to binary blend fuels. The results of the blend fuel’s combustion analysis were similar to the diesel fuel’s results. Bioethanol increased maximal in-cylinder pressure compared to biodiesel and diesel fuel at both 1400 rpm and 2800 rpm. Emissions of CO increased by an amount of about 80% for fuels containing a high level of bioethanol when compared to CO emissions for diesel fuel. Using biodiesel, NO emissions increased by an average of 31.3%, HC emissions decreased by an average of 39.25%, and smoke opacity decreased by an average of 6.5% when compared with diesel fuel. In addition, when using bioethanol, NO emissions and smoke opacity decreased by 55% and 17% on average, respectively, and HC emissions increased by an average of 53% compared with diesel fuel.

  11. Present status of Fast Ignition Realization EXperiment (FIREX) and inertial fusion energy development

    International Nuclear Information System (INIS)

    Azechi, H.; Fujimoto, Y.; Fujioka, S.

    2012-11-01

    Controlled thermonuclear ignition and subsequent burn will be demonstrated in a couple of years on the central ignition scheme. Fast ignition has the high potential to ignite a fuel using only about one tenth of laser energy necessary to the central ignition. This compactness may largely accelerate inertial fusion energy development. One of the most advanced fast ignition programs is the Fast Ignition Realization Experiment (FIREX). The goal of its first phase is to demonstrate ignition temperature of 5 keV, followed by the second phase to demonstrate ignition-and-burn. The second series experiment of FIREX-I from late 2010 to early 2011 has demonstrated a high (≈20%) coupling efficiency from laser to thermal energy of the compressed core, suggesting that one can achieve the ignition temperature at the laser energy below 10 kJ. Given the demonstrations of the ignition temperature at FIREX-I and the ignition-and-burn at the National Ignition Facility, the inertial fusion research would then shift from the plasma physics era to power generation era. (author)

  12. Characterization and effect of using Mahua oil biodiesel as fuel in compression ignition engine

    Science.gov (United States)

    Kapilan, N.; Ashok Babu, T. P.; Reddy, R. P.

    2009-12-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and compression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the engine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emissions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel (B5 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  13. Analytical model for fast-shock ignition

    International Nuclear Information System (INIS)

    Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.

    2014-01-01

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25

  14. Fast ignition schemes for inertial confinement fusion

    International Nuclear Information System (INIS)

    Deutsch, C.

    2003-01-01

    The controlled production of a local hot spot in super-compressed deuterium + tritium fuel is examined in details. Relativistic electron beams (REB) in the MeV and proton beams in the few tens MeV energy range produced by PW-lasers are respectively considered. A strong emphasis is given to the propagation issues due to large density gradients in the outer core of compressed fuel. A specific attention is also paid to the final and complete particle stopping resulting in hot spot generation as well as to the interplay of collective vs. particle stopping at the entrance channel on the low density side in plasma target. Moreover, REB production and fast acceleration mechanisms are also given their due attention. Proton fast ignition looks promising as well as the wedged (cone angle) approach circumventing most of transport uncertainties between critical layer and hot spot. Global engineering perspectives for fast ignition scenario (FIS) driven inertial confinement fusion are also detailed. (author)

  15. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Deng, Jiao; Chen, Renzhe; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen-enriched compressed natural gas) fuels on performance and emission characteristics at wide open throttle operating conditions using a turbocharged spark-ignition natural gas engine. The experimental data was taken at hydrogen fractions of 0%, 30% and 55% by volume and was conducted under different excess air ratio ({lambda}) at MBT operating conditions. It is found that under various {lambda}, the addition of hydrogen can significantly reduce CO, CH{sub 4} emissions and the NO{sub x} emission remain at an acceptable level when ignition timing is optimized. Using the same excess air ratio, as more hydrogen is added the power, exhaust temperatures and max cylinder pressure decrease slowly until the mixture's lower heating value remains unchanged with the hydrogen enrichment, then they rise gradually. In addition, the early flame development period and the flame propagation duration are both shorter, and the indicated thermal efficiency and maximum heat release rate both increase with more hydrogen addition. (author)

  16. Numerical Study of Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion with Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Model

    Directory of Open Access Journals (Sweden)

    Amir-Hasan Kakaee

    2018-03-01

    Full Text Available In the current study, a comparative study is performed using Large Eddy Simulation (LES and Reynolds-averaged Navier–Stokes (RANS turbulence models on a natural gas/diesel Reactivity Controlled Compression Ignition (RCCI engine. The numerical results are validated against the available research work in the literature. The RNG (Re-Normalization Group k − ε and dynamic structure models are employed to model turbulent flow for RANS and LES simulations, respectively. Parameters like the premixed natural gas mass fraction, the second start of injection timing (SOI2 of diesel and the engine speed are studied to compare performance of RANS and LES models on combustion and pollutant emissions prediction. The results obtained showed that the LES and RANS model give almost similar predictions of cylinder pressure and heat release rate at lower natural gas mass fractions and late SOI2 timings. However, the LES showed improved capability to predict the natural gas auto-ignition and pollutant emissions prediction compared to RANS model especially at higher natural gas mass fractions.

  17. Shock timing on the National Ignition Facility: First Experiments

    International Nuclear Information System (INIS)

    Celliers, P.M.; Robey, H.F.; Boehly, T.R.; Alger, E.; Azevedo, S.; Berzins, L.V.; Bhandarkar, S.D.; Bowers, M.W.; Brereton, S.J.; Callahan, D.; Castro, C.; Chandrasekaran, H.; Choate, C.; Clark, D.; Coffee, K.R.; Datte, P.S.; Dewald, E.L.; DiNicola, P.; Dixit, S.; Doeppner, T.; Dzenitis, E.; Edwards, M.J.; Eggert, J.H.; Fair, J.; Farley, D.R.; Frieders, G.; Gibson, C.R.; Giraldez, E.; Haan, S.; Haid, B.; Hamza, A.V.; Haynam, C.; Hicks, D.G.; Holunga, D.M.; Horner, J.B.; Jancaitis, K.; Jones, O.S.; Kalantar, D.; Kline, J.L.; Krauter, K.G.; Kroll, J.J.; LaFortune, K.N.; Pape, S.L.; Malsbury, T.; Maypoles, E.R.; Milovich, J.L.; Moody, J.D.; Moreno, K.; Munro, D.H.; Nikroo, A.; Olson, R.E.; Parham, T.; Pollaine, S.; Radousky, H.B.; Ross, G.F.; Sater, J.; Schneider, M.B.; Shaw, M.; Smith, R.F.; Thomas, C.A.; Throop, A.; Town, R.J.; Trummer, D.; Van Wonterghem, B.M.; Walters, C.F.; Widmann, K.; Widmayer, C.; Young, B.K.; Atherton, L.J.; Collins, G.W.; Landen, O.L.; Lindl, J.D.; MacGowan, B.J.; Meyerhofer, D.D.; Moses, E.I.

    2011-01-01

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  18. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2009-01-01

    the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 1626-34, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusion-fission energy (LIFE) as a path to achieve carbon-free sustainable energy.

  19. Ignition on the National Ignition Facility: a path towards inertial fusion energy

    Science.gov (United States)

    Moses, Edward I.

    2009-10-01

    the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 1626-34, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusion-fission energy (LIFE) as a path to achieve carbon-free sustainable energy.

  20. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    KAUST Repository

    Wang, Zhandong

    2016-01-20

    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  1. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    SENDILVELAN S.

    2017-11-01

    Full Text Available Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize the blends for reducing emission and improving performance. Results show improved performance with B10 blends compared to neat fuel for all conditions of the engine. Other blends recorded marginal decrease in brake thermal efficiency. The maximum efficiency for B30, B50 blends at peak load are 26.3%, 25.2% respectively against 29.1% for sole fuel. NOx emissions were found to be high or the blends. Peak pressure and rate of pressure rise are increased with increase in dioxane ratio due to improved combustion rate. Heat release pattern shows higher premixed combustion rate with the blends. Higher ignition delay and lower combustion duration are found with all blends than neat diesel fuel.

  2. Scaling of energy deposition in fast ignition targets

    International Nuclear Information System (INIS)

    Welch, Dale R.; Slutz, Stephen A.; Mehlhorn, Thomas Alan; Campbell, Robert B.

    2005-01-01

    We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm 3 , with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10 21 W/cm 2 , the hot electron energies expected to approach 100MeV. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem.

  3. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-density carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.

  4. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki; Mansfield, Andrew B.; Wooldridge, Margaret S.; Im, Hong G.

    2015-01-01

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  5. Characteristics of Syngas Auto-ignition at High Pressure and Low Temperature Conditions with Thermal Inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-05-31

    Effects of thermal inhomogeneities on syngas auto-ignition at high-pressure low-temperature conditions, relevant to gas turbine operation, are investigated using detailed one-dimensional numerical simulations. Parametric tests are carried out for a range of thermodynamic conditions (T = 890-1100 K, P = 3-20 atm) and composition (Ф = 0.1, 0.5). Effects of global thermal gradients and localized thermal hot spots are studied. In the presence of a thermal gradient, the propagating reaction front transitions from spontaneous ignition to deflagration mode as the initial mean temperature decreases. The critical mean temperature separating the two distinct auto-ignition modes is computed using a predictive criterion and found to be consistent with front speed and Damkohler number analyses. The hot spot study reveals that compression heating of end-gas mixture by the propagating front is more pronounced at lower mean temperatures, significantly advancing the ignition delay. Moreover, the compression heating effect is dependent on the domain size.

  6. Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (dieselbiogas) mode

    Science.gov (United States)

    Ambarita, H.

    2018-02-01

    The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.

  7. Analysis of core plasma heating and ignition by relativistic electrons

    International Nuclear Information System (INIS)

    Nakao, Y.

    2002-01-01

    Clarification of the pre-compressed plasma heating by fast electrons produced by relativistic laser-plasma interaction is one of the most important issues of the fast ignition scheme in ICF. On the basis of overall calculations including the heating process, both by relativistic hot electrons and alpha-particles, and the hydrodynamic evolution of bulk plasma, we examine the feature of core plasma heating and the possibility of ignition. The deposition of the electron energy via long-range collective mode, i.e. Langmuir wave excitation, is shown to be comparable to that through binary electron-electron collisions; the calculation neglecting the wave excitation considerably underestimates the core plasma heating. The ignition condition is also shown in terms of the intensity I(h) and temperature T(h) of hot electrons. It is found that I(h) required for ignition increases in proportion to T(h). For efficiently achieving the fast ignition, electron beams with relatively 'low' energy (e.g.T(h) below 1 MeV) are desirable. (author)

  8. Plasma physics study and laser development for the fast ignition realization experiment (FIREX) project

    International Nuclear Information System (INIS)

    Azechi, H.; Mima, K.; Fujimoto, Y.

    2008-10-01

    Since the approval of the first phase of Fast Ignition Realization Experiment (FIREX-I), we have devoted our efforts on designing advanced targets and constructing the world highest-energy Peta Watt laser. The new target design has the following features. The coupling efficiency from the heating laser to the thermal energy of the compressed core plasma can be increased by the two ways:1) Low-Z foam layer on the inner surface of the cone for optimum absorption. 2) Double cone. Electrons generated in the inner surface of the double cone will return by sheathe potential generated between two cones. The implosion performance can be improved by three ways: 3) Low-Z plastic layer on the outer surface of the cone may suppress the expansion of the Au cone that flows into the interior of the compressed core. 4) Br doped plastic ablator may significantly moderate the Rayleigh-Taylor instability, making implosion more stable. 5) Evacuation of the target center to prevent gas jets from destroying the cone tip. For project robustness, we also explore 6) impact ignition scheme that eliminates complexity of laser-plasma interaction while keeping the compactness advantage of fast ignition. The fully integrated fast ignition experiment is scheduled on 2009. If subsequent FIREX-II will start as proposed, the ignition and burn will be demonstrated shortly after the ignition at NIF and LMJ, providing a scientific database of both central and fast ignition. (author)

  9. Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine

    International Nuclear Information System (INIS)

    Wu, Zhijun; Kang, Zhe; Deng, Jun; Hu, Zongjie; Li, Liguang

    2016-01-01

    Highlights: • n-Heptane HCCI combustion under air and oxygen intake was compared. • n-Heptane auto-ignition postponed due to higher specific heat capacity as oxygen increase. • The increment of heat release fraction during low temperature reaction is studied. • Oxygen enrichment lead to suppressed negative temperature coefficient. • The mechanism of low temperature reaction enhancement as oxygen increase is investigated. - Abstract: To take maximum advantage of the high efficiency of homogeneous charge compression ignition combustion mode and internal combustion Rankine cycle concept, in this study, the n-heptane auto-ignition characteristics have been investigated using a compression ignition internal combustion Rankine cycle engine test bench and a zero-dimensional thermodynamic model coupled with a detailed kinetic model. The n-heptane auto-ignition process shows that under both air and oxygen intake, a typical two-stage combustion in which oxygen enrichment has very minor effects on the n-heptane high temperature reaction. The higher specific heat capacity of oxygen compared with nitrogen leads to an overall increased specific heat capacity, which lowers the in-cylinder temperature during compression stroke, thereby delaying the low temperature reaction initial timing. The higher oxygen content also improves the H-atom abstraction, first O_2 addition, second O_2 addition and peroxyalkylhydroperoxide isomerization, thereby improving the overall reaction rate and the heat release fraction of low temperature reaction. As a result, the in-cylinder temperature at the end of low temperature reaction also increases, thereby shortening significantly the negative temperature coefficient duration compared with a combustion cycle using air as oxidizer.

  10. Ignition and burn propagation with suprathermal electron auxiliary heating

    International Nuclear Information System (INIS)

    Han Shensheng; Wu Yanqing

    2000-01-01

    The rapid development in ultrahigh-intensity lasers has allowed the exploration of applying an auxiliary heating technique in inertial confinement fusion (ICF) research. It is hoped that, compared with the 'standard fast ignition' scheme, raising the temperature of a hot-spot over the ignition threshold based on the shock-heated temperature will greatly reduce the required output energy of an ignition ultrahigh-intensity pulse. One of the key issues in ICF auxiliary heating is: how can we transport the exogenous energy efficiently into the hot-spot of compressed DT fuel? A scheme is proposed with three phases. First, a partial-spherical-shell capsule, such as double-conical target, is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration with a hot-spot of temperature lower than the ignition threshold. Second, a hole is bored through the shell outside the hot-spot by suprathermal electron explosion boring. Finally, the fuel is ignited by suprathermal electrons produced in the high-intensity ignition laser-plasma interactions. Calculations with a simple hybrid model show that the new scheme can possibly lead to ignition and burn propagation with a total drive energy of a few tens of kilojoules and an output energy as low as hundreds of joules for a single ignition ultrahigh-intensity pulse. (author)

  11. Auto-Ignition and Combustion of Diesel Fuel in a Constant-Volume Bomb

    Science.gov (United States)

    Selden, Robert F

    1938-01-01

    Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.

  12. Shock timing on the National Ignition Facility: First experiments

    Directory of Open Access Journals (Sweden)

    Celliers P.M.

    2013-11-01

    Full Text Available An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a re-entrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  13. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    Science.gov (United States)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  14. Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: Chemical aspects

    KAUST Repository

    Luong, Minh Bau

    2016-10-10

    Chemical aspects of the ignition of a primary reference fuel (PRF)/air mixture under reactivity controlled compression ignition (RCCI) and stratified charge compression ignition (SCCI) conditions are investigated by analyzing two-dimensional direct numerical simulation (DNS) data with chemical explosive mode (CEM) analysis. CEMA is adopted to provide fundamental insights into the ignition process by identifying controlling species and elementary reactions at different locations and times. It is found that at the first ignition delay, low-temperature chemistry (LTC) represented by the isomerization of alkylperoxy radical, chain branching reactions of keto-hydroperoxide, and H-atom abstraction of n-heptane is predominant for both RCCI and SCCI combustion. In addition, explosion index and participation index analyses together with conditional means on temperature verify that low-temperature heat release (LTHR) from local mixtures with relatively-high n-heptane concentration occurs more intensively in RCCI combustion than in SCCI combustion, which ultimately advances the overall RCCI combustion and distributes its heat release rate over time. It is also found that at the onset of the main combustion, high-temperature heat release (HTHR) occurs primarily in thin deflagrations where temperature, CO, and OH are found to be the most important species for the combustion. The conversion reaction of CO to CO and hydrogen chemistry are identified as important reactions for HTHR. The overall RCCI/SCCI combustion can be understood by mapping the variation of 2-D RCCI/SCCI combustion in temperature space onto the temporal evolution of 0-D ignition.

  15. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel

    International Nuclear Information System (INIS)

    Lee, Seokhwon; Jeon, Joonho; Park, Sungwook

    2016-01-01

    Highlights: • Pre-blended gasoline-diesel fuel was used with direct injection system. • KIVA-CHEMKIN code modeled dual-fuel fuel spray and combustion processes with discrete multi-component model. • The characteristics of Combustion and emission on pre-blended fuel was investigated with various fuel reactivities. • Optimization of combustion chamber shape improved combustion performance of the gasoline-diesel blended fuel engine. - Abstract: In this study, experiments and numerical simulations were used to improve the fuel efficiency of compression ignition engine using a gasoline-diesel blended fuel and an optimization technology. The blended fuel is directly injected into the cylinder with various blending ratios. Combustion and emission characteristics were investigated to explore the effects of gasoline ratio on fuel blend. The present study showed that the advantages of gasoline-diesel blended fuel, high thermal efficiency and low emission, were maximized using the numerical optimization method. The ignition delay and maximum pressure rise rate increased with the proportion of gasoline. As the gasoline fraction increased, the combustion duration and the indicated mean effective pressure decreased. The homogeneity of the fuel-air mixture was improved due to longer ignition delay. Soot emission was significantly reduced up to 90% compared to that of conventional diesel. The nitrogen oxides emissions of the blended fuel increased slightly when the start of injection was retarded toward top dead center. For the numerical study, KIVA-CHEMKIN multi-dimensional CFD code was used to model the combustion and emission characteristics of gasoline-diesel blended fuel. The micro genetic algorithm coupled with the KIVA-CHEMKIN code were used to optimize the combustion chamber shape and operating conditions to improve the combustion performance of the blended fuel engine. The optimized chamber geometry enhanced the fuel efficiency, for a level of nitrogen oxides

  16. Experimental investigation of hydrogen energy share improvement in a compression ignition engine using water injection and compression ratio reduction

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2016-01-01

    Highlights: • Energy efficiency (EE) increased with increase in hydrogen (H_2) energy share. • H_2 energy share increased from 19% to 79% with combined CR reduction and water. • In-cylinder temperature decreased significantly with water addition and CR reduction. • HC, CO, smoke and NO_x emissions with water and CR are lower than base diesel. - Abstract: This study deals with the effect of water addition on enhancement of maximum hydrogen energy share in a compression ignition engine (7.4 kW rated power at 1500 rpm) under dual fuel mode. The specific water consumption (SWC) was varied from 130 to 480 g/kW h in step of 70 g/kW h using manifold and port injection methods. Subsequently, the combined effect of reduction of compression ratio (CR) of the engine (from 19.5:1 (base) to 16.5:1 and 15.4:1) along with water addition on further enhancement of hydrogen energy share is investigated. The hydrogen energy share was limited to 18.8% with conventional dual fuel mode due to knocking. However, the energy share increased to 66.5% with water addition (maximum SWC: 480 g/kW h), and 79% with combined control strategies (SWC of 340 g/kW h and CR reduction to 16.5:1). Thermal efficiency of the engine under water added dual fuel mode is higher than base diesel mode (single fuel mode), but it is lower than the conventional dual fuel mode without water. The efficiency of the engine with reduced CR and water addition is lower than the conventional dual fuel mode, however at the CR of 16.5:1 and SWC of 340 g/kW h, the efficiency is comparable with base diesel mode efficiency. Hydrocarbon, carbon monoxide, smoke, and oxides of nitrogen emissions of the engine with water addition (340 g/kW h) and CR reduction (to 16.5:1) decreased significantly as compared to base diesel mode, but slightly higher than conventional dual fuel mode.

  17. Zero-dimensional mathematical model of the torch ignited engine

    International Nuclear Information System (INIS)

    Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina

    2016-01-01

    Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.

  18. Investigation of fusion gain in fast ignition with conical targets

    Directory of Open Access Journals (Sweden)

    MJ Tabatabaei

    2011-03-01

    Full Text Available Fast ignition is a new scheme for inertial confinement fusion (ICF. In this scheme, at first the interaction of ultraintense laser beam with the hohlraum wall surrounding a capsule containing deuterium-tritium (D-T fuel causes implosion and compression of fuel to high density and then laser produced protons penetrate in the compressed fuel and deposit their energy in it as the ignition hot spot is created. In this paper, following the energy gain of spherical target and considering relationship of the burn fraction to burn duration, we have obtained the energy gain of conical targets characterized by the angle β, and found a hemispherical capsule (β=π/2 has a gain as high as 96% of that of the whole spherical capsule. The results obtained in this study are qualitatively consistent with Atzeni et al.'s studies of simulations.

  19. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  20. Relativistic self focussing of laser beams at fast ignitor inertial fusion with volume ignition

    International Nuclear Information System (INIS)

    Osman, F.; Castillo, R.; Hora, H.

    1999-01-01

    The alternative to the magnetic confinement fusion is inertial fusion energy mostly using lasers as drivers for compression and heating of pellets with deuterium and tritium fuel. Following the present technology of lasers with pulses of some megajoules energy and nanosecond duration, a power station for very low cost energy production (and without the problems of well erosion of magnetic confinement) could be available within 15 to 20 years. For the pellet compression, the scheme of spark ignition was mostly applied but its numerous problems with asymmetries and instabilities may be overcome by the alternative scheme of high gain volume ignition. This is a well established option of inertial fusion energy with lasers where a large range of possible later improvements is implied with respect to laser technology or higher plasma compression leading to energy production of perhaps five times below the present lowest level cost from fission reactors. A further improvement may be possible by the recent development of lasers with picosecond pulse duration using the fast igniter scheme which may reach even higher fusion gains with laser pulse energies of some 100 kilojoules

  1. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range

    International Nuclear Information System (INIS)

    Wang, Buyu; Wang, Zhi; Shuai, Shijin; Yang, Hongqiang; Wang, Jianxin

    2014-01-01

    Highlights: • Naphtha MPCI can operate stably in wide load range from 0.4 MPa to 1.4 MPa of IMEP. • Naphtha MPCI can achieve high thermal efficiency due to low exhaust loss. • Gasoline MPCI has low heat transfer loss than CDC and naphtha MPCI. • MPCI can produce low NO x emissions (<0.4 g/kW h) with the EGR ratio less than 30%. - Abstract: This paper investigates the effect of naphtha (RON = 65.6) and commercial gasoline (RON = 94.0) on Multiple Premixed Compression Ignition (MPCI) mode. The experiment is conducted on a single cylinder research diesel engine with compression ratio of 16.7. The engine is operated at an engine speed of 1600 rpm for the IMEP from 0.4 to 1.4 MPa. Commercial diesel (CN = 56.5) is also tested in Conventional Diesel Combustion (CDC) mode as a baseline. At each operating point, the injection strategy and intake conditions are adjusted to meet with the criteria (NO x < 0.4 g/kW h, soot < 0.06 m −1 , MPRR < 1 MPa/deg and CA50 < 20 CAD ATDC). The typical two-stage combustion characteristics of MPCI are obtained in both naphtha and gasoline. Stable combustion is achieved by naphtha in wide load range, while the engine fuelled with gasoline cannot operate stably at 0.4 MPa IMEP. The COV of IMEP of gasoline MPCI is higher than that of naphtha and diesel. However, gasoline has the low MPRR and the retarded CA50 at medium and high loads due to its longest ignition delay. As a result of low exhaust loss for naphtha and low heat transfer loss for gasoline, the thermal efficiencies are higher for both naphtha and gasoline in MPCI mode than diesel in CDC mode, even though diesel has the highest combustion efficiency. The separated combustion in MPCI leads to low cylinder temperature, and moderate EGR ratio (less than 30%) is needed to control NO x emissions under the limit of EURO VI

  2. Ignition delay measurements of light naphtha: A fully blended low octane fuel

    KAUST Repository

    Javed, Tamour

    2016-06-15

    Light naphtha is a fully blended, low-octane (RON. = 64.5, MON. = 63.5), highly paraffinic (>. 90% paraffinic content) fuel, and is one of the first distillates obtained during the crude oil refining process. Light naphtha is an attractive low-cost fuel candidate for advanced low-temperature compression ignition engines where autoignition is the primary control mechanism. We measured ignition delay times for light naphtha in a shock tube and a rapid compression machine (RCM) over a broad range of temperatures (640-1250. K), pressures (20 and 40. bar) and equivalence ratios (0.5, 1 and 2). Ignition delay times were modeled using a two-component primary reference fuel (PRF) surrogate and a multi-component surrogate. Both surrogates adequately captured the measured ignition delay times of light naphtha under shock tube conditions. However, for low-temperature RCM conditions, simulations with the multi-component surrogate showed better agreement with experimental data. These simulated surrogate trends were confirmed by measuring the ignition delay times of the PRF and multi-component surrogates in the RCM at . P = 20. bar, . ϕ = 2. Detailed kinetic analyses were undertaken to ascertain the dependence of the surrogates\\' reactivity on their chemical composition. To the best of our knowledge, this is the first fundamental autoignition study on the reactivity of a low-octane fully blended fuel and the use of a suitably formulated multi-component surrogate to model its behavior.

  3. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    Science.gov (United States)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  4. Opportunities for Integrated Fast Ignition program

    International Nuclear Information System (INIS)

    Mackinnon, A. J.; Key, M. H.; Hatchett, S. P.; Tabak, M.; Town, R.; Gregori, G.; Patel, P. K.; Snavely, R.; Freeman, R. R.; Stephens, R. B.; Beg, F.

    2005-01-01

    Experiments designed to investigate the physics of particle transport and heating of dense plasmas have been carried out in an number of facilities around the world since the publication of the fast ignition concept in 1997. To date a number of integrated experiments, examining the capsule implosion and subsequent heating have been carried out on the Gekko facility at the Institute of Laser Engineering (ILE) Osaka, Japan. The coupling of energy by the short pulse into the pre-compressed core in these experiments was very encouraging. More facilities capable of carrying out integrated experiments are currently under construction: Firex at ILEm the Omega EP facility at the University of Rochester, Z PW at Sandia National Lab, LIL in France and eventually high energy PW beams on the NIF. This presentation will review the current status of experiments in this area and discuss the capabilities of integrated fast ignition research that will be required to design the proof of principle and scaling experiments for fast ignition to be carried on the NIF. (Author)

  5. Studies on the robustness of shock-ignited laser fusion targets

    International Nuclear Information System (INIS)

    Atzeni, S; Schiavi, A; Marocchino, A

    2011-01-01

    Several aspects of the sensitivity of a shock-ignited inertial fusion target to variation of parameters and errors or imperfections are studied by means of one-dimensional and two-dimensional numerical simulations. The study refers to a simple all-DT target, initially proposed for fast ignition (Atzeni et al 2007 Phys. Plasmas 7 052702) and subsequently shown to be also suitable for shock ignition (Ribeyre et al 2009 Plasma Phys. Control. Fusion 51 015013). It is shown that the growth of both Richtmyer-Meshkov and Rayleigh-Taylor instability (RTI) at the ablation front is reduced by laser pulses with an adiabat-shaping picket. An operating window for the parameters of the ignition laser spike is described; the threshold power depends on beam focusing and synchronization with the compression pulse. The time window for spike launch widens with beam power, while the minimum spike energy is independent of spike power. A large parametric scan indicates good tolerance (at the level of a few percent) to target mass and laser power errors. 2D simulations indicate that the strong igniting shock wave plays an important role in reducing deceleration-phase RTI growth. Instead, the high hot-spot convergence ratio (ratio of initial target radius to hot-spot radius at ignition) makes ignition highly sensitive to target mispositioning.

  6. Features of a point design for Fast Ignition

    International Nuclear Information System (INIS)

    Tabak, M; Clark, D; Town, R P J; Key, M H; Amendt, P; Ho, D; Meeker, D J; Shay, H D; Lasinski, B F; Kemp, A; Divol, L; Mackinnon, A J; Patel, P; Strozzi, D; Grote, D P

    2010-01-01

    Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

  7. Features of a point design for fast ignition

    International Nuclear Information System (INIS)

    Tabak, M.; Clark, D.; Town, R.J.; Key, M.H.; Amendt, P.; Ho, D.; Meeker, D.J.; Shay, H.D.; Lasinski, B.F.; Kemp, A.; Divol, L.; Mackinnon, A.J.; Patel, P.; Strozzi, D.; Grote, D.P.

    2009-01-01

    Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

  8. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  9. Engine performance and emission of compression ignition engine fuelled with emulsified biodiesel-water

    Science.gov (United States)

    Maawa, W. N.; Mamat, R.; Najafi, G.; Majeed Ali, O.; Aziz, A.

    2015-12-01

    The depletion of fossil fuel and environmental pollution has become world crucial issues in current era. Biodiesel-water emulsion is one of many possible approaches to reduce emissions. In this study, emulsified biodiesel with 4%, 6% and 8% of water contents were prepared to be used as fuel in a direct injection compression ignition engine. The performance indicator such as brake power, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) and emissions such as NOx and particulate matter (PM) were investigated. The engine was set at constant speed of 2500 rpm and load from 20% to 60%. All the results were compared to B5 (blend of 95% petroleum diesel and 5% palm oil biodiesel) biodiesel. At low load, the BSFC decrease by 12.75% at 4% water ratio and decreased by 1.5% at 6% water ratio. However, the BSFC increases by 17.19% with increasing water ratio to 8% compared to B5. Furthermore, there was no significant decrease in brake power and BTE at 60% load. For 20% and 40% load there was some variance regarding to brake power and BTE. Significant reduction in NOx and PM emissions by 73.87% and 20.00% respectively were achieved with increasing water ratio to 8%. Overall, it is observed that the emulsified of biodiesel-water is an appropriate alternative fuel method to reduce emissions.

  10. Study of the shock ignition scheme in inertial confinement fusion

    International Nuclear Information System (INIS)

    Lafon, M.

    2011-01-01

    The Shock Ignition (SI) scheme is an alternative to classical ignition schemes in Inertial Confinement Fusion. Its singularity relies on the relaxation of constraints during the compression phase and fulfilment of ignition conditions by launching a short and intense laser pulse (∼500 ps, ∼300 TW) on the pre-assembled fuel at the end of the implosion.In this thesis, it has been established that the SI process leads to a non-isobaric fuel configuration at the ignition time thus modifying the ignition criteria of Deuterium-Tritium (DT) against the conventional schemes. A gain model has been developed and gain curves have been inferred and numerically validated. This hydrodynamical modeling has demonstrated that the SI process allows higher gain and lower ignition energy threshold than conventional ignition due to the high hot spot pressure at ignition time resulting from the ignitor shock propagation.The radiative hydrodynamic CHIC code developed at the CELIA laboratory has been used to determine parametric dependences describing the optimal conditions for target design leading to ignition. These numerical studies have enlightened the potential of SI with regards to saving up laser energy, obtain high gains but also to safety margins and ignition robustness.Finally, the results of the first SI experiments performed in spherical geometry on the OMEGA laser facility (NY, USA) are presented. An interpretation of the experimental data is proposed from mono and bidimensional hydrodynamic simulations. Then, different trails are explored to account for the differences observed between experimental and numerical data and alternative solutions to improve performances are suggested. (author) [fr

  11. The use of modified tyre derived fuel for compression ignition engines.

    Science.gov (United States)

    Pilusa, T J

    2017-02-01

    This study investigated physical and chemical modification of tyre-derived fuel oil (TDFO) obtained from pyrolysis of waste tyres and rubber products for application as an alternative fuel for compression ignition engines (CIE's). TDFO collected from a local waste tyre treatment facility was refined via a novel "oxidative gas-phase fractional distillation over 13× molecular sieves" to recover the light to medium fractions of the TDFO while oxidising and capturing some sulphur compounds in a gas phase. This was followed by desulphurization and chemical modification to improve cetane number, kinematic viscosity and fuel stability. The resulting fuel was tested in an ADE407T truck engine to compare its performance with petroleum diesel fuel. It was discovered that gas phase oxidative fractional distillation reduces the low boiling point sulphur compounds in TDFO such as mercaptans. Using petroleum diesel fuel as a reference, it was observed that the produced fuel has a lower cetane number, flash point and viscosity. On storage the fuel tends to form fibrous microstructures as a result of auto-oxidation of asphaltenes present in the fuel. Mixtures of alkyl nitrate, vinyl acetate, methacrylic anhydride, methyl-tert butyl ether, n-hexane and n-heptane were used to chemically modify the fuel in accordance with the minimum fuel specifications as per SANS 342. The engine performance tests results did not show any sign of engine ceasing or knocking effect. The power-torque trend was very consistent and compared well with petroleum diesel fuelled engine. The levels of total sulphur are still considerably high compared to other cleaner fuel alternatives derived from zero sulphur sources. Copyright © 2016. Published by Elsevier Ltd.

  12. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence

    Directory of Open Access Journals (Sweden)

    Gómez Montoya Juan Pablo

    2015-01-01

    Full Text Available With the purpose to use biogas in an internal combustion engine with high compression ratio and in order to get a high output thermal efficiency, this investigation used a diesel engine with a maximum output power 8.5 kW, which was converted to spark ignition mode to use it with gaseous fuels. Three fuels were used: Simulated biogas, biogas enriched with 25% and 50% methane by volume. After conversion, the output power of the engine decreased by 17.64% when using only biogas, where 7 kW was the new maximum output power of the engine. The compression ratio was kept at 15.5:1, and knocking did not occur during engine operation. Output thermal efficiency operating the engine in SI mode with biogas enriched with 50% methane was almost the same compared with the engine running in diesel-biogas dual mode at full load and was greater at part loads. The dependence of the diesel pilot was eliminated when biogas was used in the engine converted in SI mode. The optimum condition of experiment for the engine without knocking was using biogas enriched with 50% methane, with 12 degrees of spark timing advance and equivalence ratio of 0.95, larger output powers and higher values of methane concentration lead the engine to knock operation. The presence of CO2 allows operating engines at high compression ratios with normal combustion conditions. Emissions of nitrogen oxides, carbon monoxide and unburnt methane all in g/kWh decreased when the biogas was enriched with 50% methane.

  13. Effect of Combustion-chamber Shape on the Performance of a Prechamber Compression-ignition Engine

    Science.gov (United States)

    Moore, C S; Collins, J H , Jr

    1934-01-01

    The effect on engine performance of variations in the shape of the prechamber, the shape and direction of the connecting passage, the chamber volume using a tangential passage, the injection system, and the direction od the fuel spray in the chamber was investigated using a 5 by 7 inch single-cylinder compression-ignition engine. The results show that the performance of this engine can be considerably improved by selecting the best combination of variables and incorporating them in a single design. The best combination as determined from these tests consisted of a disk-shaped chamber connected to the cylinder by means of a flared tangential passage. The fuel was injected through a single-orifice nozzle directed normal to the air swirl and in the same plane. At an engine speed of 1,500 r.p.m. and with the theoretical fuel quantity for no excess air, the engine developed a brake mean effective pressure of 115 pounds per square inch with a fuel consumption of 0.49 pound per brake horsepower-hour and an explosion pressure of 820 pounds per square inch. A brake mean effective pressure of 100 pounds per square inch with a brake-fuel consumption of 0.44 pound per horsepower-hour at 1,500 r.p.m. was obtained.

  14. Application of ORC power station to increase electric power of gas compression ignition engine

    Directory of Open Access Journals (Sweden)

    Mocarski Szymon

    2017-01-01

    Full Text Available The paper presents the calculation results of efficiency of the subcritical low temperature ORC power station powered by waste heat resulting from the process of cooling a stationary compression ignition engine. The source of heat to supply the ORC power station is the heat in a form of water jet cooling the engine at a temperature of 92°C, and the exhaust gas stream at a temperature of 420°C. The study considers three variants of systems with the ORC power stations with different ways of using heat source. The first variant assumes using just engine cooling water to power the ORC station. In the second variant the ORC system is powered solely by a heat flux from the combustion gases by means of an intermediary medium - thermal oil, while the third variant provides the simultaneous management of both heat fluxes to heat the water stream as a source of power supply to the ORC station. The calculations were made for the eight working media belonging both to groups of so-called dry media (R218, R1234yf, R227ea and wet media (R32, R161, R152a, R134a, R22.

  15. Inertial Confinement Fusion: steady progress towards ignition and high gain (summary talk)

    International Nuclear Information System (INIS)

    Basko, M.M.

    2005-01-01

    Most important recent advances in inertial confinement fusion (ICF) are highlighted. With the construction of the NIF and LMJ facilities, and a number of improvements in the target design, the conventional indirect-drive approach is making a steady progress towards demonstration of ignition and high gain. The development of the polar direct-drive concept made also the prospects for direct-drive ignition on the NIF extremely favorable. A substantial progress has been reported from the Institute of Laser Engineering in Osaka on exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at a lowest possible cost. In heavy ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (E i > or ∼ 0.5 GeV/u) heavy ions, has been proposed. (author)

  16. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy

    International Nuclear Information System (INIS)

    Das, Pranab; Subbarao, P.M.V.; Subrahmanyam, J.P.

    2015-01-01

    Highlights: • A new dual injection concept is developed by minimum geometry modification. • The occurrence of combustion parameters strongly depend on main injection timing. • At higher load, premixed equivalence ratio dominates over main injection timing. • Retarded of main injection timing tends to retard combustion phasing. • Slightly retarded main injection timing is recommended to avoid intense knocking. - Abstract: Homogeneous charge compression ignition combustion of diesel fuel is implemented using a novel dual injection strategy. A new experimental technique is developed to modify a single cylinder direct injection diesel engine to run on homogeneous combustion mode. Effect of main injection timing is investigated covering a range from 26 to 8 crank angle degrees before top dead center with an interval of 3°. Retarded main injection timing is identified as a control strategy for delaying combustion phasing and a means of controlled combustion phasing of direct injection homogeneous charge compression ignition combustion. Two load conditions were investigated and it was observed that at higher load, start of combustion depends more on fuel air equivalence ratio than main injection timing, whereas at low load, it significantly varies with varying main injection timing. Significant improvements in smoke and oxides of nitrogen emissions are observed when compared with the baseline conventional combustion. By studying different combustion parameters, it is observed that there is an improvement in performance and emissions with marginal loss in thermal efficiency when the main injection timing is 20° before top dead center. This is identified as the optimum main injection timing for such homogeneous combustion under the same operating condition

  17. Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)

    International Nuclear Information System (INIS)

    Basko, M.M.

    2005-01-01

    Based on the results presented at the 20th IAEA Fusion Energy Conference 2004, this paper highlights the most important recent advances in inertial confinement fusion (ICF). With the construction of the National Ignition Facility (NIF) and the Laser Megajoule facility and many improvements in the target design, the conventional indirect-drive approach is advancing steadily towards the demonstration of ignition and high gain. The development of the polar direct-drive concept also made the prospects for direct-drive ignition on the NIF very favourable. Substantial progress was reported on the exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at the lowest possible cost. In heavy-ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (E i ≥ 0.5 GeV u -1 ) heavy ions, has been proposed

  18. Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)

    Science.gov (United States)

    Basko, M. M.

    2005-10-01

    Based on the results presented at the 20th IAEA Fusion Energy Conference 2004, this paper highlights the most important recent advances in inertial confinement fusion (ICF). With the construction of the National Ignition Facility (NIF) and the Laser Mégajoule facility and many improvements in the target design, the conventional indirect-drive approach is advancing steadily towards the demonstration of ignition and high gain. The development of the polar direct-drive concept also made the prospects for direct-drive ignition on the NIF very favourable. Substantial progress was reported on the exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at the lowest possible cost. In heavy-ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (Ei>~ 0.5 GeV u-1) heavy ions, has been proposed.

  19. Knock Prediction Using a Simple Model for Ignition Delay

    KAUST Repository

    Kalghatgi, Gautam

    2016-04-05

    An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately. The data presented should enable engineers to study knock or other auto-ignition phenomena e.g. in premixed compression ignition (PCI) engines without explicit chemical kinetic calculations. © Copyright 2016 SAE International.

  20. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  1. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  2. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Vidyanagar, Poona-Bangalore Road, Hubli 580031 (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E' s C.E.T., Belgaum (India)

    2008-09-15

    The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NO{sub X}, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NO{sub X}) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation. (author)

  3. Inertial Confinement Fusion as an Extreme Example of Dynamic Compression

    Science.gov (United States)

    Moses, E.

    2013-06-01

    Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

  4. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  5. A prediction study of a spark ignition supercharged hydrogen engine

    International Nuclear Information System (INIS)

    Al-Baghdadi, Maher A.R. Sadiq.; Al-Janabi, Haroun A.K. Shahad

    2003-01-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO x emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO x emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO x emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio

  6. A prediction study of a spark ignition supercharged hydrogen engine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.R.S.; Al-Janabi, H.A.K.S. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2003-12-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO{sub x} emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO{sub x} emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO{sub x} emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio. (author)

  7. IIT MMAE Dept. Research project the homogeneous charge thermal ignition (HCTI) engine

    OpenAIRE

    Domenech Menal, Joan Ignasi

    2011-01-01

    Nowadays the main kinds of engines that are used in ground transportation are, gasoline Spark Ignition engines and diesel Compression Ignition engines. As every day more fuel is being used by a growing number of vehicles, fuel dependency growth and a growing concern for our environment health, it is a crucial point to gain in fuel efficiency for ground transportation engines. Many approaches are being investigated, but we will focus in one kind that we call the HCTI, homogeneous charge the...

  8. Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition

    International Nuclear Information System (INIS)

    Munsin, R.; Laoonual, Y.; Jugjai, S.; Matsuki, M.; Kosaka, H.

    2015-01-01

    Highlights: • Glycerol ethoxylate (GE) shows the similar results as the commercial additive. • GE decreases injection rate, but increases injection delay and duration of ethanol. • GE shortens ignition delay and decreases heat released in premixed burn of ethanol. • GE has a minor effect on flame temperature of ethanol. • KL factor and soot of ethanol are sensitive to both GE and the commercial additive. - Abstract: This paper investigates the effects of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under a CI engine condition. Injection characteristics were investigated by an in-house injection rate measurement device based on the Zeuch method, while spray combustion has been performed in the rapid compression and expansion machine (RCEM). The CI engine condition indicated as density, pressure and temperature of compressed synthetic gas, consisting of 80% argon and 20% oxygen, at fuel injection timing in RCEM of 21 kg/m 3 , 4.4 MPa and 900 K, respectively. This condition is equivalent to the isentropic compression of air of the actual CI engine with compression ratio of 22. Hydrous ethanol without ignition improver (Eh95) and the ethanol dedicated for heavy duty vehicles (ED95: composed of hydrous ethanol with the commercial additive for ED95) are reference fuels representing low and high quality ethanol fuel for CI engines, respectively. All test fuels are injected at constant heat input. The results indicate that the additional ignition improvers change injection characteristics, i.e. injection delay, injection rate and discharge coefficient of hydrous ethanol. The maximum injection rates at fully opened needle for the ethanol dedicated for heavy duty vehicles (ED95) and hydrous ethanol with 5% glycerol ethoxylate (5%GE) are lower than that of hydrous ethanol without ignition improver (Eh95) by approximately 10%. Additional injection duration is required for ED95 and 5%GE to maintain a

  9. Effects of Energy Deposition Characteristics on Localised Forced Ignition of Homogeneous Mixtures

    Directory of Open Access Journals (Sweden)

    Dipal Patel

    2015-06-01

    Full Text Available The effects of the characteristic width of the energy deposition profile and the duration of energy deposition by the ignitor on localised forced ignition of stoichiometric and fuel-lean homogeneous mixtures have been analysed using simplified chemistry three-dimensional compressible Direct Numerical Simulation (DNS for different values of root-mean-square turbulent velocity fluctuation. The localised forced ignition is modelled using a source term in the energy transport equation, which deposits energy in a Gaussian manner from the centre of the ignitor over a stipulated period of time. It has been shown that the width of ignition energy deposition and the duration over which ignition energy is deposited have significant influences on the success of ignition and subsequent flame propagation. An increase in the width of ignition energy deposition (duration of energy deposition for a given amount of ignition energy has been found to have a detrimental effect on the ignition event, which may ultimately lead to misfire. Moreover, an increase in u′ gives rise to augmented heat transfer rate from the hot gas kernel, which in turn leads to a reduction in the extent of overall burning for both stoichiometric and fuel-lean homogeneous mixtures but the detrimental effects of high values of u′ on localised ignition are particularly prevalent for fuel-lean mixtures.

  10. Laser-plasma interaction physics for shock ignition

    Directory of Open Access Journals (Sweden)

    Goyon C.

    2013-11-01

    Full Text Available In the shock ignition scheme, the ICF target is first compressed with a long (nanosecond pulse before creating a convergent shock with a short (∼100 ps pulse to ignite thermonuclear reactions. This short pulse is typically (∼2.1015–1016 W/cm2 above LPI (Laser Plasma Instabilities thresholds. The plasma is in a regime where the electron temperature is expected to be very high (2–4 keV and the laser coupling to the plasma is not well understood. Emulating LPI in the corona requires large and hot plasmas produced by high-energy lasers. We conducted experiments on the LIL (Ligne d'Integration Laser, 10 kJ at 3ω and the LULI2000 (0.4 kJ at 2ω facilities, to approach these conditions and study absorption and LPI produced by a high intensity beam in preformed plasmas. After introducing the main risks associated with the short pulse propagation, we present the latest experiment we conducted on LPI in relevant conditions for shock ignition.

  11. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  12. Turbulent spark-jet ignition in SI gas fuelled engine

    Directory of Open Access Journals (Sweden)

    Pielecha Ireneusz

    2017-01-01

    Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.

  13. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  14. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    Science.gov (United States)

    1943-06-01

    compression type, without ignition, the resulting preliminary reactions being detectable and meas- urable thermometrically . Contents I. Influence of Preliminary...thoroughly insulated be- tween the carburettor and the engine, by aluminium foil and asbestos. -I -I " I" I ’I il i~ " !, I I 1𔃻I I’ ) To enable the

  15. Numerical simulation of a Z-pinch compressed by imploding liner

    International Nuclear Information System (INIS)

    Bilbao, L.; Linhart, J.G.; Verri, G.; Bernal, L.

    2001-01-01

    The spark created in a neck of a dense Z-pinch can ignite a fusion detonation in the adjacent D-T plasma channel. Using an appropriate transition between the ignited D-T plasma and an inertially confined cylinder of highly compressed advanced fuel plasma it is possible to amplify the spark energy to a level adequate for the ignition of a detonation wave in the advanced fuel. An m=0 instability of a Z-pinch carrying a current of the order of 10 MA, with a rise time inferior to 10 ns can generate a spark capable of igniting a fusion detonation in the adjacent D-T plasma channel. Such μZ-pinch may be produced by a fast implosion of a cylindrical liner, while a conical channel properly chosen can amplify the spark energy. In order to derive some general rules for the parameters of the spark, the transition, the cylinder of advanced fuel and the liner different numerical models were used. We present here a review of these results and an outline of a possible experimental arrangement for obtaining such a Z-pinch compression

  16. Chemical kinetic insights into the ignition dynamics of n-hexane

    KAUST Repository

    Tingas, Alexandros

    2017-10-13

    Normal alkanes constitute a significant fraction of transportation fuels, and are the primary drivers of ignition processes in gasoline and diesel fuels. Low temperature ignition of n-alkanes is driven by a complex sequence of oxidation reactions, for which detailed mechanisms are still being developed. The current study explores the dynamics of low-temperature ignition of n-hexane/air mixtures, and identifies chemical pathways that characterize the combustion process. Two chemical kinetic mechanisms were selected as a comparative study in order to better understand the role of specific reaction sequences in ignition dynamics: one mechanism including a new third sequential O2 addition reaction pathways (recently proposed by Wang et al. 2017), while the other without (Zhang et al. 2015). The analysis is conducted by applying tools generated from the computational singular perturbation (CSP) approach to two distinct ignition phenomena: constant volume and compression ignition. In both cases, the role of the third sequential O2 addition reactions proves to be significant, although it is found to be much more pronounced in the constant volume cases compared to the HCCI. In particular, in the constant volume ignition case, reactions present in the third sequential O2 addition reaction pathways (e.g., KDHP  →  products + OH) contribute significantly to the explosivity of the mixture; when accounted for along with reactions P(OOH)2 + O2  →  OOP(OOH)2 and OOP(OOH)2  →  KDHP + OH, they decrease ignition delay time of the mixture by up to 40%. Under HCCI conditions, in the first-stage ignition, the third-O2 addition reactions contribute to the process, although their role decays with time and becomes negligible at the end of the first stage. The second ignition stage is dominated almost exclusively by hydrogen-related chemistry.

  17. Fast ignition studies at Osaka University

    International Nuclear Information System (INIS)

    Tanaka, K. A.

    2007-01-01

    After the invention of the chirped pulse amplification technique [1], the extreme conditions of matters have become available in laboratory spaces and can be studied with the use of ultra intense laser pulse (UILP) with a high energy. One such example is the fast ignition [2] where UILP is used to heat a highly compressed fusion fuel core within 1-10 pico-seconds before the core disassembles. It is predicted possible with use of 50-100 kJ lasers for both imploding the fuel and heating [2] to attain a large fusion gain. Fast ignition was shown to be a promising new scheme for laser fusion [3] with a PW (= 10 1 5 W) UILP and GEKKO XII laser systems at Osaka. Many new physics have been found with use of UILP in a relativistic parameter regime during the process of the fast ignition studies. UILP can penetrate into over-dense plasma for a couple hundred microns distance with a self-focusing and relativistic transparency effects. Hot electrons of 1-100 MeV can be easily created and are under studies for its spectral and emission angle controls. Strong magnetic fields of 10's of MGauss are created to guide these hot electrons along the target surface [4]. Based on these results, a new and largest UILP laser machine of 10 kJ energy at PW UILP peak power is under construction to test if we can achieve the sub-ignition fusion condition at Osaka University. The machine requires challenging optical technologies such as large size (0.9 m) gratings, tiling these gratings for UILP compression; segmenting four large UILP beams to obtain diffraction limited focal spot. We would like to over-view all of these activities. References [1]D. STRICKLAND and G. MOUROU, Opt. Commun., 56, 219 (1985) [2] S. ATZENI et al., Phys Plasmas, 6, 3316 (1999) [3] R. KODAMA, K.A. TANAKA et al., Nature, 418, 933 (2002) [4] A.L. LEI, K.A. TANAKA et al., Phys. Rev. Lett., 96, 255006(2006) ; H. HABARA, K.A. TANAKA et al., Phys. Rev. Lett., 97, 095004 (2006)

  18. Fusion ignition via a magnetically-assisted fast ignition approach

    OpenAIRE

    Wang, W. -M.; Gibbon, P.; Sheng, Z. -M.; Li, Y. T.; Zhang, J.

    2016-01-01

    Significant progress has been made towards laser-driven fusion ignition via different schemes, including direct and indirect central ignition, fast ignition, shock ignition, and impact ignition schemes. However, to reach ignition conditions, there are still various technical and physical challenges to be solved for all these schemes. Here, our multi-dimensional integrated simulation shows that the fast-ignition conditions could be achieved when two 2.8 petawatt heating laser pulses counter-pr...

  19. Biodiesel production from Cynara cardunculus L. and Brassica carinata A. Braun seeds and their suitability as fuels in compression ignition engines

    Directory of Open Access Journals (Sweden)

    Stefania De Domenico

    2016-03-01

    Full Text Available The development of energy crops can provide environmental benefits and may represent an opportunity to improve agriculture in areas considered at low productivity. In this work, we studied the energy potential of two species (Brassica carinata A. Braun and Cynara cardunculus L. and their seed oil productivity under different growth conditions. Furthermore, the biodiesel from the oil extracted from the seeds of these species was produced and analysed in term of utilisation as fuels in compression ignition engines. In particular, the spray penetration and shape ratio were measured in a constant-volume chamber and compared with the results obtained with a standard diesel fuel. These results were obtained using a standard common rail injection system at different injection pressure, injection duration, and constant-volume chamber pressure.

  20. Intermediate species measurement during iso-butanol auto-ignition

    KAUST Repository

    Ji, Weiqi

    2015-10-01

    © 2015 The Combustion Institute.Published by Elsevier Inc. All rights reserved. This work presents the time histories of intermediate species during the auto-ignition of iso-butanol at high pressure and intermediate temperature conditions obtained using a rapid compression machine and recently developed fast sampling system. Iso-butanol ignition delays were acquired for iso-butanol/O2 mixture with an inert/O2 ratio of 7.26, equivalence ratio of 0.4, in the temperature range of 840-950 K and at pressure of 25 bar. Fast sampling and gas chromatography were used to acquire and quantify the intermediate species during the ignition delay of the same mixture at P = 25.3 bar and T = 905 K. The ignition delay times and quantitative measurements of the mole fraction time histories of methane, ethene, propene, iso-butene, iso-butyraldehyde, iso-butanol, and carbon monoxide were compared with predictions from the detailed mechanisms developed by Sarathy et al., Merchant et al., and Cai et al. It is shown that while the Sarathy mechanism well predicts the overall ignition delay time, it overpredicts ethene by a factor of 6-10, underpredicts iso-butene by a factor of 2, and overpredicts iso-butyraldehyde by a factor of 2. Reaction path and sensitivity analyses were carried out to identify the reactions responsible for the observed inadequacy. The rates of iso-butanol hydrogen atom abstraction by OH radical and the beta-scission reactions of hydroxybutyl radicals were updated based on recently published quantum calculation results. Significant improvements were achieved in predicting ignition delay at high pressures (25 and 30 bar) and the species concentrations of ethene and iso-butene. However, the updated mechanism still overpredicts iso-butyraldehyde concentrations. Also, the updated mechanism degrades the prediction in ignition delay at lower pressure (15 bar) compared to the original mechanism developed by Sarathy et al.

  1. Intermediate species measurement during iso-butanol auto-ignition

    KAUST Repository

    Ji, Weiqi; Zhang, Peng; He, Tanjin; Wang, Zhi; Tao, Ling; He, Xin; Law, Chung K.

    2015-01-01

    © 2015 The Combustion Institute.Published by Elsevier Inc. All rights reserved. This work presents the time histories of intermediate species during the auto-ignition of iso-butanol at high pressure and intermediate temperature conditions obtained using a rapid compression machine and recently developed fast sampling system. Iso-butanol ignition delays were acquired for iso-butanol/O2 mixture with an inert/O2 ratio of 7.26, equivalence ratio of 0.4, in the temperature range of 840-950 K and at pressure of 25 bar. Fast sampling and gas chromatography were used to acquire and quantify the intermediate species during the ignition delay of the same mixture at P = 25.3 bar and T = 905 K. The ignition delay times and quantitative measurements of the mole fraction time histories of methane, ethene, propene, iso-butene, iso-butyraldehyde, iso-butanol, and carbon monoxide were compared with predictions from the detailed mechanisms developed by Sarathy et al., Merchant et al., and Cai et al. It is shown that while the Sarathy mechanism well predicts the overall ignition delay time, it overpredicts ethene by a factor of 6-10, underpredicts iso-butene by a factor of 2, and overpredicts iso-butyraldehyde by a factor of 2. Reaction path and sensitivity analyses were carried out to identify the reactions responsible for the observed inadequacy. The rates of iso-butanol hydrogen atom abstraction by OH radical and the beta-scission reactions of hydroxybutyl radicals were updated based on recently published quantum calculation results. Significant improvements were achieved in predicting ignition delay at high pressures (25 and 30 bar) and the species concentrations of ethene and iso-butene. However, the updated mechanism still overpredicts iso-butyraldehyde concentrations. Also, the updated mechanism degrades the prediction in ignition delay at lower pressure (15 bar) compared to the original mechanism developed by Sarathy et al.

  2. Ignition and fusion burn in fast ignition scheme

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    1998-01-01

    The target physics of fast ignition is briefly reviewed by focusing on the ignition and fusion burn in the off-center ignition scheme. By the use of a two dimensional hydrodynamic code with an alpha heating process, the ignition condition is studied. It is shown that the ignition condition of the off-center ignition scheme coincides with that of the the central isochoric model. After the ignition, a nuclear burning wave is seen to burn the cold main fuel with a velocity of 2 - 3 x 10 8 cm/s. The spark energy required for the off-center ignition is 2 - 3 kJ or 10 - 15 kJ for the core density of 400 g/cm 3 or 200 g/cm 3 , respectively. It is demonstrated that a core gain of more than 2,000 is possible for a core energy of 100 kJ with a hot spark energy of 13 kJ. The requirement for the ignition region's heating time is also discussed by modeling a heating source in the 2-D code. (author)

  3. Shock timing on the National Ignition Facility: The first precision tuning series

    Directory of Open Access Journals (Sweden)

    Robey H.F.

    2013-11-01

    Full Text Available Ignition implosions on the National Ignition Facility (NIF [Lindl et al., Phys. Plasmas 11, 339 (2004] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT layered capsule implosions by measurement of fuel areal density (ρR, which show the highest fuel compression (ρR ∼ 1.0 g/cm2 measured to date.

  4. Advantages of Fast Ignition Scenarios with Two Hot Spots for Space Propulsion Systems

    Science.gov (United States)

    Shmatov, M. L.

    The use of the fast ignition scenarios with the attempts to create two hot spots in one blob of the compressed thermonuclear fuel or, briefly, scenarios with two hot spots in space propulsion systems is proposed. The model, predicting that for such scenarios the probability pf of failure of ignition of thermonuclear microexplosion can be significantly less than that for the similar scenarios with the attempts to create one hot spot in one blob of the compressed fuel, is presented. For space propulsion systems consuming a relatively large amount of propellant, a decrease in pf due to the choice of the scenario with two hot spots can result in large, for example, two-fold, increase in the payload mass. Other advantages of the scenarios with two hot spots and some problems related to them are considered.

  5. Low-Load Limit in a Diesel-Ignited Gas Engine

    Directory of Open Access Journals (Sweden)

    Richard Hutter

    2017-09-01

    Full Text Available The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.

  6. Low fuel convergence path to ignition on the NIF

    Science.gov (United States)

    Schmitt, M. J.; Molvig, Kim; Gianakon, T. A.; Woods, C. N.; Krasheninnikova, N. S.; Hsu, S. C.; Schmidt, D. W.; Dodd, E. S.; Zylstra, Alex; Scheiner, B.; McKenty, P.; Campbell, E. M.; Froula, D.; Betti, R.; Michel, T.

    2017-10-01

    A novel concept for achieving ignition on the NIF is proposed that obviates current issues plaguing single-shell high-convergence capsules. A large directly-driven Be shell is designed to robustly implode two nested internal shells by efficiently converting 1.7MJ of laser energy from a 6 ns, low intensity laser pulse, into a 1 ns dynamic pressure pulse to ignite and burn a central liquid DT core after a fuel convergence of only 9. The short, low intensity laser pulse mitigates LPI allowing more uniform laser drive of the target and eliminates hot e-, preheat and laser zooming issues. Preliminary rad-hydro simulations predict ignition initiation with 90% maximum inner shell velocity, before deceleration Rayleigh-Taylor growth can cause significant pusher shell mix into the compressed DT fuel. The gold inner pusher shell reduces pre-ignition radiation losses from the fuel allowing ignition to occur at 2.5keV. Further 2D simulations show that the short pulse design results in a spatially uniform kinetic drive that is tolerant to variations in laser cone power. A multi-pronged effort, in collaboration with LLE, is progressing to optimize this design for NIF's PDD laser configuration. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under contract DE-FG02-051ER54810.

  7. An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines

    International Nuclear Information System (INIS)

    Dharma, S.; Ong, Hwai Chyuan; Masjuki, H.H.; Sebayang, A.H.; Silitonga, A.S.

    2016-01-01

    Highlights: • The effects on engine performance and emission depend on biofuel properties. • The engine performance can improve and emission reduces with biofuel as the fuel. • Biofuel can ensure the long term engine durability and materials of diesel engine. • Feasibility of biofuel carried out extended periods in corrosion behaviour. • Biofuel appears to reduce life-cycle cost efficiencies for the alternative fuel. - Abstract: The realization of declining fossil fuel supplies and the adverse impact of fossil fuels on the environment has accelerated research and development activities in renewable energy sources and technologies. Biofuels are renewable fuels made from edible, non-edible or waste oils, as well as animal fats and algae, and these fuels have been proven to be good substitutes for fossil fuels in the transportation sector. Bioethanol and biodiesels have gained worldwide attention in order to address environmental issues associated with fossil fuels, provide energy security, reduce imports and rural employment, as well as improve agricultural economy. Bioethanol has high oxygen content and octane content up to 35% and 108, respectively and hence, it increases oxygenation and improves combustion of fuel. In addition, bioethanol has lower vaporization pressure, which reduces the risks associated with evaporative emissions. In contrast, biodiesel has good lubricity, which helps protect the surface of engine components from wear and friction. The use of biodiesel–bioethanol–petroleum diesel blends poses a greater challenge with regards to improving the compatibility of the materials with the fuel system in compression ignition (CI) and spark ignition (SI) engines. In this work, the technical conditions of an engine (i.e. engine deposits, wear of the engine components and quality of the lubrication oil) are assessed by the application of with biodiesel–bioethanol–petroleum diesel blends. It is deemed important to evaluate the effects of

  8. Optimum injection and combustion for gaseous fuel engine : characteristics of hydrogen auto-ignition phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, T.; Mikami, S.; Senda, J.; Fujimoto, H. [Doshisha Univ. (Japan). Dept. of Mechanical Engineering; Nakatani, K. [Fuji Heavy Industries Ltd. (Japan); Tokunaga, Y. [Kawasaki Heavy Industries Ltd. (Japan)

    2002-07-01

    A study was conducted in which the auto-ignition characteristics of hydrogen were examined in order to determine which factors dominate auto-ignition delay of hydrogen jets. Experiments were performed in a rapid compression/expansion machine in order to study the effects of ambient gas density and oxygen concentration on the auto-ignition delays. The focus of research was on an inert gas circulation type cogeneration system to apply hydrogen to a medium-sized diesel engine. Freedom of fuel-oxidizer mixing, ignition and combustion in the system could be achieved for stable combustion, high thermal efficiency, and zero emission. The study also involved chemical analysis using a detailed hydrogen reaction model that could simulate auto-ignition delays under various temperature, pressures, equivalence ratio, and dilution. It is shown that auto-ignition delays of hydrogen jets are very dependent on the ambient gas temperature and less dependent on its density and oxygen concentration. Temperature and hydrogen concentrations have significant impacts on the production and consumption rates of H{sub 2}O{sub 2} and OH radicals. 21 refs., 1 tab., 10 figs.

  9. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1985-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8 to 12 T) and high toroidal currents (7 to 10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  10. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1986-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8-12 T) and high toroidal currents (7-10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  11. A new metric of the low-mode asymmetry for ignition target designs

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Fan, Zhengfeng; Zou, Shiyang; Ye, Wenhua; Pei, Wenbing; Zhu, Shaoping

    2014-01-01

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the measured neutron yield and hot spot pressure are significantly lower than simulations. Understanding the underlying physics of the deficit is essential to achieving ignition. This paper investigates the low-mode areal density asymmetry in the main fuel of ignition capsule. It is shown that the areal density asymmetry breaks up the compressed shell and significantly reduces the conversion of implosion kinetic energy to hot spot internal energy, leading to the calculated hot spot pressure and neutron yield quite close to the experimental data. This indicates that the low-mode shell areal density asymmetry can explain part of the large discrepancy between simulations and experiments. Since only using the hot spot shape term could not adequately characterize the effects of the shell areal density asymmetry on implosion performance, a new metric of the low-mode asymmetry is developed to accurately measure the probability of ignition

  12. Progress towards ignition on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2013-07-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

  13. Experimental and numerical assessment of ignition delay period for pure diesel and biodiesel B20

    Science.gov (United States)

    Aldhaidhawi, Mohanad; Brabec, Marek; Lucian, Miron; Chiriac, Radu; Bădescu, Viorel

    2017-10-01

    The ignition delay period for a compression ignition engine fueled alternatively with pure diesel and with biodiesel B20 has been experimentally and numerically investigated. The engine was operated under full load conditions for two speeds, 1400 rpm speed for maximum brake torque and 2400 rpm speed for maximum brake power. Different parameters suggested as important to define the start of combustion have been considered before the acceptance of a certain evaluation technique of ignition delay. Correlations between these parameters were analyzed and concluded about the best method to identify the start of combustion. The experimental results were further compared with the ignition delay predicted by some correlations. The results showed that the determined ignition delays are in good agreement with those of the Arrhenius type expressions for pure diesel fuel, while for biodiesel B20 the correlation results are significantly different than the experimental results.

  14. Auto-ignition generated combustion. Pt. 2. Thermodynamic fundamentals; Verbrennungssteuerung durch Selbstzuendung. T. 2. Experimentelle Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, P. [Paris-6 Univ. (France). Lab. de Mecanique Physique; Morin, C. [Paris-6 Univ. (France); Mokhtari, S.

    2004-02-01

    The combustion initiation by auto-ignition demonstrates benefits in NO{sub x} reduction and in process stability for both spark-ignited and compression ignited engines. Based on the better thermodynamic particularities of the auto-ignition, which have been presented in the first part, the characteristics of this process are demonstrated in the second part by experimental analysis. For comparison with similar studies, the analyses have been carried out in base of a two stroke loop scavenged spark-ignition single cylinder engine. (orig.) [German] Die Steuerung der Verbrennung durch Selbstzuendung zeigt Vorteile bezueglich Senkung der NO{sub x}-Emission und Prozessstabilitaet, sowohl bei Otto- als auch bei Dieselmotoren. Auf Grundlage der thermodynamischen Besonderheiten der Selbstzuendvorgaenge, die im ersten Teil praesentiert wurden, erfolgt im zweiten Teil eine experimentelle Betrachtung der Prozesscharakteristika. Zur Vergleichbarkeit mit aehnlichen Untersuchungen wird die experimentelle Analyse auf Basis eines Zweitakt-Einzylinder-Ottomotors mit Umkehrspuelung durchgefuehrt. (orig.)

  15. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – A comprehensive review

    International Nuclear Information System (INIS)

    Fathi, Morteza; Jahanian, Omid; Shahbakhti, Mahdi

    2017-01-01

    Highlights: • Addressing accuracy-speed compromise of HCCI representation is very important. • Phasing, load, exhaust temperature and emissions are the most important outputs. • Separability between the effects of the inputs on the outputs is of great interest. • Existing actuation systems combining inputs are favorable. • An HCCI controller should be a fast and robust one to become a viable solution. - Abstract: Homogeneous charge compression ignition (HCCI) combustion engines are advantageous in terms of good fuel economy and low levels of soot-nitrogen oxides (NOx) emissions. However, they are accompanied with some intrinsic challenges, the most important of which is the lack of any direct control method for ignition trigger. Thus, implementation of HCCI combustion is in fact a control problem, and an optimized control structure is required for attaining the inherent benefits of HCCI. The control structure consists of a proper representation of engine processes; a suitable selection of state variables; useful and applicable set of inputs, outputs and observers; appropriate fixed or variable set-points for controlled parameters; instrumentations including sensors and actuators; and an applicable control law implemented in a controller. The present paper aims at addressing these issues altogether by introducing HCCI engine control structure in progress and presenting highlights from literature. Research should result in appropriately controlled HCCI engines which can provide desired load at rated speed with acceptable performance and emissions characteristics.

  16. Ignition delay time correlation of fuel blends based on Livengood-Wu description

    KAUST Repository

    Khaled, Fathi

    2017-08-17

    In this work, a universal methodology for ignition delay time (IDT) correlation of multicomponent fuel mixtures is reported. The method is applicable over wide ranges of temperatures, pressures, and equivalence ratios. n-Heptane, iso-octane, toluene, ethanol and their blends are investigated in this study because of their relevance to gasoline surrogate formulation. The proposed methodology combines benefits from the Livengood-Wu integral, the cool flame characteristics and the Arrhenius behavior of the high-temperature ignition delay time to suggest a simple and comprehensive formulation for correlating the ignition delay times of pure components and blends. The IDTs of fuel blends usually have complex dependences on temperature, pressure, equivalence ratio and composition of the blend. The Livengood-Wu integral is applied here to relate the NTC region and the cool flame phenomenon. The integral is further extended to obtain a relation between the IDTs of fuel blends and pure components. Ignition delay times calculated using the proposed methodology are in excellent agreement with those simulated using a detailed chemical kinetic model for n-heptane, iso-octane, toluene, ethanol and blends of these components. Finally, very good agreement is also observed for combustion phasing in homogeneous charge compression ignition (HCCI) predictions between simulations performed with detailed chemistry and calculations using the developed ignition delay correlation.

  17. Symmetry tuning with megajoule laser pulses at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Kline J.L.

    2013-11-01

    Full Text Available Experiments conducted at the National Ignition Facility using shaped laser pulses with more than 1 MJ of energy have demonstrated the ability to control the implosion symmetry under ignition conditions. To achieve thermonuclear ignition, the low mode asymmetries must be small to minimize the size of the hotspot. The symmetry tuning experiments use symmetry capsules, “symcaps”, which replace the DT fuel with an equivalent mass of CH to emulate the hydrodynamic behavior of an ignition capsule. The x-ray self-emission signature from gas inside the capsule during the peak compression correlates with the surrounding hotspot shape. By tuning the shape of the self-emission, the capsule implosion symmetry can be made to be “round.” In the experimental results presented here, we utilized crossbeam energy transfer [S. H. Glenzer, et al., Science 327, 1228 (2010] to change the ratio of the inner to outer cone power inside the hohlraum targets on the NIF. Variations in the ratio of the inner cone to outer cone power affect the radiation pattern incident on the capsule modifying the implosion symmetry.

  18. Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation

    KAUST Repository

    Rachidi, Mariam El

    2017-06-12

    This study reports cyclopentane ignition delay measurements over a wide range of conditions. The measurements were obtained using two shock tubes and a rapid compression machine, and were used to test a detailed low- and high-temperature mechanism of cyclopentane oxidation that was presented in part I of this study (Al Rashidi et al., 2017). The ignition delay times of cyclopentane/air mixtures were measured over the temperature range of 650–1350K at pressures of 20 and 40atm and equivalence ratios of 0.5, 1.0 and 2.0. The ignition delay times simulated using the detailed chemical kinetic model of cyclopentane oxidation show very good agreement with the experimental measurements, as well as with the cyclopentane ignition and flame speed data available in the literature. The agreement is significantly improved compared to previous models developed and investigated at higher temperatures. Reaction path and sensitivity analyses were performed to provide insights into the ignition-controlling chemistry at low, intermediate and high temperatures. The results obtained in this study confirm that cycloalkanes are less reactive than their non-cyclic counterparts. Moreover, cyclopentane, a high octane number and high octane sensitivity fuel, exhibits minimal low-temperature chemistry and is considerably less reactive than cyclohexane. This study presents the first experimental low-temperature ignition delay data of cyclopentane, a potential fuel-blending component of particular interest due to its desirable antiknock characteristics.

  19. Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation

    KAUST Repository

    Rachidi, Mariam El; Má rmol, Juan C.; Banyon, Colin; Sajid, Muhammad Bilal; Mehl, Marco; Pitz, William J.; Mohamed, Samah; Alfazazi, Adamu; Lu, Tianfeng; Curran, Henry J.; Farooq, Aamir; Sarathy, Mani

    2017-01-01

    This study reports cyclopentane ignition delay measurements over a wide range of conditions. The measurements were obtained using two shock tubes and a rapid compression machine, and were used to test a detailed low- and high-temperature mechanism of cyclopentane oxidation that was presented in part I of this study (Al Rashidi et al., 2017). The ignition delay times of cyclopentane/air mixtures were measured over the temperature range of 650–1350K at pressures of 20 and 40atm and equivalence ratios of 0.5, 1.0 and 2.0. The ignition delay times simulated using the detailed chemical kinetic model of cyclopentane oxidation show very good agreement with the experimental measurements, as well as with the cyclopentane ignition and flame speed data available in the literature. The agreement is significantly improved compared to previous models developed and investigated at higher temperatures. Reaction path and sensitivity analyses were performed to provide insights into the ignition-controlling chemistry at low, intermediate and high temperatures. The results obtained in this study confirm that cycloalkanes are less reactive than their non-cyclic counterparts. Moreover, cyclopentane, a high octane number and high octane sensitivity fuel, exhibits minimal low-temperature chemistry and is considerably less reactive than cyclohexane. This study presents the first experimental low-temperature ignition delay data of cyclopentane, a potential fuel-blending component of particular interest due to its desirable antiknock characteristics.

  20. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    KAUST Repository

    Sarathy, Mani

    2015-01-01

    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.

  1. Probability of ignition - a better approach than ignition margin

    International Nuclear Information System (INIS)

    Ho, S.K.; Perkins, L.J.

    1989-01-01

    The use of a figure of merit - the probability of ignition - is proposed for the characterization of the ignition performance of projected ignition tokamaks. Monte Carlo and analytic models have been developed to compute the uncertainty distribution function for ignition of a given tokamak design, in terms of the uncertainties inherent in the tokamak physics database. A sample analysis with this method indicates that the risks of not achieving ignition may be unacceptably high unless the accepted margins for ignition are increased. (author). Letter-to-the-editor. 12 refs, 2 figs, 2 tabs

  2. Experimental investigation of performance, exhaust emission and combustion parameters of stationary compression ignition engine using ethanol fumigation in dual fuel mode

    International Nuclear Information System (INIS)

    Jamuwa, D.K.; Sharma, D.; Soni, S.L.

    2016-01-01

    Highlights: • Potential of renewable fuels as diesel replacement is being emphasized. • Effect of ethanol fumigation on the performance of diesel engine is investigated. • NOx, CO_2 and smoke decreases with simultaneous increase in HC and CO. • Increase in ignition delay with decrease in combustion duration for ethanol substitution observed. - Abstract: Dwindling reserves and steeply increasing prices of the fossil-fuels, concern over climatic change due to release of anthropogenic greenhouse gases and the strict environmental regulations have motivated the researchers for the search for renewable alternative fuel that has clean burning characteristics and may be produced indigenously. Alcohols, being oxygenated fuel improve the combustion and reduce greenhouse gas emissions, thus enhancing agrarian economies and encouraging national economy as a whole. The objective of this paper is to investigate the thermal performance, exhaust emissions and combustion behaviour of small capacity compression ignition engine using fumigated ethanol. Fumigated ethanol at different flow rates is supplied to the cylinder during suction with the help of a simplified low cost ethanol fuelling system. With ethanol fumigation, brake thermal efficiency decreased upto 11.2% at low loads due to deteriorated combustion, whereas improved combustion increased efficiency up to 6% at higher loads, as compared to pure diesel. Maximum reduction of 22%, 41% and 27% respectively in nitrogen oxide, smoke and carbon-di-oxide emissions with simultaneous increase in hydrocarbon and carbon-mono-oxide emissions upto maximum of 144% and 139% respectively for different rates of ethanol fumigation have been observed, when compared to pure diesel operation. This is due to the changes in physico-chemical properties of air fuel mixture, viz combustion temperature, oxygen concentration, latent heat of vaporisation, fuel distribution, cetane number and ignition delay, that occurred with addition of

  3. National Ignition Facility design focuses on optics

    International Nuclear Information System (INIS)

    Hogan, W.J.; Atherton, L.J.; Paisner, J.A.

    1996-01-01

    Sometime in the year 2002, scientists at the National Ignition Facility (NIF) will focus 192 separate high-power ultraviolet laser beams onto a tiny capsule of deuterium and tritium, heating and compressing the material until it ignites and burns with a burst of fusion energy. The mission of NIF, which will contain the largest laser in the world, is to obtain fusion ignition and gain and to use inertial confinement fusion capabilities in nuclear weapons science experiments. The physics data provided by NIF experiments will help scientists ensure nuclear weapons reliability without the need for actual weapons tests; basic sciences such as astrophysics will also benefit. The facility faces stringent weapons-physics user requirements demanding peak pulse powers greater than 750 TW at 0.35 microm (only 500 TW is required for target ignition), pulse durations of 0.1 to 20 ns, beam steering on the order of several degrees, and target isolation from residual 1- and 0.5-microm radiation. Additional requirements include 50% fractional encircled beam energy in a 100-microm-diameter spot, with 95% encircled in a 200-microm spot. The weapons-effects community requires 1- and 0.5-microm light on target, beam steering to widely spaced targets, a target chamber accommodating oversized objects, well-shielded diagnostic areas, and elimination of stray light in the target chamber. The beamline design, amplifier configuration and requirements for optics are discussed here

  4. Prediction of Ignition of High Explosive When Submitted To Impact

    Science.gov (United States)

    Picart, Didier; Delmaire-Sizes, Franck; Gruau, Cyril; Trumel, Herve

    2009-06-01

    High explosive structures may unintentionally ignite and transit to deflagration or detonation, when subjected to mechanical loadings, such as low velocity impact. We focus our attention on ignition. The Browning and Scammon [1] criterion has been adapted. A concrete like constitutive law is derived, with an up-to-date experimental characterization. These models have been implemented in Abaqus/Explicit [2]. Numerical simulations are used to calibrate the ignition threshold. The presentation or the poster will detail the main assumptions, the models (Browning et al, mechanical behavior) and the calibration procedure. Comparisons between numerical results and experiments [3] will show the interest of this method but also its limitations (numerical artifacts, lack of mechanical data, misinterpretation of reactive tests). [1] R. Browning and R. Scammon, Shock compression of condensed matter, pp. 987-990, (2001). [2] C. Gruau, D. Picart et al., 17^th Dymat technical meeting, Cambridge, UK, (2007). [3] F. Delmaire-Sizes et al., 3^rd International symposium on energetic materials, Tokyo, Japan, (2008).

  5. Ignition characteristics of 2-methyltetrahydrofuran: An experimental and kinetic study

    KAUST Repository

    Tripathi, Rupali

    2016-10-15

    The present paper elucidates oxidation behavior of 2-methyltetrahydrofuran (2-MTHF), a novel second-generation biofuel. New experimental data sets for 2-MTHF including ignition delay time measurements in two different combustion reactors, i.e. rapid compression machine and high-pressure shock tube, are presented. Measurements for 2-MTHF/oxidizer/diluent mixtures were performed in the temperature range of . 639-1413 K, at pressures of 10, 20, and 40 bar, and at three different equivalence ratios of 0.5, 1.0, and 2.0. A detailed chemical kinetic model describing both low-and high-temperature chemistry of 2-MTHF was developed and validated against new ignition delay measurements and already existing flame species profiles and ignition delay measurements. The mechanism provides satisfactory agreement with the experimental data. For identifying key reactions at various combustion conditions and to attain a better understanding of the combustion behavior, reaction path and sensitivity analyses were performed.

  6. Certain investigation in a compression ignition engine using rice bran methyl ester fuel blends with ethanol additive

    Directory of Open Access Journals (Sweden)

    Krishnan Arumugam

    2017-01-01

    Full Text Available In this study and analysis, the physical properties such as calorific value, viscosity, flash, and fire point temperatures of rice bran oil methyl ester were found. The rice bran oil biodiesel has been prepared by transesterification process from pure rice bran oil in the presence of methanol and NaOH. Moreover, property enhancement of rice bran oil methyl ester was also made by adding different additives such as ethanol in various proportions. Rice bran oil methyl ester with 1, 3, and 5% ethanol were analyzed for its fuel properties. The effects of diesel-B20ROME blends with ethanol additive of 1, 3, and 5% on a compression ignition engine were examined considering its emissions. It is found that the increase in biodiesel concentration in the fuel blend influences CO2 and NOx emissions. On the other hand CO and HC emissions are reduced. It is interesting to observe the emission as ethanol-B20ROME blends, reduces CO2 and NOx which are the major contributors to global warming. As the NOx and CO2 can be reduced drastically by the proposed blends, the global warming can be reduced considerably.

  7. An investigation of the acoustic characteristics of a compression ignition engine operating with biodiesel blends

    Science.gov (United States)

    Zhen, D.; Tesfa, B.; Yuan, X.; Wang, R.; Gu, F.; Ball, A. D.

    2012-05-01

    In this paper, an experimental investigation has been carried out on the acoustic characteristics of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The experiment was conducted on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine which runs with biodiesel (B50 and B100) and pure diesel. The signals of acoustic, vibration and in-cylinder pressure were measured during the experiment. To correlate the combustion process and the acoustic characteristics, both phenomena have been investigated. The acoustic analysis resulted in the sound level being increased with increasing of engine loads and speeds as well as the sound characteristics being closely correlated to the combustion process. However, acoustic signals are highly sensitive to the ambient conditions and intrusive background noise. Therefore, the spectral subtraction was employed to minimize the effects of background noise in order to enhance the signal to noise ratio. In addition, the acoustic characteristics of CI engine running with different fuels (biodiesel blends and diesel) was analysed for comparison. The results show that the sound energy level of acoustic signals is slightly higher when the engine fuelled by biodiesel and its blends than that of fuelled by normal diesel. Hence, the acoustic characteristics of the CI engine will have useful information for engine condition monitoring and fuel content estimation.

  8. Off-road compression-ignition engine emission regulations under the Canadian Environmental Protection Act 1999 : guidance document

    International Nuclear Information System (INIS)

    2006-03-01

    This guide explained the requirements for Off-Road Compression Ignition Engine Emission Regulations established under the Canadian Environmental Protection Act. The regulations are enforced by Environment Canada, which authorizes and monitors the use of the national emissions mark. The regulations prescribe standards for off-road engines that operate as reciprocating, internal combustion engines, other than those that operate under characteristics similar to the Otto combustion cycle and that use a spark plug or other sparking device. The regulations apply to engines that are typically diesel-fuelled and found in construction, mining, farming and forestry machines such as tractors, excavators and log skidders. Four different types of persons are potentially affected by the regulations: Canadian engine manufacturers; distributors of Canadian engines or machines containing Canadian engines; importers of engines or machines for the purpose of sale; and persons not in companies importing engines or machines. Details of emission standards were presented, as well as issues concerning evidence of conformity, importing engines, and special engine cases. Compliance and enforcement details were reviewed, as well as applicable standards and provisions for emission control systems and defeat devices; exhaust emissions; crankcase and smoke emissions; and adjustable parameters. Details of import declarations were reviewed, as well as issues concerning defects and maintenance instructions. 4 tabs., 4 figs

  9. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  10. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  11. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  12. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  13. Cluster induced ignition - A new approach to inertial fusion energy

    International Nuclear Information System (INIS)

    Desai, T.; Mendonca, J.T.; Batani, D.; Bernardinello, A.

    2001-01-01

    An ultra intense laser interaction with clusters produce energetic ions and electrons in MeV range due to cluster explosion. Here we discuss the possibility of harnessing these particle energies to heat a part of the pre compressed DT fuel to ignition condition. In this article we are striving to present the principle concept and the preliminary results are discussed. (author)

  14. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani; Kukkadapu, Goutham; Mehl, Marco; Javed, Tamour; Ahmed, Ahfaz; Naser, Nimal; Tekawade, Aniket; Kosiba, Graham; Alabbad, Mohammed; Singh, Eshan; Park, Sungwoo; Rashidi, Mariam Al; Chung, Suk-Ho; Roberts, William L.; Oehlschlaeger, Matthew A.; Sung, Chih-Jen; Farooq, Aamir

    2016-01-01

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  15. Compositional effects on the ignition of FACE gasolines

    KAUST Repository

    Sarathy, Mani

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. This study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressures of 20 and 40. atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270. K. Results at temperatures above 900. K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900. K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical

  16. The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition

    International Nuclear Information System (INIS)

    Malekynia, B.; Razavipour, S. S.

    2013-01-01

    An accelerated skin layer may be used to ignite solid state fuels. Detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition. In this paper, the complementary mechanisms are included for the advanced fuel ignition: external factors such as lasers, compression, shock waves, and sparks. The other category is created within the plasma fusion as reheating of an alpha particle, the Bremsstrahlung absorption, expansion, conduction, and shock waves generated by explosions. With the new condition for the control of shock waves, the spherical deuterium-tritium fuel density should be increased to 75 times that of the solid state. The threshold ignition energy flux density for advanced fuel ignition may be obtained using temperature equations, including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r ≠ 0 layers. These thresholds are significantly reduced in comparison with the ignition thresholds at x = 0 for solid advanced fuels. The quantum correction for the collision frequency is applied in the case of the delay in ion heating. Under the shock wave condition, the spherical proton-boron and proton-lithium fuel densities should be increased to densities 120 and 180 times that of the solid state. These plasma compressions are achieved through a longer duration laser pulse or X-ray. (physics of gases, plasmas, and electric discharges)

  17. Impact of Formaldehyde Addition on Auto-Ignition in Internal-Combustion Engines

    Science.gov (United States)

    Kuwahara, Kazunari; Ando, Hiromitsu; Furutani, Masahiro; Ohta, Yasuhiko

    By employing a direct-injection diesel engine equipped with a common-rail type of injection system, by adding formaldehyde (CH2O) to the intake air, and by changing the fuel-injection timing, the compression ratio and the intake-air temperature, a mechanism for CH2O as a fuel additive to affect auto-ignition was discussed. Unlike an HCCI type of engine, the diesel engine can expose an air-fuel mixture only to a limited range of the in-cylinder temperature before the ignition, and can separate low- and high-temperature parts of the mechanism. When low-temperature oxidation starts at a temperature above 900K, there are cases that the CH2O advances the ignition timing. Below 900K, to the contrary, it always retards the timing. It is because, above 900K, a part of the CH2O changes into CO together with H2O2 as an ignition promoter. Below 900K, on the other hand, the CH2O itself acts as an OH radical scavenger against cool-flame reaction, from the beginning of low-temperature oxidation. Then, the engine was modified for its extraordinary function as a gasoline-knocking generator, in order that an effect of CH2O on knocking could be discussed. The CH2O retards the onset of auto-ignition of an end gas. Judging from a large degree of the retardation, the ignition is probably triggered below 900K.

  18. Estimates of post-acceleration longitudinal bunch compression

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    A simple analytic method is developed, based on physical approximations, for treating transient implosive longitudinal compression of bunches of heavy ions in an accelerator system for ignition of inertial-confinement fusion pellet targets. Parametric dependences of attainable compressions and of beam path lengths and times during compression are indicated for ramped pulsed-gap lines, rf systems in storage and accumulator rings, and composite systems, including sections of free drift. It appears that for high-confidence pellets in a plant producing 1000 MW of electric power the needed pulse lengths cannot be obtained with rings alone unless an unreasonably large number of them are used, independent of choice of rf harmonic number. In contrast, pulsed-gap lines alone can meet this need. The effects of an initial inward compressive drift and of longitudinal emittance are included

  19. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    Science.gov (United States)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  20. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-02-15

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

  1. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was...

  2. 100 TW CPA Nd: Glass laser for fast ignition research

    International Nuclear Information System (INIS)

    Fujita, H.; Daido, H.; Jitsuno, T.

    2001-01-01

    A 100 TW chirped pulse amplification (CPA) Nd:glass laser has been developed to investigate the fast ignition concept. The ultrashort-pulse (60 TW, 42 J, 0.7 ps) was focused on plane targets, plane targets with preformed plasma, and high density compressed plasmas produced by the GEKKO-XII (12 beam, 20 kJ) laser. Focus intensity of >10 19 W/cm 2 has been achieved. (author)

  3. Auto-ignition of methane-air mixtures flowing along an array of thin catalytic plates

    Science.gov (United States)

    Treviño, C.

    2010-12-01

    In this paper, the heterogeneous ignition of a methane-air mixture flowing along an infinite array of catalytic parallel plates has been studied by inclusion of gas expansion effects and the finite heat conduction on the plates. The system of equations considers the full compressible Navier-Stokes equations coupled with the energy equations of the plates. The gas expansion effects which arise from temperature changes have been considered. The heterogeneous kinetics considers the adsorption and desorption reactions for both reactants. The limits of large and small longitudinal thermal conductance of the plate material are analyzed and the critical conditions for ignition are obtained in closed form. The governing equations are solved numerically using finite differences. The results show that ignition is more easily produced as the longitudinal wall thermal conductance increases, and the effects of the gas expansion on the catalytic ignition process are rather small due to the large value of the activation energy of the desorption reaction of adsorbed oxygen atoms.

  4. Ignition of a lean PRF/air mixture under RCCI/SCCI conditions: A comparative DNS study

    KAUST Repository

    Luong, Minh Bau

    2016-10-11

    The ignition characteristics of a lean primary reference fuel (PRF)/air mixture under reactivity controlled compression ignition (RCCI) and stratified charge compression ignition (SCCI) conditions are investigated using 2-D direct numerical simulations (DNSs) with a 116-species reduced mechanism of PRF oxidation. For RCCI combustion, n-heptane and iso-octane are used as two different reactivity fuels and the corresponding global PRF number is PRF50 which is also used as a single fuel for SCCI combustion. The 2-D DNSs of RCCI/SCCI combustion are performed by varying degree of fuel stratification, r, and turbulence intensity, u\\', at different initial mean temperature, T , with negatively-correlated T-r fields. It is found that in the low- and intermediate-temperature regimes, the overall combustion of RCCI cases occurs earlier and its mean heat release rate (HRR) is more distributed over time than those of the corresponding SCCI cases. This is because PRF number stratification, PRF\\', plays a dominant role and T\\' has a negligible effect on the overall combustion within the negative temperature coefficient (NTC) regime. In the high-temperature regime, however, the difference between RCCI and SCCI combustion becomes marginal because the ignition of the PRF/air mixture is highly-sensitive to T\\' rather than PRF\\' and ϕ(symbol)\\'. The Damköhler number analysis verifies that the mean HRR is more distributed over time with increasing r because the portion of deflagration mode of combustion becomes larger with increasing fuel stratification. Finally, it is found that the overall combustion of both RCCI and SCCI cases becomes more like the 0-D ignition with increasing u\\' due to the homogenization of initial mixture by turbulent mixing.

  5. A polar-drive shock-ignition design for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

    2013-05-15

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  6. The Ignition Target for the National Ignition Facility

    International Nuclear Information System (INIS)

    Atherton, L J; Moses, E I; Carlisle, K; Kilkenny, J

    2007-01-01

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at Lawrence Livermore National Laboratory (LLNL) for performing inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. When completed in 2009, NIF will be able to produce 1.8 MJ, 500 TW of ultraviolet light for target experiments that will create conditions of extreme temperatures (>10 8 K), pressures (10-GBar) and matter densities (> 100 g/cm 3 ). A detailed program called the National Ignition Campaign (NIC) has been developed to enable ignition experiments in 2010, with the goal of producing fusion ignition and burn of a deuterium-tritium (DT) fuel mixture in millimeter-scale target capsules. The first of the target experiments leading up to these ignition shots will begin in 2008. Targets for the National Ignition Campaign are both complex and precise, and are extraordinarily demanding in materials fabrication, machining, assembly, cryogenics and characterization. An overview of the campaign for ignition will be presented, along with technologies for target fabrication, assembly and metrology and advances in growth and x-ray imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art

  7. Auto-ignition modelling: analysis of the dilution effects by the unburnt gases and of the interactions with turbulence for diesel homogeneous charge compression ignition (HCCI) engines; Modelisation de l'auto-inflammation: analyse des effets de la dilution par les gaz brules et des interactions avec la turbulence dediee aux moteurs Diesel a charge homogene

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, G.

    2005-09-15

    Homogeneous Charge Compression Ignition (HCCI) is an alternative engine combustion process that offers the potential for substantial reductions in both NO{sub x} and particulate matter still providing high Diesel-like efficiencies. Combustion in HCCI mode takes place essentially by auto-ignition. It is mainly controlled by the chemical kinetics. It is therefore necessary to introduce detailed chemistry effects in combustion CFD codes in order to properly model the HCCI combustion process. The objective of this work is to develop an auto-ignition model including detailed chemical kinetics and its interactions with turbulence. Also, a comprehensive study has been performed to analyze the chemical influence of CO and H{sub 2} residual species on auto-ignition, which can be present in the exhaust gases. A new auto-ignition model, TKI-PDF (Tabulated Kinetics for Ignition - with turbulent mixing interactions through a pdf approach) dedicated to RANS 3D engine combustion CFD calculations is proposed. The TKI-PDF model is formulated in order to accommodate the detailed chemical kinetics of auto-ignition coupled with turbulence/chemistry interactions. The complete model development and its validation against experimental results are presented in two parts. The first part of this work describes the detailed chemistry input to the model. The second part is dedicated to the turbulent mixing description. A method based on a progress variable reaction rate tabulation is used. A look-up table for the progress variable reaction rates has been built through constant volume complex chemistry simulations. Instantaneous local reaction rates inside the CFD computational cell are then calculated by linear interpolation inside the look-up table depending on the local thermodynamic conditions. In order to introduce the turbulent mixing effects on auto-ignition, a presumed pdf approach is used. The model has been validated in different levels. First, the detailed kinetic approach was

  8. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Albert, F.; Palmer, N. E.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lee, J. J. [National Security Technologies LLC, Livermore, California 94551 (United States)

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic–a multichannel, hard x-ray spectrometer operating in the 20–500 keV range–has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ∼300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub β}). The detectors impulse response function was measured in situ on NIF short-pulse (∼90 ps) experiments, and in off-line tests.

  9. TOPSIS-based parametric optimization of compression ignition engine performance and emission behavior with bael oil blends for different EGR and charge inlet temperature.

    Science.gov (United States)

    Muniappan, Krishnamoorthi; Rajalingam, Malayalamurthi

    2018-05-02

    The demand for higher fuel energy and lesser exhaust emissions of diesel engines can be achieved by fuel being used and engine operating parameters. In the present work, effects of engine speed (RPM), injection timing (IT), injection pressure (IP), and compression ratio (CR) on performance and emission characteristics of a compression ignition (CI) engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether (DEE) was used in this work and test was conducted at different charge inlet temperature (CIT) and exhaust gas recirculation (EGR). All the experiments are conducted at the tradeoff engine load that is 75% engine load. When operating the diesel engine with 320 K CIT, brake thermal efficiency (BTE) is improved to 28.6%, and carbon monoxide (CO) and hydrocarbon (HC) emissions have been reduced to 0.025% and 12.5 ppm at 18 CR. The oxide of nitrogen (NOx) has been reduced to 240 ppm at 1500 rpm for 30% EGR mode. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is frequently used in multi-factor selection and gray correlation analysis method is used to study uncertain of the systems.

  10. DNS and LES/FMDF of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  11. Study of high load operation limit for premixed compression ignition engine; Yokongo asshuku chakka kikan no kofuka unten genkai ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, N. [Isuzu Advanced Engineering Center Ltd., Kanagawa (Japan); Akagawa, H. [Nissan Diesel Motor Co. Ltd., Saitama (Japan); Tsujimura, K. [Chiba Institute of Technology, Chiba (Japan); Miyamoto, T.

    2000-11-25

    NO{sub x} emission was remarkably reduced by PREDIC (PREmixed lean DIesel Combustion) system in which fuel was injected at very early stage of compression stroke and the major part of the fuel is considered to be burned with self-ignition of premixed charge around TDC. However PREDIC system had some problems, a restriction of a high load operation was one of these problems. In order to investigate the combustion characteristics of PREDIC at the richer operation limit, a test engine was operated with gaseous fuel-air mixture where less heterogeneous mixture can be formed than that of conventional diesel engines. A steep pressure rise or the abrupt increase in NO{sub x} emission determined the richer operation limit. This was at 2 to 2.4 of excess air ratio. Supercharging operation enabled the high load operation more than 2.4 of excess air ratio. (author)

  12. A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times

    KAUST Repository

    Badra, Jihad A.

    2015-08-11

    Predicting octane numbers (ON) of gasoline surrogate mixtures is of significant importance to the optimization and development of internal combustion (IC) engines. Most ON predictive tools utilize blending rules wherein measured octane numbers are fitted using linear or non-linear mixture fractions on a volumetric or molar basis. In this work, the octane numbers of various binary and ternary n-heptane/iso-octane/toluene blends, referred to as toluene primary reference fuel (TPRF) mixtures, are correlated with a fundamental chemical kinetic parameter, specifically, homogeneous gas-phase fuel/air ignition delay time. Ignition delay times for stoichiometric fuel/air mixtures are calculated at various constant volume conditions (835 K and 20 atm, 825 K and 25 atm, 850 K and 50 atm (research octane number RON-like) and 980 K and 45 atm (motor octane number MON-like)), and for variable volume profiles calculated from cooperative fuel research (CFR) engine pressure and temperature simulations. Compression ratio (or ON) dependent variable volume profile ignition delay times are investigated as well. The constant volume RON-like ignition delay times correlation with RON was the best amongst the other studied conditions. The variable volume ignition delay times condition correlates better with MON than the ignition delay times at the other tested conditions. The best correlation is achieved when using compression ratio dependent variable volume profiles to calculate the ignition delay times. Most of the predicted research octane numbers (RON) have uncertainties that are lower than the repeatability and reproducibility limits of the measurements. Motor octane number (MON) correlation generally has larger uncertainties than that of RON.

  13. An experimental and numerical analysis of the HCCI auto-ignition process of primary reference fuels, toluene reference fuels and diesel fuel in an engine, varying the engine parameters

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr-I' Ecole (France); Gilbert, Philippe [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr-I' Ecole (France)

    2008-11-15

    For a future HCCI engine to operate under conditions that adhere to environmental restrictions, reducing fuel consumption and maintaining or increasing at the same time the engine efficiency, the choice of the fuel is crucial. For this purpose, this paper presents an auto-ignition investigation concerning the primary reference fuels, toluene reference fuels and diesel fuel, in order to study the effect of linear alkanes, branched alkanes and aromatics on the auto-ignition. The auto-ignition of these fuels has been studied at inlet temperatures from 25 to 120 C, at equivalence ratios from 0.18 to 0.53 and at compression ratios from 6 to 13.5, in order to extend the range of investigation and to assess the usability of these parameters to control the auto-ignition. It appeared that both iso-octane and toluene delayed the ignition with respect to n-heptane, while toluene has the strongest effect. This means that aromatics have higher inhibiting effects than branched alkanes. In an increasing order, the inlet temperature, equivalence ratio and compression ratio had a promoting effect on the ignition delays. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. (author)

  14. Fast ignition breakeven scaling

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Vesey, Roger Alan

    2005-01-01

    A series of numerical simulations have been performed to determine scaling laws for fast ignition break even of a hot spot formed by energetic particles created by a short pulse laser. Hot spot break even is defined to be when the fusion yield is equal to the total energy deposited in the hot spot through both the initial compression and the subsequent heating. In these simulations, only a small portion of a previously compressed mass of deuterium-tritium fuel is heated on a short time scale, i.e., the hot spot is tamped by the cold dense fuel which surrounds it. The hot spot tamping reduces the minimum energy required to obtain break even as compared to the situation where the entire fuel mass is heated, as was assumed in a previous study [S. A. Slutz, R. A. Vesey, I. Shoemaker, T. A. Mehlhorn, and K. Cochrane, Phys. Plasmas 7, 3483 (2004)]. The minimum energy required to obtain hot spot break even is given approximately by the scaling law E T = 7.5(ρ/100) -1.87 kJ for tamped hot spots, as compared to the previously reported scaling of E UT = 15.3(ρ/100) -1.5 kJ for untamped hotspots. The size of the compressed fuel mass and the focusability of the particles generated by the short pulse laser determines which scaling law to use for an experiment designed to achieve hot spot break even

  15. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    field laser physics. Unfortunately, there is no standard definition for the plasma threshold in the literature. Consequently, a clear definition of the focal volume is missing. For this reason it was tried to find a theoretical formula for the volume. This formula is based on the assumption that the focal volume encloses the space where the threshold intensity is higher than Ith =I0/2 or, alternatively, Ith = I0/e2. Laser energy transmission is one of the most important loss factors during plasma development by laser-induced optical breakdown and provides important information about the energy contained in the plasma. Hence, a number of plasma experiments were carried out. In our experiments is was found that for decreasing focal volume the plasma threshold energy (MPE) and the energy transmission can be reduced respectively. In order to investigate the possibility if laser-induced ignition can be made more efficient with respect to the laser pulse energy, several ignition experiments were performed. For these experiments a combustion chamber was employed at a filling pressure of 11 bar and a temperature of 110 o C involving different focal sizes. The thermal ignition experiments were carried out to demonstrate in principle the feasibility of thermal ignition via resonant absorption of IR radiation. By evaluating these results with respect to laser ignition of engines, it is conceivable to employ laser thermal ignition as an innovative ignition mechanism. As in HCCI (homogeneous charge compression ignition) engines and rocket engines, ignition occurs at specific elevated pressures and temperatures, it can be assumed that the ignition energies are in the range between 20 to 100 mJ. Furthermore, different laser ignition system concepts were developed and evaluated regarding to their qualification for rocket engine ignition. As a consequence of its highest rating in our study, resonant ignition should be considered an interesting alternative to laser spark ignition

  16. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  17. Low Convergence path to Fusion I: Ignition physics and high margin design

    Science.gov (United States)

    Molvig, Kim; Schmitt, M. J.; McCall, G. H.; Betti, R.; Foula, D. H.; Campbell, E. M.

    2016-10-01

    A new class of inertial fusion capsules is presented that combines multi-shell targets with laser direct drive at low intensity (280 TW/cm2) to achieve robust ignition. These Revolver targets consist of three concentric metal shells, enclosing a volume of 10s of µg of liquid deuterium-tritium fuel. The inner shell pusher, nominally of gold, is compressed to over 2000 g/cc, effectively trapping the radiation and enabling ignition at low temperature (2.5 keV) and relatively low implosion velocity (20 cm/micro-sec) at a fuel convergence of 9. Ignition is designed to occur well ``upstream'' from stagnation, with implosion velocity at 90% of maximum, so that any deceleration phase mix will occur only after ignition. Mix, in all its non-predictable manifestations, will effect net yield in a Revolver target - but not the achievement of ignition and robust burn. Simplicity of the physics is the dominant principle. There is no high gain requirement. These basic physics elements can be combined into a simple analytic model that generates a complete target design specification given the fuel mass and the kinetic energy needed in the middle (drive) shell (of order 80 kJ). This research supported by the US DOE/NNSA, performed in part at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  18. The influence of different auto-ignition modes on the behavior of pressure waves

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde

    2015-01-01

    Highlights: • Modes of pressure oscillations in knocking, HCCI and super knock are recognized. • Three representative auto-ignition modes in engines are proposed. • A new method of “Energy Injected” is brought into understanding pressure wave. • Simulation results revealed the decisive factors for these three auto-ignition modes. • Different modes lead to different pressure wave behaviors damaging engines. - Abstract: For internal combustion engines, the knock of Homogeneous Charge Compression Ignition engines, the conventional knock of gasoline engines and the super knock are all caused by the auto-ignition of unburned mixture which leads to the oscillation burning, but their Maximal Pressure Oscillation Amplitude (MPOA) and Maximum Pressure Rising Rate (MPRR) are totally different. In order to explore the reason, we propose three typical auto-ignition modes and then bring up the method of “Energy Injected” (EI) which is based on the experiment measured heat release rate. Through changing the heat source term in the energy equation for different auto-ignition modes, we conducted a series of numerical simulations for these three modes. After that, the following pressure oscillations can be compared and analyzed. The numerical simulation results show that different combustion pressure waves with different oscillation characteristics come from different auto-ignition modes, thus the macroscopic MPRR and MPOA are totally different. Furthermore, the method of “EI” based on the experiment measured heat release rate can accurately and rapidly help to research the formation and propagation of pressure waves in the engine combustion chamber.

  19. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm 3 -sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  20. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  1. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  2. Future combustion technology for synthetic and renewable fuels in compression ignition engines (REFUEL). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aakko-Saksa, P.; Brink, A.; Happonen, M. [and others

    2012-07-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task 'Future Combustion Technology for Synthetic and Renewable Fuels in Transport' of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) prooject was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT), Technical Research Centre of Finland (VTT) and Aabo Akademi University (AAU). The project was funded by TEKES, Waertsilae Oyj, Agro Sisu Power, Aker Arctic Technology Oy and the research partners listed above. Modern renewable diesel fuels have excellent physical and chemical properties, in comparison to traditional crude oil based fuels. Purely paraffinic fuels do not contain aromatic compounds and they are totally sulphur free. Hydrotreated Vegetable Oil (HVO) was studied as an example of paraffinic high cetane number (CN) diesel fuels. HVO has no storage and low temperature problems like the fatty acid methyl esters (FAMEs) have. The combustion properties are better than those of crude oil based fuels and FAME, because they have very high cetane numbers and contain no polyaromatic hydrocarbons (PAH). With low HVO density, viscosity and distillation temperatures, these advantageous properties allow far more advanced combustion strategies, such as very high exhaust gas recirculation (EGR) rates or extreme Miller timings, than has been possible with current fossil fuels. The implementation of these advanced combustion technologies, together with the novel renewable diesel fuel, brought significant nitrogen oxides (NO{sub x}), particulate matter (PM) emission reductions with no efficiency losses. (orig.)

  3. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  4. The development and experimental validation of a reduced ternary kinetic mechanism for the auto-ignition at HCCI conditions, proposing a global reaction path for ternary gasoline surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon; Amouroux, Jacques [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France)

    2009-02-15

    To acquire a high amount of information of the behaviour of the Homogeneous Charge Compression Ignition (HCCI) auto-ignition process, a reduced surrogate mechanism has been composed out of reduced n-heptane, iso-octane and toluene mechanisms, containing 62 reactions and 49 species. This mechanism has been validated numerically in a 0D HCCI engine code against more detailed mechanisms (inlet temperature varying from 290 to 500 K, the equivalence ratio from 0.2 to 0.7 and the compression ratio from 8 to 18) and experimentally against experimental shock tube and rapid compression machine data from the literature at pressures between 9 and 55 bar and temperatures between 700 and 1400 K for several fuels: the pure compounds n-heptane, iso-octane and toluene as well as binary and ternary mixtures of these compounds. For this validation, stoichiometric mixtures and mixtures with an equivalence ratio of 0.5 are used. The experimental validation is extended by comparing the surrogate mechanism to experimental data from an HCCI engine. A global reaction pathway is proposed for the auto-ignition of a surrogate gasoline, using the surrogate mechanism, in order to show the interactions that the three compounds can have with one another during the auto-ignition of a ternary mixture. (author)

  5. Recent progress in ignition fusion research on the National Ignition Facility

    International Nuclear Information System (INIS)

    Leeper, Ramon J.

    2011-01-01

    This paper will review the ignition fusion research program that is currently being carried out on the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory. This work is being conducted under the auspices of the National Ignition Campaign (NIC) that is a broad collaboration of national laboratories and universities that together have developed a detailed research plan whose goal is ignition in the laboratory. The paper will begin with a description of the NIF facility and associated experimental facilities. The paper will then focus on the ignition target and hohlraum designs that will be tested in the first ignition attempts on NIF. The next topic to be introduced will be a description of the diagnostic suite that has been developed for the initial ignition experiments on NIF. The paper will then describe the experimental results that were obtained in experiments conducted during the fall of 2009 on NIF. Finally, the paper will end with a description of the detailed experimental plans that have been developed for the first ignition campaign that will begin later this year. (author)

  6. Notion Of Artificial Labs Slow Global Warming And Advancing Engine Studies Perspectives On A Computational Experiment On Dual-Fuel Compression-Ignition Engine Research

    Directory of Open Access Journals (Sweden)

    Tonye K. Jack

    2017-06-01

    Full Text Available To appreciate clean energy applications of the dual-fuel internal combustion engine D-FICE with pilot Diesel fuel to aid public policy formulation in terms of present and future benefits to the modern transportation stationary power and promotion of oil and gas green- drilling the brief to an engine research team was to investigate the feasible advantages of dual-fuel compression-ignition engines guided by the following concerns i Sustainable fuel and engine power delivery ii The requirements for fuel flexibility iii Low exhausts emissions and environmental pollution iv Achieving low specific fuel consumption and economy for maximum power v The comparative advantages over the conventional Diesel engines vi Thermo-economic modeling and analysis for the optimal blend as basis for a benefitcost evaluation Planned in two stages for reduced cost and fast turnaround of results - initial preliminary stage with basic simple models and advanced stage with more detailed complex modeling. The paper describes a simplified MATLAB based computational experiment predictive model for the thermodynamic combustion and engine performance analysis of dual-fuel compression-ignition engine studies operating on the theoretical limited-pressure cycle with several alternative fuel-blends. Environmental implications for extreme temperature moderation are considered by finite-time thermodynamic modeling for maximum power with predictions for pollutants formation and control by reaction rates kinetics analysis of systematic reduced plausible coupled chemistry models through the NCN reaction pathway for the gas-phase reactions classes of interest. Controllable variables for engine-out pollutants emissions reduction and in particular NOx elimination are identified. Verifications and Validations VampV through Performance Comparisons were made using a clinical approach in selection of StrokeBore ratios greater-than and equal-to one amp88051 low-to-high engine speeds and medium

  7. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    Science.gov (United States)

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

  8. Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Murugan, S.

    2015-01-01

    Highlights: • The possibility of operating a compression ignition engine with a non petroleum diesel fuel. • A possible solution to replace certain amount of biodiesel by tyre pyrolysis oil in a biodiesel fueled diesel engine. • The optimum compression ratio for engine fueled with biodiesel-tyre pyrolysis oil blend. - Abstract: This study is aimed at investigating effects of varying the compression ratio at optimum injection timing and nozzle opening pressure on the behaviour of a diesel engine, using a non-petroleum fuel, i.e. a blend of 80% biodiesel, and 20% oil obtained from pyrolysis of waste tyres. The engine was subjected to one lower (16.5) and one higher (18.5) compression ratio in addition to the standard compression ratio of 17.5. At the higher compression ratio of 18.5 and full load, shorter ignition delay, maximum cylinder pressure and higher heat release rate were found for the blend, compared to those of the original compression ratio. The increase in the compression ratio from 17.5 to 18.5 for the blend improved the brake thermal efficiency by about 8% compared to that of the original compression ratio at full load. The experimental results indicated that for the blend at a higher compression ratio of 18.5, the brake specific carbon monoxide (BSCO), brake specific hydrocarbon emission (BSHC) and smoke opacity were reduced by about 10.5%, 32%, and 17.4% respectively, than those of the original compression ratio at full load

  9. Compact Fast Ignition experiments using Joule-class tailored drive pulses under counterbeam configuration

    Science.gov (United States)

    Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Kitagawa, Yoneyoshi; Sekine, Takashi; Takeuchi, Yasuki; Kurita, Takashi; Katoh, Yoshinori; Satoh, Nakahiro; Kurita, Norio; Kawashima, Toshiyuki; Komeda, Osamu; Hioki, Tatsumi; Motohiro, Tomoyoshi; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Iwamoto, Akifumi; Sakagami, Hitoshi

    2017-10-01

    Fast ignition (FI) is a form of inertial confinement fusion in which the ignition step and the compression step are separate processes resulting in a reduction of the symmetry requirement for hot spot generation. One of the problems of FI so far are the accessibility of an ignition laser pulse into the assembled core in which the driver energy is converted into relativistic electrons produced in the laser-plasma interaction. We have experimentally demonstrated that a tailored-pulse-assembled core with a diameter of 70 μ m, originally a deuterated polystyrene spherical shell of 500 μ m diameter, is flashed by directly counter irradiating 0.8 J/110 fs laser pulses [Y. MORI et al., PRL 2016]. This result indicates that once the assembled core is squeezed into the target center, the heating lasers can access the core's; edges and deposit their energy into the core. In this talk, we will discuss the heating effects in relation to formation of the assembled core.

  10. Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention

    Science.gov (United States)

    Davidovits, Seth

    Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a

  11. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel

    International Nuclear Information System (INIS)

    Park, Su Han; Lee, Chang Sik

    2014-01-01

    Highlights: • Overall characteristics of DME fueled engine are reviewed. • Fuel properties characteristics of DME are introduced. • New technologies for DME vehicle are systemically reviewed. • Research trends for the development of DME vehicle in the world are introduced. - Abstract: From the perspectives of environmental conservation and energy security, dimethyl-ether (DME) is an attractive alternative to conventional diesel fuel for compression ignition (CI) engines. This review article deals with the application characteristics of DME in CI engines, including its fuel properties, spray and atomization characteristics, combustion performance, and exhaust emission characteristics. We also discuss the various technological problems associated with its application in actual engine systems and describe the field test results of developed DME-fueled vehicles. Combustion of DME fuel is associated with low NO x , HC, and CO emissions. In addition, PM emission of DME combustion is very low due to its molecular structure. Moreover, DME has superior atomization and vaporization characteristics than conventional diesel. A high exhaust gas recirculation (EGR) rate can be used in a DME engine to reduce NO x emission without any increase in soot emission, because DME combustion is essentially soot-free. To decrease NO x emission, engine after-treatment devices, such as lean NO x traps (LNTs), urea-selective catalytic reduction, and the combination of EGR and catalyst have been applied. To use DME fuel in automotive vehicles, injector design, fuel feed pump, and the high-pressure injection pump have to be modified, combustion system components, including sealing materials, have to be rigorously designed. To use DME fuel in the diesel vehicles, more research is required to enhance its calorific value and engine durability due to the low lubricity of DME, and methods to reduce NO x emission are also required

  12. Auto-ignitions of a methane/air mixture at high and intermediate temperatures

    Science.gov (United States)

    Leschevich, V. V.; Martynenko, V. V.; Penyazkov, O. G.; Sevrouk, K. L.; Shabunya, S. I.

    2016-09-01

    A rapid compression machine (RCM) and a shock tube (ST) have been employed to study ignition delay times of homogeneous methane/air mixtures at intermediate-to-high temperatures. Both facilities allow measurements to be made at temperatures of 900-2000 K, at pressures of 0.38-2.23 MPa, and at equivalence ratios of 0.5, 1.0, and 2.0. In ST experiments, nitrogen served as a diluent gas, whereas in RCM runs the diluent gas composition ranged from pure nitrogen to pure argon. Recording pressure, UV, and visible emissions identified the evolution of chemical reactions. Correlations of ignition delay time were generated from the data for each facility. At temperatures below 1300 K, a significant reduction of average activation energy from 53 to 15.3 kcal/mol was obtained. Moreover, the RCM data showed significant scatter that dramatically increased with decreasing temperature. An explanation for the abnormal scatter in the data was proposed based on the high-speed visualization of auto-ignition phenomena and experiments performed with oxygen-free and fuel-free mixtures. It is proposed that the main reason for such a significant reduction of average activation energy is attributable to the premature ignition of ultrafine particles in the reactive mixture.

  13. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  14. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    International Nuclear Information System (INIS)

    Perkins, L.J.; Betti, R.; Schurtz, G.P.; Craxton, R.S.; Dunne, A.M.; LaFortune, K.N.; Schmitt, A.J.; McKenty, P.W.; Bailey, D.S.; Lambert, M.A.; Ribeyre, X.; Theobald, W.R.; Strozzi, D.J.; Harding, D.R.; Casner, A.; Atzemi, S.; Erbert, G.V.; Andersen, K.S.; Murakami, M.; Comley, A.J.; Cook, R.C.; Stephens, R.B.

    2010-01-01

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term (∼3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of ∼60 may be achievable on NIF at laser drive energies around ∼0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R and D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  15. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    Science.gov (United States)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  16. EXPERIMENTAL STUDY OF HOMOGENEOUS MIXTURE COMPRESSION IGNITION IN INTERNAL COMBUSTION ENGINES

    OpenAIRE

    ANTHONY OSWALDO ROQUE CCACYA

    2010-01-01

    Com o intuito de reduzir as emissões e melhorar a combustão em uma maior faixa de rotação e carga de um motor, foi proposto o estudo da combustão por compressão de misturas homogêneas (HCCI), este processo apresenta altas eficiências e baixas emissões, principalmente de NOx e fuligem. Assim, o objetivo do presente trabalho é a determinação das faixas de operação estável em um motor diesel, de alta taxa de compressão (20:1). O combustível utilizado foi gasolina tipo A, tendo em vista a sua gra...

  17. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon; Chung, Suk-Ho; Yoo, Chun Sang

    2017-01-01

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  18. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau

    2017-06-10

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  19. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion

    International Nuclear Information System (INIS)

    Betti, R.; Zhou, C.

    2005-01-01

    Scaling relations to optimize implosion parameters for fast-ignition inertial confinement fusion are derived and used to design high-gain fast-ignition targets. A method to assemble thermonuclear fuel at high densities, high ρR, and with a small-size hot spot is presented. Massive cryogenic shells can be imploded with a low implosion velocity V I on a low adiabat α using the relaxation-pulse technique. While the low V I yields a small hot spot, the low α leads to large peak values of the density and areal density. It is shown that a 750 kJ laser can assemble fuel with V I ≅1.7x10 7 cm/s, α≅0.7, ρ≅400 g/cc, ρR≅3 g/cm 2 , and a hot-spot volume of less than 10% of the compressed core. If fully ignited, this fuel assembly can produce high gains of interest to inertial fusion energy applications

  20. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  1. A Photographic Study of Combustion and Knock in a Spark-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Spencer, R C

    1938-01-01

    Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.

  2. Progress in the shock-ignition inertial confinement fusion concept

    International Nuclear Information System (INIS)

    Theobald, W.; Casner, A.; Nora, R.; Ribeyre, X.; Lafon, M.; Anderson, K. S.; Betti, R.; Craxton, R. S.; Delettrez, J. A.; Frenje, J. A.; Glebov, V. Yu; Gotchev, O. V.; Hohenberger, M.; Hu, S. X.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Perkins, L. J.; Sangster, T. C.; Schurtz, G.; Seka, W.; Smalyuk, V. A.; Stoeckl, C.; Yaakobi, B.

    2013-01-01

    Shock-ignition experiments with peak laser intensities of ∼8 x 10 15 W/cm 2 were performed. D 2 -filled plastic shells were compressed on a low adiabat by 40 of the 60 OMEGA beams. The remaining 20 beams were delayed and tightly focused onto the imploding shell to generate a strong shock. Up to 35% backscattering of laser energy was measured at the highest intensity. Hard x-ray measurements reveal a relatively low hot-electron temperature of ∼40 keV, independent of intensity and spike onset time. (authors)

  3. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  4. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  5. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. I. Fundamental analysis and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jacqueline H.; Hawkes, Evatt R.; Sankaran, Ramanan [Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9051, Livermore, CA 94551-0969 (United States); Mason, Scott D. [Lockheed Martin Corporation, Sunnyvale, CA 94089 (United States); Im, Hong G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2006-04-15

    The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry with a view to providing better understanding and modeling of combustion processes in homogeneous charge compression-ignition engines. Numerical diagnostics are developed to analyze the mode of combustion and the dependence of overall ignition progress on initial mixture conditions. The roles of dissipation of heat and mass are divided conceptually into transport within ignition fronts and passive scalar dissipation, which modifies the statistics of the preignition temperature field. Transport within ignition fronts is analyzed by monitoring the propagation speed of ignition fronts using the displacement speed of a scalar that tracks the location of maximum heat release rate. The prevalence of deflagrative versus spontaneous ignition front propagation is found to depend on the local temperature gradient, and may be identified by the ratio of the instantaneous front speed to the laminar deflagration speed. The significance of passive scalar mixing is examined using a mixing timescale based on enthalpy fluctuations. Finally, the predictions of the multizone modeling strategy are compared with the DNS, and the results are explained using the diagnostics developed. (author)

  6. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  7. Experimental investigations of effects of EGR on performance and emissions characteristics of CNG fueled reactivity controlled compression ignition (RCCI) engine

    International Nuclear Information System (INIS)

    Singh Kalsi, Sunmeet; Subramanian, K.A.

    2016-01-01

    Highlights: • NO_x emission decreased drastically in RCCI engine with EGR. • CO and HC emissions decreased with 8% EGR. • Smoke emission increased with EGR but is still less than base diesel. • Brake thermal efficiency does not change with EGR up to 15% • 8% EGR is optimum based on less CO, HC, NO_x except smoke. - Abstract: Experimental: tests were carried out on a single cylinder diesel engine (7.4 kW rated power at 1500 rpm) under dual fuel mode (CNG-Diesel) with EGR (exhaust gas recirculation). Less reacting fuel (CNG) was injected inside the intake manifold using timed manifold gas injection system whereas high reactive diesel fuel was directly injected into the engine’s cylinder for initiation of ignition. EGR at different percentages (8%, 15% and 30%) was inducted to the engine through intake manifold and tests were conducted at alternator power output of 2 kW and 5 kW. The engine can operate under dual fuel mode with maximum CNG energy share of 85% and 92% at 5 kW and 2 kW respectively. The brake thermal efficiency of diesel engine improved marginally at 5 kW power output under conventional dual fuel mode with the CNG share up to 37% whereas the efficiency did not change with up to 15% EGR however it decreased beyond the EGR percentage. NO_x emission in diesel engine under conventional dual fuel mode decreased significantly and it further decreased drastically with EGR. The notable point emerged from this study is that CO and HC emissions, which are major problems at part load in reactivity controlled compression ignition engine (RCCI), decreased with 8% EGR along with further reduction of NO_x. However, smoke emission is marginally higher with EGR than without EGR but it is still less than conventional mode (Diesel alone). The new concept emerged from this study is that CO and HC emissions of RCCI engine at part load can be reduced using EGR.

  8. Analysis of the Effect of Injection Pressure on Ignition Delay and Combustion Process of Biodiesel from Palm Oil, Algae and Waste Cooking Oil

    Science.gov (United States)

    Irham Anas, Mohd; Khalid, Amir; Hakim Zulkifli, Fathul; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin

    2017-10-01

    Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant grease for use in diesel engines. The objective of this research is investigation the effects of the variant injection pressure on ignition delay and emission for different biodiesel using rapid compression machine. Rapid Compression Machine (RCM) is used to simulate a single compression stroke of an internal combustion engine as a real engine. Four types of biodiesel which are waste cooking oil, crude palm oil, algae and jatropha were tested at injection pressure of 80 MPa, 90 MPa and 130 MPa under constant ambient temperature at 950 K. Increased in injection pressure resulted shorter ignition delay proven by WCO5 which decreased from 1.3 ms at 80 MPa to 0.7 ms at 130 MPa. Meanwhile, emission for CO2 increased due to better fuel atomization for fuel-air mixture formation lead to completed combustion.

  9. A survey of pulse shape options for a revised plastic ablator ignition design

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Milovich, J. L.; Hinkel, D. E.; Salmonson, J. D.; Peterson, J. L.; Berzak Hopkins, L. F.; Eder, D. C.; Haan, S. W.; Jones, O. S.; Marinak, M. M.; Robey, H. F.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory Livermore, California 94550 (United States)

    2014-11-15

    Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.

  10. DNS Study of the Ignition of n-Heptane Fuel Spray under HCCI Conditions

    Science.gov (United States)

    Wang, Yunliang; Rutland, Christopher J.

    2004-11-01

    Direct numerical simulations are carried out to investigate the mixing and auto-ignition processes of n-heptane fuel spray in a turbulent field using a skeletal chemistry mechanism with 44 species and 112 reactions. For the solution of the carrier gas fluid, we use the Eulerian method, while for the fuel spray, the Lagrangian method is used. We use an eighth-order finite difference scheme to calculate spacial derivatives and a fourth-order Runge-Kutta scheme for the time integration. The initial gas temperature is 926 K and the initial gas pressure is 30 atmospheres. The initial global equivalence ratio based on the fuel concentration is around 0.4. The initial droplet diameter is 60 macrons and the droplet temperature is 300 K. Evolutions of averaged temperature, species mass fraction, heat release and reaction rate are presented. Contours of temperature and species mass fractions are presented. The objective is to understand the mechanism of ignition under Homogeneous Charged Compression Ignition (HCCI) conditions, aiming at providing some useful information of HCCI combustion, which is one of the critical issues to be resolved.

  11. 77 FR 50500 - California State Nonroad Engine Pollution Control Standards; California Nonroad Compression...

    Science.gov (United States)

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [AMS-FRL 9716-8] California State Nonroad Engine Pollution Control Standards; California Nonroad Compression Ignition Engines--In-Use Fleets; Authorization Request... emissions control of new engines not listed under section 209(e)(1). The section 209(e) rule and its...

  12. Thermonuclear targets for direct-drive ignition by a megajoule laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bel’kov, S. A.; Bondarenko, S. V. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation); Vergunova, G. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Garanin, S. G. [Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (Russian Federation); Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Demchenko, N. N.; Doskoch, I. Ya.; Kuchugov, P. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Rozanov, V. B.; Stepanov, R. V.; Yakhin, R. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-10-15

    Central ignition of a thin two-layer-shell fusion target that is directly driven by a 2-MJ profiled pulse of Nd laser second-harmonic radiation has been studied. The parameters of the target were selected so as to provide effective acceleration of the shell toward the center, which was sufficient for the onset of ignition under conditions of increased hydrodynamic stability of the ablator acceleration and compression. The aspect ratio of the inner deuterium-tritium layer of the shell does not exceed 15, provided that a major part (above 75%) of the outer layer (plastic ablator) is evaporated by the instant of maximum compression. The investigation is based on two series of numerical calculations that were performed using one-dimensional (1D) hydrodynamic codes. The first 1D code was used to calculate the absorption of the profiled laser-radiation pulse (including calculation of the total absorption coefficient with allowance for the inverse bremsstrahlung and resonance mechanisms) and the spatial distribution of target heating for a real geometry of irradiation using 192 laser beams in a scheme of focusing with a cubo-octahedral symmetry. The second 1D code was used for simulating the total cycle of target evolution under the action of absorbed laser radiation and for determining the thermonuclear gain that was achieved with a given target.

  13. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhauasen, R C; Bowers, G A; Carey, R W; Edwards, O D; Estes, C M; Demaret, R D; Ferguson, S W; Fisher, J M; Ho, J C; Ludwigsen, A P; Mathisen, D G; Marshall, C D; Matone, J M; McGuigan, D L; Sanchez, R J; Shelton, R T; Stout, E A; Tekle, E; Townsend, S L; Van Arsdall, P J; Wilson, E F

    2007-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into more than 6,000 line replaceable units such as optical assemblies, laser amplifiers, and multifunction sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-Megajoule capability of infrared light. During the next two years, the control system will be expanded to include automation of target area systems including final optics, target positioners and

  14. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the path to ignition

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Bowers, G.A.; Carey, R.W.; Edwards, O.D.; Estes, C.M.; Demaret, R.D.; Ferguson, S.W.; Fisher, J.M.; Ho, J.C.; Ludwigsen, A.P.; Mathisen, D.G.; Marshall, C.D.; Matone, J.T.; McGuigan, D.L.; Sanchez, R.J.; Stout, E.A.; Tekle, E.A.; Townsend, S.L.; Van Arsdall, P.J.

    2008-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system together with a 10-m diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of eight beams each using laser hardware that is modularized into more than 6000 line replaceable units such as optical assemblies, laser amplifiers, and multi-function sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-MJ capability of infrared light. During the next 2 years, the control system will be expanded in preparation for project completion in 2009 to include automation of target area systems including final optics

  15. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  16. Effects of fuel Lewis number on localised forced ignition of turbulent homogeneous mixtures: A numerical investigation

    Directory of Open Access Journals (Sweden)

    Dipal Patel

    2016-09-01

    Full Text Available The influences of fuel Lewis number LeF (ranging from 0.8 to 1.2 on localised forced ignition and early stages of combustion of stoichiometric and fuel-lean homogeneous mixtures have been analysed using simple chemistry three-dimensional compressible direct numerical simulations for different values of root-mean-square velocity fluctuation and the energy deposition characteristics (i.e. characteristic width and the duration of energy deposition by the ignitor. The localised forced ignition is modelled using a source term in the energy transport equation, which deposits energy in a Gaussian manner from the centre of the ignitor over a stipulated period of time. The fuel Lewis number LeF has been found to have significant influences on the extent of burning of stoichiometric and fuel-lean homogeneous mixtures. It has been shown that the width of ignition energy deposition and the duration over which the ignition energy is deposited have significant influences on the success of ignition and subsequent flame propagation. An increase in the width of ignition energy deposition and the duration of energy deposition for a given amount of ignition energy have been found to have detrimental effects on the ignition event, which may ultimately lead to misfire. For a given value of u' (LeF, the rate of heat transfer from the hot gas kernel increases with increasing LeF (u', which in turn leads to a reduction in the extent of overall burning for both stoichiometric and fuel-lean homogeneous mixtures but the detrimental effects of high values of u' on localised forced ignition are particularly prevalent for fuel-lean mixtures. Detailed physical explanations have been provided for the observed LeF,u' and energy deposition characteristics effects.

  17. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.

    2012-01-01

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  18. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter; Etude experimentale de la propagation et du depot d'energie d'electrons rapides dans une cible solide ou comprimee par choc laser: application a l'allumeur rapide

    Energy Technology Data Exchange (ETDEWEB)

    Pisani, F

    2000-02-15

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  19. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen.

    Science.gov (United States)

    Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S

    2017-08-01

    In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.

  20. Stability of Ignition Transients

    OpenAIRE

    V.E. Zarko

    1991-01-01

    The problem of ignition stability arises in the case of the action of intense external heat stimuli when, resulting from the cut-off of solid substance heating, momentary ignition is followed by extinction. Physical pattern of solid propellant ignition is considered and ignition criteria available in the literature are discussed. It is shown that the above mentioned problem amounts to transient burning at a given arbitrary temperature distribution in the condensed phase. A brief survey...

  1. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2016-05-15

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.

  2. Ignition probabilities for Compact Ignition Tokamak designs

    International Nuclear Information System (INIS)

    Stotler, D.P.; Goldston, R.J.

    1989-09-01

    A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs

  3. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  4. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio...... was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly....

  5. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  6. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    Science.gov (United States)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2017-04-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  7. Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels

    Science.gov (United States)

    Vandersickel, A.; Wright, Y. M.; Boulouchos, K.

    2013-12-01

    Compact reaction schemes capable of predicting auto-ignition are a prerequisite for the development of strategies to control and optimise homogeneous charge compression ignition (HCCI) engines. In particular for full boiling range fuels exhibiting two stage ignition a tremendous demand exists in the engine development community. The present paper therefore meticulously assesses a previous 7-step reaction scheme developed to predict auto-ignition for four hydrocarbon blends and proposes an important extension of the model constant optimisation procedure, allowing for the model to capture not only ignition delays, but also the evolutions of representative intermediates and heat release rates for a variety of full boiling range fuels. Additionally, an extensive validation of the later evolutions by means of various detailed n-heptane reaction mechanisms from literature has been presented; both for perfectly homogeneous, as well as non-premixed/stratified HCCI conditions. Finally, the models potential to simulate the auto-ignition of various full boiling range fuels is demonstrated by means of experimental shock tube data for six strongly differing fuels, containing e.g. up to 46.7% cyclo-alkanes, 20% napthalenes or complex branched aromatics such as methyl- or ethyl-napthalene. The good predictive capability observed for each of the validation cases as well as the successful parameterisation for each of the six fuels, indicate that the model could, in principle, be applied to any hydrocarbon fuel, providing suitable adjustments to the model parameters are carried out. Combined with the optimisation strategy presented, the model therefore constitutes a major step towards the inclusion of real fuel kinetics into full scale HCCI engine simulations.

  8. Applications and results of X-ray spectroscopy in implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.

    2017-03-01

    Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the

  9. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  10. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  11. Forced Ignition Study Based On Wavelet Method

    Science.gov (United States)

    Martelli, E.; Valorani, M.; Paolucci, S.; Zikoski, Z.

    2011-05-01

    The control of ignition in a rocket engine is a critical problem for combustion chamber design. Therefore it is essential to fully understand the mechanism of ignition during its earliest stages. In this paper the characteristics of flame kernel formation and initial propagation in a hydrogen-argon-oxygen mixing layer are studied using 2D direct numerical simulations with detailed chemistry and transport properties. The flame kernel is initiated by adding an energy deposition source term in the energy equation. The effect of unsteady strain rate is studied by imposing a 2D turbulence velocity field, which is initialized by means of a synthetic field. An adaptive wavelet method, based on interpolating wavelets is used in this study to solve the compressible reactive Navier- Stokes equations. This method provides an alternative means to refine the computational grid points according to local demands of the physical solution. The present simulations show that in the very early instants the kernel perturbed by the turbulent field is characterized by an increased burning area and a slightly increased rad- ical formation. In addition, the calculations show that the wavelet technique yields a significant reduction in the number of degrees of freedom necessary to achieve a pre- scribed solution accuracy.

  12. Equilibrium ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-01-01

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative

  13. Progress Towards Ignition on the National Ignition Facility

    Science.gov (United States)

    Edwards, John

    2012-10-01

    Since completion of the National Ignition Facility (NIF) construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been commissioned in pursuit of generating the conditions necessary to reach thermonuclear ignition in the laboratory via the inertial confinement approach. NIF's capabilities and infrastructure include over 50 X-ray, optical, and nuclear diagnostics systems and the ability to shoot cryogenic DT layered capsules. There are two main approaches to ICF: direct drive in which laser light impinges directly on a capsule containing a solid layer of DT fuel, and indirect drive in which the laser light is first converted to thermal X-rays. To date NIF has been conducting experiments using the indirect drive approach, injecting up to 1.8MJ of ultraviolet light (0.35 micron) into 1 cm scale cylindrical gold or gold-coated uranium, gas-filled hohlraums, to implode 1mm radius plastic capsules containing solid DT fuel layers. In order to achieve ignition conditions the implosion must be precisely controlled. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress toward this. Utilizing precision pulse-shaping experiments in early 2012 the NIC achieve fuel rhoR of approximately 1.2 gm/cm^2 with densities of around 600-800 g/cm^3 along with neutron yields within about a factor of 5 necessary to enter a regime in which alpha particle heating will become important. To achieve these results, experimental platforms were developed to carefully control key attributes of the implosion. This talk will review NIF's capabilities and the progress toward ignition, as well as the physics of ignition targets on NIF and on other facilities. Acknowledgement: this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. OH PLIF measurement in a spark ignition engine with a tumble flow

    Science.gov (United States)

    Kumar, Siddhartha; Moronuki, Tatsuya; Shimura, Masayasu; Minamoto, Yuki; Yokomori, Takeshi; Tanahashi, Mamoru; Strategic Innovation Program (SIP) Team

    2017-11-01

    Under lean conditions, high compression ratio and strong tumble flow; cycle-to-cycle variations of combustion in spark ignition (SI) engines is prominent, therefore, relation between flame propagation characteristics and increase of pressure needs to be clarified. The present study is aimed at exploring the spatial and temporal development of the flame kernel using OH planar laser-induced fluorescence (OH PLIF) in an optical SI engine. Equivalence ratio is changed at a fixed indicated mean effective pressure of 400 kPa. From the measurements taken at different crank angle degrees (CAD) after ignition, characteristics of flame behavior were investigated considering temporal evolution of in-cylinder pressure, and factors causing cycle-to-cycle variations are discussed. In addition, the effects of tumble flow intensity on flame propagation behavior were also investigated. This work is supported by the Cross-ministerial Strategic Innovation Program (SIP), `Innovative Combustion Technology'.

  15. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube

    Science.gov (United States)

    Niegemann, P.; Fikri, M.; Wlokas, I.; Röder, M.; Schulz, C.

    2018-05-01

    Autoignition of fuel/air mixtures is a determining process in internal combustion engines. Ignition can start either homogeneously in the gas phase after compression or in the vicinity of hot surfaces. While ignition properties of commercial fuels are conventionally described by a single quantity (octane number), it is known that some fuels have a varying propensity to the two processes. We present a new experimental concept that generates well-controlled temperature inhomogeneities in the shock-heated gases of a high-pressure shock tube. A shock-heated reactive mixture is brought into contact with a heated silicon nitride ceramic glow plug. The glow-plug temperature can be set up to 1200 K, higher than the post-reflected-shock gas temperatures (650-1050 K). High-repetition-rate chemiluminescence imaging is used to localize the onset of ignition in the vicinity of the hot surface. In experiments with ethanol, the results show that in most cases under shock-heated conditions, the ignition begins inhomogeneously in the vicinity of the glow plug and is favored because of the high wall temperature. Additionally, the interaction of geometry, external heating, and gas-dynamic effects was investigated by numerical simulations of the shock wave in a non-reactive flow.

  16. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  17. High frequency ignition arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Canup, R E

    1977-03-03

    The invention concerns an HF ignition arrangement for combustion engines with a transistor oscillator. As this oscillator requires a current of 10A, with peak currents up to about 50A, it is not sensible to take this current through the remote ignition switch for switching it on and off. According to the invention the HF high voltage transformer of the ignition is provided with a control winding, which only requires a few milliamps DC and which can therefore be switched via the ignition switch. If the ignition switch is in the 'running' position, then a premagnetising DC current flows through the control winding, which suppresses the oscillation of the oscillator which has current flowing through it, until this current is interrupted by the interruptor contacts controlled by the combustion engine, so that the oscillations of the oscillator start immediately; the oscillator only continues to oscillate during the period during which the interruptor contacts controlled by the machine are open and interrupt the premagnetisation current. The control winding is short circuited in the 'off' position of the ignition switch.

  18. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  19. Reaching ignition in the tokamak

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-06-01

    This review covers the following areas: (1) the physics of burning plasmas, (2) plasma physics requirements for reaching ignition, (3) design studies for ignition devices, and (4) prospects for an ignition project

  20. Robustness studies of ignition targets for the National Ignition Facility in two dimensions

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.

    2008-01-01

    Inertial confinement fusion capsules are critically dependent on the integrity of their hot spots to ignite. At the time of ignition, only a certain fractional perturbation of the nominally spherical hot spot boundary can be tolerated and the capsule still achieve ignition. The degree to which the expected hot spot perturbation in any given capsule design is less than this maximum tolerable perturbation is a measure of the ignition margin or robustness of that design. Moreover, since there will inevitably be uncertainties in the initial character and implosion dynamics of any given capsule, all of which can contribute to the eventual hot spot perturbation, quantifying the robustness of that capsule against a range of parameter variations is an important consideration in the capsule design. Here, the robustness of the 300 eV indirect drive target design for the National Ignition Facility [Lindl et al., Phys. Plasmas 11, 339 (2004)] is studied in the parameter space of inner ice roughness, implosion velocity, and capsule scale. A suite of 2000 two-dimensional simulations, run with the radiation hydrodynamics code LASNEX, is used as the data base for the study. For each scale, an ignition region in the two remaining variables is identified and the ignition cliff is mapped. In accordance with the theoretical arguments of Levedahl and Lindl [Nucl. Fusion 37, 165 (1997)] and Kishony and Shvarts [Phys. Plasmas 8, 4925 (2001)], the location of this cliff is fitted to a power law of the capsule implosion velocity and scale. It is found that the cliff can be quite well represented in this power law form, and, using this scaling law, an assessment of the overall (one- and two-dimensional) ignition margin of the design can be made. The effect on the ignition margin of an increase or decrease in the density of the target fill gas is also assessed

  1. Clístenes de Sición, el oráculo délfico y la primera guerra sagrada

    Directory of Open Access Journals (Sweden)

    César FORNIS VAQUERO

    2010-02-01

    Full Text Available RESUMEN: Este artículo estudia la relación entre el Oráculo Deifico y la dinastía Ortagórida, principalmente Clístenes de Sición. Este tirano intentó obtener el apoyo del santuario con su participación en la Primera Guerra Sagrada y la reorganización de los Juegos Píticos, pero en el siglo VI a. C. la actitud de la Pitia hacia la tiranía era de hostilidad, como sucedió también con los Pisistrátidas en Atenas y Polícrates en Samos durante el mismo siglo.SUMMARY: This paper studies the relation between the Delphic Oracle and the Orthagoriddinasty, principaly Cleisthenes of Sicyon. This tyrant tried to obtain the support of the shrine with the participation in the First Sacred War and the reorganization of the Pythie Games, but in the sixth century b. C. the attitude of the Pythia towards the tyranny was of hostility, as it also happened towards the Peisistratids in Athens and Polykrates in Samos during the same century.

  2. Ultrahigh-brightness KrF laser system for fast ignition studies

    International Nuclear Information System (INIS)

    Shaw, M.J.; Ross, I.N.; Hooker, C.J.; Dodson, J.M.; Hirst, G.J.; Lister, J.M.D.; Divall, E.J.; Kidd, A.K.; Hancock, S.; Damerell, A.R.; Wyborn, B.E.

    1999-01-01

    The main requirements for a fast igniter laser beam are reviewed and shown to favour short wavelength and ultrahigh brightness. These requirements are met by the new KrF laser system at Rutherford Appleton Laboratory called TITANIA. TITANIA uses two schemes to enhance the laser beam brightness. The first is chirped pulse amplification which is used to enhance brightness by compressing the pulse into the femtosecond region. In this mode TITANIA produces in the region of 250 mJ on target in 700 fs. The second mode of operation uses a Raman technique for beam combining and beam clean-up which is designed to give a single beam of 80 Joules on target in a pulselength of 60 ps. In this scheme the KrF wavelength is Raman shifted to 268 nm. The Raman amplifiers will use gaseous rather than solid windows and experiments which demonstrate their feasibility will be described. A concept for a reactor scale fast igniter beam using the Raman technique will be discussed. (orig.)

  3. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    International Nuclear Information System (INIS)

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-01-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots (∼100 (micro)m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with ρr ∼ 2 g/cm 2 for a small demo/pilot plant producing ∼40 MJ of fusion yield per target, and (2) a large target with ρr ∼ 10 g/cm 2 producing ∼1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q ∼ 26) ion sources for short (∼5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of ∼10 MG fields to provide steep focusing angles close-in to the target (built-in as part of each target); (4) beam space charge

  4. Ion-driver fast ignition: Reducing heavy-ion fusion driver energy and cost, simplifying chamber design, target fab, tritium fueling and power conversion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, G.; Callahan-Miller, D.; Perkins, J.; Caporaso, G.; Tabak, M.; Moir, R.; Meier, W.; Bangerter, Roger; Lee, Ed

    1998-04-01

    Ion fast ignition, like laser fast ignition, can potentially reduce driver energy for high target gain by an order of magnitude, while reducing fuel capsule implosion velocity, convergence ratio, and required precisions in target fabrication and illumination symmetry, all of which should further improve and simplify IFE power plants. From fast-ignition target requirements, we determine requirements for ion beam acceleration, pulse-compression, and final focus for advanced accelerators that must be developed for much shorter pulses and higher voltage gradients than today's accelerators, to deliver the petawatt peak powers and small focal spots ({approx}100 {micro}m) required. Although such peak powers and small focal spots are available today with lasers, development of such advanced accelerators is motivated by the greater likely efficiency of deep ion penetration and deposition into pre-compressed 1000x liquid density DT cores. Ion ignitor beam parameters for acceleration, pulse compression, and final focus are estimated for two examples based on a Dielectric Wall Accelerator; (1) a small target with {rho}r {approx} 2 g/cm{sup 2} for a small demo/pilot plant producing {approx}40 MJ of fusion yield per target, and (2) a large target with {rho}r {approx} 10 g/cm{sup 2} producing {approx}1 GJ yield for multi-unit electricity/hydrogen plants, allowing internal T-breeding with low T/D ratios, >75 % of the total fusion yield captured for plasma direct conversion, and simple liquid-protected chambers with gravity clearing. Key enabling development needs for ion fast ignition are found to be (1) ''Close-coupled'' target designs for single-ended illumination of both compressor and ignitor beams; (2) Development of high gradient (>25 MV/m) linacs with high charge-state (q {approx} 26) ion sources for short ({approx}5 ns) accelerator output pulses; (3) Small mm-scale laser-driven plasma lens of {approx}10 MG fields to provide steep focusing angles

  5. Ignition tuning for the National Ignition Campaign

    Directory of Open Access Journals (Sweden)

    Landen O.

    2013-11-01

    Full Text Available The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix.

  6. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  7. Nova Upgrade: A proposed ICF facility to demonstrate ignition and gain, revision 1

    Science.gov (United States)

    1992-07-01

    The present objective of the national Inertial Confinement Fusion (ICF) Program is to determine the scientific feasibility of compressing and heating a small mass of mixed deuterium and tritium (DT) to conditions at which fusion occurs and significant energy is released. The potential applications of ICF will be determined by the resulting fusion energy yield (amount of energy produced) and gain (ratio of energy released to energy required to heat and compress the DT fuel). Important defense and civilian applications, including weapons physics, weapons effects simulation, and ultimately the generation of electric power will become possible if yields of 100 to 1,000 MJ and gains exceeding approximately 50 can be achieved. Once ignition and propagating bum producing modest gain (2 to 10) at moderate drive energy (1 to 2 MJ) has been achieved, the extension to high gain (greater than 50) is straightforward. Therefore, the demonstration of ignition and modest gain is the final step in establishing the scientific feasibility of ICF. Lawrence Livermore National Laboratory (LLNL) proposes the Nova Upgrade Facility to achieve this demonstration by the end of the decade. This facility would be constructed within the existing Nova building at LLNL for a total cost of approximately $400 M over the proposed FY 1995-1999 construction period. This report discusses this facility.

  8. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  9. Experimental optimization of a direct injection homogeneous charge compression ignition gasoline engine using split injections with fully automated microgenetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli Univ., Izmit (Turkey); Reitz, R.D. [Wisconsin Univ., Dept. of Mechanical Engineering, Madison, WI (United States)

    2003-03-01

    Homogeneous charge compression ignition (HCCI) is receiving attention as a new low-emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion under homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NO{sub x} and particulate matter (PM) as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to an HCCI direct injection (DI) gasoline engine. The engine features an electronically controlled low-pressure direct injection gasoline (DI-G) injector with a 60 deg spray angle that is capable of multiple injections. The use of double injection was explored for emission control and the engine was optimized using fully automated experiments and a microgenetic algorithm optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing and the split injection parameters (per cent mass of fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 r/min with a constant fuel flowrate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies. (Author)

  10. A new and efficient mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Shadloo, M.S.; Poultangari, R.; Abdollahzadeh Jamalabadi, M.Y.; Rashidi, M.M.

    2015-01-01

    Highlights: • A new slider–crank mechanism, with superior performance is presented. • Thermodynamic processes as well as vibration and internal forces have been modeled. • Comparison with the conventional four-stroke spark ignition engines is made. • Advantages and disadvantages of the proposed mechanism are discussed. - Abstract: In this paper a new symmetrical crank and slider mechanism is proposed and a zero dimensional model is utilized to study its combustion performance enhancement in a four-stroke spark ignition (SI) engine. The main features of this new mechanism are superior thermodynamic efficiency, lower internal frictions, and lower pollutants. Comparison is made between its performance and that of the conventional four-stroke SI engines. Presented mechanism is designed to provide better fuel consumption of internal combustion engines. These advantages over standard engine are achieved through synthesis of new mechanism. Numerical calculation have been performed for several cases of different mechanism parameters, compression ratio and engine speed. A comprehensive comparison between their thermodynamic processes as well as vibration and internal forces has been done. Calculated efficiency and power diagrams are plotted and compared with performance of a conventional SI engine. Advantages and disadvantages of the proposed mechanism are discussed in details

  11. Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mistri, Gayatri K.; Aggarwal, Suresh K.; Longman, Douglas; Agarwal, Avinash K.

    2015-09-07

    Biofuels produced from non-edible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from non-edible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel’s oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, 4-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in break thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), BSFC (13.1% and 5.6%), and NOx emission (9.8% and 12.9%), and a reduction in BSHC (8.64% and 12.9%), and BSCO (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures

  12. Insulation irradiation test programme for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    McManamy, T.J.; Kanemoto, G.; Snook, P.

    1991-01-01

    In a programme to evaluate the effects of radiation exposure on the electrical insulation for the toroidal field coils of the Compact Ignition Tokamak, three types of boron-free insulation were irradiated at room temperature in the Advanced Technology Reactor (ATR) and tested at the Idaho National Engineering Laboratory. The materials were Spaulrad-S, Shikishima PG5-1 and Shikishima PG3-1. The first two use a bismaleimide resin and the third an aromatic amine hardened epoxy. Spaulrad-S is a two-dimensional (2-D) weave of S-glass, while the others are 3-D weaves of T-glass. Flexure and shear/compression samples were irradiated to ≅ 5 x 10 9 and 3 x 10 10 rad with 35-40% of the total dose from neutrons. The shear/compression samples were tested in pairs by applying an average compression of 345 MPa and then a shear load. After static tests were completed, fatigue testing was performed by cycling the shear load for up to 30000 cycles with a constant compression. The static shear strength of the samples that did not fail was then determined. Generally, shear strengths of the order of 120 MPa were measured. The behaviour of the flexure and shear/compression samples was significantly different; large reductions in the flexure strength were observed, while the shear strength stayed the same or increased slightly. The 3-D weave material demonstrated higher strength and significantly less radiation damage than the 2-D material in flexure but performed almost identically when tested with combined shear and compression. The epoxy system was much more sensitive to fatigue damage than the bismaleimide materials. No swelling was measured; however, the epoxy samples did twist slightly. (author)

  13. Application of multicriteria decision making methods to compression ignition engine efficiency and gaseous, particulate, and greenhouse gas emissions.

    Science.gov (United States)

    Surawski, Nicholas C; Miljevic, Branka; Bodisco, Timothy A; Brown, Richard J; Ristovski, Zoran D; Ayoko, Godwin A

    2013-02-19

    Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

  14. Direct numerical simulations of the ignition of lean primary reference fuel/air mixtures with temperature inhomogeneities

    KAUST Repository

    Luong, Minhbau

    2013-10-01

    The effects of fuel composition, thermal stratification, and turbulence on the ignition of lean homogeneous primary reference fuel (PRF)/air mixtures under the conditions of constant volume and elevated pressure are investigated by direct numerical simulations (DNSs) with a new 116-species reduced kinetic mechanism. Two-dimensional DNSs were performed in a fixed volume with a two-dimensional isotropic velocity spectrum and temperature fluctuations superimposed on the initial scalar fields with different fuel compositions to elucidate the influence of variations in the initial temperature fluctuation and turbulence intensity on the ignition of three different lean PRF/air mixtures. In general, it was found that the mean heat release rate increases slowly and the overall combustion occurs fast with increasing thermal stratification regardless of the fuel composition under elevated pressure and temperature conditions. In addition, the effect of the fuel composition on the ignition characteristics of PRF/air mixtures was found to vanish with increasing thermal stratification. Chemical explosive mode (CEM), displacement speed, and Damköhler number analyses revealed that the high degree of thermal stratification induces deflagration rather than spontaneous ignition at the reaction fronts, rendering the mean heat release rate more distributed over time subsequent to thermal runaway occurring at the highest temperature regions in the domain. These analyses also revealed that the vanishing of the fuel effect under the high degree of thermal stratification is caused by the nearly identical propagation characteristics of deflagrations of different PRF/air mixtures. It was also found that high intensity and short-timescale turbulence can effectively homogenize mixtures such that the overall ignition is apt to occur by spontaneous ignition. These results suggest that large thermal stratification leads to smooth operation of homogeneous charge compression-ignition (HCCI

  15. Review: laser ignition for aerospace propulsion

    Directory of Open Access Journals (Sweden)

    Steven A. O’Briant

    2016-03-01

    This paper aims to provide the reader an overview of advanced ignition methods, with an emphasis on laser ignition and its applications to aerospace propulsion. A comprehensive review of advanced ignition systems in aerospace applications is performed. This includes studies on gas turbine applications, ramjet and scramjet systems, and space and rocket applications. A brief overview of ignition and laser ignition phenomena is also provided in earlier sections of the report. Throughout the reading, research papers, which were presented at the 2nd Laser Ignition Conference in April 2014, are mentioned to indicate the vast array of projects that are currently being pursued.

  16. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F.

    2007-01-01

    The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (≅4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (≅790 atm) in the inner shell, strict concentricity requirements on the two shells ( 2 nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010

  17. Diethyl Ether as an Ignition Enhancer for Naphtha Creating a Drop in Fuel for Diesel

    KAUST Repository

    Vallinayagam, R.

    2016-12-01

    Direct use of naphtha in compression ignition (CI) engines is not advisable because its lower cetane number negatively impacts the auto ignition process. However, engine or fuel modifications can be made to operate naphtha in CI engines. Enhancing a fuel’s auto ignition characteristics presents an opportunity to use low cetane fuel, naphtha, in CI engines. In this research, Di-ethyl ether (DEE) derived from ethanol is used as an ignition enhancer for light naphtha. With this fuel modification, a “drop-in” fuel that is interchangeable with existing diesel fuel has been created. The ignition characteristics of DEE blended naphtha were studied in an ignition quality tester (IQT); the measured ignition delay time (IDT) for pure naphtha was 6.9 ms. When DEE was added to naphtha, IDT decreased and D30 (30% DEE + 70% naphtha) showed comparable IDT with US NO.2 diesel. The derived cetane number (DCN) of naphtha, D10 (10% DEE + 90% naphtha), D20% DEE + 80% naphtha) and D30 were measured to be 31, 37, 40 and 49, respectively. The addition of 30% DEE in naphtha achieved a DCN equivalent to US NO.2 diesel. Subsequent experiments in a CI engine exhibited longer ignition delay for naphtha compared to diesel. The peak in-cylinder pressure is higher for naphtha than diesel and other tested fuels. When DEE was added to naphtha, the ignition delay shortened and peak in-cylinder pressure is reduced. A 3.7% increase in peak in-cylinder pressure was observed for naphtha compared to US NO.2 diesel, while D30 showed comparable results with diesel. The pressure rise rate dropped with the addition of DEE to naphtha, thereby reducing the ringing intensity. Naphtha exhibited a peak heat release rate of 280 kJ/m3deg, while D30 showed a comparable peak heat release rate to US NO.2 diesel. The amount of energy released during the premixed combustion phase decreased with the increase of DEE in naphtha. Thus, this study demonstrates the suitability of DEE blended naphtha mixtures as a

  18. Diethyl Ether as an Ignition Enhancer for Naphtha Creating a Drop in Fuel for Diesel

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; Sarathy, Mani; Dibble, Robert W.

    2016-01-01

    Direct use of naphtha in compression ignition (CI) engines is not advisable because its lower cetane number negatively impacts the auto ignition process. However, engine or fuel modifications can be made to operate naphtha in CI engines. Enhancing a fuel’s auto ignition characteristics presents an opportunity to use low cetane fuel, naphtha, in CI engines. In this research, Di-ethyl ether (DEE) derived from ethanol is used as an ignition enhancer for light naphtha. With this fuel modification, a “drop-in” fuel that is interchangeable with existing diesel fuel has been created. The ignition characteristics of DEE blended naphtha were studied in an ignition quality tester (IQT); the measured ignition delay time (IDT) for pure naphtha was 6.9 ms. When DEE was added to naphtha, IDT decreased and D30 (30% DEE + 70% naphtha) showed comparable IDT with US NO.2 diesel. The derived cetane number (DCN) of naphtha, D10 (10% DEE + 90% naphtha), D20% DEE + 80% naphtha) and D30 were measured to be 31, 37, 40 and 49, respectively. The addition of 30% DEE in naphtha achieved a DCN equivalent to US NO.2 diesel. Subsequent experiments in a CI engine exhibited longer ignition delay for naphtha compared to diesel. The peak in-cylinder pressure is higher for naphtha than diesel and other tested fuels. When DEE was added to naphtha, the ignition delay shortened and peak in-cylinder pressure is reduced. A 3.7% increase in peak in-cylinder pressure was observed for naphtha compared to US NO.2 diesel, while D30 showed comparable results with diesel. The pressure rise rate dropped with the addition of DEE to naphtha, thereby reducing the ringing intensity. Naphtha exhibited a peak heat release rate of 280 kJ/m3deg, while D30 showed a comparable peak heat release rate to US NO.2 diesel. The amount of energy released during the premixed combustion phase decreased with the increase of DEE in naphtha. Thus, this study demonstrates the suitability of DEE blended naphtha mixtures as a

  19. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo; Chung, Suk-Ho; Lu, Tianfeng; Sarathy, Mani

    2015-01-01

    ) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction

  20. Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor

    Science.gov (United States)

    Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer

    2018-05-01

    In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.

  1. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani

    2018-04-02

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index; therefore, increasing the octane index of a spark-ignition engine fuel increases the efficiency of the respective engine. However, raising the octane index of gasoline increases the refining costs, as well as the energy consumption during production. The use of alternative fuels with synergistic blending effects presents an attractive option for improving octane index. In this work, the octane enhancing potential of 2-methylfuran (2-MF), a next-generation biofuel, has been examined and compared to other high-octane components (i.e., ethanol and toluene). A primary reference fuel with an octane index of 60 (PRF60) was chosen as the base fuel since it closely represents refinery naphtha streams, which are used as gasoline blend stocks. Initial screening of the fuels was done in an ignition quality tester (IQT). The PRF60/2-MF (80/20 v/v%) blend exhibited longer ignition delay times compared to PRF60/ethanol (80/20 v/v%) blend and PRF60/toluene (80/20 v/v%) blend, even though pure 2-MF is more reactive than both ethanol and toluene. The mixtures were also tested in a cooperative fuels research (CFR) engine under research octane number and motor octane number like conditions. The PRF60/2-MF blend again possesses a higher octane index than other blending components. A detailed chemical kinetic analysis was performed to understand the synergetic blending effect of 2-MF, using a well-validated PRF/2-MF kinetic model. Kinetic analysis revealed superior suppression of low-temperature chemistry with the addition of 2-MF. The results from simulations were further confirmed by homogeneous charge compression ignition engine experiments, which established its superior low-temperature heat release (LTHR) suppression compared to ethanol

  2. Reversed field pinch ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs

  3. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    Science.gov (United States)

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi

    2015-05-10

    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  4. Tokamak and RFP ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (nτ E ) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the nτ E transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab

  5. Ignition of Aluminum Particles and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  6. Comportamento de um motor de ignição por compressão trabalhando com óleo Diesel e gás natural A dual fuel compression ignition engine performance, running with Diesel fuel and natural gas

    Directory of Open Access Journals (Sweden)

    José F. Schlosser

    2004-12-01

    Full Text Available A previsível escassez de petróleo aliada a uma consciência ecológica está levando pesquisadores a procurar novas fontes de energia e processos de combustão mais eficientes e menos poluentes. Entre os combustíveis menos poluentes está o gás natural, cujo consumo aumenta ano a ano. Os motores de combustão interna são transformadores de energia que têm baixa eficiência de conversão. Este trabalho avaliou um motor Diesel, bicombustível, movido a Diesel e gás natural. Nesse motor, a energia provém, basicamente, da combustão do gás natural. O Diesel tem a função de produzir o início da combustão do gás, que é o combustível principal. Assim, haverá uma substituição parcial de óleo Diesel por gás natural, aumentando o rendimento da combustão. Inicialmente, foi feito um ensaio-testemunha, somente com óleo Diesel e após foram feitos ensaios, com três repetições, para variadas proporções de óleo Diesel, gás natural e ângulos de avanço da injeção. O melhor desempenho foi obtido para 22% de óleo Diesel em relação ao máximo débito da bomba injetora e 13 L min-1 de gás natural com ângulo de avanço de injeção original (21º. Nesse caso, a potência média aumentou 14%, e o consumo específico (medido em valores monetários diminuiu 46% em relação ao ensaio-testemunha.The foresight of a petroleum shortage and an ecological conscience is moving scientists to look for new sources of energy and to develop more efficient combustion processes and reduced emissions. Natural gas is a reduced emission fuel, whose consumption increases every year. The present work evaluates a dual fuel compression ignition engine. The major portion of the fuel burned is natural gas. The Diesel fuel acts as combustion starter, which ignites under the compression heat. Diesel fuel is used only as an ignition source. The partial substitution of Diesel fuel by natural gas increases the combustion efficiency and achieves significant

  7. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  8. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  9. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Science.gov (United States)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  10. Design of ignition targets for the National Ignition Facility

    International Nuclear Information System (INIS)

    Haan, S.W.; Dittrich, T.R.; Marinak, M.M.; Hinkel, D.E.

    1999-01-01

    This is a brief update on the work being done to design ignition targets for the National Ignition Facility. Updates are presented on three areas of current activity : improvements in modeling, work on a variety of targets spanning the parameter space of possible ignition targets ; and the setting of specifications for target fabrication and diagnostics. Highlights of recent activity include : a simulation of the Rayleigh-Taylor instability growth on an imploding capsule, done in 3D on a 72degree by 72degree wedge, with enough zones to resolve modes out to 100 ; and designs of targets at 250eV and 350eV, as well as the baseline 300 eV ; and variation of the central DT gas density, which influences both the Rayleigh-Taylor growth and the smoothness of the DT ice layer

  11. Implosion dynamics measurements at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  12. Implosion dynamics measurements at the National Ignition Facility

    International Nuclear Information System (INIS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.

    2012-01-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%–70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  13. Implosion dynamics measurements at the National Ignition Facility

    Science.gov (United States)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness

  14. Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system

    International Nuclear Information System (INIS)

    Sarabchi, N.; Khoshbakhti Saray, R.; Mahmoudi, S.M.S.

    2013-01-01

    The waste heat from exhaust gases and cooling water of Homogeneous charge compression ignition engines (HCCI) are utilized to drive an ammonia-water cogeneration cycle (AWCC) and some heating processes, respectively. The AWCC is a combination of the Rankine cycle and an absorption refrigeration cycle. Considering the chemical kinetic calculations, a single zone combustion model is developed to simulate the natural gas fueled HCCI engine. Also, the performance of AWCC is simulated using the Engineering Equation Solver software (EES). Through combining these two codes, a detailed thermodynamic analysis is performed for the proposed tri-generation system and the effects of some main parameters on the performances of both the AWCC and the tri-generation system are investigated in detail. The cycle performance is then optimized for the fuel energy saving ratio (FESR). The enhancement in the FESR could be up to 28.56%. Under optimized condition, the second law efficiency of proposed system is 5.19% higher than that of the HCCI engine while the reduction in CO 2 emission is 4.067% as compared with the conventional separate thermodynamic systems. Moreover, the results indicate that the engine, in the tri-generation system and the absorber, in the bottoming cycle has the most contribution in exergy destruction. - Highlights: • A new thermodynamic tri-generation system is proposed for waste heat recovery of HCCI engine. • A single zone combustion model is developed to simulate the natural gas fueled HCCI engine. • The proposed tri-generation cycle is analyzed from the view points of both first and second laws of thermodynamics. • In the considered cycle, enhancements of 28.56% in fuel energy saving ratio and 5.19% in exergy efficiency are achieved

  15. Exploration of waste cooking oil methyl esters (WCOME as fuel in compression ignition engines: A critical review

    Directory of Open Access Journals (Sweden)

    S. Kathirvel

    2016-06-01

    Full Text Available The ever growing human population and the corresponding economic development of mankind have caused a relentless surge in the energy demand of the world. The fast diminishing fossil fuel reserves and the overdependence of petroleum based fuels have already prompted the world to look for alternate sources of energy to offset the fuel crisis in the future. Waste Cooking Oil Methyl Ester (WCOME has proven itself as a viable alternate fuel that can be used in Compression Ignition (CI engines due to its low cost, non-toxicity, biodegradability and renewable nature. It also contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. The main objective of this paper is to focus on the study of the performance, combustion and emission parameters of CI engines using WCOME and to explore the possibility of utilizing WCOME blends with diesel extensively in place of diesel. The production methods used for transesterification play a vital role in the physiochemical properties of the methyl esters produced. Various production intensification technologies such as hydrodynamic cavitation and ultrasonic cavitation were employed to improve the yield of the methyl esters during transesterification. This review includes the study of WCOME from different origins in various types of diesel engines. Most of the studies comply with the decrease in carbon monoxide (CO emissions and the increase in brake thermal efficiency while using WCOME in CI engines. Many researchers reported slight increase in the emissions of oxides of nitrogen. ANN modeling has been widely used to predict the process variables of the diesel engine while using WCOME. The versatility of ANN modeling was proven by the minimum error percentages of the actual and predicted values of the performance and emission characteristics.

  16. The National Ignition Facility. The path to ignition and inertial fusion energy

    International Nuclear Information System (INIS)

    Eric Storm

    2010-01-01

    Complete text of publication follows. The National Ignition Facility (NIF), the world's largest and most energetic laser system built for studying inertial confinement fusion (ICF) and high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF's 192 beams are capable of producing 1.8 MJ and 500 TW of ultraviolet light and are configured to create pressures as high as 100 GB, matter temperatures approaching 10 9 and densities over 1000 g/cm 3 . With these capabis70lities, the NIF will enable exploring scientific problems in strategic defense, basic science and fusion energy. One of the early NIF campaigns is focusing on demonstrating laboratory-scale thermonuclear ignition and burn to produce net fusion energy gains of 10-20 with 1.2 to 1.4 MJ of 0.35 μm light. NIF ignition experiments began late in FY2009 as part of the National Ignition Campaign (NIC). Participants of NIC include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory, and the University of Rochester Laboratory for Energetics (LLE) as well as variety of national and international collaborators. The results from these initial experiments show great promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with low overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. The goal for NIC is to demonstrate a predictable fusion experimental platform by the end of 2012. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and

  17. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-01-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  18. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    Science.gov (United States)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  19. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    Science.gov (United States)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  20. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    Science.gov (United States)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  1. Diagnostic methods and interpretation of the experiments on microtarget compression in the Iskra-4 device

    International Nuclear Information System (INIS)

    Kochemasov, G.G.

    1992-01-01

    Studies on the problem of laser fusion, which is mainly based on experiments conducted in the Iskra-4 device are reviewed. Different approaches to solution of the problem of DT-fuel ignition, methods of diagnostics of characteristics of laser radiation and plasma, occurring on microtarget heating and compression, are considered

  2. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities

    KAUST Repository

    Pal, Pinaki

    2015-07-30

    A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel\\'dovich–Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement. © 2015 Taylor & Francis

  3. A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities

    Science.gov (United States)

    Pal, Pinaki; Mansfield, Andrew B.; Arias, Paul G.; Wooldridge, Margaret S.; Im, Hong G.

    2015-09-01

    A computational study was conducted to investigate the characteristics of auto-ignition in a syngas mixture at high-pressure and low-temperature conditions in the presence of thermal inhomogeneities. Highly resolved one-dimensional numerical simulations incorporating detailed chemistry and transport were performed. The temperature inhomogeneities were represented by a global sinusoidal temperature profile and a local Gaussian temperature spike (hot spot). Reaction front speed and front Damköhler number analyses were employed to characterise the propagating ignition front. In the presence of a global temperature gradient, the ignition behaviour shifted from spontaneous propagation (strong) to deflagrative (weak), as the initial mean temperature of the reactant mixture was lowered. A predictive Zel'dovich-Sankaran criterion to determine the transition from strong to weak ignition was validated for different parametric sets. At sufficiently low temperatures, the strong ignition regime was recovered due to faster passive scalar dissipation of the imposed thermal fluctuations relative to the reaction timescale, which was quantified by the mixing Damköhler number. In the presence of local hot spots, only deflagrative fronts were observed. However, the fraction of the reactant mixture consumed by the propagating front was found to increase as the initial mean temperature was lowered, thereby leading to more enhanced compression-heating of the end-gas. Passive scalar mixing was not found to be important for the hot spot cases considered. The parametric study confirmed that the relative magnitude of the Sankaran number translates accurately to the quantitative strength of the deflagration front in the overall ignition advancement.

  4. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  5. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers

    KAUST Repository

    Alfazazi, Adamu

    2016-08-10

    The ignition characteristics of isooctane and n-heptane in an ignition quality tester (IQT) were simulated using a two-stage Lagrangian (TSL) model, which is a zero-dimensional (0-D) reactor network method. The TSL model was also used to simulate the ignition delay of n-dodecane and n-heptane in a constant volume combustion chamber (CVCC), which is archived in the engine combustion network (ECN) library (http://www.ca.sandia.gov/ecn). A detailed chemical kinetic model for gasoline surrogates from the Lawrence Livermore National Laboratory (LLNL) was utilized for the simulation of n-heptane and isooctane. Additional simulations were performed using an optimized gasoline surrogate mechanism from RWTH Aachen University. Validations of the simulated data were also performed with experimental results from an IQT at KAUST. For simulation of n-dodecane in the CVCC, two n-dodecane kinetic models from the literature were utilized. The primary aim of this study is to test the ability of TSL to replicate ignition timings in the IQT and the CVCC. The agreement between the model and the experiment is acceptable except for isooctane in the IQT and n-heptane and n-dodecane in the CVCC. The ability of the simulations to replicate observable trends in ignition delay times with regard to changes in ambient temperature and pressure allows the model to provide insights into the reactions contributing towards ignition. Thus, the TSL model was further employed to investigate the physical and chemical processes responsible for controlling the overall ignition under various conditions. The effects of exothermicity, ambient pressure, and ambient oxygen concentration on first stage ignition were also studied. Increasing ambient pressure and oxygen concentration was found to shorten the overall ignition delay time, but does not affect the timing of the first stage ignition. Additionally, the temperature at the end of the first stage ignition was found to increase at higher ambient pressure

  6. Main conditions and effectiveness of gas fuel use for powering of dual fuel IC self-ignition engine

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2015-09-01

    Full Text Available Internal combustion engines are fuelled mostly with liquid fuels (gasoline, diesel. Nowadays the gaseous fuels are applied as driving fuel of combustion engines. In case of spark ignition engines the liquid fuel (petrol can be totally replaced by the gas fuels. This possibility in case of compression engines is essentially restricted through the higher self-ignition temperatures of the combustible gases in comparison to classical diesel oil. Solution if this problem can be achieved by using of the dual fuel system, where for ignition of the prepared fuel gas - air mixture a specified amount of the liquid fuel (diesel oil should be additionally injected into the combustion chamber. For assurance that the combustion process proceeds without mistakes and completely, some basic conditions should be satisfied. In the frame of this work, three main aspects of this problem are taken into account: a. filling efficiency of the engine, b. stoichiometry of the combustion, c. performance of mechanical parameters (torque, power. A complex analysis of these conditions has been done and some achieved important results are presented in the paper.

  7. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Addai, Emmanuel Kwasi, E-mail: emmanueladdai41@yahoo.com; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  8. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures

    International Nuclear Information System (INIS)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-01

    Highlights: • Ignition sensitivity of a highly flammable dust decreases upon addition of inert dust. • Minimum ignition temperature of a highly flammable dust increases when inert concentration increase. • Minimum ignition energy of a highly flammable dust increases when inert concentration increase. • The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. - Abstract: The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%.

  9. Development and testing of hydrogen ignition devices

    International Nuclear Information System (INIS)

    Renfro, D.; Smith, L.; Thompson, L.; Clever, R.

    1982-01-01

    Controlled ignition systems for the mitigation of hydrogen produced during degraded core accidents have been installed recently in several light water reactor (LWR) containments. This paper relates the background of the thermal igniter approach and its application to LWR controlled ignition systems. The process used by the Tennessee Valley Authority (TVA) to select a hydrogen mitigation system in general and an igniter type in particular is described. Descriptions of both the Interim Distributed Ignition System and the Permanent Hydrogen Mitigation System installed by TVA are included as examples. Testing of igniter durability at TVA's Singleton Materials Engineering Laboratory and of igniter performance at Atomic Energy of Canada's Whiteshell Nuclear Research Establishment is presented

  10. Experimental investigation of the auto-ignition characteristics of oxygenated reference fuel compounds

    Science.gov (United States)

    Walton, Stephen Michael

    The increased use of biofuels presents an opportunity to improve combustion performance while simultaneously reducing greenhouse gases and pollutant emissions. This work focused on improving the fundamental understanding of the auto-ignition chemistry of oxygenated reference fuel compounds. A systematic study of the effects of ester structure on ignition chemistry was performed using the University of Michigan Rapid Compression Facility. The ignition properties of the ester compounds were investigated over a broad range of pressures (P=5-20 atm) and temperatures (T=850-1150 K) which are directly relevant to advanced combustion engine strategies. Ignition delay times for five esters were determined using the RCF. The esters were selected to systematically consider the chemical structure of the compounds. Three esters were saturated: methyl butanoate, butyl methanoate, and ethyl propanoate; and two were unsaturated: methyl crotonate and methyl trans-3-hexenoate. The unsaturated esters were more reactive than their saturated counterparts, with the largest unsaturated ester, methyl trans-3-hexenoate having the highest reactivity. Two isomers of the saturated esters, butyl methanoate and ethyl propanoate, were more reactive than the isomer methyl butanoate. The results are explained if we assume that butyl methanoate and ethyl propanoate form intermediate ring structures which decompose more rapidly than esters such as methyl butanoate, which do not form ring structures. Modeling studies of the reaction chemistry were conducted for methyl butanoate and ethyl propanoate, for which detailed mechanisms were available in the literature. The new experimental data indicated that literature rate coefficients for some of the methyl butanoate/HO2 reactions were too fast. Modifying these within the theoretical uncertainties for the reaction rates, led to excellent agreement between the model predictions and the experimental data. Comparison of the modeling results with the

  11. Auto-Ignition and Spray Characteristics of n-Heptane and iso-Octane Fuels in Ignition Quality Tester

    KAUST Repository

    Jaasim, Mohammed

    2018-04-04

    Numerical simulations were conducted to systematically assess the effects of different spray models on the ignition delay predictions and compared with experimental measurements obtained at the KAUST ignition quality tester (IQT) facility. The influence of physical properties and chemical kinetics over the ignition delay time is also investigated. The IQT experiments provided the pressure traces as the main observables, which are not sufficient to obtain a detailed understanding of physical (breakup, evaporation) and chemical (reactivity) processes associated with auto-ignition. A three-dimensional computational fluid dynamics (CFD) code, CONVERGE™, was used to capture the detailed fluid/spray dynamics and chemical characteristics within the IQT configuration. The Reynolds-averaged Navier-Stokes (RANS) turbulence with multi-zone chemistry sub-models was adopted with a reduced chemical kinetic mechanism for n-heptane and iso-octane. The emphasis was on the assessment of two common spray breakup models, namely the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) and linearized instability sheet atomization (LISA) models, in terms of their influence on auto-ignition predictions. Two spray models resulted in different local mixing, and their influence in the prediction of auto-ignition was investigated. The relative importance of physical ignition delay, characterized by spray evaporation and mixing processes, in the overall ignition behavior for the two different fuels were examined. The results provided an improved understanding of the essential contribution of physical and chemical processes that are critical in describing the IQT auto-ignition event at different pressure and temperature conditions, and allowed a systematic way to distinguish between the physical and chemical ignition delay times.

  12. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    OpenAIRE

    Kahraman, Erol; Özcanlı, Şevket Cihangir; Özerdem, Barış

    2007-01-01

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effectiv...

  13. Modification Design of Petrol Engine for Alternative Fueling using Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Eliezer Uchechukwu Okeke

    2013-04-01

    Full Text Available This paper is on the modification design of petrol engine for alternative fuelling using Compressed Natural Gas (CNG. It provides an analytical background in the modification design process. A petrol engine Honda CR-V 2.0 auto which has a compression ratio of 9.8 was selected as case study. In order for this petrol engine to run on CNG, its compression had to be increased. An optimal compression ratio of 11.97 was computed using the standard temperature-specific volume relationship for an isentropic compression process. This computation of compression ratio is based on an inlet air temperature of 30oC (representative of tropical ambient condition and pre-combustion temperature of 540oC (corresponding to the auto-ignition temperature of CNG. Using this value of compression ratio, a dimensional modification Quantity =1.803mm was obtained using simple geometric relationships. This value of 1.803mm is needed to increase the length of the connecting rod, the compression height of the piston or reducing the sealing plate’s thickness. After the modification process, a CNG engine of air standard efficiency 62.7% (this represents a 4.67% increase over the petrol engine, capable of a maximum power of 83.6kW at 6500rpm, was obtained.

  14. Ignition studies of n-heptane/iso-octane/toluene blends

    KAUST Repository

    Javed, Tamour

    2016-07-09

    Ignition delay times of four ternary blends of n-heptane/iso-octane/toluene, referred to as Toluene Primary Reference Fuels (TPRFs), have been measured in a high-pressure shock tube and in a rapid compression machine. The TPRFs were formulated to match the research octane number (RON) and motor octane number (MON) of two high-octane gasolines and two prospective low-octane naphtha fuels. The experiments were carried out over a wide range of temperatures (650–1250 K), at pressures of 10, 20 and 40 bar, and at equivalence ratios of 0.5 and 1.0. It was observed that the ignition delay times of these TPRFs exhibit negligible octane dependence at high temperatures (T > 1000 K), weak octane dependence at low temperatures (T < 700 K), and strong octane dependence in the negative temperature coefficient (NTC) regime. A detailed chemical kinetic model was used to simulate and interpret the measured data. It was shown that the kinetic model requires general improvements to better predict low-temperature conditions and particularly requires improvements for high sensitivity (high toluene concentration) TPRF blends. These datasets will serve as important benchmark for future gasoline surrogate mechanism development and validation. © 2016 The Combustion Institute

  15. The volume ignition for ICF ignition target

    International Nuclear Information System (INIS)

    Li, Y. S.; He, X. T.; Yu, M.

    1997-01-01

    Compared with central model, volume ignition has no hot spot, avoids the mixing at the hot-cold interface, the α-particle escaping, and the high convergence, greatly reduces the sharp demanding for uniformity. In laser indirect driving, from theoretical estimation and computational simulation, we have proved that using a tamper with good heat resistance, the DT fuel can be ignited in LTE at ∼3 KeV and then evolves to the non-LTE ignition at >5 KeV. In this case, 1 MJ radiation energy in the hohlraum could cause near 10 MJ output for a pellet with 0.2 mg DT fuel. We have compared results with and without α-particle transport, it shows that in the condition of ρR>0.5 g/cm 2 of DT fuel, both have the same results. For the system with ρR≅0.5 g/cm 2 we can use α-particle local deposition scheme. The non-uniformly doped tamper with density ρ≅1-5 g/cc can reduce mixing due to the small convergence ratio. The input energy is deposited in DT and tamper during the implosion, we try to reduce the tamper energy by changing the ratio of CH and doped Au and the thickness of the tamper

  16. Ignition inhibitors for cellulosic materials

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1976-01-01

    By exposing samples to various irradiance levels from a calibrated thermal radiation source, the ignition responses of blackened alpha-cellulose and cotton cloth with and without fire-retardant additives were compared. Samples treated with retardant compounds which showed the most promise were then isothermally pyrolyzed in air for comparisons between the pyrolysis rates. Alpha-cellulose samples containing a mixture of boric acid, borax, and ammonium di-hydrogen phosphate could not be ignited by irradiances up to 4.0 cal cm -2 s-1 (16.7 W/cm 2 ). At higher irradiances the specimens ignited, but flaming lasted only until the flammable gases were depleted. Cotton cloth containing a polymeric retardant with the designation THPC + MM was found to be ignition-resistant to all irradiances below 7.0 cal cm -2 s -1 (29.3 W/cm 2 ). Comparison of the pyrolysis rates of the retardant-treated alpha-cellulose and the retardant-treated cotton showed that the retardant mechanism is qualitatively the same. Similar ignition-response measurements were also made with specimens exposed to ionizing radiation. It was observed that gamma radiation results in ignition retardance of cellulose, while irradiation by neutrons does not

  17. Experimental and Kinetic Modeling Study of Methanol Ignition and Oxidation at High Pressure

    DEFF Research Database (Denmark)

    Aranda, V.; Christensen, J. M.; Alzueta, Maria

    2013-01-01

    A detailed chemical kinetic model for oxidation of CH3OH at high pressure and intermediate temperatures has been developed and validated experimentally. Ab initio calculations and Rice–Ramsperger–Kassel–Marcus/transition state theory (RRKM/TST) analysis were used to obtain rate coefficients for CH...... the conditions studied, the onset temperature for methanol oxidation was not dependent on the stoichiometry, whereas increasing pressure shifted the ignition temperature toward lower values. Model predictions of the present experimental results, as well as rapid compression machine data from the literature, were...

  18. Developing the Physics Basis of Fast Ignition Experiments at Future Large Fusion-class lasers

    International Nuclear Information System (INIS)

    Mackinnon, A J; Key, M H; Hatchett, S; MacPhee, A G; Foord, M; Tabak, M; Town, R J; Patel, P K

    2008-01-01

    The Fast Ignition (FI) concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional 'central hot spot' (CHS) target ignition by using one driver (laser, heavy ion beam or Z-pinch) to create a dense fuel and a separate ultra-short, ultra-intense laser beam to ignite the dense core. FI targets can burn with ∼ 3X lower density fuel than CHS targets, resulting in (all other things being equal) lower required compression energy, relaxed drive symmetry, relaxed target smoothness tolerances, and, importantly, higher gain. The short, intense ignition pulse that drives this process interacts with extremely high energy density plasmas; the physics that controls this interaction is only now becoming accessible in the lab, and is still not well understood. The attraction of obtaining higher gains in smaller facilities has led to a worldwide explosion of effort in the studies of FI. In particular, two new US facilities to be completed in 2009/2010, OMEGA/OMEGA EP and NIF-ARC (as well as others overseas) will include FI investigations as part of their program. These new facilities will be able to approach FI conditions much more closely than heretofore using direct drive (dd) for OMEGA/OMEGA EP and indirect drive (id) for NIF-ARC. This LDRD has provided the physics basis for the development of the detailed design for integrated Fast ignition experiments on these facilities on the 2010/2011 timescale. A strategic initiative LDRD has now been formed to carry out integrated experiments using NIF ARC beams to heat a full scale FI assembled core by the end of 2010

  19. Heavy ion fusion targets; issues for fast ignition

    International Nuclear Information System (INIS)

    Bangerter, Roger O.

    2014-01-01

    During the last 36 years researchers have suggested and evaluated a large number of target designs for heavy ion inertial fusion. The different target designs can be classified according to their mode of ignition, their method of implosion, and their size. Ignition modes include hot-spot ignition and fast ignition. Methods of implosion include direct drive and indirect drive. Historically there has been significant work on indirectly driven targets with hot-spot ignition. Recently there has been increasing interest in directly driven targets with ion driven fast ignition. In principle, fast ignition might lead to improved target performance. On the other hand, fast ignition imposes stringent requirements on accelerators and beam physics. Furthermore, fast ignition magnifies the importance of a number of traditional target physics issues associated with ion beam energy deposition and fuel preheat. This paper will discuss the advantages and disadvantages of the various classes of targets. It will also discuss some issues that must be resolved to assess the feasibility of ion fast ignition

  20. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  1. The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine

    International Nuclear Information System (INIS)

    Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Ashrafur Rahman, S.M.; Shahir, S.A.

    2014-01-01

    Highlights: • Fuel additives significantly improve the quality of biodiesel and its blends. • Fuel additives used to enhance biodiesel properties. • Fuel saving from optimized vehicle performance and economy with the use of additives. • Emission reduction from fuel system cleanliness and combustion optimization. - Abstract: With growing concern over greenhouse gases there is increasing emphasis on reducing CO 2 emissions. Despite engine efficiency improvements plus increased dieselization of the fleet, increasing vehicle numbers results in increasing CO 2 emissions. To reserve this trend the fuel source must be changed to renewable fuels which are CO 2 neutral. As a renewable, sustainable and alternative fuel for compression ignition engines, biodiesel is widely accepted as comparable fuel to diesel in diesel engines. This is due to several factors like decreasing the dependence on imported petroleum, reducing global warming, increasing lubricity, and reducing substantially the exhaust emissions from diesel engine. However, there is a major disadvantage in the use of biodiesel as it has lower heating value, higher density and higher viscosity, higher fuel consumption and higher NO X emission, which limits its application. Here fuel additives become essential and indispensable tools not only to minimize these drawbacks but also generate specified products to meet the regional and international standards. Fuel additives can contribute towards fuel economy and emission reduction either directly or indirectly. Their use enable vehicle performance to be maintained at, or near, optimum over the lifetime of the vehicle. A variety of additives are used in automotive biodiesel fuel to meet specification limits and to enhance quality. For example, metal based additives, oxygenated additives, antioxidants, cetane number improvers, lubricity improvers and cold flow improvers are used to meet specifications and quality. This article is a literature review of the effect

  2. Measurement of the fast electron distribution in laser-plasma experiments in the context of the 'fast ignition' approach to inertial confinement fusion

    International Nuclear Information System (INIS)

    Batani, Dimitri; Morace, Alessio

    2010-01-01

    The recent 'fast ignition approach' to ICF relies on the presence of fast electrons to provide the 'external' ignition spark triggering the nuclear fusion reaction in the compressed core of a thermonuclear target. Such fast electron beam is produced by the interaction of a short-pulse high-intensity laser with the target itself. In this context, it becomes essential to characterize the density of fast electrons and their average energy (i.e. the 'laser to fast electron' energy conversion efficiency) but also the finer details of the velocity and angular distribution. In this work we will discuss several techniques used to determine the fast electron distribution function.

  3. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  4. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  5. Lubricant induced pre-ignition in an optical spark-ignition engine

    OpenAIRE

    Dingle, Simon Frederick

    2014-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London This work focuses on the introduction of lubricant into the combustion chamber and the effect that this has on pre-ignition. Apparently for the first time, the work presented provides detailed full-bore optical data for lubricant induced pre-ignition and improves understanding of the super-knock phenomena that affects modern downsized gasoline engines. A new single-cylinder optical r...

  6. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System

    Directory of Open Access Journals (Sweden)

    Rafał Ślefarski

    2018-02-01

    Full Text Available Application of a pre-combustion chamber (PCC ignition system is one of the methods to improve combustion stability and reduce toxic compounds emission, especially NOx. Using PCC allows the operation of the engine at lean combustion conditions or the utilization of low calorific gaseous fuels such as syngas or biogas. The paper presents the results of an experimental study of the combustion process in two stroke, large bore, stationary gas engine GMVH 12 equipped with two spark plugs (2-SP and a PCC ignition system. The experimental research has been performed during the normal operation of the engine in an industrial compression station. It was observed that application of PCC provides less cycle-to-cycle combustion variation (more than 10% and nitric oxide and carbon monoxide emissions decreased to 60% and 26% respectively. The total hydrocarbon (THC emission rate is 25% higher for the engine equipped with PCC, which results in roughly two percent engine efficiency decrease. Another important criterion of engine retrofitting was the PCC location in the engine head. The experimental results show that improvement of engine operating parameters was recorded only for a configuration with one port offset by 45° from the axis of the main chamber. The study of the ignition delay angle and equivalence ratio in PCC did not demonstrate explicit influence on engine performance.

  7. Studies into laser ignition of confined pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.R.; Russell, D.A. [Centre for Applied Laser Spectroscopy, DASSR, Defence Academy, Cranfield University, Shrivenham, Swindon (United Kingdom)

    2008-10-15

    Ignition tests were carried out on three different pyrotechnics using laser energy from the multimode output from an Ar-Ion laser (av) at 500 nm and a near-IR diode laser pigtailed to a fibre optic cable and operating at 808 nm. The pyrotechnics investigated were: G20 black powder, SR44 and SR371C. The confined ignition tests were conducted in a specially designed ignition chamber. Pyrotechnics were ignited by a free space beam entering the chamber through an industrial sapphire window in the case of the Ar-ion laser. For the NIR diode laser, fibre was ducted through a block into direct contact with the pyrotechnic. The Ar-Ion laser was chosen as this was found to ignite all three pyrotechnics in the unconfined condition. It also allowed for a direct comparison of confined/unconfined results to be made. The threshold laser flux densities to initiate reproducible ignitions at this wavelength were found to be between {proportional_to}12.7 and {proportional_to}0.16 kW cm{sup -2}. Plotted on the ignition maps are the laser flux densities versus the start of ignition times for the three confined pyrotechnics. It was found from these maps that the times for confined ignition were substantially lower than those obtained for unconfined ignition under similar experimental conditions. For the NIR diode laser flux densities varied between {proportional_to}6.8 and {proportional_to}0.2 kW cm{sup -2}. The minimum ignition times for the NIR diode laser for SR371C ({proportional_to}11.2 ms) and G20 ({proportional_to}17.1 ms) were faster than those achieved by the use of the Ar-ion laser. However, the minimum ignition time was shorter ({proportional_to}11.7 ms) with the Ar-ion laser for SR44. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)

    KAUST Repository

    Naser, Nimal; Yang, Seung Yeon; Kalghatgi, Gautam; Chung, Suk-Ho

    2016-01-01

    an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures

  9. Central ignition scenarios for TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Redi, M.H.; Bateman, G.

    1986-03-01

    The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs

  10. Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence

    Science.gov (United States)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2017-11-01

    High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.

  11. Modelling piloted ignition of wood and plastics

    International Nuclear Information System (INIS)

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-01-01

    Highlights: ► We model piloted ignition times of wood and plastics. ► The model is applied on a packed bed. ► When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  12. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  13. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal; Jaasim, Mohammed; Atef, Nour; Chung, Suk-Ho; Im, Hong G.; Sarathy, Mani

    2017-01-01

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  14. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ignition of Cellulosic Paper at Low Radiant Fluxes

    Science.gov (United States)

    White, K. Alan

    1996-01-01

    The ignition of cellulosic paper by low level thermal radiation is investigated. Past work on radiative ignition of paper is briefly reviewed. No experimental study has been reported for radiative ignition of paper at irradiances below 10 Watts/sq.cm. An experimental study of radiative ignition of paper at these low irradiances is reported. Experimental parameters investigated and discussed include radiant power levels incident on the sample, the method of applying the radiation (focussed vs. diffuse Gaussian source), the presence and relative position of a separate pilot ignition source, and the effects of natural convection (buoyancy) on the ignition process in a normal gravity environment. It is observed that the incident radiative flux (in W/sq.cm) has the greatest influence on ignition time. For a given flux level, a focussed Gaussian source is found to be advantageous to a more diffuse, lower amplitude, thermal source. The precise positioning of a pilot igniter relative to gravity and to the fuel sample affects the ignition process, but the precise effects are not fully understood. Ignition was more readily achieved and sustained with a horizontal fuel sample, indicating the buoyancy plays a role in the ignition process of cellulosic paper. Smoldering combustion of doped paper samples was briefly investigated, and results are discussed.

  16. 14 CFR 33.69 - Ignitions system.

    Science.gov (United States)

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ignitions system. 33.69 Section 33.69...

  17. Fast ignition upon the implosion of a thin shell onto a precompressed deuterium-tritium ball

    Science.gov (United States)

    Gus'kov, S. Yu.; Zmitrenko, N. V.

    2012-11-01

    Fast ignition of a precompressed inertial confinement fusion (ICF) target by a hydrodynamic material flux is investigated. A model system of hydrodynamic objects consisting of a central deuterium-tritium (DT) ball and a concentric two-layer shell separated by a vacuum gap is analyzed. The outer layer of the shell is an ablator, while the inner layer consists of DT ice. The igniting hydrodynamic flux forms as a result of laser-driven acceleration and compression of the shell toward the system center. A series of one-dimensional numerical simulations of the shell implosion, the collision of the shell with the DT ball, and the generation and propagation of thermonuclear burn waves in both parts of the system are performed. Analytic models are developed that describe the implosion of a thin shell onto a central homogeneous ball of arbitrary radius and density and the initiation and propagation of a thermonuclear burn wave induced by such an implosion. Application of the solution of a model problem to analyzing the implosion of a segment of a spherical shell in a conical channel indicates the possibility of fast ignition of a spherical ICF target from a conical target driven by a laser pulse with an energy of 500-700 kJ.

  18. Hot-wire ignition of AN-based emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Richard; Goldthorp, Sandra; Badeen, Christopher M. [Canadian Explosives Research Laboratory, Natural Resources Canada, Ottawa, Ontario, K1A 0G1 (Canada); Chan, Sek Kwan [Orica Canada Inc., Brownsburg-Chatham, Quebec (Canada)

    2008-12-15

    Emulsions based on ammonium nitrate (AN) and water locally ignited by a heat source do not undergo sustained combustion when the pressure is lower than some threshold value usually called the Minimum Burning Pressure (MBP). This concept is now being used by some manufacturers as a basis of safety. However, before a technique to reliably measure MBP values can be designed, one must have a better understanding of the ignition mechanism. Clearly, this is required to avoid under ignitions which could lead to the erroneous interpretation of failures to ignite as failures to propagate. In the present work, facilities to prepare and characterize emulsions were implemented at the Canadian Explosives Research Laboratory. A calibrated hot-wire ignition system operated in a high-pressure vessel was also built. The system was used to study the ignition characteristics of five emulsion formulations as a function of pressure and ignition source current. It was found that these mixtures exhibit complicated pre-ignition stages and that the appearance of endotherms when the pressure is lowered below some threshold value correlates with the MBP. Thermal conductivity measurements using this hot-wire system are also reported. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Performance study of a four-stroke spark ignition engine working with both of hydrogen and ethyl alcohol as supplementary fuel

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.-R.S. [Babylon Univ. (Iraq). Dept. of Mechanical Engineering

    2000-10-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NO{sub x} emission with increase in the higher useful compression ratio and output power of hydrogen-supplemented engine. The addition of 8 mass% of hydrogen, with 30 vol% of ethyl alcohol into a gasoline engine operating at 9 compression ratio and 1500 rpm causes a 48.5% reduction in CO emission, 31.1% reduction in NO{sub x} emission and 58.5% reduction in specific fuel consumption. Moreover, the engine thermal efficiency and output power increased by 10.1 and 4.72%, respectively. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both the break power and efficiency. (Author)

  20. Control and diagnosis oriented modelling of the compression ignition engine; Modelisation du moteur a allumage par compression dans la perspective du controle et du diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Grondin, O

    2004-12-15

    This thesis has described an investigation into the modelling of compression ignition engine for control and diagnosis purpose. The Diesel engine is the most efficient and clean internal combustion engine due to modem electromechanical actuators. However, pollutant emission regulations are much more stricter, thus, these complex systems need sophisticated and efficient control algorithms to reach very low emission levels. For this task, engine models are required at each step of the control system development: control laws synthesis, simulation and validation. The system under study is a six cylinder direct injection Diesel engine fitted with a turbocharger. The model of this system is based on physical laws for some parts of the engine such as cylinders, manifolds, turbocharger and crank-slider system. In order to reduce computing time we choose to model heat transfer and heat release during combustion using simple empirical correlations. Resulting model has been implemented in the Matlab-Simulink environment and it can predict variables of interest for control purpose with one degree crank angle resolution. The model has been tested numerically and compared with an industrial engine simulation code with good results. Moreover, model output variables are in good agreement with experimental data recorded on a heavy-duty research engine. The engine model has been embedded on a board providing enough computing performances to perform real-time simulations, this will be helpful for 'hardware-in-the-loop' simulations. Another part of this study is dedicated to the combustion process modelling using a non linear phenomenological model: the NARMAX model. The goal is to predict the in-cylinder pressure evolution using other measurements available on the engine. The NARMAX model parameters have been identified using input-output data carried out from the experimental engine. Such model is well suited for real-time applications compare to numerically cost effective physical

  1. Control and diagnosis oriented modelling of the compression ignition engine; Modelisation du moteur a allumage par compression dans la perspective du controle et du diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Grondin, O.

    2004-12-15

    This thesis has described an investigation into the modelling of compression ignition engine for control and diagnosis purpose. The Diesel engine is the most efficient and clean internal combustion engine due to modem electromechanical actuators. However, pollutant emission regulations are much more stricter, thus, these complex systems need sophisticated and efficient control algorithms to reach very low emission levels. For this task, engine models are required at each step of the control system development: control laws synthesis, simulation and validation. The system under study is a six cylinder direct injection Diesel engine fitted with a turbocharger. The model of this system is based on physical laws for some parts of the engine such as cylinders, manifolds, turbocharger and crank-slider system. In order to reduce computing time we choose to model heat transfer and heat release during combustion using simple empirical correlations. Resulting model has been implemented in the Matlab-Simulink environment and it can predict variables of interest for control purpose with one degree crank angle resolution. The model has been tested numerically and compared with an industrial engine simulation code with good results. Moreover, model output variables are in good agreement with experimental data recorded on a heavy-duty research engine. The engine model has been embedded on a board providing enough computing performances to perform real-time simulations, this will be helpful for 'hardware-in-the-loop' simulations. Another part of this study is dedicated to the combustion process modelling using a non linear phenomenological model: the NARMAX model. The goal is to predict the in-cylinder pressure evolution using other measurements available on the engine. The NARMAX model parameters have been identified using input-output data carried out from the experimental engine. Such model is well suited for real-time applications compare to numerically cost

  2. Relating the octane numbers of fuels to ignition delay times measured in an ignition quality tester (IQT)

    KAUST Repository

    Naser, Nimal

    2016-09-21

    A methodology for estimating the octane index (OI), the research octane number (RON) and the motor octane number (MON) using ignition delay times from a constant volume combustion chamber with liquid fuel injection is proposed by adopting an ignition quality tester. A baseline data of ignition delay times were determined using an ignition quality tester at a charge pressure of 21.3 bar between 770 and 850 K and an equivalence ratio of 0.7 for various primary reference fuels (PRFs, mixtures of isooctane and n-heptane). Our methodology was developed using ignition delay times for toluene reference fuels (mixtures of toluene and n-heptane). A correlation between the OI and the ignition delay time at the initial charge temperature enabled the OI of non-PRFs to be predicted at specified temperatures. The methodology was validated using ignition delay times for toluene primary reference fuels (ternary mixtures of toluene, iso-octane, and n-heptane), fuels for advanced combustion engines (FACE) gasolines, and certification gasolines. Using this methodology, the RON, the MON, and the octane sensitivity were estimated in agreement with values obtained from standard test methods. A correlation between derived cetane number and RON is also provided. (C) 2016 Elsevier Ltd. All rights reserved.

  3. Desensitizing nano powders to electrostatic discharge ignition

    International Nuclear Information System (INIS)

    Steelman, Ryan; Daniels, Michael A.

    2015-01-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  4. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    Science.gov (United States)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  5. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    Science.gov (United States)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  6. Structure ignition assessment model (SIAM)\\t

    Science.gov (United States)

    Jack D. Cohen

    1995-01-01

    Major wildland/urban interface fire losses, principally residences, continue to occur. Although the problem is not new, the specific mechanisms are not well known on how structures ignite in association with wildland fires. In response to the need for a better understanding of wildland/urban interface ignition mechanisms and a method of assessing the ignition risk,...

  7. Ignition circuit for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H W

    1977-05-26

    The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.

  8. Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on LES with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2015-01-01

    Highlights: • Knock during HCCI in a high compression ratio methanol engine was modeled. • A detailed methanol mechanism was used to simulate the knocking combustion. • Compared with the SI engines, the HCCI knocking combustion burnt faster. • The reaction rate of HCO had two obvious peaks, one was positive, and another was negative. • Compared with the SI engines, the values of the reaction rates of CH 2 O, H 2 O 2 , and HO 2 were higher, and it had negative peaks. - Abstract: In this study, knock during HCCI (homogeneous charge compression ignition) was studied based on LES (large eddy simulation) with methanol chemical kinetics (84-reaction, 21-species) in a high compression ratio methanol engine. The non-knocking and knocking combustion of SI (spark ignition) and HCCI engines were compared. The results showed that the auto-ignition spots were initially occurred near the combustion chamber wall. The knocking combustion burnt faster during HCCI than SI methanol engine. The HCO reaction rate was different from SI engine, it had two obvious peaks, one was positive peak, and another was negative peak. Compared with the SI methanol engine, in addition to the concentration of HCO, the concentrations of the other intermediate products and species such as CO, OH, CH 2 O, H 2 O 2 , HO 2 were increased significantly; the reaction rates of CH 2 O, H 2 O 2 , and HO 2 had negative peaks, and whose values were several times higher than SI methanol engine

  9. The national ignition facility: path to ignition in the laboratory

    International Nuclear Information System (INIS)

    Moses, E.I.; Bonanno, R.E.; Haynam, C.A.; Kauffman, R.L.; MacGowan, B.J.; Patterson Jr, R.W.; Sawicki, R.H.; Van Wonterghem, B.M.

    2007-01-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at Lawrence Livermore National Laboratory. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition of deuterium-tritium plasmas in ICF (Inertial Confinement Fusion) targets and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. The NIF facility will consist of 2 laser bays, 4 capacitor areas, 2 laser switchyards, the target area and the building core. The laser is configured in 4 clusters of 48 beams, 2 in each laser bay. Four of the NIF beams have been already commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF has demonstrated on a single-beam basis that it will meet its performance goals and has demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed 4 important experiments for ICF and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition. (authors)

  10. Surface breakdown igniter for mercury arc devices

    Science.gov (United States)

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  11. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    Science.gov (United States)

    Fujioka, Shinsuke; Arikawa, Yasunobu; Kojima, Sadaoki; Johzaki, Tomoyuki; Nagatomo, Hideo; Sawada, Hiroshi; Lee, Seung Ho; Shiroto, Takashi; Ohnishi, Naofumi; Morace, Alessio; Vaisseau, Xavier; Sakata, Shohei; Abe, Yuki; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Shigemori, Keisuke; Hironaka, Yoichiro; Zhang, Zhe; Sunahara, Atsushi; Ozaki, Tetsuo; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Kondo, Kotaro; Bailly-Grandvaux, Mathieu; Bellei, Claudio; Santos, João Jorge; Azechi, Hiroshi

    2016-05-01

    A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma from entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser-plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to >109. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused by imploding

  12. Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, Shinsuke, E-mail: sfujioka@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Kojima, Sadaoki; Nagatomo, Hideo; Lee, Seung Ho; Morace, Alessio; Vaisseau, Xavier; Sakata, Shohei; Abe, Yuki; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Shigemori, Keisuke; Hironaka, Yoichiro; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 Japan (Japan); and others

    2016-05-15

    A petawatt laser for fast ignition experiments (LFEX) laser system [N. Miyanaga et al., J. Phys. IV France 133, 81 (2006)], which is currently capable of delivering 2 kJ in a 1.5 ps pulse using 4 laser beams, has been constructed beside the GEKKO-XII laser facility for demonstrating efficient fast heating of a dense plasma up to the ignition temperature under the auspices of the Fast Ignition Realization EXperiment (FIREX) project [H. Azechi et al., Nucl. Fusion 49, 104024 (2009)]. In the FIREX experiment, a cone is attached to a spherical target containing a fuel to prevent a corona plasma from entering the path of the intense heating LFEX laser beams. The LFEX laser beams are focused at the tip of the cone to generate a relativistic electron beam (REB), which heats a dense fuel core generated by compression of a spherical deuterized plastic target induced by the GEKKO-XII laser beams. Recent studies indicate that the current heating efficiency is only 0.4%, and three requirements to achieve higher efficiency of the fast ignition (FI) scheme with the current GEKKO and LFEX systems have been identified: (i) reduction of the high energy tail of the REB; (ii) formation of a fuel core with high areal density using a limited number (twelve) of GEKKO-XII laser beams as well as a limited energy (4 kJ of 0.53-μm light in a 1.3 ns pulse); (iii) guiding and focusing of the REB to the fuel core. Laser–plasma interactions in a long-scale plasma generate electrons that are too energetic to efficiently heat the fuel core. Three actions were taken to meet the first requirement. First, the intensity contrast of the foot pulses to the main pulses of the LFEX was improved to >10{sup 9}. Second, a 5.5-mm-long cone was introduced to reduce pre-heating of the inner cone wall caused by illumination of the unconverted 1.053-μm light of implosion beam (GEKKO-XII). Third, the outside of the cone wall was coated with a 40-μm plastic layer to protect it from the pressure caused

  13. Evaluation of the Revolver Ignition Design at the National Ignition Facility Using Polar-Direct-Drive Illumination

    Science.gov (United States)

    McKenty, P. W.; Collins, T. J. B.; Marozas, J. A.; Campbell, E. M.; Molvig, K.; Schmitt, M.

    2017-10-01

    The direct-drive ignition design Revolver employs a triple-shell target using a beryllium ablator, a copper driver, and an eventual gold pusher. Symmetric numerical calculations indicate that each of the three shells exhibit low convergence ( 3to 5) resulting in a modest gain (G 4) for 1.7 MJ of incident laser energy. Studies are now underway to evaluate the robustness of this design employing polar direct drive (PDD) at the National Ignition Facility. Integral to these calculations is the leveraging of illumination conditioning afforded by research done to demonstrate ignition for a traditional PDD hot-spot target design. Two-dimensional simulation results, employing nonlocal electron-thermal transport and cross-beam energy transport, will be presented that indicate ignition using PDD. A study of the allowed levels of long-wavelength perturbations (target offset and power imbalance) not precluding ignition will also be examined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Physical characteristics of welding arc ignition process

    Science.gov (United States)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  15. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    . This is not very well explained by apply-ing conventional thermal ignition theory. An experimental study at lab scale, using pinewood as an example fuel, was conducted to examine self-heating and self-ignition. Supplemental experiments were performed with bituminous coal. Instead of characterizing ignition......Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages...... temperature in terms of sample volume, mass-scaling seems more physically correct for the self-ignition of solids. Findings also suggest that the transition between self-heating and self-ignition is controlled both by the availability of reactive material and temperature. Comparison of experiments at 20...

  16. Laser Ignition Microthruster Experiments on KKS-1

    Science.gov (United States)

    Nakano, Masakatsu; Koizumi, Hiroyuki; Watanabe, Masashi; Arakawa, Yoshihiro

    A laser ignition microthruster has been developed for microsatellites. Thruster performances such as impulse and ignition probability were measured, using boron potassium nitrate (B/KNO3) solid propellant ignited by a 1 W CW laser diode. The measured impulses were 60 mNs ± 15 mNs with almost 100 % ignition probability. The effect of the mixture ratios of B/KNO3 on thruster performance was also investigated, and it was shown that mixture ratios between B/KNO3/binder = 28/70/2 and 38/60/2 exhibited both high ignition probability and high impulse. Laser ignition thrusters designed and fabricated based on these data became the first non-conventional microthrusters on the Kouku Kousen Satellite No. 1 (KKS-1) microsatellite that was launched by a H2A rocket as one of six piggyback satellites in January 2009.

  17. Progress and prospects of ion-driven fast ignition

    International Nuclear Information System (INIS)

    Fernandez, Juan C.; Albright, Brian J.; Flippo, Kirk A.; Gautier, D. Cort; Hegelich, Bjoern M.; Schmitt, Mark J.; Yin Lin; Honrubia, J.J.; Temporal, M.

    2009-01-01

    Fusion fast ignition (FI) initiated by laser-driven ion beams is a promising concept examined in this paper. FI based on a beam of quasi-monoenergetic ions (protons or heavier ions) has the advantage of a more localized energy deposition, which minimizes the required total beam energy, bringing it close to the ∼10 kJ minimum required for fuel densities ∼500 g cm -3 . High-current, laser-driven ion beams are most promising for this purpose. Because they are born neutralized in picosecond timescales, these beams may deliver the power density required to ignite the compressed DT fuel, ∼10 kJ/10 ps into a spot 20 μm in diameter. Our modelling of ion-based FI include high fusion gain targets and a proof of principle experiment. That modelling indicates the concept is feasible, and provides confirmation of our understanding of the operative physics, a firmer foundation for the requirements, and a better understanding of the optimization trade space. An important benefit of the scheme is that such a high-energy, quasi-monoenergetic ignitor beam could be generated far from the capsule (≥1 cm away), eliminating the need for a reentrant cone in the capsule to protect the ion-generation laser target, a tremendous practical benefit. This paper summarizes the ion-based FI concept, the integrated ion-driven FI modelling, the requirements on the ignitor beam derived from that modelling, and the progress in developing a suitable laser-driven ignitor ion beam.

  18. Fast ignition experimental and theoretical researches toward Fast Ignition Realization Experiment (FIREX)

    International Nuclear Information System (INIS)

    Mima, K.

    2002-01-01

    In 2000, the output energy of the peta watt module added to Gekko XII reached a level of 100 J in one pico-second. CD plastic shell pellets with or without cone guide are imploded by a few kJ/1 ns green beams of the Gekko XII laser, which are heated by the PWM laser. By the experiments, we found that D-D neutron yields are enhanced by one order of magnitude for both spherical implosion and cone guide implosion. In those experiments, it is found that the heating laser energy was not transferred into the core plasmas effectively in the case of without cone because of strong dumping of the intense laser pulse in coronal plasmas. Therefore, we concluded that the more efficient core heating occurs in the cone guide target and it will be better as an ignition target. In the peta watto laser experiments which is going in this Aprile, we will inject 500 J/1 ps pulse into cone targets to heat compressed CD plasmas with a density of 50-100 g/cc. In this experiment, it is expected that the plasma is heated to higher than 1 keV. The detail of the experiment will be reported in the conference. (author)

  19. Development status of the ignition system for Vinci

    NARCIS (Netherlands)

    Frenken, G.; Vermeulen, E.; Bouquet, F.; Sanders, H.M.

    2002-01-01

    The development status of ignition system for the new cryogenic upper stage engine Vinci is presented. The concept differs from existing upper stage ignition systems as its functioning is engine independent. The system consists of a spark torch igniter, a highpressure igniter feed system and an

  20. Development of fast ignition integrated interconnecting code (FI3) for fast ignition scheme

    International Nuclear Information System (INIS)

    Nagatomo, H.; Johzaki, T.; Mima, K.; Sunahara, A.; Nishihara, K.; Izawa, Y.; Sakagami, H.; Nakao, Y.; Yokota, T.; Taguchi, T.

    2005-01-01

    The numerical simulation plays an important role in estimating the feasibility and performance of the fast ignition. There are two key issues in numerical analysis for the fast ignition. One is the controlling the implosion dynamics to form a high density core plasma in non-spherical implosion, and the other is heating core plasma efficiency by the short pulse high intense laser. From initial laser irradiation to final fusion burning, all the physics are coupling strongly in any phase, and they must be solved consistently in computational simulation. However, in general, it is impossible to simulate laser plasma interaction and radiation hydrodynamics in a single computational code, without any numerical dissipation, special assumption or conditional treatment. Recently, we have developed 'Fast Ignition Integrated Interconnecting code' (FI 3 ) which consists of collective Particle-in-Cell code, Relativistic Fokker-Planck hydro code, and 2-dimensional radiation hydrodynamics code. And those codes are connecting with each other in data-flow bases. In this paper, we will present detail feature of the FI 3 code, and numerical results of whole process of fast ignition. (author)

  1. The insulation irradiation test program for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    McManamy, T.J.; Kanemoto, G.; Snook, P.

    1990-01-01

    The electrical insulation for the toroidal field coils of the Compact Ignition Tokamak (CIT) is expected to be exposed to radiation doses on the order of 10 10 rad with ∼90% of the dose from neutrons. The coils are cooled to liquid nitrogen temperature and then heated during the pulse to a peak temperature >300 K. In a program to evaluate the effects of radiation exposure on the insulators, three types of boron-free insulation were irradiated at room temperature in the Advanced Technology Reactor (ATR) and tested at the Idaho National Engineering Laboratory. The materials were Spaulrad-S, Shikishima PG5-1, and Shikishima PG3-1. The first two use a bismaleimide resin and the third an aromatic amine hardened epoxy. Spaulrad-S is a two-dimensional (2-D) weave of S-glass, while the others are 3-D weaves of T-glass. Flexure and shear/compression samples were irradiated to approximately 5 x 10 9 rad and 3 x 10 10 rad with 35 to 40% of the total dose from neutrons. The shear/compression samples were tested in pairs by applying an average compression of 345 MPa and then a shear load. After static tests were completed, fatigue testing was done by cycling the shear load for up to 30,000 cycles with a constant compression. The static shear strength of the samples that did not fail was then determined. Generally, shear strengths on the order of 120 MPa were measured. The behavior of the flexure and shear/compression samples was significantly different; large reductions in the flexure strength were observed, while the shear strength stayed the same or increased slightly. The 3-D weave material demonstrated higher strength and significantly less radiation damage than the 2-D material in flexure but performed nearly identically when tested with combined shear and compression. The epoxy system was much more sensitive to fatigue damage than the bismaleimide materials. 9 refs., 5 figs

  2. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-01-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including

  3. Performance and heat release analysis of a pilot-ignited natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.R.; Biruduganti, M.; Mo, Y.; Bell, S.R.; Midkiff, K.C. [Alabama Univ., Dept. of Mechanical Engineering, Tuscaloosa, AL (United States)

    2002-09-01

    The influence of engine operating variables on the performance, emissions and heat release in a compression ignition engine operating in normal diesel and dual-fuel modes (with natural gas fuelling) was investigated. Substantial reductions in NO{sub x} emissions were obtained with dual-fuel engine operation. There was a corresponding increase in unburned hydrocarbon emissions as the substitution of natural gas was increased. Brake specific energy consumption decreased with natural gas substitution at high loads but increased at low loads. Experimental results at fixed pilot injection timing have also established the importance of intake manifold pressure and temperature in improving dual-fuel performance and emissions at part load. (Author)

  4. Ion beam heating for fast ignition

    International Nuclear Information System (INIS)

    Gus'kov, S.Yu.; Limpouch, J.; Klimo, O.

    2010-01-01

    Complete text of publication follows. The characteristics features of the formation of the spatial distribution of the energy transferred to the plasma from a beam of ions with different initial energies, masses and charges under fast ignition conditions are determined. The motion of the Bragg peak is extended with respect to the spatial distribution of the temperature of the ion-beam-heated medium. The parameters of the ion beams are determined to initiate different regimes of fast ignition of thermonuclear fuel precompressed to a density of 300-500 g/cm 3 - the edge regime, in which the ignition region is formed at the outer boundary of the fuel, and the internal regime, in which the ignition region is formed in central parts of the fuel. The conclusion on the requirements for fast ignition by light and heavy ion beams is presented. It is shown that the edge heating with negative temperature gradient is described by a self-similar solution. Such a temperature distribution is the reason of the fact that the ignited beam energy at the edge heating is larger than the minimal ignition energy by factor 1.65. The temperature Bragg peak may be produced by ion beam heating in the reactor scale targets with pR-parameter larger than 3-4 g/cm 2 . In particular, for central ignition of the targets with pR-parameters in the range of 4-8 g/cm 2 the ion beam energy should be, respectively, from 5 to 7 times larger than the minimal ignition energy. The work by S.Ye. Gus'kov, D.V. Il'in, and V.E. Sherman was supported by the Ministry of Education and Science of the Russian Federation under the program 'Development of the Scientific Potential of High Education for 2009-2010' (project no. 2.1.1/1505) and the Russian Foundation for Basic Research (project no. 08-02-01394 a ). The work by J. Limpouch and O. Klimo was supported by the Czech Ministry of Education (project no. LC528, MSM6840770022).

  5. EXPERIMENTS AND COMPUTATIONAL MODELING OF PULVERIZED-COAL IGNITION; FINAL

    International Nuclear Information System (INIS)

    Samuel Owusu-Ofori; John C. Chen

    1999-01-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals as well as the ignition rate of reaction. furthermore, there have been no previous studies aimed at examining these factors under various experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition temperature of various coals by direct measurement, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. The authors propose to use a novel laser-based ignition experiment to achieve their first objective. Laser-ignition experiments offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature measurement. The ignition temperature of different coals under various experimental conditions can therefore be easily determined by direct measurement using two-color pyrometry. The ignition rate-constants, when the ignition occurs heterogeneously, and the particle heating rates will both be determined from analyses based on these measurements

  6. Image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    Science.gov (United States)

    Leach, Richard R.; Awwal, Abdul A. S.; Lowe-Webb, Roger; Miller-Kamm, Victoria; Orth, Charles; Roberts, Randy; Wilhelmsen, Karl

    2016-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short-pulse kilo-Joule laser pulses with controllable delays that generate X-rays to provide backlighting for high-density internal confinement fusion (ICF) capsule targets. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. ARC is designed to employ up to eight backlighters with tens-of-picosecond temporal resolution, to record the dynamics and produce an X-ray "motion picture" of the compression and ignition of cryogenic deuterium-tritium targets. ARC will generate tens-of-picosecond temporal resolution during the critical phases of ICF shots. Additionally, ARC supports a variety of other high energy density experiments including fast ignition studies on NIF. The automated alignment image analysis algorithms use digital camera sensor images to direct ARC beams onto the tens-of-microns scale metal wires. This paper describes the ARC automatic alignment sequence throughout the laser chain from pulse initiation to target with an emphasis on the image processing algorithms that generate the crucial alignment positions for ARC. The image processing descriptions and flow diagrams detail the alignment control loops throughout the ARC laser chain beginning in the ARC high-contrast front end (HCAFE), on into the ARC main laser area, and ending in the ARC target area.

  7. Definition of Ignition in Inertial Confinement Fusion

    Science.gov (United States)

    Christopherson, A. R.; Betti, R.

    2017-10-01

    Defining ignition in inertial confinement fusion (ICF) is an unresolved problem. In ICF, a distinction must be made between the ignition of the hot spot and the propagation of the burn wave in the surrounding dense fuel. Burn propagation requires that the hot spot is robustly ignited and the dense shell exhibits enough areal density. Since most of the energy gain comes from burning the dense shell, in a scale of increasing yields, hot-spot ignition comes before high gains. Identifying this transition from hot-spot ignition to burn-wave propagation is key to defining ignition in general terms applicable to all fusion approaches that use solid DT fuel. Ad hoc definitions such as gain = 1 or doubling the temperature are not generally valid. In this work, we show that it is possible to identify the onset of ignition through a unique value of the yield amplification defined as the ratio of the fusion yield including alpha-particle deposition to the fusion yield without alphas. Since the yield amplification is a function of the fractional alpha energy fα =EαEα 2Ehs 2Ehs (a measurable quantity), it appears possible not only to define ignition but also to measure the onset of ignition by the experimental inference of the fractional alpha energy and yield amplification. This material is based upon work supported by the Department of Energy Office of Fusion Energy Services under Award Number DE-FC02-04ER54789 and National Nuclear Security Administration under Award Number DE-NA0001944.

  8. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  9. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  10. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  11. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2015-08-15

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  12. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  13. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine

    International Nuclear Information System (INIS)

    Ogunkoya, Dolanimi; Fang, Tiegang

    2015-01-01

    Highlights: • Renewable biomass to liquid (BTL) fuel was tested in a direct injection diesel engine. • Engine performance, in-cylinder pressure, and exhaust emissions were measured. • BTL fuel reduces pollutant emission for most conditions compared with diesel and biodiesel. • BTL fuel leads to high thermal efficiency and lower fuel consumption compared with diesel and biodiesel. - Abstract: In this work, the effects of diesel, biodiesel and biomass to liquid (BTL) fuels are investigated in a single-cylinder diesel engine at a fixed speed (2000 rpm) and three engine loads corresponding to 0 bar, 1.26 bar and 3.77 bar brake mean effective pressure (BMEP). The engine performance, in-cylinder combustion, and exhaust emissions were measured. Results show an increase in indicated work for BTL and biodiesel at 1.26 bar and 3.77 bar BMEP when compared to diesel but a decrease at 0 bar. Lower mechanical efficiency was observed for BTL and biodiesel at 1.26 bar BMEP but all three fuels had roughly the same mechanical efficiency at 3.77 bar BMEP. BTL was found to have the lowest brake specific fuel consumption (BSFC) and the highest brake thermal efficiency (BTE) among the three fuels tested. Combustion profiles for the three fuels were observed to vary depending on the engine load. Biodiesel was seen to have the shortest ignition delay among the three fuels regardless of engine loads. Diesel had the longest ignition delay at 0 bar and 3.77 bar BMEP but had the same ignition delay as BTL at 1.26 bar BMEP. At 1.26 bar and 3.77 bar BMEP, BTL had the lowest HC emissions but highest HC emissions at no load conditions when compared to biodiesel and diesel. When compared to diesel and biodiesel BTL had lower CO and CO 2 emissions. At 0 bar and 1.26 bar BMEP, BTL had higher NOx emissions than diesel fuel but lower NOx than biodiesel at no load conditions. At the highest engine load tested, NOx emissions were observed to be highest for diesel fuel but lowest for BTL. At 1

  14. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  15. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  16. Design of indirectly driven, high-compression Inertial Confinement Fusion implosions with improved hydrodynamic stability using a 4-shock adiabat-shaped drive

    Energy Technology Data Exchange (ETDEWEB)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-12-15

    Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.

  17. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  18. Review of the National Ignition Campaign 2009-2012

    International Nuclear Information System (INIS)

    Lindl, John; Landen, Otto; Edwards, John; Moses, Ed

    2014-01-01

    The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked

  19. Ignition properties of n-butane and iso-butane in a rapid compression machine

    NARCIS (Netherlands)

    Gersen, S.; Mokhov, A. V.; Darmeveil, J. H.; Levinsky, H. B.

    Autoignition delay times of n-butane and iso-butane have been measured in a Rapid Compression Machine in the temperature range 660-1010 K, at pressures varying from 14 to 36 bar and at equivalence ratios phi = 1.0 and phi = 0.5. Both butane isomers exhibit a negative-temperature-coefficient (NTC)

  20. Fusion Ignition Research Experiment System Integration

    International Nuclear Information System (INIS)

    Brown, T.

    1999-01-01

    The FIRE (Fusion Ignition Research Experiment) configuration has been designed to meet the physics objectives and subsystem requirements in an arrangement that allows remote maintenance of in-vessel components and hands-on maintenance of components outside the TF (toroidal-field) boundary. The general arrangement consists of sixteen wedged-shaped TF coils that surround a free-standing central solenoid (CS), a double-wall vacuum vessel and internal plasma-facing components. A center tie rod is used to help support the vertical magnetic loads and a compression ring is used to maintain wedge pressure in the inboard corners of the TF coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double-wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components. The FIRE configuration development and integration process has evolved from an early stage of concept selection to a higher level of machine definition and component details. This paper describes the status of the configuration development and the integration of the major subsystem components