WorldWideScience

Sample records for compression ignition engine

  1. Prechamber Compression-Ignition Engine Performance

    Science.gov (United States)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  2. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  3. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  4. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    Science.gov (United States)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  5. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  6. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    Science.gov (United States)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  7. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    Science.gov (United States)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  8. Application of Dimethyl Ether in Compression Ignition Engines

    DEFF Research Database (Denmark)

    Hansen, Kim Rene

    -Marathon. The diesel engine test results from 1995 showed that DME is a superb diesel fuel. DME is easy to ignite by compression ignition and it has a molecular structure that results in near-zero emission of particulates when burned. These are features of a fuel that are highly desirable in a diesel engine....... The challenges with DME as a diesel engine fuel are mainly related to poor lubricity and incompatibility with a range of elastomers commonly used for seals in fuel injection systems. This means that although DME burns well in a diesel engine designing a fuel injection system for DME is challenging. Since...... then studies have revealed that the injection pressure for DME does not have to be as high as with diesel to achieve satisfactory performance. This opens for a larger range of possibilities when designing injection systems. In the period from 2004 to 2009 the DME engine was perfected for use in the car DTU...

  9. Comparative study of oxihydrogen injection in turbocharged compression ignition engines

    Science.gov (United States)

    Barna, L.; Lelea, D.

    2018-01-01

    This document proposes for analysis, comparative study of the turbocharged, compression-ignition engine, equipped with EGR valve, operation in case the injection in intake manifold thereof a maximum flow rate of 1l/min oxyhydrogen resulted of water electrolysis, at two different injection pressures, namely 100 Pa and 3000 Pa, from the point of view of flue gas opacity. We found a substantial reduction of flue gas opacity in both cases compared to conventional diesel operation, but in different proportions.

  10. Using gasoline in an advanced compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, R.F.; Ariztegui, J.; Dubois, T.; Hamje, H.D.C.; Pellegrini, L.; Rickeard, D.J.; Rose, K.D. [CONCAWE, Brussels (Belgium); Heuser, B. [RWTH Aachen Univ. (Germany). Inst. for Combustion Engines; Schnorbus, T.; Kolbeck, A.F. [FEV GmbH, Aachen (Germany)

    2013-06-01

    Future vehicles will be required to improve their efficiency, reduce both regulated and CO{sub 2} emissions, and maintain acceptable driveability, safety, and noise. To achieve this overall performance, they will be configured with more advanced hardware, sensors, and control technologies that will also enable their operation on a broader range of fuel properties. Fuel flexibility has already been demonstrated in previous studies on a compression ignition bench engine and a demonstration vehicle equipped with an advanced engine management system, closed-loop combustion control, and air-path control strategies. An unresolved question is whether engines of this sort can also operate on market gasoline while achieving diesel-like efficiency and acceptable emissions and noise levels. In this study, a compression ignition bench engine having a higher compression ratio, optimised valve timing, advanced engine management system, and flexible fuel injection could be operated on a European gasoline over full to medium part loads. The combustion was sensitive to EGR rates, however, and optimising all emissions and combustion noise was a considerable challenge at lower loads. (orig.)

  11. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  12. Influence of several factors on ignition lag in a compression-ignition engine

    Science.gov (United States)

    Gerrish, Harold C; Voss, Fred

    1932-01-01

    This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.

  13. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  14. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  15. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  16. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  17. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  18. Approaches to Improve Mixing in Compression Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Boot, M.D.

    2010-04-20

    This thesis presents three approaches to suppress soot emissions in compression ignition (CI) engines. First, a fuel chemistry approach is proposed. A particular class of fuels - cyclic oxygenates - is identified which is capable of significantly reducing engine-out soot emissions. By means of experiments in 'closed' and optical engines, as well as on an industrial burner, two possible mechanisms are identified that could account for the observed reduction in soot: a) an extended ignition delay (ID) and b) a longer flame lift-length (FLoL). Further analysis of the available data suggests that both mechanisms are related to the inherently low reactivity of the fuel class in question. These findings are largely in line with data found in literature. In the second approach, it is attempted to reduce soot by adopting an alternative combustion concept: early direct injection premixed charge compression ignition (EDI PCCI). In this concept, fuel is injected relatively early in the compression stroke instead of conventional, close to top-dead-center (TDC), injection schemes. While the goal of soot reduction can indeed be achieved via this approach, an important drawback must be addressed before this concept can be considered practically viable. Due to the fact that combustion chamber temperature and pressure is relatively low early in the compression stroke, fuel impingement against the cylinder liner (wall-wetting) often occurs. Consequently, high levels of unburned hydrocarbons (UHC), oil dilution and poor efficiency are observed. Several strategies, combining a limited engine modification with dedicated air management and fueling settings, are investigated to tackle this drawback. All of these strategies, and especially their combination, resulted in significantly lower UHC emissions and improved fuel economy. Although UHC emissions are typically a tell-tale sign of wall-wetting, as mentioned earlier, the relation between these two has long been hypothetical

  19. Development of a simulation model for compression ignition engine running with ignition improved blend

    Directory of Open Access Journals (Sweden)

    Sudeshkumar Ponnusamy Moranahalli

    2011-01-01

    Full Text Available Department of Automobile Engineering, Anna University, Chennai, India. The present work describes the thermodynamic and heat transfer models used in a computer program which simulates the diesel fuel and ignition improver blend to predict the combustion and emission characteristics of a direct injection compression ignition engine fuelled with ignition improver blend using classical two zone approach. One zone consists of pure air called non burning zone and other zone consist of fuel and combustion products called burning zone. First law of thermodynamics and state equations are applied in each of the two zones to yield cylinder temperatures and cylinder pressure histories. Using the two zone combustion model the combustion parameters and the chemical equilibrium composition were determined. To validate the model an experimental investigation has been conducted on a single cylinder direct injection diesel engine fuelled with 12% by volume of 2- ethoxy ethanol blend with diesel fuel. Addition of ignition improver blend to diesel fuel decreases the exhaust smoke and increases the thermal efficiency for the power outputs. It was observed that there is a good agreement between simulated and experimental results and the proposed model requires low computational time for a complete run.

  20. Fuel octane effects in the partially premixed combustion regime in compression ignition engines

    NARCIS (Netherlands)

    Hildingsson, L.; Kalghatgi, G.T.; Tait, N.; Johansson, B.H.; Harrison, A.

    2009-01-01

    Previous work has showed that it may be advantageous to use fuels of lower cetane numbers compared to today's diesel fuels in compression ignition engines. The benefits come from the longer ignition delays that these fuels have. There is more time available for the fuel and air to mix before

  1. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  2. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  3. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  4. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  5. Over compression influence to the performances of the spark ignition engines

    Science.gov (United States)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  6. Use of a non-edible vegetable oils as an alternative fuel in compression ignition engines

    International Nuclear Information System (INIS)

    Jayaraj, S.; Ramadhas, A.S.; Muraleedharan, C.

    2006-01-01

    Shortage of petroleum fuels is assumed predominance globally and hence efforts are being made in every country to look for alternative fuels, especially for running internal compression ignition engines. However, the limited availability of edible vegetable oils in excess amounts is a limiting factors, which limits their large usage as an alternative fuel. A remedy for this is the use of non-edible oils obtained mainly from seeds, which are otherwise dumped as waste material. An effort is made here to use rubber seed oil as fuel in compression ignition engine at various proportions, mixed with diesel oil. The performance and emission characteristics of the engine are measured under dual fuel operation. The compression ignition engine could be run satisfactorily without any noticeable problem, even with 100% rubber seed oil. A multi-layer artificial neural network model was developed for predicting the performance and emission characteristics of the engine under dual fuel operation. Experimental data has been used to train the network. The predicted engine performance and emission characteristics obtained by neural network model are validated by using the experimental data. The neural network model is found to be quite efficient in predicting engine performance and emission characteristics. It has been found that 60-80% diesel replacement by rubber seed oil is the optimum in order to get maximum engine performance and minimum exhaust emission

  7. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Korakianitis, T.; Namasivayam, A.M.; Crookes, R.J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2011-02-15

    Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO{sub x}) emissions, while producing lower emissions of carbon dioxide (CO{sub 2}), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO{sub x} emissions. High NO{sub x} emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO{sub x} and CO{sub 2} emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is

  8. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  9. THE EFFECT OF VARIABLE COMPRESSION RATIO ON FUEL CONSUMPTION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2002-02-01

    Full Text Available Due to lack of energy sources in the world, we are obliged to use our current energy sources in the most efficient way. Therefore, in the automotive industry, research works to manufacture more economic cars in terms of fuelconsumption and environmental friendly cars, at the same time satisfying the required performance have been intensively increasing. Some positive results have been obtained by the studies, aimed to change the compression ratio according to the operating conditions of engine. In spark ignition engines in order to improve the combustion efficiency, fuel economy and exhaust emission in the partial loads, the compression ratio must be increased; but, under the high load and low speed conditions to prevent probable knock and hard running compression ratio must be decreased slightly. In this paper, various research works on the variable compression ratio with spark ignition engines, the effects on fuel economy, power output and thermal efficiency have been investigated. According to the results of the experiments performed with engines having variable compression ratio under the partial and mid-load conditions, an increase in engine power, a decrease in fuel consumption, particularly in partial loads up to 30 percent of fuel economy, and also severe reductions of some exhaust emission values were determined.

  10. Numerical parametric investigations of a gasoline fuelled partially-premixed compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Arash [Islamic Azad University, Miyaneh Branch, Miyaneh (Iran, Islamic Republic of); Khalilarya, Shahram; Jafarmadar, Samad; Khatamenjhad, Hassan [Department of Mechanical Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Fathi, Vahid [Islamic Azad University, Ajagshir Branch, Ajabshir (Iran, Islamic Republic of)

    2011-07-01

    Parametric studies of a heavy duty direct injection (DI) gasoline fueled compression ignition (CI) engine combustion are presented. Gasoline because of its higher ignition delay has much lower soot emission in comparison with diesel fuel. Using double injection strategy reduces the maximum heat release rate that leads to nitrogen oxides (NOx) emission reduction. A three dimensional computational fluid dynamics (CFD) code was employed and compared with experimental data. The model results show a good agreement with experimental data. The effect of injection characteristics such as, injection duration, main SOI timing, and nozzle hole size investigated on combustion and emissions.

  11. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  12. Gasoline compression ignition approach to efficient, clean and affordable future engines

    KAUST Repository

    Kalghatgi, Gautam

    2017-04-03

    The worldwide demand for transport fuels will increase significantly but will still be met substantially (a share of around 90%) from petroleum-based fuels. This increase in demand will be significantly skewed towards commercial vehicles and hence towards diesel and jet fuels, leading to a probable surplus of lighter low-octane fuels. Current diesel engines are efficient but expensive and complicated because they try to reduce the nitrogen oxide and soot emissions simultaneously while using conventional diesel fuels which ignite very easily. Gasoline compression ignition engines can be run on gasoline-like fuels with a long ignition delay to make low-nitrogen-oxide low-soot combustion very much easier. Moreover, the research octane number of the optimum fuel for gasoline compression ignition engines is likely to be around 70 and hence the surplus low-octane components could be used without much further processing. Also, the final boiling point can be higher than those of current gasolines. The potential advantages of gasoline compression ignition engines are as follows. First, the engine is at least as efficient and clean as current diesel engines but is less complicated and hence could be cheaper (lower injection pressure and after-treatment focus on control of carbon monoxide and hydrocarbon emissions rather than on soot and nitrogen oxide emissions). Second, the optimum fuel requires less processing and hence would be easier to make in comparison with current gasoline or diesel fuel and will have a lower greenhouse-gas footprint. Third, it provides a path to mitigate the global demand imbalance between heavier fuels and lighter fuels that is otherwise projected and improve the sustainability of refineries. The concept has been well demonstrated in research engines but development work is needed to make it feasible on practical vehicles, e.g. on cold start, adequate control of exhaust carbon monoxide and hydrocarbons and control of noise at medium to high loads

  13. Possibility to Increase Biofuels Energy Efficiency used for Compression Ignition Engines Fueling

    Directory of Open Access Journals (Sweden)

    Calin D. Iclodean

    2014-02-01

    Full Text Available The paper presents the possibilities of optimizing the use of biofuels in terms of energy efficiency in compression ignition (CI engines fueling. Based on the experimental results was determinate the law of variation of the rate of heat released by the combustion process for diesel fuel and different blends of biodiesel. Using this law, were changed parameters of the engine management system (fuel injection law and was obtain increased engine performance (in terms of energy efficiency for use of different biofuel blends.

  14. Improving the performance of a compression ignition engine by directing flow of inlet air

    Science.gov (United States)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  15. Potential use of eucalyptus biodiesel in compressed ignition engine

    Directory of Open Access Journals (Sweden)

    Puneet Verma

    2016-03-01

    Full Text Available The increased population has resulted in extra use of conventional sources of fuels due to which there is risk of extinction of fossil fuels’ resources especially petroleum diesel. Biodiesel is emerging as an excellent alternative choice across the world as a direct replacement for diesel fuel in vehicle engines. Biodiesel offers a great choice. It is mainly derived from vegetable oils, animal fats and algae. Hence in this paper effort has been made to find out feasibility of biodiesel obtained from eucalyptus oil and its impact on diesel engine. Higher viscosity is a major issue while using vegetable oil directly in engine which can be removed by converting it into biodiesel by the process of transesterification. Various fuel properties like calorific value, flash point and cetane value of biodiesel and biodiesel–diesel blends of different proportions were evaluated and found to be comparable with petroleum diesel. The result of investigation shows that Brake Specific Fuel Consumption (BSFC for two different samples of B10 blend of eucalyptus biodiesel is 2.34% and 2.93% lower than that for diesel. Brake Thermal Efficiency (BTE for B10 blends was found to be 0.52% and 0.94% lower than that for diesel. Emission characteristics show that Smoke Opacity improves for both samples, smoke is found to be 64.5% and 62.5% cleaner than that of diesel. Out of all blends B10 was found to be a suitable alternative to conventional diesel fuel to control air pollution without much significant effect on engine performance. On comparing both samples, biodiesel prepared from sample A of eucalyptus oil was found to be superior in all aspects of performance and emission.

  16. Engine performance and emission of compression ignition engine fuelled with emulsified biodiesel-water

    Science.gov (United States)

    Maawa, W. N.; Mamat, R.; Najafi, G.; Majeed Ali, O.; Aziz, A.

    2015-12-01

    The depletion of fossil fuel and environmental pollution has become world crucial issues in current era. Biodiesel-water emulsion is one of many possible approaches to reduce emissions. In this study, emulsified biodiesel with 4%, 6% and 8% of water contents were prepared to be used as fuel in a direct injection compression ignition engine. The performance indicator such as brake power, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) and emissions such as NOx and particulate matter (PM) were investigated. The engine was set at constant speed of 2500 rpm and load from 20% to 60%. All the results were compared to B5 (blend of 95% petroleum diesel and 5% palm oil biodiesel) biodiesel. At low load, the BSFC decrease by 12.75% at 4% water ratio and decreased by 1.5% at 6% water ratio. However, the BSFC increases by 17.19% with increasing water ratio to 8% compared to B5. Furthermore, there was no significant decrease in brake power and BTE at 60% load. For 20% and 40% load there was some variance regarding to brake power and BTE. Significant reduction in NOx and PM emissions by 73.87% and 20.00% respectively were achieved with increasing water ratio to 8%. Overall, it is observed that the emulsified of biodiesel-water is an appropriate alternative fuel method to reduce emissions.

  17. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  18. Effect of biodiesel on the performance and combustion parameters of a turbocharged compression ignition engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Baluch, A.H.; Chao, H.

    2009-01-01

    Direct injection compression ignition engines have proved to be the best option in heavy duty applications like transportation and power generation ,but rapid depleting sources of conventional fossil fuels, their rising prices and ever increasing environmental issues are the major concerns. Alternative fuels, particularly bio fuels are receiving increasing attention during the last few years. Biodiesel has already been commercialized in the transport sector. In the present work, a turbocharged intercooled and DI diesel engine has been alternatively fuelled with biodiesel and its 20% blend with commercial diesel. The experimental results show that BSFC, maximum combustion pressure and start of injection angle increase; on the other hand BSEC, maximum rate of pressure rise, ignition lag and premixed combustion amount decrease however HRR duration remains almost unaffected in the case of biodiesel as compared to commercial diesel. (author)

  19. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  20. An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

    KAUST Repository

    Wakale, Anil Bhaurao; Mohamed, Samah; Naser, Nimal; Jaasim, Mohammed; Banerjee, Raja; Im, Hong G.; Sarathy, Mani

    2018-01-01

    Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.

  1. An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

    KAUST Repository

    Wakale, Anil Bhaurao

    2018-04-03

    Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.

  2. Study of emissions for a compression ignition engine fueled with a mix of DME and diesel

    Science.gov (United States)

    Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete

    2017-10-01

    Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

  3. Fuels for homogeneous charge compression ignition (HCCI) engines. Automotive fuels survey. Part 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.

    2001-01-01

    Homogeneous charge compression ignition (HCCI) is a third mode of operation for internal combustion engines, beside spark ignition and conventional compression ignition. This report concentrates on the requirements that HCCI operation puts on fuels for these engines. For readers with limited time available, this summary describes the main findings. Policy makers that need some more background information may turn directly to chapter 7, 'Fuels for HCCI engines'. The rest of this report can be considered as a reference guide for more detailed information. The driving force to investigate HCCI engines is the potential of low emissions and simultaneously high energy efficiency. HCCI is gaining attention the last few years. However, HCCI engines are still in the research phase. After many experiments with prototype engines, people have now started working on computer simulations of the combustion process, to obtain a fundamental understanding of HCCI combustion and to steer future engine developments. In HCCI engines, an air/fuel mixture is prepared before it enters the combustion chamber. The homogeneous mixture is in the combustion chamber compressed to auto-ignition. Unlike in conventional engines, combustion starts at many different locations simultaneously and the speed of combustion is very high, so there is no flame front. Lean air/fuel mixtures (excess air) are used to control combustion speed. Because of the excess air, combustion temperature is relatively low, resulting in low NOx emissions. When the fuel is vaporised to a truly homogeneous mixture, complete combustion results in low particulate emissions. The most important advantages of HCCI engines are: - Emissions of NOx and particulates are very low. - Energy efficiency is high. It is comparable to diesel engines. - Many different fuels (one at a time) can be used in the HCCI concept. There are also some hurdles to overcome: - Controlling combustion is difficult, it complicates engine design

  4. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    Science.gov (United States)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  5. Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines

    KAUST Repository

    Alabbad, Mohammed

    2017-11-24

    Naphtha, a low-octane distillate fuel, has been proposed as a promising low-cost fuel for advanced compression ignition engine technologies. Experimental and modelling studies have been conducted in this work to assess autoignition characteristics of naphtha for use in advanced engines. Ignition delay times of a certified straight-run naphtha fuel, supplied by Haltermann Solutions, were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 60 bar, 620–1223 K, ϕ = 0.5, 1 and 2). The Haltermann straight-run naphtha (HSRN) has research octane number (RON) of 60 and motor octane number (MON) of 58.3, with carbon range spanning C3–C9. Reactivity of HSRN was compared, via experiments and simulations, with three suitably formulated surrogates: a two-component PRF (n-heptane/iso-octane) surrogate, a three-component TPRF (toluene/n-heptane/iso-octane) surrogate, and a six-component surrogate. All surrogates reasonably captured the ignition delays of HSRN at high and intermediate temperatures. However, at low temperatures (T < 750 K), the six-component surrogate performed the best in emulating the reactivity of naphtha fuel. Temperature sensitivity and rate of production analyses revealed that the presence of cyclo-alkanes in naphtha inhibits the overall fuel reactivity. Zero-dimensional engine simulations showed that PRF is a good autoignition surrogate for naphtha at high engine loads, however, the six-component surrogate is needed to match the combustion phasing of naphtha at low engine loads.

  6. Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines

    KAUST Repository

    Alabbad, Mohammed; Issayev, Gani; Badra, Jihad; Voice, Alexander K.; Giri, Binod; Djebbi, Khalil; Ahmed, Ahfaz; Sarathy, Mani; Farooq, Aamir

    2017-01-01

    Naphtha, a low-octane distillate fuel, has been proposed as a promising low-cost fuel for advanced compression ignition engine technologies. Experimental and modelling studies have been conducted in this work to assess autoignition characteristics of naphtha for use in advanced engines. Ignition delay times of a certified straight-run naphtha fuel, supplied by Haltermann Solutions, were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 60 bar, 620–1223 K, ϕ = 0.5, 1 and 2). The Haltermann straight-run naphtha (HSRN) has research octane number (RON) of 60 and motor octane number (MON) of 58.3, with carbon range spanning C3–C9. Reactivity of HSRN was compared, via experiments and simulations, with three suitably formulated surrogates: a two-component PRF (n-heptane/iso-octane) surrogate, a three-component TPRF (toluene/n-heptane/iso-octane) surrogate, and a six-component surrogate. All surrogates reasonably captured the ignition delays of HSRN at high and intermediate temperatures. However, at low temperatures (T < 750 K), the six-component surrogate performed the best in emulating the reactivity of naphtha fuel. Temperature sensitivity and rate of production analyses revealed that the presence of cyclo-alkanes in naphtha inhibits the overall fuel reactivity. Zero-dimensional engine simulations showed that PRF is a good autoignition surrogate for naphtha at high engine loads, however, the six-component surrogate is needed to match the combustion phasing of naphtha at low engine loads.

  7. Validation of a zero-dimensional and two-phase combustion model for dual-fuel compression ignition engine simulation

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2017-01-01

    Increasing demands for the reduction of exhaust emissions and the pursuit to reduce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of

  8. 76 FR 20550 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels

    Science.gov (United States)

    2011-04-13

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels CFR Correction In Title 40 of the Code of Federal Regulations, Part... service, whichever comes first. (2) For vessels with no Category 3 engines, a vessel that has been...

  9. 75 FR 37310 - Control of Emissions From New and In-Use Nonroad Compression-Ignition Engines

    Science.gov (United States)

    2010-06-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1039 Control of Emissions From New and In-Use Nonroad Compression- Ignition Engines CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End... for my engines in model year 2014 and earlier? * * * * * Table 2 of Sec. 1039.102--Interim Tier 4...

  10. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  11. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seshaiah, N. [Mechanical Engineering Department, M.I.T.S, Madanapalle, Angallu-517325, A.P. (India)

    2010-07-01

    Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene), and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  12. An investigation of the acoustic characteristics of a compression ignition engine operating with biodiesel blends

    Science.gov (United States)

    Zhen, D.; Tesfa, B.; Yuan, X.; Wang, R.; Gu, F.; Ball, A. D.

    2012-05-01

    In this paper, an experimental investigation has been carried out on the acoustic characteristics of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The experiment was conducted on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine which runs with biodiesel (B50 and B100) and pure diesel. The signals of acoustic, vibration and in-cylinder pressure were measured during the experiment. To correlate the combustion process and the acoustic characteristics, both phenomena have been investigated. The acoustic analysis resulted in the sound level being increased with increasing of engine loads and speeds as well as the sound characteristics being closely correlated to the combustion process. However, acoustic signals are highly sensitive to the ambient conditions and intrusive background noise. Therefore, the spectral subtraction was employed to minimize the effects of background noise in order to enhance the signal to noise ratio. In addition, the acoustic characteristics of CI engine running with different fuels (biodiesel blends and diesel) was analysed for comparison. The results show that the sound energy level of acoustic signals is slightly higher when the engine fuelled by biodiesel and its blends than that of fuelled by normal diesel. Hence, the acoustic characteristics of the CI engine will have useful information for engine condition monitoring and fuel content estimation.

  13. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  14. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  15. A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio

    International Nuclear Information System (INIS)

    Benajes, Jesús; Pastor, José V.; García, Antonio; Boronat, Vicente

    2016-01-01

    Highlights: • RCCI with CR 12.75 reaches up to 80% load fulfilling mechanical limits. • Ultra-low levels in NOx and soot emissions are obtained in the whole engine map. • Ultra-high levels of CO and uHC have been measured overall at low load. • RCCI improves fuel consumption from 25% to 80% engine loads comparing with CDC. - Abstract: Reactivity Controlled Compression Ignition concept offers an ultra-low nitrogen oxide and soot emissions with a high thermal efficiency. This work investigates the capabilities of this low temperature combustion concept to work on the whole map of a medium duty engine proposing strategies to solve its main challenges. In this sense, an extension to high loads of the concept without exceeding mechanical stress as well as a mitigation of carbon oxide and unburned hydrocarbons emissions at low load together with a fuel consumption penalty have been identified as main Reactivity Controlled Compression Ignition drawbacks. For this purpose, a single cylinder engine derived from commercial four cylinders medium-duty engine with an adapted compression ratio of 12.75 is used. Commercial 95 octane gasoline was used as a low reactivity fuel and commercial diesel as a high reactivity fuel. Thus, the study consists of two different parts. Firstly, the work is focused on the development and evaluation of an engine map trying to achieve the maximum possible load without exceeding a pressure rise rate of 15 bar/CAD. The second part holds on improving fuel consumption and carbon oxide and unburned hydrocarbons emissions at low load. Results suggest that it is possible to achieve up to 80% of nominal conventional diesel combustion engine load without overpassing the constraints of pressure rise rate (below 15 bar/CAD) and maximum pressure peak (below 190 bar) while obtaining ultra-low levels of nitrogen oxide and soot emissions. Regarding low load challenges, it has developed a particular methodology sweeping the gasoline-diesel blend together

  16. Combustion and emissions characteristics of a compression ignition engine fueled with n-butanol blends

    Science.gov (United States)

    Yusri, I. M.; Mamat, R.; Ali, O. M.; Aziz, A.; Akasyah, M. K.; Kamarulzaman, M. K.; Ihsan, C. K.; Mahmadul, H. M.; Rosdi, S. M.

    2015-12-01

    The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using 4-cylinder, 4-stroke common rail direct injection CI engine to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.

  17. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  18. Homogeneous charge compression ignition compared with Otto-Atkinson in a passenger car size engine

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Andreas

    2000-07-01

    The use of Homogeneous Charge Compression Ignition (HCCI) was investigated in an ordinary SI (spark ignition) engine, in this case a modified Volvo 850, working on one cylinder only, the others towed. The major purpose of this study was to examine whether there were the same kind of throttle losses in this engine as in a Diesel engine (Volvo TD 100). One reason for throttling is that HCCI causes very cold exhaust gases. The Diesel engine has a larger cylinder volume (1.6 compared to 0.5 litre), working at low engine speed (1000 rpm) and only two valves with comparably small area. The smaller Volvo 850 engine has four valves and was in this examination working at up to 3500 rpm. To make the engine run by HCCI following modifications were made. The compression was set to 20:1 by changing the piston. To affect the ignition an electrical heater was installed near the air inlet. Mixing iso-octane (ON 100) and N-heptane (ON 0) set the octane number. A couple of camshafts with different cam-profiles were used to achieve the right valve opening duration depending on which kind of combustion that was studied. There could then also be a comparison between Otto and HCCI combustion both working with wide-open throttle. To obtain comparable indicated mean effective pressure (IMEP) the engine was working with late (LIVC) or early inlet valve closing (EIVC) at SI combustion. Measurements were taken involving in-cylinder pressure, temperature, speed, fuel-consumption, emissions etc. Regarding emissions there were special consideration taken to hydrocarbon and NO{sub x}, which are known to be extremely high respectively low with HCCI combustion. Important questions that should be answered were: * How does higher engine speed affect the combustion ?, * How does the engine size affect emissions ?, * How much is the valve area affecting gas exchange losses ?, and * How high is the efficiency with HCCI compared with Otto (LIVC/EIVC) ?. The best results are achieved at an indicated mean

  19. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  20. ANALYSIS OF OPERATING PARAMETERS AND INDICATORS OF A COMPRESSION IGNITION ENGINE FUELLED WITH LPG

    Directory of Open Access Journals (Sweden)

    Krzysztof GARBALA

    2016-12-01

    Full Text Available This article presents the possibilities for using alternative fuels to power vehicles equipped with compression ignition (CI engines (diesel. Systems for using such fuels have been discussed. Detailed analysis and research covered the LPG STAG autogas system, which is used to power dual-fuel engine units (LPG+diesel. A description of the operation of the autogas system and installation in a vehicle has been presented. The basic algorithms of the controller, which is an actuating element of the whole system, have been discussed. Protection systems of a serial production engine unit to guarantee its factorycontrolled durability standards have been presented. A long-distance test drive and examinations of the engine over 150,000 km in a Toyota Hilux have been performed. Operating parameters and performance indicators of the engine with STAG LPG+diesel fuelling have been verified. Directions and perspectives for the further development of such a system in diesel-powered cars have been also indicated.

  1. Effect of Combustion-chamber Shape on the Performance of a Prechamber Compression-ignition Engine

    Science.gov (United States)

    Moore, C S; Collins, J H , Jr

    1934-01-01

    The effect on engine performance of variations in the shape of the prechamber, the shape and direction of the connecting passage, the chamber volume using a tangential passage, the injection system, and the direction od the fuel spray in the chamber was investigated using a 5 by 7 inch single-cylinder compression-ignition engine. The results show that the performance of this engine can be considerably improved by selecting the best combination of variables and incorporating them in a single design. The best combination as determined from these tests consisted of a disk-shaped chamber connected to the cylinder by means of a flared tangential passage. The fuel was injected through a single-orifice nozzle directed normal to the air swirl and in the same plane. At an engine speed of 1,500 r.p.m. and with the theoretical fuel quantity for no excess air, the engine developed a brake mean effective pressure of 115 pounds per square inch with a fuel consumption of 0.49 pound per brake horsepower-hour and an explosion pressure of 820 pounds per square inch. A brake mean effective pressure of 100 pounds per square inch with a brake-fuel consumption of 0.44 pound per horsepower-hour at 1,500 r.p.m. was obtained.

  2. 76 FR 25246 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Science.gov (United States)

    2011-05-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule document 2011-8794 appearing on pages 20550-20551 in the issue of Wednesday, April 13, 2011, make the following correction: Sec. 1042...

  3. 76 FR 26620 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Science.gov (United States)

    2011-05-09

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule correction document C1-2011-8794 appearing on page 25246 in the issue of Wednesday, May 4, 2011, make the following correction: Sec. 1042.901...

  4. Modeling of heat release and emissions from droplet combustion of multi component fuels in compression ignition engines

    DEFF Research Database (Denmark)

    Ivarsson, Anders

    emissions from the compression ignition engines (CI engines or diesel engines) are continuously increased. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. The complex combustion process of a compression ignition engine may be divided...... it is well suited for optical line of sight diagnostics in both pre and post combustion regions. The work also includes some preliminary studies of radiant emissions from helium stabilized ethylene/air and methane/oxygen flames. It is demonstrated that nano particles below the sooting threshold actually...... of ethylene/air flames well known from the experimental work, was used for the model validation. Two cases were helium stabilized flames with φ = 1 and 2.14. The third case was an unstable flame with φ = 2.14. The unstable case was used to test whether a transient model would be able to predict the frequency...

  5. Straight vegetable oils usage in a compression ignition engine - A review

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.; Murthy, M.S. [Mechanical Engineering Department, National Institute of Technology, Silchar 788010, Assam (India)

    2010-12-15

    The ever increasing fossil fuel usage and cost, environmental concern has forced the world to look for alternatives. Straight vegetable oils in compression ignition engine are a ready solution available, however, with certain limitations and with some advantages as reported by many researchers. A comprehensive and critical review is presented specifically pertaining to straight vegetable oils usage in diesel engine. A detailed record of historical events described. Research carried out specifically under Indian conditions and international research work on the usage of straight vegetable oils in the diesel engine is separately reviewed. Many researchers have reported that straight vegetable oils in small percentage blends with diesel when used lower capacity diesel engines have shown great promise with regards to the thermal performance as well exhaust emissions. This has been explained in detail. Finally based on the review of international as well as Indian research a SWOT analysis is carried out. The review concludes that there is still scope for research in this area. (author)

  6. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  7. Gaseous and particle emissions from an ethanol fumigated compression ignition engine

    International Nuclear Information System (INIS)

    Surawski, Nicholas C.; Ristovski, Zoran D.; Brown, Richard J.; Situ, Rong

    2012-01-01

    Highlights: ► Ethanol fumigation system fitted on a direct injection compression ignition engine. ► Ethanol substitutions up to 40% (by energy) were achieved. ► Gaseous and particle emissions were measured at intermediate speed. ► PM and NO emissions significantly reduced, whilst CO and HC increased. ► The number of particles emitted generally higher with ethanol fumigation. - Abstract: A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM 2.5 ) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10% to 40% (by energy). With ethanol fumigation, NO and PM 2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM 2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles

  8. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  9. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence

    Directory of Open Access Journals (Sweden)

    Gómez Montoya Juan Pablo

    2015-01-01

    Full Text Available With the purpose to use biogas in an internal combustion engine with high compression ratio and in order to get a high output thermal efficiency, this investigation used a diesel engine with a maximum output power 8.5 kW, which was converted to spark ignition mode to use it with gaseous fuels. Three fuels were used: Simulated biogas, biogas enriched with 25% and 50% methane by volume. After conversion, the output power of the engine decreased by 17.64% when using only biogas, where 7 kW was the new maximum output power of the engine. The compression ratio was kept at 15.5:1, and knocking did not occur during engine operation. Output thermal efficiency operating the engine in SI mode with biogas enriched with 50% methane was almost the same compared with the engine running in diesel-biogas dual mode at full load and was greater at part loads. The dependence of the diesel pilot was eliminated when biogas was used in the engine converted in SI mode. The optimum condition of experiment for the engine without knocking was using biogas enriched with 50% methane, with 12 degrees of spark timing advance and equivalence ratio of 0.95, larger output powers and higher values of methane concentration lead the engine to knock operation. The presence of CO2 allows operating engines at high compression ratios with normal combustion conditions. Emissions of nitrogen oxides, carbon monoxide and unburnt methane all in g/kWh decreased when the biogas was enriched with 50% methane.

  10. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel

    International Nuclear Information System (INIS)

    Park, Su Han; Lee, Chang Sik

    2014-01-01

    Highlights: • Overall characteristics of DME fueled engine are reviewed. • Fuel properties characteristics of DME are introduced. • New technologies for DME vehicle are systemically reviewed. • Research trends for the development of DME vehicle in the world are introduced. - Abstract: From the perspectives of environmental conservation and energy security, dimethyl-ether (DME) is an attractive alternative to conventional diesel fuel for compression ignition (CI) engines. This review article deals with the application characteristics of DME in CI engines, including its fuel properties, spray and atomization characteristics, combustion performance, and exhaust emission characteristics. We also discuss the various technological problems associated with its application in actual engine systems and describe the field test results of developed DME-fueled vehicles. Combustion of DME fuel is associated with low NO x , HC, and CO emissions. In addition, PM emission of DME combustion is very low due to its molecular structure. Moreover, DME has superior atomization and vaporization characteristics than conventional diesel. A high exhaust gas recirculation (EGR) rate can be used in a DME engine to reduce NO x emission without any increase in soot emission, because DME combustion is essentially soot-free. To decrease NO x emission, engine after-treatment devices, such as lean NO x traps (LNTs), urea-selective catalytic reduction, and the combination of EGR and catalyst have been applied. To use DME fuel in automotive vehicles, injector design, fuel feed pump, and the high-pressure injection pump have to be modified, combustion system components, including sealing materials, have to be rigorously designed. To use DME fuel in the diesel vehicles, more research is required to enhance its calorific value and engine durability due to the low lubricity of DME, and methods to reduce NO x emission are also required

  11. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  12. Studies on biogas-fuelled compression ignition engine under dual fuel mode.

    Science.gov (United States)

    Mahla, Sunil Kumar; Singla, Varun; Sandhu, Sarbjot Singh; Dhir, Amit

    2018-04-01

    Experimental investigation has been carried out to utilize biogas as an alternative source of energy in compression ignition (CI) engine under dual fuel operational mode. Biogas was inducted into the inlet manifold at different flow rates along with fresh air through inlet manifold and diesel was injected as a pilot fuel to initiate combustion under dual fuel mode. The engine performance and emission characteristics of dual fuel operational mode were analyzed at different biogas flow rates and compared with baseline conventional diesel fuel. Based upon the improved performance and lower emission characteristics under the dual fuel operation, the optimum flow rate of biogas was observed to be 2.2 kg/h. The lower brake thermal efficiency (BTE) and higher brake-specific energy consumption (BSEC) were noticed with biogas-diesel fuel under dual fuel mode when compared with neat diesel operation. Test results showed reduced NO x emissions and smoke opacity level in the exhaust tailpipe emissions. However, higher hydrocarbon (HC) and carbon monoxide (CO) emissions were noticed under dual fuel mode at entire engine loads when compared with baseline fossil petro-diesel. Hence, the use of low-cost gaseous fuel such as biogas would be an economically viable proposition to address the current and future problems of energy scarcity and associated environmental concerns.

  13. Boosted performance of a compression-ignition engine with a displaced piston

    Science.gov (United States)

    Moore, Charles S; Foster, Hampton H

    1936-01-01

    Performance tests were made using a rectangular displacer arranged so that the combustion air was forced through equal passages at either end of the displacer into the vertical-disk combustion chamber of a single-cylinder, four-stroke-cycle compression-ignition test engine. After making tests to determine optimum displacer height, shape, and fuel-spray arrangement, engine-performance tests were made at 1,500 and 2,000 r.p.m. for a range of boost pressures from 0 to 20 inches of mercury and for maximum cylinder pressures up to 1,150 pounds per square inch. The engine operation for boosted conditions was very smooth, there being no combustion shock even at the highest maximum cylinder pressures. Indicated mean effective pressures of 240 pounds per square inch for fuel consumptions of 0.39 pound per horsepower-hour have been readily reproduced during routine testing at 2,000 r.p.m. at a boost pressure of 20 inches of mercury.

  14. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  15. Characterization and effect of using Mahua oil biodiesel as fuel in compression ignition engine

    Science.gov (United States)

    Kapilan, N.; Ashok Babu, T. P.; Reddy, R. P.

    2009-12-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and compression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the engine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emissions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel (B5 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  16. Application of ORC power station to increase electric power of gas compression ignition engine

    Directory of Open Access Journals (Sweden)

    Mocarski Szymon

    2017-01-01

    Full Text Available The paper presents the calculation results of efficiency of the subcritical low temperature ORC power station powered by waste heat resulting from the process of cooling a stationary compression ignition engine. The source of heat to supply the ORC power station is the heat in a form of water jet cooling the engine at a temperature of 92°C, and the exhaust gas stream at a temperature of 420°C. The study considers three variants of systems with the ORC power stations with different ways of using heat source. The first variant assumes using just engine cooling water to power the ORC station. In the second variant the ORC system is powered solely by a heat flux from the combustion gases by means of an intermediary medium - thermal oil, while the third variant provides the simultaneous management of both heat fluxes to heat the water stream as a source of power supply to the ORC station. The calculations were made for the eight working media belonging both to groups of so-called dry media (R218, R1234yf, R227ea and wet media (R32, R161, R152a, R134a, R22.

  17. The use of modified tyre derived fuel for compression ignition engines.

    Science.gov (United States)

    Pilusa, T J

    2017-02-01

    This study investigated physical and chemical modification of tyre-derived fuel oil (TDFO) obtained from pyrolysis of waste tyres and rubber products for application as an alternative fuel for compression ignition engines (CIE's). TDFO collected from a local waste tyre treatment facility was refined via a novel "oxidative gas-phase fractional distillation over 13× molecular sieves" to recover the light to medium fractions of the TDFO while oxidising and capturing some sulphur compounds in a gas phase. This was followed by desulphurization and chemical modification to improve cetane number, kinematic viscosity and fuel stability. The resulting fuel was tested in an ADE407T truck engine to compare its performance with petroleum diesel fuel. It was discovered that gas phase oxidative fractional distillation reduces the low boiling point sulphur compounds in TDFO such as mercaptans. Using petroleum diesel fuel as a reference, it was observed that the produced fuel has a lower cetane number, flash point and viscosity. On storage the fuel tends to form fibrous microstructures as a result of auto-oxidation of asphaltenes present in the fuel. Mixtures of alkyl nitrate, vinyl acetate, methacrylic anhydride, methyl-tert butyl ether, n-hexane and n-heptane were used to chemically modify the fuel in accordance with the minimum fuel specifications as per SANS 342. The engine performance tests results did not show any sign of engine ceasing or knocking effect. The power-torque trend was very consistent and compared well with petroleum diesel fuelled engine. The levels of total sulphur are still considerably high compared to other cleaner fuel alternatives derived from zero sulphur sources. Copyright © 2016. Published by Elsevier Ltd.

  18. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  19. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2016-01-01

    This study discusses the model of operation of a dual-fuel compression-ignition engine, powered by gaseous fuel with an initial dose of diesel fuel as the ignition inhibitor. The study used a zero-dimensional multiphase mathematical model of a dual-fuel engine to simulate the impact of enhancing

  20. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    OpenAIRE

    SENDILVELAN S.; SUNDAR RAJ C.

    2017-01-01

    Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize ...

  1. Experimental investigation of hydrogen energy share improvement in a compression ignition engine using water injection and compression ratio reduction

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2016-01-01

    Highlights: • Energy efficiency (EE) increased with increase in hydrogen (H_2) energy share. • H_2 energy share increased from 19% to 79% with combined CR reduction and water. • In-cylinder temperature decreased significantly with water addition and CR reduction. • HC, CO, smoke and NO_x emissions with water and CR are lower than base diesel. - Abstract: This study deals with the effect of water addition on enhancement of maximum hydrogen energy share in a compression ignition engine (7.4 kW rated power at 1500 rpm) under dual fuel mode. The specific water consumption (SWC) was varied from 130 to 480 g/kW h in step of 70 g/kW h using manifold and port injection methods. Subsequently, the combined effect of reduction of compression ratio (CR) of the engine (from 19.5:1 (base) to 16.5:1 and 15.4:1) along with water addition on further enhancement of hydrogen energy share is investigated. The hydrogen energy share was limited to 18.8% with conventional dual fuel mode due to knocking. However, the energy share increased to 66.5% with water addition (maximum SWC: 480 g/kW h), and 79% with combined control strategies (SWC of 340 g/kW h and CR reduction to 16.5:1). Thermal efficiency of the engine under water added dual fuel mode is higher than base diesel mode (single fuel mode), but it is lower than the conventional dual fuel mode without water. The efficiency of the engine with reduced CR and water addition is lower than the conventional dual fuel mode, however at the CR of 16.5:1 and SWC of 340 g/kW h, the efficiency is comparable with base diesel mode efficiency. Hydrocarbon, carbon monoxide, smoke, and oxides of nitrogen emissions of the engine with water addition (340 g/kW h) and CR reduction (to 16.5:1) decreased significantly as compared to base diesel mode, but slightly higher than conventional dual fuel mode.

  2. Performance, emission and combustion analysis of a compression ignition engine using biofuel blends

    Directory of Open Access Journals (Sweden)

    Ors Ilker

    2017-01-01

    Full Text Available This study aimed to investigate the effects on performance, emission, and combustion characteristics of adding biodiesel and bioethanol to diesel fuel. Diesel fuel and blend fuels were tested in a water-cooled compression ignition engine with direct injection. Test results showed that brake specific fuel consumption and volumetric efficiency increased by about 30.6% and 3.7%, respectively, with the addition of bioethanol to binary blend fuels. The results of the blend fuel’s combustion analysis were similar to the diesel fuel’s results. Bioethanol increased maximal in-cylinder pressure compared to biodiesel and diesel fuel at both 1400 rpm and 2800 rpm. Emissions of CO increased by an amount of about 80% for fuels containing a high level of bioethanol when compared to CO emissions for diesel fuel. Using biodiesel, NO emissions increased by an average of 31.3%, HC emissions decreased by an average of 39.25%, and smoke opacity decreased by an average of 6.5% when compared with diesel fuel. In addition, when using bioethanol, NO emissions and smoke opacity decreased by 55% and 17% on average, respectively, and HC emissions increased by an average of 53% compared with diesel fuel.

  3. The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine

    International Nuclear Information System (INIS)

    Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Ashrafur Rahman, S.M.; Shahir, S.A.

    2014-01-01

    Highlights: • Fuel additives significantly improve the quality of biodiesel and its blends. • Fuel additives used to enhance biodiesel properties. • Fuel saving from optimized vehicle performance and economy with the use of additives. • Emission reduction from fuel system cleanliness and combustion optimization. - Abstract: With growing concern over greenhouse gases there is increasing emphasis on reducing CO 2 emissions. Despite engine efficiency improvements plus increased dieselization of the fleet, increasing vehicle numbers results in increasing CO 2 emissions. To reserve this trend the fuel source must be changed to renewable fuels which are CO 2 neutral. As a renewable, sustainable and alternative fuel for compression ignition engines, biodiesel is widely accepted as comparable fuel to diesel in diesel engines. This is due to several factors like decreasing the dependence on imported petroleum, reducing global warming, increasing lubricity, and reducing substantially the exhaust emissions from diesel engine. However, there is a major disadvantage in the use of biodiesel as it has lower heating value, higher density and higher viscosity, higher fuel consumption and higher NO X emission, which limits its application. Here fuel additives become essential and indispensable tools not only to minimize these drawbacks but also generate specified products to meet the regional and international standards. Fuel additives can contribute towards fuel economy and emission reduction either directly or indirectly. Their use enable vehicle performance to be maintained at, or near, optimum over the lifetime of the vehicle. A variety of additives are used in automotive biodiesel fuel to meet specification limits and to enhance quality. For example, metal based additives, oxygenated additives, antioxidants, cetane number improvers, lubricity improvers and cold flow improvers are used to meet specifications and quality. This article is a literature review of the effect

  4. An overview of engine durability and compatibility using biodiesel–bioethanol–diesel blends in compression-ignition engines

    International Nuclear Information System (INIS)

    Dharma, S.; Ong, Hwai Chyuan; Masjuki, H.H.; Sebayang, A.H.; Silitonga, A.S.

    2016-01-01

    Highlights: • The effects on engine performance and emission depend on biofuel properties. • The engine performance can improve and emission reduces with biofuel as the fuel. • Biofuel can ensure the long term engine durability and materials of diesel engine. • Feasibility of biofuel carried out extended periods in corrosion behaviour. • Biofuel appears to reduce life-cycle cost efficiencies for the alternative fuel. - Abstract: The realization of declining fossil fuel supplies and the adverse impact of fossil fuels on the environment has accelerated research and development activities in renewable energy sources and technologies. Biofuels are renewable fuels made from edible, non-edible or waste oils, as well as animal fats and algae, and these fuels have been proven to be good substitutes for fossil fuels in the transportation sector. Bioethanol and biodiesels have gained worldwide attention in order to address environmental issues associated with fossil fuels, provide energy security, reduce imports and rural employment, as well as improve agricultural economy. Bioethanol has high oxygen content and octane content up to 35% and 108, respectively and hence, it increases oxygenation and improves combustion of fuel. In addition, bioethanol has lower vaporization pressure, which reduces the risks associated with evaporative emissions. In contrast, biodiesel has good lubricity, which helps protect the surface of engine components from wear and friction. The use of biodiesel–bioethanol–petroleum diesel blends poses a greater challenge with regards to improving the compatibility of the materials with the fuel system in compression ignition (CI) and spark ignition (SI) engines. In this work, the technical conditions of an engine (i.e. engine deposits, wear of the engine components and quality of the lubrication oil) are assessed by the application of with biodiesel–bioethanol–petroleum diesel blends. It is deemed important to evaluate the effects of

  5. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  6. Impact of Biodiesel Blends and Di-Ethyl-Ether on the Cold Starting Performance of a Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Adrian Clenci

    2016-04-01

    Full Text Available The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. Many studies have been conducted to assess the impact of biodiesel use on engine performances. Most of them were carried out in positive temperature conditions. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. Since diesel engine behavior at negative temperatures is an important quality criterion of the engine’s operation, one goal of this paper is to assess the starting performance at −20 °C of a common automotive compression ignition engine, fueled with different blends of fossil diesel fuel and biodiesel. Results showed that increasing the biodiesel blend ratio generated a great deterioration in engine startability. Another goal of this study was to determine the biodiesel blend ratio limit at which the engine would not start at −20 °C and, subsequently, to investigate the impact of Di-Ethyl-Ether (DEE injection into the intake duct on the engine’s startability, which was found to be recovered.

  7. Future combustion technology for synthetic and renewable fuels in compression ignition engines (REFUEL). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aakko-Saksa, P.; Brink, A.; Happonen, M. [and others

    2012-07-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task 'Future Combustion Technology for Synthetic and Renewable Fuels in Transport' of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) prooject was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT), Technical Research Centre of Finland (VTT) and Aabo Akademi University (AAU). The project was funded by TEKES, Waertsilae Oyj, Agro Sisu Power, Aker Arctic Technology Oy and the research partners listed above. Modern renewable diesel fuels have excellent physical and chemical properties, in comparison to traditional crude oil based fuels. Purely paraffinic fuels do not contain aromatic compounds and they are totally sulphur free. Hydrotreated Vegetable Oil (HVO) was studied as an example of paraffinic high cetane number (CN) diesel fuels. HVO has no storage and low temperature problems like the fatty acid methyl esters (FAMEs) have. The combustion properties are better than those of crude oil based fuels and FAME, because they have very high cetane numbers and contain no polyaromatic hydrocarbons (PAH). With low HVO density, viscosity and distillation temperatures, these advantageous properties allow far more advanced combustion strategies, such as very high exhaust gas recirculation (EGR) rates or extreme Miller timings, than has been possible with current fossil fuels. The implementation of these advanced combustion technologies, together with the novel renewable diesel fuel, brought significant nitrogen oxides (NO{sub x}), particulate matter (PM) emission reductions with no efficiency losses. (orig.)

  8. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  9. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  10. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    Science.gov (United States)

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi

    2015-05-10

    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  11. Effects of ethanol added fuel on exhaust emissions and combustion in a premixed charge compression ignition diesel engine

    Directory of Open Access Journals (Sweden)

    Kim Yungjin

    2015-01-01

    Full Text Available The use of diesel engines for vehicle has been increasing recently due to its higher thermal efficiency and lower CO2 emission level. However, in the case of diesel engine, NOx increases in a high temperature combustion region and particulate matter is generated in a fuel rich region. Therefore, the technique of PCCI (premixed charge compression ignition is often studied to get the peak combustion temperature down and to make a better air-fuel mixing. However it also has got a limited operating range and lower engine power produced by the wall wetting and the difficulty of the ignition timing control. In this research, the effect of injection strategies on the injected fuel behavior, combustion and emission characteristics in a PCCI engine were investigated to find out the optimal conditions for fuel injection, and then ethanol blended diesel fuel was used to control the ignition timing. As a result, the combustion pressures and ROHR (rate of heat release of the blended fuel became lower, however, IMEP showed fewer differences. Especially in the case of triple injection, smoke could be reduced a little and NOx emission decreased a lot by using the ethanol blended fuel simultaneously without much decreasing of IMEP compared to the result of 100% diesel fuel.

  12. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  13. Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Pinaki; Probst, Daniel; Pei, Yuanjiang; Zhang, Yu; Traver, Michael; Cleary, David; Som, Sibendu

    2017-03-28

    Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels. To aid the design and optimization of a compression ignition (CI) combustion system using such fuels, a global sensitivity analysis (GSA) was conducted to understand the relative influence of various design parameters on efficiency, emissions and heat release rate. The design parameters included injection strategies, exhaust gas recirculation (EGR) fraction, temperature and pressure at intake valve closure and injector configuration. These were varied simultaneously to achieve various targets of ignition timing, combustion phasing, overall burn duration, emissions, fuel consumption, peak cylinder pressure and maximum pressure rise rate. The baseline case was a three-dimensional closed-cycle computational fluid dynamics (CFD) simulation with a sector mesh at medium load conditions. Eleven design parameters were considered and ranges of variation were prescribed to each of these. These input variables were perturbed in their respective ranges using the Monte Carlo (MC) method to generate a set of 256 CFD simulations and the targets were calculated from the simulation results. GSA was then applied as a screening tool to identify the input parameters having the most

  14. Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine

    OpenAIRE

    Avinash Alagumalai

    2015-01-01

    Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17....

  15. Effect of diesel pre-injection timing on combustion and emission characteristics of compression ignited natural gas engine

    International Nuclear Information System (INIS)

    Xu, Min; Cheng, Wei; Zhang, Hongfei; An, Tao; Zhang, Shaohua

    2016-01-01

    Highlights: • Pre-injection timing on combustion and emission of CING engine are studied. • Closely pre-injection operations leads to increase of combustion intensity. • Early pre-injection operations leads to lower combustion intensity. • Early pre-injection modes provide better NO x emission. - Abstract: Pre-injection strategy is considered to be one of the most important ways to improve diesel engine performance, emission and combustion. It is the same important factor in pilot diesel compression ignition natural gas (CING) engine. In this study, effects of pre-injection timing on combustion and emission performances were experimentally studied in a CING engine which was modified from a turbocharged six-cylinder diesel engine. The experiments were conducted at constant speed of 1400 rpm and different engine loads with a constant fuel injection pressure of 1100 bar. Main injection timing was fixed at 10 °CA BTDC in the advance process of pre-injection timing. The cylinder pressure, heart release rate (HRR), pressure rise rate (PRR), start of combustion (SOC) and coefficient of variation (COV IMEP ), as well as NO x , HC and CO emissions were analyzed. The results indicated that closely pre-injection operations lead to the advance of SOC which intensified combustion of in-cylinder mixture, thereby resulting in higher cylinder pressure, HRR and PRR, as well higher NO x emissions and lower HC and CO emissions. However, early pre-injection operations lead to lower cylinder pressure, HRR and PRR due to decreasing in combustion intensity. Pre-injection timing of 70 °CA BTDC is a conversion point in which influence of pre-injection fuel on ignition and combustion of natural gas nearly disappeared and lowest NO x emission could be obtained. Compared with single injection ignition mode, NO x emissions at the conversion point were reduced by 33%, 38% and 7% at engine load of 38%, 60% and 80% respectively. This is important for the conditions that ignition fuel

  16. Off-road compression-ignition engine emission regulations under the Canadian Environmental Protection Act 1999 : guidance document

    International Nuclear Information System (INIS)

    2006-03-01

    This guide explained the requirements for Off-Road Compression Ignition Engine Emission Regulations established under the Canadian Environmental Protection Act. The regulations are enforced by Environment Canada, which authorizes and monitors the use of the national emissions mark. The regulations prescribe standards for off-road engines that operate as reciprocating, internal combustion engines, other than those that operate under characteristics similar to the Otto combustion cycle and that use a spark plug or other sparking device. The regulations apply to engines that are typically diesel-fuelled and found in construction, mining, farming and forestry machines such as tractors, excavators and log skidders. Four different types of persons are potentially affected by the regulations: Canadian engine manufacturers; distributors of Canadian engines or machines containing Canadian engines; importers of engines or machines for the purpose of sale; and persons not in companies importing engines or machines. Details of emission standards were presented, as well as issues concerning evidence of conformity, importing engines, and special engine cases. Compliance and enforcement details were reviewed, as well as applicable standards and provisions for emission control systems and defeat devices; exhaust emissions; crankcase and smoke emissions; and adjustable parameters. Details of import declarations were reviewed, as well as issues concerning defects and maintenance instructions. 4 tabs., 4 figs

  17. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Vidyanagar, Poona-Bangalore Road, Hubli 580031 (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E' s C.E.T., Belgaum (India)

    2008-09-15

    The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NO{sub X}, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NO{sub X}) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation. (author)

  18. Validation of a zero-dimensional and 2-phase combustion model for dual-fuel compression ignition engine simulation

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2017-01-01

    Full Text Available Increasing demands for the reduction of exhaust emissions and the pursuit to re-duce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of liquid fuel injected directly into the cylinder acts as the ignition inhibitor of the gaseous fuel. Achieving the optimum combustion process in such an engine requires the application of advanced control algorithms which require mathematical modelling support. In response to the growing demand for new simulation tools, a 0-D model of a dual-fuel engine was proposed and validated. The validation was performed in a broad range of engine operating points, including various speeds and load condition, as well as different natural gas/diesel blend ratios. It was demonstrated that the average model calculation error within the entire cycle did not exceed 6.2%, and was comparable to the measurement results cycle to cycle variations. The maximum model calculation error in a single point of a cycle was 15% for one of the complex (multipoint injection cases. In other cases, it did not exceed 11%.

  19. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    SENDILVELAN S.

    2017-11-01

    Full Text Available Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize the blends for reducing emission and improving performance. Results show improved performance with B10 blends compared to neat fuel for all conditions of the engine. Other blends recorded marginal decrease in brake thermal efficiency. The maximum efficiency for B30, B50 blends at peak load are 26.3%, 25.2% respectively against 29.1% for sole fuel. NOx emissions were found to be high or the blends. Peak pressure and rate of pressure rise are increased with increase in dioxane ratio due to improved combustion rate. Heat release pattern shows higher premixed combustion rate with the blends. Higher ignition delay and lower combustion duration are found with all blends than neat diesel fuel.

  20. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, M.A.R. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2004-12-01

    The present energy situation has stimulated active research interest in non-petroleum and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Researchers have found that hydrogen presents the best and an unprecedented solution to the energy crises and pollution problems, due to its superior combustion qualities and availability. This paper discusses analytically and provides data on the effect of compression ratio, equivalence ratio and engine speed on the engine performance, emissions and pre-ignition limits of a spark ignition engine operating on hydrogen fuel. These data are important in order to understand the interaction between engine performance and emission parameters, which will help engine designers when designing for hydrogen. (author)

  1. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  2. Jatropha oil in compression ignition engines. Effects on the engine, environment and Tanzania as supplying country

    International Nuclear Information System (INIS)

    Rabe, E.L.M.

    2006-05-01

    Energy from biomass and more specific, biodiesel, is one of the opportunities that could cover the future energy demand. This thesis investigates the possibilities for biofuels produced from Jatropha Curcas, a plant that grows in countries around the equator, including Tanzania, on which this thesis focuses. The energy crop has several advantages; it grows on degraded, dry, wasted and even salty land, which can be re-cultivated afterwards; it is toxic, which makes it preferable to other energy crops, because it does not compete with food crops; it gives seeds already after one year and the life-span of the plant is more than 50 years; it is good for the economics and employment of the country; etc. The oil that was gained by pressing the Jatropha seeds and part of it has had a chemical treatment called esterification, which results in the less viscous Jatropha Methyl Ester, a biodiesel. The fuels were tested in an engine set-up and compared to two reference fuels; fossil diesel and the well-known biodiesel Rape Methyl Ester. The engine in the set-up was originally a 6-cylinder II.6 DAF WS engine. It had been adjusted in order to make one measuring cylinder optically accessible. Hereby the combustion process could be filmed with a high speed camera. The experiment yielded the in-cylinder pressure as function of the crank angle, NO/NOx measurements, a photo diode signal that represents the amount of soot produced and from the pressure also heat release and in-cylinder temperature could be computed. The investigation of both the experiments and the broader literature study did not lead to any findings that could hamper the application of Jatropha oil or Methyl Ester in diesel engines. In the short term however, the use should be restricted to Tanzania. In the longer term there might be possibilities for export to Europe as well. This depends on whether European regulation will stimulate the use of bio-oil and bio-diesel or not

  3. Experimental optimization of a direct injection homogeneous charge compression ignition gasoline engine using split injections with fully automated microgenetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli Univ., Izmit (Turkey); Reitz, R.D. [Wisconsin Univ., Dept. of Mechanical Engineering, Madison, WI (United States)

    2003-03-01

    Homogeneous charge compression ignition (HCCI) is receiving attention as a new low-emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion under homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NO{sub x} and particulate matter (PM) as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to an HCCI direct injection (DI) gasoline engine. The engine features an electronically controlled low-pressure direct injection gasoline (DI-G) injector with a 60 deg spray angle that is capable of multiple injections. The use of double injection was explored for emission control and the engine was optimized using fully automated experiments and a microgenetic algorithm optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing and the split injection parameters (per cent mass of fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 r/min with a constant fuel flowrate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies. (Author)

  4. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  5. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    A. Gharehghani

    2012-01-01

    Full Text Available Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOx emissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.

  6. Prediction of an optimum biodiesel-diesel blended fuel for compression ignition engine using GT-power

    International Nuclear Information System (INIS)

    Shah, A.N.; Shah, F.H.; Shahid, E.M.; Gardezi, S.A.R.

    2014-01-01

    This paper describes the development of a turbocharged direct-injection compression ignition (CI) engine model using fluid-dynamic engine simulation codes through a simulating tool known as GT Power. The model was first fueled with diesel, and then with various blends of biodiesel and diesel by allotting suitable parameters to predict an optimum blended fuel. During the optimization, main focus was on the engine performance, combustion, and one of the major regulated gaseous pollutants known as oxides of nitrogen (NOx). The combustion parameters such as Premix Duration (DP), Main Duration (DM), Premix Fraction (FP), Main Exponent (EM) and ignition delay (ID) affect the start of injection (SOI) angle, and thus played significant role in the prediction of optimum blended fuel. The SOI angle ranging from 5.2 to 5.7 degree crank angle (DCA) measured before top dead center (TDC) revealed an optimum biodiesel-diesel blend known as B20 (20% biodiesel and 80% diesel by volume). B20 exhibited the minimum possible NOx emissions, better combustion and acceptable engine performance. Moreover, experiments were performed to validate the simulated results by fueling the engine with B20 fuel and operating it on AC electrical dynamometer. Both the experimental and simulated results were in good agreement revealing maximum deviations of only 3%, 3.4%, 4.2%, and 5.1% for NOx, maximum combustion pressure (MCP), engine brake power (BP), and brake specific fuel consumption (BSFC), respectively. Meanwhile, a positive correlation was found between MCP and NOx showing that both the parameters are higher at lower speeds, relative to higher engine speeds. (author)

  7. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part II: modeling HCCI combustion in small scales with detailed homogeneous gas phase chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry

    2002-10-01

    Operational maps for crankshaft-equipped miniature homogeneous charge compression ignition engines are established using performance estimation, detailed chemical kinetics, and diffusion models for heat transfer and radical loss. In this study, radical loss was found to be insignificant. In contrast, heat transfer was found to be increasingly significant for 10, 1, and 0.1 W engines, respectively. Also, temperature-pressure trajectories and ignition delay time maps are used to explore relationships between engine operational parameters and HCCI. Lastly, effects of engine operating conditions and design on the indicated fuel conversion efficiency are investigated. (author)

  8. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  9. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    Science.gov (United States)

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  10. Application of multicriteria decision making methods to compression ignition engine efficiency and gaseous, particulate, and greenhouse gas emissions.

    Science.gov (United States)

    Surawski, Nicholas C; Miljevic, Branka; Bodisco, Timothy A; Brown, Richard J; Ristovski, Zoran D; Ayoko, Godwin A

    2013-02-19

    Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

  11. A study of diesel-hydrogen fuel exhaust emissions in a compression ignition engine/generator assembly

    International Nuclear Information System (INIS)

    Karri, V.; Hafez, H.A.; Kirkegaard, J.F.

    2006-01-01

    A compression engine and duel-fuel supply system was studied in order to determine the influence of hydrogen gas on a diesel engine's exhaust system. Commercially available solenoid valves and pulse actuators were used in a customized mechatronic control unit (MICU) to inject the hydrogen gas into the cylinders during the experiments. The MICU was designed as a generic external attachment. Diesel fuel was used to ignite the hydrogen gas-air mixture after compression. Various different electrical loads were then applied using an alternator in order to stimulate the engine governor and control diesel flow. Results of the study showed that measured carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO x ) loads of exhaust emissions increased, while emissions of carbon dioxide (CO 2 ) decreased. Results also showed that higher temperatures and levels of NO x occurred when hydrogen was mixed with the induced air. It was concluded that higher levels of hydrogen may be needed to reduce emissions. 17 refs., 5 tabs., 2 figs

  12. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  13. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  14. Compression Ignition Engines - revolutionary technology that has civilized frontiers all over the globe from the Industrial Revolution into the 21st Century

    Directory of Open Access Journals (Sweden)

    Stephen Anthony Ciatti

    2015-06-01

    Full Text Available The history, present and future of the compression ignition engine is a fascinating story that spans over 100 years, from the time of Rudolf Diesel to the highly regulated and computerized engines of the 21st Century. The development of these engines provided inexpensive, reliable and high power density machines to allow transportation, construction and farming to be more productive with less human effort than in any previous period of human history. The concept that fuels could be consumed efficiently and effectively with only the ignition of pressurized and heated air was a significant departure from the previous coal-burning architecture of the 1800s. Today, the compression ignition engine is undergoing yet another revolution. The equipment that provides transport, builds roads and infrastructure, and harvests the food we eat needs to meet more stringent requirements than ever before. How successfully 21st Century engineers are able to make compression ignition engine technology meet these demands will be of major influence in assisting developing nations (with over 50% of the world’s population achieve the economic and environmental goals they seek.

  15. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine

    International Nuclear Information System (INIS)

    Ogunkoya, Dolanimi; Fang, Tiegang

    2015-01-01

    Highlights: • Renewable biomass to liquid (BTL) fuel was tested in a direct injection diesel engine. • Engine performance, in-cylinder pressure, and exhaust emissions were measured. • BTL fuel reduces pollutant emission for most conditions compared with diesel and biodiesel. • BTL fuel leads to high thermal efficiency and lower fuel consumption compared with diesel and biodiesel. - Abstract: In this work, the effects of diesel, biodiesel and biomass to liquid (BTL) fuels are investigated in a single-cylinder diesel engine at a fixed speed (2000 rpm) and three engine loads corresponding to 0 bar, 1.26 bar and 3.77 bar brake mean effective pressure (BMEP). The engine performance, in-cylinder combustion, and exhaust emissions were measured. Results show an increase in indicated work for BTL and biodiesel at 1.26 bar and 3.77 bar BMEP when compared to diesel but a decrease at 0 bar. Lower mechanical efficiency was observed for BTL and biodiesel at 1.26 bar BMEP but all three fuels had roughly the same mechanical efficiency at 3.77 bar BMEP. BTL was found to have the lowest brake specific fuel consumption (BSFC) and the highest brake thermal efficiency (BTE) among the three fuels tested. Combustion profiles for the three fuels were observed to vary depending on the engine load. Biodiesel was seen to have the shortest ignition delay among the three fuels regardless of engine loads. Diesel had the longest ignition delay at 0 bar and 3.77 bar BMEP but had the same ignition delay as BTL at 1.26 bar BMEP. At 1.26 bar and 3.77 bar BMEP, BTL had the lowest HC emissions but highest HC emissions at no load conditions when compared to biodiesel and diesel. When compared to diesel and biodiesel BTL had lower CO and CO 2 emissions. At 0 bar and 1.26 bar BMEP, BTL had higher NOx emissions than diesel fuel but lower NOx than biodiesel at no load conditions. At the highest engine load tested, NOx emissions were observed to be highest for diesel fuel but lowest for BTL. At 1

  16. Experimental investigations of effects of EGR on performance and emissions characteristics of CNG fueled reactivity controlled compression ignition (RCCI) engine

    International Nuclear Information System (INIS)

    Singh Kalsi, Sunmeet; Subramanian, K.A.

    2016-01-01

    Highlights: • NO_x emission decreased drastically in RCCI engine with EGR. • CO and HC emissions decreased with 8% EGR. • Smoke emission increased with EGR but is still less than base diesel. • Brake thermal efficiency does not change with EGR up to 15% • 8% EGR is optimum based on less CO, HC, NO_x except smoke. - Abstract: Experimental: tests were carried out on a single cylinder diesel engine (7.4 kW rated power at 1500 rpm) under dual fuel mode (CNG-Diesel) with EGR (exhaust gas recirculation). Less reacting fuel (CNG) was injected inside the intake manifold using timed manifold gas injection system whereas high reactive diesel fuel was directly injected into the engine’s cylinder for initiation of ignition. EGR at different percentages (8%, 15% and 30%) was inducted to the engine through intake manifold and tests were conducted at alternator power output of 2 kW and 5 kW. The engine can operate under dual fuel mode with maximum CNG energy share of 85% and 92% at 5 kW and 2 kW respectively. The brake thermal efficiency of diesel engine improved marginally at 5 kW power output under conventional dual fuel mode with the CNG share up to 37% whereas the efficiency did not change with up to 15% EGR however it decreased beyond the EGR percentage. NO_x emission in diesel engine under conventional dual fuel mode decreased significantly and it further decreased drastically with EGR. The notable point emerged from this study is that CO and HC emissions, which are major problems at part load in reactivity controlled compression ignition engine (RCCI), decreased with 8% EGR along with further reduction of NO_x. However, smoke emission is marginally higher with EGR than without EGR but it is still less than conventional mode (Diesel alone). The new concept emerged from this study is that CO and HC emissions of RCCI engine at part load can be reduced using EGR.

  17. Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system

    International Nuclear Information System (INIS)

    Sarabchi, N.; Khoshbakhti Saray, R.; Mahmoudi, S.M.S.

    2013-01-01

    The waste heat from exhaust gases and cooling water of Homogeneous charge compression ignition engines (HCCI) are utilized to drive an ammonia-water cogeneration cycle (AWCC) and some heating processes, respectively. The AWCC is a combination of the Rankine cycle and an absorption refrigeration cycle. Considering the chemical kinetic calculations, a single zone combustion model is developed to simulate the natural gas fueled HCCI engine. Also, the performance of AWCC is simulated using the Engineering Equation Solver software (EES). Through combining these two codes, a detailed thermodynamic analysis is performed for the proposed tri-generation system and the effects of some main parameters on the performances of both the AWCC and the tri-generation system are investigated in detail. The cycle performance is then optimized for the fuel energy saving ratio (FESR). The enhancement in the FESR could be up to 28.56%. Under optimized condition, the second law efficiency of proposed system is 5.19% higher than that of the HCCI engine while the reduction in CO 2 emission is 4.067% as compared with the conventional separate thermodynamic systems. Moreover, the results indicate that the engine, in the tri-generation system and the absorber, in the bottoming cycle has the most contribution in exergy destruction. - Highlights: • A new thermodynamic tri-generation system is proposed for waste heat recovery of HCCI engine. • A single zone combustion model is developed to simulate the natural gas fueled HCCI engine. • The proposed tri-generation cycle is analyzed from the view points of both first and second laws of thermodynamics. • In the considered cycle, enhancements of 28.56% in fuel energy saving ratio and 5.19% in exergy efficiency are achieved

  18. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    Science.gov (United States)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  19. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    Science.gov (United States)

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

  20. Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (dieselbiogas) mode

    Science.gov (United States)

    Ambarita, H.

    2018-02-01

    The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.

  1. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  2. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  3. Exploration of waste cooking oil methyl esters (WCOME as fuel in compression ignition engines: A critical review

    Directory of Open Access Journals (Sweden)

    S. Kathirvel

    2016-06-01

    Full Text Available The ever growing human population and the corresponding economic development of mankind have caused a relentless surge in the energy demand of the world. The fast diminishing fossil fuel reserves and the overdependence of petroleum based fuels have already prompted the world to look for alternate sources of energy to offset the fuel crisis in the future. Waste Cooking Oil Methyl Ester (WCOME has proven itself as a viable alternate fuel that can be used in Compression Ignition (CI engines due to its low cost, non-toxicity, biodegradability and renewable nature. It also contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. The main objective of this paper is to focus on the study of the performance, combustion and emission parameters of CI engines using WCOME and to explore the possibility of utilizing WCOME blends with diesel extensively in place of diesel. The production methods used for transesterification play a vital role in the physiochemical properties of the methyl esters produced. Various production intensification technologies such as hydrodynamic cavitation and ultrasonic cavitation were employed to improve the yield of the methyl esters during transesterification. This review includes the study of WCOME from different origins in various types of diesel engines. Most of the studies comply with the decrease in carbon monoxide (CO emissions and the increase in brake thermal efficiency while using WCOME in CI engines. Many researchers reported slight increase in the emissions of oxides of nitrogen. ANN modeling has been widely used to predict the process variables of the diesel engine while using WCOME. The versatility of ANN modeling was proven by the minimum error percentages of the actual and predicted values of the performance and emission characteristics.

  4. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    Science.gov (United States)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2017-04-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  5. Use of a single-zone thermodynamic model with detailed chemistry to study a natural gas fueled homogeneous charge compression ignition engine

    International Nuclear Information System (INIS)

    Zheng Junnian; Caton, Jerald A.

    2012-01-01

    Highlights: ► Auto-ignition characteristics of a natural gas fueled HCCI engine. ► Engine speed had the greatest effect on the auto-ignition process. ► Increases of C 2 H 6 or C 3 H 8 improved the auto-ignition process. ► Engine performance was not sensitive to small changes in C 2 H 6 or C 3 H 8 . ► Nitric oxides concentrations decreased as engine speed or EGR level was increased. - Abstract: A single zone thermodynamic model with detailed chemical kinetics was used to simulate a natural gas fueled homogeneous charge compression ignition (HCCI) engine. The model employed Chemkin and used chemical kinetics for natural gas with 53 species and 325 reactions. This simulation was used to complete analyses for a modified 0.4 L single cylinder engine. The engine possessed a compression ratio of 21.5:1, and had a bore and stroke of 86 and 75 mm, respectively. Several sets of parametric studies were completed to investigate the minimal initial temperature, engine performance, and nitric oxide emissions of HCCI engine operation. The results show significant changes in combustion characteristics with varying engine operating conditions. Effects of varying equivalence ratios (0.3–1.0), engine speeds (1000–4000 RPM), EGR (0–40%), and fuel compositions were determined and analyzed in detail. In particular, every 0.1 increase in equivalence ratio or 500 rpm increase in engine speed requires about a 5 K higher initial temperature for complete combustion, and leads to around 0.7 bar increase in IMEP.

  6. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad; Viollet, Yoann; Elwardani, Ahmed Elsaid; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have

  7. Notion Of Artificial Labs Slow Global Warming And Advancing Engine Studies Perspectives On A Computational Experiment On Dual-Fuel Compression-Ignition Engine Research

    Directory of Open Access Journals (Sweden)

    Tonye K. Jack

    2017-06-01

    Full Text Available To appreciate clean energy applications of the dual-fuel internal combustion engine D-FICE with pilot Diesel fuel to aid public policy formulation in terms of present and future benefits to the modern transportation stationary power and promotion of oil and gas green- drilling the brief to an engine research team was to investigate the feasible advantages of dual-fuel compression-ignition engines guided by the following concerns i Sustainable fuel and engine power delivery ii The requirements for fuel flexibility iii Low exhausts emissions and environmental pollution iv Achieving low specific fuel consumption and economy for maximum power v The comparative advantages over the conventional Diesel engines vi Thermo-economic modeling and analysis for the optimal blend as basis for a benefitcost evaluation Planned in two stages for reduced cost and fast turnaround of results - initial preliminary stage with basic simple models and advanced stage with more detailed complex modeling. The paper describes a simplified MATLAB based computational experiment predictive model for the thermodynamic combustion and engine performance analysis of dual-fuel compression-ignition engine studies operating on the theoretical limited-pressure cycle with several alternative fuel-blends. Environmental implications for extreme temperature moderation are considered by finite-time thermodynamic modeling for maximum power with predictions for pollutants formation and control by reaction rates kinetics analysis of systematic reduced plausible coupled chemistry models through the NCN reaction pathway for the gas-phase reactions classes of interest. Controllable variables for engine-out pollutants emissions reduction and in particular NOx elimination are identified. Verifications and Validations VampV through Performance Comparisons were made using a clinical approach in selection of StrokeBore ratios greater-than and equal-to one amp88051 low-to-high engine speeds and medium

  8. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part I: performance estimation and design considerations unique to small dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry

    2002-10-01

    Research and development activities pertaining to the development of a 10 W, homogeneous charge compression ignition free-piston engine-compressor are presented. Emphasis is place upon the miniature engine concept and design rationale. Also, a crankcase-scavenged, two-stroke engine performance estimation method (slider-crank piston motion) is developed and used to explore the influence of engine operating conditions and geometric parameters on power density and establish plausible design conditions. The minimization of small-scale effects such as enhanced heat transfer, is also explored. (author)

  9. Certain investigation in a compression ignition engine using rice bran methyl ester fuel blends with ethanol additive

    Directory of Open Access Journals (Sweden)

    Krishnan Arumugam

    2017-01-01

    Full Text Available In this study and analysis, the physical properties such as calorific value, viscosity, flash, and fire point temperatures of rice bran oil methyl ester were found. The rice bran oil biodiesel has been prepared by transesterification process from pure rice bran oil in the presence of methanol and NaOH. Moreover, property enhancement of rice bran oil methyl ester was also made by adding different additives such as ethanol in various proportions. Rice bran oil methyl ester with 1, 3, and 5% ethanol were analyzed for its fuel properties. The effects of diesel-B20ROME blends with ethanol additive of 1, 3, and 5% on a compression ignition engine were examined considering its emissions. It is found that the increase in biodiesel concentration in the fuel blend influences CO2 and NOx emissions. On the other hand CO and HC emissions are reduced. It is interesting to observe the emission as ethanol-B20ROME blends, reduces CO2 and NOx which are the major contributors to global warming. As the NOx and CO2 can be reduced drastically by the proposed blends, the global warming can be reduced considerably.

  10. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    Science.gov (United States)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  11. Optimization of operating conditions in the early direct injection premixed charge compression ignition regime

    NARCIS (Netherlands)

    Boot, M.D.; Luijten, C.C.M.; Rijk, E.P.; Albrecht, B.A.; Baert, R.S.G.

    2009-01-01

    Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a

  12. Control and diagnosis oriented modelling of the compression ignition engine; Modelisation du moteur a allumage par compression dans la perspective du controle et du diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Grondin, O

    2004-12-15

    This thesis has described an investigation into the modelling of compression ignition engine for control and diagnosis purpose. The Diesel engine is the most efficient and clean internal combustion engine due to modem electromechanical actuators. However, pollutant emission regulations are much more stricter, thus, these complex systems need sophisticated and efficient control algorithms to reach very low emission levels. For this task, engine models are required at each step of the control system development: control laws synthesis, simulation and validation. The system under study is a six cylinder direct injection Diesel engine fitted with a turbocharger. The model of this system is based on physical laws for some parts of the engine such as cylinders, manifolds, turbocharger and crank-slider system. In order to reduce computing time we choose to model heat transfer and heat release during combustion using simple empirical correlations. Resulting model has been implemented in the Matlab-Simulink environment and it can predict variables of interest for control purpose with one degree crank angle resolution. The model has been tested numerically and compared with an industrial engine simulation code with good results. Moreover, model output variables are in good agreement with experimental data recorded on a heavy-duty research engine. The engine model has been embedded on a board providing enough computing performances to perform real-time simulations, this will be helpful for 'hardware-in-the-loop' simulations. Another part of this study is dedicated to the combustion process modelling using a non linear phenomenological model: the NARMAX model. The goal is to predict the in-cylinder pressure evolution using other measurements available on the engine. The NARMAX model parameters have been identified using input-output data carried out from the experimental engine. Such model is well suited for real-time applications compare to numerically cost effective physical

  13. Control and diagnosis oriented modelling of the compression ignition engine; Modelisation du moteur a allumage par compression dans la perspective du controle et du diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Grondin, O.

    2004-12-15

    This thesis has described an investigation into the modelling of compression ignition engine for control and diagnosis purpose. The Diesel engine is the most efficient and clean internal combustion engine due to modem electromechanical actuators. However, pollutant emission regulations are much more stricter, thus, these complex systems need sophisticated and efficient control algorithms to reach very low emission levels. For this task, engine models are required at each step of the control system development: control laws synthesis, simulation and validation. The system under study is a six cylinder direct injection Diesel engine fitted with a turbocharger. The model of this system is based on physical laws for some parts of the engine such as cylinders, manifolds, turbocharger and crank-slider system. In order to reduce computing time we choose to model heat transfer and heat release during combustion using simple empirical correlations. Resulting model has been implemented in the Matlab-Simulink environment and it can predict variables of interest for control purpose with one degree crank angle resolution. The model has been tested numerically and compared with an industrial engine simulation code with good results. Moreover, model output variables are in good agreement with experimental data recorded on a heavy-duty research engine. The engine model has been embedded on a board providing enough computing performances to perform real-time simulations, this will be helpful for 'hardware-in-the-loop' simulations. Another part of this study is dedicated to the combustion process modelling using a non linear phenomenological model: the NARMAX model. The goal is to predict the in-cylinder pressure evolution using other measurements available on the engine. The NARMAX model parameters have been identified using input-output data carried out from the experimental engine. Such model is well suited for real-time applications compare to numerically cost

  14. EXPERIMENTAL STUDY OF HOMOGENEOUS MIXTURE COMPRESSION IGNITION IN INTERNAL COMBUSTION ENGINES

    OpenAIRE

    ANTHONY OSWALDO ROQUE CCACYA

    2010-01-01

    Com o intuito de reduzir as emissões e melhorar a combustão em uma maior faixa de rotação e carga de um motor, foi proposto o estudo da combustão por compressão de misturas homogêneas (HCCI), este processo apresenta altas eficiências e baixas emissões, principalmente de NOx e fuligem. Assim, o objetivo do presente trabalho é a determinação das faixas de operação estável em um motor diesel, de alta taxa de compressão (20:1). O combustível utilizado foi gasolina tipo A, tendo em vista a sua gra...

  15. A 50 cc Two-Stroke DI Compression Ignition Engine Fuelled by DME

    DEFF Research Database (Denmark)

    Hansen, Kim Rene; Nielsen, Claus Suldrup; Sorenson, Spencer C

    2008-01-01

    efficiency to even the smallest engines. A 50cc crankcase scavenged two-stroke CI engine was built based on moped parts. The major alterations were a new cylinder head and a 100 bar DI system using a GDItype injector. Power is limited by carbon monoxide emission but smoke-free operation and NOx less than 200...

  16. Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis

    International Nuclear Information System (INIS)

    Chintala, Venkateswarlu; Subramanian, K.A.

    2014-01-01

    This work is aimed at study of maximum available work and irreversibility (mixing, combustion, unburned, and friction) of a dual-fuel diesel engine (H 2 (hydrogen)–diesel) using exergy analysis. The maximum available work increased with H 2 addition due to reduction in irreversibility of combustion because of less entropy generation. The irreversibility of unburned fuel with the H 2 fuel also decreased due to the engine combustion with high temperature whereas there is no effect of H 2 on mixing and friction irreversibility. The maximum available work of the diesel engine at rated load increased from 29% with conventional base mode (without H 2 ) to 31.7% with dual-fuel mode (18% H 2 energy share) whereas total irreversibility of the engine decreased drastically from 41.2% to 39.3%. The energy efficiency of the engine with H 2 increased about 10% with 36% reduction in CO 2 emission. The developed methodology could also be applicable to find the effect and scope of different technologies including exhaust gas recirculation and turbo charging on maximum available work and energy efficiency of diesel engines. - Highlights: • Energy efficiency of diesel engine increases with hydrogen under dual-fuel mode. • Maximum available work of the engine increases significantly with hydrogen. • Combustion and unburned fuel irreversibility decrease with hydrogen. • No significant effect of hydrogen on mixing and friction irreversibility. • Reduction in CO 2 emission along with HC, CO and smoke emissions

  17. Impact of Fire Resistant Fuel Blends on Compression Ignition Engine Performance

    Science.gov (United States)

    2011-07-01

    exhaust backpressure .  Emissions are sampled from an exhaust probe installed between the engine and exhaust system butterfly valve.  Crankcase...1  3.0  EFFECTS ON ENGINE PERFORMANCE...fuel as it is heated, effectively limiting oxygen available to combust with the fuel. The research program ended in 1987 without the FRF blend

  18. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    OpenAIRE

    Qiang Zhang; Wuqiang Long; Jiangping Tian; Yicong Wang; Xiangyu Meng

    2014-01-01

    In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI) for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature j...

  19. Gasoline compression ignition approach to efficient, clean and affordable future engines

    KAUST Repository

    Kalghatgi, Gautam; Johansson, Bengt

    2017-01-01

    towards diesel and jet fuels, leading to a probable surplus of lighter low-octane fuels. Current diesel engines are efficient but expensive and complicated because they try to reduce the nitrogen oxide and soot emissions simultaneously while using

  20. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baumgardner, Marc E. [Gonzaga University; Lakshminarayanan, Arunachalam [Colorado State University; Olsen, Daniel B. [Colorado State University; Marchese, Anthony J. [Colorado State University

    2017-10-18

    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durability issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.

  1. Effect of FeCl3 and diethyl ether as additives on compression ignition engine emissions

    Directory of Open Access Journals (Sweden)

    Pragyan P. Patnaik

    2017-05-01

    Full Text Available Improving the performance of internal combustion engines and ensuring the reduction of pollution by the application of an advanced technology constitutes one of the main keys for safe guarding nation's economy and health. In this context it is pertinent to note that in terms of brake thermal efficiency and brake specific fuel consumption, a single cylinder four stroke engine acquires a better performance with 15% diethyl ether (DEE as an additive to diesel. Thus, the present investigation is motivated to compare the performance of the engine when run with diesel alone and when it is run with additives like ferric chloride (FeCl3 and diethyl ether. The experiments in the laboratory establish lowering emissions of CO, HC and smoke (excluding NO with diesel and DEE additives compared to that with diesel and FeCl3 additives and diesel alone.

  2. Studies on exhaust emissions of mahua oil operated compression ignition engine.

    Science.gov (United States)

    Kapilan, N; Reddy, R P

    2009-07-01

    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.

  3. Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2015-01-01

    Full Text Available In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injection strategies and cycle average combustion and work output profiles. Hypothesized physical mechanisms based on these correlations were then compared with trends in cycle-by-cycle predictability as revealed by sample entropy. The results of these comparisons help to clarify how fuel injection strategy can interact with prior cycle effects to affect combustion stability and so contribute to design control methods for HCCI engines.

  4. Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Puhan, Sukumar [Department of Mechanical Engineering, Veltech Engineering college, Avadi, Chennai (India); Saravanan, N. [ERC Engines, Tata Motors, Pimpri, Pune (India); Nagarajan, G. [Department of Mechanical Engineering, Anna University, Chennai (India); Vedaraman, N. [Chemical Engineering Division, Central Leather Research Institute, Adyar, Chennai (India)

    2010-08-15

    Several research works have been carried out on biodiesel combustion, performance and emissions till today. But very few studies have been made about the chemistry of biodiesel that affects the diesel engine operation. Biodiesel is derived from vegetable oil or animal fats, which comprises of several fatty acids with different chain length and bonding. The present work focuses on the effect of biodiesel molecular weight, structure (Cis and Trans), and the number of double bonds on the diesel engine operation characteristics. Three types of biodiesel with different molecular weight and number of double bond were selected for the experimental studies. The biodiesels were prepared and analyzed for fuel properties according to the standards. A constant speed diesel engine, which develops 4.4 kW of power, was run with biodiesels and its performance was compared with diesel fuel. The results show that Linseed oil methyl ester with high linolenic (unsaturated fatty acid ester) does not suit best for diesel engine due to high oxides of nitrogen emission and low thermal efficiency. (author)

  5. Results and analyses of the smoke from compression ignition CI engines (diesel)

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mitreski, Stevo M.

    1998-01-01

    The aim of this examination is to improve the knowledge about the actual ecological condition which is a result of the gas and particles emission from the diesel engines. The mechanism of the production of combustion products including the particles in the combustion chamber has been studied, as well as the options for reduction of the emission. Measurements of the smoke emission from the vehicles in Skopje have been made and the results are given, including their analyses. The conclusion from the analyses is that it is necessary to improve the conditions for normal use of the diesel engine vehicles, as well as to engage new vehicles which cause less damage for the environment (Author)

  6. Influence of oxygen enrichment on compression ignition engines using biodiesel blends

    Directory of Open Access Journals (Sweden)

    Vaiyapuri Senthil Murugan

    2017-01-01

    Full Text Available The influence of oxygen enrichment on performance and emission characteristics of a single cylinder diesel engine operated with biodiesel blends have been investigated in this work. The methyl ester of jatropha biodiesel was selected as bio-diesel and four blends (B10, B20, B30, and B40 were selected for experimental investigations. The performance and emission characteristics were obtained for the these blends along with three oxygen enrichment flow rates (1, 3, and 5 L per minute using an oxygen cylinder at the air intake in the diesel engine. The performance and emission characteristics were studied and compared with the diesel and biodiesel. It was observed that, oxygen enrichment enhances the brake thermal efficiency, HC, CO, and smoke. B10 biodiesel with 5 L per minute oxygen enrichment was found to be the best fuel for biodiesel operation.

  7. Experimental Investigation of the Effect of Hydrogen Manifold Injection on the Performance of Compression Ignition Engines

    OpenAIRE

    Haroun A.K. Shahad; Nabeel Abdul-Hadi

    2011-01-01

    Experiments were carried out to evaluate the influence of the addition of hydrogen to the inlet air on the performance of a single cylinder direct injection diesel engine. Hydrogen was injected in the inlet manifold. The addition of hydrogen was done on energy replacement basis. It was found that the addition of hydrogen improves the combustion process due to superior combustion characteristics of hydrogen in comparison to conventional diesel fuels. It was also found that...

  8. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  9. Combustion characteristics of a turbocharged DI compression ignition engine fueled wth petroleum diesel fuels and biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli University, Izmit (Turkey). Department of Mechanical Education

    2007-04-15

    In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO{sub x} increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO{sub x} and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine. (author)

  10. Potential utilization of biodiesel as alternative fuel for compression ignition engine in Malaysia

    Science.gov (United States)

    Wahab, M. A.; Ma'arof, M. I. N.; Ahmad, I. N.; Husain, H.

    2017-10-01

    Biodiesel is a type of fuel which is derived from various sources of vegetable plants and waste fuels. Today, numerous biodiesels have been engineered to be at par or even better in term of performance in comparison to pure diesel. Therefore, biodiesel has shown a promising sign as one of the best candidate in overcoming total dependency on pure diesel. This paper gives review on various tests and experiments conducted on biodiesel in order to highlight the potentials given by this particular fuel. In addition, providing the supporting evidences to further endorse for a mass usage of biodiesel in Malaysia - simultaneously, driving the country to become a potential global biodiesel producer in the near future. The reviewed studies were obtained mainly via indexed journals and online libraries. Conclusively, every test and study for every blend of biodiesel had shown consistent positive results in regards to performance and in overcoming emission related issues. Thus, providing the evidence that biodiesel is highly reliable. Malaysia as a semi-agricultural nation could take the advantage in becoming one of the leading global biodiesel producers. Nevertheless, this will requires total cooperation of every concerned government bodies and authorities.

  11. Performance and emission characteristics of compression ignition engine operating with false flax biodiesel and butanol blends

    Directory of Open Access Journals (Sweden)

    Mustafa Atakan Akar

    2016-02-01

    Full Text Available In this study, fuel properties, engine performance, and emission characteristics of diesel fuel, false flax biodiesel, and their blends with butanol have been evaluated. Blend ratios used in this study were diesel–biodiesel–butanol (70% diesel–20% biodiesel–10% butanol and 60% diesel–20% biodiesel–20% butanol by volume and biodiesel–diesel (20% biodiesel–80% diesel and 100% biodiesel by volume. Experiments showed that 10% alcohol addition to diesel and biodiesel fuels caused a decrease in torque value up to 8.57%. When butanol ratio raised to 20%, torque value decreased to an average of 12.7% and power values decreased to an average of 13.57%. Specific fuel consumption increased to an average of 10.63% and 12.80% with 10% and 20% butanol addition, respectively. Alcohol addiction into conventional diesel and biodiesel fuel slightly increased NOX emissions. Supplement of alcohol decreased CO and CO2 emissions when it was entrained to diesel and increased it when it was added to biodiesel. It means that addition of alcohol to diesel changed CO and CO2 emissions.

  12. The syngas production by partial oxidation using a homogeneous charge compression ignition engine

    International Nuclear Information System (INIS)

    Yang, Yoon Cheol; Lim, Mun Sup; Chun, Young Nam

    2009-01-01

    It is essential to develop the environment-friendly alternative energies urgently considering the limited fossil fuel and the global warming caused by environmental destruction. In this research, the new technology was studied to produce syngas from methane or simulated biogas with a HCCI reforming engine. The purpose is to provide the basics for the research on biogas treatment mainly comprising of methane and carbon dioxide, the cause of global warming. This experiment was conducted on the changes in syngas concentration according to the variations of oxygen/methane ratio, total flow rate, intake heating temperature, CO 2 in mixture and oxygen enrichment with partial oxidation. Through the parametric screening studies, optimum conditions and their results in this study was taken as follows; The maximum content of syngas was; 27.4% at 0.3 of oxygen/methane ratio, 32.38% at 117.3 L/min of total flow rate, and 35.83% at 355 C of intake heating temperature. 41.06% of syngas was produced at 50.33% of oxygen enrichment ratio. (author)

  13. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine

    International Nuclear Information System (INIS)

    Jain, Ayush; Singh, Akhilendra Pratap; Agarwal, Avinash Kumar

    2017-01-01

    Highlights: • NOx and PM emissions were lowest at 700 bar fuel injection pressure (FIP). • PCCI showed lower knocking than compression ignition combustion mode. • Increasing FIP reduced emissions of nitrogen oxides and smoke opacity in PCCI mode. • Increasing FIP reduced nucleation mode particle concentration. • Increasing FIP with advanced main injection timings improved PCCI combustion. - Abstract: This experimental study focuses on developing new combustion concept for compression ignition (CI) engines by achieving partially homogeneous charge, leading to low temperature combustion (LTC). Partially premixed charge compression ignition (PCCI) combustion is a single-stage phenomenon, with combustion shifting towards increasingly premixed combustion phase, resulting in lower in-cylinder temperatures. PCCI leads to relatively lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) simultaneously. To investigate combustion, performance and emission characteristics of the PCCI engine, experiments were performed in a mineral diesel fueled single cylinder research engine, which was equipped with flexible fuel injection equipment (FIE). Effects of fuel injection pressure (FIP) were investigated by changing the FIP from 400 bar to 1000 bar. Experiments were carried out by varying start of main injection (SoMI) timings (from 12° to 24° before top dead center (bTDC)), when using single pilot injection. This experimental study included detailed investigations of particulate characteristics such as particulate number-size distribution using engine exhaust particle sizer (EEPS), particulate bound trace metal analysis using inductively coupled plasma-optical emission spectrometer (ICP-OES), and soot morphology using transmission electron microscopy (TEM). PCCI combustion improved with increasing FIP (up to 700 bar) due to superior fuel atomization however further increasing FIP deteriorated PCCI combustion and engine performance due to intense

  14. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  15. On the effect of Di-Ethyl-Ether (DEE) injection upon the cold starting of a biodiesel fuelled compression ignition engine

    Science.gov (United States)

    Clenci, Adrian; Niculescu, Rodica; Iorga-Simǎn, Victor; Tricǎ, Alina; Danlos, Amélie

    2017-02-01

    The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. This paper is a consequence of a study on assessing the cold-starting performance of a compression ignition engine fueled with different blends of fossil diesel fuel and biodiesel. Through experimental investigations, it was found that the engine starting at -20°C was no longer possible in the case of using B50 (50% diesel + 50% biofuel made from sunflower oil). In order to "force" the engine starting in this particular situation, Di-Ethyl-Ether (DEE) was injected into the intake manifold. DEE being a highly flammable substance, the result was a sudden and explosive engine starting, the peak pressure in the monitored cylinder in the first successful engine cycle being almost twice the one which is usually considered as normal. Thus, to explain the observed phenomena, we launched this work relying on the analysis of the in-cylinder instantaneous pressure evolution, which was acquired during cranking, stabilizing and idling phases. Moreover, since the cause of the sudden and explosive engine starting was the DEE, by using a CFD approach, we also obtained results regarding the inter-cylinder distribution of the injected DEE.

  16. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    OpenAIRE

    Machrafi, Hatim; Cavadias

    2008-01-01

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured, The inlet temperature was changed from 25 to 70 degrees C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels t...

  17. TOPSIS-based parametric optimization of compression ignition engine performance and emission behavior with bael oil blends for different EGR and charge inlet temperature.

    Science.gov (United States)

    Muniappan, Krishnamoorthi; Rajalingam, Malayalamurthi

    2018-05-02

    The demand for higher fuel energy and lesser exhaust emissions of diesel engines can be achieved by fuel being used and engine operating parameters. In the present work, effects of engine speed (RPM), injection timing (IT), injection pressure (IP), and compression ratio (CR) on performance and emission characteristics of a compression ignition (CI) engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether (DEE) was used in this work and test was conducted at different charge inlet temperature (CIT) and exhaust gas recirculation (EGR). All the experiments are conducted at the tradeoff engine load that is 75% engine load. When operating the diesel engine with 320 K CIT, brake thermal efficiency (BTE) is improved to 28.6%, and carbon monoxide (CO) and hydrocarbon (HC) emissions have been reduced to 0.025% and 12.5 ppm at 18 CR. The oxide of nitrogen (NOx) has been reduced to 240 ppm at 1500 rpm for 30% EGR mode. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is frequently used in multi-factor selection and gray correlation analysis method is used to study uncertain of the systems.

  18. Modelling for Fuel Optimal Control of a Variable Compression Engine

    OpenAIRE

    Nilsson, Ylva

    2007-01-01

    Variable compression engines are a mean to meet the demand on lower fuel consumption. A high compression ratio results in high engine efficiency, but also increases the knock tendency. On conventional engines with fixed compression ratio, knock is avoided by retarding the ignition angle. The variable compression engine offers an extra dimension in knock control, since both ignition angle and compression ratio can be adjusted. The central question is thus for what combination of compression ra...

  19. Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2016-06-01

    Full Text Available For a compression ignition (CI free piston engine linear generator (FPLG, injection timing is one of the most important parameters that affect its performance, especially for the one-stroke starting operation mode. In this paper, two injection control strategies are proposed using piston position and velocity signals. It was found experimentally that the injection timing’s influence on the compression ratio, the peak in-cylinder gas pressure and the indicated work (IW is different from that of traditional reciprocating CI engines. The maximum IW of the ignition starting cylinder, say left cylinder (LC and the right cylinder (RC are 132.7 J and 138.1 J, respectively. The thermal-dynamic model for simulating the working processes of the FPLG are built and verified by experimental results. The numerical simulation results show that the running instability and imbalance between LC and RC are the obvious characters when adopting the injection strategy of the velocity feedback. These could be solved by setting different triggering velocity thresholds for the two cylinders. The IW output from the FPLG under this strategy is higher than that of adopting the position feedback strategy, and the maximum IW of the RC could reach 162.3 J. Under this strategy, the prototype is able to achieve better starting conditions and could operate continuously for dozens of cycles.

  20. An assessment of the dual-mode reactivity controlled compression ignition/conventional diesel combustion capabilities in a EURO VI medium-duty diesel engine fueled with an intermediate ethanol-gasoline blend and biodiesel

    International Nuclear Information System (INIS)

    Benajes, Jesús; García, Antonio; Monsalve-Serrano, Javier; Balloul, Iyad; Pradel, Gérard

    2016-01-01

    Highlights: • Reactivity controlled compression ignition regime utilized from 25% to 35% load. • Dual-mode reduces the regeneration periods of the diesel particulate filter. • The use of near-term available biofuels allows good performance and emissions. • Dual-mode leads to 2% greater efficiency than diesel combustion at high engine speeds. - Abstract: This work investigates the capabilities of the dual-mode reactivity controlled compression ignition/conventional diesel combustion engine operation to cover the full operating range of a EURO VI medium-duty diesel engine with compression ratio of 17.5:1. This concept is based on covering all the engine map switching between the reactivity controlled compression ignition and the conventional diesel combustion operating modes. Specifically, the benefits of reactivity controlled compression ignition combustion are exploited whenever possible according to certain restrictions, while the conventional diesel combustion operation is used to cover the zones of the engine map in which the reactivity controlled compression ignition operation is limited. The experiments were conducted using a single-cylinder research diesel engine derived from the multi-cylinder production engine. In addition, considering the mandatory presence of biofuels in the future context of road transport and the ability of ethanol to be blended with gasoline, the low reactivity fuel used in the study is a blend of 20% ethanol by volume with 80% of 95 octane number gasoline. Moreover, a diesel containing 7% of biodiesel has been used as high reactivity fuel. Firstly, a reactivity controlled compression ignition mapping is performed to check the operational limits of the concept in this engine platform. Later, based on the results, the potential of the dual-mode concept is discussed. Results suggest that, under the constraints imposed, reactivity controlled compression ignition combustion can be utilized between 25% and 35% load. In this region

  1. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – A comprehensive review

    International Nuclear Information System (INIS)

    Fathi, Morteza; Jahanian, Omid; Shahbakhti, Mahdi

    2017-01-01

    Highlights: • Addressing accuracy-speed compromise of HCCI representation is very important. • Phasing, load, exhaust temperature and emissions are the most important outputs. • Separability between the effects of the inputs on the outputs is of great interest. • Existing actuation systems combining inputs are favorable. • An HCCI controller should be a fast and robust one to become a viable solution. - Abstract: Homogeneous charge compression ignition (HCCI) combustion engines are advantageous in terms of good fuel economy and low levels of soot-nitrogen oxides (NOx) emissions. However, they are accompanied with some intrinsic challenges, the most important of which is the lack of any direct control method for ignition trigger. Thus, implementation of HCCI combustion is in fact a control problem, and an optimized control structure is required for attaining the inherent benefits of HCCI. The control structure consists of a proper representation of engine processes; a suitable selection of state variables; useful and applicable set of inputs, outputs and observers; appropriate fixed or variable set-points for controlled parameters; instrumentations including sensors and actuators; and an applicable control law implemented in a controller. The present paper aims at addressing these issues altogether by introducing HCCI engine control structure in progress and presenting highlights from literature. Research should result in appropriately controlled HCCI engines which can provide desired load at rated speed with acceptable performance and emissions characteristics.

  2. Analysis of Engine Parameters at Using Diesel-LPG and Diesel-CNG Mixture in Compression-ignition Engine

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.

  3. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad

    2018-04-03

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  4. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad; Bakor, Radwan; AlRamadan, Abdullah; Almansour, Mohammed; Sim, Jaeheon; Ahmed, Ahfaz; Viollet, Yoann; Chang, Junseok

    2018-01-01

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  5. Advanced ignition for automotive engines

    OpenAIRE

    Pineda, Daniel Ivan

    2017-01-01

    Spark plugs have been igniting combustible mixtures like those found in automotive engines for over a century, and the principles of the associated ignition techniques using thermal plasma (inductive or capacitive sparks) have remained relatively unchanged during that time. However, internal combustion engines are increasingly operating with boosted intake pressures (i.e. turbo- or super-charged) in order to maintain power output while simultaneously reducing engine size and weight, and they ...

  6. Study of high load operation limit for premixed compression ignition engine; Yokongo asshuku chakka kikan no kofuka unten genkai ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, N. [Isuzu Advanced Engineering Center Ltd., Kanagawa (Japan); Akagawa, H. [Nissan Diesel Motor Co. Ltd., Saitama (Japan); Tsujimura, K. [Chiba Institute of Technology, Chiba (Japan); Miyamoto, T.

    2000-11-25

    NO{sub x} emission was remarkably reduced by PREDIC (PREmixed lean DIesel Combustion) system in which fuel was injected at very early stage of compression stroke and the major part of the fuel is considered to be burned with self-ignition of premixed charge around TDC. However PREDIC system had some problems, a restriction of a high load operation was one of these problems. In order to investigate the combustion characteristics of PREDIC at the richer operation limit, a test engine was operated with gaseous fuel-air mixture where less heterogeneous mixture can be formed than that of conventional diesel engines. A steep pressure rise or the abrupt increase in NO{sub x} emission determined the richer operation limit. This was at 2 to 2.4 of excess air ratio. Supercharging operation enabled the high load operation more than 2.4 of excess air ratio. (author)

  7. Decreasing the emissions of a partially premixed gasoline fueled compression ignition engine by means of injection characteristics and EGR

    Directory of Open Access Journals (Sweden)

    Nemati Arash

    2011-01-01

    Full Text Available This paper is presented in order to elucidate some numerical investigations related to a partially premixed gasoline fuelled engine by means of three dimensional CFD code. Comparing with the diesel fuel, gasoline has lower soot emission because of its higher ignition delay. The application of double injection strategy reduces the maximum heat release rate and leads to the reduction of NOx emission. For validation of the model, the results for the mean in-cylinder pressure, H.R.R., NOx and soot emissions are compared with the corresponding experimental data and show good levels of agreement. The effects of injection characteristics such as, injection duration, spray angle, nozzle hole diameter, injected fuel temperature and EGR rate on combustion process and emission formation are investigated yielding the determination of the optimal point thereafter. The results indicated that optimization of injection characteristics leads to simultaneous reduction of NOx and soot emissions with negligible change in IMEP.

  8. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...... were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio depended on the equivalence ratio used. A lower equivalence ratio requires a higher compression ratio...... before the fuel is burned completely, due to lower in-cylinder temperatures and lower reaction rates. The study provided some insight in the importance of operating at the correct compression ratio, as well as the operational limitations and emission characteristics of HCCI combustion. HCCI combustion...

  9. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  10. Effect of fuel oxygen on the energetic and exergetic efficiency of a compression ignition engine fuelled separately with palm and karanja biodiesels

    International Nuclear Information System (INIS)

    Jena, Jibanananda; Misra, Rahul Dev

    2014-01-01

    Exergy analysis of any thermodynamic system can take care of the limitations of energy analysis such as irreversible losses, their magnitude and the source of thermodynamic inefficiencies apart from energy losses. In the present study, both the analyses along with heat release analysis are conducted on a natural aspirated diesel engine fuelled separately with palm biodiesel (PB), karanja biodiesel (KB), and petrodiesel (PD) using the experimental data. Since the engine performs best at about 85% loading condition, the energetic and exergetic performance parameters of the engine are evaluated at 85% loading condition for each type of fuel. The aim of the study is to determine the effect of fuel oxygen on energy and exergy efficiencies of a CI (compression ignition) engine. Various exergy losses, exergy destruction and their ratios associated with the heat transfer through cooling water, radiation, exhaust gas, friction, and some uncounted exergy destruction are investigated. Apart from exergy loss due to heat transfer; the uncounted exergy destruction (due to combustion) also plays a major role in the system inefficiency. Based on the comparative assessment of the obtained results, it is concluded that a better combustion with less irreversibility is possible with the increase in O 2 content in the fuel. - Highlights: • Efficiency of a CI engine increases with the increase in oxygen quantity in the fuel. • Irreversibility of a CI engine decreases with increase in oxygen content in the fuel. • Palm biodiesel performs better than karanja biodiesel and petrodiesel for a CI engine

  11. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel

    International Nuclear Information System (INIS)

    Lee, Seokhwon; Jeon, Joonho; Park, Sungwook

    2016-01-01

    Highlights: • Pre-blended gasoline-diesel fuel was used with direct injection system. • KIVA-CHEMKIN code modeled dual-fuel fuel spray and combustion processes with discrete multi-component model. • The characteristics of Combustion and emission on pre-blended fuel was investigated with various fuel reactivities. • Optimization of combustion chamber shape improved combustion performance of the gasoline-diesel blended fuel engine. - Abstract: In this study, experiments and numerical simulations were used to improve the fuel efficiency of compression ignition engine using a gasoline-diesel blended fuel and an optimization technology. The blended fuel is directly injected into the cylinder with various blending ratios. Combustion and emission characteristics were investigated to explore the effects of gasoline ratio on fuel blend. The present study showed that the advantages of gasoline-diesel blended fuel, high thermal efficiency and low emission, were maximized using the numerical optimization method. The ignition delay and maximum pressure rise rate increased with the proportion of gasoline. As the gasoline fraction increased, the combustion duration and the indicated mean effective pressure decreased. The homogeneity of the fuel-air mixture was improved due to longer ignition delay. Soot emission was significantly reduced up to 90% compared to that of conventional diesel. The nitrogen oxides emissions of the blended fuel increased slightly when the start of injection was retarded toward top dead center. For the numerical study, KIVA-CHEMKIN multi-dimensional CFD code was used to model the combustion and emission characteristics of gasoline-diesel blended fuel. The micro genetic algorithm coupled with the KIVA-CHEMKIN code were used to optimize the combustion chamber shape and operating conditions to improve the combustion performance of the blended fuel engine. The optimized chamber geometry enhanced the fuel efficiency, for a level of nitrogen oxides

  12. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  13. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  14. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France); Cavadiasa, Simeon [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)

    2008-11-15

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured. The inlet temperature was changed from 25 to 70 C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels that were investigated were PRF40 and n-heptane. These three parameters appeared to decrease the ignition delays, with the inlet temperature having the least influence and the compression ratio the most. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. The same kinetic mechanism is used to better understand the underlying chemical and physical phenomena that make the influence of a certain parameter change according to the operating conditions. This can be useful for the control of the auto-ignition process in an HCCI engine. (author)

  15. Biodiesel production from Cynara cardunculus L. and Brassica carinata A. Braun seeds and their suitability as fuels in compression ignition engines

    Directory of Open Access Journals (Sweden)

    Stefania De Domenico

    2016-03-01

    Full Text Available The development of energy crops can provide environmental benefits and may represent an opportunity to improve agriculture in areas considered at low productivity. In this work, we studied the energy potential of two species (Brassica carinata A. Braun and Cynara cardunculus L. and their seed oil productivity under different growth conditions. Furthermore, the biodiesel from the oil extracted from the seeds of these species was produced and analysed in term of utilisation as fuels in compression ignition engines. In particular, the spray penetration and shape ratio were measured in a constant-volume chamber and compared with the results obtained with a standard diesel fuel. These results were obtained using a standard common rail injection system at different injection pressure, injection duration, and constant-volume chamber pressure.

  16. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  17. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Deng, Jiao; Chen, Renzhe; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen-enriched compressed natural gas) fuels on performance and emission characteristics at wide open throttle operating conditions using a turbocharged spark-ignition natural gas engine. The experimental data was taken at hydrogen fractions of 0%, 30% and 55% by volume and was conducted under different excess air ratio ({lambda}) at MBT operating conditions. It is found that under various {lambda}, the addition of hydrogen can significantly reduce CO, CH{sub 4} emissions and the NO{sub x} emission remain at an acceptable level when ignition timing is optimized. Using the same excess air ratio, as more hydrogen is added the power, exhaust temperatures and max cylinder pressure decrease slowly until the mixture's lower heating value remains unchanged with the hydrogen enrichment, then they rise gradually. In addition, the early flame development period and the flame propagation duration are both shorter, and the indicated thermal efficiency and maximum heat release rate both increase with more hydrogen addition. (author)

  18. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zihan [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Srinivasan, Kalyan K. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Krishnan, Sundar R. [Mississippi State Univ., Mississippi State, MS (United States). Dept. of Mechanical Engineering; Som, Sibendu [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Transportation Research

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.

  19. Attempt of multiple stage injection with EGR for high load operation of a premixed compression ignition engine; Tadan funsha ni yoru yokongo asshuku chakka kikan no unten ryoiki kakudai

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T.; Miyamoto, T.; Akagawa, H. [New ACE Institute Co. Ltd., Tsukuba (Japan); Tsujimura, K. [Chiba Institute of Technology, Chiba (Japan)

    2000-01-25

    By injecting fuel at the very early stage of compression stroke and thus creating homogeneous lean mixture before ignition, (PREDIC ; PREmixed lean DIesel Combustion), simultaneous reduction of NO{sub x} and smoke was obtained. However, since increasing the mixture equivalence ratio cause knocking, it was difficult to operate at higher load conditions. In this study, in order to reduce combustion rate at high load conditions in a premixed compression ignition engine, multiple stage injection method and EGR were combined, and heterogeneous mixture was made before ignition. The engine test results showed that NO{sub x} emissions could be reduced to less than 50 ppm, without knocking even at full load conditions. In addition, smoke emissions were also maintained below invisible level. It can be understood that the premixing of fuel was advanced, smoke was reduced, and EGR rate was increased, resulting lower heat release rate and NO{sub x} emissions. (author)

  20. Experimental investigation of performance, exhaust emission and combustion parameters of stationary compression ignition engine using ethanol fumigation in dual fuel mode

    International Nuclear Information System (INIS)

    Jamuwa, D.K.; Sharma, D.; Soni, S.L.

    2016-01-01

    Highlights: • Potential of renewable fuels as diesel replacement is being emphasized. • Effect of ethanol fumigation on the performance of diesel engine is investigated. • NOx, CO_2 and smoke decreases with simultaneous increase in HC and CO. • Increase in ignition delay with decrease in combustion duration for ethanol substitution observed. - Abstract: Dwindling reserves and steeply increasing prices of the fossil-fuels, concern over climatic change due to release of anthropogenic greenhouse gases and the strict environmental regulations have motivated the researchers for the search for renewable alternative fuel that has clean burning characteristics and may be produced indigenously. Alcohols, being oxygenated fuel improve the combustion and reduce greenhouse gas emissions, thus enhancing agrarian economies and encouraging national economy as a whole. The objective of this paper is to investigate the thermal performance, exhaust emissions and combustion behaviour of small capacity compression ignition engine using fumigated ethanol. Fumigated ethanol at different flow rates is supplied to the cylinder during suction with the help of a simplified low cost ethanol fuelling system. With ethanol fumigation, brake thermal efficiency decreased upto 11.2% at low loads due to deteriorated combustion, whereas improved combustion increased efficiency up to 6% at higher loads, as compared to pure diesel. Maximum reduction of 22%, 41% and 27% respectively in nitrogen oxide, smoke and carbon-di-oxide emissions with simultaneous increase in hydrocarbon and carbon-mono-oxide emissions upto maximum of 144% and 139% respectively for different rates of ethanol fumigation have been observed, when compared to pure diesel operation. This is due to the changes in physico-chemical properties of air fuel mixture, viz combustion temperature, oxygen concentration, latent heat of vaporisation, fuel distribution, cetane number and ignition delay, that occurred with addition of

  1. Homogeneous Charge Compression Ignition Combustion: Challenges and Proposed Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Izadi Najafabadi

    2013-01-01

    Full Text Available Engine and car manufacturers are experiencing the demand concerning fuel efficiency and low emissions from both consumers and governments. Homogeneous charge compression ignition (HCCI is an alternative combustion technology that is cleaner and more efficient than the other types of combustion. Although the thermal efficiency and NOx emission of HCCI engine are greater in comparison with traditional engines, HCCI combustion has several main difficulties such as controlling of ignition timing, limited power output, and weak cold-start capability. In this study a literature review on HCCI engine has been performed and HCCI challenges and proposed solutions have been investigated from the point view of Ignition Timing that is the main problem of this engine. HCCI challenges are investigated by many IC engine researchers during the last decade, but practical solutions have not been presented for a fully HCCI engine. Some of the solutions are slow response time and some of them are technically difficult to implement. So it seems that fully HCCI engine needs more investigation to meet its mass-production and the future research and application should be considered as part of an effort to achieve low-temperature combustion in a wide range of operating conditions in an IC engine.

  2. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  3. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy

    International Nuclear Information System (INIS)

    Das, Pranab; Subbarao, P.M.V.; Subrahmanyam, J.P.

    2015-01-01

    Highlights: • A new dual injection concept is developed by minimum geometry modification. • The occurrence of combustion parameters strongly depend on main injection timing. • At higher load, premixed equivalence ratio dominates over main injection timing. • Retarded of main injection timing tends to retard combustion phasing. • Slightly retarded main injection timing is recommended to avoid intense knocking. - Abstract: Homogeneous charge compression ignition combustion of diesel fuel is implemented using a novel dual injection strategy. A new experimental technique is developed to modify a single cylinder direct injection diesel engine to run on homogeneous combustion mode. Effect of main injection timing is investigated covering a range from 26 to 8 crank angle degrees before top dead center with an interval of 3°. Retarded main injection timing is identified as a control strategy for delaying combustion phasing and a means of controlled combustion phasing of direct injection homogeneous charge compression ignition combustion. Two load conditions were investigated and it was observed that at higher load, start of combustion depends more on fuel air equivalence ratio than main injection timing, whereas at low load, it significantly varies with varying main injection timing. Significant improvements in smoke and oxides of nitrogen emissions are observed when compared with the baseline conventional combustion. By studying different combustion parameters, it is observed that there is an improvement in performance and emissions with marginal loss in thermal efficiency when the main injection timing is 20° before top dead center. This is identified as the optimum main injection timing for such homogeneous combustion under the same operating condition

  4. Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber

    International Nuclear Information System (INIS)

    Salahi, Mohammad Mahdi; Esfahanian, Vahid; Gharehghani, Ayatallah; Mirsalim, Mostafa

    2017-01-01

    Highlights: • A novel combustion strategy, RCCI with a pre-chamber, is proposed and investigated. • The proposed strategy extends the RCCI operating range to use less intake air temperatures. • The new concept extends the RCCI operating range to use lower portions of the active fuel. • The proposed strategy is sensitive to engine load and is more efficient for high loads. - Abstract: Reactivity controlled compression ignition (RCCI) concept has been proven to be a promising combustion mode for the next generations of internal combustion engines. This strategy is still subject of extensive studies to overcome its operational limitations. In the present work, the effect of using a pre-chamber to extend some operating ranges in a RCCI engine is investigated using coupled multidimensional computational fluid dynamics (CFD) with detailed chemical kinetic mechanisms. To accomplish this, the combustion and flow field in a single cylinder engine with a pre-chamber, working in RCCI mode and fueled with natural gas/diesel are numerically modeled. Experimental data is used to validate the simulation results and then, combustion characteristics and engine emissions in some various operating regions, in terms of initial temperature, fuel equivalence ratio and portions of the two fuels are discussed. The results reveal that the proposed strategy provides the ability to extend the engine operating ranges to use lower intake temperatures, even to 50 K lower for some cases, and also using a larger portion of natural gas instead of diesel fuel. On the other hand, the new strategy could result in incomplete combustion and formation of related emissions in low loads, but for higher engine loads it shows better combustion characteristics.

  5. Development of a pre-ignition submodel for hydrogen engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Sadiq [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2005-10-15

    In hydrogen-fuelled spark ignition engine applications, the onset of pre-ignition remains one of the prime limitations that needs to be addressed to avoid its incidence and achieve superior performance. This paper describes a new pre-ignition submodel for engine modelling codes. The effects of changes in key operating variables, such as compression ratio, spark timing, intake pressure, and temperature on pre-ignition limiting equivalence ratios are established both analytically and experimentally. With the established pre-ignition model, it is possible not only to investigate whether pre-ignition is observed with changing operating and design parameters, but also to evaluate those parameters' effects on the maximum possible pre-ignition intensity. (author)

  6. Ignition circuit for combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H W

    1977-05-26

    The invention refers to the ignition circuit for combustion engines, which are battery fed. The circuit contains a transistor and an oscillator to produce an output voltage on the secondary winding of an output transformer to supply an ignition current. The plant is controlled by an interrupter. The purpose of the invention is to form such a circuit that improved sparks for ignition are produced, on the one hand, and that on the other hand, the plant can continue to function after loss of the oscillator. The problem is solved by the battery and the secondary winding of the output transformers of the oscillator are connected via a rectifier circuit to produce a resultant total voltage with the ignition coil from the battery voltage and the rectified pulsating oscillator output.

  7. Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis

    International Nuclear Information System (INIS)

    López, I.; Quintana, C.E.; Ruiz, J.J.; Cruz-Peragón, F.; Dorado, M.P.

    2014-01-01

    Highlights: • Olive–pomace oil (OPO) biodiesel constitute a new second-generation biofuel. • Exergy efficiency and performance of OPO biodiesel, straight and blended with diesel fuel was evaluated. • OPO biodiesel, straight and blended, provided similar performance parameters. • OPO biodiesel, straight and blended, provided similar exergy efficiency compared to diesel fuel. • OPO biodiesel, straight and blended, provided no exergy cost increment compared to diesel fuel. - Abstract: Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment

  8. Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

    KAUST Repository

    Vallinayagam, R.; AlRamadan, Abdullah S.; Vedharaj, S; An, Yanzhao; Sim, Jaeheon; Chang, Junseok; Johansson, Bengt

    2018-01-01

    Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NO) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI

  9. Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine

    International Nuclear Information System (INIS)

    Su, Jianye; Xu, Min; Li, Tie; Gao, Yi; Wang, Jiasheng

    2014-01-01

    Highlights: • Experiments for the effects of cooled EGR and two compression ratios (CR) on fuel efficiency were conducted. • The mechanism for the observed fuel efficiency behaviors by cooled EGR and high CR was clarified. • Cooled EGR offers more fuel efficiency improvement than elevating CR from 9.3 to 10.9. • Combining 18–25% cooled EGR with 10.9 CR lead to 2.1–3.5% brake thermal efficiency improvements. - Abstract: The downsized boosted spark-ignition direct-injection (SIDI) engine has proven to be one of the most promising concepts to improve vehicle fuel economy. However, the boosted engine is typically designed at a lower geometric compression ratio (CR) due to the increased knock tendency in comparison to naturally aspirated engines, limiting the potential of improving fuel economy. On the other hand, cooled exhaust gas recirculation (EGR) has drawn attention due to the potential to suppress knock and improve fuel economy. Combing the effects of boosting, increased CR and cooled EGR to further improve fuel economy within acceptable knock tolerance has been investigated using a 2.0 L downsized boosted SIDI engine over a wide range of engine operating conditions from 1000 rpm to 3000 rpm at low to high loads. To clarify the mechanism of this complicated effects, the first law of thermodynamics analysis was conducted with the inputs from GT-Power® engine simulation. Experiment results indicate that cooled EGR provides more brake thermal efficiency improvement than increasing geometric CR from 9.3 to 10.9. The benefit of brake thermal efficiency from the higher CR is limited to low load conditions. The attributes for improving brake thermal efficiency by cooled EGR include reduced heat transfer loss, reduced pumping work and increased ratio of specific heats for all the engine operating conditions, as well as higher degree of constant volume heat release only for the knock-limited high load conditions. The combined effects of 18–25% cooled EGR

  10. Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Lee, Kihyung; Reitz, Rolf D.

    2004-03-01

    Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.

  11. Performance and specific emissions contours throughout the operating range of hydrogen-fueled compression ignition engine with diesel and RME pilot fuels

    Directory of Open Access Journals (Sweden)

    Shahid Imran

    2015-09-01

    Full Text Available This paper presents the performance and emissions contours of a hydrogen dual fueled compression ignition (CI engine with two pilot fuels (diesel and rapeseed methyl ester, and compares the performance and emissions iso-contours of diesel and rapeseed methyl ester (RME single fueling with diesel and RME piloted hydrogen dual fueling throughout the engines operating speed and power range. The collected data have been used to produce iso-contours of thermal efficiency, volumetric efficiency, specific oxides of nitrogen (NOX, specific hydrocarbons (HC and specific carbon dioxide (CO2 on a power-speed plane. The performance and emission maps are experimentally investigated, compared, and critically discussed. Apart from medium loads at lower and medium speeds with diesel piloted hydrogen combustion, dual fueling produced lower thermal efficiency everywhere across the map. For diesel and RME single fueling the maximum specific NOX emissions are centered at the mid speed, mid power region. Hydrogen dual fueling produced higher specific NOX with both pilot fuels as compared to their respective single fueling operations. The range, location and trends of specific NOX varied significantly when compared to single fueling cases. The volumetric efficiency is discussed in detail with the implications of manifold injection of hydrogen analyzed with the conclusions drawn.

  12. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  13. Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mistri, Gayatri K.; Aggarwal, Suresh K.; Longman, Douglas; Agarwal, Avinash K.

    2015-09-07

    Biofuels produced from non-edible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from non-edible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel’s oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, 4-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in break thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), BSFC (13.1% and 5.6%), and NOx emission (9.8% and 12.9%), and a reduction in BSHC (8.64% and 12.9%), and BSCO (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures

  14. Evaluation of a combined cycle based on an HCCI (Homogenous Charge Compression Ignition) engine heat recovery employing two organic Rankine cycles

    International Nuclear Information System (INIS)

    Khaljani, M.; Saray, R. Khoshbakhti; Bahlouli, K.

    2016-01-01

    In this work, a combined power cycle which includes a HCCI (Homogenous Charge Compression Ignition) engine and two ORCs (Organic Rankine Cycles) is introduced. In the proposed cycle, the waste heats from the engine cooling water and exhaust gases are utilized to drive the ORCs. A parametric study is conducted to show the effects of decision parameters on the performance and on the total cost rate of cycle. Results of the parametric study reveal that increasing the pinch point temperature difference of evaporator and temperature of the condenser leads to reduction in both exergy efficiency and total cost rate of the bottoming cycle. There is a specific evaporator temperature where exergy efficiency is improved, but the total cost rate of the bottoming cycle is maximized. Also, a multi-objective optimization strategy is performed to achieve the best system design parameters from both thermodynamic and economic aspects. The exergy efficiency and the total cost rate of the system have been considered as objective functions. Optimization results indicate that the exergy efficiency of the cycle increases from 44.96% for the base case to 46.02%. Also, approximately1.3% reduction in the cost criteria is achieved. Results of the multi-objective optimization justify the results obtained through the parametric study and demonstrate that the design parameters of both ORCs have conflict effect on the objective functions. - Highlights: • Two Organic Rankine bottoming cycles are coupled with an HCCI Engine. • Exergetic and Exergo-economic analysis of the bottoming cycle are reported. • The system is optimized using multi-objective genetic algorithm. • Objective functions are exergy efficiency and total cost rate of the system. • The exergy efficiency of the cycle increases from 44.96% to 46.02%.

  15. Incipient Soot Formation in Rich Partially Premixed Flames under High Pressure Conditions of Relevance to Compression-Ignition Engines

    Science.gov (United States)

    2017-09-09

    a Laminar Premixed Flame, Aerosol Reaction Engineering , Center for Aerosol science and Engineering (CASE) Workshop 2016, Saint Louis, Missouri, May...Publication Type: Conference Paper or Presentation Conference Name: Aerosol Reaction Engineering , Center for Aerosol science and Engineering (CASE...measurements of critical soot precursors up to 3-ring aromatics is available online to modelers to improve the chemical reaction mechanism [24]. To give a

  16. Optimizing the Performance of a 50cc Compression Ignition Two-Stroke Engine Operating on Dimethyl Ether

    DEFF Research Database (Denmark)

    Hansen, Kim Rene; Dolriis, J.D.; Hansson, C.

    2011-01-01

    The paper describes the optimization of a 50cc crankcase scavenged two-stroke diesel engine operating on dimethyl ether (DME). The optimization is primarily done with respect to engine efficiency. The underlying idea behind the work is that the low weight, low internal friction and low engine...

  17. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    field laser physics. Unfortunately, there is no standard definition for the plasma threshold in the literature. Consequently, a clear definition of the focal volume is missing. For this reason it was tried to find a theoretical formula for the volume. This formula is based on the assumption that the focal volume encloses the space where the threshold intensity is higher than Ith =I0/2 or, alternatively, Ith = I0/e2. Laser energy transmission is one of the most important loss factors during plasma development by laser-induced optical breakdown and provides important information about the energy contained in the plasma. Hence, a number of plasma experiments were carried out. In our experiments is was found that for decreasing focal volume the plasma threshold energy (MPE) and the energy transmission can be reduced respectively. In order to investigate the possibility if laser-induced ignition can be made more efficient with respect to the laser pulse energy, several ignition experiments were performed. For these experiments a combustion chamber was employed at a filling pressure of 11 bar and a temperature of 110 o C involving different focal sizes. The thermal ignition experiments were carried out to demonstrate in principle the feasibility of thermal ignition via resonant absorption of IR radiation. By evaluating these results with respect to laser ignition of engines, it is conceivable to employ laser thermal ignition as an innovative ignition mechanism. As in HCCI (homogeneous charge compression ignition) engines and rocket engines, ignition occurs at specific elevated pressures and temperatures, it can be assumed that the ignition energies are in the range between 20 to 100 mJ. Furthermore, different laser ignition system concepts were developed and evaluated regarding to their qualification for rocket engine ignition. As a consequence of its highest rating in our study, resonant ignition should be considered an interesting alternative to laser spark ignition

  18. Effects of antioxidant additives on exhaust emissions reduction in compression ignition engine fueled with methyl ester of annona oil

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present study, biodiesel is a cleaner burning alternative fuel to the Neat diesel fuel. However, several studies are pointed out that increase in NOx emission for biodiesel when compared with the Neat diesel fuel. The aim of the present study is to analyze the effect of antioxidant (p-phenylenediamine on engine emissions of a Diesel engine fuelled with methyl ester of annona oil. The antioxidant is mixed in various concentrations (0.010 to 0.040% (w/w with methyl ester of annona oil. Result shows that antioxidant additive mixture (MEAO+P200 is effective in control of NOx and HC emission of methyl ester of annona oil fuelled engine without doing any engine modification.

  19. Experimental study on the performance and emissions of a compression ignition engine fuelled with butanol diesel blends

    International Nuclear Information System (INIS)

    Maki, Duraid F.; Prabhakaran, P.

    2010-01-01

    An experimental investigation on the application of the blends of butanol with diesel to a direct injection diesel engine was carried out. Experimental tests were carried out to study the performance and emissions of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with butanol to replace conventional diesel as the fuel for diesel engine; the fuel consumption, brake efficiency, exhaust temperature, and volumetric efficiency of the engine fuelled by the blends were comparable with that fuelled by diesel. The characteristics of the emissions were also studied. CO, CO 2 , HC and NO X are measured and compared with the base fuel case when the conventional diesel is used alone. The results were different for different speeds, loads and blends. (author)

  20. EXPERIMENTAL INVESTIGATION OF EMISSION AND PERFORMANCE PARAMETERS OF PONGAMIA BIODIESEL AND HHO GAS ADDITION IN A COMPRESSION IGNITION ENGINE

    OpenAIRE

    Allen Jeffrey.J1, Divya Meena.S2, Balaji.P3, Bharathi.K4, Arvind Raj.R5

    2018-01-01

    Nowadays the environmental pollution has been increased incredibly by using conventional fuels. To control this increase in pollution alternate fuels has to be used as supplement for conventional fuels. While using conventional fuels such as petrol and diesel in IC engine there is a chance of increase in emissions. Alternate fuels can control emissions. This work is based on the investigation of emission parameters of pongamia biodiesel and HHO gas addition in a CI engine. Pongamia biodiesel ...

  1. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    Science.gov (United States)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  2. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    Science.gov (United States)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine

  3. Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis

    International Nuclear Information System (INIS)

    Verma, Saket; Das, L.M.; Kaushik, S.C.

    2017-01-01

    Highlights: • Different compositions of biogas have been studied in dual fuel mode using exergy analysis. • Diesel substitution by biogas decreases with higher CO_2 fractions in biogas. • Exergy efficiency decreases with higher CO_2 fractions in biogas. • With low CO_2 fractions in biogas equitable performance can be obtained in dual fuel mode. • Engine modifications are needed to utilize high CO_2 containing biogas. - Abstract: Growing energy demands and environmental degradation with uncontrolled exploitation of fossil fuels have compelled the world to look for the alternatives. In this context, biogas is a promising candidate, which can easily be utilized in IC engines for vehicular as well as decentralized power generation applications. Primary constituents of raw biogas are methane (CH_4) that defines its heating value, and carbon dioxide (CO_2) that acts like a diluent. This dilution effect reduces the flame speed and heating value of biogas, eventually deteriorating the engine performances. Present article focuses on experimental evaluation and quantification of these variations of the engine performance. Three compositions of biogas: BG93, BG84 and BG75 (containing 93%, 84% and 75% of CH_4 by volume respectively) were studied on a small CI engine in dual fuel mode. Moreover, to evaluate individual process inefficiencies, exergy analysis based on second-law of thermodynamics is implemented. Exergy balances for different compositions of biogas are presented. Biogas dual fuel operation showed 80–90% diesel substitution at lower engine loads. At higher loads, total irreversibility of the engine was increased from 59.56% for diesel operation to 61.44%, 64.18% and 64.64% for BG93, BG84 and BG75 biogas compositions respectively. Furthermore, combustion irreversibility was found to be decreasing with higher CO_2 concentrations in biogas. BG93 showed comparable results to that of diesel operation with 26.9% and 27.4% second-law efficiencies respectively.

  4. Investigation of nanoparticle additives to biodiesel for improvement of the performance of the exhaust emissions in a compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Ozgur, Tayfun; Ozcanli, Mustafa; Aydin, Kadir [Cukurova University Engineering Architecture Faculty Mechanical Engineering Department (Turkey)], E-mail: tozgur@cu.edu.tr, email: ozcanli@cu.edu.tr, email: kdraydin@cu.edu.tr

    2011-07-01

    Reformulated diesel fuels have been studied recently to achieve substantial reductions in harmful emissions by varying the physicochemical properties and combustion characteristics of the hydrocarbon fuel. This article investigates the effects of the addition of oxygen containing nanoparticle additives to biodiesel on fuel properties, engine performance and exhaust emission characteristics. Due to the addition of magnesium oxide (MgO) and silicon oxide (SiO2) nanoparticles at different dosing levels (25 and 50 ppm), it was observed that the density of biodiesel fuel does not show significant variation but the viscosity of biodiesel fuel was found to decrease. As a result of this study, optimum additive and addition dosage was determined as 25 ppm MgO and 25 ppm SiO2, engine emission values namely nitrogen oxides (NOx) and carbon monoxide (CO) were decreased and engine performance values slightly increased with the addition of nanoparticle additives at low extra cost of the biodiesel.

  5. 77 FR 497 - Control of Emissions From New Nonroad Compression-Ignition Engines: Approval of New Scheduled...

    Science.gov (United States)

    2012-01-05

    ... machine operating habit to fill the DEF at each fuel fill interval, and from a vehicle design standpoint... shut down or idle only (with no power) when no DEF is present in the DEF tank (or the system is no... manufacturers may also use a reduction in engine power or equipment utility to provide more dramatic notice that...

  6. An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2015-01-01

    Highlights: • H 2 energy share increased from 18% with DDM to 36% with WDM (water injection). • H 2 energy share improved marginally with retarded injection timing mode (RDM). • Energy efficiency increased with increasing amount of H 2 in dual-fuel engine. • NO x emission decreased with water injection and retarded pilot fuel injection. • HC, CO and smoke emissions increased slightly with low temperature combustion. - Abstract: A limited hydrogen (H 2 ) energy share due to knocking is the major hurdle for effective utilization of H 2 in compression ignition (CI) engines under dual-fuel operation. The present study aims at improvement of H 2 energy share in a 7.4 kW direct injection CI engine under dual-fuel mode with two low temperature combustion (LTC) strategies; (i) retarded pilot fuel injection timing and (ii) water injection. Experiments were carried out under conventional strategies of diesel dual-fuel mode (DDM) and B20 dual-fuel mode (BDM); and LTC strategies of retarded injection timing dual-fuel mode (RDM) and water injected dual-fuel mode (WDM). The results explored that the H 2 energy share increased significantly from 18% with conventional DDM to 24, and 36% with RDM, and WDM respectively. The energy efficiency increased with increasing H 2 energy share under dual-fuel operation; however, for a particular energy share of 18% H 2 , it decreased from 34.8% with DDM to 33.7% with BDM, 32.7% with WDM and 29.9% with RDM. At 18% H 2 energy share, oxides of nitrogen emission decreased by 37% with RDM and 32% with WDM as compared to conventional DDM due to reduction of in-cylinder temperature, while it increased slightly about 5% with BDM. It is emerged from the study that water injection technique is the viable option among all other strategies to enhance the H 2 energy share in the engine with a slight penalty of increase in smoke, hydrocarbon, and carbon monoxide emissions

  7. A prediction study of a spark ignition supercharged hydrogen engine

    International Nuclear Information System (INIS)

    Al-Baghdadi, Maher A.R. Sadiq.; Al-Janabi, Haroun A.K. Shahad

    2003-01-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO x emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO x emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO x emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio

  8. Performance Test on Compression Ignition Engine by Blending Ethanol and Waste Plastic Pyrolysis Oil with Cetane Additive

    Science.gov (United States)

    Padmanabhan, S.; Ganesan, S.; Jeswin Arputhabalan, J.; Chithrala, Varun; Ganesh Bairavan, P.

    2017-05-01

    The demand for diesel fuel is higher than that of petrol throughout the world hence seeking alternative to mineral diesel is a natural choice. Alternative fuels should be easily available at lower cost, environment friendly and fulfill energy needs without modifying engine’s operational parameters. Waste to energy is the trend in the selection of alternate fuels. In this work, Waste Plastic Pyrolysis oil (WPPO), Ethanol, Diesel blend with Cetane additive has been attempted as an alternative fuel. A Twin cylinder, Direct Injection engine was used to assess the engine performance and emission characteristics of waste plastic pyrolysis oil with cetane additive. Experimental results of blended plastic fuel and diesel fuel were compared.

  9. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  10. Isotopic Tracing of Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-in-Diesel Blends

    International Nuclear Information System (INIS)

    Cheng, A.S.; Dibble, R.W.; Buchholz, B.

    1999-01-01

    Accelerator Mass Spectrometry (AMS) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuels along with a diesel fuel baseline were investigated. The test fuels were comprised of 14 C depleted diesel fuel mixed with contemporary grain ethanol (>400 the 14 C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMS analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0% ethanol fuels, respectively)

  11. Numerical investigation on soot particles emission in compression ignition diesel engine by using particulate mimic soot model

    Directory of Open Access Journals (Sweden)

    Ibrahim Fadzli

    2017-01-01

    Full Text Available Research via computational method, specifically by detailed-kinetic soot model offers much more advantages than the simple model as more detailed formation/oxidation process is taken into consideration, thus providing better soot mass concentration, soot size, soot number density as well as information regarding other related species. In the present computational study, investigation of in-cylinder soot concentration as well as other emissions in a single cylinder diesel engine has been conducted, using a commercial multidimensional CFD software, CONVERGE CFD. The simulation was carried out for a close-cycle combustion environment from inlet valve closing (IVC to exhaust valve opening (EVO. In this case, detailed-kinetic Particulate Mimic (PM soot model was implemented as to take benefit of the method of moment, instead of commonly implemented simple soot model. Analyses of the results are successfully plotted to demonstrate that the soot size and soot mass concentration are strongly dependent on the detailed soot formation and oxidation process rates. The calculated of soot mass concentration and average soot size at EVO provide the end value of 29.2 mg/m3 and 2.04 × 10−8 m, respectively. Besides, post-processing using EnSight shows the qualitative results of soot concentration along simulation period in the combustion chamber.

  12. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    Science.gov (United States)

    1943-06-01

    compression type, without ignition, the resulting preliminary reactions being detectable and meas- urable thermometrically . Contents I. Influence of Preliminary...thoroughly insulated be- tween the carburettor and the engine, by aluminium foil and asbestos. -I -I " I" I ’I il i~ " !, I I 1𔃻I I’ ) To enable the

  13. Ohmic ignition of Neo-Alcator tokamak with adiabatic compression

    International Nuclear Information System (INIS)

    Inoue, Nobuyuki; Ogawa, Yuichi

    1992-01-01

    Ohmic ignition condition on axis of the DT tokamak plasma heated by minor radius and major radius adiabatic compression is studied assuming parabolic profiles for plasma parameters, elliptic plasma cross section, and Neo-Alcator confinement scaling. It is noticeable that magnetic compression reduces the necessary total plasma current for Ohmic ignition device. Typically in compact ignition tokamak of the minor radius of 0.47 m, major radius of 1.5 m and on-axis toroidal field of 20 T, the plasma current of 6.8 MA is sufficient for compression plasma, while that of 11.7 MA is for no compression plasma. Another example with larger major radius is also described. In such a device the large flux swing of Ohmic transformer is available for long burn. Application of magnetic compression saves the flux swing and thereby extends the burn time. (author)

  14. A comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) strategies at high load, low speed conditions

    International Nuclear Information System (INIS)

    Kavuri, Chaitanya; Paz, Jordan; Kokjohn, Sage L.

    2016-01-01

    Highlights: • Targeting high load-low speed, optimizations of RCCI and GCI strategies were performed. • The two strategies were compared in terms of performance, controllability and stability. • The optimum cases had high gross indicated efficiency (∼47%) and low NOx emissions. • RCCI strategy showed better combustion control but had higher soot emissions. • GCI strategy was relatively more sensitive to fluctuations in charge conditions. - Abstract: Past research has shown that Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) combustion are promising approaches to improve efficiency and reduce pollutant emissions. However, the benefits have generally been confined to mid-load operating conditions. To enable practical application, these approaches must be able to operate over the entire engine map. A particularly challenging area is high load, low speed operation. Accordingly, the present work uses detailed CFD modeling and engine experiments to compare RCCI and GCI combustion strategies at a high load, low speed condition. Computational optimizations of RCCI and GCI combustion were performed at 20 bar gross indicated mean effective pressure (IMEP) and 1300 rev/min. The optimum points from the two combustion strategies were verified using engine experiments and were used to make the comparisons between RCCI and GCI combustion. The comparison showed that both the strategies had very similar combustion characteristics with a near top dead center injection initiating combustion. A parametric study was performed to identify the key input parameters that control combustion for the RCCI and GCI strategies. For both strategies, the combustion phasing could be controlled by the start of injection (SOI) timing of the near TDC injection. The short ignition delay of diesel fuel gave the RCCI strategy better control over combustion than the GCI strategy, but also had a simultaneous tradeoff with soot emissions. With the GCI

  15. Electronic ignition system for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Crowder, L W

    1980-11-20

    Mechanical ignition adjustment devices are sensitive to many effects, for example breakage, faults due to manufacturing tolerances, play in the linkage and the effect of a dirty or corrosive environment. It is therefore the purpose of the invention to provide an electronic ignition system which avoids the disadvantages of a mechanical system. The invention provides adjustment of the ignition point, which gives advance of the ignition timing with increasing speed. An output signal is formed, which supersedes the signal supplied by the electronic control system, so that the ignition is advanced. This also occurs with a larger crankshaft angle before top dead centre of the engine. The electronic control system combines with a source of AC time signals which has a generator as electrical transmitter and a DC battery and ignition coil. The rotor of the electrical generator is driven synchronised with the engine. Structural and functional details of the transistor control circuits are given in 5 patent claims.

  16. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  17. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  18. Turbulent spark-jet ignition in SI gas fuelled engine

    Directory of Open Access Journals (Sweden)

    Pielecha Ireneusz

    2017-01-01

    Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.

  19. Auto-ignition modelling: analysis of the dilution effects by the unburnt gases and of the interactions with turbulence for diesel homogeneous charge compression ignition (HCCI) engines; Modelisation de l'auto-inflammation: analyse des effets de la dilution par les gaz brules et des interactions avec la turbulence dediee aux moteurs Diesel a charge homogene

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, G.

    2005-09-15

    Homogeneous Charge Compression Ignition (HCCI) is an alternative engine combustion process that offers the potential for substantial reductions in both NO{sub x} and particulate matter still providing high Diesel-like efficiencies. Combustion in HCCI mode takes place essentially by auto-ignition. It is mainly controlled by the chemical kinetics. It is therefore necessary to introduce detailed chemistry effects in combustion CFD codes in order to properly model the HCCI combustion process. The objective of this work is to develop an auto-ignition model including detailed chemical kinetics and its interactions with turbulence. Also, a comprehensive study has been performed to analyze the chemical influence of CO and H{sub 2} residual species on auto-ignition, which can be present in the exhaust gases. A new auto-ignition model, TKI-PDF (Tabulated Kinetics for Ignition - with turbulent mixing interactions through a pdf approach) dedicated to RANS 3D engine combustion CFD calculations is proposed. The TKI-PDF model is formulated in order to accommodate the detailed chemical kinetics of auto-ignition coupled with turbulence/chemistry interactions. The complete model development and its validation against experimental results are presented in two parts. The first part of this work describes the detailed chemistry input to the model. The second part is dedicated to the turbulent mixing description. A method based on a progress variable reaction rate tabulation is used. A look-up table for the progress variable reaction rates has been built through constant volume complex chemistry simulations. Instantaneous local reaction rates inside the CFD computational cell are then calculated by linear interpolation inside the look-up table depending on the local thermodynamic conditions. In order to introduce the turbulent mixing effects on auto-ignition, a presumed pdf approach is used. The model has been validated in different levels. First, the detailed kinetic approach was

  20. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  1. Compression ignition of light naphtha and its multicomponent surrogate under partially premixed conditions

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, B.; Chang, J.; Sarathy, M.; Johansson, B.

    2017-01-01

    Light naphtha is the light distillate from crude oil and can be used in compression ignition (CI) engines; its low boiling point and octane rating (RON = 64.5) enable adequate premixing. This study investigates the combustion characteristics of light naphtha (LN) and its multicomponent surrogate

  2. Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine

    International Nuclear Information System (INIS)

    Rimkus, Alfredas; Žaglinskis, Justas; Rapalis, Paulius; Skačkauskas, Paulius

    2015-01-01

    Highlights: • Researched physical–chemical and performance properties of diesel fuel and BTL blend (85/15 V/V). • BTL additive reduced Brake Specific Fuel Consumption, improved engine efficiency. • Simpler BTL molecular chains and lower C/H ratio reduced CO_2 emission and smokiness. • Higher cetane number of BTL reduced heat release in beginning of combustion and NO_x emission. • Advanced start of fuel injection caused reduced fuel consumption and smokiness, increased NO_x emission. - Abstract: This paper presents the comparable research results of the physical–chemical and direct injection (DI) diesel engine properties of diesel fuel and BTL (biomass-to-liquid) blend (85/15 V/V). The energy, ecological and in-cylinder parameters were analysed under medium engine speed and brake torque load regimes; the start of fuel injection was also adjusted. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that the BTL additive shortened the fuel ignition delay phase, reduced the heat release in the pre-mixed intensive combustion phase, reduced the nitrogen oxide (NO_x) concentration in the engine exhaust gases and reduced the thermal and mechanical load of the crankshaft mechanism. BTL additive reduced the rates of carbon dioxide (CO_2), incompletely burned hydrocarbons (HC) emission and smokiness due to its chemical composition and combustion features. BTL also reduced Brake Specific Fuel Consumption (BSFC, g/kW h) and improved engine efficiency (η_e); however, the volumetric fuel consumption changed due to the lower density of BTL. The start of fuel injection was adjusted for maximum engine efficiency; concomitantly, reductions in the CO_2 concentration, HC concentration and smokiness were achieved. However, the NO_x and thermo-mechanical engine load increased.

  3. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    Science.gov (United States)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  4. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-11

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF

  5. IIT MMAE Dept. Research project the homogeneous charge thermal ignition (HCTI) engine

    OpenAIRE

    Domenech Menal, Joan Ignasi

    2011-01-01

    Nowadays the main kinds of engines that are used in ground transportation are, gasoline Spark Ignition engines and diesel Compression Ignition engines. As every day more fuel is being used by a growing number of vehicles, fuel dependency growth and a growing concern for our environment health, it is a crucial point to gain in fuel efficiency for ground transportation engines. Many approaches are being investigated, but we will focus in one kind that we call the HCTI, homogeneous charge the...

  6. A sustained-arc ignition system for internal combustion engines

    Science.gov (United States)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  7. Laser ignited engines: progress, challenges and prospects.

    Science.gov (United States)

    Dearden, Geoff; Shenton, Tom

    2013-11-04

    Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability.

  8. A prediction study of a spark ignition supercharged hydrogen engine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.R.S.; Al-Janabi, H.A.K.S. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2003-12-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO{sub x} emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO{sub x} emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO{sub x} emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio. (author)

  9. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  10. An investigation of partially premixed compression ignition combustion using gasoline and spark assistance

    OpenAIRE

    Benajes Calvo, Jesus Vicente; García Martínez, Antonio; Doménech Llopis, Vicente; Durret, Russell

    2013-01-01

    Nowadays the automotive scientific community and companies are focusing part of their efforts on the investigation of new combustion modes in Compression Ignition (Cl) engines, mainly based on the use of locally lean air fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduce pollutant formation. However these combustion concepts have some shortcomings, related to combustion phasing control and combustion stability under th...

  11. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.

    2016-12-30

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  12. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  13. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.; Sarathy, Mani; Má rchese, Anthony J.

    2013-01-01

    -octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content

  14. Ignition system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, G

    1977-05-12

    The invention pertains to ignition systems for internal combustion engines; in particular, these are used in the engines of modern small motorcycles, where power is supplied by means of a so-called flywheel magneto, so that there is no need for an additional battery. The invention will prevent back-kicking. This is achieved by the following means: in the right direction of rotation of the internal combustion engine, due to an axial magnetic unsymmetry of the rotor, a voltage component that can switch the electronic switch will occur only in one of the two parts of the control winding at the point of ignition. In the wrong direction of rotation, on the other hand, this voltage component will only occur in the other part of the control winding and will act in direction on a diode connected in parallel to this part of the winding.

  15. A new and efficient mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Shadloo, M.S.; Poultangari, R.; Abdollahzadeh Jamalabadi, M.Y.; Rashidi, M.M.

    2015-01-01

    Highlights: • A new slider–crank mechanism, with superior performance is presented. • Thermodynamic processes as well as vibration and internal forces have been modeled. • Comparison with the conventional four-stroke spark ignition engines is made. • Advantages and disadvantages of the proposed mechanism are discussed. - Abstract: In this paper a new symmetrical crank and slider mechanism is proposed and a zero dimensional model is utilized to study its combustion performance enhancement in a four-stroke spark ignition (SI) engine. The main features of this new mechanism are superior thermodynamic efficiency, lower internal frictions, and lower pollutants. Comparison is made between its performance and that of the conventional four-stroke SI engines. Presented mechanism is designed to provide better fuel consumption of internal combustion engines. These advantages over standard engine are achieved through synthesis of new mechanism. Numerical calculation have been performed for several cases of different mechanism parameters, compression ratio and engine speed. A comprehensive comparison between their thermodynamic processes as well as vibration and internal forces has been done. Calculated efficiency and power diagrams are plotted and compared with performance of a conventional SI engine. Advantages and disadvantages of the proposed mechanism are discussed in details

  16. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad; Farooq, Aamir; Sim, Jaeheon; Viollet, Yoann; Im, Hong G.; Chang, Junseok

    2016-01-01

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  17. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad

    2016-04-05

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  18. Zero-dimensional mathematical model of the torch ignited engine

    International Nuclear Information System (INIS)

    Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina

    2016-01-01

    Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.

  19. 3rd Conference on Ignition Systems for Gasoline Engines

    CERN Document Server

    Sens, Marc

    2017-01-01

    The volume includes selected and reviewed papers from the 3rd Conference on Ignition Systems for Gasoline Engines in Berlin in November 2016. Experts from industry and universities discuss in their papers the challenges to ignition systems in providing reliable, precise ignition in the light of a wide spread in mixture quality, high exhaust gas recirculation rates and high cylinder pressures. Classic spark plug ignition as well as alternative ignition systems are assessed, the ignition system being one of the key technologies to further optimizing the gasoline engine.

  20. Vehicle Integrated Photovoltaics for Compression Ignition Vehicles: An Experimental Investigation of Solar Alkaline Water Electrolysis for Improving Diesel Combustion and a Solar Charging System for Reducing Auxiliary Engine Loads

    Science.gov (United States)

    Negroni, Garry Inocentes

    Vehicle-integrated photovoltaic electricity can be applied towards aspiration of hydrogen-oxygen-steam gas produced through alkaline electrolysis and reductions in auxiliary alternator load for reducing hydrocarbon emissions in low nitrogen oxide indirect-injection compression-ignition engines. Aspiration of 0.516 ± 0.007 liters-per-minute of gas produced through alkaline electrolysis of potassium-hydroxide 2wt.% improves full-load performance; however, part-load performance decreases due to auto-ignition of aspirated gas prior to top-dead center. Alternator load reductions offer improved part-load and full-load performance with practical limitations resulting from accessory electrical loads. In an additive approach, solar electrolysis can electrochemically convert solar photovoltaic electricity into a gas comprised of stoichiometric hydrogen and oxygen gas. Aspiration of this hydrogen-oxygen gas enhances combustion properties decreasing emissions and increased combustion efficiency in light-duty diesel vehicles. The 316L stainless steel (SS) electrolyser plates are arranged with two anodes and three cathodes space with four bipolar plates delineating four stacks in parallel with five cells per stack. The electrolyser was tested using potassium hydroxide 2 wt.% and hydronium 3wt.% at measured voltage and current inputs. The flow rate output from the reservoir cell was measured in parallel with the V and I inputs producing a regression model correlating current input to flow rate. KOH 2 wt.% produced 0.005 LPM/W, while H9O44 3 wt.% produced less at 0.00126 LPM/W. In a subtractive approach, solar energy can be used to charge a larger energy storage device, as is with plug-in electric vehicles, in order to alleviate the engine of the mechanical load placed upon it by the vehicles electrical accessories through the alternator. Solar electrolysis can improve part-load emissions and full-load performance. The average solar-to-battery efficiency based on the OEM rated

  1. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1985-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8 to 12 T) and high toroidal currents (7 to 10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  2. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1986-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8-12 T) and high toroidal currents (7-10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  3. Nonlinear control of a spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Bidan, P [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Boverie, S; Chaumerliac, V [Siemens AutomotiveSA, MIRGAS Laboratory, 31 - Toulouse (France)

    1994-12-31

    This paper describes the improvements which can be made to spark ignition engine by extensive use of automatic control. Particular emphasis is placed on fast transient phases produced by simultaneous action on the throttle and the electronic fuel injection device. The aim is to achieve better performance for the fuel/air ratio regulation system, thereby improving engine efficiency and exhaust emission during these transient phases. The authors begin by presenting an average dynamic model of the intake manifold validated on an engine test bench and goes on to develop a closed-loop system controlling average pressure in the intake manifold using the reference tracking model method. The air supply control system is combined with a predictor to compensate for delays in the injection procedure. The paper concludes with a comparison between the results obtained using simulation and those obtained experimentally from the engine. (author) 10 refs.

  4. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  5. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  6. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M.

    2014-01-01

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3 He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3 He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R cm ) from the downshift of the shock-produced D 3 He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR

  7. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.

  8. The Low Temperature Chamber Testing of the Compression Ignition Engine and System of the Armoured Personnel Carrier (APC) M113A1.

    Science.gov (United States)

    1981-06-01

    shutdown. Before start up the hot oil would be pumped ( auxillary pump) back through the engine on the high pressure side of the engine’ s oil pump. This...insulation heating was applied. Temperature plots Figure 14* to Figure 16* show the battery cooling curves for auxillary heating when 37mm of medium

  9. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  10. Combustion and operating characteristics of spark-ignition engines

    Science.gov (United States)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  11. Analysis of the Impact of Early Exhaust Valve Opening and Cylinder Deactivation on Aftertreatment Thermal Management and Efficiency for Compression Ignition Engines

    OpenAIRE

    Roberts, Leighton Edward

    2014-01-01

    In order to meet strict emissions regulations, engine manufacturers have implemented aftertreatment technologies which reduce the tailpipe emissions from diesel engines. The effectiveness of most of these systems is limited when exhaust temperatures are low (usually below 200°C to 250°C). This is a problem for extended low load operation, such as idling and during cold start. Use of variable valve actuation, including early exhaust valve opening (EEVO) and cylinder deactivation (CDA), has bee...

  12. Numerical Evaluation ofThe Performance ofA Compression Ignition Cng Engine For Heavy DutyTrucksWithAn Optimum Speed PowerTurbine

    Directory of Open Access Journals (Sweden)

    Alberto A. Boretti

    2011-10-01

    Full Text Available The turbocharged direct injection lean burn Diesel engine is the most efficient engine now in production for transport applications. CNG is an alternative fuel with a better carbon to hydrogen ratio therefore permitting reduced carbon dioxide emissions. It is injected in gaseous form for a much cleaner combustion almost cancelling some of the emissions of the Diesel and it permits a much better energy security within Australia. The paper discusses the best options currently available to convert Diesel engine platforms to CNG, with particular emphasis to the use of these CNG engines within Australia where the refuelling network is scarce. This option is determined in the dual fuel operation with a double injector design that couples a second CNG injector to the Diesel injector. This configuration permits the operation Diesel only or Diesel pilot and CNG main depending on the availability of refuelling stations where the vehicle operates. Results of engine performance simulations are performed for a straight six cylinder 13 litres truck engine with a novel power turbine connected to the crankshaft through a constant variable transmission that may be by-passed when non helpful to increase the fuel economy of the vehicle or when damaging the performances of the after treatment system.

  13. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    Science.gov (United States)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  14. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    Science.gov (United States)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  15. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2014-09-01

    Full Text Available A rapid compression machine (RCM test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution ratio of 35% to 65%. A new type of hydraulic piston is used to address the problem in which the hydraulic buffer adversely affects the rapid compression process. Auto-ignition performance tests of the RCM are then performed using a DME–O2–N2 mixture. The two-stage ignition delay and negative temperature coefficient (NTC behavior of the mixture are observed. The effects of driving gas pressure, compression ratio, initial pressure, and nitrogen dilution ratio on the two-stage ignition delay are investigated. Results show that both the first-stage and overall ignition delays tend to increase with increasing driving gas pressure. The driving gas pressure within a certain range does not significantly influence the compressed pressure. With increasing compression ratio, the first-stage ignition delay is shortened, whereas the second-stage ignition delay is extended. With increasing initial pressure, both the first-stage and second-stage ignition delays are shortened. The second-stage ignition delay is shortened to a greater extent than that of the first-stage. With increasing nitrogen dilution ratio, the first-stage ignition delay is shortened, whereas the second-stage is extended. Thus, overall ignition delay presents different trends under various compression ratios and compressed pressure conditions.

  16. Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings

    Science.gov (United States)

    Kannan, Gopal Radhakrishnan

    2018-02-01

    The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.

  17. LES/FMDF of turbulent jet ignition in a rapid compression machine

    Science.gov (United States)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  18. State of the art of NOx mitigation technologies and their effect on the performance and emission characteristics of biodiesel-fueled Compression Ignition engines

    International Nuclear Information System (INIS)

    Palash, S.M.; Masjuki, H.H.; Kalam, M.A.; Masum, B.M.; Sanjid, A.; Abedin, M.J.

    2013-01-01

    Highlights: • Different NO x reduction technologies are discussed along with their implementation. • EGR rate up to 25% is feasible considering engine performance and other emissions. • ITR technology reduces NO x fairly but increases other emissions, it also reduces performance. • LTC reduces NO x and PM emissions simultaneously but increases HC and CO emissions. • Water injection and emulsion reduce NO x (up to 38%) and PM but increases HC and CO emissions. - Abstract: Biodiesel fuels have the potential to become a reliable substitute for diesel which is used moderately to meet the current energy demands. This fuel can be produced from new or used vegetable oils, non-edible sources and animal fats, which are non-toxic, biodegradable and renewable. In spite of the many advantages of using biodiesel, most of the researchers have reported that they produce higher NO x emissions compared to diesel, which is a deterrent to the market expansion of these fuels. In this study, the different paths to reduce NO x emissions from diesel engines by applying several technologies, such as using additives into fuel, exhaust gas recirculation (EGR), water injection (WI), emulsion technology (ET), injection timing retardation (ITR), simultaneous technology (ST) and low temperature combustion (LTC) mode are reviewed briefly. The impacts of different NO x mitigation technologies on biodiesel-fueled diesel engine performance and emissions are also analyzed critically and different methods of their implementation are shown. This paper also provides a comparison of different NO x mitigation technologies based on previous articles related to this topic. From this comparative study, it was found that the average reduction of NO x emissions by using additives, EGR, WI and ET, ITR, ST and LTC are in the ranges 4–45%, 26–84%, 10–38%, 9.77–37%, 22–95% and 66–93% respectively, compared to biodiesel combustion without applying technologies. However, the average reduction

  19. Hydrogen energy share improvement along with NOx (oxides of nitrogen) emission reduction in a hydrogen dual-fuel compression ignition engine using water injection

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2014-01-01

    Highlights: • H 2 energy share increased from 20% without water to 39% with SWC 270 g/kWh. • Specific water consumption (SWC) 200 g/kWh was selected as the optimum quantity. • NO x decreased about 24% with the optimum water quantity at 20% H 2 energy share. • At 20% H 2 share, energy efficiency decreased about 5.5% with the optimum water. • HC, CO and smoke emissions increased 38%, 100% and 69% with optimum water at 20% H 2 share. - Abstract: The study aims at enhancement of Hydrogen (H 2 ) energy share and reduction of Oxides of Nitrogen (NO x ) emission in a 7.4 kW-CI engine at 1500 rpm using water injection. The test engine was modified to run under dual-fuel operation with diesel–biodiesel blend (B20) and H 2 fuels for different Specific Water Consumption (SWC) of 130, 200, and 270 g/kWh. Under conventional H 2 dual-fuel mode, energy efficiency and NO x emission increased significantly while Hydrocarbon (HC), Carbon Monoxide (CO) and smoke emissions decreased. The maximum H 2 energy share increased from 20% without water to 32%, 36%, and 39% with SWC of 130, 200, and 270 g/kWh respectively. However, SWC of 200 g/kWh was selected as an optimum water quantity for knock free operation, better performance and lower emissions. At the optimum SWC with 20% H 2 energy share, the NO x emission and energy efficiency decreased about 24% and 5.7%, while HC and smoke emissions increased about 38% and 69%. At 20% H 2 energy share, the CO emission increased from 0.0 g/kWh without water to 1.2 g/kWh with the optimum SWC. However, reduction of these HC and CO emissions using oxidation catalysts needs to be studied further. A new methodology for determining heat release rate with consideration of crevice gas was proposed in the study

  20. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  1. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  2. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low

  3. Impact of Formaldehyde Addition on Auto-Ignition in Internal-Combustion Engines

    Science.gov (United States)

    Kuwahara, Kazunari; Ando, Hiromitsu; Furutani, Masahiro; Ohta, Yasuhiko

    By employing a direct-injection diesel engine equipped with a common-rail type of injection system, by adding formaldehyde (CH2O) to the intake air, and by changing the fuel-injection timing, the compression ratio and the intake-air temperature, a mechanism for CH2O as a fuel additive to affect auto-ignition was discussed. Unlike an HCCI type of engine, the diesel engine can expose an air-fuel mixture only to a limited range of the in-cylinder temperature before the ignition, and can separate low- and high-temperature parts of the mechanism. When low-temperature oxidation starts at a temperature above 900K, there are cases that the CH2O advances the ignition timing. Below 900K, to the contrary, it always retards the timing. It is because, above 900K, a part of the CH2O changes into CO together with H2O2 as an ignition promoter. Below 900K, on the other hand, the CH2O itself acts as an OH radical scavenger against cool-flame reaction, from the beginning of low-temperature oxidation. Then, the engine was modified for its extraordinary function as a gasoline-knocking generator, in order that an effect of CH2O on knocking could be discussed. The CH2O retards the onset of auto-ignition of an end gas. Judging from a large degree of the retardation, the ignition is probably triggered below 900K.

  4. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  5. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    OpenAIRE

    Kahraman, Erol; Özcanlı, Şevket Cihangir; Özerdem, Barış

    2007-01-01

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effectiv...

  6. Numerical investigation on the combined effects of varying piston bowl geometries and ramp injection rate-shapes on the combustion characteristics of a kerosene-diesel fueled direct injection compression ignition engine

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Zhao, Feiyang; Yu, Wenbin; Mohan, Balaji

    2017-01-01

    Highlights: • Effect of injection rate-shaping on heat-release is significant with less turbulence. • Two peak heat-releases are seen for the shallow-depth re-entrant piston. • Significant combustion phasing occurs with kerosene usage and high turbulence. - Abstract: In this work, the combustion characteristics of a direct injection compression ignition (DICI) engine fueled with kerosene-diesel blends, using different piston bowl geometries together with varying injection rate-shapes were investigated. A total of three combustion bowl geometries, namely the omega combustion chamber (OCC), the shallow-depth combustion chamber (SCC) and the shallow-depth re-entrant combustion chamber (SRCC), were used together with six different ramp injection rate-shapes and pure diesel, kerosene-diesel and pure kerosene fuels. It is seen that the SRCC geometry, which has the shortest throat length, gives the highest turbulence kinetic energy (TKE) and this resulted in two peak heat-releases, with a primary peak heat-release during the premixed combustion phase and a secondary peak heat-release during the mixing-controlled combustion phase. In addition, the SCC geometry gives rather distinct premixed combustion and mixing-controlled combustion phases due to the fact that combustion is predominantly controlled by the injected fuel spray itself because of less turbulence. Also, when kerosene is used in place of diesel, the heat-release during the premixed combustion phase increases and diminishes during the mixing-controlled and late combustion phases. It is interesting to note that the effect of injection rate-shaping on the heat-release rate is more obvious for bowl geometries that generate less TKE. Moreover, bowl geometries that generate higher TKEs as well as fuels with lower viscosities generally give lower carbon monoxide (CO) emissions and higher nitrogen oxide (NO) emissions. More importantly, it is possible to achieve low NO and CO emissions simultaneously by using the

  7. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  8. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  9. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spark ignition of a bi-propellant rocket engine is a classic, proven, and generally reliable process. However, timing can be critical, and the control logic,...

  10. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  11. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-01-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  12. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    Science.gov (United States)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  13. Lubricant induced pre-ignition in an optical spark-ignition engine

    OpenAIRE

    Dingle, Simon Frederick

    2014-01-01

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London This work focuses on the introduction of lubricant into the combustion chamber and the effect that this has on pre-ignition. Apparently for the first time, the work presented provides detailed full-bore optical data for lubricant induced pre-ignition and improves understanding of the super-knock phenomena that affects modern downsized gasoline engines. A new single-cylinder optical r...

  14. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  15. 77 FR 50500 - California State Nonroad Engine Pollution Control Standards; California Nonroad Compression...

    Science.gov (United States)

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [AMS-FRL 9716-8] California State Nonroad Engine Pollution Control Standards; California Nonroad Compression Ignition Engines--In-Use Fleets; Authorization Request... emissions control of new engines not listed under section 209(e)(1). The section 209(e) rule and its...

  16. Comportamento de um motor de ignição por compressão trabalhando com óleo Diesel e gás natural A dual fuel compression ignition engine performance, running with Diesel fuel and natural gas

    Directory of Open Access Journals (Sweden)

    José F. Schlosser

    2004-12-01

    Full Text Available A previsível escassez de petróleo aliada a uma consciência ecológica está levando pesquisadores a procurar novas fontes de energia e processos de combustão mais eficientes e menos poluentes. Entre os combustíveis menos poluentes está o gás natural, cujo consumo aumenta ano a ano. Os motores de combustão interna são transformadores de energia que têm baixa eficiência de conversão. Este trabalho avaliou um motor Diesel, bicombustível, movido a Diesel e gás natural. Nesse motor, a energia provém, basicamente, da combustão do gás natural. O Diesel tem a função de produzir o início da combustão do gás, que é o combustível principal. Assim, haverá uma substituição parcial de óleo Diesel por gás natural, aumentando o rendimento da combustão. Inicialmente, foi feito um ensaio-testemunha, somente com óleo Diesel e após foram feitos ensaios, com três repetições, para variadas proporções de óleo Diesel, gás natural e ângulos de avanço da injeção. O melhor desempenho foi obtido para 22% de óleo Diesel em relação ao máximo débito da bomba injetora e 13 L min-1 de gás natural com ângulo de avanço de injeção original (21º. Nesse caso, a potência média aumentou 14%, e o consumo específico (medido em valores monetários diminuiu 46% em relação ao ensaio-testemunha.The foresight of a petroleum shortage and an ecological conscience is moving scientists to look for new sources of energy and to develop more efficient combustion processes and reduced emissions. Natural gas is a reduced emission fuel, whose consumption increases every year. The present work evaluates a dual fuel compression ignition engine. The major portion of the fuel burned is natural gas. The Diesel fuel acts as combustion starter, which ignites under the compression heat. Diesel fuel is used only as an ignition source. The partial substitution of Diesel fuel by natural gas increases the combustion efficiency and achieves significant

  17. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  18. Low-Load Limit in a Diesel-Ignited Gas Engine

    Directory of Open Access Journals (Sweden)

    Richard Hutter

    2017-09-01

    Full Text Available The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.

  19. Laser ignition - Spark plug development and application in reciprocating engines

    Science.gov (United States)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged

  20. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    Science.gov (United States)

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  1. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  2. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    International Nuclear Information System (INIS)

    Rahim, M F Abdul; Rahman, M M; Bakar, R A

    2012-01-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  3. Application of Alcohols to Dual - Fuel Feeding the Spark-Ignition and Self-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2014-10-01

    Full Text Available This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque. In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol engine, and 2-3 fold lower smokiness in case of ZS (diesel engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.

  4. Confinement requirements for OHMIC-compressive ignition of a Spheromak plasma

    International Nuclear Information System (INIS)

    Olson, R.; Gilligan, J.; Miley, G.

    1980-01-01

    The Moving Plasmoid Reactor (MPR) is an attractive alternative magnetic fusion scheme in which Spheromak plasmoids are envisioned to be formed, compressed, burned, and expanded as the plasmoids translate through a series of linear reactor modules. Although auxiliary heating of the plasmoids may be possible, the MPR scenario would be especially interesting if ohmic decay and compression along were sufficient to heat the plasmoids to an ignition temperature. In the present work, we will study the transport conditions under which a Spheromak plasmoid could be expected to reach ignition via a combination of ohmic and compression heating

  5. Confinement requirements for ohmic-compressive ignition of a Spheromak plasma

    International Nuclear Information System (INIS)

    Olson, R.E.; Miley, G.H.

    1981-01-01

    The Moving Plasmoid Reactor (MPR) is an attractive alternative magnetic fusion scheme in which Spheromak plasmoids are envisioned to be formed, compressed, burned, and expanded as the plasmoids translate through a series of linear reactor modules. Although auxiliary heating of the plasmoids may be possible, the MPR scenario would be especially interesting if ohmic decay and compression alone is sufficient to heat the plasmoids to an ignition temperature. In the present work, we examine the transport conditions under which a Spheromak plasmoid can be expected to reach ignition via a combination of ohmic and compression heating

  6. CONVERSION OF DIESEL ENGINE INTO SPARK IGNITION ENGINE TO WORK WITH CNG AND LPG FUELS FOR MEETING NEW EMISSION NORMS

    Directory of Open Access Journals (Sweden)

    Syed Kaleemuddin

    2010-01-01

    Full Text Available Fluctuating fuel prices and associated pollution problems of largely exploited petroleum liquid fuel has stimulated the research on abundantly available gaseous fuels to keep the mobility industry intact. In the present work an air cooled diesel engine was modified suitably into a spark ignition engine incorporating electronic ignition and variable speed dependant spark timing to accommodate both LPG and CNG as fuels. Engine was optimized for stoichiometric operation on engine dynamometer. Materials of a few intricate engine components were replaced to suit LPG and CNG application. Ignition timing was mapped to work with gaseous fuels for different speeds. Compensation was done for recovering volumetric efficiency when operated with CNG by introducing more volume of air through resonator. Ignition timing was observed to be the pertinent parameter in achieving good performance with gaseous fuels under consideration. Performance and emission tests were carried out on engine dynamometer and chassis dynamometer. Under wide open throttle and at rated speed condition, it was observed that the peak pressure with LPG was lying between diesel fuel and CNG fuel operation due to slow burning nature of gaseous fuels. As compression ratio was maintained same for LPG and CNG fuel operation, low CO emissions were observed with LPG where as HC + NOx emissions were lower with CNG fuel operation. Chassis dynamometer based emission tests yielded lower CO2 levels with CNG operation.

  7. Analysis of Combustion Process in Industrial Gas Engine with Prechamber-Based Ignition System

    Directory of Open Access Journals (Sweden)

    Rafał Ślefarski

    2018-02-01

    Full Text Available Application of a pre-combustion chamber (PCC ignition system is one of the methods to improve combustion stability and reduce toxic compounds emission, especially NOx. Using PCC allows the operation of the engine at lean combustion conditions or the utilization of low calorific gaseous fuels such as syngas or biogas. The paper presents the results of an experimental study of the combustion process in two stroke, large bore, stationary gas engine GMVH 12 equipped with two spark plugs (2-SP and a PCC ignition system. The experimental research has been performed during the normal operation of the engine in an industrial compression station. It was observed that application of PCC provides less cycle-to-cycle combustion variation (more than 10% and nitric oxide and carbon monoxide emissions decreased to 60% and 26% respectively. The total hydrocarbon (THC emission rate is 25% higher for the engine equipped with PCC, which results in roughly two percent engine efficiency decrease. Another important criterion of engine retrofitting was the PCC location in the engine head. The experimental results show that improvement of engine operating parameters was recorded only for a configuration with one port offset by 45° from the axis of the main chamber. The study of the ignition delay angle and equivalence ratio in PCC did not demonstrate explicit influence on engine performance.

  8. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  9. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  10. Optimum injection and combustion for gaseous fuel engine : characteristics of hydrogen auto-ignition phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, T.; Mikami, S.; Senda, J.; Fujimoto, H. [Doshisha Univ. (Japan). Dept. of Mechanical Engineering; Nakatani, K. [Fuji Heavy Industries Ltd. (Japan); Tokunaga, Y. [Kawasaki Heavy Industries Ltd. (Japan)

    2002-07-01

    A study was conducted in which the auto-ignition characteristics of hydrogen were examined in order to determine which factors dominate auto-ignition delay of hydrogen jets. Experiments were performed in a rapid compression/expansion machine in order to study the effects of ambient gas density and oxygen concentration on the auto-ignition delays. The focus of research was on an inert gas circulation type cogeneration system to apply hydrogen to a medium-sized diesel engine. Freedom of fuel-oxidizer mixing, ignition and combustion in the system could be achieved for stable combustion, high thermal efficiency, and zero emission. The study also involved chemical analysis using a detailed hydrogen reaction model that could simulate auto-ignition delays under various temperature, pressures, equivalence ratio, and dilution. It is shown that auto-ignition delays of hydrogen jets are very dependent on the ambient gas temperature and less dependent on its density and oxygen concentration. Temperature and hydrogen concentrations have significant impacts on the production and consumption rates of H{sub 2}O{sub 2} and OH radicals. 21 refs., 1 tab., 10 figs.

  11. Performance and heat release analysis of a pilot-ignited natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.R.; Biruduganti, M.; Mo, Y.; Bell, S.R.; Midkiff, K.C. [Alabama Univ., Dept. of Mechanical Engineering, Tuscaloosa, AL (United States)

    2002-09-01

    The influence of engine operating variables on the performance, emissions and heat release in a compression ignition engine operating in normal diesel and dual-fuel modes (with natural gas fuelling) was investigated. Substantial reductions in NO{sub x} emissions were obtained with dual-fuel engine operation. There was a corresponding increase in unburned hydrocarbon emissions as the substitution of natural gas was increased. Brake specific energy consumption decreased with natural gas substitution at high loads but increased at low loads. Experimental results at fixed pilot injection timing have also established the importance of intake manifold pressure and temperature in improving dual-fuel performance and emissions at part load. (Author)

  12. Possible version of the compression degradation of the thermonuclear indirect-irradiation targets at the national ignition facility and a reason for the failure of ignition

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-01-15

    The main parameters of compression of a target and tendencies at change in the irradiation conditions are determined by analyzing the published results of experiments at the megajoule National Ignition Facility (NIF) on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry. A possible version of the “failure of ignition” of an indirect-irradiation target under the NIF conditions is attributed to radiation transfer. The application of onedimensional model to analyze the National Ignition Campaign (NIC) experiments allows identifying conditions corresponding to the future ignition regime and distinguishing them from conditions under which ignition does not occur.

  13. effect of gasket of varying thickness on spark ignition engines

    African Journals Online (AJOL)

    DJFLEX

    In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses. (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...

  14. Towards constrained optimal control of spark-ignition engines

    NARCIS (Netherlands)

    Feru, E.; Luo, X.

    2015-01-01

    In this paper, the torque control problem for spark-ignition engines is considered. The objective is to provide good output torque tracking with minimum fuel consumption, while avoiding engine knock and misre. To this end, three control strategies are proposed: a feed-forward controller with

  15. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was...

  16. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  17. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  18. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    Science.gov (United States)

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  19. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    Science.gov (United States)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  20. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-01-29

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  1. Low Load Limit Extension for Gasoline Compression Ignition Using Negative Valve Overlap Strategy

    KAUST Repository

    Vallinayagam, R.

    2018-04-03

    Gasoline compression ignition (GCI) is widely studied for the benefits of simultaneous reduction in nitrogen oxide (NO) and soot emissions without compromising the engine efficiency. Despite this advantage, the operational range for GCI is not widely expanded, as the auto-ignition of fuel at low load condition is difficult. The present study aims to extend the low load operational limit for GCI using negative valve overlap (NVO) strategy. The engine used for the current experimentation is a single cylinder diesel engine that runs at an idle speed of 800 rpm with a compression ratio of 17.3. The engine is operated at homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) combustion modes with the corresponding start of injection (SOI) at 180 CAD (aTDC) and 30 CAD (aTDC), respectively. In the presented work, intake air temperature is used as control parameter to maintain combustion stability at idle and low load condition, while the intake air pressure is maintained at 1 bar (ambient). The engine is equipped with variable valve cam phasers that can phase both inlet and exhaust valves from the original timing. For the maximum cam phasing range (56 CAD) at a valve lift of 0.3 mm, the maximum allowable positive valve overlap was 20 CAD. In the present study, the exhaust cam is phased to 26 CAD and 6 CAD and the corresponding NVO is noted to be 10 CAD and 30 CAD, respectively. With exhaust cam phasing adjustment, the exhaust valve is closed early to retain hot residual gases inside the cylinder. As such, the in-cylinder temperature is increased and a reduction in the required intake air temperature to control combustion phasing is possible. For a constant combustion phasing of 3 CAD (aTDC), a minimum load of indicated mean effective pressure (IMEP) = 1 bar is attained for gasoline (RON = 91) at HCCI and PPC modes. The coefficient of variance was observed to below 5% at these idle and low load conditions. At the minimum load point, the

  2. Particular bi-fuel application of spark ignition engines

    Science.gov (United States)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  3. Ignition timing advance in the bi-fuel engine

    Directory of Open Access Journals (Sweden)

    Marek FLEKIEWICZ

    2009-01-01

    Full Text Available The influence of ignition timing on CNG combustion process has been presented in this paper. A 1.6 liter SI engine has been tested in the special program. For selected engine operating conditions, following data were acquired: in cylinder pressure, crank angle, fuel mass consumption and exhaust gases temperatures. For the timing advance correction varying between 0 to 15 deg crank angle, the internal temperature of combustion chamber, as well as the charge combustion ratio and ratio of heat release has been estimated. With the help of the mathematical model, emissions of NO, CO and CO2 were additionally estimated. Obtained results made it possible to compare the influence of ignition timing advance on natural gas combustion in the SI engine. The engine torque and in-cylinder pressure were used for determination of the optimum engine timing advance.

  4. E25 stratified torch ignition engine emissions and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Baêta, José Guilherme Coelho; Teixeira, Alysson Fernandes; Valle, Ramón Molina; Fonseca de Souza, José Leôncio

    2016-01-01

    Highlights: • A stratified torch ignition (STI) engine was built and tested. • The STI engines was tested in a wide range of load and speed. • Significant reduction on emissions was achieved by means of the STI system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine. • HC emission is the main drawback of the stratified torch ignition engine. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and greenhouse gases (GHG). This fact associated with fast global vehicle fleet growth calls for prompt scientific community technological solutions in order to promote a significant reduction in vehicle fuel consumption and emissions, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition (STI) engine was built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for a very low fuel flow rate. In this work the engine out-emissions of CO, NOx, HC and CO_2 of the STI engine are presented and a detailed analysis supported by the combustion parameters is conducted. The results obtained in this work show a significant decrease in the specific emissions of CO, NOx and CO_2 of the STI engine in comparison with the baseline engine. On the other hand, HC specific emission increased due to wall wetting from the fuel hitting in the pre-combustion chamber wall.

  5. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    International Nuclear Information System (INIS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-01-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle -1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  6. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    Science.gov (United States)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  7. Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine

    International Nuclear Information System (INIS)

    Wu, Zhijun; Kang, Zhe; Deng, Jun; Hu, Zongjie; Li, Liguang

    2016-01-01

    Highlights: • n-Heptane HCCI combustion under air and oxygen intake was compared. • n-Heptane auto-ignition postponed due to higher specific heat capacity as oxygen increase. • The increment of heat release fraction during low temperature reaction is studied. • Oxygen enrichment lead to suppressed negative temperature coefficient. • The mechanism of low temperature reaction enhancement as oxygen increase is investigated. - Abstract: To take maximum advantage of the high efficiency of homogeneous charge compression ignition combustion mode and internal combustion Rankine cycle concept, in this study, the n-heptane auto-ignition characteristics have been investigated using a compression ignition internal combustion Rankine cycle engine test bench and a zero-dimensional thermodynamic model coupled with a detailed kinetic model. The n-heptane auto-ignition process shows that under both air and oxygen intake, a typical two-stage combustion in which oxygen enrichment has very minor effects on the n-heptane high temperature reaction. The higher specific heat capacity of oxygen compared with nitrogen leads to an overall increased specific heat capacity, which lowers the in-cylinder temperature during compression stroke, thereby delaying the low temperature reaction initial timing. The higher oxygen content also improves the H-atom abstraction, first O_2 addition, second O_2 addition and peroxyalkylhydroperoxide isomerization, thereby improving the overall reaction rate and the heat release fraction of low temperature reaction. As a result, the in-cylinder temperature at the end of low temperature reaction also increases, thereby shortening significantly the negative temperature coefficient duration compared with a combustion cycle using air as oxidizer.

  8. OH PLIF measurement in a spark ignition engine with a tumble flow

    Science.gov (United States)

    Kumar, Siddhartha; Moronuki, Tatsuya; Shimura, Masayasu; Minamoto, Yuki; Yokomori, Takeshi; Tanahashi, Mamoru; Strategic Innovation Program (SIP) Team

    2017-11-01

    Under lean conditions, high compression ratio and strong tumble flow; cycle-to-cycle variations of combustion in spark ignition (SI) engines is prominent, therefore, relation between flame propagation characteristics and increase of pressure needs to be clarified. The present study is aimed at exploring the spatial and temporal development of the flame kernel using OH planar laser-induced fluorescence (OH PLIF) in an optical SI engine. Equivalence ratio is changed at a fixed indicated mean effective pressure of 400 kPa. From the measurements taken at different crank angle degrees (CAD) after ignition, characteristics of flame behavior were investigated considering temporal evolution of in-cylinder pressure, and factors causing cycle-to-cycle variations are discussed. In addition, the effects of tumble flow intensity on flame propagation behavior were also investigated. This work is supported by the Cross-ministerial Strategic Innovation Program (SIP), `Innovative Combustion Technology'.

  9. A Photographic Study of Combustion and Knock in a Spark-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Spencer, R C

    1938-01-01

    Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.

  10. Automobile Engine: Basic Ignition Timing. Fordson Bilingual Demonstration Project.

    Science.gov (United States)

    Vick, James E.

    These two vocational instructional modules on basic automobile ignition timing and on engine operation, four-stroke cycle, are two of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the…

  11. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  12. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    Science.gov (United States)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  13. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

    OpenAIRE

    Hao Liu; Hongguang Zhang; Zhicheng Shi; Haitao Lu; Guangyao Zhao; Baofeng Yao

    2014-01-01

    A rapid compression machine (RCM) test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution ratio of 35% to 65%. A new type of hydraulic piston is used to address the problem in which the hydraul...

  14. Analysis of Modifications on a Spark Ignition Engine for Operation with Natural Gas

    Directory of Open Access Journals (Sweden)

    Ramasamy D.

    2016-01-01

    Full Text Available Transportation is one of the key contributors to petroleum usage and emissions to the atmosphere. According to researchers, there are many ways to use transport by using renewable energy sources. Of these solutions, the immediate solution which requires less modification to current engine technology is by using gaseous fuels. Natural gas is the fuel of choice for minor modification to current engines. As it can be derived from anaerobic digestion process, the potential as a renewable energy source is tremendous, especially for an agricultural country such a Malaysia. The aim in the future will be operating an engine with natural gas only with pipelines straight to houses for easy filling. The fuel is light and can be easily carried in vehicles when in compressed form. As such, Compressed Natural Gas (CNG is currently used in bi-fuel engines, but is mostly not optimized in term of their performance. The focus of the paper is to optimize a model of natural gas engine by one dimensional flow modeling for operation with natural gas. The model is analyzed for performance and emission characteristics produced by a gasoline engine and later compared with natural gas. The average performance drop is about 15% from its gasoline counterpart. The 4% benchmark indicates that the modification to ignition timing and compression ratio does improve engine performance using natural gas as fuel.

  15. 75 FR 32611 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Science.gov (United States)

    2010-06-08

    ... marine CI engines at or above 600 kilowatt (KW) (800 horsepower (HP)), the second of which was based on... preamble. The first tier of standards divides these engines by displacement. The second divides the engines...-hr (12.7 g/HP-hr) when maximum engine speed is less than 130 revolutions per minute (rpm); 45 [middot...

  16. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    Science.gov (United States)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  17. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas; Hall, Carrie

    2017-03-28

    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking

  18. Fuel Saving Strategy in Spark Ignition Engine Using Fuzzy Logic Engine Torque Control

    OpenAIRE

    Aris Triwiyatno; Sumardi

    2012-01-01

    In the case of injection gasoline engine, or better known as spark ignition engines, an effort to improve engine performance as well as to reduce fuel consumption is a fairly complex problem. Generally, engine performance improvement efforts will lead to increase in fuel consumption. However, this problem can be solved by implementing engine torque control based on intelligent regulation such as the fuzzy logic inference system. In this study, fuzzy logic engine torque regulation is used to c...

  19. Cycle-skipping strategies for pumping loss reduction in spark ignition engines: An experimental approach

    International Nuclear Information System (INIS)

    Yüksek, Levent; Özener, Orkun; Sandalcı, Tarkan

    2012-01-01

    Highlights: ► A cycle density variation technique called cycle-skipping was applied. ► Effect on fuel consumption and gaseous emissions was investigated. ► Fuel consumption and gaseous tail-pipe emissions improved at partial loading conditions. - Abstract: Spark ignition (SI) engines are widely used for power generation, especially in the automotive industry. SI engines have a lower thermal efficiency than diesel engines due to a lower compression ratio, higher charge-induction work and lower end of compression stroke pressure. A significant amount of charge induction work is lost when an SI engine runs under partial loading conditions. Under partial loading conditions, a lower intake charge is required, which can be theoretically achieved by varying the displacement volume or the stroke number of the engine without using a throttle. Reducing the displacement volume to control the engine load can be achieved by skipping cycles in single-cylinder engines. This study investigates the effect of cycle-skipping strategies on the brake specific fuel consumption (BSFC) and exhaust emissions of an SI engine under partial loading conditions. Three different skipping modes were applied: normal, normal-skip and normal-normal-skip. A significant improvement in BSFC and carbon monoxide emission was obtained by applying cycle-skipping strategies.

  20. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    International Nuclear Information System (INIS)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-01-01

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10 4 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities

  1. COMBUSTION OPTIMIZATION IN SPARK IGNITION ENGINES

    OpenAIRE

    Barhm Mohamad; Gabor Szebesi; Betti Bollo

    2017-01-01

    The blending technique used in internal combustion engines can reduce emission of toxic exhaust components and noises, enhance overall energy efficiency and reduce fuel costs. The aim of the study was to compare the effects of dual alcohols (methanol and ethanol) blended in gasoline fuel (GF) against performance, combustion and emission characteristics. Problems arise in the fuel delivery system when using the highly volatile methanol - gasoline blends. This problem is reduced by using specia...

  2. Ignition system for an internal combustion engine with rotary system

    Energy Technology Data Exchange (ETDEWEB)

    Hochstein, P A

    1977-05-18

    In the Wankel engine, the sparking plugs spark three times per rotation of the rotor and are never cooled by the incoming mixture. This constant high temperature environment necessitates the use of special sparking plugs. The covered top of the sparking plug is particularly liable to carbon deposits. This invention makes it possible to use sparking plugs on the rotor, without the disadvantages due to the use of high voltage. Further, the use of distributors or mechanical devices determining the ignition timing is no longer necessary. The fuel/air mixture is ignited in a combustion chamber, which is limited by first and second components moving relative to one another in repeated cycles. A generator device is fitted to the first components and an ignition device to the second components. The magnetic flux linking takes place in a predetermined area of the relative movement between the first and second components in a repeated cycle. An ignition signal is produced in the combustion chamber by the magnetic flux linking.

  3. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani

    2018-04-02

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index; therefore, increasing the octane index of a spark-ignition engine fuel increases the efficiency of the respective engine. However, raising the octane index of gasoline increases the refining costs, as well as the energy consumption during production. The use of alternative fuels with synergistic blending effects presents an attractive option for improving octane index. In this work, the octane enhancing potential of 2-methylfuran (2-MF), a next-generation biofuel, has been examined and compared to other high-octane components (i.e., ethanol and toluene). A primary reference fuel with an octane index of 60 (PRF60) was chosen as the base fuel since it closely represents refinery naphtha streams, which are used as gasoline blend stocks. Initial screening of the fuels was done in an ignition quality tester (IQT). The PRF60/2-MF (80/20 v/v%) blend exhibited longer ignition delay times compared to PRF60/ethanol (80/20 v/v%) blend and PRF60/toluene (80/20 v/v%) blend, even though pure 2-MF is more reactive than both ethanol and toluene. The mixtures were also tested in a cooperative fuels research (CFR) engine under research octane number and motor octane number like conditions. The PRF60/2-MF blend again possesses a higher octane index than other blending components. A detailed chemical kinetic analysis was performed to understand the synergetic blending effect of 2-MF, using a well-validated PRF/2-MF kinetic model. Kinetic analysis revealed superior suppression of low-temperature chemistry with the addition of 2-MF. The results from simulations were further confirmed by homogeneous charge compression ignition engine experiments, which established its superior low-temperature heat release (LTHR) suppression compared to ethanol

  4. Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition

    International Nuclear Information System (INIS)

    Munsin, R.; Laoonual, Y.; Jugjai, S.; Matsuki, M.; Kosaka, H.

    2015-01-01

    Highlights: • Glycerol ethoxylate (GE) shows the similar results as the commercial additive. • GE decreases injection rate, but increases injection delay and duration of ethanol. • GE shortens ignition delay and decreases heat released in premixed burn of ethanol. • GE has a minor effect on flame temperature of ethanol. • KL factor and soot of ethanol are sensitive to both GE and the commercial additive. - Abstract: This paper investigates the effects of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under a CI engine condition. Injection characteristics were investigated by an in-house injection rate measurement device based on the Zeuch method, while spray combustion has been performed in the rapid compression and expansion machine (RCEM). The CI engine condition indicated as density, pressure and temperature of compressed synthetic gas, consisting of 80% argon and 20% oxygen, at fuel injection timing in RCEM of 21 kg/m 3 , 4.4 MPa and 900 K, respectively. This condition is equivalent to the isentropic compression of air of the actual CI engine with compression ratio of 22. Hydrous ethanol without ignition improver (Eh95) and the ethanol dedicated for heavy duty vehicles (ED95: composed of hydrous ethanol with the commercial additive for ED95) are reference fuels representing low and high quality ethanol fuel for CI engines, respectively. All test fuels are injected at constant heat input. The results indicate that the additional ignition improvers change injection characteristics, i.e. injection delay, injection rate and discharge coefficient of hydrous ethanol. The maximum injection rates at fully opened needle for the ethanol dedicated for heavy duty vehicles (ED95) and hydrous ethanol with 5% glycerol ethoxylate (5%GE) are lower than that of hydrous ethanol without ignition improver (Eh95) by approximately 10%. Additional injection duration is required for ED95 and 5%GE to maintain a

  5. Unraveling advanced compression ignition combustion using optical diagnostics

    NARCIS (Netherlands)

    Zegers, R.P.C.

    2012-01-01

    Despite the expected upsurge of hybrid and electric cars in the coming decades, internal combustion will remain the main power supply for (long-distance) transport. Buses, trucks, ships and airplanes will still rely on combustion engines. Nevertheless, emission legislation is becoming more stringent

  6. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Erol [Program of Energy Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey); Cihangir Ozcanli, S.; Ozerdem, Baris [Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey)

    2007-08-15

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effective pressure, exhaust gas temperature, and emissions of NO{sub x}, CO, CO{sub 2}, HC, and O{sub 2} versus engine speed are compared for a carbureted SI engine operating on gasoline and hydrogen. Energy analysis also has studied for comparison purpose. The test results have been demonstrated that power loss occurs at low speed hydrogen operation whereas high speed characteristics compete well with gasoline operation. Fast burning characteristics of hydrogen have permitted high speed engine operation. Less heat loss has occurred for hydrogen than gasoline. NO{sub x} emission of hydrogen fuelled engine is about 10 times lower than gasoline fuelled engine. Finally, both first and second law efficiencies have improved with hydrogen fuelled engine compared to gasoline engine. It has been proved that hydrogen is a very good candidate as an engine fuel. The obtained data are also very useful for operational changes needed to optimize the hydrogen fueled SI engine design. (author)

  7. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    International Nuclear Information System (INIS)

    Sawada, H.; Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S.; Shiroto, T.; Ohnishi, N.; Sunahara, A.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.

    2016-01-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm"2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  8. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H. [Department of Physics, University of Nevada Reno, Reno, Nevada 89557 (United States); Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Shiroto, T.; Ohnishi, N. [Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi (Japan); Sunahara, A. [Institute of Laser Technology, Nishi-ku, Osaka (Japan); Beg, F. N. [University of California San Diego, La Jolla, California 92093 (United States); Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Pérez, F. [LULI, Ecole Polytechnique, Palaiseau, Cedex (France); Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  9. Utilisation of VOC in Diesel Engines. Ignition and combustion of VOC released in crude oil tankers

    International Nuclear Information System (INIS)

    Melhus, Oeyvin

    2002-01-01

    The emission of VOC (Volatile Organic Compound) is a significant source of hydrocarbon pollution. In Norway, the offshore oil industry represents a major source. This emission represents both an energy loss and an environmental problem. Gas tankers have used boil-off gas from the cargo tanks as fuel for some time. However, for the current VOC project a new fuel injection concept is designed for tankers to take advantage of the energy present in the VOC evaporated from crude oil. The VOC is mixed with inert gas in these tankers, and thus the utilisation of this gas represents new challenges. The VOC project uses the concept of ''Condensate Diesel Process'' with pilot ignition. An experimental study of ignition and combustion of VOC Fuels reported here was initiated by the time it was decided to start a pilot project converting propulsion engines in shuttle tankers to use VOC Fuel. It is an experimental study carried out at the Marine Technology Centre (MTS). The objective was to study ignition and combustion of the chosen process in comparison with an ordinary diesel process. The experimental results have been discussed and compared with theoretical considerations of injection, ignition and combustion. For experiments on combustion, a rapid compression machine ''DyFo'' was redesigned to use VOC Fuel. The DyFo test rig was initially designed to study ignition and early combustion of spark ignited homogeneous gas/air charges. To study the ignition and early combustion of VOC Fuel injected at high pressure and ignited by pilot diesel fuel, a redesign was necessary. An important feature of the DyFo, is the visualisation of the combustion. The advantage of the DyFo test rig over an engine, is its simplicity and controllability. In an engine the visualisation would suffer from combustion deposits disturbing the view through the quartz glasses, making the images more difficult to interpret. The simplicity is on the other side a drawback. Correct thermal conditions inside

  10. Effort to increase an engine performance using electrical ignition system for motor vehicle

    Directory of Open Access Journals (Sweden)

    I Wayan Bandem Adnyana

    2012-11-01

    Full Text Available Increasing engine performances using electrical ignition system on motor vehicle. In accordance with the development oftechnology, improvisation of automotive is created in order to increase the performance of engine. The method to increase thisperformance has been done by modify the ignition system, where the conventional method of ignition system which uses contactbreaker substituted by using capacitor. The improvisation of ignition system has been tested by increasing the speed and load onstationary condition. Results show that the improvisation of ignition system by using capacitor increases the effective power andreduce the specific fuel consumption of engine and reduce the gas emission of CO.

  11. Unraveling advanced compression ignition combustion using optical diagnostics

    OpenAIRE

    Zegers, R.P.C.

    2012-01-01

    Despite the expected upsurge of hybrid and electric cars in the coming decades, internal combustion will remain the main power supply for (long-distance) transport. Buses, trucks, ships and airplanes will still rely on combustion engines. Nevertheless, emission legislation is becoming more stringent and the oil price continues to rise. Consequently, there still exists a serious interest in new developments that may improve combustion efficiency and fuel flexibility, and reduce emissions; both...

  12. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    Science.gov (United States)

    Zhao, H.; Zhang, S.

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O2, H2O, CO2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine.

  13. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine

    International Nuclear Information System (INIS)

    Zhao, H; Zhang, S

    2008-01-01

    One of the most effective means to achieve controlled auto-ignition (CAI) combustion in a gasoline engine is by the residual gas trapping method. The amount of residual gas and mixture composition have significant effects on the subsequent combustion process and engine emissions. In order to obtain quantitative measurements of in-cylinder residual gas concentration and air/fuel ratio, a spontaneous Raman scattering (SRS) system has been developed recently. The optimized optical SRS setups are presented and discussed. The temperature effect on the SRS measurement is considered and a method has been developed to correct for the overestimated values due to the temperature effect. Simultaneous measurements of O 2 , H 2 O, CO 2 and fuel were obtained throughout the intake, compression, combustion and expansion strokes. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

  14. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio...... was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly....

  15. Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine

    International Nuclear Information System (INIS)

    Porpatham, E.; Ramesh, A.; Nagalingam, B.

    2013-01-01

    Highlights: • Tests were conducted on a biogas fuelled SI engine with normal and masked valve. • Improvement in brake power and brake thermal efficiency with masked valve. • Lean misfire limit is extended with enhanced swirl from 0.68 to 0.65. • Enhanced swirl decreases HC level from1530 ppm to 1340 ppm and increases NO emission from 2250 ppm to 3440 ppm. • The reduction in ignition delay and higher heat release rate with enhanced swirl. - Abstract: The influence of swirl on the performance, emissions and combustion in a constant speed Spark Ignition (SI) engine was studied experimentally. A single cylinder diesel engine was modified to operate as a biogas operated spark ignition engine. The engine was operated at 1500 rpm at throttle opening of 25% and 100% at various equivalence ratios. The tests covered a range of equivalence ratios from rich to lean operating limits and also at an optimum compression ratio of 13:1 with normal and masked intake valve to enhance swirl. The spark timing was set to MBT (Minimum advance for Best Torque). It was found that masked valve configuration enhanced the power output and brake thermal efficiency at full throttle. The lean limit of combustion also got extended. Heat release rates indicated enhanced combustion rates with masked valve, which are mainly responsible for the improvement in thermal efficiency. NO level increased with masked valve as compared to normal configuration. The spark timings were to be retarded by about 6 °CA and 4 °CA when compared to normal configuration at 25% and 100% throttle respectively

  16. Influence of hydrox on spark ignition engine performance

    International Nuclear Information System (INIS)

    Naude, A.F.

    2003-01-01

    An experimental investigation was performed on the influence of the addition of small quantities of Hydrox (hydrogen and oxygen) as generated through electrolysis of water on the performance of a spark ignition engine. A Mazda 1600 cc fuel injected engine connected to a Superflow SF901 dynamometer system was used in this project. The engine was also equipped with a Unichip engine management system in order to enable changes in the spark timing and the amount of fuel injected. Hydrox was generated by an electrolysis process that could either be powered by the engine's alternator or from a separate power source. This hydrox gas produced from the electrolyzer was introduced into the engine's intake manifold and the influence of this was measured on the engine's performance, emissions and fuel consumption. For these tests a typical load condition as experienced for a light passenger car vehicle driven at 100 km/h on the open road was simulated. Typical results for the change in emissions with the hydrox introduction showed a significant reduction in hydrocarbons at lean air-fuel ratio operation of the engine. Additionally with the electrolysis process being driven by the engine a small improvement in fuel consumption was experienced. (author)

  17. Neutral-beam requirements for compression-boosted ignited tokamak plasmas

    International Nuclear Information System (INIS)

    Cohn, D.R.; Jassby, D.L.; Kreischer, K.

    1977-12-01

    Neutral-beam energies of 200 to 500-keV D 0 may be required to insure adequate penetration into the center of ignition-sized tokamak plasmas. However, the beam energy requirement can be reduced by using a start-up scenario in which the final plasma is formed by major-radius compression of a beam-heated plasma whose density-radius product, na, is determined by satisfactory neutral-beam penetration. ''Compression boosting'' is attractive only for plasmas in which ntau/sub E/ increases with na, because a major-radius compression C increases na by C 3 / 2 . The dependence on C of beam energy and beam power for plasmas which obey ''empirical scaling laws'' of the type ntau/sub E/ varies as (na) 2 is analyzed. The dependences on C of stored magnetic energy and TF-coil power dissipation are also determined. It is found that a compression ratio of 1.5 to attain the ignited plasma permits adequate penetration by 150-keV D 0 beams

  18. Engine Torque Control of Spark Ignition Engine using Fuzzy Gain Scheduling

    OpenAIRE

    Aris Triwiyatno

    2012-01-01

    In the spark ignition engine system, driver convenience is very dependent on satisfying engine torque appropriate with the throttle position given by the driver. Unfortunately, sometimes the fulfillment of engine torque is not in line with fuel saving efforts. This requires the development of high performance and robust power train controllers. One way to potentially meet these performance requirements is to introduce a method of controlling engine torque using fuzzy gain scheduling. By using...

  19. COMBUSTION ANALYSIS OF A CNG DIRECT INJECTION SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    A. Rashid A. Aziz

    2010-12-01

    Full Text Available An experimental study was carried out on a dedicated compressed natural gas direct injection (CNG-DI engine with a compression ratio (CR of 14 and a central injection system. Several injection timing parameters from early injection timing (300 BTDC to partial direct injection (180 BTDC to full direct injection (120 BTDC were investigated. The 300 BTDC injection timing experiment was carried out to simulate the performance of a port injection engine and the result is used as a benchmark for engine performance. The full DI resulted in a 20% higher performance than the early injection timing for low engine speeds up to 2750 rpm. 180 BTDC injection timing shows the highest performance over an extensive range of engine speed because it has a similar volumetric efficiency to full DI. However, the earlier injection timing allowed for a better air–fuel mixing and gives superior performance for engine speeds above 4500 rpm. The engine performance could be explained by analysis of the heat release rate that shows that at low and intermediate engine speeds of 2000 and 3000, the full DI and partial DI resulted in the fastest heat release rate whereas at a high engine speed of 5000 rpm, the simulated port injection operation resulted in the fastest heat release rate.

  20. Improving the performance and fuel consumption of dual chamber stratified charge spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S.C.; Pan, S.S.; Bruckbauer, J.J.; Gehrke, G.R.

    1979-09-01

    A combined experimental and theoretical investigation of the nature of the combustion processes in a dual chamber stratified charge spark ignition engine is described. This work concentrated on understanding the mixing process in the main chamber gases. A specially constructed single cylinder engine was used to both conduct experiments to study mixing effects and to obtain experimental data for the validation of the computer model which was constructed in the theoretical portion of the study. The test procedures are described. Studies were conducted on the effect of fuel injection timing on performance and emissions using the combination of orifice size and prechamber to main chamber flow rate ratio which gave the best overall compromise between emissions and performance. In general, fuel injection gave slightly higher oxides of nitrogen, but considerably lower hydrocarbon and carbon monoxide emissions than the carbureted form of the engine. Experiments with engine intake port redesign to promote swirl mixing indicated a substantial increase in the power output from the engine and, that an equivalent power levels, the nitric oxide emissions are approximately 30% lower with swirl in the main chamber than without swirl. The development of a computer simulation of the combustion process showed that a one-dimensional combustion model can be used to accurately predict trends in engine operation conditions and nitric oxide emissions even though the actual flame in the engine is not completely one-dimensional, and that a simple model for mixing of the main chamber and prechamber intake gases at the start of compression proved adequate to explain the effects of swirl, ignition timing, overall fuel air ratio, volumetric efficiency, and variations in prechamber air fuel ratio and fuel rate percentage on engine power and nitric oxide emissions. (LCL)

  1. Modification Design of Petrol Engine for Alternative Fueling using Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Eliezer Uchechukwu Okeke

    2013-04-01

    Full Text Available This paper is on the modification design of petrol engine for alternative fuelling using Compressed Natural Gas (CNG. It provides an analytical background in the modification design process. A petrol engine Honda CR-V 2.0 auto which has a compression ratio of 9.8 was selected as case study. In order for this petrol engine to run on CNG, its compression had to be increased. An optimal compression ratio of 11.97 was computed using the standard temperature-specific volume relationship for an isentropic compression process. This computation of compression ratio is based on an inlet air temperature of 30oC (representative of tropical ambient condition and pre-combustion temperature of 540oC (corresponding to the auto-ignition temperature of CNG. Using this value of compression ratio, a dimensional modification Quantity =1.803mm was obtained using simple geometric relationships. This value of 1.803mm is needed to increase the length of the connecting rod, the compression height of the piston or reducing the sealing plate’s thickness. After the modification process, a CNG engine of air standard efficiency 62.7% (this represents a 4.67% increase over the petrol engine, capable of a maximum power of 83.6kW at 6500rpm, was obtained.

  2. Controlled auto-ignition characteristics of methane-air mixture in a rapid intake compression and expansion machine

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyubaek; Jeong, Dongsoo [Engine Research Team, Eco-Machinery Research Division, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-701 (Korea); Moon, Gunfeel [Department of Clean Environmental system, University of Science and Technology, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea); Bae, Choongsik [Engine Laboratory, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 GuSeong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2010-10-15

    The characteristics of controlled auto-ignition (CAI) were investigated with a methane-air mixture and simulated residual gas, that represents internal exhaust gas recirculation (IEGR). Supply systems were additionally installed on the conventional rapid compression machine (RCM), and this modified machine - a rapid intake compression and expansion machine (RICEM) - was able to simulate an intake stroke for the evaluation of controlled auto-ignition with fuel-air mixture. The fuel-air mixture and the simulated residual gas were introduced separately into the combustion chamber through the spool valves. Various IEGR rates and temperatures of the IEGR gas were tested. The initial reaction and the development in controlled auto-ignition combustion were compared with spark-ignited combustion by visualization with a high-speed digital camera. Under the controlled auto-ignition operation, multi-point ignition and faster combustion were observed. With increasing the temperature of IEGR gas, the auto-ignition timing was advanced and burning duration was shortened. The higher rate of IEGR had the same effects on the combustion of the controlled auto-ignition. However, this trend was reversed with more than 47 per cent of IEGR. (author)

  3. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  4. Compression Ratio and Catalyst Aging Effects on Aqueous Ethanol Ignition (Year 2): Part 1. Compression Ratio Effects on Aqueous Ethanol Ignition

    Science.gov (United States)

    2009-09-01

    The lean burning of water ethanol blends has the potential to reduce NOx, CO, and HC emissions while reducing the ethanol fermentation production cost of distillation and dehydration. The torch style ignition produced by the catalytic igniter allows ...

  5. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    International Nuclear Information System (INIS)

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-01-01

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  6. Main conditions and effectiveness of gas fuel use for powering of dual fuel IC self-ignition engine

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2015-09-01

    Full Text Available Internal combustion engines are fuelled mostly with liquid fuels (gasoline, diesel. Nowadays the gaseous fuels are applied as driving fuel of combustion engines. In case of spark ignition engines the liquid fuel (petrol can be totally replaced by the gas fuels. This possibility in case of compression engines is essentially restricted through the higher self-ignition temperatures of the combustible gases in comparison to classical diesel oil. Solution if this problem can be achieved by using of the dual fuel system, where for ignition of the prepared fuel gas - air mixture a specified amount of the liquid fuel (diesel oil should be additionally injected into the combustion chamber. For assurance that the combustion process proceeds without mistakes and completely, some basic conditions should be satisfied. In the frame of this work, three main aspects of this problem are taken into account: a. filling efficiency of the engine, b. stoichiometry of the combustion, c. performance of mechanical parameters (torque, power. A complex analysis of these conditions has been done and some achieved important results are presented in the paper.

  7. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range

    International Nuclear Information System (INIS)

    Wang, Buyu; Wang, Zhi; Shuai, Shijin; Yang, Hongqiang; Wang, Jianxin

    2014-01-01

    Highlights: • Naphtha MPCI can operate stably in wide load range from 0.4 MPa to 1.4 MPa of IMEP. • Naphtha MPCI can achieve high thermal efficiency due to low exhaust loss. • Gasoline MPCI has low heat transfer loss than CDC and naphtha MPCI. • MPCI can produce low NO x emissions (<0.4 g/kW h) with the EGR ratio less than 30%. - Abstract: This paper investigates the effect of naphtha (RON = 65.6) and commercial gasoline (RON = 94.0) on Multiple Premixed Compression Ignition (MPCI) mode. The experiment is conducted on a single cylinder research diesel engine with compression ratio of 16.7. The engine is operated at an engine speed of 1600 rpm for the IMEP from 0.4 to 1.4 MPa. Commercial diesel (CN = 56.5) is also tested in Conventional Diesel Combustion (CDC) mode as a baseline. At each operating point, the injection strategy and intake conditions are adjusted to meet with the criteria (NO x < 0.4 g/kW h, soot < 0.06 m −1 , MPRR < 1 MPa/deg and CA50 < 20 CAD ATDC). The typical two-stage combustion characteristics of MPCI are obtained in both naphtha and gasoline. Stable combustion is achieved by naphtha in wide load range, while the engine fuelled with gasoline cannot operate stably at 0.4 MPa IMEP. The COV of IMEP of gasoline MPCI is higher than that of naphtha and diesel. However, gasoline has the low MPRR and the retarded CA50 at medium and high loads due to its longest ignition delay. As a result of low exhaust loss for naphtha and low heat transfer loss for gasoline, the thermal efficiencies are higher for both naphtha and gasoline in MPCI mode than diesel in CDC mode, even though diesel has the highest combustion efficiency. The separated combustion in MPCI leads to low cylinder temperature, and moderate EGR ratio (less than 30%) is needed to control NO x emissions under the limit of EURO VI

  8. CFD modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Gaurav [Department of Mechanical Engineering, The University of Akron, Akron, OH 44325 (United States); Raju, Mandhapati P. [General Motor R and D Tech Center, Warren, MI 48090 (United States); Sung, Chih-Jen [Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-07-15

    In modeling rapid compression machine (RCM) experiments, zero-dimensional approach is commonly used along with an associated heat loss model. The adequacy of such approach has not been validated for hydrocarbon fuels. The existence of multi-dimensional effects inside an RCM due to the boundary layer, roll-up vortex, non-uniform heat release, and piston crevice could result in deviation from the zero-dimensional assumption, particularly for hydrocarbons exhibiting two-stage ignition and strong thermokinetic interactions. The objective of this investigation is to assess the adequacy of zero-dimensional approach in modeling RCM experiments under conditions of two-stage ignition and negative temperature coefficient (NTC) response. Computational fluid dynamics simulations are conducted for n-heptane ignition in an RCM and the validity of zero-dimensional approach is assessed through comparisons over the entire NTC region. Results show that the zero-dimensional model based on the approach of 'adiabatic volume expansion' performs very well in adequately predicting the first-stage ignition delays, although quantitative discrepancy for the prediction of the total ignition delays and pressure rise in the first-stage ignition is noted even when the roll-up vortex is suppressed and a well-defined homogeneous core is retained within an RCM. Furthermore, the discrepancy is pressure dependent and decreases as compressed pressure is increased. Also, as ignition response becomes single-stage at higher compressed temperatures, discrepancy from the zero-dimensional simulations reduces. Despite of some quantitative discrepancy, the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the ignition delay simulation. (author)

  9. Transistorized ignition system for internal combustion engines, in particular for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Mieras, L F; Skay, F

    1977-05-12

    The invention concerns an ignition system for motor vehicles with solid state control of the power transistor switching the primary current of the ignition coil. A pulse generator driven by the engine is used for this, whose voltage pulses control the switching on of the power transistor and increase in a certain ratio to the engine speed. This ensures that the closing angle, i.e. the mechanical angle of rotation which the machine passes through while loading the ignition coil with mechanical energy, is automatically changed so that for low speeds it is just sufficient for certain ignition, but increases with increasing speed, so that the required ignition energy is always available. At low speeds one avoids charging current flowing through the primary winding of the ignition coil for longer than necessary and thus wasting electrical energy.

  10. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  11. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  12. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D. L. [West Virginia Univ., Morgantown, WV (United States)

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  13. An experimental and numerical analysis of the HCCI auto-ignition process of primary reference fuels, toluene reference fuels and diesel fuel in an engine, varying the engine parameters

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr-I' Ecole (France); Gilbert, Philippe [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr-I' Ecole (France)

    2008-11-15

    For a future HCCI engine to operate under conditions that adhere to environmental restrictions, reducing fuel consumption and maintaining or increasing at the same time the engine efficiency, the choice of the fuel is crucial. For this purpose, this paper presents an auto-ignition investigation concerning the primary reference fuels, toluene reference fuels and diesel fuel, in order to study the effect of linear alkanes, branched alkanes and aromatics on the auto-ignition. The auto-ignition of these fuels has been studied at inlet temperatures from 25 to 120 C, at equivalence ratios from 0.18 to 0.53 and at compression ratios from 6 to 13.5, in order to extend the range of investigation and to assess the usability of these parameters to control the auto-ignition. It appeared that both iso-octane and toluene delayed the ignition with respect to n-heptane, while toluene has the strongest effect. This means that aromatics have higher inhibiting effects than branched alkanes. In an increasing order, the inlet temperature, equivalence ratio and compression ratio had a promoting effect on the ignition delays. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. (author)

  14. Impact of branched structures on cycloalkane ignition in a motored engine: Detailed product and conformational analyses

    KAUST Repository

    Kang, Dongil

    2015-04-01

    The ignition process of ethylcyclohexane (ECH) and its two isomers, 1,3-dimethylcyclohexane (13DMCH) and 1,2-dimethylcyclohexane (12DMCH) was investigated in a modified CFR engine. The experiment was conducted with intake air temperature of 155. °C, equivalence ratio of 0.5 and engine speed of 600. rpm. The engine compression ratio (CR) was gradually increased in a stepwise manner until autoignition occurred. It was found that ECH exhibited a significantly higher oxidation reactivity compared to its two isomers. The autoignition criterion was based on CO emissions and the apparent heat release rates. Ethylcyclohexane (ECH) indicated noticeable two stage ignition behavior, while less significant heat release occurred for the two isomers at comparable conditions. The mole fractions of unreacted fuel and stable intermediate species over a wide range of compression ratios were analyzed by GC-MS and GC-FID. Most of the species indicated constant rates of formation and the trends of relative yield to unreacted fuel are well in agreement with the oxidation reactivity in the low temperature regime. The major intermediate species are revealed as a group of conjugate olefins, which possess the same molecular structure as the original fuel compound except for the presence of a double carbon bond. Conjugate olefins were mostly formed through (1,4) H-shift isomerization during the low temperature oxidation of alkylcyclohexanes. Conformation analysis explains the reactivity differences in the three isomers as well as the fractions of intermediate species. The hydrogen availability located in alkyl substituents plays an important role in determining oxidation reactivity, requiring less activation energy for abstraction through the (1,5) H-shift isomerization. This reactivity difference contributes to building up the major intermediate species observed during oxidation of each test fuel. 12DMCH, whose ignition reactivity is the lowest, less favors β-scission of C-C backbone of

  15. 40 CFR Table 2b to Subpart Zzzz of... - Operating Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, Existing Non-Emergency Compression Ignition Stationary RICE >500 HP, and New and Reconstructed 4SLB Burn Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2b Table 2b to Subpart ZZZZ of Part 63...

  16. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Science.gov (United States)

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...

  17. Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on LES with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2015-01-01

    Highlights: • Knock during HCCI in a high compression ratio methanol engine was modeled. • A detailed methanol mechanism was used to simulate the knocking combustion. • Compared with the SI engines, the HCCI knocking combustion burnt faster. • The reaction rate of HCO had two obvious peaks, one was positive, and another was negative. • Compared with the SI engines, the values of the reaction rates of CH 2 O, H 2 O 2 , and HO 2 were higher, and it had negative peaks. - Abstract: In this study, knock during HCCI (homogeneous charge compression ignition) was studied based on LES (large eddy simulation) with methanol chemical kinetics (84-reaction, 21-species) in a high compression ratio methanol engine. The non-knocking and knocking combustion of SI (spark ignition) and HCCI engines were compared. The results showed that the auto-ignition spots were initially occurred near the combustion chamber wall. The knocking combustion burnt faster during HCCI than SI methanol engine. The HCO reaction rate was different from SI engine, it had two obvious peaks, one was positive peak, and another was negative peak. Compared with the SI methanol engine, in addition to the concentration of HCO, the concentrations of the other intermediate products and species such as CO, OH, CH 2 O, H 2 O 2 , HO 2 were increased significantly; the reaction rates of CH 2 O, H 2 O 2 , and HO 2 had negative peaks, and whose values were several times higher than SI methanol engine

  18. Simulation of compression engine powered by Biofuels

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Khalil, Runa Haj

    2010-01-01

    The present work describes a theoretical investigation concerning the performance of a four strokes compression engine, which is powered by alternative fuels in the form of diesel-ethanol and diesel-ether mixtures, the properties of which were sited from literature. The amount of each alcohol added was 5%, 10% and 15% by volume. The engine speed during the experimental work was within the range from 1000 to 4000 rpm, with engine was set at full throttle opening and hence the engine was operating under full load conditions. Several parameters were calculated namely: engine torque, brake mean effective pressure, brake power, specific fuel consumption and the thermal efficiency, this was carried out using DIESEL-RK software. It was found that the engine is of highest thermal efficiency when it is powered by a 15% ethanol-diesel blend, wile it is of minimum thermal efficiency when it is powered by pure diesel fuel. Further, it was found that both the thermal efficiency of the engine and the specific fuel consumption increases with the percentage of either ethanol or ether in the fuel blend. However, the power was found to decrease with the amount of either ethanol or ether in the fuel blends.

  19. Methods to improve efficiency of four stroke, spark ignition engines at part load

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper Tolga

    2005-01-01

    The four stroke, spark ignition (SI) engine pressure-volume diagram (p-V) contains two main parts. They are the compression-combustion-expansion (high pressure loop) and the exhaust-intake (low pressure or gas exchange loop) parts. The main reason for efficiency decrease at part load conditions for these types of engines is the flow restriction at the cross sectional area of the intake system by partially closing the throttle valve, which leads to increased pumping losses and to increased low pressure loop area on the p-V diagram. Meanwhile, the poorer combustion quality, i.e. lower combustion speed and cycle to cycle variations, additionally influence these pressure loop areas. In this study, methods for increasing efficiency at part load conditions and their potential for practical use are investigated. The study also includes a review of the vast literature on the solution of this problem. This investigation shows that the potential for increasing the efficiency of SI engines at part load conditions is not yet exhausted. Each method has its own advantages and disadvantages. Among these, the most promising methods to decrease the fuel consumption at part load conditions are stratified charge and variable displacement engines. When used in combination, the other listed methods are more effective than their usage alone

  20. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani; Shankar, Vijai; Tripathi, Rupali; Pitsch, Heinz; Sarathy, Mani

    2018-01-01

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index

  1. Solid propellant ignition motors for LH_2/LOX rocket engine system

    OpenAIRE

    ARAKI, Tetsuo; AKIBA, Ryojiro; HASHIMOTO, Yasunari; AIHARA, Kenji; TOMITA, Etsu; YASUDA, Seiichi; 荒木, 哲夫; 秋葉, 鐐二郎; 橋本, 保成; 相原, 賢二; 富田, 悦; 安田, 誠一

    1983-01-01

    Solid propellant ignition motors are used in the series of experiments of the 10 ton LH_2/LOX engine featured by the channel wall thrust chamber, This paper presents design specification, experiments and results obtained by actual applications of those ignition motors.

  2. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  3. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal; Jaasim, Mohammed; Atef, Nour; Chung, Suk-Ho; Im, Hong G.; Sarathy, Mani

    2017-01-01

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  4. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaughnessy, D. A., E-mail: shaughnessy2@llnl.gov; Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Despotopulos, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, Nevada 89154 (United States)

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  5. A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics

    Directory of Open Access Journals (Sweden)

    Chao Jin

    2015-01-01

    Full Text Available Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI and low temperature combustion (LTC modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.

  6. Contactless ignition device for an internal combustion engine. Kontaktfreie Zuendanlage fuer eine Brennkraftmaschine

    Energy Technology Data Exchange (ETDEWEB)

    Ohki, Y; Komiya, H

    1980-01-16

    The invention deals with the design of a contactless ignition device with semiconductor elements of the induction discharge type, provided with a self actuator. A short circuit current of the primary transformer coil flows through the transistor system. The emitter is capacitively connected with the primary transformer coil. When the primary short circuit current reaches its maximum, the circuit is interrupted and the ignition begins. Changes of the short circuit current are monitored. The ignition time can be pre-selected. The ignition process is independent from the engine speed.

  7. The safe operation zone of the spark ignition engine working with dual renewable supplemented fuels (hydrogen+ethyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2001-04-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NOx emission while increasing the higher useful compression ratio and output power of hydrogen-supplemented engine. An equation has been derived from experimental data to specify the least quantity of ethyl alcohol blended with gasoline and satisfying constant NOx emission when hydrogen is added. A chart limiting the safe operation zone of the engine fueled with dual renewable supplemented fuel, (hydrogen and ethyl alcohol) has been produced. The safe zone provides lower NOx and CO emission, lower s.f.c. and higher brake power compared to an equivalent gasoline engine. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both brake power and efficiency. (Author)

  8. 78 FR 50412 - California State Nonroad Engine Pollution Control Standards; Amendments to Spark Ignition Marine...

    Science.gov (United States)

    2013-08-19

    ... Engine Pollution Control Standards; Amendments to Spark Ignition Marine Engine and Boat Regulations... emission standards; enhanced evaporative emission controls for high performance sterndrive/inboard engines... requirement relating to the control of emissions from new nonroad engines which are used in construction...

  9. Analysis of cyclic variations during mode switching between spark ignition and controlled auto-ignition combustion operations

    OpenAIRE

    Chen, T; Zhao, H; Xie, H; He, B

    2014-01-01

    © IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research...

  10. DT ignition in a Z pinch compressed by an imploding liner

    International Nuclear Information System (INIS)

    Bilbao, L.; Bernal, L.; Linhart, J.G.; Verri, G.

    2001-01-01

    It has been shown that an m=0 instability of a Z pinch carrying a current of the order of 10 MA with a rise time of less than 10 ns can generate a spark capable of igniting a fusion detonation in the adjacent DT plasma channel. A possible method for generating such currents, necessary for the implosion of an initial large radius, low temperature Z pinch, can be a radial implosion of a cylindrical fast liner. The problem has been addressed in previous publications without considering the role played by an initially impressed m=0 perturbation, a mechanism indispensable for the generation of a spark. The liner-Z pinch dynamics can be solved at several levels of physical model completeness. The first corresponds to a zero dimensional model in which the liner has a given mass per unit length and a zero thickness, the plasma is compressed adiabatically and is isotropic, and there are no energy losses or Joule heating. The second level is one dimensional. The Z pinch plasma is described by the full set of MHD, two-fluid equations. The liner is treated first as thin and incompressible, and subsequently it is assumed that it has a finite thickness and is composed of a heavy ion plasma, having an artificial but realistic equation of state. Both plasma and liner are considered uniform in the Z direction and only DT reactions are considered. It is shown that, given sufficient energy and speed of the liner, the Z pinch can reach a volume ignition. The third level is two dimensional. Plasma and liner are treated as in the second level but either the Z pinch or the liner is perturbed by an m=0 non-uniformity. Provided the liner energy is high enough and the initial m=0 perturbation is correctly chosen, the final neck plasma can act as a spark for DT ignition. It is also shown that the liner energy required for generating a spark and the subsequent detonation propagation are considerably less than in the case of volume ignition. (author)

  11. Increasing the compression pressure in an engine by using a long intake pipe

    Science.gov (United States)

    Mathews, Robertson; Gardiner, Arthur W

    1924-01-01

    During some tests of a one-cylinder engine, using gas oil (diesel engine oil, specific gravity 0.86 at 60 F) with solid injection and compression ignition, it was found to be necessary to increase either the jacket water temperature or the compression pressure in order to start the engine. It was found that a sufficient increase in compression pressure could be obtained simply by attaching a long pipe to the inlet flange of the cylinder. However, since no data were available giving the values of the increase in compression pressure that might be expected from such a step-up, an investigation was made covering some engine speeds between 500 r.p.m. and 1800 r.p.m. The data obtained are included here in the form of curves. Although this data is not strictly applicable to another engine, it should give indications of what might be expected with such a set-up on an engine operating at similar speeds. The engine used was a single cylinder Liberty, 5-inch bore and 7-inch stroke, having standard cylinder, cams, valves, and valve timing and operating on a four-stroke cycle.

  12. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani

    2018-04-03

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  13. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani; Atef, Nour; Alfazazi, Adamu; Badra, Jihad; Zhang, Yu; Tzanetakis, Tom; Pei, Yuanjiang

    2018-01-01

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  14. Visualizing ignition and combustion of methanol mixtures in a diesel engine; Methanol funmu no glow chakka to nensho no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Inomoto, Y; Harada, T; Kusaka, J; Daisho, Y; Kihara, R; Saito, T [Waseda University, Tokyo (Japan)

    1997-10-01

    A glow-assisted ignition system tends to suffer from poor ignitability and slow flame propagation at low load in a direct-injection diesel engine fueled with methanol. To investigate the ignition process and improve such disadvantages, methanol sprays, their ignition and flames were visualized at high pressures and temperatures using a modified two-stroke engine. The results show that parameters influencing ignition, the location of a glow-plug, swirl level, pressure and temperature are important. In addition, a full kinetics calculation was conducted to predict the delay of methanol mixture ignition by taking into account 39 chemical species and 157 elementary reactions. 3 refs., 9 figs.

  15. Engineering parameters for four ignition TNS tokamak reactor systems

    International Nuclear Information System (INIS)

    Varljen, T.C.; Gibson, G.; French, J.W.; Heck, F.M.

    1977-01-01

    The ORNL/Westinghouse program for The Next Step (TNS) tokamak beyond TFTR has examined a large number of potential configurations for D-T burning ignition tokamak systems. An objective of this work has been to quantify the trade-offs associated with the assumption of certain plasma physics criteria and toroidal field coil technologies. Four tokamak system point designs are described, each representative of the TF coil technologies considered, to illustrate the engineering features associated with each concept. Point designs, such as the ones discussed herein, have been used to develop component size, performance and cost scaling relationships which have been incorporated in a digital computer code to facilitate an examination of the total design and cost impact of candidate design approaches. The point designs which are described are typical, however, they have not been individually optimized. The options are distinguished by the TF coil technology chosen and include: (1) a high field water-cooled copper TF system, (2) a moderate field NbTi superconducting TF system, (3) a high field Nb 3 Sn superconducting TF system, and (4) a high field hybrid TF system with outer NbTi superconducting windings and inner water-cooled copper windings. Descriptions are provided for the major device components and all major support systems including power supplies, vacuum systems, fuel systems, heat transport and facility systems

  16. Hydrogen-ethanol blending as an alternative fuel of spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.S. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2003-07-01

    The performance and pollutant emission of a four-stroke spark ignition engine using hydrogen-ethanol blends as fuel have been studied. The tests were performed using 2, 4, 6, 8, 1 0 and 12 mass% hydrogen-ethanol blends. Gasoline fuel was used as a basis for comparison. The effect of using different blends of hydrogen-ethanol on engine power, specific fuel consumption, CO and NO{sub x} emission was studied. Operating test results for a range of compression ratio (CR) and equivalent ratio are presented. The results show that the supplemental hydrogen in the ethanol-air mixture improves the combustion process and hence improves the combustion efficiency, expands the range of combustibility of the ethanol fuel, increases the power, reduces the s.f.c. and reduces toxic emissions. The important improvement of hydrogen addition is to reduce the s.f.c. of ethanol engines. Results were compared to those with gasoline fuel at 7 CR and stoichiometric equivalence ratio. (author)

  17. Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Murugan, S.

    2015-01-01

    Highlights: • The possibility of operating a compression ignition engine with a non petroleum diesel fuel. • A possible solution to replace certain amount of biodiesel by tyre pyrolysis oil in a biodiesel fueled diesel engine. • The optimum compression ratio for engine fueled with biodiesel-tyre pyrolysis oil blend. - Abstract: This study is aimed at investigating effects of varying the compression ratio at optimum injection timing and nozzle opening pressure on the behaviour of a diesel engine, using a non-petroleum fuel, i.e. a blend of 80% biodiesel, and 20% oil obtained from pyrolysis of waste tyres. The engine was subjected to one lower (16.5) and one higher (18.5) compression ratio in addition to the standard compression ratio of 17.5. At the higher compression ratio of 18.5 and full load, shorter ignition delay, maximum cylinder pressure and higher heat release rate were found for the blend, compared to those of the original compression ratio. The increase in the compression ratio from 17.5 to 18.5 for the blend improved the brake thermal efficiency by about 8% compared to that of the original compression ratio at full load. The experimental results indicated that for the blend at a higher compression ratio of 18.5, the brake specific carbon monoxide (BSCO), brake specific hydrocarbon emission (BSHC) and smoke opacity were reduced by about 10.5%, 32%, and 17.4% respectively, than those of the original compression ratio at full load

  18. Prechamber ignition concepts for stationary large bore gas engines; Vorkammerzuendkonzepte fuer stationaer betriebene Grossgasmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Christoph [MTU Friedrichshafen GmbH (Germany); Kammerstaetter, Stefan; Sattelmayer, Thomas [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Thermodynamik

    2012-01-15

    A testing facility for the optical investigation of ignition and combustion in large bore gas engines is described. The test rig was developed at the Institute of Thermodynamics at Technical University of Munich. Core element of the setup is an optically accessible high pressure combustion cell which can be charged, ignited, and discharged repeatedly according to the cycle times of a real engine. Until now the apparatus was used for the investigation of two different prechamber concepts. (orig.)

  19. Corona ignition system for highly efficient gasoline engines; Corona-Zuendsystem fuer hocheffiziente Ottomotoren

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, John [Federal-Mogul Limited, Manchester (United Kingdom); Lykowski, Jim; Mixell, Kristapher [Federal-Mogul, Plymouth, MI (United States)

    2013-06-01

    Many future gasoline engines will require higher air/fuel ratios and higher mean effective pressures to further improve fuel efficiency. Federal-Mogul has taken up this challenge and has developed the Advanced Corona Ignition System (ACIS) as a new solution to reliably ignite a mix with high AFR/EGR and high MEP. During engine tests ACIS enabled a direct fuel economy improvement of up to 10 %. (orig.)

  20. Influence of ignition energy, ignition location, and stoichiometry on the deflagration-to-detonation distance in a Pulse Detonation Engine

    OpenAIRE

    Robinson, John P.

    2000-01-01

    The feasibility of utilizing detonations for air-breathing propulsion is the subject of a significant research effort headed by the Office of Naval Research. Pulse Detonation Engines (PDE) have a theoretically greater efficiency than current combustion cycles. However, pulse detonation technology must mature beginning with research in the fundamental process of developing a detonation wave. This thesis explores various ignition conditions which minimize the deflagration-to- detonation transit...

  1. Optimization of injection pressure for a compression ignition engine ...

    African Journals Online (AJOL)

    user

    injection and atomization and contributes to incomplete combustion, nozzle clogging, ... this non edible oil may be an appropriate substitute for diesel fuel. ... The effect of injector opening pressure on the performance of a jatropha oil fuelled ...

  2. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  3. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    Science.gov (United States)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  4. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    OpenAIRE

    Radivoje B Pešić; Saša T Milojević; Stevan P Veinović

    2010-01-01

    The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minim...

  5. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under a Phase 1 effort, IES successfully developed and demonstrated a spark ignition concept where propellant flow drives a very simple fluid mechanical oscillator...

  6. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Edward [General Motors LLC, Pontiac, MI (United States); Gough, Charles [General Motors LLC, Pontiac, MI (United States)

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  7. Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine

    Science.gov (United States)

    Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei

    2017-05-01

    In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.

  8. Mechanism of hydrocarbon reduction using multiple injection in a natural gas fuelled/micro-pilot diesel ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Micklow, G.J.; Gong, W. [University of North Carolina, Charlotte, NC (United States)

    2002-03-01

    Research has shown that a large amount of natural gas (NG) is unburned at light loads in an NG fuelled/micro-pilot diesel compression ignition engine. A mechanism of unburned hydrocarbon (HC) reduction using multiple injections of micro-pilot diesel has been proposed in this paper. Multidimensional computations were carried out for a dual-fuel engine based on a modified CAT3401 engine configuration. The computations show that a split injection with a small percentage (e.g. 30 per cent of diesel in the second injection pulse) can significantly reduce HC, CO and NO{sub x} emissions. Based on parax metric studies to optimize the timing of both of the injection pulses, HC emissions could be reduced by 90 per cent, with a reduction in CO emissions of 50 per cent and NO{sub x} emissions of 70 per cent in comparison to a singlex injection pulse-base case configuration. (author)

  9. Exhaust Composition in a Small Internal Combustion Engine Using FTIR Spectroscopy

    Science.gov (United States)

    2015-06-18

    consumption of intake charge by mass xv CAD crank angle degrees CI compression ignition COTS commercial o↵ the shelf CoV coecient of variance C... ignition (SI) and compression ignition (CI). A spark ignition engine ignites the fuel-air mixture via an electric arc across a spark plug located in...two-stroke engines that operate at very high speeds. The heat of combustion is transferred to a fine wire that remains hot enough to auto - ignite the

  10. Numerical and Experimental Study on the Combustion and Emission Characteristics of a Dimethyl Ether (DME Fueled Compression Ignition Engine Études numériques et expérimentales sur les caractéristiques de combustion et d’émissions d’un éther diméthylique (EDM- moteur à auto-allumage rempli de combustible

    Directory of Open Access Journals (Sweden)

    Kim Hyung Jun

    2012-05-01

    Full Text Available A numerical investigation was carried out to study on the combustion and emission characteristics of dimethyl ether (DME with wide ranges of injection timings in compression ignition engines. In order to simulate DME combustion processes, a KIVA-3V code coupled with a chemistry solver was used to solve the detailed chemical kinetics model of DME oxidation. In addition, the Kelvin-Helmholtz-Rayleigh-Taylor (KH-RT hybrid breakup model and Renormalization Group (RNG k-ε  models were applied to analyze the spray characteristics and turbulent flow, respectively. To predict the NOx formation during DME combustion, a reduced Gas Research Institute (GRI NO mechanism was used. From these results on the combustion and emission, the calculated results were compared with experimental ones for the same operating conditions. In the combustion characteristics, the calculated combustion pressure and heat release rates agreed well with experimental results. The levels of experimental NOx emissions was reduced as the start of the injection timing retarded, and also these trends appeared in calculated emission characteristics. Additionally, the calculated CO and HC emissions show an increasing trend as the start of the injection is retarded. Dans cette étude, nous considérons la simulation de la combustion du dimethyl ether (DME dans un moteur à allumage par compression. Les caractéristiques de la combustion ainsi que les émissions polluantes sont analysées sur une large gamme d’avance à l’injection. Afin de simuler le processus de combustion du EDM, le code KIVA-3V couplé à un solveur chimique a été utilisé pour résoudre la cinétique détaillée de l’oxydation du EDM. Le modèle de rupture de Kelvin-Helmholtz-Rayleigh- Taylor (KH-RT ainsi que le modèle de turbulence k-ε  RNG ont été appliqués pour analyser respectivement les caractéristiques du jet et l’écoulement turbulent. Pour prévoir la formation de NOx pendant la combustion

  11. Torque Modeling and Control of a Variable Compression Engine

    OpenAIRE

    Bergström, Andreas

    2003-01-01

    The SAAB variable compression engine is a new engine concept that enables the fuel consumption to be radically cut by varying the compression ratio. A challenge with this new engine concept is that the compression ratio has a direct influence on the output torque, which means that a change in compression ratio also leads to a change in the torque. A torque change may be felt as a jerk in the movement of the car, and this is an undesirable effect since the driver has no control over the compre...

  12. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    Science.gov (United States)

    Wollen, Mark A. (Inventor)

    2018-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved in one or more charging chambers to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  13. Investigating the influences of liquid LPG injection on spark ignition (SI engine

    Directory of Open Access Journals (Sweden)

    Tukiman Mohd Mustaqim

    2017-01-01

    Full Text Available Liquefied petroleum gas (LPG is one of the alternative fuels that becoming popular to be use in spark ignition engine (SI. This paper briefly presents the influence of energy content to the engine output of 1.6L SI engine of Proton Gen 2. The engine was coupled to a chassis dynamometer and few related apparatus were employed in determine the engine behavior. All data collected were illustrated in graph for further analysis. The engine shows comparable engine output, however, the engine requires some tuning in order to fully utilize the energy content of LPG.

  14. AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF VARIABLE VALVE TIMING ON THE PERFORMANCE IN SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    Ali AKBAŞ

    2001-01-01

    Full Text Available In this study, an alternative prototype has been designed and constructed for variable valve timing systems which are used in spark ignition engines. The effects of intake valve timing and lift changing on engine performance have been investigated without changing the opening duration of the valves. A four stroke, single cylinder, spark ignition engine has been used for these experiments.

  15. Robustness and Reliability of the GM Ignition Switch - A forensic Engineering case

    DEFF Research Database (Denmark)

    Eifler, Tobias; Lerche Olesen, Jonas; Howard, Thomas J.

    2014-01-01

    This paper uses forensic engineering from the perspectives of Robust Design and Reliability Engineering to review one of the most infamous recalls in automotive history, that of the GM ignition switch. The design, engineering and management failures in this case ultimately resulted in a fine of $35...... million, the recall of 2.6 million vehicles and the death of at least 13 people. In a systematic approach, design clarity, tolerance stack-ups, sensitivity analysis, etc. are used to analyse the ignition switch itself and to extend the usual consideration of reliability issues to the impact of variation...

  16. Operation of neat pine oil biofuel in a diesel engine by providing ignition assistance

    International Nuclear Information System (INIS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Lee, P.S.

    2014-01-01

    Highlights: • Operational feasibility of neat pine oil biofuel has been examined. • Pine oil suffers lower cetane number, which mandates for necessary ignition assistance. • Ignition support is provided by preheating the inlet air and incorporating a glow plug. • At an inlet air temperature of 60 °C, the BTE for pine oil was found to be in par with diesel. • CO and smoke emissions were reduced by 13.2% and 16.8%, respectively, for neat pine oil. - Abstract: The notion to provide ignition support for the effective operation of lower cetane fuels in a diesel engine has been ably adopted in the present study for the sole fuel operation of pine oil biofuel. Having noted that the lower cetane number and higher self-ignition temperature of pine oil biofuel would inhibit its direct use in a diesel engine, combined ignition support in the form of preheating the inlet air and installing a glow plug in the cylinder head has been provided to improve the auto-ignition of pine oil. While, an air preheater, installed in the inlet manifold of the engine, preheated the inlet air so as to provide ignition assistance partially, the incorporation of glow plug in the cylinder head imparted the further required ignition support appropriately. Subsequently, the operational feasibility of neat pine oil biofuel has been examined in a single cylinder diesel engine and the engine test results were analyzed. From the experimental investigation, though the engine performance and emissions such as CO (carbon monoxide) and smoke were noted to be better for pine oil with an inlet air temperature of 40 °C, the engine suffered the setback of knocking due to delayed SOC (start of combustion). However, with the ignition support through glow plug and preheating of inlet air, the engine knocking was prevented and the normal operation of the engine was ensured. Categorically, at an inlet air temperature of 60 °C, BTE (brake thermal efficiency) was found to be in par with diesel, while

  17. Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels

    International Nuclear Information System (INIS)

    Duarte, Jorge; Amador, Germán; Garcia, Jesus; Fontalvo, Armando; Vasquez Padilla, Ricardo; Sanjuan, Marco; Gonzalez Quiroga, Arturo

    2014-01-01

    Control strategies for auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels are presented. Ambient temperature and ambient pressure are considered as the disturbing variables. A thermodynamic model for predicting temperature at the ignition point is developed, adjusted and validated with a large experimental data-set from high power turbocharged engines. Based on this model, the performance of feedback and feedforward auto-ignition control strategies is explored. A robustness and fragility analysis for the Feedback control strategies is presented. The feedforward control strategy showed the best performance however its implementation entails adding a sensor and new control logic. The proposed control strategies and the proposed thermodynamic model are useful tools for increasing the range of application of gaseous fuels with low methane number while ensuring a safe running in internal combustion engines. - Highlights: • A model for predicting temperature at the ignition point. • Robust PID, modified PID, and feedforward strategies for auto-ignition control. • λ′ were the best set of tuning equations for calculating controller parameters. • Robust PID showed significant improvements in auto-ignition control. • Feedforward control showed the best performance

  18. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  19. Effect of gasket of varying thickness on spark ignition engines | Ajayi ...

    African Journals Online (AJOL)

    In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...

  20. Effects of ignition parameters on combustion process of a rotary engine fueled with natural gas

    International Nuclear Information System (INIS)

    Fan, Baowei; Pan, Jianfeng; Liu, Yangxian; Zhu, Yuejin

    2015-01-01

    Highlights: • A 3-D simulation model based on the chemical reaction kinetics is established. • The tumble near the trailing spark plug is beneficial for the combustion rate. • The best position of the trailing spark plug is at the rear of the tumble zone. • An increase of the tumble effect time can improve the combustion rate. • Considering the rate of pressure rise, the best ignition timing is 50 °CA (BTDC). - Abstract: The side-ported rotary engine fueled with natural gas is a new, clean, efficient energy system. This work aims to numerically study the performance, combustion and emission characteristics of a side-ported rotary engine fueled with natural gas under different ignition positions and ignition timings. Simulations were performed using multi-dimensional software ANASYS Fluent. On the basis of the software, a three-dimensional dynamic simulation model was established by writing dynamic mesh programs and choosing a detailed reaction mechanism. The three-dimensional dynamic simulation model, based on the chemical reaction kinetics, was also validated by the experimental data. Meanwhile, further simulations were then conducted to investigate how to impact the combustion process by the coupling function between ignition operating parameter and the flow field inside the cylinder. Simulation results showed that in order to improve the combustion efficiency, the trailing spark plug should be located at the rear of the tumble zone and the ignition timing should be advanced properly. This was mainly caused by the trailing spark plug being located at the rear of the tumble zone, as it not only allowed the fuel in the rear of combustion chamber to be burnt without delay, but also permitted the acceleration of the flame propagation by the tumble. Meanwhile, with advanced ignition timing, the time between ignition timing and the timing of the tumble disappearance increased, which led to an increase of the tumble effect time used to improve the combustion

  1. Non-equilibrium plasma ignition for internal combustion engines

    NARCIS (Netherlands)

    Correale, G.; Rakitin, A.; Nikipelov, A.; Pancheshnyi, S.; Popov, I.; Starikovskii, A.Yu; Shiraishi, T.; Urushihara, T.; Boot, M.D.

    2011-01-01

    High-voltage nanosecond gas discharge has been shown to be an efficient way to ignite ultra-lean fuel air mixtures in a bulk volume, thanks to its ability to produce both high temperature and radical concentration in a large discharge zone. Recently, a feasibility study has been carried out to study

  2. Working characteristics of variable intake valve in compressed air engine.

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  3. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  4. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Qihui Yu

    2014-01-01

    Full Text Available A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  5. Development And Testing Of Biogas-Petrol Blend As An Alternative Fuel For Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Awogbemi

    2015-08-01

    Full Text Available Abstract This research is on the development and testing of a biogas-petrol blend to run a spark ignition engine. A2080 ratio biogaspetrol blend was developed as an alternative fuel for spark ignition engine test bed. Petrol and biogas-petrol blend were comparatively tested on the test bed to determine the effectiveness of the fuels. The results of the tests showed that biogas petrol blend generated higher torque brake power indicated power brake thermal efficiency and brake mean effective pressure but lower fuel consumption and exhaust temperature than petrol. The research concluded that a spark ignition engine powered by biogas-petrol blend was found to be economical consumed less fuel and contributes to sanitation and production of fertilizer.

  6. Numerical Study of Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion with Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Model

    Directory of Open Access Journals (Sweden)

    Amir-Hasan Kakaee

    2018-03-01

    Full Text Available In the current study, a comparative study is performed using Large Eddy Simulation (LES and Reynolds-averaged Navier–Stokes (RANS turbulence models on a natural gas/diesel Reactivity Controlled Compression Ignition (RCCI engine. The numerical results are validated against the available research work in the literature. The RNG (Re-Normalization Group k − ε and dynamic structure models are employed to model turbulent flow for RANS and LES simulations, respectively. Parameters like the premixed natural gas mass fraction, the second start of injection timing (SOI2 of diesel and the engine speed are studied to compare performance of RANS and LES models on combustion and pollutant emissions prediction. The results obtained showed that the LES and RANS model give almost similar predictions of cylinder pressure and heat release rate at lower natural gas mass fractions and late SOI2 timings. However, the LES showed improved capability to predict the natural gas auto-ignition and pollutant emissions prediction compared to RANS model especially at higher natural gas mass fractions.

  7. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-02-15

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

  8. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  9. Performance study of a four-stroke spark ignition engine working with both of hydrogen and ethyl alcohol as supplementary fuel

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.-R.S. [Babylon Univ. (Iraq). Dept. of Mechanical Engineering

    2000-10-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NO{sub x} emission with increase in the higher useful compression ratio and output power of hydrogen-supplemented engine. The addition of 8 mass% of hydrogen, with 30 vol% of ethyl alcohol into a gasoline engine operating at 9 compression ratio and 1500 rpm causes a 48.5% reduction in CO emission, 31.1% reduction in NO{sub x} emission and 58.5% reduction in specific fuel consumption. Moreover, the engine thermal efficiency and output power increased by 10.1 and 4.72%, respectively. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both the break power and efficiency. (Author)

  10. About the constructive and functional particularities of spark ignition engines with gasoline direct injection: experimental results

    Science.gov (United States)

    Niculae, M.; Ivan, F.; Neacsu, D.

    2017-08-01

    The paper aims to analyze and compare the environmental performances between a gasoline direct engine and a multi-point injection engine. There are analyzed the stages of emission formation during the New European Driving Cycle. The paper points out the dynamic, economic and environmental performances of spark ignition engines equipped with a GDI systems. Reason why, we believe the widespread implementation of this technology is today an immediate need.

  11. Measuring Scaling Effects in Small Two-Stroke Internal Combustion Engines

    Science.gov (United States)

    2014-06-20

    was used [9]. Compression ignition (CI) engines rely on auto - ignition to initiate combustion during an engine cycle. During intake, only air flows...9 Figure 2: Four-stroke IC engine cycle. (a) Intake stroke (b) Compression stroke (c) Ignition (d) Power...CAD crank angle degrees CI compression ignition COTS commercial off the shelf CoV coefficient of variance DAQ data acquisition system DI

  12. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  13. Self-ignition and oxidation of various hydrocarbons between 600 and 1000 K at high pressure: experimental study with fast compression machine and modeling; Autoinflammation et oxydation de divers hydrocarbures entre 600 et 1000 K a haute pression: etude experimentale en machine a compression rapide et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ribaucour, M.

    2002-12-01

    Low- and intermediate-temperature oxidation and self-ignition of hydrocarbons play a major role in spark ignition, diesel and HCCI (homogenous charge compression ignition) engines. A deep understanding of the chemistry linked with both phenomena is necessary to improve the engines efficiency and to reduce the formation of pollutants. This document treats of works about the self-ignition and oxidation at high pressure of various hydrocarbons between 600 and 1000 deg. K. The experimental tool used is a fast compression machine fitted with a fast sampling system for the measurement of self-ignition delays and of the concentrations of intermediate oxidation products. The advantages and limitations of this tool are discussed. The self-ignition of various hydrocarbons is compared using pre-defined data which characterize the phenomenologies like cold flames, negative temperature coefficients and self-ignition limits. The hydrocarbons considered are pure or binary mixtures of alkanes, pent-1-ene and n-butyl-benzene. The development of high pressure oxidation reaction schemes of alkanes between 600 and 1000 deg. K is described. It is directly based on the analysis of intermediate oxidation products. This methodology is also applied to pent-1-ene and n-butyl-benzene. The construction of detailed thermo-kinetic models of oxidation and the modeling of phenomena are made for n-butane, n-heptane, for the 3 pentane isomers, for pent-1-ene and n-butyl-benzene. Finally, the perspectives of future works are evoked. They concern new modeling and new methodologies to be applied in more predictive thermo-kinetic models and the reduction of detailed models in order to include them inside fluid dynamics codes. (J.S.)

  14. Prediction of biodiesel ignition delay in a diesel engine using artificial neural networks

    International Nuclear Information System (INIS)

    Piloto-Rodríguez, Ramón; Sánchez-Borroto, Yisel

    2017-01-01

    Ignition delay is one of the most important parameters of the combustion process and have a strong influence in exhaust emissions and engines performance. In the present work, the results of the mathematical modeling of ignition delay through artificial neural networks are shown. The modeling starts from input values that cover thermodynamic variables, engines parameters and biodiesel properties. The model obtained is only useful for biodiesel samples and several neural network algorithms were applied in order to predict the ignition delay. From its correlation coefficient, prediction capability and lowest absolute error, the best model was selected. Among other network’s input parameters, the cetane number was taken into account, also previously predicted by the use of ANN. (author)

  15. Optimization of combustion chamber geometry for natural gas engines with diesel micro-pilot-induced ignition

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Tie; Ge, Linlin; Ogawa, Hideyuki

    2016-01-01

    Highlights: • Combustion chamber geometry is optimized to reduce the HC/CO emissions. • CFD model is calibrated against the spray visualization and engine bench test data. • Design space is explored by the multi-objective NSGA-II with Kriging meta-model. • HC and CO emissions are respectively reduced by 56.47% and 33.55%. - Abstract: Smokeless, low nitrogen oxides (NOx), and high thermal efficiency have been achieved through the lean-burn concept for natural gas engine with diesel micro-pilot-induced ignition (MPII). However, the combustion chamber is usually not specialized for natural gas combustion, and increases in the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are still a challenge for this type of engines. This paper describes optimization of the combustion chamber geometry to reduce the HC and CO emissions and improve the combustion efficiency in the MPII natural gas engine. The 3-D computational fluid dynamics (CFD) simulation model coupled with a chemical reaction mechanism is described. The temporal development of the short-pulsed diesel spray in a high pressure constant-volume vessel is measured and used to calibrate the spray model in the CFD simulation. The simulation models are validated by the experimental data of the in-cylinder pressure trace, apparent heat release rate (AHRR) and exhaust gas emissions from a single-cylinder MPII natural gas engine. To generate the various combustion chamber geometries, the bowl outline is parameterized by the two cubic Bezier curves while keeping the compression ratio constant. The available design space is explored by the multi-objective non-dominated sorting genetic algorithm II (NSGA-II) with Kriging-based meta-model. With the optimization, the HC and CO emissions are reduced by 56.47% and 33.55%, respectively, while the NOx emissions, the maximum rate of pressure rise and the gross indicated thermal efficiency that are employed as the constraints are slightly improved. Finally, the

  16. DNS with detailed and tabulated chemistry of engine relevant igniting systems

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2014-01-01

    Developments in modern engine technology are moving towards a regime with fuel injection uncoupled from combustion. Auto-ignition is an essential characteristic in these systems. The accurate prediction of this chemical process is of paramount importance. Tabulation techniques can provide a detailed

  17. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  18. Interim report on the assessment of engineering issues for compact high-field ignition devices

    International Nuclear Information System (INIS)

    Flanagan, C.A.

    1986-04-01

    The engineering issues addressed at the workshop included the overall configuration, layout, and assembly; limiter and first-wall energy removal; magnet system structure design; fabricability; repairability; and costs. In performing the assessment, the primary features and characteristics of each concept under study were reviewed as representative of this class of ignition device. The emphasis was to understand the key engineering areas of concern for this class of device and deliberately not attempt to define an optimum design or to choose a best approach. The assessment concluded that compact ignition tokamaks, as represented by the three concepts under study, are feasible. A number of critical engineering issues were identified, and all appear to have tractable solutions. The engineering issues appear quite challenging, and to obtain increased confidence in the apparent design solutions requires completion of the next level of design detail, complemented by appropriate development programs and testing

  19. The Effect of Exhaust Gas Recirculation (EGR on the Emission of a Single Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Limyaa Mahdi Asaad

    2016-07-01

    Full Text Available A single cylinder variable compression ratio spark ignition engine type PRODIT was used in this study. The  experiments  were  conducted  with  gasoline  fuel  (80  octane  No.at  equivalence  ratio  (Ø  =1.  This study examined the effects of exhaust gas recirculation on emission. It was conducted at engine speeds (1500, 1900, 2300 and 2700 r.p.m..The  exhaust  gases  were  added  in  volumetric  ratios  of  10%,  20%  and  30%  of  the  entering  air/fuel charge. The results showed that the EGR addition decreases the CO2 concentrations, in the same time CO and HC concentrations increase remarkably.  NOx concentration decreased highly with the increase of EGR percentage at variable engine speeds and constant torque. Also, it decreased when the engine run  at  constant  speed  and  variable  engine  torque.  The  exhaust  gas  temperature  decreased  with increasing EGR ratio.

  20. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  1. Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels

    International Nuclear Information System (INIS)

    Yousefi, Amin; Birouk, Madjid; Lawler, Benjamin; Gharehghani, Ayatallah

    2015-01-01

    Highlights: • Natural gas/diesel, methanol/diesel, and hydrogen/diesel cases were investigated. • For leaner mixtures, the hydrogen/diesel case has the highest IMEP and ITE. • The methanol/diesel case has the maximum IMEP and ITE for richer mixtures. • Hydrogen/diesel case experiences soot and CO free combustion at rich regions. - Abstract: A multi-dimensional computational fluid dynamics (CFD) model coupled with chemical kinetics mechanisms was applied to investigate the effect of various premixed fuels and equivalence ratios on the combustion, performance, and emissions characteristics of a dual-fuel indirect injection (IDI) pilot diesel ignition engine. The diesel fuel is supplied via indirect injection into the cylinder prior to the end of the compression stroke. Various premixed fuels were inducted into the engine through the intake manifold. The results showed that the dual-fuel case using hydrogen/diesel has a steeper pressure rise rate, higher peak heat release rate (PHRR), more advanced ignition timing, and shorter ignition delay compared to the natural gas/diesel and methanol/diesel dual-fuel cases. For leaner mixtures (Φ_P 0.32). For instance, with an equivalence ratio of 0.35, the ITE is 56.24% and 60.85% for hydrogen/diesel and methanol/diesel dual-fuel cases, respectively. For an equivalence ratio of 0.15, the natural gas/diesel simulation exhibits partial burn combustion and thus results in a negative IMEP. At equivalence ratios of 0.15, 0.2, and 0.25, the methanol/diesel case experiences misfiring phenomenon which consequently deteriorates the engine performance considerably. As for the engine-out emissions, the hydrogen/diesel results display carbon monoxide (CO) free combustion relative to natural gas/diesel and methanol/diesel engines; however, considerable amount of nitrogen oxides (NO_x) emissions are produced at an equivalence ratio of 0.35 which exceeds the Euro 6 NO_x limit. Due to the larger area exposed to high temperature regions

  2. HCCI engine control and optimization

    OpenAIRE

    Killingsworth, Nicholas J.

    2007-01-01

    Homogeneous charge compression ignition (HCCI) engines have the benefit of high efficiency with low emissions of nitrogen oxides and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desi...

  3. N-decane-air end-gas auto-ignition induced by flame propagation in a constant volume chamber: Influence of compression history

    OpenAIRE

    Quintens , Hugo; Strozzi , Camille; Zitoun , Ratiba; Bellenoue , Marc

    2017-01-01

    International audience; The present study aims at characterizing the end-gas auto-ignition of n-decane – air mixtures induced by a flame propagation in a constant volume chamber. A numerical tool is developed, and the study is first focused on academic compressions, e.g. at constant rate of pressure rise. Thermodynamic conditions of transition from deflagration to auto-ignition are first determined, and the involved physical processes are highlighted. A square section combustion chamber is th...

  4. Electronic ignition device for internal combustion engines. Elektronische Zuendvorrichtung fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Erhard, W

    1983-07-14

    The purpose of the invention is to create an electronic ignition device for internal combustion engines, so that the exact setting of a required ignition timing can be done without troublesome balancing of the circuit and without temperature compensation processes. According to the invention, in order to solve this problem, the ignition device is characterized by an auxiliary circuit, with an auxiliary winding magnetically coupled to the ignition coil, a capacitor and a diode, which is connected in parallel with the control section of the control component. The auxiliary winding charges the capacitor up via the diode, as long as the induction and therefore the voltage in the auxiliary winding are increasing. After exceeding the maximum voltage, this is maintained at the capacitor while the voltage in the auxiliary winding decreases. If the difference reaches the threshold voltage of the control component, in particular of a thyristor, this is switched on and blocks the switching transistor. Due to this circuit, the ignition timing is very close behind the timing of the greatest possible energy input into the primary coil.

  5. Effect of Operating Conditions on Pollutants Concentration Emitted from a Spark Ignition Engine Fueled with Gasoline Bioethanol Blends

    Directory of Open Access Journals (Sweden)

    Haroun A. K. Shahad

    2015-01-01

    Full Text Available This study is an experimental investigation of the effect of bioethanol gasoline blending on exhaust emissions in terms of carbon dioxide CO2, carbon monoxide CO, unburnt hydrocarbons UHC, and nitric oxide NOx of a spark ignition engine. Tests are conducted at controlled throttle and variable speed condition over the range of 1200 to 2000 rpm with intervals 400 rpm. Different compression ratios are tested for each speed, namely (7,8,10, and 11. Pure gasoline and bioethanol gasoline blends are used. The bioethanol used is produced from Iraqi date crop (Zehdi. Blending is done on energy replacement bases. Ethanol energy ratio (EER used is 5%, 10%, and 15%. At each of the three designated engine speeds, the torque is set as 0, 3, 7, 10, and 14 N·m. It is found that ethanol blending reduces CO and UHC concentration in the exhaust gases by about 45% and 40.15%, respectively, and increases NOx and CO2 concentrations in the exhaust gases by about 16.18% and 7.5%, respectively. It is found also that load and speed increase causes an increase in CO2 and NOx concentrations and reduces CO and UHC concentrations. It is also found that increasing the compression ratio causes the emissions of CO2 and NOx to decrease and those of CO and UHC to increase.

  6. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  7. Double Compression Expansion Engine: A Parametric Study on a High-Efficiency Engine Concept

    KAUST Repository

    Bhavani Shankar, Vijai Shankar; Johansson, Bengt; Andersson, Arne

    2018-01-01

    The Double compression expansion engine (DCEE) concept has exhibited a potential for achieving high brake thermal efficiencies (BTE). The effect of different engine components on system efficiency was evaluated in this work using GT Power

  8. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  9. Performance enhancement of a spark ignition engine fed by different fuel types

    International Nuclear Information System (INIS)

    Hedfi, Hachem; Jbara, Abdessalem; Jedli, Hedi; Slimi, Khalifa; Stoppato, Anna

    2016-01-01

    Highlights: • Biogas mixed with hydrogen is checked for a spark ignition engine. • An engine fed by biogas, hydrogen, natural gas or liquid petroleum gas is studied. • Efficiency is optimized with respect to consumption and exhaust gas recirculation. • Combustion reaction progress is characterized in real time. - Abstract: A numerical model based on thermodynamic and kinetic analyses has been established in order to evaluate biogas, hydrogen, natural gas or liquid petroleum gas as fuels in a spark ignition engine. For each fuel type, consumption as well as efficiency have been compared to gasoline in order to generate the same engine work (in the range of 0.28–0.43 W h/cycle). It was found that the spark ignition engine can be fed by an equimolar mixture of biogas and hydrogen. Moreover, thermal efficiency has been enhanced with respect to fuel consumption and exhaust gas recirculation (EGR). It was shown that an equimolar mixture between biogas and hydrogen increases the ITE by around 2.2% and decreases the mass consumption by less than 0.01 g/cycle. In addition, the combustion reaction progresses as well as CO and CO_2 emissions have been characterized in real time.

  10. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  11. Study of ignition characteristics of microemulsion of coconut oil under off diesel engine conditions

    Directory of Open Access Journals (Sweden)

    Mahir H. Salmani

    2015-09-01

    Full Text Available The increasing awareness of the depletion of fossil fuel resources and the environmental benefits motivates the use of vegetable oils, however there is little known information about ignition and combustion characteristics of vegetable oil based fuels under off diesel engine conditions. These conditions are normally reached either during starting or when the engine is sufficiently worn out. A fuel was prepared by co-solvent blending of coconut oil with 20% butyl alcohol and was analysed. An experimental study of the measurement of ignition delay (ID characteristics of conical fuel sprays impinging on hot surface in cylindrical combustion chamber was carried out. The objective of the study was to investigate the effect of hot surface temperatures on ignition delays of microemulsion of coconut oil at various ambient air pressures and temperatures which would have reached under off diesel engine conditions. An experimental set-up was designed and developed for a maximum air pressure of 200 bar and a maximum temperature of 800 °C with the emphasis on optical method for the measurement of ignition delay. Hot surface temperature range chosen was 300–450 °C and ambient air pressure (inside the combustion chamber range chosen was 10–25 bar. Present study shows that at fixed injection pressure and fixed ambient (hot surface temperature, at higher ambient air pressure (25 bar inside the combustion chamber, ignition delay of diesel and microemulsion of coconut oil are comparable and therefore are having matching combustion characteristics. Although a pressure of 25 bar is much less than the precombustion pressure of most diesel engines but again conclusively establish that combustion characteristics are same despite lower air pressure, temperature and lower injection pressure. At higher injection pressure ignition delay of microemulsion of coconut oil and pure diesel attains the lower value at the same ambient air pressure inside the

  12. Experimental study of fuel composition impact on PCCI combustion in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; Luijten, C.C.M.; Somers, L.M.T.; Kalghatgi, G.T.; Albrecht, B.A.

    2011-01-01

    Premixed Charge Compression Ignition (PCCI) is a combustion concept that holds the promise of combining emission levels of a spark-ignition engine with the efficiency of a compression-ignition engine. In a short term scenario, PCCI would be used in the lower load operating range only, combined with

  13. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  14. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  15. Experimental evaluation of a spark-ignited engine using biogas as fuel

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2008-05-01

    Full Text Available Different CH4 and CO2 mixtures were used as fuel in this work; they were fed into a spark-ignited engine equipped with devices allowing spark advance, gas delivery and gas consumption to be measured. Engine bench-tests re-vealed changes in the main operation parameters and emissions. The results showed that increasing CO2 percen-tage in the mixture increased the spark angle, reduced maximum power and torque and reduced exhaust emissions (by 90% in some cases when DAMA resolution 1015/2005 was applied. The main components to be considered when an engine of this type operates with gas fuel were also recognised.

  16. Control of Stirling engine. Simplified, compressible model

    Science.gov (United States)

    Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.

    2016-06-01

    A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.

  17. Alternative Pulse Detonation Engine Ignition System Investigation through Detonation Splitting

    Science.gov (United States)

    2002-03-01

    on the soccer field and later discovered is a brilliant and dedicated scientist and engineer. He’s been an inspiration and role model, who sees...designing configurations before cutting metal for an experiment reduces research time and cost. Dr. Vish Katta had built an in-house program ( UNICORN

  18. Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline

    Directory of Open Access Journals (Sweden)

    Musaab O. El-Faroug

    2016-11-01

    Full Text Available This paper reviews the serviceability of hydrous ethanol as a clean, cheap and green renewable substitute fuel for spark ignition engines and discusses the comparative chemical and physical properties of hydrous ethanol and gasoline fuels. The significant differences in the properties of hydrous ethanol and gasoline fuels are sufficient to create a significant change during the combustion phase of engine operation and consequently affect the performance of spark-ignition (SI engines. The stability of ethanol-gasoline-water blends is also discussed. Furthermore, the effects of hydrous ethanol, and its blends with gasoline fuel on SI engine combustion characteristics, cycle-to-cycle variations, engine performance parameters, and emission characteristics have been highlighted. Higher water solubility in ethanol‑gasoline blends may be obviously useful and suitable; nevertheless, the continuous ability of water to remain soluble in the blend is significantly affected by temperature. Nearly all published engine experimental results showed a significant improvement in combustion characteristics and enhanced engine performance for the use of hydrous ethanol as fuel. Moreover, carbon monoxide and oxides of nitrogen emissions were also significantly decreased. It is also worth pointing out that unburned hydrocarbon and carbon dioxide emissions were also reduced for the use of hydrous ethanol. However, unregulated emissions such as acetaldehyde and formaldehyde were significantly increased.

  19. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol

    International Nuclear Information System (INIS)

    Irimescu, Adrian

    2012-01-01

    Highlights: ► Iso-butanol use in a port injection spark ignition engine. ► Fuel conversion efficiency calculated based on chassis dynamometer measurements. ► Combined study of engine efficiency and air–fuel mixture temperature. ► Excellent running characteristics with minor fuel system modifications. ► Up to 11% relative drop in part load efficiency due to incomplete fuel vaporization. -- Abstract: Alcohols are increasingly used as fuels for spark ignition engines. While ethanol is most commonly used, long chain alcohols such as butanol feature several advantages like increased heating value and reduced corrosive action. This study investigated the effect of fueling a port injection engine with iso-butanol, as compared to gasoline operation. Performance levels were maintained within the same limits as with the fossil fuel without modifications to any engine component. An additional electronic module was used for increasing fuel flow by extending the injection time. Fuel conversion efficiency decreased when the engine was fueled with iso-butanol by up to 9% at full load and by up to 11% at part load, calculated as relative values. Incomplete fuel evaporation was identified as the factor most likely to cause the drop in engine efficiency.

  20. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    Science.gov (United States)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  1. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, E.; Kawahara, N. [Okayama Univ., Okayama (Japan); Roy, M.M. [Rajshahi Univ. of Engineering and Technology, Rajshahi (Bangladesh)

    2009-07-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N{sub 2} dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  2. Performance simulation of a spark ignited free-piston engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-10-15

    Free-piston engines are under investigation by a number of research groups worldwide due to potential fuel efficiency and engine emissions advantages. The free-piston engine generator, in which a linear electric generator is fixed to the mover to produce electric power, has been proposed as an alternative prime mover for hybrid-electric vehicles. This paper investigates the performance of a spark ignited free-piston engine generator and compares it to a conventional engine using a computational fluid dynamics simulation model. The particular operating characteristics of the free-piston engine were not found to give noticeable performance advantages, and it is concluded that the main potential of this technology lies in the simplicity and flexibility of the concept. (author)

  3. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  4. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    International Nuclear Information System (INIS)

    Tomita, E.; Kawahara, N.; Roy, M.M.

    2009-01-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N 2 dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  5. Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Ng, Jo-Han; Ahmad, Solehin; Rajoo, Srithar

    2015-01-01

    Highlights: • Diesel engine test using palm biodiesel and diesel at varying speed and load. • Palm biodiesel shows better performance at late stage of cycle evolution. • Oxygen in palm biodiesel fuel improves local combustion at late stage of combustion. • Emissions of NO are lower at low and medium operating speed for palm biodiesel. • Formulation of trend guide for performance and emissions characteristics for light-duty diesel engines. - Abstract: This paper presents an investigation of oxygenated neat palm biodiesel in a direct injection single cylinder diesel engine in terms of ignition, combustion and emissions characteristics. Conventional non-oxygenated diesel fuel is compared as baseline. The engine testing is performed between the operating speed of 2000–3000 rpm and load of up to 3 bar of brake mean effective pressure. From it, a total of 50 experiment cases are tested to form a comprehensive operational speed-load contour map for ignition and combustion; while various engine-out emissions such as NO, CO, UHCs and CO 2 are compared based on fuel type-speed combinations. The ignition and combustion evolution contour maps quantify the absolute ignition delay period and elucidate the difference between that of palm biodiesel and fossil diesel. Although diesel has shorter ignition delay period by up to 0.6 CAD at 3000 rpm and burns more rapidly at the start of combustion, combustion of palm biodiesel accelerates during the mid-combustion phase and overtakes diesel in the cumulative heat release rates (HRR) prior to the 90% cumulative HRR. This can be attributed to the oxygen contained in palm biodiesel assisting in localized regions of combustion. In terms of performance, the oxygenated nature of palm biodiesel provided mixed performances with improved thermal efficiency and increased brake specific fuel consumption, due to the improved combustion and lower calorific values, respectively. Emission measurements show that NO for palm biodiesel is

  6. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  7. Skip cycle system for spark ignition engines: An experimental investigation of a new type working strategy

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper T.

    2007-01-01

    A new type working strategy for spark ignition engine, named skip cycle, is examined. The main idea is to reduce the effective stroke volume of an engine by cutting off fuel injection and spark ignition in some of the classical four stroke cycles. When the cycle is skipped, additionally, a rotary valve is used in the intake to reduce pumping losses in part load conditions. The effect of this strategy is similar to that of variable displacement engines. Alternative power stroke fractions in one cycle and applicability in single cylinder engines are specific advantageous properties of the proposed system. A thermodynamic model, besides experimental results, is used to explain the skip cycle strategy in more detail. This theoretical investigation shows considerable potential to increase the efficiency at part load conditions. Experimental results obtained with this novel strategy show that the throttle valve of the engine opens wider and the minimum spark advance for maximum brake torque decreases in comparison to those of the classical operation system. The brake specific fuel consumption decreases at very low speed and load, while it increases at higher speed and load due to the increased fuel loss within the skipped cycles. In this working mode, the engine operates at lower idle speed without any stability problem; and moreover with less fuel consumption

  8. Impact of branched structures on cycloalkane ignition in a motored engine: Detailed product and conformational analyses

    KAUST Repository

    Kang, Dongil; Lilik, Gregory K.; Dillstrom, Vernon Tyler; Agudelo, John Ramiro; Lapuerta, Magí n; Al-Qurashi, Khalid; Boehman, André Louis

    2015-01-01

    , equivalence ratio of 0.5 and engine speed of 600. rpm. The engine compression ratio (CR) was gradually increased in a stepwise manner until autoignition occurred. It was found that ECH exhibited a significantly higher oxidation reactivity compared to its two

  9. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  10. Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2009-10-01

    Full Text Available With fossil fuels reserves coming ever closer to depletion and the issue of air pollution caused by automotive transport becoming more and more important, mankind has looked for various solutions in the field of internal combustion engines. One of these solutions is using biofuels, and while the internal combustion engine will most likely disappear along with the last fossil fuel source, studying biofuels and their impact on automotive power-trains is a necessity even if only on a the short term basis. While engines built to run on alcohol-gasoline blends offer good performance levels even at high concentrations of alcohol, unmodified engines fueled with blends of biofuels and fossil fuels can exhibit a drop in power. The object of this study is evaluating such phenomena when a spark ignition engine is operated at full load.

  11. Performance and emissions analysis on using acetone–gasoline fuel blends in spark-ignition engine

    OpenAIRE

    Ashraf Elfasakhany

    2016-01-01

    In this study, new blended fuels were formed by adding 3–10 vol. % of acetone into a regular gasoline. According to the best of the author's knowledge, it is the first time that the influence of acetone blends has been studied in a gasoline-fueled engine. The blended fuels were tested for their energy efficiencies and pollutant emissions using SI (spark-ignition) engine with single-cylinder and 4-stroke. Experimental results showed that the AC3 (3 vol.% acetone + 97 vol.% gasoline) blended fu...

  12. Engineering Status of the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    Heitzenroeder, Philip J.; Meade, Dale; Thome, Richard J.

    2000-01-01

    FIRE is a compact, high field tokamak being studied as an option for the next step in the US magnetic fusion energy program. FIRE's programmatic mission is to attain, explore, understand, and optimize alpha-dominated plasmas to provide the knowledge necessary for the design of attractive magnetic fusion energy systems. This study began in 1999 with broad participation of the US fusion community, including several industrial participants. The design under development has a major radius of 2 m, a minor radius of 0.525 m, a field on axis of 10T and capability to operate at 12T with upgrades to power supplies. Toroidal and poloidal field magnets are inertially cooled with liquid nitrogen. An important goal for FIRE is a total project cost in the $1B range. This paper presents an overview of the engineering details which were developed during the FIRE preconceptual design study in FY99 and 00

  13. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  14. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  15. Spectroscoping analysis of ignition in a spark ignition engine with jet-controlled combustion; Spektroskopische Untersuchung der Entflammung an einem Ottomotor mit strahlgefuehrtem Brennverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Palaveev, S. [MOT Forschungs- und Entwicklungsgesellschaft fuer Motorentechnik, Optik und Thermodynamik GmbH, Karlsruhe (Germany); Buri, S.; Xander, B.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen

    2007-07-01

    The gasoline direct injection engine is one of the most promising strategies today to reduce the fuel consumption and CO{sub 2}-emissions of spark-ignition engines. The commercial launch of that combustion system was possible only through the development of new optical measurement techniques, which have been a major contribution for understanding the basics of the combustion in a stratified mode. In terms of space and time, compared to the homogeneous approach, the air-fuel-ratio for a stratified mode may vary significantly. This fluctuation affects in a critical way the process of ignition and combustion. The knowledge of the air-fuel-ratio in the spark plug area both at time of ignition and in during the combustion is therefore critical for the development of this combustion system and it components. This paper presents the spark-emission spectroscopy as a non invasive optical technique for measuring the air-fuel-ratio {lambda} in the spark gap at time of ignition. (orig.)

  16. Modelling a variable valve timing spark ignition engine using different neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Beham, M. [BMW AG, Munich (Germany); Yu, D.L. [John Moores University, Liverpool (United Kingdom). Control Systems Research Group

    2004-10-01

    In this paper different neural networks (NN) are compared for modelling a variable valve timing spark-ignition (VVT SI) engine. The overall system is divided for each output into five neural multi-input single output (MISO) subsystems. Three kinds of NN, multilayer Perceptron (MLP), pseudo-linear radial basis function (PLRBF), and local linear model tree (LOLIMOT) networks, are used to model each subsystem. Real data were collected when the engine was under different operating conditions and these data are used in training and validation of the developed neural models. The obtained models are finally tested in a real-time online model configuration on the test bench. The neural models run independently of the engine in parallel mode. The model outputs are compared with process output and compared among different models. These models performed well and can be used in the model-based engine control and optimization, and for hardware in the loop systems. (author)

  17. Numerical Modeling of a Jet Ignition Direct Injection (JI DI LPG Engine

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2017-01-01

    Full Text Available The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI and Jet Ignition (JI. It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected.  As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high engine speeds impossible for the diesel, as combustion within the main chamber is controlled by the turbulent mixing rather than the vaporization and diffusion processes of the injected fuel of the diesel. 

  18. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun; Zacharakis-Jutz, George E.; Kong, Song-Charng

    2014-01-01

    Highlights: • This is the very first study in utilizing direct injection of gaseous ammonia in an SI engine. • Engine combustion using direct injection of gaseous ammonia is proven feasible. • Energy efficiency using ammonia is comparable to that using gasoline. • CO emissions are decreased but emissions of NOx and HC are increased when ammonia is used. - Abstract: The effects of direct injection of gaseous ammonia on the combustion characteristics and exhaust emissions of a spark-ignition engine were investigated. Port-injection gasoline was used to enhance the burning of ammonia that was directly injected into the engine cylinder. Appropriate direct injection strategies were developed to allow ammonia to be used in spark-ignition engines without sacrifice of volumetric efficiency. Experimental results show that with gasoline providing the baseline power of 0.6 kW, total engine power could increase to 2.7 kW when the injection timing of ammonia was advanced to 370 BTDC with injection duration of 22 ms. Engine performance with use of gasoline–ammonia was compared to that with gasoline alone. For operations using gasoline–ammonia, with baseline power from gasoline at 0.6 kW the appropriate ammonia injection timing was found to range from 320 to 370 BTDC for producing 1.5–2.7 kW. The peak pressures were slightly lower than those using gasoline alone because of the lower flame of ammonia, resulting in reduction of cylinder pressure. The brake specific energy consumption (BSEC) with gasoline–ammonia was very similar to that with gasoline alone. Ammonia direct injection caused slight reductions of BSCO for all the loads studied but significantly increased BSHC because of the reduced combustion temperature of ammonia combustion. The use of ammonia resulted in increased NOx emissions because of formation of fuel NOx. Ammonia slip was also detected in the engine exhaust because of incomplete combustion

  19. Exergetic Evaluation of Speed and Load Effects in Spark Ignition Engines Évaluation exergétique des effets de la vitesse et de la charge dans les moteurs àallumage par étincelle

    OpenAIRE

    Sezer I.; Bilgin A.

    2012-01-01

    This study investigates the effects of various operating conditions in spark ignition engines via an exergy analysis. A thermodynamic cycle model including compression, combustion and expansion processes was used for investigation. Induction and exhaust processes were computed with a simple approximation method. The principles of the second law were applied to the cycle model to perform the exergy analysis. Exergetic variables, i.e., the exergy transfers with heat and work, irreversibili...

  20. Effects of Mixture Stratification on Combustion and Emissions of Boosted Controlled Auto-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2017-12-01

    Full Text Available The stratification of in-cylinder mixtures appears to be an effective method for managing the combustion process in controlled auto-ignition (CAI engines. Stratification can be achieved and controlled using various injection strategies such as split fuel injection and the introduction of a portion of fuel directly before the start of combustion. This study investigates the effect of injection timing and the amount of fuel injected for stratification on the combustion and emissions in CAI engine. The experimental research was performed on a single cylinder engine with direct gasoline injection. CAI combustion was achieved using negative valve overlap and exhaust gas trapping. The experiments were performed at constant engine fueling. Intake boost was applied to control the excess air ratio. The results show that the application of the late injection strategy has a significant effect on the heat release process. In general, the later the injection is and the more fuel is injected for stratification, the earlier the auto-ignition occurs. However, the experimental findings reveal that the effect of stratification on combustion duration is much more complex. Changes in combustion are reflected in NOX emissions. The attainable level of stratification is limited by the excessive emission of unburned hydrocarbons, CO and soot.

  1. Ignition properties of n-butane and iso-butane in a rapid compression machine

    NARCIS (Netherlands)

    Gersen, S.; Mokhov, A. V.; Darmeveil, J. H.; Levinsky, H. B.

    Autoignition delay times of n-butane and iso-butane have been measured in a Rapid Compression Machine in the temperature range 660-1010 K, at pressures varying from 14 to 36 bar and at equivalence ratios phi = 1.0 and phi = 0.5. Both butane isomers exhibit a negative-temperature-coefficient (NTC)

  2. Selected Issues of the Indicating Measurements in a Spark Ignition Engine with an Additional Expansion Process

    Directory of Open Access Journals (Sweden)

    Marcin Noga

    2017-03-01

    Full Text Available The paper presents the results of research on the turbocharged spark ignition engine with additional exhaust expansion in a separate cylinder, which is commonly known as the five-stroke engine. The research engine has been constructed based on the four cylinder engine in which two outer cylinders work as the fired cylinders, while two internally connected inner cylinders constitute the volume of the additional expansion process. The engine represents a powertrain realizing an ultra-expansion cycle. The purpose of the study was to find an effective additional expansion process in the five-stroke engine. Cylinder-pressure indicating measurements were carried out for one of the fired cylinders and the additional expansion cylinder. The study was performed for over 20 different points on the engine operation map. This allowed us to determine a dependence between the pressure indicated in the fired cylinders and in the additional expansion cylinders. A function of the mean pressure indicated in the additional expansion cylinder versus a brake mean effective pressure was also presented. This showed a load threshold from which the work of the cylinders of additional expansion produced benefits for the output of the experimental engine. The issues of mechanical efficiency and effective efficiency of this engine were also discussed.

  3. Performance Characteristics Comparison of CNG Port and CNG Direct Injection in Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Rajesh Patel

    2018-03-01

    Full Text Available A comparative performance analysis is being carried out on a four cylinder, four stroke cycle, spark ignition engine having displacement volume 1297cc. The cylinder head of original gasoline based engine was modified by drilling holes from upper surfaces of head to individual combustion chamber to convert the engine in a CNG direct injection engine. The CNG port injection (CNG-PI system and CNG direct injection (CNG-DI system were incorporated with the single engine.  The engine was retrofitted to run on both CNG-PI and CNG-DI system alternately with common CNG tank and other engine loading and measurement system. The engine was equipped with electrical dynamometer having rheostat type loading. The CNG direct injection system was incorporated with various sensors and engine ECU. The operating parameters can be obtained on computer screen by loading the computer with engine through switch box. The engine was run over the speed range of 1000 rpm to 3000 rpm with incremental speed of 300 rpm. The performance parameters were calculated from observations and recorded for both CNG-PI and CNG-DI system. The experimental investigation exhibits that, the average 7-8% reduction in BSFC while the engine was running with CNG-DI system as compared to that of CNG-PI system. Also the engine produced 8-9% higher brake torque and hence higher brake power. The engine gives 6-7% higher brake thermal efficiency with CNG-DI system as compared to CNG-PI system.

  4. International Standards to Reduce Emissions from Marine Diesel Engines and Their Fuels

    Science.gov (United States)

    Overview of EPA coordination with International Maritime Organization including a list of all international regulations and materials related to emissions from marine compression-ignition (diesel) engines.

  5. Investigating the effects of LPG on spark ignition engine combustion and performance

    International Nuclear Information System (INIS)

    Bayraktar, Hakan; Durgun, Orhan

    2005-01-01

    A quasi-dimensional spark ignition (SI) engine cycle model is used to predict the cycle, performance and exhaust emissions of an automotive engine for the cases of using gasoline and LPG. Governing equations of the mathematical model mainly consist of first order ordinary differential equations derived for cylinder pressure and temperature. Combustion is simulated as a turbulent flame propagation process and during this process, two different thermodynamic regions consisting of unburned gases and burned gases that are separated by the flame front are considered. A computer code for the cycle model has been prepared to perform numerical calculations over a range of engine speeds and fuel-air equivalence ratios. In the computations performed at different engine speeds, the same fuel-air equivalence ratios are selected for each fuel to make realistic comparisons from the fuel economy and fuel consumption points of view. Comparisons show that if LPG fueled SI engines are operated at the same conditions with those of gasoline fueled SI engines, significant improvements in exhaust emissions can be achieved. However, variations in various engine performance parameters and the effects on the engine structural elements are not promising

  6. THE EFFECT OF GASOLINE-LIKE FUEL PRODUCED FROM WASTE AUTOMOBILE TIRES ON EMISSIONS IN SPARK-IGNITION ENGINES

    OpenAIRE

    ÖZTOP, H. F.; VAROL, Y.; ALTUN, Ş.; FIRAT, M.

    2016-01-01

    In the present paper, the effect of Gasoline-Like Fuel (GLF) on emissions was investigated for direct injection spark-ignited engine. The GLF was obtained from waste automobile tires by using the pyrolysis. The tires are installed to oven without any procedure such as cutting, melding etc. Obtained GLF was then used in a four-cylinder, four-stroke, water-cooled and direct injection spark-ignited engine as blended with unleaded gasoline from 0% to 60% with an increment of 10%. Engine tests res...

  7. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    Science.gov (United States)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  8. Control of combustion generated emissions from spark ignition engines: a review

    International Nuclear Information System (INIS)

    Mansha, M.; Shahid, E.M.; Qureshi, A.H.

    2012-01-01

    For the past several decades automobiles have been a major source of ground level emissions of various pollutants like CO, HC, NO/sub x/, SO/sub x/ CO/sub 2/, etc. Due to their dangerous effects on human health, vegetation and on climate, various pre combustion, in-cylinder and post. combustion techniques have been tried for their abatement. This paper reviews all of the workable measures taken so far to controlling the combustion generated emissions from 4-stroke Spark Ignition Vehicular Engines ever since the promulgation of emission control legislation/standards and their subsequent enforcement in the late 1960s. (author)

  9. Automatic compression adjusting mechanism for internal combustion engines

    Science.gov (United States)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  10. Performance and emissions analysis on using acetone–gasoline fuel blends in spark-ignition engine

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2016-09-01

    Full Text Available In this study, new blended fuels were formed by adding 3–10 vol. % of acetone into a regular gasoline. According to the best of the author's knowledge, it is the first time that the influence of acetone blends has been studied in a gasoline-fueled engine. The blended fuels were tested for their energy efficiencies and pollutant emissions using SI (spark-ignition engine with single-cylinder and 4-stroke. Experimental results showed that the AC3 (3 vol.% acetone + 97 vol.% gasoline blended fuel has an advantage over the neat gasoline in exhaust gases temperature, in-cylinder pressure, brake power, torque and volumetric efficiency by about 0.8%, 2.3%, 1.3%, 0.45% and 0.9%, respectively. As the acetone content increases in the blends, as the engine performance improved where the best performance obtained in this study at the blended fuel of AC10. In particular, exhaust gases temperature, in-cylinder pressure, brake power, torque and volumetric efficiency increase by about 5%, 10.5%, 5.2%, 2.1% and 3.2%, respectively, compared to neat gasoline. In addition, the use of acetone with gasoline fuel reduces exhaust emissions averagely by about 43% for carbon monoxide, 32% for carbon dioxide and 33% for the unburnt hydrocarbons. The enhanced engine performance and pollutant emissions are attributed to the higher oxygen content, slight leaning effect, lower knock tendency and high flame speeds of acetone, compared to the neat gasoline. Finally the mechanism of acetone combustion in gasoline-fueled engines is proposed in this work; two main pathways for acetone combustion are highlighted; furthermore, the CO, CO2 and UHC (unburnt hydrocarbons mechanisms of formation and oxidation are acknowledged. Such acetone mechanism is employed for further understanding acetone combustion in spark-ignition engines.

  11. Experimental investigation of the concomitant injection of gasoline and CNG in a turbocharged spark ignition engine

    International Nuclear Information System (INIS)

    Momeni Movahed, M.; Basirat Tabrizi, H.; Mirsalim, M.

    2014-01-01

    Highlights: • Concomitant injection of gasoline and CNG is compared with gasoline and CNG modes. • BSFC, HC and CO emissions of the concomitant injection are lower than gasoline mode. • Deteriorations of the concomitant injection are negligible compared to gasoline mode. • Cylinder peak pressure and heat loss to coolant of the concomitant injection are lower than CNG mode. • Some shortcomings in CNG mode can be solved by changing the spark timing and lambda. - Abstract: Concomitant injection of gasoline and CNG is a new concept to overcome problems of bi-fueled spark ignition engines, which operate in single fuel mode, either in gasoline or in CNG mode. This experimental study indicates how some problems of gasoline mode such as retarded ignition timings for knock prevention and rich air–fuel mixture for component protection can be resolved with the concomitant injection of gasoline and CNG. Results clearly show that the concomitant injection improves thermal efficiency compared to gasoline mode. On the other hand, simultaneous injection of gasoline and CNG reduces some problems of CNG mode such as high cylinder pressure and heat loss to the engine coolant. This decreases the stringent requirements for thermal and mechanical strength of the engine components in CNG mode. In addition, it is shown that by modifying the spark advance and air fuel ratio in CNG mode, the engine operation improves in terms of NOx emissions and maximum in-cylinder pressure as the concomitant injection does. Nevertheless, new requirements such as an intercooler with higher cooling capacity are implied to the engine configuration. Finally, the most important concerns in control strategies of the engine control unit for a vehicle with concomitant injection of gasoline and CNG are discussed

  12. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties