WorldWideScience

Sample records for compressible perfect fluids

  1. Effective perfect fluids in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Rome (Italy); Bellazzini, Brando, E-mail: guillermo.ballesteros@unige.ch, E-mail: brando.bellazzini@pd.infn.it [Dipartimento di Fisica, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-04-01

    We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

  2. Time-machine in Perfect Fluid Cosmologies

    Institute of Scientific and Technical Information of China (English)

    DUAN Yan-zhi

    2009-01-01

    This letter investigates the time-machine problem in perfect fluid cosmologies. It solves the Einstein's field equations with the energy-momentum tensors for perfect fluid and constructs a class of time-machine solutions,by which the time-machine problem in the perfect fluid cosmologies is solved.

  3. Thermodynamic Behavior of a Perfect Fluid with Negative Energy Density

    CERN Document Server

    Christensen, W

    2005-01-01

    Starting from a perfect cosmolgical fluid, one class of frequency metrics that satisfies both Einstein's General Relativitic equation and the perfect fluid condition is: g_uv = e^iwt N_uv. Such a metric indicates spacetime behaves locally like a simple harmonic oscillator. During spacetime compressions and rarefactions particles are exuded with a mass equal to the compressive work that produced them. They comprise the cosmic dark matter that makes up this perfect fluid. By treating spacetime as a classical thermodynamic problem, the mass of these particles is determined to be in the range of an axion particle sought by the Lawrence Livermore National Laboratory. When axion particles collide they give off a photon having a microwave frequency inversely equal to that of the frequency of the spacetime compression that produced them. These microwave photons make up the 2.7K cosmic background radiation.

  4. Relativistic perfect fluids in local thermal equilibrium

    CERN Document Server

    Coll, Bartolomé; Sáez, Juan Antonio

    2016-01-01

    The inverse problem for conservative perfect fluid energy tensors provides a striking result. Namely that, in spite of its name, its historic origin or its usual conceptualization, the notion of {\\em local thermal equilibrium} for a perfect fluid is a {\\em purely hydrodynamic}, not thermodynamic, notion. This means that it may be thought, defined and detected using exclusively hydrodynamic quantities, without reference to temperature or any other thermodynamic concept, either of equilibrium or irreversible: a relativistic perfect fluid evolves in local thermal equilibrium if, and only if, its hydrodynamic variables evolve keeping a certain relation among them. This relation fixes, but only fixes, a precise fraction of the thermodynamics of the fluid, namely that relating the speed of its sound waves to the hydrodynamic variables. All thermodynamic schemes (sets of thermodynamic variables and their mutual relations) compatible with such a relation on the sole hydrodynamic variables are obtained. This hydrodyna...

  5. Partially locally rotationally symmetric perfect fluid cosmologies

    CERN Document Server

    Mustapha, N; Van Elst, H; Marklund, M; Mustapha, Nazeem; Ellis, George F R; Elst, Henk van; Marklund, Mattias

    2000-01-01

    We show that there are no new consistent perfect fluid cosmologies with the kinematic variables and the electric and magnetic parts of the Weyl curvature all rotationally symmetric about a common axis in an open neighbourhood ${\\cal U}$ of an event. The consistent solutions of this kind are either locally rotationally symmetric, or are subcases of the Szekeres model.

  6. Characterisation of orthogonal perfect fluid cosmological spacetimes

    CERN Document Server

    Dadhich, N K; Govinder, K S; Leach, P G L; Dadhich, Naresh; Patel, L K; Govinder, K S; Leach, P G L

    1994-01-01

    We consider the general orthogonal metric separable in space and time variables in comoving coordinates. We then characterise perfect fluid models admitted by such a metric. It turns out that the homogeneous models can only be either FLRW or Bianchi I while the inhomogeneous ones can only admit G_2 (two mutually as well as hypersurface orthogonal spacelike Killing vectors) isometry. The latter can possess singularities of various kinds or none. The non-singular family is however unique and cylindrically symmetric.

  7. Thick brane world model from perfect fluid

    CERN Document Server

    Ivashchuk, V D

    2001-01-01

    A (1 + d)-dimensional thick "brane world" model with varying Lambda-term is considered. The model is generalized to the case of a chain of Ricci-flat internal spaces when the matter source is an anisotropic perfect fluid. The "horizontal" part of potential is obtained in the Newtonian approximation. In the multitemporal case (with a Lambda-term) a set of equations for potentials is presented.

  8. Challenging the standard perfect fluid paradigm

    Science.gov (United States)

    O'Brien, James

    2015-04-01

    We show that the standard perfect fluid paradigm is not necessarily a valid description of a curved space steady state gravitational source. Simply by virtue of not being flat, curved space geometries have to possess intrinsic length scales, and such length scales can affect the fluid structure.We show that for the specific case of a static, spherically symmetric geometry, the steady state energy-momentum tensor that ensues will in general be of the form Tμν =(ρ + p) UμUν + pgμν + qπμν where πμν is a symmetric, traceless rank two tensor which obeys Uμπμν = 0 . Such a qπμν type term is absent for an incoherently averaged steady state fluid in a spacetime where there are no intrinsic length scales, and in principle would thus be missed in a covariantizing of a flat spacetime Tμν. While it is reassuring that we find that in practice the effect of such qπμν type terms is small for weak gravity stars, for strong gravity systems their potential influence would need to be explored.

  9. Perfect fluid flow from granular jet impact

    CERN Document Server

    Ellowitz, Jake; Zhang, Wendy W

    2012-01-01

    Experiments on the impact of a densely-packed jet of non-cohesive grains onto a fixed target show that the impact produces an ejecta sheet comprised of particles in collimated motion. The ejecta sheet leaves the target at a well-defined angle whose value agrees quantitatively with the sheet angle produced by water jet impact. Motivated by these experiments, we examine the idealized problem of dense granular jet impact onto a frictionless target in two dimensions. Numerical results for the velocity and pressure fields within the granular jet agree quantitatively with predictions from an exact solution for 2D perfect-fluid impact. This correspondence demonstrates that the continuum limit controlling the coherent collective motion in dense granular impact is Euler flow.

  10. New exact perfect fluid solutions of Einstein's equations. II

    Science.gov (United States)

    Uggla, Claes; Rosquist, Kjell

    1990-12-01

    A family of new spatially homogeneous Bianchi type VIh perfect fluid solutions of the Einstein equations is presented. The fluid flow is orthogonal to the spatially homogeneous hypersurfaces, and the pressure is proportional to the energy density.

  11. First integrals for charged perfect fluid distributions

    CERN Document Server

    Kweyama, M C; Govinder, K S

    2013-01-01

    We study the evolution of shear-free spherically symmetric charged fluids in general relativity. We find a new parametric class of solutions to the Einstein-Maxwell system of field equations. Our charged results are a generalisation of earlier treatments for neutral relativistic fluids. We regain the first integrals found previously for uncharged matter as a special case. In addition an explicit first integral is found which is necessarily charged.

  12. Mathematical theory of compressible fluid flow

    CERN Document Server

    Von Mises, Richard

    2012-01-01

    Mathematical Theory of Compressible Fluid Flow covers the conceptual and mathematical aspects of theory of compressible fluid flow. This five-chapter book specifically tackles the role of thermodynamics in the mechanics of compressible fluids. This text begins with a discussion on the general theory of characteristics of compressible fluid with its application. This topic is followed by a presentation of equations delineating the role of thermodynamics in compressible fluid mechanics. The discussion then shifts to the theory of shocks as asymptotic phenomena, which is set within the context of

  13. Perfect fluids coupled to inhomogeneities in the late Universe

    CERN Document Server

    Zhuk, Alexander

    2016-01-01

    We consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At such scales, the Universe is highly inhomogeneous and is filled with inhomogeneities in the form of galaxies and the groups of galaxies. We also suggest that the Universe is filled with a perfect fluid, and its fluctuations have peculiar velocities of the same (non-relativistic) order of magnitude as for the inhomogeneities. In this sense, the inhomogeneities (e.g. galaxies) and fluctuations of perfect fluids are coupled with each other. We clarify some important points of this approach and present a brief review of previous studies (e.g. CPL model and Chaplygin gas). We demonstrate that considered perfect fluids which satisfy our approach are really coupled to galaxies concentrating around them. The averaged (over the whole Universe) value of their fluctuations is equal to zero.

  14. Dynamics of non-minimally coupled perfect fluids

    CERN Document Server

    Bettoni, Dario

    2015-01-01

    We present a general formulation of the theory for a non-minimally coupled perfect fluid in which both conformal and disformal couplings are present. We discuss how such non-minimal coupling is compatible with the assumptions of a perfect fluid and derive both the Einstein and the fluid equations for such model. We found that, while the Euler equation is significantly modified with the introduction of an extra force related to the local gradients of the curvature, the continuity equation is unaltered, thus allowing for the definition of conserved quantities along the fluid flow. As an application to cosmology and astrophysics we compute the effects of the non-minimal coupling on a Friedmann--Lema\\^itre--Robertson--Walker background metric and on the Newtonian limit of our theory.

  15. Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid

    Science.gov (United States)

    Roy, S. R.; Prasad, A.

    1991-07-01

    Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.

  16. Modelling general relativistic perfect fluids in field theoretic language

    CERN Document Server

    Mitskievich, N V

    1999-01-01

    Skew-symmetric massless fields, their potentials being $r$-forms, are close analogues of Maxwell's field (though the non-linear cases also should be considered). We observe that only two of them ($r=$2 and 3) automatically yield stress-energy tensors characteristic to normal perfect fluids. It is shown that they naturally describe both non-rotating ($r=2$) and rotating (then a combination of $r=2$ and $r=3$ fields is indispensable) general relativistic perfect fluids possessing every type of equations of state. Meanwile, a free $r=3$ field is completely equivalent to appearance of the cosmological term in Einstein's equations. Sound waves represent perturbations propagating on the background of the $r=2$ field. Some exotic properties of these two fields are outlined.

  17. Thermodynamics of perfect fluids from scalar field theory

    CERN Document Server

    Ballesteros, Guillermo; Pilo, Luigi

    2016-01-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  18. Limitations of the Standard Gravitational Perfect Fluid Paradigm

    CERN Document Server

    Cox, David; O'Brien, James

    2009-01-01

    We show that the standard perfect fluid paradigm is not necessarily a valid description of a steady state gravitational source unless the background geometry has very high symmetry. By incoherently averaging over a compete set of modes of a scalar field propagating in a curved background, we show that for a static, spherically symmetric geometry the energy-momentum tensor that ensues will in general be of the form $T_{\\mu\

  19. Black hole solutions surrounded by perfect fluid in Rastall theory

    Science.gov (United States)

    Heydarzade, Y.; Darabi, F.

    2017-08-01

    In this work, we obtain uncharged∖charged Kiselev-like black holes as a new class of black hole solutions surrounded by perfect fluid in the context of Rastall theory. Then, we study the specific cases of the uncharged∖charged black holes surrounded by regular matter like dust and radiation, or exotic matter like quintessence, cosmological constant and phantom fields. By comparing the Kiselev-like black hole solutions in Rastall theory with the Kiselev black hole solutions in GR, we find an effective perfect fluid behavior for the black hole's surrounding field. It is shown that the corresponding effective perfect fluid has interesting characteristic features depending on the different ranges of the parameters in Rastall theory. For instance, Kiselev-like black holes surrounded by regular matter in Rastall theory may be considered as Kiselev black holes surrounded by exotic matter in GR, or Kiselev-like black holes surrounded by exotic matter in Rastall theory may be considered as Kiselev black holes surrounded by regular matter in GR.

  20. The covariant approach to LRS perfect fluid spacetime geometries

    CERN Document Server

    Van Elst, H; van Elst, Henk; Ellis, George F R

    1995-01-01

    The dynamics of perfect fluid spacetime geometries which exhibit {\\em Local Rotational Symmetry} (LRS) are reformulated in the language of a 1+\\,3 "threading" decomposition of the spacetime manifold, where covariant fluid and curvature variables are used. This approach presents a neat alternative to the orthonormal frame formalism. The dynamical equations reduce to a set of differential relations between purely scalar quantities. The consistency conditions are worked out in a transparent way. We discuss their various subcases in detail and focus in particular on models with higher symmetries within the class of expanding spatially inhomogeneous LRS models, via a consideration of functional dependencies between the dynamical variables.

  1. Perfect Fluid Quantum Anisotropic Universe: Merits and Challenges

    CERN Document Server

    Majumder, Barun

    2012-01-01

    The present paper deals with quantization of perfect fluid anisotropic cosmological models. Bianchi type V and IX models are discussed following Schutz's method of expressing fluid velocities in terms of six potentials. The wave functions are found for several examples of equations of state. In one case a complete wave packet could be formed analytically. The initial singularity of a zero proper volume can be avoided in this case, but it is plagued by the usual problem of non-unitarity of anisotropic quantum cosmological models. It is seen that a particular operator ordering alleviates this problem.

  2. Relativistic vortex dynamics in axisymmetric stationary perfect fluid configuration

    Science.gov (United States)

    Prasad, G.

    2017-06-01

    Relativistic formulation of Helmholtz's vorticity transport equation is presented on the basis of Maxwell-like version of Euler's equation of motion. Entangled characteristics associated with vorticity flux conservation in a vortex tube and in a stream tube are displayed on basis of Greenberg's theory of spacelike congruence of vortex lines and 1+1+(2) decomposition of the gradient of fluid's 4-velocity. Vorticity flux surfaces are surfaces of revolution about the rotation axis and are rotating with fluid's angular velocity due to gravitational isorotation in a stationary axisymmetric perfect fluid configuration. Fluid's angular velocity, angular momentum per baryon, injection energy, and invariant rotational potential are constant on such vorticity flux surfaces. Gravitation causes distortion of coaxial cylindrical vorticity flux surfaces in the limit of post-Newtonian approximation. The rotation of the fluid with angular velocity relative to vorticity flux surfaces generates swirl which causes the stretching of material vortex lines being wrapped on vorticity flux surfaces. Fluid helicity which is conserved in the fluid's rest frame does not remain conserved in a locally nonrotating frame because of the existence of swirl. Vortex lines are twist free in the absence of meridional circulations, but the twisting of spacetime due to dragging effect leads to the increase in vorticity flux in a vortex tube.

  3. Piston motion in the perfect-conductive magnetizable uncompressible fluid

    Energy Technology Data Exchange (ETDEWEB)

    Naletova, V.A.

    1977-01-01

    A solution is given for the movement of a perfect conductive solid horizontal piston at a constant velocity u, parallel to the plane of the piston, in a perfect conductive magnetizable uncompressible fluid in an applied magnetic field H/sub 0/. Either a shock wave, a centered wave, or a alvenian fracture, or a combination of an alvenian fracture and waves can be propagated in front of the piston under these conditions. In this case either the shock or centered wave is propagated at first, followed by the movement of the alvenian fracture. Either case is manifested at such velocities. When the piston moves along the boundary, the piston-medium can flow as a surface current which can be found from the solution to the problem. 3 references, 3 figures.

  4. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  5. Generating static perfect-fluid solutions of Einstein's equations

    CERN Document Server

    Quevedo, Hernando

    2015-01-01

    We present a method for generating exact interior solutions of Einstein's equations in the case of static and axially symmetric perfect-fluid spacetimes. The method is based upon a transformation that involves the metric functions as well as the density and pressure of the seed solution. In the limiting vacuum case, it reduces to the Zipoy-Voorhees transformation that can be used to generate metrics with multipole moments. All the metric functions of the new solution can be calculated explicitly from the seed solution in a simple manner. The physical properties of the resulting new solutions are shown to be completely different from those of the seed solution.

  6. Generating static perfect-fluid solutions of Einstein's equations

    Science.gov (United States)

    Quevedo, Hernando; Toktarbay, Saken

    2015-05-01

    We present a method for generating exact interior solutions of Einstein's equations in the case of static and axially symmetric perfect-fluid spacetimes. The method is based upon a transformation that involves the metric functions as well as the density and pressure of the seed solution. In the limiting vacuum case, it reduces to the Zipoy-Voorhees transformation that can be used to generate metrics with multipole moments. All the metric functions of the new solution can be calculated explicitly from the seed solution in a simple manner. The physical properties of the resulting new solutions are shown to be completely different from those of the seed solution.

  7. Counterrotating perfect fluid discs as sources of electrovacuum static spacetimes

    CERN Document Server

    García-Reyes, Gonzalo

    2008-01-01

    The interpretation of some electrovacuum spacetimes in terms of counterrotating perfect fluid discs is presented. The interpretation is mades by means of an "inverse problem" approach used to obtain disc sources of known static solutions of the Einstein-Maxwell equations. In order to do such interpretation, a detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin discs with nonzero radial pressure. Four simple families of models of counterrotating charged discs based on Chazy-Curzon-type, Zipoy-Voorhees-type, Bonnor-Sackfield-type, and charged and magnetized Darmois electrovacuum metrics are considered where we obtain some discs with a CRM well behaved.

  8. Group analysis of a conformal perfect fluid spacetime

    Science.gov (United States)

    Govinder, K. S.; Hansraj, S.

    2012-04-01

    We find new exact solutions of the Einstein field equations for a perfect fluid metric conformal to a spacetime of type D in the Petrov classification scheme. We analyse the complete system of equations using Lie group analysis. While previous work was confined to conformal factors of the form U = U(t, x), we investigate the complete situation U = U(t, x, y, z) as well as an auxiliary integrability condition. New classes of solutions are generated via the symmetry generators. The resulting solutions are examined for physical plausibility. Expressions for the energy density and pressure are obtained explicitly and empirical results suggest that these dynamical quantities are positive as expected.

  9. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  10. A singular limit for compressible rotating fluids

    CERN Document Server

    Feireisl, Eduard; Novotny, Antonin

    2010-01-01

    We consider a singular limit problem for the Navier-Stokes system of a rotating compressible fluid, where the Rossby and Mach numbers tend simultaneously to zero. The limit problem is identified as the 2-D Navier-Stokes system in the ``horizontal'' variables containing an extra term that accounts for compressibility in the original system.

  11. Gravitational perfect fluid collapse in Gauss-Bonnet gravity

    Science.gov (United States)

    Abbas, G.; Tahir, M.

    2017-08-01

    The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α >0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity.

  12. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    CERN Document Server

    Stuchlík, Zdeněk; Schee, Jan; Kučáková, Hana

    2014-01-01

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularity representing spherically symmetric vacuum solution of the modified Ho\\v{r}ava quantum gravity that is characterized by a dimensionless parameter $\\omega M^2$, combining the gravitational mass parameter $M$ of the spacetime with the Ho\\v{r}ava parameter $\\omega$ reflecting the role of the quantum corrections. In dependence on the value of $\\omega M^2$, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in stable equilibrium position, that is relevant for the stability of the orbiting fluid toroidal accretion structures.

  13. Perfect fluid tori orbiting Kehagias-Sfetsos naked singularities

    Science.gov (United States)

    Stuchlík, Z.; Pugliese, D.; Schee, J.; Kučáková, H.

    2015-09-01

    We construct perfect fluid tori in the field of the Kehagias-Sfetsos (K-S) naked singularities. These are spherically symmetric vacuum solutions of the modified Hořava quantum gravity, characterized by a dimensionless parameter ω M^2, combining the gravitational mass parameter M of the spacetime with the Hořava parameter ω reflecting the role of the quantum corrections. In dependence on the value of ω M^2, the K-S naked singularities demonstrate a variety of qualitatively different behavior of their circular geodesics that is fully reflected in the properties of the toroidal structures, demonstrating clear distinction to the properties of the torii in the Schwarzschild spacetimes. In all of the K-S naked singularity spacetimes the tori are located above an "antigravity" sphere where matter can stay in a stable equilibrium position, which is relevant for the stability of the orbiting fluid toroidal accretion structures. The signature of the K-S naked singularity is given by the properties of marginally stable tori orbiting with the uniform distribution of the specific angular momentum of the fluid, l= const. In the K-S naked singularity spacetimes with ω M^2 > 0.2811, doubled tori with the same l= const can exist; mass transfer between the outer torus and the inner one is possible under appropriate conditions, while only outflow to the outer space is allowed in complementary conditions. In the K-S spacetimes with ω M^2 < 0.2811, accretion from cusped perfect fluid tori is not possible due to the non-existence of unstable circular geodesics.

  14. Scale interactions in compressible rotating fluids

    OpenAIRE

    Feireisl, Eduard; Novotny, Antonin

    2013-01-01

    We study a triple singular limit for the scaled barotropic Navier-Stokes system modeling the motion of a rotating, compressible, and viscous fluid, where the Mach and Rossby numbers are proportional to a small parameter, while the Reynolds number becomes infinite. If the fluid is confined to an infinite slab bounded above and below by two parallel planes, the limit behavior is identified as a purely horizontal motion of an incompressible inviscid fluid, the evolution of which is described by ...

  15. Spherically symmetric Einstein-aether perfect fluid models

    CERN Document Server

    Coley, Alan A; Sandin, Patrik; Latta, Joey

    2015-01-01

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in ($\\beta-$) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs model...

  16. LATTICE-BOLTZMANN MODEL FOR COMPRESSIBLE PERFECT GASES

    Institute of Scientific and Technical Information of China (English)

    Sun Chenghai

    2000-01-01

    We present an adaptive lattice Boltzmann model to simulate super sonic flows. The particle velocities are determined by the mean velocity and internal energy. The adaptive nature of particle velocities permits the mean flow to have high Mach number. A particle potential energy is introduced so that the model is suitable for the perfect gas with arbitrary specific heat ratio. The Navier-Stokes equations are derived by the Chapman-Enskog method from the BGK Boltzmann equation.As preliminary tests, two kinds of simulations have been performed on hexagonal lattices. One is the one-dimensional simulation for sinusoidal velocity distributions.The velocity distributions are compared with the analytical solution and the mea sured viscosity is compared with the theoretical values. The agreements are basically good. However, the discretion error may cause some non-isotropic effects. The other simulation is the 29 degree shock reflection.

  17. ? perfect-fluid cosmologies with a proper conformal Killing vector

    Science.gov (United States)

    Mars, Marc; Wolf, Thomas

    1997-08-01

    We study the Einstein field equations for spacetimes admitting a maximal two-dimensional Abelian group of isometries acting orthogonally transitively on spacelike surfaces and, in addition, with at least one conformal Killing vector. The three-dimensional conformal group is restricted to the case when the two-dimensional Abelian isometry subalgebra is an ideal and it is also assumed to act on non-null hypersurfaces (both spacelike and timelike cases are studied). We consider both diagonal and non-diagonal metrics, and find all the perfect-fluid solutions under these assumptions (except those already known). We find four families of solutions, each one containing arbitrary parameters for which no differential equations remain to be integrated. We write the line-elements in a simplified form and perform a detailed study for each of these solutions, giving the kinematical quantities of the fluid velocity vector, the energy density and pressure, values of the parameters for which the energy conditions are fulfilled everywhere, the Petrov type, the singularities in the spacetimes and the Friedmann - Lemaître - Robertson - Walker metrics contained in each family.

  18. Convective heat transport in compressible fluids.

    Science.gov (United States)

    Furukawa, Akira; Onuki, Akira

    2002-07-01

    We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking place throughout the cell (the piston effect) and those taking place within plumes (the adiabatic temperature gradient effect). Performing two-dimensional numerical analysis, we reveal some unique features of plume generation and convection in transient and steady states of compressible fluids. As the critical point is approached, the overall temperature changes induced by plume arrivals at the boundary walls are amplified, giving rise to overshoot behavior in transient states and significant noise in the temperature in steady states. The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for moderate Rayleigh numbers.

  19. Kantowski-Sachs Einstein-aether perfect fluid models

    CERN Document Server

    Latta, Joey

    2016-01-01

    We investigate Kantowski-Sachs models in Einstein-aether theory with a perfect fluid source using dynamical system tools. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A. A. Coley, G. Leon, P. Sandin and J. Latta, JCAP {\\bf 12}, 010 (2015) are then re-obtained as particular cases. Additionally, we select other values for non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. Particularly, we find solutions with infinite shearing, zero curvature, and infinity matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. From the cosmological point of view, the more interesting fixed points are those representing accelerated solutions. However, the accelerated solutions do not isotropize, and th...

  20. Local Existence of Solutions of Self Gravitating Relativistic Perfect Fluids

    Science.gov (United States)

    Brauer, Uwe; Karp, Lavi

    2014-01-01

    This paper deals with the evolution of the Einstein gravitational fields which are coupled to a perfect fluid. We consider the Einstein-Euler system in asymptotically flat spacestimes and therefore use the condition that the energy density might vanish or tend to zero at infinity, and that the pressure is a fractional power of the energy density. In this setting we prove local in time existence, uniqueness and well-posedness of classical solutions. The zero order term of our system contains an expression which might not be a C ∞ function and therefore causes an additional technical difficulty. In order to achieve our goals we use a certain type of weighted Sobolev space of fractional order. In Brauer and Karp (J Diff Eqs 251:1428-1446, 2011) we constructed an initial data set for these of systems in the same type of weighted Sobolev spaces. We obtain the same lower bound for the regularity as Hughes et al. (Arch Ratl Mech Anal 63(3):273-294, 1977) got for the vacuum Einstein equations. However, due to the presence of an equation of state with fractional power, the regularity is bounded from above.

  1. Two-component perfect fluid in FRW universe

    CERN Document Server

    ,

    2012-01-01

    We propose the cosmological model which allows to describe on equal footing the evolution of matter in the universe on the time interval from the inflation till the domination of dark energy. The matter is considered as a two-component perfect fluid imitated by homogeneous scalar fields between which there is energy exchange. Dark energy is represented by the cosmological constant, which is supposed invariable during the whole evolution of the universe. The matter changes its equation of state with time, so that the era of radiation domination in the early universe smoothly passes into the era of a pressureless gas, which then passes into the late-time epoch, when the matter is represented by a gas of low-velocity cosmic strings. The inflationary phase is described as an analytic continuation of the energy density in the very early universe into the region of small negative values of the parameter which characterizes typical time of energy transfer from one matter component to another. The Hubble expansion ra...

  2. Local Existence of Solutions of Self Gravitating Relativistic Perfect Fluids

    CERN Document Server

    Brauer, Uwe

    2011-01-01

    This paper deals with the evolution of the Einstein gravitational fields which are coupled to a perfect fluid. We consider the Einstein--Euler system in asymptotically flat spacestimes and therefore use the condition that the energy density might vanish or tend to zero at infinity, and that the pressure is a fractional power of the energy density. In this setting we prove a local in time existence, uniqueness and well-posedness of classical solutions. The zero order term of our system contains an expression which might not be a $C^\\infty$ function and therefore causes an additional technical difficulty. In order to achieve our goals we use a certain type of weighted Sobolev space of fractional order. Previously the authors constructed an initial data set for these of systems in the same type of weighted Sobolev spaces. We obtain the same lower bound for the regularity as the one of the classical result of Hughes, Kato and Marsden for the vacuum Einstein equations. However, due to the presence of an equation o...

  3. Kantowski-Sachs Einstein-æther perfect fluid models

    Science.gov (United States)

    Latta, Joey; Leon, Genly; Paliathanasis, Andronikos

    2016-11-01

    We investigate Kantowski-Sachs models in Einstein-æ ther theory with a perfect fluid source using the singularity analysis to prove the integrability of the field equations and dynamical system tools to study the evolution. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A.A. Coley, G. Leon, P. Sandin and J. Latta (JCAP 12 (2015) 010), are then re-obtained as particular cases. Additionally, we select other values for the non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. In particular, we find solutions with infinite shear, zero curvature, and infinite matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. Finally, the physical interpretation of the new critical points is discussed.

  4. Higher-dimensional perfect fluids and empty singular boundaries

    CERN Document Server

    Saravi, Ricardo E Gamboa

    2012-01-01

    In order to find out whether empty singular boundaries can arise in higher dimensional Gravity, we study the solution of Einstein's equations consisting in a ($N+2$)-dimensional static and hyperplane symmetric perfect fluid satisfying the equation of state $\\rho=\\eta\\, p$, being $\\rho$ an arbitrary constant and $N\\geq2$. We show that this spacetime has some weird properties. In particular, in the case $\\eta>-1$, it has an empty (without matter) repulsive singular boundary. We also study the behavior of geodesics and the Cauchy problem for the propagation of massless scalar field in this spacetime. For $\\eta>1$, we find that only vertical null geodesics touch the boundary and bounce, and all of them start and finish at $z=\\infty$; whereas non-vertical null as well as all time-like ones are bounded between two planes determined by initial conditions. We obtain that the Cauchy problem for the propagation of a massless scalar field is well-posed and waves are completely reflected at the singularity, if we only de...

  5. Higher-dimensional perfect fluids and empty singular boundaries

    Science.gov (United States)

    Gamboa Saraví, Ricardo E.

    2012-07-01

    In order to find out whether empty singular boundaries can arise in higher dimensional Gravity, we study the solution of Einstein's equations consisting in a ( N + 2)-dimensional static and hyperplane symmetric perfect fluid satisfying the equation of state ρ = ηp, being η an arbitrary constant and N ≥ 2. We show that this spacetime has some weird properties. In particular, in the case η > -1, it has an empty (without matter) repulsive singular boundary. We also study the behavior of geodesics and the Cauchy problem for the propagation of massless scalar field in this spacetime. For η > 1, we find that only vertical null geodesics touch the boundary and bounce, and all of them start and finish at z = ∞; whereas non-vertical null as well as all time-like ones are bounded between two planes determined by initial conditions. We obtain that the Cauchy problem for the propagation of a massless scalar field is well-posed and waves are completely reflected at the singularity, if we only demand the waves to have finite energy, although no boundary condition is required.

  6. Mathematical theory of compressible fluid flow

    CERN Document Server

    von Mises, Richard

    2004-01-01

    A pioneer in the fields of statistics and probability theory, Richard von Mises (1883-1953) made notable advances in boundary-layer-flow theory and airfoil design. This text on compressible flow, unfinished upon his sudden death, was subsequently completed in accordance with his plans, and von Mises' first three chapters were augmented with a survey of the theory of steady plane flow. Suitable as a text for advanced undergraduate and graduate students - as well as a reference for professionals - Mathematical Theory of Compressible Fluid Flow examines the fundamentals of high-speed flows, with

  7. Asymptotic stability of steady compressible fluids

    CERN Document Server

    Padula, Mariarosaria

    2011-01-01

    This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...

  8. Nonexistence of interactions between axially symmetric massive scalar field and perfect fluid distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tarachand, R.K.; Singh, N.I.

    1988-07-01

    Considering the axially symmetric Einstein-Rosen metric, the problem of massive scalar field interactions in the presence of perfect fluid distribution has been studied, and it has been observed that there cannot exist any solution for the coupled massive scalar field and perfect fluid distribution for the metric. The problem reduces to the finding of interactions between zero-mass scalar field and stiff fluid.

  9. Stability of perfect and imperfect cylindrical shells under axial compression and torsion

    Institute of Scientific and Technical Information of China (English)

    袁喆; 霍世慧; 耿小亮

    2014-01-01

    Stability analyses of perfect and imperfect cylindrical shells under axial compression and torsion were presented. Finite element method for the stability analysis of perfect cylindrical shells was put forward through comparing critical loads and the first buckling modes with those obtained through theoretical analysis. Two typical initial defects, non-circularity and uneven thickness distribution, were studied. Critical loads decline with the increase of non-circularity, which exist in imperfect cylindrical shells under both axial compression and torsion. Non-circularity defect has no effect on the first buckling mode when cylindrical shell is under torsion. Unfortunately, it has a completely different buckling mode when cylindrical shell is under axial compression. Critical loads decline with the increase of thickness defect amplitude, which exist in imperfect cylindrical shells under both axial compression and torsion, too. A greater wave number is conducive to the stability of cylindrical shells. The first buckling mode of imperfect cylindrical shells under torsion maintains its original shape, but it changes with wave number when the cylindrical shell is under axial compression.

  10. Comment on "Spherically symmetric perfect fluid in area-radial coordinates" by Iguchi et al

    CERN Document Server

    Giambo', R; Magli, G; Piccione, P; Giambo', Roberto; Giannoni, Fabio; Magli, Giulio; Piccione, Paolo

    2004-01-01

    In this short note we comment about some criticisms - appeared in a recent paper by Iguchi et al - to our previous works on gravitational collapse of perfect fluids. We show that those criticisms are incorrect on their own.

  11. DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...

  12. Bianchi Type-V model with a perfect fluid and -term

    Indian Academy of Sciences (India)

    T Singh; R Chaubey

    2006-09-01

    A self-consistent system of gravitational field with a binary mixture of perfect fluid and dark energy given by a cosmological constant has been considered in Bianchi Type-V universe. The perfect fluid is chosen to be obeying either the equation of state = ρ with ∈ [0, 1] or a van der Waals equation of state. The role of -term in the evolution of the Bianchi Type-V universe has been studied.

  13. Instability criteria for steady flows of a perfect fluid.

    Science.gov (United States)

    Friedlander, Susan; Vishik, Misha M.

    1992-07-01

    An instability criterion based on the positivity of a Lyapunov-type exponent is used to study the stability of the Euler equations governing the motion of an inviscid incompressible fluid. It is proved that any flow with exponential stretching of the fluid particles is unstable. In the case of an arbitrary axisymmetric steady integrable flow, a sufficient condition for instability is exhibited in terms of the curvature and the geodesic torsion of a stream line and the helicity of the flow.

  14. Note on scalars, perfect fluids, constrained field theories, and all that

    CERN Document Server

    Diez-Tejedor, Alberto

    2013-01-01

    The relation of a scalar field with a perfect fluid has generated some debate along the last few years. In this paper we argue that shift-invariant scalar fields can describe accurately the potential flow of an isentropic perfect fluid, but, in general, the identification is possible only for a finite period of time. After that period in the evolution the dynamics of the scalar field and the perfect fluid branch off. The Lagrangian density for the velocity-potential can be read directly from the expression relating the pressure with the Taub charge and the entropy per particle in the fluid, whereas the other quantities of interest can be obtained from the thermodynamic relations.

  15. Note on scalars, perfect fluids, constrained field theories, and all that

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Tejedor, Alberto

    2013-11-25

    The relation of a scalar field with a perfect fluid has generated some debate along the last few years. In this Letter we argue that shift-invariant scalar fields can describe accurately the potential flow of an isentropic perfect fluid, but, in general, the identification is possible only for a finite period of time. After that period in the evolution the dynamics of the scalar field and the perfect fluid branch off. The Lagrangian density for the velocity-potential can be read directly from the expression relating the pressure with the Taub charge and the entropy per particle in the fluid, whereas the other quantities of interest can be obtained from the thermodynamic relations.

  16. Noether and Lie symmetries for charged perfect fluids

    CERN Document Server

    Kweyama, M C; Maharaj, S D

    2013-01-01

    We study the underlying nonlinear partial differential equation that governs the behaviour of spherically symmetric charged fluids in general relativity. We investigate the conditions for the equation to admit a first integral or be reduced to quadratures using symmetry methods for differential equations. A general Noether first integral is found. We also undertake a comprehensive group analysis of the underlying equation using Lie point symmetries. The existence of a Lie symmetry is subject to solving an integro-differential equation in general; we investigate the conditions under which it can be reduced to quadratures. Earlier results for uncharged fluids and particular first integrals for charged matter are regained as special cases of our treatment.

  17. Effect of fluid compressibility on journal bearing performance

    Energy Technology Data Exchange (ETDEWEB)

    Dimofte, F. (NASA, Lewis Research Center, Cleveland, OH (United States))

    1993-07-01

    An analysis was undertaken to determine the effect of fluid film compressibility on the performance of fluid film bearings. A new version of the Reynolds equation was developed, using a polytropic expansion, for both steady-state and dynamic conditions. Polytropic exponents from 1 (isothermal) to 1000 (approaching an incompressible liquid) were evaluated for two bearing numbers, selected from a range of practical interest for cryogenic application, and without cavitation. Bearing loads were insensitive to fluid compressibility for low bearing numbers, as was expected. The effect of compressibility on attitude angle was significant, even when the bearing number was low. A small amount of fluid compressibility was enough to obtain stable running conditions. Incompressible liquid lacked stability at all conditions. Fluid compressibility can be used to control the bearing dynamic coefficients, thereby influencing the dynamic behavior of the rotor-bearing system. 14 refs.

  18. Role of the constant deceleration parameter in cosmological models with perfect fluid and dark energy

    CERN Document Server

    Pawar, D D; Mapari, R V

    2016-01-01

    The main purpose of the present paper is to investigate LRS Bianchi type I metric in the presence of perfect fluid and dark energy. In order to obtain a deterministic solution of the field equations we have assumed that, the two sources of the perfect fluid and dark energy interact minimally with separate conservation of their energy momentum tensors. The EoS parameter of the perfect fluid is also assumed to be constant. In addition to these we have used a special law of variation of Hubble parameter proposed by Berman that yields constant deceleration parameter. For two different values of the constant deceleration parameters we have obtained two different cosmological models. The physical behaviors of both the models have been discussed by using some physical parameters.

  19. A fifth order differential equation for charged perfect fluids

    CERN Document Server

    Kweyama, M C; Maharaj, S D

    2013-01-01

    We investigate the master nonlinear partial differential equation that governs the evolution of shear-free spherically symmetric charged fluids. We use an approach which has not been considered previously for the underlying equation in shear-free spherically symmetric spacetimes. We derive a fifth order purely differential equation that must be satisfied for the underlying equation to admit a Lie point symmetry. We then perform a comprehensive analysis of this equation utilising the Lie symmetry analysis and direct integration. This enables us to reduce the fifth order equation to quadratures. Earlier results are shown to be contained in our general treatment.

  20. Conformal and traversable wormholes with monopole and perfect fluid in f(R)-gravity

    Science.gov (United States)

    Taşer, Doǧukan; Doǧru, Melis Ulu

    2016-10-01

    We investigate spherically symmetric spacetime filled with global monopole and perfect fluid in f(R)-gravity. We consider field equations of f(R)-gravity in order to understand the global monopole and the perfect fluid curve to the spacetime. It has taken advantages of conformal symmetry properties of the spacetime to solve these equations. The obtained solutions are improved in case of phantom energy. It is shown that obtained f(R) function is consistent with well-known models of the modified gravity. Also, it is examined whether the obtained solutions support a traversable wormhole geometry. Obtained results of the solutions have been concluded.

  1. Bianchi Type-Ⅰ Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in General Relativity

    Institute of Scientific and Technical Information of China (English)

    BALI Raj; PAREEK Umesh Kumar; PRADHAN Anirudh

    2007-01-01

    @@ Bianchi type-Ⅰ massive string cosmological model with magnetic field of barotropic perfect fluid distribution through the techniques used by Latelier and Stachel is investigated. To obtain the deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The magnetic field is due to electric current produced along the x-axis with infinite electrical condúctivity. The behaviour of the model in the presence and absence of magnetic field together with other physical aspects is further discussed.

  2. Compression Enhanced Shear Yield Stress of Electrorheological Fluid

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min-Liang; TIAN Yu; JIANG Ji-Le; ZHU Xu-Li; MENG Yong-Gang; WEN Shi-Zhu

    2009-01-01

    @@ Shear tests of an electrorheological fluid with pre-applied electric field and compression along the field direction are carried out. The results show that pre-compressions can increase the shear yield stress up to ten times. Under the same external electric field strength, a higher compressive strain corresponds to a larger shear yield stress enhancement but with slight current density decrease, which shows that the particle interaction potentials are not increased by compressions but the compression-induced chain aggregation dominates the shear yield stress improvement. This pre-compression technique might be useful [or developing high performance flexible ER or magnetorheological couplings.

  3. Exact EGB models for spherical static perfect fluids

    CERN Document Server

    Hansraj, Sudan; Maharaj, Sunil D

    2015-01-01

    We obtain a new exact solution to the field equations in the EGB modified theory of gravity for a 5-dimensional spherically symmetric static distribution. By using a transformation, the study is reduced to the analysis of a single second order nonlinear differential equation. In general the condition of pressure isotropy produces a first order differential equation which is an Abel equation of the second kind. An exact solution is found. The solution is examined for physical admissability. In particular a set of constants is found which ensures that a pressure-free hypersurface exists which defines the boundary of the distribution. Additionally the isotropic pressure and the energy density are shown to be positive within the radius of the sphere. The adiabatic sound speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution. On setting the Gauss-Bonnet coupling to zero, an exact solution for 5-dim...

  4. Dynamics of a perfect fluid through velocity potentials with aplication in quantum cosmology

    CERN Document Server

    Alvarenga, F G; Furtado, R G; Gonçalves, S V B

    2016-01-01

    We review the Eulerian description of hidrodynamics using Seliger-Whitham's formalism (in classical case) and Schutz's formalism (in relativistic case). In these formalisms, the velocity field of a perfect fluid is described by scalar potentials. With this we can obtain the evolution equations of the fluid and its Hamiltonian. In the scenario of quantum cosmology the Schutz's formalism makes it possible to introduce phenomenologically a time variable in minisuperspace models.

  5. Heat transfer with thermal relaxation to a perfectly conducting polar fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Magdy A.; Zakaria, M. [Alexandria University, Department of Mathematics, Faculty of Education, El-Shatby 21526, Alexandria (Egypt)

    2005-01-01

    The model of boundary-layer equations for a perfectly conducting fluid proposed by M. Ezzat is applied to study the heat transfer with one relaxation time from a non-isothermal stretching sheet on the flow of a polar fluid. The method of the successive approximation is adopted for the solution of two-dimensional problem. The effects of various material parameters on the velocity, angular velocity, and temperature are discussed and illustrated graphically. (orig.)

  6. Dynamics of a Perfect Fluid Through Velocity Potentials with Application in Quantum Cosmology

    Science.gov (United States)

    Alvarenga, F. G.; Fracalossi, R.; Furtado, R. G.; Gonçalves, S. V. B.

    2017-02-01

    We review the Eulerian description of hydrodynamics using Seliger-Whitham's formalism (in classical case) and Schutz's formalism (in relativistic case). In these formalisms, the velocity field of a perfect fluid is described by scalar potentials. With this, we can obtain the evolution equations of the fluid and its Hamiltonian. In the scenario of quantum cosmology, the Schutz's formalism makes it possible to introduce phenomenologically a time variable in minisuperspace models.

  7. Inhomogeneous generalizations of Bianchi Type VIh universes with stiff perfect fluid and radiation

    Science.gov (United States)

    Roy, S. R.; Prasad, A.

    1995-03-01

    Families of inhomogeneous models filled with a stiff perfect fluid and radiation have been derived in which there is no flow of total momentum. The models are generalizations of those of Bianchi Type VIh and are discussed for some particular forms of the arbitrary functions appearing in them.

  8. Hypersurface-homogeneous Universe filled with perfect fluid in $f (R, T)$ theory of gravity

    Indian Academy of Sciences (India)

    A Y SHAIKH; S D KATORE

    2016-12-01

    The exact solutions of the field equations with respect to hypersurface-homogeneous Universe filled with perfect fluid in the framework of $f (R, T)$ theory of gravity (Harko et al, \\emph{Phys. Rev.} D 84, 024020 (2011)) is derived. The physical behaviour of the cosmological model is studied.

  9. Collapsing perfect fluid in self-similar five dimensional space-time and cosmic censorship

    CERN Document Server

    Ghosh, S G; Saraykar, R V

    2014-01-01

    We investigate the occurrence and nature of naked singularities in the gravitational collapse of a self-similar adiabatic perfect fluid in a five dimensional space-time. The naked singularities are found to be gravitationally strong in the sense of Tipler and thus violate the cosmic censorship conjecture.

  10. Bianchi VI cosmological models representing perfect fluid and radiation with electric-type free gravitational fields

    Science.gov (United States)

    Roy, S. R.; Banerjee, S. K.

    1992-11-01

    A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.

  11. An approximate global solution to the gravitational field of a perfect fluid in slow rotation

    CERN Document Server

    Cabezas, J A

    2006-01-01

    Using the Post-Minkowskian formalism and considering rotation as a perturbation, we compute an approximate interior solution for a stationary perfect fluid with constant density and axial symmetry. A suitable change of coordinates allows this metric to be matched to the exterior metric to a particle with a pole-dipole-quadrupole structure, relating the parameters of both.

  12. Robertson-Walker cosmological models with perfect fluid in general relativity

    Institute of Scientific and Technical Information of China (English)

    Rishi Kumar Tiwari

    2011-01-01

    Einstein's field equations with variable gravitational and cosmological constants are considered in the presence of perfect fluid for a Robertson-Walker universe by assuming the cosmological term to be proportional to R-m (R is a scale factor and m is a constant). A variety of solutions is presented. The physical significance of the cosmological models has also been discussed.

  13. A Dynamical Approach to the Exterior Geometry of a Perfect Fluid as a Relativistic Star

    CERN Document Server

    Fathi, Mohsen

    2011-01-01

    The aim of this article is to compare some of the solution classes, which were presented for a perfect charged fluid in Ref. [8], through studying the motion of a test charged particle on a relativistic charged star. We will show that how the interior solutions of such star, can affect its exterior geometry, by illustrating the corresponding effective potentials.

  14. A NOVEL SLIGHTLY COMPRESSIBLE MODEL FOR LOW MACH NUMBER PERFECT GAS FLOW CALCULATION

    Institute of Scientific and Technical Information of China (English)

    邓小刚; 庄逢甘

    2002-01-01

    By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perfect gas flows is derived. In view of numerical calculations, this model is proved very efficient,for it is kept within the p-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solutions. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cellcentered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model.Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performaces are shown for sphere viscous flows.

  15. Non-Ideal Compressible Fluid Dynamics: A Challenge for Theory

    Science.gov (United States)

    Kluwick, A.

    2017-03-01

    The possibility that compression as well as rarefaction shocks may form in single phase vapours was envisaged first by Bethe (1942). However calculations based on the Van der Waals equation of state indicated that the latter type of shock is possible only if the specific heat at constant volume cv divided by the universal gas constant R is larger than about 17.5 which he considered too large to be satisfied by real fluids. This conclusion was contested by Thompson (1971) who showed that the type of shock capable of forming in arbitrary fluids is determined by the sign of the thermodynamic quantity to which he referred to as fundamental derivative of gas dynamics. Here v, p, s and c denote the specific volume, the pressure, the entropy and the speed of sound. Thompson and co-workers also showed that the required condition for the existence of rarefaction shocks, that Γ may take on negative values, is indeed satisfied for a number of hydrocarbon and fluorocarbon vapours. This finding spawned a burst of theoretical studies elaborating on the unusual and often counterintuitive behaviour of shocks with rarefaction shocks present. These produced both results of theoretical character but also results suggesting the practical importance of Non-Ideal Compressible Fluid Dynamics in general. The present paper addresses some of the challenges encountered in connection with the theoretical treatment of the associated flow behaviour. Weakly nonlinear acoustic waves of finite amplitude serve as a starting point. Here mixed rather than strictly positive nonlinearity generates a wealth of phenomena not possible in perfect gases. Examples of steady flows where these non-classical effects play a decisive role (and which may be useful also for future experimental work) are quasi one-dimensional nozzle flows and transonic two-dimensional flows past corners. The study of viscous effects concentrates on laminar flows of boundary layer type. Here non-classical phenomena are caused by the

  16. Classical solution to 1D viscous polytropic perfect fluids with constant diffusion coefficients and vacuum

    Science.gov (United States)

    Liang, Zhilei; Wu, Shanqiu

    2017-02-01

    This paper deals with the initial boundary value problem for one-dimensional (1D) viscous, compressible and heat conducting fluids. We establish the global existence and uniqueness of classical solutions, with large data and possible vacuum at initial time. Our approach is based on the Calderón-Zygmund decomposition technique and allows that the viscosity and heat conductivity are both constant.

  17. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    Science.gov (United States)

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  18. Wave motions in unbounded poroelastic solids infused with compressible fluids

    CERN Document Server

    Quiligotti, S; dell'Isola, F

    2010-01-01

    Looking at rational solid-fluid mixture theories in the context of their biomechanical perspectives, this work aims at proposing a two-scale constitutive theory of a poroelastic solid infused with an inviscid compressible fluid. The propagation of steady-state harmonic plane waves in unbounded media is investigated in both cases of unconstrained solid-fluid mixtures and fluid-saturated poroelastic solids. Relevant effects on the resulting characteristic speed of longitudinal and transverse elastic waves, due to the constitutive parameters introduced, are finally highlighted and discussed.

  19. On a family of well behaved perfect fluid balls as astrophysical objects in general relativity

    Science.gov (United States)

    Maurya, S. K.; Gupta, Y. K.

    2011-07-01

    A family of well behaved perfect fluid balls has been derived starting with the metric potential g 44= B(1+ Cr 2) n for all positive integral values of n. For n≥4, the members of this family are seen to satisfy the various physical conditions e.g. c 2 ρ≥ p≥0, dp/ dr1. Also the pressure, energy density, velocity of sound and ratio of pressure and energy density are of monotonically decreasing towards the pressure free interface ( r= a). The fluid balls join smoothly with the Schwarzschild exterior model at r= a. The well behaved perfect fluid balls so obtained are utilised to construct the superdense star models with their surface density 2×1014 gm/cm3. We have found that the maximum mass of the fluid balls corresponding to various values of n are decreasing with the increasing values of n. Over all maximum mass for the whole family turns out to be 4.1848 M Θ and the corresponding radius as 19.4144 km while the red shift at the centre and red shift at surface as Z 0=1.6459 and Z a =0.6538 respectively this all happens for n=4. It is interesting to note that for higher values of n viz n≥170, the physical data start merging with that of Kuchowicz superdense star models and hence the family of fluid models tends to the Kuchowicz fluid models as n→∞. Consequently the maximum mass of the family of solution can not be less than 1.6096 M Θ which is the maximum mass occupied by the Kuchowicz superdense ball. Hence each member of the family for n≥4 provides the astrophysical objects like White dwarfs, Quark star, typical neutron star.

  20. Equilibrium points of the tilted perfect fluid Bianchi VIh state space

    Science.gov (United States)

    Apostolopoulos, Pantelis S.

    2005-05-01

    We present the full set of evolution equations for the spatially homogeneous cosmologies of type VIh filled with a tilted perfect fluid and we provide the corresponding equilibrium points of the resulting dynamical state space. It is found that only when the group parameter satisfies h > -1 a self-similar solution exists. In particular we show that for h > -{1/9} there exists a self-similar equilibrium point provided that γ ∈ ({2(3+sqrt{-h})/5+3sqrt{-h}},{3/2}) whereas for h VIh.

  1. Perfect fluid Bianchi Type-I cosmological models with time varying and

    Indian Academy of Sciences (India)

    J P Singh; R K Tiwari

    2008-04-01

    Bianchi Type-I cosmological models containing perfect fluid with time varying and have been presented. The solutions obtained represent an expansion scalar bearing a constant ratio to the anisotropy in the direction of space-like unit vector . Of the two models obtained, one has negative vacuum energy density, which decays numerically. In this model, we obtain ∼ 2, ∼ 44/ and ∼ -2 ( is the cosmic time) which is in accordance with the main dynamical laws for the decay of . The second model reduces to a static solution with repulsive gravity.

  2. On some geometric features of the Kramer interior solution for a rotating perfect fluid

    CERN Document Server

    Chinea, F J

    1999-01-01

    Geometric features (including convexity properties) of an exact interior gravitational field due to a self-gravitating axisymmetric body of perfect fluid in stationary, rigid rotation are studied. In spite of the seemingly non-Newtonian features of the bounding surface for some rotation rates, we show, by means of a detailed analysis of the three-dimensional spatial geodesics, that the standard Newtonian convexity properties do hold. A central role is played by a family of geodesics that are introduced here, and provide a generalization of the Newtonian straight lines parallel to the axis of rotation.

  3. Global dynamics and asymptotics for monomial scalar field potentials and perfect fluids

    CERN Document Server

    Alho, Artur; Uggla, Claes

    2015-01-01

    We consider a minimally coupled scalar field with a monomial potential and a perfect fluid in flat FLRW cosmology. We apply local and global dynamical systems techniques to a new three-dimensional dynamical systems reformulation of the field equations on a compact state space. This leads to a visual global description of the solution space and asymptotic behavior. At late times we employ averaging techniques to prove statements about how the relationship between the equation of state of the fluid and the monomial exponent of the scalar field affects asymptotic source dominance and asymptotic manifest self-similarity breaking. We also situate the `attractor' solution in the three-dimensional state space and show that it corresponds to the one-dimensional unstable center manifold of a de Sitter fixed point, located on an unphysical boundary associated with the dynamics at early times. By deriving a center manifold expansion we obtain approximate expressions for the attractor solution. We subsequently improve th...

  4. Spatial variation of the magnetic field inside laminar flows of a perfect conductive fluid

    Science.gov (United States)

    Duka, Bejo; Boçi, Sonila

    2017-01-01

    The steady state of a perfect conductive fluid in laminar flow resulting from the ‘Hall effect’ is studied. Using the Maxwell equations, the spatial variation of the magnetic field in the steady state is calculated for three cases of different fluid flow geometries: flow between two infinite parallel planes, flow between two coaxial infinite-long cylinders and flow between two concentric spheres. According to our calculation of the three cases, the spatial variation of the magnetic field depends on the flow velocity. The magnetic field is strengthened in layers where the velocity is greater, but this dependency is negligible for non relativistic flows. Our approach in this study provides an example of how to receive interesting results using only basic knowledge of physics and mathematics.

  5. Spectra of primordial fluctuations in two-perfect-fluid regular bounces

    CERN Document Server

    Finelli, F; Pinto-Neto, N

    2007-01-01

    We introduce analytic solutions for a class of two components bouncing models, where the bounce is triggered by a negative energy density perfect fluid. The equation of state of the two components are constant in time, but otherwise unrelated. By numerically integrating regular equations for scalar cosmological perturbations, we find that the (would be) growing mode of the Newtonian potential before the bounce never matches with the the growing mode in the expanding stage. For the particular case of a negative energy density component with a stiff equation of state we give a detailed analytic study, which is in complete agreement with the numerical results. We also perform analytic and numerical calculations for long wavelength tensor perturbations, obtaining that, in most cases of interest, the tensor spectral index is independent of the negative energy fluid and given by the spectral index of the growing mode in the contracting stage. We compare our results with previous investigations in the literature.

  6. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    Science.gov (United States)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  7. Classical and quantum dynamics of a perfect fluid scalar-energy dependent metric cosmology

    CERN Document Server

    Khodadi, M; Vakili, B

    2016-01-01

    Inspired from the idea of minimally coupling of a real scalar field to geometry, we investigate the classical and quantum models of a flat energy-dependent FRW cosmology coupled to a perfect fluid in the framework of the scalar-rainbow metric gravity. We use the standard Schutz' representation for the perfect fluid and show that under a particular energy-dependent gauge fixing, it may lead to the identification of a time parameter for the corresponding dynamical system. It is shown that, under some circumstances on the minisuperspace prob energy, the classical evolution of the of the universe represents a late time expansion coming from a bounce instead of the big-bang singularity. Then we go forward by showing that this formalism gives rise to a Schr\\"{o}dinger-Wheeler-DeWitt (SWD) equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave function in order to investigate t...

  8. Non-perfect-fluid space-times in thermodynamic equilibrium and generalized Friedmann equations

    CERN Document Server

    Schatz, Konrad; Chrobok, Thoralf

    2014-01-01

    Assuming homogeneous and parallax-free space-times, in the case of thermodynamic equilibrium, we construct the energy-momentum tensor of non-perfect fluids. To this end we derive the constitutive equations for energy density, isotropic and anisotropic pressure as well as heat-flux from the respective propagation equations. This provides these quantities in closed form, i. e. in terms of the structure constants of the three-dimensional isometry group of homogeneity and, respectively, of the kinematical quantities expansion, rotation and acceleration. Using Einstein's equations, the thereby occurring constants of integration can be determined such that one gets bounds on the kinematical quantities and finds a generalized form of the Friedmann equations. As a consequence, it is shown that, e. g., for a perfect fluid the Friedmann and G\\"odel models can be recovered. All this is derived without assuming any equations of state or other specific thermodynamic conditions, and, in principle, allows one to go beyond t...

  9. Classical and quantum solutions in Brans-Dicke cosmology with a perfect fluid

    Science.gov (United States)

    Paliathanasis, Andronikos; Tsamparlis, Michael; Basilakos, Spyros; Barrow, John D.

    2016-02-01

    We consider the application of group invariant transformations in order to constrain a flat isotropic and homogeneous cosmological model, containing a Brans-Dicke scalar field and a perfect fluid with a constant equation of state parameter w , where the latter is not interacting with the scalar field in the gravitational action integral. The requirement that the Wheeler-DeWitt equation be invariant under one-parameter point transformations provides us with two families of power-law potentials for the Brans-Dicke field, in which the powers are functions of the Brans-Dicke parameter ωBD and the parameter w . The existence of the Lie symmetry in the Wheeler-DeWitt equation is equivalent to the existence of a conserved quantity in field equations and with oscillatory terms in the wave function of the Universe. This enables us to solve the field equations. For a specific value of the conserved quantity, we find a closed-form solution for the Hubble factor, which is equivalent to a cosmological model in general relativity containing two perfect fluids. This provides us with different models for specific values of the parameters ωBD , and w . Finally, the results hold for the specific case where the Brans-Dicke parameter ωBD is zero, that is, for the O'Hanlon massive dilaton theory and, consequently, for f (R ) gravity in the metric formalism.

  10. Classical and quantum dynamics of a perfect fluid scalar-energy dependent metric cosmology

    Science.gov (United States)

    Khodadi, M.; Nozari, K.; Vakili, B.

    2016-05-01

    Inspired from the idea of minimally coupling of a real scalar field to geometry, we investigate the classical and quantum models of a flat energy-dependent FRW cosmology coupled to a perfect fluid in the framework of the scalar-rainbow metric gravity. We use the standard Schutz' representation for the perfect fluid and show that under a particular energy-dependent gauge fixing, it may lead to the identification of a time parameter for the corresponding dynamical system. It is shown that, under some circumstances on the minisuperspace prob energy, the classical evolution of the of the universe represents a late time expansion coming from a bounce instead of the big-bang singularity. Then we go forward by showing that this formalism gives rise to a Schrödinger-Wheeler-DeWitt equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and Bohmian interpretation of quantum cosmology.

  11. Some invariant solutions for non-conformal perfect fluid plates in 5-flat form in general relativity

    Indian Academy of Sciences (India)

    Mukesh Kumar; Y K Gupta

    2010-06-01

    A set of six invariant solutions for non-conformal perfect fluid plates in 5-flat form is obtained using one-parametric Lie group of transformations. Out of the six solutions so obtained, three are in implicit form while the remaining three could be expressed explicitly. Each solution describes an accelerating fluid distribution and is new as far as authors are aware.

  12. On optimisation of wavelet algorithms for non-perfect wavelet compression of digital medical images

    CERN Document Server

    Ricke, J

    2001-01-01

    Aim: Optimisation of medical image compression. Evaluation of wavelet-filters for wavelet-compression. Results: Application of filters with different complexity results in significant variations in the quality of image reconstruction after compression specifically in low frequency information. Filters of high complexity proved to be advantageous despite of heterogenous results during visual analysis. For high frequency details, complexity of filters did not prove to be of significant impact on image after reconstruction.

  13. Spectral analysis of viscous static compressible fluid equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-05-25

    It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)

  14. Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics

    OpenAIRE

    Feireisl, E. (Eduard); Karper, T.; Pokorný, M.

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring...

  15. Motion of compressible magnetic fluids in T^3

    Directory of Open Access Journals (Sweden)

    Weiping Yan

    2013-10-01

    Full Text Available This article shows the existence of weak time-periodic motion of a three-dimensional system of compressible magnetic fluid driven by time-dependent external forces in a torus T^3. The model consists of the mass conservation equation, the linear momentum equation, the angular momentum equation, the Bloch-Torrey type equation and the magnetostatic equation. This analysis is based on the Faedo-Galerkin method and weak compactness techniques.

  16. A Closed-form Solution to Finite Bending of a Compressible Elastic-perfectly Plastic Rectangular Block

    Directory of Open Access Journals (Sweden)

    H. Xiao

    2003-01-01

    Full Text Available The self-consistent Eulerian rate-type elastoplastic model based on the logarithmic rate is used to study finite bending of a compressible elastic-perfectly plastic rectangular block. It is found that an explicit closed-form solution for this typical inhomogeneous finite deformation , mode may be available in a general case of compressible deformation with a stretch normal to the bending plane, where the maximum circumferential stretch at the outer surface serves as an Independent parameter. Expressions are given for the bending angle, the bending moment, the the outer and the inner radii, and the radii of the two moving elastic-plastic interfaces, etc. The exact stress distribution on any circumferential cross-section of the deformed block is accordingly determined.

  17. Dynamical Instability of Laminar Axisymmetric Flow of Perfect Fluid with Stratification

    CERN Document Server

    Zhuravlev, V V

    2007-01-01

    The instability of non-homoentropic axisymmetric flow of perfect fluid with respect to non-axisymmetric infinitesimal perturbations was investigated by numerical integration of hydrodynamical differential equations in two-dimensional approximation. The non-trivial influence of entropy gradient on unstable sound and surface gravity waves was revealed. In particular, both decrease and growth of entropy against the direction of effective gravitational acceleration $g_{eff}$ give rise to growing surface gravity modes which are stable with the same parameters in the case of homoentropic flow. At the same time increment of sound modes either grows monotonically while the rate of entropy decrease against $g_{eff}$ gets higher or vanishes at some values of positive and negative entropy gradient in the basic flow. The calculations have showed also that growing internal gravity modes appear only in the flow unstable to axisymmetric perturbations. At last, the analysis of boundary problem with free boundaries uncovered ...

  18. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  19. Compressible forced viscous fluid from product Einstein manifolds

    CERN Document Server

    Hao, Xin; Zhao, Liu

    2015-01-01

    We consider the fluctuation modes around a hypersurface $\\Sigma_c$ in a $(d+2)$-dimensional product Einstein manifold, with $\\Sigma_c$ taken either near the horizon or at some finite cutoff from the horizon. By mapping the equations that governs the lowest nontrivial order of the fluctuation modes into a system of partial differential equations on a flat Newtonian spacetime, a system of compressible, forced viscous fluid is realized. This result generalizes the non bulk/boundary holographic duality constructed by us recently to the case of a different background geometry.

  20. Cosmological black holes: the spherical perfect fluid collapse with pressure in a FRW background

    CERN Document Server

    Moradi, Rahim; Mansouri, Reza

    2015-01-01

    We have constructed a spherically symmetric structure model in a cosmological background filled with perfect fluid with non-vanishing pressure as an exact solution of Einstein equations using the Lema\\^{i}tre solution. To study its local and quasi-local characteristics including the novel features of its central black hole, we have suggested an algorithm to integrate the equations numerically. The result shows intriguing effects of the pressure inside the structure. The evolution of the central black hole within the FRW universe, its decoupling from the expanding parts of the model, the structure of its space-like apparent horizon, the limiting case of the dynamical horizon tending to a slowly evolving horizon, and the decreasing mass in-fall to the black hole is also studied. We have also calculated the redshift of a light emitted from nearby the cosmological structure to an observer in the FRW background and have shown that it contains both the local gravitational and the cosmological redshift with some obs...

  1. Background of relic gravitons in a perfect fluid in quantum cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Siffert, Beatriz B. [Centro Brasileiro de Pesquisas Fisicas (ICRA/CBPF), Rio de Janeiro, RJ (Brazil). Inst. de Cosmologia, Relatividade e Astrofisica; Bessada, Dennis [Instituto Nacional de Pesquisas Espaciais (INPE), SP (Brazil). Divisao de Astrofisica

    2011-07-01

    Full text: We studied the evolution of tensor cosmological perturbations of quantum origin in cosmological scenarios that predict a contracting phase prior to the present expansion phase. These bouncing models constitute a very plausible alternative to the current cosmological paradigm since they may be able to solve some of the cosmological puzzles present in the standard model, such as the horizon and flatness problems, without the requirement of an initial singularity or special initial conditions. While conventional inflationary models give rise to a relic background of gravitational waves that cannot be detected with present experiments, no such prediction had been made so far using quantum bouncing models. We have obtained analytically the graviton's energy density parameter as a function of time and frequency interval - which is the physical quantity to be confronted with observations - predicted by such models with a perfect fluid equation of state. To obtain the final spectrum, we numerically solved the expression for the density parameter for the time variable. The results can then be compared with the predictions from inflationary models and with the sensitivity curves of gravitational waves current detectors, such as the Virgo and Ligo interferometers, and upcoming detectors, like the LISA space mission, to determine the possibility of detection. (author)

  2. Lorentz invariant noncommutative algebra for cosmological models coupled to a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Everton M.C.; Marcial, Mateus V.; Mendes, Albert C.R.; Oliveira, Wilson [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil); Universidade Federal de Juiz de Fora, MG (Brazil)

    2013-07-01

    Full text: In current theoretical physics there is a relevant number of theoretical investigations that lead to believe that at the first moments of our Universe, the geometry was not commutative and the dominating physics at that time was ruled by the laws of noncommutative (NC) geometry. Therefore, the idea is that the physics of the early moments can be constructed based on these concepts. The first published work using the idea of a NC spacetime were carried out by Snyder who believed that NC principles could make the quantum field theory infinities disappear. However, it did not occur and Snyder's ideas were put to sleep for a long time. The main modern motivations that rekindle the investigation about NC field theories came from string theory and quantum gravity. In the context of quantum mechanics for example, R. Banerjee discussed how NC structures appear in planar quantum mechanics providing a useful way for obtaining them. The analysis was based on the NC algebra used in planar quantum mechanics that was originated from 't Hooft's analysis on dissipation and quantization. In this work we carry out a NC algebra analysis of the Friedmann-Robert-Walker model, coupled to a perfect fluid and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. (author)

  3. Classical and Quantum Solutions in Brans-Dicke Cosmology with a Perfect Fluid

    CERN Document Server

    Paliathanasis, Andronikos; Basilakos, Spyros; Barrow, John D

    2015-01-01

    We consider the application of group invariant transformations in order to constrain a flat isotropic and homogeneous cosmological model, containing of a Brans-Dicke scalar field and a perfect fluid with a constant equation of state parameter $w$, where the latter is not interacting with the scalar field in the gravitational action integral. The requirement that the Wheeler-DeWitt equation be invariant under one-parameter point transformations provides us with two families of power-law potentials for the Brans-Dicke field, in which the powers are functions of the Brans-Dicke parameter $\\omega_{BD}$ and the parameter $w$. The existence of the Lie symmetry in the Wheeler-DeWitt equation is equivalent to the existence of a conserved quantity in field equations and with oscillatory terms in the wavefunction of the universe. This enables us to solve the field equations. For a specific value of the conserved quantity, we find a closed-form solution for the Hubble factor, which is equivalent to a cosmological model ...

  4. Linear Rayleigh-Taylor instability for viscous, compressible fluids

    CERN Document Server

    Guo, Yan

    2009-01-01

    We study the equations obtained from linearizing the compressible Navier-Stokes equations around a steady-state profile with a heavier fluid lying above a lighter fluid along a planar interface, i.e. a Rayleigh-Taylor instability. We consider the equations with or without surface tension, with the viscosity allowed to depend on the density, and in both periodic and non-periodic settings. In the presence of viscosity there is no natural variational framework for constructing growing mode solutions to the linearized problem. We develop a general method of studying a family of modified variational problems in order to produce maximal growing modes. Using these growing modes, we construct smooth (when restricted to each fluid domain) solutions to the linear equations that grow exponentially in time in Sobolev spaces. We then prove an estimate for arbitrary solutions to the linearized equations in terms of the fastest possible growth rate for the growing modes. In the periodic setting, we show that sufficiently sm...

  5. Fluid-plasma interaction in compressible unstable flows

    Science.gov (United States)

    Massa, Luca

    2014-11-01

    The receptivity of the boundary layer discrete modes to dielectric barrier discharge (DBD) actuation is studied to improve the understanding of the interaction between non-equilibrium plasma and fluid in convectively amplified vortical layers. The momentum transfer induced by a DBD patch at various Reynolds numbers is evaluated using an adaptive mesh refinement computational solver in the Mach number regime 0.8-2.0. The energy of the induced modal perturbation is determined by weighting such a source term with the corresponding adjoint eigenfunctions. Conditions of maximum overlapping between the adjoint and the source term define the regimes of maximum receptivity and the locations of optimal placement of the DBD patch at different Mach and Reynolds numbers. The interaction between non-equilibrium plasma and the jet in cross flow is also being studied to determine the ability of DBD patches to influence mixing in the compressible regime, thus improving flame-holding in plasma assisted ignition and combustion.

  6. Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation

    Institute of Scientific and Technical Information of China (English)

    N. P. Gaikwad; M. S. Borkar; S. S. Charjan

    2011-01-01

    @@ We investigate the Bianchi type-I massive string magnetized barotropic perfect fluid cosmological model in Rosen's bimetric theory of gravitation with and without a magnetic field by applying the techniques used by Latelier(1979,1980) and Stachel(1983).To obtain a deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution.The physical and geometrical significance of the model are discussed.By comparing our model with the model of Bali et al.(2007), it is realized that there are no big-bang and big-crunch singularities in our model and T=0 is not the time of the big bang, whereas the model of Bali et al.starts with a big bang at T=0.Further, our model is in agreement with Bali et al.(2007) as time increases in the presence, as well as in the absence, of a magnetic field.

  7. Variable Quality Compression of Fluid Dynamical Data Sets Using a 3D DCT Technique

    Science.gov (United States)

    Loddoch, A.; Schmalzl, J.

    2005-12-01

    In this work we present a data compression scheme that is especially suited for the compression of data sets resulting from computational fluid dynamics (CFD). By adopting the concept of the JPEG compression standard and extending the approach of Schmalzl (Schmalzl, J. Using standard image compression algorithms to store data from computational fluid dynamics. Computers and Geosciences, 29, 10211031, 2003) we employ a three-dimensional discrete cosine transform of the data. The resulting frequency components are rearranged, quantized and finally stored using Huffman-encoding and standard variable length integer codes. The compression ratio and also the introduced loss of accuracy can be adjusted by means of two compression parameters to give the desired compression profile. Using the proposed technique compression ratios of more than 60:1 are possible with an mean error of the compressed data of less than 0.1%.

  8. A family of anisotropic super-dense star models using a space-time describing charged perfect fluid distributions

    Science.gov (United States)

    Maurya, S. K.; Gupta, Y. K.

    2012-08-01

    A family of anisotropic fluid distributions is constructed using a space-time describing a family of charged perfect fluid distributions. The anisotropy parameter is taken to be twice the square of electric intensity used in the charged fluid distributions. As the anisotropy parameter (or the electric intensity) is zero at the centre and is monotonically increasing towards the pressure-free interface, we have utilized the anisotropic fluid distributions to create Boson-type neutron stars models which join smoothly to the Schwarzschild exterior metric. All the physical entities such as energy density, radial pressure, tangential pressure and velocity of sound are monotonically decreasing towards the surface. Different members of the above family are characterized by a positive integral number n. It is observed that the maximum mass (which is 5.8051 solar mass for n = 4) starts decreasing for n > 4. But this reaches a non-zero terminal value (2.8010 solar mass) as n tends to infinity.

  9. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms.

    Science.gov (United States)

    Xie, Zhinan; Matzen, René; Cristini, Paul; Komatitsch, Dimitri; Martin, Roland

    2016-07-01

    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique. The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation because the latter allows for implementation of high-order time schemes, leading to reduced numerical dispersion and dissipation, a topic of importance, in particular, in long-range ocean acoustics simulations. The method is validated for a two dimensional fluid-solid Pekeris waveguide and for a three dimensional seamount model, which shows that the technique is accurate and numerically long-time stable. Compared with widely used paraxial absorbing boundary conditions, the perfectly matched layer is significantly more efficient at absorbing both body waves and interface waves.

  10. Non-radial strong curvature naked singularities in five dimensional perfect fluid self-similar space-time

    CERN Document Server

    Sarwe, S B; Sarwe, Sanjay B.

    2004-01-01

    We study five dimensional(5D) spherically symmetric self-similar perfect fluid space-time with adiabatic equation of state, considering all the families of future directed non-spacelike geodesics. The space-time admits globally strong curvature naked singularities in the sense of Tipler and thus violates the cosmic censorship conjecture provided a certain algebraic equation has real positive roots. We further show that it is the weak energy condition (WEC) that is necessary for visibility of singularities for a finite period of time and for singularities to be gravitationally strong. We, also, match the solution to 5D Schwarzschild solution using the junction conditions.

  11. Prandtl number effects in MRT lattice Boltzmann models for shocked and unshocked compressible fluids

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper constructs a new multiple relaxation time lattice Boltzmann model which is not only for the shocked compressible fluids,but also for the unshocked compressible fluids.To make the model work for unshocked compressible fluids,a key step is to modify the collision operators of energy flux so that the viscous coefficient in momentum equation is consistent with that in energy equation even in the unshocked system.The unnecessity of the modification for systems under strong shock is analyzed.The model ...

  12. Advanced Fluid Reduced Order Models for Compressible Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Tezaur, Irina Kalashnikova; Fike, Jeffrey A.; Carlberg, Kevin Thomas; Barone, Matthew F.; Maddix, Danielle; Mussoni, Erin E.; Balajewicz, Maciej (UIUC)

    2017-09-01

    This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.

  13. Radial flow of slightly compressible fluids: A finite element-finite ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Radial flow of slightly compressible fluids: A finite element-finite differences approach. JA Akpobi, ED Akpobi ...

  14. Motions of deformable inclusions in a horizontally oscillating vessel with a compressible fluid

    DEFF Research Database (Denmark)

    Demidov, I.V.; Sorokin, Vladislav

    2016-01-01

    The paper is concerned with the analysis of rigid particle and compressible gas bubble motion in a horizontally oscillating vessel with a compressible fluid. A nonlinear differential equation describing motion of inclusions with respect to the vessel is derived and solved by the method of direct ...

  15. Is there a "most perfect fluid" consistent with quantum field theory?

    Science.gov (United States)

    Cohen, Thomas D

    2007-07-13

    It was recently conjectured that the ratio of the shear viscosity to entropy density eta/s for any fluid always exceeds [formula: see text]. A theoretical counterexample to this bound can be constructed from a nonrelativistic gas by increasing the number of species in the fluid while keeping the dynamics essentially independent of the species type. The question of whether the underlying structure of relativistic quantum field theory generically inhibits the realization of such a system and thereby preserves the possibility of a universal bound is considered here. Using rather conservative assumptions, it is shown here that a metastable gas of heavy mesons in a particular controlled regime of QCD provides a realization of the counterexample and is consistent with a well-defined underlying relativistic quantum field theory. Thus, quantum field theory appears to impose no lower bound on eta/s, at least for metastable fluids.

  16. Classical and quantum cosmology with two perfect fluids: stiff matter and radiation

    CERN Document Server

    Alvarenga, F G; Freitas, R C; Gonçalves, S V B

    2016-01-01

    In this work the homogeneous and isotropic Universe of Friedmann-Robertson-Walker is studied in the presence of two fluids: stiff matter and radiation described by the Schutz's formalism. We obtain to the classic case the behaviour of the scale factor of the universe. For the quantum case the wave packets are constructed and the wave function of the universe is found.

  17. A physical five-equation model for compressible two-fluid flow, and its numerical treatment

    NARCIS (Netherlands)

    Kreeft, J.J.; Koren, B.

    2009-01-01

    A novel five-equation model for inviscid, non-heat-conducting, compressible two-fluid flow is derived, together with an appropriate numerical method. The model uses flow equations based on conservation laws and exchange laws only. The two fluids exchange momentum and energy, for which source terms a

  18. A Multi-Fluid Compressible System as the Limit of Weak Solutions of the Isentropic Compressible Navier-Stokes Equations

    Science.gov (United States)

    Bresch, D.; Huang, X.

    2011-08-01

    This paper mainly concerns the mathematical justification of a viscous compressible multi-fluid model linked to the Baer-Nunziato model used by engineers, see for instance I shii (Thermo-fluid dynamic theory of two-phase flow, Eyrolles, Paris, 1975), under a "stratification" assumption. More precisely, we show that some approximate finite-energy weak solutions of the isentropic compressible Navier-Stokes equations converge, on a short time interval, to the strong solution of this viscous compressible multi-fluid model, provided the initial density sequence is uniformly bounded with corresponding Young measures which are linear convex combinations of m Dirac measures. To the authors' knowledge, this provides, in the multidimensional in space case, a first positive answer to an open question, see H illairet (J Math Fluid Mech 9:343-376, 2007), with a stratification assumption. The proof is based on the weak solutions constructed by D esjardins (Commun Partial Differ Equ 22(5-6):977-1008, 1997) and on the existence and uniqueness of a local strong solution for the multi-fluid model established by H illairet assuming initial density to be far from vacuum. In a first step, adapting the ideas from H off and S antos (Arch Ration Mech Anal 188:509-543, 2008), we prove that the sequence of weak solutions built by D esjardins has extra regularity linked to the divergence of the velocity without any relation assumption between λ and μ. Coupled with the uniform bound of the density property, this allows us to use appropriate defect measures and their nice properties introduced and proved by H illairet (Aspects interactifs de la m'ecanique des fluides, PhD Thesis, ENS Lyon, 2005) in order to prove that the Young measure associated to the weak limit is the convex combination of m Dirac measures. Finally, under a non-degeneracy assumption of this combination ("stratification" assumption), this provides a multi-fluid system. Using a weak-strong uniqueness argument, we prove that

  19. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    Science.gov (United States)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  20. New version of quantum mechanics at finite temperatures as a ground for description of nearly perfect fluids

    CERN Document Server

    Sukhanov, A D

    2010-01-01

    We suggest a more general than quantum statistical mechanics ($QSM$) microdescription of objects in a heat bath taken into account a vacuum as an object environment - modification of quantum mechanics at finite temperatures; we call it $(\\hbar, k)$-dynamics ($ \\hbar kD$). This approach allows us in a new manner to calculate some important macroparameters and to modify standard thermodynamics. We create an effective apparatus for features description of nearly perfect fluids in various mediums. As an essentially new model of an object environment we suppose a quantum heat bath and its properties, including cases of cold and warm vacuums, are studied. We describe the thermal equilibrium state in place of the traditional density operator in term of a wave function the amplitude and phase of which have temperature dependence. We introduce a new generative operator, Schroedingerian, or stochastic action operator, and show its fundamental role in the microdescription. We demonstrate that a new macroparameter, namel...

  1. Relation between pore size and the compressibility of a confined fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gor, Gennady Y., E-mail: gennady.y.gor@gmail.com [NRC Research Associate, Resident at Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375 (United States); Siderius, Daniel W.; Krekelberg, William P.; Shen, Vincent K. [Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rasmussen, Christopher J. [DuPont Central Research and Development Experimental Station, Wilmington, Delaware 19803 (United States); Bernstein, Noam [Center for Computational Materials Science, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-11-21

    When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here, we report a simple relation between the pore size and isothermal compressibility of argon confined in such pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments.

  2. Relation Between Pore Size and the Compressibility of a Confined Fluid

    CERN Document Server

    Gor, Gennady Y; Rasmussen, Christopher J; Krekelberg, William P; Shen, Vincent K; Bernstein, Noam

    2015-01-01

    When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here we report a simple relation between the pore size and isothermal compressibility of argon confined in these pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments.

  3. Oscillatory Spreading and Surface Instability of a Non-Newtonian Fluid under Compression

    OpenAIRE

    Choudhury, Moutushi Dutta; Chandra, Subrata; Nag, Soma; Das, Shantanu; Tarafdar, Sujata

    2010-01-01

    Starch solutions, which are strongly non-Newtonian, show a surface instability, when subjected to a load. A droplet of the fluid is sandwiched between two glass plates and a weight varying from 1 to 5 kgs. is placed on the top plate. The area of contact between the fluid and plate increases in an oscillatory manner, unlike Newtonian fluids in a similar situation. The periphery moreover, develops a viscous fingering like instability, which is not expected under compression. We attempt to model...

  4. Fluid Compressibility Effects during Hydraulic Fracture: an Opportunity for Gas Fracture Revival

    Science.gov (United States)

    Mighani, S.; Boulenouar, A.; Moradian, Z.; Evans, J. B.; Bernabe, Y.

    2015-12-01

    Hydraulic fracturing results when internal pore pressure is increased above a critical value. As the fracture extends, the fluid flows to the crack tip. The fracturing process depends strongly on the physical properties of both the porous solid and the fluid (e.g. porosity and elastic moduli for the solid, viscosity and compressibility for the fluid). It is also affected by the in-situ stress and pore pressure conditions. Here, we focus on the effect of fluid properties on hydraulic fracturing under conventional triaxial loading. Cylinders of Solnhofen limestone (a fine-grained, low permeability rock) were prepared with a central borehole through which different pressurized fluids such as oil, water or argon, were introduced. Preliminary experiments were performed using a confining pressure of 5 MPa and axial stress of 7 MPa. Our goal was to monitor fracture extension using strain gauges, acoustic emissions (AE) recording and ultrasonic velocity measurements. We also tried to compare the data with analytical models of fracture propagation. Initial tests showed that simple bi-wing fractures form when the fracturing fluid is relatively incompressible. With argon as pore fluid, a complex fracture network was formed. We also observed that the breakdown pressure was higher with argon than with less compressible fluids. After fracturing occurred, we cycled fluid pressure for several times. During the first cycles, re-opening of the fracture was associated with additional propagation. In general, it took 4 cycles to inhibit further propagation. Analytical models suggest that initial fractures occurring with compressible fluids tend to stabilize. Hence, formation and extension of additional fractures may occur, leading to a more complex morphology. Conversely, fractures formed by incompressible fluids remain critically stressed as they extend, thus producing a simple bi-wing fracture. Using compressible fracturing fluids could be a suitable candidate for an efficient

  5. Non-Perfect-Fluid Space-Times in Thermodynamic Equilibrium and Generalized Friedmann Equations

    Directory of Open Access Journals (Sweden)

    Konrad Schatz

    2016-01-01

    Full Text Available We determine the energy-momentum tensor of nonperfect fluids in thermodynamic equilibrium and, respectively, near to it. To this end, we derive the constitutive equations for energy density and isotropic and anisotropic pressure as well as for heat-flux from the corresponding propagation equations and by drawing on Einstein’s equations. Following Obukhov on this, we assume the corresponding space-times to be conform-stationary and homogeneous. This procedure provides these quantities in closed form, that is, in terms of the structure constants of the three-dimensional isometry group of homogeneity and, respectively, in terms of the kinematical quantities expansion, rotation, and acceleration. In particular, we find a generalized form of the Friedmann equations. As special cases we recover Friedmann and Gödel models as well as nontilted Bianchi solutions with anisotropic pressure. All of our results are derived without assuming any equations of state or other specific thermodynamic conditions a priori. For the considered models, results in literature are generalized to rotating fluids with dissipative fluxes.

  6. Critical collapse and black hole formation within an expanding perfect fluid

    CERN Document Server

    Musco, Ilia

    2011-01-01

    Following on after three previous papers discussing the formation of primordial black holes in the early universe during the radiation dominated era, we present here related results considering the theoretical possibility of having a fluid with a different sound speed. In practice we vary the parameter w of the equation of state p = we between 0 and 1, where e is the energy density, and p the pressure of the fluid. We consider also the possibility of having a cosmological constant interpreted as a vacuum energy component (corresponding to w = -1) revising the results presented in our first paper of this series, having now a more refined numerical code available. To perform our simulations we have fine tuned our previous computer code allowing us to observe that the nature of the critical collapse is conserved for all the different values of w considered, in agreement with previous studies of ideal collapses done in a different context from PBHs. As already done in our previous works, we start the simulations ...

  7. Analytical modeling of magnetic Rayleigh-Taylor instabilities in compressible fluids

    Science.gov (United States)

    Liberatore, Stéphane; Bouquet, Serge

    2008-11-01

    The magnetic Rayleigh-Taylor instability (MRTI) is investigated in the case of compressible plasmas. The goal of this work is highlighting the influence of both the magnetic field and the compressibility of the material on the growth rate of the Rayleigh-Taylor instability, compared to the classical growth rate derived for incompressible fluids. Our analytical linear models are derived in the framework of the ideal magnetohydrodynamics theory. Three general dispersion relations are obtained: (1) Two for stratified fluids, including compressible (denoted CS∥ when the wave vector k is parallel to the equilibrium magnetic field B0 and CS⊥ when k ⊥B0) and incompressible (denoted IS∥ and IS⊥) and (2) one for incompressible uniform density fluids, including finite mass (denoted Ifm) and infinite (denoted IU). For k ⊥B0, Ifm, IU, and IS⊥ are unmagnetized cases. Comparisons of those various configurations are performed and several differences are pointed out. The main results are as follows: Stratification weakens the MRTI while compressibility has a destabilizing effect. The magnetic field enhances these phenomena. The CS∥ and IU configurations have an identical cutoff wave number. The upper fluid (also called heavy fluid) is more sensitive to compressibility than the light one when k ∥B0. Finally, the CS∥ case is more sensitive than the CS⊥ one to physical variations.

  8. Fluid Compressibility Effects on the Dynamic Response of Hydrostatic Journal Bearings

    Science.gov (United States)

    Sanandres, Luis A.

    1991-01-01

    A theoretical analysis for the dynamic performance characteristics of laminar flow, capillar/orifice compensated hydrostatic journal bearings is presented. The analysis considers in detail the effect of fluid compressibility in the bearing recesses. At high frequency excitations beyond a break frequency, the bearing hydrostatic stiffness increases sharply and it is accompanied by a rapid decrease in direct damping. Also, the potential of pneumatic hammer instability (negative damping) at low frequencies is likely to occur in hydrostatic bearing applications handling highly compressible fluids. Useful design criteria to avoid undesirable dynamic operating conditions at low and high frequencies are determined. The effect of fluid recess compressibility is brought into perspective, and found to be of utmost importance on the entire frequency spectrum response and stability characteristics of hydrostatic/hybrid journal bearings.

  9. Using compressibility factor as a predictor of confined hard-sphere fluid dynamics.

    Science.gov (United States)

    Mittal, Jeetain

    2009-10-22

    We study the correlations between the diffusivity (or viscosity) and the compressibility factor of bulk hard-sphere fluid as predicted by the ultralocal limit of the barrier hopping theory. Our specific aim is to determine if these correlations observed in the bulk equilibrium hard-sphere fluid can be used to predict the self-diffusivity of fluid confined between a slit-pore or a rectangular channel. In this work, we consider a single-component and a binary mixture of hard spheres. To represent confining walls, we use purely reflecting hard walls and interacting square-well walls. Our results clearly show that the correspondence between the diffusivity and the compressibility factor can be used along with the knowledge of the confined fluid's compressibility factor to predict its diffusivity with quantitative accuracy. Our analysis also suggests that a simple measure, the average fluid density, can be an accurate predictor of confined fluid diffusivity for very tight confinements ( approximately 2-3 particle diameters wide) at low to intermediate density conditions. Together, these results provide further support for the idea that one can use robust connections between thermodynamic and dynamic quantities to predict dynamics of confined fluids from their thermodynamics.

  10. Fluid displacement from intraluminal thrombus of abdominal aortic aneurysm as a result of uniform compression.

    Science.gov (United States)

    van Noort, Kim; Schuurmann, Richte Cl; Wermelink, Bryan; Slump, Cornelis H; Kuijpers, Karel C; de Vries, Jean-Paul Pm

    2017-01-01

    Objectives The results after aneurysm repair with an endovascular aneurysm sealing (EVAS) system are dependent on the stability of the aneurysm sac and particularly the intraluminal abdominal aortic thrombus (ILT). The postprocedural ILT volume is decreased compared with preprocedural ILT volume in aortic aneurysm patients treated with EVAS. We hypothesize that ILT is not stable in all patients and pressurization of the ILT may result in displacement of fluids from the ILT, no differently than serum is displaced from whole blood when it settles. To date, the mechanism and quantification of fluid displacement from ILT are unknown. Methods The study included 21 patients who underwent elective open abdominal aortic aneurysm repair. The ILT was harvested as a routine procedure during the operation. After excision of a histologic sample of the ILT specimen in four patients, ILT volume was measured and the ILT was compressed in a dedicated compression setup designed to apply uniform compression of 200 mmHg for 5 min. After compression, the volumes of the remaining thrombus and the displaced fluid were measured. Results The median (interquartile-range) of ILT volume before compression was 60 (66) mL, and a median of 5.7 (8.4) mL of fluid was displaced from the ILT after compression, resulting in a median thrombus volume decrease of 11% (10%). Fluid components can be up to 31% of the entire ILT volume. Histologic examination of four ILT specimens showed a reduction of the medial layer of the ILT after compression, which was the result of compression of fluid-containing canaliculi. Conclusions Applying pressure of 200 mmHg to abdominal aortic aneurysm ILT resulted in the displacement of fluid, with a large variation among patients. Fluid displacement may result in decrease of ILT volume during and after EVAS, which might have implications on pre-EVAS volume planning and on stability of the endobags during follow-up which may lead to migration, endoleak or both.

  11. Multi-scale analysis of compressible viscous and rotating fluids

    CERN Document Server

    Feireisl, Eduard; Gérard-Varet, David; Novotny, Antonin

    2011-01-01

    We study a singular limit for the compressible Navier-Stokes system when the Mach and Rossby numbers are proportional to certain powers of a small parameter $\\ep$. If the Rossby number dominates the Mach number, the limit problem is represented by the 2-D incompressible Navier-Stokes system describing the horizontal motion of vertical averages of the velocity field. If they are of the same order then the limit problem turns out to be a linear, 2-D equation with a unique radially symmetric solution. The effect of the centrifugal force is taken into account.

  12. Diffuse interface method for a compressible binary fluid

    Science.gov (United States)

    Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh

    2016-01-01

    Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO2 + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO2 + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO2 the smaller the surface tension and the easier the drop deforms.

  13. Lattice Boltzmann Model for Compressible Fluid on a Square Lattice

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-Hai

    2000-01-01

    A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated

  14. NEW APPROACHES OF MUSCL SCHEMES FOR COMPRESSIBLE FLUIDS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The MUSCL scheme for compressible gas dynamics is studied in this paper. We propose a new type of Eulerian MUSCL scheme, which evaluates the intercell flux at half time step. The intercell flux is comptuted from characteristic equations with the data which traced back through the approximate characteristic from the edge at half time step. The data is classified in several different types, depending on the characteristic directions of data.We also present a general procedure of oscillation-free algorithm for the MUSCL scheme. This procedure provides a class of limiters which includes the existing limiter. The new MUSCL scheme and the oscillation-free algorithm are validated through simulations for test problems.``

  15. Bianchi type-V cosmological models with perfect fluid and heat flow in Saez–Ballester theory

    Indian Academy of Sciences (India)

    Shri Ram; M Zeyauddin; C P Singh

    2009-02-01

    In this paper we discuss the variation law for Hubble's parameter with average scale factor in a spatially homogeneous and anisotropic Bianchi type-V space-time model, which yields constant value of the deceleration parameter. We derive two laws of variation of the average scale factor with cosmic time, one is of power-law type and the other is of exponential form. Exact solutions of Einstein field equations with perfect fluid and heat conduction are obtained for Bianchi type-V space-time in these two types of cosmologies. In the cosmology with the power-law, the solutions correspond to a cosmological model which starts expanding from the singular state with positive deceleration parameter. In the case of exponential cosmology, we present an accelerating non-singular model of the Universe. We find that the constant value of deceleration parameter is reasonable for the present day Universe and gives an appropriate description of evolution of Universe. We have also discussed different types of physical and kinematical behaviour of the models in these two types of cosmologies.

  16. An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials

    CSIR Research Space (South Africa)

    Malan, AG

    2011-08-01

    Full Text Available This work is concerned with the development of an artificial compressibility version of the characteristicbased split (CBS) method proposed by Zienkiewicz and Codina (Int. J. Numer. Meth. Fluids 1995; 20:869–885). The technique is applied...

  17. A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory

    Science.gov (United States)

    Prozan, R. J.

    1982-01-01

    The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.

  18. Suppression mechanism of Kelvin-Helmholtz instability in compressible fluid flows.

    Science.gov (United States)

    Karimi, Mona; Girimaji, Sharath S

    2016-04-01

    The transformative influence of compressibility on the Kelvin-Helmholtz instability (KHI) at the interface between two fluid streams of different velocities is explicated. When the velocity difference is small (subsonic), shear effects dominate the interface flow dynamics causing monotonic roll-up of vorticity and mixing between the two streams leading to the KHI. We find that at supersonic speed differentials, compressibility forces the dominance of dilatational (acoustic) rather than shear dynamics at the interface. Within this dilatational interface layer, traveling pressure waves cause the velocity perturbations to become oscillatory. We demonstrate that the oscillatory fluid motion reverses vortex roll-up and segregates the two streams leading to KHI suppression. Analysis and illustrations of the compressibility-induced suppression mechanism are presented.

  19. Using compressibility factor as a predictor of confined hard-sphere fluid dynamics

    OpenAIRE

    Mittal, Jeetain

    2009-01-01

    We study the correlations between the diffusivity (or viscosity) and the compressibility factor of bulk hard-sphere fluid as predicted by the ultralocal limit of the barrier hopping theory. Our specific aim is to determine if these correlations observed in the bulk equilibrium hard-sphere fluid can be used to predict the self-diffusivity of fluid confined between a slit-pore or a rectangular channel. In this work, we consider a single-component and a binary mixture of hard spheres. To represe...

  20. The Taylor-Proudman column in a rapidly-rotating compressible fluid I. energy transports

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Sang [Halla University, Wonju (Korea, Republic of)

    2014-10-15

    A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. An examination is made of the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy flux content, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. A plausible argument is given to explain the difficulty in achieving the Taylor-Proudman column in a compressible rotating fluid. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy flux content.

  1. Experimental Study of Pressure Drop in Compressible Fluid through Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Kyo [Hanwha Corporation Defence R and D Center, Daejeon (Korea, Republic of); Kim, Do Hun; Seo, Chan Woo; Lee, Seoung Youn; Jang, Seok Pil; Koo, Jaye [Korea Aerospace Univ., Goyang (Korea, Republic of)

    2013-08-15

    This study proposes the characteristics of the pressure drop in a compressible fluid through porous media for application to a porous injector in a liquid rocket engine in order to improve the uniformity of the drop size distribution and the mixing performance of shear coaxial injectors. The fluid through the porous media is a Non-Darcy flow that shows a Nonlinear relation between the pressure drop and the velocity at high speed and high mass flow rate. The pressure drop of the Non-Darcy flow can be derived using the Ferrochrome equation that includes the losses of viscous and inertia resistance. The permeability and Erg un coefficient represented as a function of the pressure drop and pore size can be applied to the porous injector, where the fluid through the porous media is compressible. A generalized correlation between the pressure drop in relation to the pore size was derived.

  2. MRI diagnosis of intravertebral at fluid osteoporotic and metastatic vertebral compression fractures

    Directory of Open Access Journals (Sweden)

    Александр Павлович Мягков

    2015-04-01

    Full Text Available Therefore, the aim of the work was to evaluate the value of intravertebral fluid with osteoporosis and metastatic vertebral compression fractures using magnetic resonance imaging. Objectives of the study were to investigate: MRI semiotics of osteoporotic compression fractures with their diagnostic value; intravertebral fluid in pathological fractures.Methods. 120 patients with pathologic compression fractures of the spine, which included 70 patients with acute osteoporotic and 50 - with metastatic, are examined. Among patients with osteoporotic fractures were 62 women (88.6 % men - 8 (11.4 % with an average age of 65.6 ± 11.1 years, and among patients with MCP fractures was 30 (60.0 % men and 20 (40.0 % women with a mean age 60.8 ± 12.5 years. All patients underwent an MRI on devices with a magnetic field strength of 0.2, 1.5 and 0.36 Tс (AIRIS Mate, ECHELON firm "Hitachi medical Corp.", Japan, "I-Open 0.36", China. Dual-energy X-ray absorptiometry (DXA held 59 (39.1 % patients. DXA was performed on the unit «Lunar PRODIGY Primo DHA"Results. The basic structural and morphological changes with osteoporotic compression fractures of the spine such as - bone marrow edema, annular seal paravertebral soft tissue, compression of the veins bazivertebrales, remains of yellow bone marrow, involvement arches and rear elements of the vertebra, curved (intact the back surface of the body, the fracture of the reflex plates, rear corner pieces with indicators of sensitivity, specificity, and accuracy. It was shown that the intravertebral fluid of the compressed vertebral bodies found in 72 (88.9 % patients. This feature may also be an indicator of the seam (or splice the data fractures.Conclusions. Intravertebral fluid in the compressed vertebral bodies was found in 88.9 % of patients with osteoporotic fractures, and this feature can be another tool in the diagnosis of this category of fractures with high sensitivity, specificity and accuracy. This feature

  3. Toward compressed DMD: spectral analysis of fluid flows using sub-Nyquist-rate PIV data

    CERN Document Server

    Tu, Jonathan H; Kutz, J Nathan; Shang, Jessica K

    2014-01-01

    Dynamic mode decomposition (DMD) is a powerful and increasingly popular tool for performing spectral analysis of fluid flows. However, it requires data that satisfy the Nyquist-Shannon sampling criterion. In many fluid flow experiments, such data are impossible to capture. We propose a new approach that combines ideas from DMD and compressed sensing. Given a vector-valued signal, we take measurements randomly in time (at a sub-Nyquist rate) and project the data onto a low-dimensional subspace. We then use compressed sensing to identify the dominant frequencies in the signal and their corresponding modes. We demonstrate this method using two examples, analyzing both an artificially constructed test dataset and particle image velocimetry data collected from the flow past a cylinder. In each case, our method correctly identifies the characteristic frequencies and oscillatory modes dominating the signal, proving the proposed method to be a capable tool for spectral analysis using sub-Nyquist-rate sampling.

  4. Effect of Oral Tissue Fluids on Compressive Strength of MTA and Biodentine: An In vitro Study.

    Science.gov (United States)

    Subramanyam, Divya; Vasantharajan, Madhusudhan

    2017-04-01

    Over the past many years various root end filling materials have been used which have been tested for their physical properties but each of them had certain limitations. In clinical practice, root end filling materials are exposed to oral tissue fluids which may compromise their longevity. The aim of this study was to investigate the effects of oral tissue fluids on compressive strength of Mineral Trioxide Aggregate (MTA) and biodentine. MTA and biodentine cylinders measuring 6 mm × 4 mm were prepared using acrylic blocks. They were divided into six groups; (Group 1) (MTA) (n=3), (Group 2) MTA contaminated with saliva, (MTA-S) (n=3), Group 3: MTA contaminated with blood, MTA-B (n=3), Group 4: Biodentine (BD), Group 5: Biodentine contaminated with saliva (BD-S) (n=5), Group 6: Biodentine contaminated with blood (BD-B) (n=5). The mould was contaminated with saliva and blood and incubated at 37°C at 100% humidity for three days and compressive strength (MPa) was measured using universal testing machine and the data was analyzed statistically using one-way ANOVA test. There was no significant difference in the compressive strength between the three groups i.e., MTA, MTA-S, MTA-B (p > 0.05). However, there was higher compressive strength in the MTA-B group when compared to MTA and MTA-S. Also, there was no statistical significant difference between BD, BD-S, BD-B (p>0.05). This study showed that the compressive strength of MTA and biodentine was not adversely affected by contamination with oral tissue fluids like blood and saliva.

  5. Effect of Oral Tissue Fluids on Compressive Strength of MTA and Biodentine: An In vitro Study

    Science.gov (United States)

    Vasantharajan, Madhusudhan

    2017-01-01

    Introduction Over the past many years various root end filling materials have been used which have been tested for their physical properties but each of them had certain limitations. In clinical practice, root end filling materials are exposed to oral tissue fluids which may compromise their longevity. Aim The aim of this study was to investigate the effects of oral tissue fluids on compressive strength of Mineral Trioxide Aggregate (MTA) and biodentine. Materials and Methods MTA and biodentine cylinders measuring 6 mm × 4 mm were prepared using acrylic blocks. They were divided into six groups; (Group 1) (MTA) (n=3), (Group 2) MTA contaminated with saliva, (MTA-S) (n=3), Group 3: MTA contaminated with blood, MTA-B (n=3), Group 4: Biodentine (BD), Group 5: Biodentine contaminated with saliva (BD-S) (n=5), Group 6: Biodentine contaminated with blood (BD-B) (n=5). The mould was contaminated with saliva and blood and incubated at 37°C at 100% humidity for three days and compressive strength (MPa) was measured using universal testing machine and the data was analyzed statistically using one-way ANOVA test. Results There was no significant difference in the compressive strength between the three groups i.e., MTA, MTA-S, MTA-B (p > 0.05). However, there was higher compressive strength in the MTA-B group when compared to MTA and MTA-S. Also, there was no statistical significant difference between BD, BD-S, BD-B (p>0.05). Conclusion This study showed that the compressive strength of MTA and biodentine was not adversely affected by contamination with oral tissue fluids like blood and saliva. PMID:28571272

  6. The CABARET method for a weakly compressible fluid flows in one- and two-dimensional implementations

    Science.gov (United States)

    Kulikov, Yu M.; Son, E. E.

    2016-11-01

    The CABARET method implementation for a weakly compressible fluid flow is in the focus of present paper. Testing both one-dimensional pressure balancing problem and a classical plane Poiseuille flow, we analyze this method in terms of discontinuity resolution, dispersion and dissipation. The method is proved to have an adequate convergence to an analytical solution for a velocity profile. We also show that a flow formation process represents a set of self-similar solutions under varying pressure differential and sound speed.

  7. Peristaltic pneumatic compression of the legs reduces fluid demand and improves hemodynamic stability during surgery: a randomized, prospective study.

    Science.gov (United States)

    Kiefer, Nicholas; Theis, Judith; Putensen-Himmer, Gabriele; Hoeft, Andreas; Zenker, Sven

    2011-03-01

    Perioperative fluid restriction might be beneficial in specific clinical settings. In this prospective, randomized and blinded study, we assessed whether peristaltic pneumatic compression of the legs can support restrictive fluid management strategies by reducing intraoperative fluid demand and improving hemodynamic stability. Seventy patients scheduled for minor surgery were randomly assigned to receive either intraoperative peristaltic pneumatic compression or placebo compression. Both groups received fluid therapy according to a goal-directed protocol with a crystalloid base rate of 2 ml · kg⁻¹ · h⁻¹ and bolus infusions of 250 ml crystalloids triggered by hypotension, tachycardia, or high Pleth Variability Index. Patients treated with peristaltic pneumatic compression received less intravenous fluid: median (interquartile range) 286 (499) versus 921 (900) ml (P pneumatic peristaltic compression group (P pneumatic peristaltic compression, the median cumulative time of hypotension was shorter (0 [12.5] vs. 22.6 [22.8] min; P = 0.002), fewer hypotensive events were recorded (39 vs. 137; P = 0.001), and median lowest individual systolic pressure was higher (92 [8] vs. 85 [16] mmHg; P = 0.002). This study demonstrates that peristaltic pneumatic compression of the legs significantly improves hemodynamic stability and reduces fluid demand during minor surgery.

  8. Syntectonic fluid flow and fluid compartmentalization in a compressive basin: Example of the Jaca basin (Southwest Pyrenees, Spain)

    Science.gov (United States)

    Lacroix, Brice; Travé, Anna; Buatier, Martine; Labaume, Pierre

    2013-04-01

    During compressive events, deformation in sedimentary basins is mainly accommodated by thrust faults emplacement and related fold growth. In such a structure, thrust faults are generally rooted in the basement and may act as conduits or barriers for crustal fluid flow. However, most of recent studies suggest that fluid flow through such discontinuities is not so evident and depends on the structural levels of the thrust inside the fold-and-thrust belt. In order to constrain the paleofluid flow through the Jaca thrust-sheet-top basin (Paleogene southwest-Pyrenean fold-and-thrust belt) we focus our study on different thrust faults located at different structural levels. The microstructures observed in the different studied fault zones are similar and consist of pervasive cleavage, calcite shear and extension veins and late dilatation veins. In order to constrain the nature and the source of fluids involved in fluid-rock interactions in fault zones, a geochemical approach, based on oxygen and carbon stable isotopes and trace elements on calcite, was adopted on the different vein generations and host rocks. The results suggest a high complexity in the paleo-hydrological behaviors of thrust faults evidencing a fluid-flow compartmentalization of the basin. North of the Jaca basin, previous studies in the southern part of the Axial Zones showed the contribution of deep metamorphic water, probably derived from the Paleozoic basement, along along fault zones related the major Gavarnie thrust. Contrarily, in the northern part of the Jaca basin, we evidence the contribution of formation water during the Monte Perdido thrust fault activity. These data suggest a closed hydrological fluid system where distance of fluid flow did not exceeded 70 m. On the other hand, the Jaca and Cotiella thrust faults, both located more to the south in the basin, are characterized by a composite fluid flow system. Indeed, stable isotopes and trace elements compositions of the first generation of

  9. Dependency of hydromechanical properties of monzonitic granite on confining pressure and fluid pressure under compression

    Science.gov (United States)

    Wang, Huanling; Xu, Weiya; Lui, Zaobao; Chao, Zhiming; Meng, Qingxiang

    2016-05-01

    Monzonitic granite is a low-permeability rock. Monzonitic granite formations are ideal for underground storage of oil due to their low permeability and high mechanical strength. In this study, a series of coupled hydromechanical triaxial tests are carried out using monzonitic granite specimens. The influence of confining and fluid pressures on stress, strain, and permeability is investigated. Failure characteristics under different confining and fluid pressures are discussed based on the analysis of macro fracture planes and micro scanning electron microscopy (SEM). The test results show that the change of permeability with stress and strain reflects the deformation stages of compaction, compression, crack propagation, coalesce, and failure of cracks. Due to the low porosity, the change of permeability is small in the initial phases of compaction and compression, whereas there is a significant increase in permeability when new cracks start to develop and coalesce. Confining pressures have a significant impact on the strength and permeability, particularly the crack damage stress of the rock. Compared with confining pressure, the effect of fluid pressure on rock strength and crack damage stress is small. For the monzonitic granite specimens tested, changing the confining pressure results in different failure modes, whereas the fluid pressure has a relatively small effect on the failure modes.

  10. Efficacy of Compression Garments to Simulate Fluid Shifts during Lunar Bedrest

    Science.gov (United States)

    Brinley, Alaina; Brown, Angela; Ribeiro, Christine; Summers, Richard; Platts, Steven H.

    2009-01-01

    The effectiveness of JOBST(Registered TradeMark) compression stockings for fluid redistribution was examined in the lunar bed rest analog based on Digital Astronaut computer model predictions. NASA's future goals include missions to the moon which will require extended exposure to the lunar gravity environment. To prepare for these missions, physiological adaptations in various systems must be resolved. A bed rest at a 10 degree head-up tilt was used to simulate lunar gravity. Plasma volume (PV) loss may cause some of the cardiovascular adaptations which occur during space flight so PV is measured in the bed rest analog to evaluate fluid loss. PV varies from individual to individual so PV index (PVI) is used to determine the magnitude and time course of fluid shift and cardiovascular adaptation to 1/6 g. The Digital Astronaut, a computer simulation tool, predicts a 6% PV loss during an extended simulated lunar mission for a male with a body surface area of 1.95 m(exp 2). Simple geometry calculations suggest that 10 degree head-up tilt is most useful for simulated measurement of deconditioning in bone and muscle, however, 2 degree head-up tilt may best imitate cardiovascular fluid shifts. In order to reconcile these different models, compression stocking must be used in the 10 degree paradigm to better approximate expected cardiovascular changes.

  11. Simulation of Free Surface Compressible Flows Via a Two Fluid Model

    CERN Document Server

    Dias, Frederic; Ghidaglia, Jean-Michel

    2008-01-01

    The purpose of this communication is to discuss the simulation of a free surface compressible flow between two fluids, typically air and water. We use a two fluid model with the same velocity, pressure and temperature for both phases. In such a numerical model, the free surface becomes a thin three dimensional zone. The present method has at least three advantages: (i) the free-surface treatment is completely implicit; (ii) it can naturally handle wave breaking and other topological changes in the flow; (iii) one can easily vary the Equation of States (EOS) of each fluid (in principle, one can even consider tabulated EOS). Moreover, our model is unconditionally hyperbolic for reasonable EOS.

  12. An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

    KAUST Repository

    Al-Marouf, M.

    2016-06-03

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.

  13. Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Radermacher, R.

    1988-02-16

    A method of transferring heat from a first fluid having a temperature T/sub 1/ to a second fluid having a temperature T/sub 2/, when the temperature T/sub 2/ is greater than the temperature T/sub 1/ is described comprising: providing a third fluid, comprising a mixture of a higher boiling component and a lower boiling component, having a temperature T/sub A/, T/sub A/ being less than T/sub 1/; adding heat to the third fluid to raise the temperature of the third fluid to a temperature T/sub B/, T/sub B/ being greater than T/sub A/ and less than or substantially equal to T/sub 1/; separating the first liquid from the first vapor; compressing the first vapor to form a secondary pressurized vapor stream; pumping the first liquid into contact with the secondary pressurized vapor stream to form a pressurized fourth fluid having a temperature T/sub C/, T/sub C/ being greater than T/sub 2/; removing heat from the fourth fluid to lower the temperature of the fourth fluid to a temperature T/sub D/, T/sub D/ being less than T/sub C/ and greater than or substantially equal to T/sub 2/, whereby the secondary pressurized vapor stream is absorbed to form in admixture with the first liquid, a pressurized second liquid, the temperature T/sub D/ being greater than T/sub A/ and less than T/sub B/, the temperature T/sub B/ being greater than T/sub D/ and less than T/sub C/; expanding the pressurized second liquid to form the third fluid.

  14. Introduction to diffuse interfaces and transformation fronts modelling in compressible media

    OpenAIRE

    Saurel Richard; Petitpas Fabien

    2013-01-01

    Computation of interfaces separating compressible materials is related to mixture cells appearance. These mixture cells are consequences of fluid motion and artificial smearing of discontinuities. The correct computation of the entire flow field requires perfect fulfillment of the interface conditions. In the simplest situation of contact interfaces with perfect fluids, these conditions correspond to equal normal velocities and equal pressures. To compute compressible flows with interfac...

  15. Hall Effect on Bénard Convection of Compressible Viscoelastic Fluid through Porous Medium

    Directory of Open Access Journals (Sweden)

    Mahinder Singh

    2013-01-01

    Full Text Available An investigation made on the effect of Hall currents on thermal instability of a compressible Walter’s B′ elasticoviscous fluid through porous medium is considered. The analysis is carried out within the framework of linear stability theory and normal mode technique. For the case of stationary convection, Hall currents and compressibility have postponed the onset of convection through porous medium. Moreover, medium permeability hasten postpone the onset of convection, and magnetic field has duel character on the onset of convection. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection have been obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. The magnetic field, Hall currents found to introduce oscillatory modes, in the absence of these effects the principle of exchange of stabilities is valid.

  16. Cubic Spline Collocation Method for the Simulation of Turbulent Thermal Convection in Compressible Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Victor Manuel [Univ. of California, Davis, CA (United States)

    1999-01-01

    A collocation method using cubic splines is developed and applied to simulate steady and time-dependent, including turbulent, thermally convecting flows for two-dimensional compressible fluids. The state variables and the fluxes of the conserved quantities are approximated by cubic splines in both space direction. This method is shown to be numerically conservative and to have a local truncation error proportional to the fourth power of the grid spacing. A ''dual-staggered'' Cartesian grid, where energy and momentum are updated on one grid and mass density on the other, is used to discretize the flux form of the compressible Navier-Stokes equations. Each grid-line is staggered so that the fluxes, in each direction, are calculated at the grid midpoints. This numerical method is validated by simulating thermally convecting flows, from steady to turbulent, reproducing known results. Once validated, the method is used to investigate many aspects of thermal convection with high numerical accuracy. Simulations demonstrate that multiple steady solutions can coexist at the same Rayleigh number for compressible convection. As a system is driven further from equilibrium, a drop in the time-averaged dimensionless heat flux (and the dimensionless internal entropy production rate) occurs at the transition from laminar-periodic to chaotic flow. This observation is consistent with experiments of real convecting fluids. Near this transition, both harmonic and chaotic solutions may exist for the same Rayleigh number. The chaotic flow loses phase-space information at a greater rate, while the periodic flow transports heat (produces entropy) more effectively. A linear sum of the dimensionless forms of these rates connects the two flow morphologies over the entire range for which they coexist. For simulations of systems with higher Rayleigh numbers, a scaling relation exists relating the dimensionless heat flux to the two-seventh's power of the Rayleigh number

  17. Cubic Spline Collocation Method for the Simulation of Turbulent Thermal Convection in Compressible Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, V M

    2005-01-12

    A collocation method using cubic splines is developed and applied to simulate steady and time-dependent, including turbulent, thermally convecting flows for two-dimensional compressible fluids. The state variables and the fluxes of the conserved quantities are approximated by cubic splines in both space direction. This method is shown to be numerically conservative and to have a local truncation error proportional to the fourth power of the grid spacing. A ''dual-staggered'' Cartesian grid, where energy and momentum are updated on one grid and mass density on the other, is used to discretize the flux form of the compressible Navier-Stokes equations. Each grid-line is staggered so that the fluxes, in each direction, are calculated at the grid midpoints. This numerical method is validated by simulating thermally convecting flows, from steady to turbulent, reproducing known results. Once validated, the method is used to investigate many aspects of thermal convection with high numerical accuracy. Simulations demonstrate that multiple steady solutions can coexist at the same Rayleigh number for compressible convection. As a system is driven further from equilibrium, a drop in the time-averaged dimensionless heat flux (and the dimensionless internal entropy production rate) occurs at the transition from laminar-periodic to chaotic flow. This observation is consistent with experiments of real convecting fluids. Near this transition, both harmonic and chaotic solutions may exist for the same Rayleigh number. The chaotic flow loses phase-space information at a greater rate, while the periodic flow transports heat (produces entropy) more effectively. A linear sum of the dimensionless forms of these rates connects the two flow morphologies over the entire range for which they coexist. For simulations of systems with higher Rayleigh numbers, a scaling relation exists relating the dimensionless heat flux to the two-seventh's power of the Rayleigh number

  18. Low-Beta MHD Reconnection As a Showcase of Compressible Fluid Dynamics

    Science.gov (United States)

    Zenitani, S.

    2014-12-01

    In the solar corona, in the magnetosphere, and in other astrophysical settings, magnetic reconnection often occurs in a low-beta plasma. Unfortunately, less is known about low-beta reconnection, partially due to lack of attention and partially due to numerical difficulties. Recent MHD simulations revealed several new features of low-beta reconnection; For example, Zenitani et al.(2010,2011) [1,2] discovered a normal shock which is perpendicular to the Petschek shock and a repeated shock-reflection in front of a magnetic island. In this contribution, we extend earlier works with improved MHD codes and organize the results from the perspective of compressible fluid dynamics. In fluid dynamics, once a flow speed becomes comparable with the local sound speed, various compressible effects take place. This is the case for low-beta reconnection, because an Alfvenic reconnection jet becomes supersonic. Many phenomena can be understood as compressible fluid effects: the normal shock is equivalent to a recompression shock on a transonic airfoil, the shock-reflection corresponds to shock-diamonds in an over-expanded supersonic flow, the adiabatic acceleration similarly takes place as the Laval nozzle, and so on. They appear regardless of Sweet-Parker, plasmoid-mediated, or Petschek reconnections. We further discover another shock-diamonds in extreme cases. A critical condition for these hidden shocks is derived. All these issues can be applied to more extreme cases of relativistic reconnection, in which the sound speed is ``relatively'' slow. We will also address the relevance to the physics of extragalactic jets. References:[1] Zenitani, Hesse, & Klimas, ApJ, 716, L214 (2010).[2] Zenitani and Miyoshi, Phys. Plasmas, 18, 022105 (2011).

  19. Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

    Science.gov (United States)

    Klimachkov, D. A.; Petrosyan, A. S.

    2016-09-01

    Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the

  20. Relaxation dynamics of a compressible bilayer vesicle containing highly viscous fluid.

    Science.gov (United States)

    Sachin Krishnan, T V; Okamoto, Ryuichi; Komura, Shigeyuki

    2016-12-01

    We study the relaxation dynamics of a compressible bilayer vesicle with an asymmetry in the viscosity of the inner and outer fluid medium. First we explore the stability of the vesicle free energy which includes a coupling between the membrane curvature and the local density difference between the two monolayers. Two types of instabilities are identified: a small wavelength instability and a larger wavelength instability. Considering the bulk fluid viscosity and the inter-monolayer friction as the dissipation sources, we next employ Onsager's variational principle to derive the coupled equations both for the membrane and the bulk fluid. The three relaxation modes are coupled to each other due to the bilayer and the spherical structure of the vesicle. Most importantly, a higher fluid viscosity inside the vesicle shifts the crossover mode between the bending and the slipping to a larger value. As the vesicle parameters approach the unstable regions, the relaxation dynamics is dramatically slowed down, and the corresponding mode structure changes significantly. In some limiting cases, our general result reduces to the previously obtained relaxation rates.

  1. Relaxation dynamics of a compressible bilayer vesicle containing highly viscous fluid

    Science.gov (United States)

    Sachin Krishnan, T. V.; Okamoto, Ryuichi; Komura, Shigeyuki

    2016-12-01

    We study the relaxation dynamics of a compressible bilayer vesicle with an asymmetry in the viscosity of the inner and outer fluid medium. First we explore the stability of the vesicle free energy which includes a coupling between the membrane curvature and the local density difference between the two monolayers. Two types of instabilities are identified: a small wavelength instability and a larger wavelength instability. Considering the bulk fluid viscosity and the inter-monolayer friction as the dissipation sources, we next employ Onsager's variational principle to derive the coupled equations both for the membrane and the bulk fluid. The three relaxation modes are coupled to each other due to the bilayer and the spherical structure of the vesicle. Most importantly, a higher fluid viscosity inside the vesicle shifts the crossover mode between the bending and the slipping to a larger value. As the vesicle parameters approach the unstable regions, the relaxation dynamics is dramatically slowed down, and the corresponding mode structure changes significantly. In some limiting cases, our general result reduces to the previously obtained relaxation rates.

  2. Motions of deformable inclusions in a horizontally oscillating vessel with a compressible fluid

    Science.gov (United States)

    Demidov, I. V.; Sorokin, V. S.

    2016-11-01

    The paper is concerned with the analysis of rigid particle and compressible gas bubble motion in a horizontally oscillating vessel with a compressible fluid. A nonlinear differential equation describing motion of inclusions with respect to the vessel is derived and solved by the method of direct separation of motions. It is shown that rigid particles and gas bubbles can move both in nodes and antinodes of the pressure, depending on their size, density, and vibration parameters. The conditions under which different kinds of motion can incur have been determined. An expression for the critical radius of the bubbles which are affected by the negligible vibrational force is found. Also an approximate expression has been obtained for the average velocity of bubble's motion in the fluid; relationship between this velocity and bubble radius and vibration parameters has been revealed. A simple physical explanation of the noticed effects is proposed. Series of numerical experiments has been conducted, their results confirming those obtained theoretically. These results may be of interest for development of the flotation theory and other technological processes.

  3. Numerical simulation of perfect fluid flows around complex 3D configurations by a multidomain solver using the MUSCL approach

    Science.gov (United States)

    Guillen, Ph.; Borrel, M.; Dormieux, M.

    1990-10-01

    A numerical scheme of the MUSCL type used for the numerical simulation of gas flow of different types around complex configurations is described. Approximate Riemann solvers of the Van Leer, Roc, and Osher types, developed for perfect gas flows are used. These solvers have been extended to non-reactive mixtures of two species and real gas flows by Abgrall, Montagne and Vinokur. The architecture of the code, dictated by constraints in geometrical considerations, computational aspects, the specific nature of the flow, and ergonomy, is described.

  4. Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions

    Energy Technology Data Exchange (ETDEWEB)

    York, A.R. II [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.

    1997-07-01

    The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.

  5. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms

    DEFF Research Database (Denmark)

    Xie, Zhinan; Matzen, René; Cristini, Paul;

    2016-01-01

    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent a......A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range....... The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation...

  6. Canonical fluid thermodynamics. [variational principles of stability for compressible adiabatic flow

    Science.gov (United States)

    Schmid, L. A.

    1974-01-01

    The space-time integral of the thermodynamic pressure plays in a certain sense the role of the thermodynamic potential for compressible adiabatic flow. The stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and temperature to be generalized velocities. In the fluid context, the definition of proper-time differentiation involves the fluid velocity expressed in terms of three particle identity parameters. The pressure function is then converted into a functional which is the Lagrangian density of the variational principle. Being also a minimum principle, the variational principle provides a means for comparing the relative stability of different flows. For boundary conditions with a high degree of symmetry, as in the case of a uniformly expanding spherical gas box, the most stable flow is a rectilinear flow for which the world-trajectory of each particle is a straight line. Since the behavior of the interior of a freely expanding cosmic cloud may be expected to be similar to that of the fluid in the spherical box of gas, this suggests that the cosmic principle is a consequence of the laws of thermodynamics, rather than just an ad hoc postulate.

  7. The role of fluid dynamics on compressed/expanded surfactant monolayers

    Science.gov (United States)

    Higuera, Maria; Perales, Jose M.; Vega, Jose M.

    2016-06-01

    A typical experiment to measure monolayer surface rheological properties consists of two parallel, slightly immersed, moving solid barriers that compress and expand a shallow liquid layer that contains the surfactant monolayer in its free surface. The area between the barriers controls the surfactant concentration, which is frequently assumed as spatially constant. In order to minimize the fluid dynamics and other non-equilibrium effects, the barriers motion is very slow. Nevertheless, the surfactant concentration dynamics exhibit some unexpected features such as irreversibility, suggesting that the motion is not slow enough. We present a long wave theory that takes into account the fluid dynamics in the bulk phase coupled to the free surface elevation. In addition, apparent irreversibility is also discussed that may result from artifacts associated with the menisci dynamics when surface tension is measured using a Wilhelmy plate. Instead, additional, purely chemical, non-equilibrium effects are ignored. Results from this theory are discussed for varying values of the parameters, which permit establishing specific predictions on experiments. On the other hand, these results compare fairly well with the available experimental observations, at least qualitatively. The overall conclusion is that the fluid dynamics should not be ignored in the analysis of these experimental devices.

  8. A ghost fluid method for sharp interface simulations of compressible multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Sahand; Afshari, Asghar [University of Tehran, Teheran (Iran, Islamic Republic of)

    2016-04-15

    A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

  9. Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, M.C.; Tran, P.X.

    2006-01-01

    We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.

  10. Fluid Absorption and Release of Nonwovens and their Response to Compression

    Science.gov (United States)

    Bateny, Fatemeh

    Fluid handling is a key property in one of the major nonwoven applications in absorbent product such as wipes, hygiene products, and baby diapers. These products are subjected to various levels of compression in real-use. The aim of this study was to investigate the liquid absorption and release properties of nonwovens to establish the absorption structure-property relationship at various compression levels. A comprehensive methodology, considering various flow directions, was employed to establish the relationship by decoupling the effect of structural parameters and material properties in two phases of this study respectively. In the first phase, the mechanism of absorption by pore structure was investigated through considering various fiber cross-sectional size and shape, as well as heterogeneous layered structures having a pore size reduction and expansion. In the second phase, the mechanism of absorption by fiber and consequent swelling was evaluated in view of fluid diffusion into the rayon fibers in samples having different percentages of PET fiber (non-absorbent) and rayon fiber (absorbent). The analysis of absorption and release properties through the entire dissertation was based on the pore characteristics of the nonwovens by measuring the average pore sizes, pore size distribution, and solidity. The investigation revealed that the absorption and release properties of nonwovens are governed by their pore characteristics. In homogeneous non-layered nonwoven fabrics, maximum absorption is mainly governed by the available pore volume. Absorbency rate is determined according to pore size and the maximum rate of absorption is achieved at a specific range of pore sizes. This indicates that an in-depth understanding of the absorption and release properties brings about valuable information for the absorbent product engineering.

  11. An integral transform solution for unsteady compressible heat transfer in fluids near their thermodynamic critical point

    Directory of Open Access Journals (Sweden)

    de B. Alves Leonardo S.

    2013-01-01

    Full Text Available The classical thermodynamic model for near critical heat transfer is an integral-differential equation with constant coefficients. It is similar to the heat equation, except for a source term containing the time derivative of the bulk temperature. Despite its simple form, analytical methods required the use of approximations to generate solutions for it, such as an approximate Fourier transformation or a numerical Laplace inversion. Recently, the Generalized Integral Transform Technique or GITT has been successfully applied to this problem, providing a highly accurate analytical solution for it and a new expression of its relaxation time. Nevertheless, very small temperature differences, on the order of mK, have to be imposed so that constant thermal properties can be assumed very close to the critical point. The present paper generalizes this study by relaxing its restriction and accounting for the strong dependence on temperature and pressure of supercritical fluid properties, demonstrating that a the GITT can be applied to realistic nonlinear unsteady compressible heat transfer in fluids with diverging thermal properties and b temperature and pressure have opposite effects on all properties, but their variation causes no additional thermo-acoustic effect, increasing the validity range of the constant property model.

  12. Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid

    Science.gov (United States)

    Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan

    2017-03-01

    Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.

  13. Picture perfect

    DEFF Research Database (Denmark)

    Pless, Mette; Sørensen, Niels Ulrik

    ’Picture perfect’ – when perfection becomes the new normal This paper draws on perspectives from three different studies. One study, which focuses on youth life and lack of well-being (Sørensen et al 2011), one study on youth life on the margins of society (Katznelson et al 2015) and one study on...

  14. A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting

    Science.gov (United States)

    Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C. C.; Navon, I. M.; Chen, M.

    2017-02-01

    This work presents the first application of a non-intrusive reduced order method to model solid interacting with compressible fluid flows to simulate crack initiation and propagation. In the high fidelity model, the coupling process is achieved by introducing a source term into the momentum equation, which represents the effects of forces of the solid on the fluid. A combined single and smeared crack model with the Mohr-Coulomb failure criterion is used to simulate crack initiation and propagation. The non-intrusive reduced order method is then applied to compressible fluid and fractured solid coupled modelling where the computational cost involved in the full high fidelity simulation is high. The non-intrusive reduced order model (NIROM) developed here is constructed through proper orthogonal decomposition (POD) and a radial basis function (RBF) multi-dimensional interpolation method. The performance of the NIROM for solid interacting with compressible fluid flows, in the presence of fracture models, is illustrated by two complex test cases: an immersed wall in a fluid and a blasting test case. The numerical simulation results show that the NIROM is capable of capturing the details of compressible fluids and fractured solids while the CPU time is reduced by several orders of magnitude. In addition, the issue of whether or not to subtract the mean from the snapshots before applying POD is discussed in this paper. It is shown that solutions of the NIROM, without mean subtracted before constructing the POD basis, captured more details than the NIROM with mean subtracted from snapshots.

  15. Quasi-Particle Degrees of Freedom versus the Perfect Fluid as Descriptors of the Quark-Gluon Plasma

    CERN Document Server

    Levy, L A Linden; Rosen, C; Steinberg, P

    2007-01-01

    Approaches for understanding the hydrodynamic flow of the hot and dense medium created in the collisions of relativistic heavy ions are discussed, focusing on their implications for scenarios where quasi-particles are assumed to carry the thermodynamic degrees of freedom. Well-defined quasi-particle degrees of freedom are in principle inconsistent with inviscid hydrodynamics, which implies a vanishing mean free path. However, quasi-particles may play a role as the density of the medium decreases. It is thus an open question whether the freeze-out of the fluid stage proceeds directly into hadrons, or via a fleeting intermediate state with effectively-free constituent quarks, which may well be identified with QCD quasi-particle degrees of freedom. The empirical observation of the ``$n_q$'' scaling of elliptic flow \\cite{Adare:2006ti} (the universality of $v_2/n_q$ as a function of $(m_{T}-m)/n_q$, where $n_q$ is the number of constituent quarks in the hadron) is scrutinized in detail. It is found that, at all t...

  16. Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field

    Science.gov (United States)

    Low, B. C.; Egan, A. K.

    2014-06-01

    This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ1 proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ1, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid into a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ1→0, the 1D steady state exists only for μ1∈Ω, a spectrum of an infinite number of discrete values, including μ1 = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ1→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ1 = 0, as an accumulation point, but are sparsely separated by open intervals of μ1-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ1→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset of hydrodynamic turbulence. The implications of this MHD

  17. Aortic Compression and Cross Clamping in a Case of Placenta Percreta and Amniotic Fluid Embolism: A Case Report

    Directory of Open Access Journals (Sweden)

    Michael A. Belfort

    2011-09-01

    Full Text Available Amniotic fluid embolism (AFE, also known as anaphylactoid syndrome of pregnancy at the time of surgery for placenta percreta has been previously reported. We report here a case in which AFE and associated cardiac arrest occurred following a hysterectomy for placenta percreta. In this case, subhepatic manual aortic compression during the cardiac arrest and chest compressions followed by infrarenal aortic cross-clamping during volume infusion and reversal of the coagulopathy were associated with a successful resuscitation and good maternal outcome.

  18. Thermodynamic bounds for existence of normal shock in compressible fluid flow in pipes

    Directory of Open Access Journals (Sweden)

    SERGIO COLLE

    Full Text Available Abstract The present paper is concerned with the thermodynamic theory of the normal shock in compressible fluid flow in pipes, in the lights of the pioneering works of Lord Rayleigh and G. Fanno. The theory of normal shock in pipes is currently presented in terms of the Rayleigh and Fanno curves, which are shown to cross each other in two points, one corresponding to a subsonic flow and the other corresponding to a supersonic flow. It is proposed in this paper a novel differential identity, which relates the energy flux density, the linear momentum flux density, and the entropy, for constant mass flow density. The identity so obtained is used to establish a theorem, which shows that Rayleigh and Fanno curves become tangent to each other at a single sonic point. At the sonic point the entropy reaches a maximum, either as a function of the pressure and the energy density flux or as a function of the pressure and the linear momentum density flux. A Second Law analysis is also presented, which is fully independent of the Second Law analysis based on the Rankine-Hugoniot adiabatic carried out by Landau and Lifshitz (1959.

  19. Thermodynamic bounds for existence of normal shock in compressible fluid flow in pipes.

    Science.gov (United States)

    Colle, Sergio

    2017-01-01

    The present paper is concerned with the thermodynamic theory of the normal shock in compressible fluid flow in pipes, in the lights of the pioneering works of Lord Rayleigh and G. Fanno. The theory of normal shock in pipes is currently presented in terms of the Rayleigh and Fanno curves, which are shown to cross each other in two points, one corresponding to a subsonic flow and the other corresponding to a supersonic flow. It is proposed in this paper a novel differential identity, which relates the energy flux density, the linear momentum flux density, and the entropy, for constant mass flow density. The identity so obtained is used to establish a theorem, which shows that Rayleigh and Fanno curves become tangent to each other at a single sonic point. At the sonic point the entropy reaches a maximum, either as a function of the pressure and the energy density flux or as a function of the pressure and the linear momentum density flux. A Second Law analysis is also presented, which is fully independent of the Second Law analysis based on the Rankine-Hugoniot adiabatic carried out by Landau and Lifshitz (1959).

  20. On the Navier-Stokes Equations for Exothermically Reacting Compressible Fluids

    Institute of Scientific and Technical Information of China (English)

    Gui-Qiang Chen; David Hoff; Konstantina Trivisa

    2002-01-01

    We analyze mathematical models governing planar flow of chemical reaction from unburnt gases to burnt gases in certain physical regimes in which diffusive effects such as viscosity and heat conduction are significant. These models can be then formulated as the Navier-Stokes equations for exothermically reacting compressible fluids. We first establish the existence and dynamic behavior, including stability, regularity, and large-time behavior, of global discontinuous solutions of large oscillation to the Navier-Stokes equations with constant adiabatic exponent γ and specific heat Cv. Our approach for the existence and regularity is to combine the difference approximation techniques with the energy methods, total variation estimates, and weak convergence arguments to deal with large jump discontinuities; and for large-time behavior is an a posteriori argument directly from the weak form of the equations. The approach and ideas we develop here can be applied to solving a more complicated model where γ and Cv vary as the phase changes; and we then describe this model in detail and contrast the results on the asymptotic behavior of the solutions of these two different models. We also discuss other physical models describing dynamic combustion.

  1. Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields

    Science.gov (United States)

    Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.

    2017-03-01

    We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.

  2. Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields.

    Science.gov (United States)

    Antonov, N V; Gulitskiy, N M; Kostenko, M M; Lučivjanský, T

    2017-03-01

    We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997)TMPHAH0040-577910.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ=4-d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ. All calculations are performed in the leading one-loop approximation.

  3. On trajectories of vortices in the compressible fluid on a two-dimensional manifold

    CERN Document Server

    Rozanova, Olga S; Hu, Chin-Kun

    2010-01-01

    For the model of a compressible barotropic fluid on a two dimensional rotating Riemmanian manifold we discuss a special class of smooth solutions having a form of a steady non-singular vortex moving with a bearing field. The model can be obtained from the system of primitive equations governing the motion of air over the Earth surface after averaging over the height and therefore the solution obtained can be interpreted as a tropical cyclone which is known as a long time existing stable vortex. We consider approximations of $l$- plane and $\\beta$ - plane used in geophysics for modeling of middle scale processes and equations on the whole sphere as well. We show that the solutions of the mentioned form satisfy the equations of the model either exactly or with a discrepancy which is small in a neighborhood of the trajectory of the center of vortex. We perform a numeric study of the change of the shape of the vortex affected by the neglecting the discrepancy term.

  4. Advection of a passive scalar field by turbulent compressible fluid: renormalization group analysis near d = 4

    Science.gov (United States)

    Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.

    2017-03-01

    The field theoretic renormalization group (RG) and the operator product expansion (OPE) are applied to the model of a density field advected by a random turbulent velocity field. The latter is governed by the stochastic Navier-Stokes equation for a compressible fluid. The model is considered near the special space dimension d = 4. It is shown that various correlation functions of the scalar field exhibit anomalous scaling behaviour in the inertial-convective range. The scaling properties in the RG+OPE approach are related to fixed points of the renormalization group equations. In comparison with physically interesting case d = 3, at d = 4 additional Green function has divergences which affect the existence and stability of fixed points. From calculations it follows that a new regime arises there and then by continuity moves into d = 3. The corresponding anomalous exponents are identified with scaling dimensions of certain composite fields and can be systematically calculated as series in y (the exponent, connected with random force) and ɛ = 4 - d. All calculations are performed in the leading one-loop approximation.

  5. Penetrating Annulus Fibrosus Injuries Affect Dynamic Compressive Behaviors of the Intervertebral Disc Via Altered Fluid Flow: An Analytical Interpretation

    OpenAIRE

    Michalek, Arthur J.; Iatridis, James C.

    2011-01-01

    Extensive experimental work on the effects of penetrating annular injuries indicated that large injuries impact axial compressive properties of small animal intervertebral discs, yet there is some disagreement regarding the sensitivity of mechanical tests to small injury sizes. In order to understand the mechanism of injury size sensitivity, this study proposed a simple one dimensional model coupling elastic deformations in the annulus with fluid flow into and out of the nucleus through both ...

  6. On the accurate direct computation of the isothermal compressibility for normal quantum simple fluids: application to quantum hard spheres.

    Science.gov (United States)

    Sesé, Luis M

    2012-06-28

    A systematic study of the direct computation of the isothermal compressibility of normal quantum fluids is presented by analyzing the solving of the Ornstein-Zernike integral (OZ2) equation for the pair correlations between the path-integral necklace centroids. A number of issues related to the accuracy that can be achieved via this sort of procedure have been addressed, paying particular attention to the finite-N effects and to the definition of significant error bars for the estimates of isothermal compressibilities. Extensive path-integral Monte Carlo computations for the quantum hard-sphere fluid (QHS) have been performed in the (N, V, T) ensemble under temperature and density conditions for which dispersion effects dominate the quantum behavior. These computations have served to obtain the centroid correlations, which have been processed further via the numerical solving of the OZ2 equation. To do so, Baxter-Dixon-Hutchinson's variational procedure, complemented with Baumketner-Hiwatari's grand-canonical corrections, has been used. The virial equation of state has also been obtained and several comparisons between different versions of the QHS equation of state have been made. The results show the reliability of the procedure based on isothermal compressibilities discussed herein, which can then be regarded as a useful and quick means of obtaining the equation of state for fluids under quantum conditions involving strong repulsive interactions.

  7. The inviscid, compressible and rotational, 2D isotropic Burgers and pressureless Euler-Coriolis fluids: Solvable models with illustrations

    Science.gov (United States)

    Choquard, Ph.; Vuffray, M.

    2014-10-01

    The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler-Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part (Wu et al., 2006, Sects. 2.3.2, 2.3.3) and, deductively, by means of a canonical Hamiltonian Clebsch like formalism (Clebsch, 1857, 1859), implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler-Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementation of the isotropy hypothesis entails a radial dependence of the velocity potentials and of the stream functions associated to the compressible and to the rotational part of the fluids and results in the cancellation of the dilatation-rotational cross terms in the Jacobian. A simple expression is obtained for all the radially symmetric Jacobians occurring in the theory. Representative examples of regular and singular solutions are shown and the competition between dilatation and vorticity is illustrated. Inspired by thermodynamical, mean field theoretical analogies, a genuine variational formula is proposed which yields unique measure solutions for the radially symmetric fluid densities investigated. We stress that this variational formula, unlike the Hopf-Lax formula, enables us to treat systems which are both compressible and rotational. Moreover in the one

  8. Numerical schemes for the coupling of compressible and incompressible fluids in several space dimensions

    CERN Document Server

    Neusser, Jochen

    2015-01-01

    We present a numerical scheme for immiscible two-phase flows with one compressible and one incompressible phase. Special emphasis lies in the discussion of the coupling strategy for compressible and incompressible Euler equations to simulate inviscid liquid-vapour flows. To reduce the computational effort further, we also introduce two approximate coupling strategies. The resulting schemes are compared numerically to a fully compressible scheme and show good agreement with these standard algorithm at lower numerical costs.

  9. Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2012-06-01

    Full Text Available combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume-of-fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting...

  10. The Inviscid, Compressible and Rotational, 2D Isotropic Burgers and Pressureless Euler-Coriolis Fluids; Theory and Illustrations

    CERN Document Server

    Choquard, Philippe

    2013-01-01

    The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler-Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part and, deductively, by means of a canonical Hamiltonian Clebsch like formalism, implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler-Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementatio...

  11. Hydromagnetic thermosolutal instability of compressible walters' (model B' rotating fluid permeated with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available The thermosolutal instability of compressible Walters' (model B' elastico-viscous rotating fluid permeated with suspended particles (fine dust in the presence of vertical magnetic field in porous medium is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection the Walters' (model B' fluid behaves like an ordinary Newtonian fluid and it is observed that the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions.

  12. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids

    NARCIS (Netherlands)

    Pesch, L.; van der Vegt, Jacobus J.W.

    2008-01-01

    Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The

  13. A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids

    NARCIS (Netherlands)

    Pesch, L.; Vegt, van der J.J.W.

    2008-01-01

    Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The w

  14. THERMAL INSTABILITY OF COMPRESSIBLE WALTERS' (MODEL B' FLUID IN THE PRESENCE OF HALL CURRENTS AND SUSPENDED PARTICLES

    Directory of Open Access Journals (Sweden)

    Urvashi GUPTA

    2011-01-01

    Full Text Available Effect of Hall currents and suspended particles is considered on the hydromagnetic stability of a compressible, electrically conducting Walters' (Model B' elastico-viscous fluid. After linearizing the relevant hydromagnetic equations, the perturbation equations are analyzed in terms of normal modes. A dispersion relation governing the effects of visco-elasticity, magnetic field, Hall currents and suspended particles is derived. It has been found that for stationary convection, the Walters' (Model B' fluid behaves like an ordinary Newtonian fluid due to the vanishing of the visco-elastic parameter. The compressibility and magnetic field have a stabilizing effect on the system, as such their effect is to postpone the onset of thermal instability whereas Hall currents and suspended particles are found to hasten the onset of thermal instability for permissible range of values of various parameters. Also, the dispersion relation is analyzed numerically and the results shown graphically. The critical Rayleigh numbers and the wavenumbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. The visco-elasticity, suspended particles and Hall currents (hence magnetic field introduce oscillatory modes in the system which were non-existent in their absence.

  15. Global Well-Posedness and Decay Rates of Strong Solutions to a Non-Conservative Compressible Two-Fluid Model

    Science.gov (United States)

    Evje, Steinar; Wang, Wenjun; Wen, Huanyao

    2016-09-01

    In this paper, we consider a compressible two-fluid model with constant viscosity coefficients and unequal pressure functions {P^+neq P^-}. As mentioned in the seminal work by Bresch, Desjardins, et al. (Arch Rational Mech Anal 196:599-629, 2010) for the compressible two-fluid model, where {P^+=P^-} (common pressure) is used and capillarity effects are accounted for in terms of a third-order derivative of density, the case of constant viscosity coefficients cannot be handled in their settings. Besides, their analysis relies on a special choice for the density-dependent viscosity [refer also to another reference (Commun Math Phys 309:737-755, 2012) by Bresch, Huang and Li for a study of the same model in one dimension but without capillarity effects]. In this work, we obtain the global solution and its optimal decay rate (in time) with constant viscosity coefficients and some smallness assumptions. In particular, capillary pressure is taken into account in the sense that {Δ P=P^+ - P^-=fneq 0} where the difference function {f} is assumed to be a strictly decreasing function near the equilibrium relative to the fluid corresponding to {P^-}. This assumption plays an key role in the analysis and appears to have an essential stabilization effect on the model in question.

  16. Penetrating annulus fibrosus injuries affect dynamic compressive behaviors of the intervertebral disc via altered fluid flow: an analytical interpretation.

    Science.gov (United States)

    Michalek, Arthur J; Iatridis, James C

    2011-08-01

    Extensive experimental work on the effects of penetrating annular injuries indicated that large injuries impact axial compressive properties of small animal intervertebral discs, yet there is some disagreement regarding the sensitivity of mechanical tests to small injury sizes. In order to understand the mechanism of injury size sensitivity, this study proposed a simple one dimensional model coupling elastic deformations in the annulus with fluid flow into and out of the nucleus through both porous boundaries and through a penetrating annular injury. The model was evaluated numerically in dynamic compression with parameters obtained by fitting the solution to experimental stress-relaxation data. The model predicted low sensitivity of mechanical changes to injury diameter at both small and large sizes (as measured by low and high ratios of injury diameter to annulus thickness), with a narrow range of high sensitivity in between. The size at which axial mechanics were most sensitive to injury size (i.e., critical injury size) increased with loading frequency. This study provides a quantitative hypothetical model of how penetrating annulus fibrosus injuries in discs with a gelatinous nucleus pulposus may alter disc mechanics by changing nucleus pulposus fluid pressurization through introduction of a new fluid transport pathway though the annulus. This model also explains how puncture-induced biomechanical changes depend on both injury size and test protocol.

  17. Compressible Fluids Driven by Stochastic Forcing: The Relative Energy Inequality and Applications

    Science.gov (United States)

    Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina

    2017-03-01

    We show the relative energy inequality for the compressible Navier-Stokes system driven by a stochastic forcing. As a corollary, we prove the weak-strong uniqueness property (pathwise and in law) and convergence of weak solutions in the inviscid-incompressible limit. In particular, we establish a Yamada-Watanabe type result in the context of the compressible Navier-Stokes system, that is, pathwise weak-strong uniqueness implies weak-strong uniqueness in law.

  18. Numerical simulations of compressible Rayleigh-Taylor turbulence in stratified fluids

    CERN Document Server

    Scagliarini, A; Sbragaglia, M; Sugiyama, K; Toschi, F

    2010-01-01

    We present results from numerical simulations of Rayleigh-Taylor turbulence, performed using a recently proposed lattice Boltzmann method able to describe consistently a thermal compressible flow subject to an external forcing. The method allowed us to study the system both in the nearly-Boussinesq and strongly compressible regimes. Moreover, we show that when the stratification is important, the presence of the adiabatic gradient causes the arrest of the mixing process.

  19. Global existence and optimal convergence rates of solutions for 3D compressible magneto-micropolar fluid equations

    Science.gov (United States)

    Wei, Ruiying; Guo, Boling; Li, Yin

    2017-09-01

    The Cauchy problem for the three-dimensional compressible magneto-micropolar fluid equations is considered. Existence of global-in-time smooth solutions is established under the condition that the initial data are small perturbations of some given constant state. Moreover, we obtain the time decay rates of the higher-order spatial derivatives of the solution by combining the Lp-Lq estimates for the linearized equations and the Fourier splitting method, if the initial perturbation is small in H3-norm and bounded in L1-norm.

  20. Renormalization group analysis of a turbulent compressible fluid near d = 4: Crossover between local and non-local scaling regimes

    Directory of Open Access Journals (Sweden)

    Antonov A.V.

    2016-01-01

    Full Text Available We study scaling properties of the model of fully developed turbulence for a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field theoretic renormalization group (RG. The scaling properties in this approach are related to fixed points of the RG equation. Here we study a possible existence of other scaling regimes and an opportunity of a crossover between them. This may take place in some other space dimensions, particularly at d = 4. A new regime may there arise and then by continuity moves into d = 3. Our calculations have shown that there really exists an additional fixed point, that may govern scaling behaviour.

  1. Extending the robustness and efficiency of artificial compressibility for partitioned fluid-structure interactions

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2015-01-01

    Full Text Available first order backward-Eular scheme for the fluid domain, and a generalized alpha scheme for the solid domain. It is there- fore to be expected that the overall temporal convergence behavior of the FSI solution scheme be limited by the fluid solver. Both...

  2. Impact of Single-Particle Compressibility on the Fluid-Solid Phase Transition for Ionic Microgel Suspensions

    Science.gov (United States)

    Pelaez-Fernandez, M.; Souslov, Anton; Lyon, L. A.; Goldbart, P. M.; Fernandez-Nieves, A.

    2015-03-01

    We study ionic microgel suspensions composed of swollen particles for various single-particle stiffnesses. We measure the osmotic pressure π of these suspensions and show that it is dominated by the contribution of free ions in solution. As this ionic osmotic pressure depends on the volume fraction of the suspension ϕ , we can determine ϕ from π , even at volume fractions so high that the microgel particles are compressed. We find that the width of the fluid-solid phase coexistence, measured using ϕ , is larger than its hard-sphere value for the stiffer microgels that we study and progressively decreases for softer microgels. For sufficiently soft microgels, the suspensions are fluidlike, irrespective of volume fraction. By calculating the dependence on ϕ of the mean volume of a microgel particle, we show that the behavior of the phase-coexistence width correlates with whether or not the microgel particles are compressed at the volume fractions corresponding to fluid-solid phase coexistence.

  3. Artificial Fluid Properties for Large-Eddy Simulation of Compressible Turbulent Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Cook, A W

    2007-01-08

    An alternative methodology is described for Large-Eddy Simulation of flows involving shocks, turbulence and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of an ''LES'' fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a 10th-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in crisp fashion.

  4. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing

    Science.gov (United States)

    Cook, Andrew W.

    2007-05-01

    An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.

  5. A variational principle for compressible fluid mechanics. Discussion of the one-dimensional theory

    Science.gov (United States)

    Prozan, R. J.

    1982-01-01

    The second law of thermodynamics is used as a variational statement to derive a numerical procedure to satisfy the governing equations of motion. The procedure, based on numerical experimentation, appears to be stable provided the CFL condition is satisfied. This stability is manifested no matter how severe the gradients (compression or expansion) are in the flow field. For reasons of simplicity only one dimensional inviscid compressible unsteady flow is discussed here; however, the concepts and techniques are not restricted to one dimension nor are they restricted to inviscid non-reacting flow. The solution here is explicit in time. Further study is required to determine the impact of the variational principle on implicit algorithms.

  6. Laser driven single shock compression of fluid deuterium from 45 to 220 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D; Boehly, T; Celliers, P; Eggert, J; Moon, S; Meyerhofer, D; Collins, G

    2008-03-23

    The compression {eta} of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that {eta} {approx_equal} 4.2, in agreement with previous impedance match data from magnetically-driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa {eta} reaches a maximum of {approx}5.0, less than the 6-fold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower pressure data. Previous laser-driven double-shock results are found to be in good agreement with these single-shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.

  7. Phase-Field and Korteweg-Type Models for the Time-Dependent Flow of Compressible Two-Phase Fluids

    Science.gov (United States)

    Freistühler, Heinrich; Kotschote, Matthias

    2016-11-01

    Various versions of the Navier-Stokes-Allen-Cahn (NSAC), the Navier-Stokes-Cahn-Hilliard (NSCH), and the Navier-Stokes-Korteweg (NSK) equations have been used in the literature to model the dynamics of two-phase fluids. One main purpose of this paper consists in (re-)deriving NSAC, NSCH and NSK from first principles, in the spirit of rational mechanics, for fluids of very general constitutive laws. For NSAC, this deduction confirms and extends a proposal of Blesgen. Regarding NSCH, it continues work of Lowengrub and Truskinovsky and provides the apparently first justified formulation in the non-isothermal case. For NSK, it yields a most natural correction to the formulation by Dunn and Serrin. The paper uniformly recovers as examples various classes of fluids, distinguished according to whether none, one, or both of the phases are compressible, and according to the nature of their co-existence. The latter is captured not only by the mixing energy, but also by a `mixing rule'—a constitutive law that characterizes the type of the mixing. A second main purpose of the paper is to communicate the apparently new observation that in the case of two immiscible incompressible phases of different temperature-independent specific volumes, NSAC reduces literally to NSK. This finding may be considered as an independent justification of NSK. An analogous fact is shown for NSCH, which under the same assumption reduces to a new non-local version of NSK.

  8. Contribution to a torsional wave guide for the measurement of compressible fluids; Contribution a la theorie d'un guide a onde de torsion pour la mesure de niveau de liquides compressibles

    Energy Technology Data Exchange (ETDEWEB)

    Goubel-Lenoel, A

    1999-10-01

    In order to provide complementary means for measurement of water levels in pressurized vessels of nuclear reactors, the possibilities of an immersed torsional wave sensor are being looked into. It has already been modeled, considering an incompressible fluid. Yet, because the fluid can turn into a two-phase fluid, we have investigated how to extend the existing model. As a first step, we have taken into account the compressibility of the surrounding fluid. We focus on a cylindrical waveguide with an elliptic cross-section. Its transverse dimensions are small compared with its length and the wavelengths in the fluid. We start with the elasticity equations for the waveguide. Then, from the exact expression of the pressure exerted by the fluid on the waveguide boundary, a long wavelength approximation is obtained. We end by applying Hamilton's principle of energy conservation, which leads to an approximate equation governing the fluid-loaded waveguide motion, and to an expression of the apparent phase velocity of the torsional wave in the immersed waveguide. Finally, fluid level measurement is possible. Some simulations are made, highlighting the influence of the compressibility. (author)

  9. Fluid Flow Characterization of High Turbulent Intensity Compressible Flow Using Particle Image Velocimetry

    Science.gov (United States)

    2015-08-01

    archive, University of St Andrews. [8] Cengel Yunus A., Cimbala John M., “Fluid Mechanics: Fundamentals and Applications, McGraw-Hill”, 2006 [9...Gas Dynamics”, Pearson Prentice Hall, 2006 [25] Dynalene Inc., HC series data sheet, accessed 2014 [26] Cengel Y. A., “Heat and Mass Transfer

  10. UNIFIED COMPUTATION OF FLOW WITH COMPRESSIBLE AND INCOMPRESSIBLE FLUID BASED ON ROE'S SCHEME

    Institute of Scientific and Technical Information of China (English)

    HUANG Dian-gui

    2006-01-01

    A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables are pressure, velocities and temperature. The time integration scheme is used in conjunction with a finite volume discretization. The preconditioning is coupled with a high order implicit upwind scheme based on the definition of a Roe's type matrix. Computational capabilities are demonstrated through computations of high Mach number, middle Mach number, very low Mach number, and incompressible flow. It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe's scheme.

  11. Flow of Compressible Fluids through Pipes with constant cross section: Calculation Algorithms for Ideal Gases

    OpenAIRE

    Armijo C., Javier; Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú

    2014-01-01

    We are proposing algoritms to solve problems of flow of an ideal gas in a pipe of constant section. With the compressible flow equations we have determined the pressure and velocity profile for both isothermal and adiabatic flow of air and methane. Se presentan algoritmos para resolver los problemas de flujo de fluidos de gases ideales a través de tubos de sección transversal constante. Con las ecuaciones de flujo compresible se determinan los perfiles de presión y velocidad, en flujo isot...

  12. A Functional Equation Governing the Motion of a Compressible Fluid Flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fundamental problem of the statistical dynamics of a turbulent flow, formulated in terms of characteristic functionals, has already been pointed out in the work of E. Hopf. In his work he deduced a functional equation governing the evolution of the characteristic functional of a turbulent velocity field in an incompressible field. In this paper we present a derivation of a dynamical equation governing the evolution of the characteristic functional of a turbulent velocity field in a compressible field. However, the characteristic functional equations we derived are governing the motions of an ideal gas and van der Waals gas.

  13. Ultrasonic velocity and isentropic compressibility of binary fluid mixtures at 298.15 K

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Shukla

    2011-05-01

    Full Text Available Speed of sound and isentropic compressibility of six polar-nonpolar cyclic liquid binary mixtures has been computed over the whole composition range at 298.15 K with the help of Prigogine-Flory-Patterson theory. Experimental surface tension and experimental density data were utilized in the prediction of sound velocity with the use of Auerbach relation. A comparison has then been carried out as regards the merit and demerits of the employed relations. An attempt has also been made to study the nature and magnitude of molecular interactions involved in the liquid mixture.

  14. A direct interaction approximation treatment of turbulence in a compressible fluid. I - Formalism

    Science.gov (United States)

    Hartke, Gregory J.; Canuto, V. M.; Alonso, Carol T.

    1988-01-01

    The direct interaction approximation is used to treat turbulence in a compressible medium with constant mean gradients. The set of coupled nonlinear integrodifferential equations is derived that is satisfied by the transverse and longitudinal energy spectral functions, Q(T) and Q(L) and by the transverse and longitudinal response functions, G(T) and G(L). Finally, expressions for the average of the product of pairs of physically relevant fluctuating quantities (velocity, temperature, density) are derived in terms of Q(T) and Q(L).

  15. Efficient solution of the non-linear Reynolds equation for compressible fluid using the finite element method

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Santos, Ilmar

    2015-01-01

    An efficient finite element scheme for solving the non-linear Reynolds equation for compressible fluid coupled to compliant structures is presented. The method is general and fast and can be used in the analysis of airfoil bearings with simplified or complex foil structure models. To illustrate...... the computational performance, it is applied to the analysis of a compliant foil bearing modelled using the simple elastic foundation model. The model is derived and perturbed using complex notation. Top foil sagging effect is added to the bump foil compliance in terms of a close-form periodic function. For a foil...... bearing utilized in an industrial turbo compressor, the influence of boundary conditions and sagging on the pressure profile, shaft equilibrium position and dynamic coefficients is numerically simulated. The proposed scheme is faster, leading to the conclusion that it is suitable, not only for steady...

  16. Symmetric flows for compressible heat-conducting fluids with temperature dependent viscosity coefficients

    Science.gov (United States)

    Wan, Ling; Wang, Tao

    2017-06-01

    We consider the Navier-Stokes equations for compressible heat-conducting ideal polytropic gases in a bounded annular domain when the viscosity and thermal conductivity coefficients are general smooth functions of temperature. A global-in-time, spherically or cylindrically symmetric, classical solution to the initial boundary value problem is shown to exist uniquely and converge exponentially to the constant state as the time tends to infinity under certain assumptions on the initial data and the adiabatic exponent γ. The initial data can be large if γ is sufficiently close to 1. These results are of Nishida-Smoller type and extend the work (Liu et al. (2014) [16]) restricted to the one-dimensional flows.

  17. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    Science.gov (United States)

    Pantano, C.; Saurel, R.; Schmitt, T.

    2017-04-01

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-known pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. The combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement. A cure to this problem is developed in the present paper for the van der Waals EOS based on previous ideas. A special extra field and its corresponding evolution equation is added to the flow model. This new field separates the evolution of the nonlinear part of the density in the EOS and produce oscillation free solutions. The extra equation being nonconservative the behavior of two established numerical schemes on shocks computation is studied and compared to exact reference solutions that are available in the present context. The analysis shows that shock conditions of the nonconservative equation have important consequence on the results. Last, multidimensional computations of a supercritical gas jet is performed to illustrate the benefits of the present method, compared to conventional flow solvers.

  18. Static, Dynamic, and Thermal Properties of Compressible Fluid Film Journal Bearings

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Morosi, Stefano; Santos, Ilmar

    2011-01-01

    fluid film journal bearing, in order to identify when this type of analysis should be of concern. Load capacity, stiffness, and damping coefficients are determined by the solution of the standard Reynolds equation coupled to the energy equation. Numerical investigations show how bearing geometry......Modern turbo-machinery applications, high-speed machine tools, and laboratory equipment require ever-growing rotational speeds and high degree of precision and reliability. Gas journal bearings are often employed because they meet the demands of high-speed performance, in a clean environment...

  19. Perfect and Quasi-Perfect Lattice Actions

    CERN Document Server

    Bietenholz, W

    1998-01-01

    Perfect lattice actions are exiting with several respects: they provide new insight into conceptual questions of the lattice regularization, and quasi-perfect actions could enable a great leap forward in the non-perturbative solution of QCD. We try to transmit a flavor of them, also beyond the lattice community.

  20. An added-mass partition algorithm for fluid–structure interactions of compressible fluids and nonlinear solids

    Energy Technology Data Exchange (ETDEWEB)

    Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu; Schwendeman, D.W., E-mail: schwed@rpi.edu

    2016-01-15

    We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solid Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.

  1. Rayleigh-Taylor instability in partially ionized compressible plasmas: one fluid approach

    CERN Document Server

    Diaz, A J; Collados, M

    2014-01-01

    We study the modification of the classical criterion for the linear onset and growth rate of the Rayleigh-Taylor instability (RTI) in a partially ionized (PI) plasma in the one-fluid description, considering a generalized induction equation. The governing linear equations and appropriate boundary conditions, including gravitational terms, are derived and applied to the case of the RTI in a single interface between two partially ionized plasmas. The boundary conditions lead to an equation for the frequencies in which some of them have positive complex parts, marking the appearance of the RTI. We study the ambipolar term alone first, extending the result to the full induction equation later. We find that the configuration is always unstable because of the presence of a neutral species. In the classical stability regime the growth rate is small, since the collisions prevent the neutral fluid to fully develop the RTI. For parameters in the classical instability regime the growth rate is lowered, but for the consi...

  2. Simulation of compressible two-phase flows with topology change of fluid-fluid interface by a robust cut-cell method

    Science.gov (United States)

    Lin, Jian-Yu; Shen, Yi; Ding, Hang; Liu, Nan-Sheng; Lu, Xi-Yun

    2017-01-01

    We develop a robust cut-cell method for numerical simulation of compressible two-phase flows with topology change of the fluid-fluid interface. In cut cell methods the flows can be solved in the finite volume framework and the jump conditions at the interface are resolved by solving a local Riemann problem. Therefore, cut cell methods can obtain interface evolution with high resolution, and at the same time satisfactorily maintain the conservation of flow quantities. However, it remains a challenge for the cut cell methods to handle interfaces with topology change or very high curvature, where the mesh is not sufficiently fine to resolve the interface. Inappropriate treatment could give rise to either distorted interface advection or unphysical oscillation of flow variables, especially when the regularization process (e.g. reinitialization in the level set methods) is implemented. A robust cut-cell method is proposed here, with the interface being tracked by a level set function. The local unphysical oscillation of flow variables in the presence of topology change is shown to be greatly suppressed by using a delayed reinitialization. The method can achieve second-order accuracy with respect to the interface position in the absence of topology changes of interface, while locally degrading to first-order at the interface region where topology change occurs. Its performance is examined through a variety of numerical tests, such as Rayleigh collapse, shock-bubble interaction, and shock-induced bubble collapse in water. Numerical results are compared against either benchmark solutions or experimental observations, and good agreement has been achieved qualitatively and/or quantitatively. Finally, we apply the method to investigating the collapse process of two tandem bubbles in water.

  3. Entropy Stable Summation-by-Parts Formulations for Compressible Computational Fluid Dynamics

    KAUST Repository

    Carpenter, M.H.

    2016-11-09

    A systematic approach based on a diagonal-norm summation-by-parts (SBP) framework is presented for implementing entropy stable (SS) formulations of any order for the compressible Navier–Stokes equations (NSE). These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy equality for smooth problems. They are also valid for discontinuous flows provided sufficient dissipation is added at shocks and discontinuities to satisfy an entropy inequality. Admissible SBP operators include all centred diagonal-norm finite-difference (FD) operators and Legendre spectral collocation-finite element methods (LSC-FEM). Entropy stable multiblock FD and FEM operators follows immediately via nonlinear coupling operators that ensure conservation, accuracy and preserve the interior entropy estimates. Nonlinearly stable solid wall boundary conditions are also available. Existing SBP operators that lack a stability proof (e.g. weighted essentially nonoscillatory) may be combined with an entropy stable operator using a comparison technique to guarantee nonlinear stability of the pair. All capabilities extend naturally to a curvilinear form of the NSE provided that the coordinate mappings satisfy a geometric conservation law constraint. Examples are presented that demonstrate the robustness of current state-of-the-art entropy stable SBP formulations.

  4. Non-ideal compressible-fluid effects in oblique shock waves

    Science.gov (United States)

    Gori, G.; Vimercati, D.; Guardone, A.

    2017-03-01

    The non-monotone dependence of the speed of sound along adiabatic transformations is demonstrated to result in the admissibility of non-ideal increase of the flow Mach number across oblique shock waves, for pre-shock states in close proximity of the liquid-vapour saturation curve. This non-ideal behaviour is primarily associated with a less-than-unity value of the fundamental derivative of gasdynamics and, therefore, non-ideal shock waves are expected to be observed in flows of fluids with moderate molecular complexity. The simple yet qualitatively sound van der Waals model is used to confirm the present findings and to provide exemplary non-ideal shock waves.

  5. Supernovae: an example of complexity in the physics of compressible fluids.

    Science.gov (United States)

    Pomeau, Yves; Le Berre, Martine; Chavanis, Pierre-Henri; Denet, Bruno

    2014-04-01

    Because the collapse of massive stars occurs in a few seconds, while the stars evolve on billions of years, the supernovae are typical complex phenomena in fluid mechanics with multiple time scales. We describe them in the light of catastrophe theory, assuming that successive equilibria between pressure and gravity present a saddle-center bifurcation. In the early stage we show that the loss of equilibrium may be described by a generic equation of the Painlevé I form. This is confirmed by two approaches, first by the full numerical solutions of the Euler-Poisson equations for a particular pressure-density relation, secondly by a derivation of the normal form of the solutions close to the saddle-center. In the final stage of the collapse, just before the divergence of the central density, we show that the existence of a self-similar collapsing solution compatible with the numerical observations imposes that the gravity forces are stronger than the pressure ones. This situation differs drastically in its principle from the one generally admitted where pressure and gravity forces are assumed to be of the same order. Moreover it leads to different scaling laws for the density and the velocity of the collapsing material. The new self-similar solution (based on the hypothesis of dominant gravity forces) which matches the smooth solution of the outer core solution, agrees globally well with our numerical results, except a delay in the very central part of the star, as discussed. Whereas some differences with the earlier self-similar solutions are minor, others are very important. For example, we find that the velocity field becomes singular at the collapse time, diverging at the center, and decreasing slowly outside the core, whereas previous works described a finite velocity field in the core which tends to a supersonic constant value at large distances. This discrepancy should be important for explaining the emission of remnants in the post-collapse regime. Finally we

  6. Analysis of a Vertical Flat Heat Pipe Using Potassium Working Fluid and a Wick of Compressed Nickel Foam

    Directory of Open Access Journals (Sweden)

    Geir Hansen

    2016-03-01

    Full Text Available Heat at high temperatures, in this work 400–650 °C, can be recovered by use of cooling panels/heat pipes in the walls of aluminum electrolysis cells. For this application a flat vertical heat pipe for heat transfer from a unilateral heat source was analyzed theoretically and in the laboratory, with special emphasis on the performance of the wick. In this heat pipe a wick of compressed nickel foam covered only the evaporator surface, and potassium was used as the working fluid. The magnitudes of key thermal resistances were estimated analytically and compared. Operating temperatures and wick performance limits obtained experimentally were compared to predictions. Thermal deformation due to unilateral heat flux was analyzed by the use of COMSOL Multiphysics®. The consequences of hot spots at different locations on the wick were analyzed by use of a numerical 2D model. A vertical rectangular wick was shown to be most vulnerable to hot spots at the upper corners.

  7. Linear analysis on the onset of thermal convection of highly compressible fluids: implications for the mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Miyagoshi, Takehiro; Ogawa, Masaki

    2015-02-01

    A series of linear analysis was performed on the onset of thermal convection of highly compressible fluids, in order to deepen the fundamental insights into the mantle convection of massive super-Earths in the presence of strong adiabatic compression. We consider the temporal evolution (growth or decay) of an infinitesimal perturbation superimposed to a highly compressible fluid which is in a hydrostatic (motionless) and conductive state in a basally heated horizontal layer. As a model of pressure-dependence in material properties, we employed an exponential decrease in thermal expansivity α and exponential increase in (reference) density ρ with depth. The linearized equations for conservation of mass, momentum and internal (thermal) energy are numerically solved for the critical Rayleigh number as well as the vertical profiles of eigenfunctions for infinitesimal perturbations. The above calculations are repeatedly carried out by systematically varying (i) the dissipation number (Di), (ii) the temperature at the top surface and (iii) the magnitude of pressure-dependence in α and ρ. Our analysis demonstrated that the onset of thermal convection is strongly affected by the adiabatic compression, in response to the changes in the static stability of thermal stratification in the fluid layer. For sufficiently large Di where a thick sublayer of stable stratification develops in the layer, for example, the critical Rayleigh number explosively increases with Di, together with drastic decreases in the length scales of perturbations both in vertical and horizontal directions. In particular, for very large Di, a thick `stratosphere' occurs in the fluid layer where the vertical motion is significantly suppressed, resulting in a shrink of the incipient convection in a thin sublayer of unstable thermal stratification. In addition, when Di exceeds a threshold value above which a thermal stratification becomes stable in the entire layer, no perturbation is allowed to grow

  8. Four-dimensional equation of motion for viscous compressible and charged fluid with regard to the acceleration field, pressure field and dissipation field

    CERN Document Server

    Fedosin, Sergey G

    2016-01-01

    From the principle of least action the equation of motion for viscous compressible and charged fluid is derived. The viscosity effect is described by the 4-potential of the energy dissipation field, dissipation tensor and dissipation stress-energy tensor. In the weak field limit it is shown that the obtained equation is equivalent to the Navier-Stokes equation. The equation for the power of the kinetic energy loss is provided, the equation of motion is integrated, and the dependence of the velocity magnitude is determined. A complete set of equations is presented, which suffices to solve the problem of motion of viscous compressible and charged fluid in the gravitational and electromagnetic fields.

  9. PERFECT [CHINA] CO., LTD.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Funded by Perfect Resources (M) Sdn Bhd, Perfect (China) Co., Ltd.was incorporated in 1994 with business anchoring in research pioneering, advanced research and development, productions, sales and marketing and services in a grand scale, modern enterprise group. Today Perfect (China) Co., Ltd.'s wide range of consumer products has created a niche market for health food, personal care, household and beauty & skin care products.

  10. On the thermodynamic derivation of differential equations for turbulent flow transfer in a compressible heat-conducting fluid

    Science.gov (United States)

    Kolesnichenko, A. V.

    2010-08-01

    This paper considers the modern approach to the thermodynamic modeling of developed turbulent flows of a compressible fluid based on the systematic application of the formalism of extended irreversible thermodynamics (EIT) that goes beyond the local equilibrium hypothesis, which is an inseparable attribute of classical nonequilibrium thermodynamics (CNT). In addition to the classical thermodynamic variables, EIT introduces new state parameters—dissipative flows and the means to obtain the respective evolutionary equations consistent with the second law of thermodynamics. The paper presents a detailed discussion of a number of physical and mathematical postulates and assumptions used to build a thermodynamic model of turbulence. A turbulized liquid is treated as an indiscrete continuum consisting of two thermodynamic sub-systems: an averaged motion subsystem and a turbulent chaos subsystem, where turbulent chaos is understood as a conglomerate of small-scale vortex bodies. Under the above formalism, this representation enables the construction of new models of continual mechanics to derive cause-and-effect differential equations for turbulent heat and impulse transfer, which describe, together with the averaged conservations laws, turbulent flows with transverse shear. Unlike gradient (noncausal) relationships for turbulent flows, these differential equations can be used to investigate both hereditary phenomena, i.e., phenomena with history or memory, and nonlocal and nonlinear effects. Thus, within EIT, the second-order turbulence models underlying the so-called invariant modeling of developed turbulence get a thermodynamic explanation. Since shear turbulent flows are widespread in nature, one can expect the given modification of the earlier developed thermodynamic approach to developed turbulence modeling (see Kolesnichenko, 1980; 1998; 2002-2004; Kolesnichenko and Marov, 1985; Kolesnichenko and Marov, 2009) to be used in research on a broad class of dissipative

  11. Compressibility of the fluid

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    2014-03-01

    Full Text Available The presence of air in the liquid causes the dynamic system behaviour. When solve to issue of the dynamics we often meet problems of cavitation. Cavitation is an undesirable phenomenon, since it causes a disruption of the surrounding material and material destruction. Cavitation is accompanied by loud sound effects and reduces the efficiency of such pumps, etc. Therefore, it is desirable to model systems in which the cavitation might occur. A typical example is a solution of water hammer.

  12. Never Perfect Enough

    Science.gov (United States)

    Landphair, Juliette

    2007-01-01

    What exactly is perfect? Students describe perfection as a combination of characteristics valued by their peer culture: intelligence, thin and fit physical appearance, social poise. As students chug through their daily lives--morning classes, organization meetings, club sports practice or the gym, dinner, another class, more meetings, library,…

  13. A Perfect Day

    Institute of Scientific and Technical Information of China (English)

    DOREMICHELUT

    2004-01-01

    THERE are days where not a thing goes wrong. There's not a glitch. Everything you expect happens, and then more comes along, not because you ask, but because it just does. It's the way life is supposed to be when life is perfect. Memory is what names that day perfect and analyzes it in order to create another, just like it.

  14. Comment on "Investigation of simplified thermal expansion models for compressible Newtonian fluids applied to nonisothernal plane Couette and Poiseuille flows" by S. Bechtel et al

    CERN Document Server

    Pantokratoras, A

    2007-01-01

    In the above paper by Bechtel, Cai, Rooney and Wang, Physics of Fluids, 2004, 16, 3955-3974 six different theories of a Newtonian viscous fluid are investigated and compared, namely, the theory of a compressible Newtonian fluid, and five constitutive limits of this theory: the incompressible theory, the limit where density changes only due to changes in temperature, the limit where density changes only with changes in entropy, the limit where pressure is a function only of temperature, and the limit of pressure a function only of entropy. The six theories are compared through their ability to model two test problems: (i) steady flow between moving parallel isothermal planes separated by a fixed distance with no pressure gradient in the flow direction (Couette flow), and (ii) steady flow between stationary isothermal parallel planes with a pressure gradient (Poiseuille flow). The authors found, among other, that the incompressible theory admits solutions to these problems of the plane Couette/Poiseuille flow f...

  15. The effect of the volume fraction and viscosity on the compression and tension behavior of the cobalt-ferrite magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    H. Shokrollahi

    2016-03-01

    Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.

  16. PERFECT DEMAND ILLUSION

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Sulimov

    2015-01-01

    Full Text Available The article is devoted to technique «Perfect demand illusion», which allows to strengthen the competitive advantageof retailers. Also in the paper spells out the golden rules of visual merchandising.The definition of the method «Demand illusion», formulated the conditions of its functioning, and is determined by the mainhypothesis of the existence of this method.Furthermore, given the definition of the «Perfect demand illusion», and describes its additional conditions. Also spells out the advantages of the «Perfect demandillusion», before the «Demand illusion».

  17. On the flow of a compressible fluid by the hodograph method II : fundamental set of particular flow solutions of the Chaplygin differential equation

    Science.gov (United States)

    Garrick, I E; Kaplan, Carl

    1944-01-01

    The differential equation of Chaplygin's jet problem is utilized to give a systematic development of particular solutions of the hodograph flow equations, which extends the treatment of Chaplygin into the supersonic range and completes the set of particular solutions. The particular solutions serve to place on a reasonable basis the use of velocity correction formulas for the comparison of incompressible and compressible flows. It is shown that the geometric-mean type of velocity correction formula introduced in part I has significance as an over-all type of approximation in the subsonic range. A brief review of general conditions limiting the potential flow of an adiabatic compressible fluid is given and application is made to the particular solutions, yielding conditions for the existence of singular loci in the supersonic range. The combining of particular solutions in accordance with prescribed boundary flow conditions is not treated in the present paper.

  18. On the Flow of a Compressible Fluid by the Hodograph Method. II - Fundamental Set of Particular Flow Solutions of the Chaplygin Differential Equation

    Science.gov (United States)

    Garrick, I. E.; Kaplan, Carl

    1944-01-01

    The differential equation of Chaplygin's jet problem is utilized to give a systematic development of particular solutions of the hodograph flow equations, which extends the treatment of Chaplygin into the supersonic range and completes the set of particular solutions. The particular solutions serve to place on a reasonable basis the use of velocity correction formulas for the comparison of incompressible and compressible flows. It is shown that the geometric-mean type of velocity correction formula introduced in part I has significance as an over-all type of approximation in the subsonic range. A brief review of general conditions limiting the potential flow of an adiabatic compressible fluid is given and application is made to the particular solutions, yielding conditions for the existence of singular loci in the supersonic range. The combining of particular solutions in accordance with prescribed boundary flow conditions is not treated in the present paper.

  19. Unidirectional perfect absorber

    Science.gov (United States)

    Jin, L.; Wang, P.; Song, Z.

    2016-09-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices.

  20. Forced Transverse Vibration of a Closed Double Single-Walled Carbon Nanotube System Containing a Fluid with Effect of Compressive Axial Load

    Directory of Open Access Journals (Sweden)

    Mehrdad Nasirshoaibi

    2015-01-01

    Full Text Available Based on the Rayleigh beam theory, the forced transverse vibrations of a closed double single-walled carbon nanotube (SWCNT system containing a fluid with a Pasternak layer in-between are investigated. It is assumed that the two single-walled carbon nanotubes of the system are continuously joined by a Pasternak layer and both sides of SWCNTs containing a fluid are closed. The dynamic responses of the system caused by arbitrarily distributed continuous loads are obtained. The effect of compressive axial load on the forced vibrations of the double single-walled carbon nanotube system is discussed for one case of particular excitation loading. The properties of the forced transverse vibrations of the system are found to be significantly dependent on the compressive axial load. The steady-state vibration amplitudes of the SWCNT decrease with increasing of length of SWCNT. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic vibration absorption are formulated. The SWCNT-type dynamic absorber is a new concept of a dynamic vibration absorber (DVA, which can be applied to suppress excessive vibrations of corresponding SWCNT systems.

  1. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, P.R.

    1995-10-01

    Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.

  2. Everybody's Different Nobody's Perfect

    Science.gov (United States)

    ... traten ni qué edad tengan — eso se llama “DISCAPACIDAD.” Some kids have a disability because their muscles ... have one? ¿Conoces a alguien que tenga una discapacidad? ¿Tienes una tú? Everybody’s different, nobody’s perfect. So ...

  3. The Three Perfections

    Science.gov (United States)

    Hinshaw, Craig

    2005-01-01

    For thousands of years, the three perfections--painting, poetry, and calligraphy--have been considered the mark of an enlightened person throughout Asian cultures. Fifth-grade students learned about these three hallmarks by studying three works from the Detroit Institute of Art's Asian collection: a nineteenth-century Japanese hand scroll, a…

  4. Global Existence of Strong Solutions of Navier-Stokes-Poisson Equations for One-Dimensional Isentropic Compressible Fluids

    Institute of Scientific and Technical Information of China (English)

    Junping YIN; Zhong TAN

    2008-01-01

    The authors prove two global existence results of strong solutions of the isen- tropic compressible Navier-Stokes-Poisson equations in one-dimensional bounded intervals. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition. In this paper the initial vacuum is allowed, and T is bounded.

  5. Possible flow regimes of adiabatic one-dimensional compressible fluid flow with friction in convergent and divergent ducts.

    Science.gov (United States)

    Shouman, A. R.; Garcia, C. E.

    1971-01-01

    An analytical solution for the compressible one-dimensional flow in convergent and divergent ducts with friction is obtained. It is found that a nondimensional parameter, N, can be formed using the friction factor, duct half-angle and the ratio of specific heats of the gas. Seven flow regimes are describable with the solution, based on certain bounds on the magnitude of N. The regimes are discussed and corollary data are presented graphically.

  6. Compressible fluids with Maxwell-type equations, the minimal coupling with electromagnetic field and the Stefan–Boltzmann law

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Albert C.R., E-mail: albert@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Takakura, Flavio I., E-mail: takakura@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Abreu, Everton M.C., E-mail: evertonabreu@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro, 23890-971, Seropédica - RJ (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil); Neto, Jorge Ananias, E-mail: jorge@fisica.ufjf.br [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora - MG (Brazil)

    2017-05-15

    In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac’s constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition were obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev–Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan–Boltzmann type law was obtained. - Highlights: • Higher-derivative Lagrangian for a charged fluid. • Electromagnetic coupling and Dirac’s constraint analysis. • Partition function through path integral formalism. • Stefan–Boltzmann-kind law through the partition function.

  7. Compressible Fluids with Maxwell-type equations, the minimal coupling with electromagnetic field and the Stefan-Boltzmann law

    CERN Document Server

    Mendes, Albert C R; Abreu, Everton M C; Neto, Jorge Ananias

    2016-01-01

    In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac's constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition was obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev-Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan-Boltzmann type law was obtained.

  8. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-05-01

    Full Text Available of the gas has a noteworthy effect on predicted pressure loads in liquid–gas flow in certain instances. With the aim of providing a more accurate numerical representation of dynamic two-fluid flow, the solver is subsequently extended to account for variations...

  9. Perfect Dispersive Medium

    CERN Document Server

    Gupta, Shulabh

    2015-01-01

    Dispersion is at the heart of all ultrafast real-time signal processing systems across the entire electromagnetic spectrum ranging from radio-frequencies to optics. However, following Kramer-Kronig relations, these signal processing systems have been plagued with the parasitic amplitude distortions due to frequency dependent, and non-flat amplitude transmission of naturally dispersive media. This issue puts a serious limitation on the applicability and performance of these signal processing systems. To solve the above mentioned issue, a perfect dispersive medium is proposed in this work, which artificially violates the Kramer-Kronig relations, while satisfying all causality requirements. The proposed dispersive metamaterial is based on loss-gain metasurface pairs and exhibit a perfectly flat transmission response along with arbitrary dispersion in a broad bandwidth, thereby solving a seemingly unavoidable issue in all ultrafast signal processing systems. Such a metamaterial is further shown using sub-waveleng...

  10. Perfect Derived Propagators

    CERN Document Server

    Schulte, Christian

    2008-01-01

    When implementing a propagator for a constraint, one must decide about variants: When implementing min, should one also implement max? Should one implement linear equations both with and without coefficients? Constraint variants are ubiquitous: implementing them requires considerable (if not prohibitive) effort and decreases maintainability, but will deliver better performance. This paper shows how to use variable views, previously introduced for an implementation architecture, to derive perfect propagator variants. A model for views and derived propagators is introduced. Derived propagators are proved to be indeed perfect in that they inherit essential properties such as correctness and domain and bounds consistency. Techniques for systematically deriving propagators such as transformation, generalization, specialization, and channeling are developed for several variable domains. We evaluate the massive impact of derived propagators. Without derived propagators, Gecode would require 140000 rather than 40000 ...

  11. Boundary-layer phenomena for the cylindrically symmetric Navier-Stokes equations of compressible heat-conducting fluids with large data at vanishing shear viscosity

    Science.gov (United States)

    Ye, Xia; Zhang, Jianwen

    2016-08-01

    This paper concerns the asymptotic behavior of the solution to an initial-boundary value problem of the cylindrically symmetric Navier-Stokes equations with large data for compressible heat-conducting ideal fluids, as the shear viscosity μ goes to zero. A suitable corrector function (the so-called boundary-layer type function) is constructed to eliminate the disparity of boundary values. As by-products, the convergence rates of the derivatives in L 2 are obtained and the boundary-layer thickness (BL-thickness) of the value O≤ft({μα}\\right) with α \\in ≤ft(0,1/2\\right) is shown by an alternative method, compared with the results proved in Jiang and Zhang (2009 SIAM J. Math. Anal. 41 237-68) and Qin et al (2015 Arch. Ration. Mech. Anal. 216 1049-86).

  12. A novel approach for measuring the intrinsic nanoscale thickness of polymer brushes by means of atomic force microscopy: application of a compressible fluid model.

    Science.gov (United States)

    Cuellar, José Luis; Llarena, Irantzu; Iturri, Jagoba J; Donath, Edwin; Moya, Sergio Enrique

    2013-12-07

    The thickness of a poly(sulfo propyl methacrylate) (PSPM) brush is determined by Atomic Force Microscopy (AFM) imaging as a function of the loading force at different ionic strengths, ranging from Milli-Q water to 1 M NaCl. Imaging is performed both with a sharp tip and a colloidal probe. The brush thickness strongly depends both on the applied load and on the ionic strength. A brush thickness of 150 nm is measured in Millipore water when applying the minimal loading force. Imaging with an 8 μm silica particle as a colloidal probe results in a thickness of 30 nm larger than that measured with the tip. Increasing the ionic strength causes the well known reduction of the thickness of the brush. The apparent thickness of the brush decreases with increasing loading forces. An empirical model analogous to that of a compressible fluid is applied to describe the dependence of the apparent thickness of the brush with loading force. The model comprises three ionic strength dependent parameters for the brush: thickness at infinite compression, energy, and cohesive force. The meaning and significance of these parameters are discussed. A particular advantage of the model is that it allows for determination of the brush thickness at zero loading force.

  13. A New Ultra-Small Volume Fluid for Far-Forward, Non-Compressible Hemorrhage and Traumatic Brain Injury

    Science.gov (United States)

    2016-01-01

    regulating expression of adhesion molecules and chemokines. Unstimulated leukocytes cycle continuously between the blood and the lymph. IFN-γ...regulates this process by up-regulating expression of chemokines (e.g., IP-10, MCP-1, MIG, MIP-1α/β, RANTES) and adhesion molecules (e.g., ICAM-1, VCAM-1...suture, midway between bregma and lambda. Dental acrylic was used to secure a female Luer Loc for attachment to the fluid percussion device (HPD

  14. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    This article concerns a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual stratihtforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...

  15. A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations

    Science.gov (United States)

    Shakib, Farzin; Hughes, Thomas J. R.; Johan, Zdenek

    1991-01-01

    A space-time element method is presented for solving the compressible Euler and Navier-Stokes equations. The proposed formulation includes the variational equation, predictor multi-corrector algorithms and boundary conditions. The variational equation is based on the time-discontinuous Galerkin method, in which the physical entropy variables are employed. A least-squares operator and a discontinuity-capturing operator are added, resulting in a high-order accurate and unconditionally stable method. Implicit/explicit predictor multi-corrector algorithms, applicable to steady as well as unsteady problems, are presented; techniques are developed to enhance their efficiency. Implementation of boundary conditions is addressed; in particular, a technique is introduced to satisfy nonlinear essential boundary conditions, and a consistent method is presented to calculate boundary fluxes. Numerical results are presented to demonstrate the performance of the method.

  16. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy.

    Science.gov (United States)

    Saleh, B

    2016-09-01

    The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.

  17. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy

    Directory of Open Access Journals (Sweden)

    B. Saleh

    2016-09-01

    Full Text Available The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS and the total mass flow rate of the working fluid for each kW cooling capacity (ṁtotal. The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest ṁtotal under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.

  18. Building the perfect PC

    CERN Document Server

    Thompson, Robert Bruce

    2006-01-01

    This popular Build-It-Yourself (BIY) PC book covers everything you want to know about building your own system: Planning and picking out the right components, step-by-step instructions for assembling your perfect PC, and an insightful discussion of why you'd want to do it in the first place. Most big brand computers from HP, Dell and others use lower-quality components so they can meet their aggressive pricing targets. But component manufacturers also make high-quality parts that you can either purchase directly, or obtain through distributors and resellers. Consumers and corporations

  19. A compressible two-fluid model for the finite volume simulation of violent aerated flows. Analytical properties and numerical results

    CERN Document Server

    Dias, Frédéric; Ghidaglia, Jean-Michel

    2008-01-01

    In the study of ocean wave impact on structures, one often uses Froude scaling since the dominant force is gravity. However the presence of trapped or entrained air in the water can significantly modify wave impacts. When air is entrained in water in the form of small bubbles, the acoustic properties in the water change dramatically and for example the speed of sound in the mixture is much smaller than in pure water, and even smaller than in pure air. While some work has been done to study small-amplitude disturbances in such mixtures, little work has been done on large disturbances in air-water mixtures. We propose a basic two-fluid model in which both fluids share the same velocities. It is shown that this model can successfully mimic water wave impacts on coastal structures. Even though this is a model without interface, waves can occur. Their dispersion relation is discussed and the formal limit of pure phases (interfacial waves) is considered. The governing equations are discretized by a second-order fin...

  20. Finite-size effects in molecular dynamics simulations: Static structure factor and compressibility. II. Application to a model krypton fluid

    Science.gov (United States)

    Salacuse, J. J.; Denton, A. R.; Egelstaff, P. A.; Tau, M.; Reatto, L.

    1996-03-01

    The method described in the preceding paper [J. J. Salacuse, A. R. Denton, and P. A. Egelstaff, preceding paper, Phys. Rev. E 53, 2382 (1996)] for computing the static structure factor S(Q) of a bulk fluid is used to analyze molecular dynamics computer simulation data for a model krypton fluid whose atoms interact via a truncated Aziz pair potential. Simulations have been carried out for two system sizes of N=706 and 2048 particles and two thermodynamic states, described by a common reduced temperature T*=1.51 and reduced densities ρ*=0.25 and 0.4. Results presented include the N-particle radial distribution function gN(r) and the bulk static structure factor S(Q). In addition we calculate the direct correlation function c(r) from the full S(Q). In comparison with corresponding predictions of the modified hypernetted chain theory, the results are generally in excellent agreement at all r and Q, to within random statistical errors in the simulation data.

  1. Impact of Compression Stockings vs. Continuous Positive Airway Pressure on Overnight Fluid Shift and Obstructive Sleep Apnea among Patients on Hemodialysis

    Directory of Open Access Journals (Sweden)

    Bruno C. Silva

    2017-05-01

    Full Text Available IntroductionObstructive sleep apnea (OSA is common in edematous states, notably in hemodialysis patients. In this population, overnight fluid shift can play an important role on the pathogenesis of OSA. The effect of compression stockings (CS and continuous positive airway pressure (CPAP on fluid shift is barely known. We compared the effects of CS and CPAP on fluid dynamics in a sample of patients with OSA in hemodialysis, through a randomized crossover study.MethodsEach participant performed polysomnography (PSG at baseline, during CPAP titration, and after 1 week of wearing CS. Neck circumference (NC and segmental bioelectrical impedance were done before and after PSG.ResultsFourteen patients were studied (53 ± 9 years; 57% men; body mass index 29.7 ± 6.8 kg/m2. Apnea–hypopnea index (AHI decreased from 20.8 (14.2; 39.6 at baseline to 7.9 (2.8; 25.4 during CPAP titration and to 16.7 (3.5; 28.9 events/h after wearing CS (CPAP vs. baseline, p = 0.004; CS vs. baseline, p = 0.017; and CPAP vs. CS, p = 0.017. Nocturnal intracellular trunk water was higher after wearing CS in comparison to baseline and CPAP (p = 0.03. CS reduced the fluid accumulated in lower limbs during the day, although not significantly. Overnight fluid shift at baseline, CPAP, and CS was −183 ± 72, −343 ± 220, and −290 ± 213 ml, respectively (p = 0.006. Overnight NC increased at baseline (0.7 ± 0.4 cm, decreased after CPAP (−1.0 ± 0.4 cm, and while wearing CS (−0.4 ± 0.8 cm (CPAP vs. baseline, p < 0.0001; CS vs. baseline, p = 0.001; CPAP vs. CS, p = 0.01.ConclusionCS reduced AHI by avoiding fluid retention in the legs, favoring accumulation of water in the intracellular component of the trunk, thus avoiding fluid shift to reach the neck. CPAP improved OSA by exerting local pressure on upper airway, with no impact on fluid redistribution. CPAP performed significantly better than CS

  2. Perfect and imperfect states

    Directory of Open Access Journals (Sweden)

    Nikitović Aleksandar

    2013-01-01

    Full Text Available Early Greek ethics embodied in Cretan and Spartan mores, served as a model for Plato`s political theory. Plato theorized the contents of early Greek ethics, aspiring to justify and revitalize the fundamental principles of a traditional view of the world. However, according to Plato`s new insight, deed is further from the truth than a thought i.e. theory. The dorian model had to renounce its position to the perfect prototype of a righteous state, which is a result of the inner logic of philosophical theorizing in early Greek ethics. Prototype and model of philosophical reflection, in comparison to philosophical theory, becomes minor and deficient. Philosophical theorizing of early Greek ethics philosophically formatted Greek heritage, initiating substantial changes to the content of traditional ethics. Replacement of the myth with ontology, as a new foundation of politics, transformed early Greek ethics in various relevant ways. [Projekat Ministarstva nauke Republike Srbije, br. 179049

  3. Metamaterials for perfect absorption

    CERN Document Server

    Lee, Young Pak; Yoo, Young Joon; Kim, Ki Won

    2016-01-01

    This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and e...

  4. Perfect Circular Dichroic Metamirrors

    CERN Document Server

    Wang, Zuojia; Liu, Yongmin

    2015-01-01

    In nature, the beetle Chrysina gloriosa derives its iridescence by selectively reflecting left-handed circularly polarized light only. Here, for the first time, we introduce and demonstrate the optical analogue based on an ultrathin metamaterial, which we term circular dichroic metamirror. A general method to design the circular dichroic metasmirror is presented under the framework of Jones calculus. It is analytically shown that the metamirror can be realized by two layers of anisotropic metamaterial structures, in order to satisfy the required simultaneous breakings of n-fold rotational (n>2) and mirror symmetries. We design an infrared metamirror, which shows perfect reflectance for left-handed circularly polarized light without reversing its handedness, while almost completely absorbs right-handed circularly polarized light. These findings offer new methodology to realize novel chiral optical devices for a variety of applications, including polarimetric imaging, molecular spectroscopy, as well as quantum ...

  5. Solubility of block copolymer surfactants in compressed CO{sub 2} using a lattice fluid hydrogen-bonding model

    Energy Technology Data Exchange (ETDEWEB)

    Takishima, Shigeki; O`Neill, M.L.; Johnston, K.P. [Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering

    1997-07-01

    Supercritical carbon dioxide (CO{sub 2}) is an environmentally benign alternative to organic solvents in chemical processing. The solubilities of the homopolymers poly(ethylene glycol), poly(ethylene glycol) dimethyl ether (PEGDME), and poly(propylene glycol) (PPG) in CO{sub 2} were correlated with a lattice fluid hydrogen-bonding (LFHB) model, which was then used to predict solubilities of Pluronic L (PEG-PPG-PEG) and Pluronic R (PPG-PEG-PPG) triblock copolymers. Simple averaging rules were developed to evaluate the physical properties of the copolymers without introducing any adjustable parameters. For a given average molecular weight, the predictions of the model were quite reasonable and in some cases perhaps more accurate than the data, due to the large polydispersity of the samples. The model predicts the effects of total molecular weight, PEG/PPG ratio, terminal functional groups, temperature, and density on solubility. The much higher solubility of PPG versus PEG is due primarily to steric hindrance from the methyl branch, which weakens segment-segment interactions, and to a lesser extent to the stronger hydrogen bond donor strength of a primary (in the case of PEG) versus a secondary (in the case of PPG) alcohol terminal group. Consequently, the predicted solubilities of Pluronic L surfactants, which have stronger hydrogen bond donors on the terminal groups, are not much smaller than those of Pluronic R surfactants for given molecular weights of the blocks.

  6. Perfect Actions for Scalar Theories

    CERN Document Server

    Bietenholz, W

    1998-01-01

    We construct an optimally local perfect lattice action for free scalars of arbitrary mass, and truncate its couplings to a unit hypercube. Spectral and thermodynamic properties of this ``hypercube scalar'' are drastically improved compared to the standard action. We also discuss new variants of perfect actions, using anisotropic of triangular lattices, or applying new types of RGTs. Finally we add a $\\lambda \\phi^{4}$ term and address perfect lattice perturbation theory. We report on a lattice action for the anharmonic oscillator, which is perfect to $O(\\lambda)$.

  7. Perfect Omniscience, Perfect Secrecy and Steiner Tree Packing

    CERN Document Server

    Nitinawarat, Sirin

    2010-01-01

    We consider perfect secret key generation for a ``pairwise independent network'' model in which every pair of terminals share a random binary string, with the strings shared by distinct terminal pairs being mutually independent. The terminals are then allowed to communicate interactively over a public noiseless channel of unlimited capacity. All the terminals as well as an eavesdropper observe this communication. The objective is to generate a perfect secret key shared by a given set of terminals at the largest rate possible, and concealed from the eavesdropper. First, we show how the notion of perfect omniscience plays a central role in characterizing perfect secret key capacity. Second, a multigraph representation of the underlying secrecy model leads us to an efficient algorithm for perfect secret key generation based on maximal Steiner tree packing. This algorithm attains capacity when all the terminals seek to share a key, and, in general, attains at least half the capacity. Third, when a single ``helper...

  8. SOME RESULTS ON CIRCULAR PERFECT GRAPHS AND PERFECT GRAPHS

    Institute of Scientific and Technical Information of China (English)

    XU Baogang

    2005-01-01

    An r-circular coloring of a graph G is a map f from V(G) to the set of open unit intervals of an Euclidean circle of length r,such that f(u) ∩ f(v) = φ whenever uv ∈ E(G).Circular perfect graphs are defined analogously to perfect graphs by means of two parameters,the circular chromatic number and the circular clique number.In this paper,we study the properties of circular perfect graphs.We give (1) a necessary condition for a graph to be circular perfect,(2) some circular critical imperfect graphs,and (3) a characterization of graphs with the property that each of their induced subgraphs has circular clique number the same as its clique number,and then the two conjectures that are equivalent to the perfect graph conjecture.

  9. Perfect simulation of Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2005-01-01

    Our objective is to construct a perfect simulation algorithm for unmarked and marked Hawkes processes. The usual straightforward simulation algorithm suffers from edge effects, whereas our perfect simulation algorithm does not. By viewing Hawkes processes as Poisson cluster processes and using...

  10. Perfectly secure encryption of individual sequences

    CERN Document Server

    Merhav, Neri

    2011-01-01

    In analogy to the well-known notion of finite--state compressibility of individual sequences, due to Lempel and Ziv, we define a similar notion of "finite-state encryptability" of an individual plaintext sequence, as the minimum asymptotic key rate that must be consumed by finite-state encrypters so as to guarantee perfect secrecy in a well-defined sense. Our main basic result is that the finite-state encryptability is equal to the finite-state compressibility for every individual sequence. This is in parallelism to Shannon's classical probabilistic counterpart result, asserting that the minimum required key rate is equal to the entropy rate of the source. However, the redundancy, defined as the gap between the upper bound (direct part) and the lower bound (converse part) in the encryption problem, turns out to decay at a different rate (in fact, much slower) than the analogous redundancy associated with the compression problem. We also extend our main theorem in several directions, allowing: (i) availability...

  11. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  12. Estimation of Upper Bound for Order of Filters used in Perfect Reconstruction Filter Banks

    Directory of Open Access Journals (Sweden)

    B. R. Nagendra

    2014-07-01

    Full Text Available Filter banks are widely used in variety of applications such as signal compression, multi-channel transmission, conditioning of power supply, coding and decoding of signals, etc. Perfect reconstruction filter banks are used in the applications where it is essential to reconstruct the original signal with minimum errors. Compression of satellite vibration test data is one such application where perfect reconstruction filter banks can be used to design wavelets. These wavelets are used in transform coding stage of compression algorithm. It is required to have higher order for filters used in perfect reconstruction filter banks, to ensure better filter characteristics. The study carried out in this work, estimates the upper bound for order that can be assigned to filters used in perfect reconstruction filter banks

  13. Mathematical model for coupling a quasi-unidimensional perfect flow

    CERN Document Server

    Msallam, Régis

    2010-01-01

    Nonlinear acoustics of wind instruments conducts to study unidimensional fluid flows. From physically relevant approximations that are modelized with the thin layer Navier Stokes equations, we propose a coupled model where perfect fluid flow is described by the Euler equations of gas dynamics and viscous and thermal boundary layer is modelized by a linear equation. We describe numerical discretization, validate the associated software by comparison with analytical solutions and consider musical application of strongly nonlinear waves in the trombone.

  14. A meshless method for compressible flows with the HLLC Riemann solver

    CERN Document Server

    Ma, Z H; Qian, L

    2014-01-01

    The HLLC Riemann solver, which resolves both the shock waves and contact discontinuities, is popular to the computational fluid dynamics community studying compressible flow problems with mesh methods. Although it was reported to be used in meshless methods, the crucial information and procedure to realise this scheme within the framework of meshless methods were not clarified fully. Moreover, the capability of the meshless HLLC solver to deal with compressible liquid flows is not completely clear yet as very few related studies have been reported. Therefore, a comprehensive investigation of a dimensional non-split HLLC Riemann solver for the least-square meshless method is carried out in this study. The stiffened gas equation of state is adopted to capacitate the proposed method to deal with single-phase gases and/or liquids effectively, whilst direct applying the perfect gas equation of state for compressible liquid flows might encounter great difficulties in correlating the state variables. The spatial der...

  15. Myth of the Perfect Family

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share The "Perfect" Family Page Content Article Body Is there such a ...

  16. Perfect imaging with geodesic waveguides

    Science.gov (United States)

    Miñano, Juan C.; Benítez, Pablo; González, Juan C.

    2010-12-01

    Transformation optics is used to prove that a spherical waveguide filled with an isotropic material with radial refractive index n=1/r has radially polarized modes (i.e. the electric field is only radial) with the same perfect focusing properties as the Maxwell fish-eye (MFE) lens. An approximate version of that device, comprising a thin waveguide with a homogeneous core, paves the way to experimentally attaining perfect imaging in the MFE lens.

  17. Perfect Actions with Chemical Potential

    CERN Document Server

    Bietenholz, W

    1998-01-01

    We show how to include a chemical potential \\mu in perfect lattice actions. It turns out that the standard procedure of multiplying the quark fields \\Psi, an example, the case of free fermions with chemical potential is worked out explicitly. Even after truncation, cut-off effects in the pressure and the baryon density are small. Using a (quasi-)perfect action, numerical QCD simulations for non-zero chemical potential become more powerful, because coarse lattices are sufficient for extracting continuum physics.

  18. The Perfect Science Machine

    Science.gov (United States)

    2008-05-01

    ESO celebrates 10 years since First Light of the VLT Today marks the 10th anniversary since First Light with ESO's Very Large Telescope (VLT), the most advanced optical telescope in the world. Since then, the VLT has evolved into a unique suite of four 8.2-m Unit Telescopes (UTs) equipped with no fewer than 13 state-of-the-art instruments, and four 1.8-m moveable Auxiliary Telescopes (ATs). The telescopes can work individually, and they can also be linked together in groups of two or three to form a giant 'interferometer' (VLTI), allowing astronomers to see details corresponding to those from a much larger telescope. Green Flash at Paranal ESO PR Photo 16a/08 The VLT 10th anniversary poster "The Very Large Telescope array is a flagship facility for astronomy, a perfect science machine of which Europe can be very proud," says Tim de Zeeuw, ESO's Director General. "We have built the most advanced ground-based optical observatory in the world, thanks to the combination of a long-term adequately-funded instrument and technology development plan with an approach where most of the instruments were built in collaboration with institutions in the member states, with in-kind contributions in labour compensated by guaranteed observing time." Sitting atop the 2600m high Paranal Mountain in the Chilean Atacama Desert, the VLT's design, suite of instruments, and operating principles set the standard for ground-based astronomy. It provides the European scientific community with a telescope array with collecting power significantly greater than any other facilities available at present, offering imaging and spectroscopy capabilities at visible and infrared wavelengths. Blue Flash at Paranal ESO PR Photo 16b/08 A Universe of Discoveries The first scientifically useful images, marking the official 'First Light' of the VLT, were obtained on the night of 25 to 26 May 1998, with a test camera attached to "Antu", Unit Telescope number 1. They were officially presented to the press on

  19. Hybrid Explicit Residual Distribution Scheme for Compressible Multiphase Flows

    Science.gov (United States)

    Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin

    2017-03-01

    The aim of this work is the development of a fully explicit scheme in the framework of time dependent hyperbolic problems with strong interacting discontinuities to retain high order accuracy in the context of compressible multiphase flows. A new methodology is presented to compute compressible two-fluid problems applied to the five equation reduced model given in Kapila et al. (Physics of Fluids 2001). With respect to other contributions in that area, we investigate a method that provides mesh convergence to the exact solutions, where the studied non-conservative system is associated to consistent jump relations. The adopted scheme consists of a coupled predictor-corrector scheme, which follows the concept of residual distributions in Ricchiuto and Abgrall (J. Comp. Physics 2010), with a classical Glimm’s scheme (J. Sci. Stat. Comp. 1982) applied to the area where a shock is occurring. This numerical methodology can be easily extended to unstructured meshes. Test cases on a perfect gas for a two phase compressible flow on a Riemann problem have verified that the approximation converges to its exact solution. The results have been compared with the pure Glimm’s scheme and the expected exact solution, finding a good overlap.

  20. Torsion as a source of expansion in a Bianchi type-I universe in the self-consistent Einstein-Cartan theory of a perfect fluid with spin density

    Science.gov (United States)

    Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.

    1987-01-01

    It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.

  1. Quantum Data Compression of a Qubit Ensemble

    OpenAIRE

    Rozema, Lee A.; Mahler, Dylan H.; Hayat, Alex; Turner, Peter S.; Steinberg, Aephraim M.

    2014-01-01

    Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compre...

  2. Perfect and Imperfect Gauge Fixing

    CERN Document Server

    Shirzad, A

    2006-01-01

    Gauge fixing may be done in different ways. We show that using the chain structure to describe a constrained system, enables us to use either a perfect gauge, in which all gauged degrees of freedom are determined; or an imperfect gauge, in which some first class constraints remain as subsidiary conditions to be imposed on the solutions of the equations of motion. We also show that the number of constants of motion depends on the level in a constraint chain in which the gauge fixing condition is imposed. The relativistic point particle, electromagnetism and the Polyakov string are discussed as examples and perfect or imperfect gauges are distinguished.

  3. Perfect simulation of Vervaat perpetuities

    CERN Document Server

    Fill, James Allen

    2009-01-01

    We use coupling into and from the past to sample perfectly in a simple and provably fast fashion from the Vervaat family of perpetuities. The family includes the Dickman distribution, which arises both in number theory and in the analysis of the Quickselect algorithm, which was the motivation for our work.

  4. Conditions for $\\beta$-perfectness

    NARCIS (Netherlands)

    Keijsper, J.C.M.; Tewes, M.

    2000-01-01

    A $\\beta$-perfect graph is a simple graph $G$ such that $\\chi(G')=\\beta(G')$ for every induced subgraph $G'$ of $G$, where $\\chi(G')$ is the chromatic number of $G'$, and $\\beta(G')$ is defined as the maximum over all induced subgraphs $H$ of $G'$ of the minimum vertex degree in $H$. The vertices of

  5. Perfect NIZK with Adaptive Soundness

    NARCIS (Netherlands)

    Abe, M.; Fehr, S.

    2007-01-01

    This paper presents a very simple and efficient adaptively-sound perfect NIZK argument system for any NP-language. In contrast to recently proposed schemes by Groth, Ostrovsky and Sahai, our scheme does not pose any restriction on the statements to be proven. Besides, it enjoys a number of desirable

  6. Shocklets in compressible flows

    Institute of Scientific and Technical Information of China (English)

    袁湘江; 男俊武; 沈清; 李筠

    2013-01-01

    The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinuity, and Tollmien-Schlichting (T-S) wave in compressible flows are investigated. The relations between the three types of waves and shocklets are further analyzed and discussed. Different stages of the shocklet formation process are simulated. The results show that the three waves in compressible flows will transfer to shocklets only when the initial disturbance amplitudes are greater than the certain threshold values. In compressible boundary layers, the shocklets evolved from T-S wave exist only in a finite region near the surface instead of the whole wavefront.

  7. Fluid Dynamics and Viscosity in Strongly Correlated Fluids

    CERN Document Server

    Schaefer, Thomas

    2014-01-01

    We review the modern view of fluid dynamics as an effective low energy, long wavelength theory of many body systems at finite temperature. We introduce the notion of a nearly perfect fluid, defined by a ratio $\\eta/s$ of shear viscosity to entropy density of order $\\hbar/k_B$ or less. Nearly perfect fluids exhibit hydrodynamic behavior at all distances down to the microscopic length scale of the fluid. We summarize arguments that suggest that there is fundamental limit to fluidity, and review the current experimental situation with regard to measurements of $\\eta/s$ in strongly coupled quantum fluids.

  8. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  9. "Compressed" Compressed Sensing

    CERN Document Server

    Reeves, Galen

    2010-01-01

    The field of compressed sensing has shown that a sparse but otherwise arbitrary vector can be recovered exactly from a small number of randomly constructed linear projections (or samples). The question addressed in this paper is whether an even smaller number of samples is sufficient when there exists prior knowledge about the distribution of the unknown vector, or when only partial recovery is needed. An information-theoretic lower bound with connections to free probability theory and an upper bound corresponding to a computationally simple thresholding estimator are derived. It is shown that in certain cases (e.g. discrete valued vectors or large distortions) the number of samples can be decreased. Interestingly though, it is also shown that in many cases no reduction is possible.

  10. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  11. Perfect Liberty or Natural Liberty?

    DEFF Research Database (Denmark)

    2012-01-01

    the meaning of what was “natural” about economic life. The Physiocrats believed it possible to identify a model or a perfect regime of natural order – an order that they in fact thought to exist and function in China due to a rigorous system of economic laws. Smith sided with contemporary critics......The article investigates the concept of natural order as it is used by François Quesnay and Adam Smith in their respective economic writings. While Smith used the concept only after having visited Quesnay and the Physiocrats in France in the 1760s, in The Wealth of Nations he sought to negotiate...... of this metaphysical vision of economic perfection (and of Chinese governance), but he suggested that the economic mechanisms of the physiocratic theories would remain intact even with a minimum of control by state laws. However, Smith’s balancing act on these questions remained disputed even by his Scottish...

  12. METHODS FOR PERFECTING PRESENTATION SKILLS

    OpenAIRE

    Daniela N. Ilieva - Koleva

    2014-01-01

    Presentation skills are crucial for the nowadays managers and business people. This article aims to examine different traditional and unconventional methods for enhancing and perfecting presentation skills. It provides suggestions on how to structure a presentation, what type of verbal language to include, and pays significant attention to body language during presentations, as well as to the relation between the presenter and the audience. The paper highlights a variety of instruments and te...

  13. Multiple Beamforming with Perfect Coding

    CERN Document Server

    Li, Boyu

    2011-01-01

    In Singular Value Decomposition (SVD) beamforming, without channel coding, there is a trade-off between full diversity and full multiplexing. Adding channel coding, full diversity and full multiplexing can be both achieved, as long as the code rate Rc and the number of subchannels S satisfy RcS1. Recently discovered Perfect Space-Time Block Codes (PSTBCs) are full-rate full-diversity space-time codes, achieving maximum coding gain. In this paper, two novel techniques, Perfect Coded Multiple Beamforming (PCMB) and Bit-Interleaved Coded Multiple Beamforming with Perfect Coding (BICMB-PC), are proposed, employing PSTBCs. PCMB achieves full diversity, full multiplexing, and full rate simultaneously, and its performance is close to PSTBC and FPMB, while the decoding complexity is significantly less than PSTBC and much lower than FPMB of dimensions 2 and 4. On the other hand, BICMB-PC achieves both full diversity and full multiplexing, and its performance is similar to BICMB-FP, but provides much lower decoding com...

  14. Perfect orderings on Bratteli diagrams

    CERN Document Server

    Bezuglyi, Sergey; Yassawi, Reem

    2012-01-01

    Given a Bratteli diagram B, we study the set O(B) of all possible orderings w on a Bratteli diagram B and its subset P(B) consisting of `perfect' orderings that produce Bratteli-Vershik dynamical systems (Vershik maps). We give necessary and sufficient conditions for w to be perfect. On the other hand, a wide class of non-simple Bratteli diagrams that do not admit Vershik maps is explicitly described. In the case of finite rank Bratteli diagrams, we show that the existence of perfect orderings with a prescribed number of extreme paths affects significantly the values of the entries of the incidence matrices and the structure of the diagram B. Endowing the set O(B) with product measure, we prove that there is some j such that almost all orderings on B have j maximal and minimal paths, and that if j is strictly greater than the number of minimal components that B has, then almost all orderings are imperfect.

  15. The Perfect Quark-Gluon Vertex Function

    CERN Document Server

    Orginos, K; Brower, Richard C; Chandrasekharan, S; Wiese, U J

    1998-01-01

    We evaluate a perfect quark-gluon vertex function for QCD in coordinate space and truncate it to a short range. We present preliminary results for the charmonium spectrum using this quasi-perfect action.

  16. %159300 MUSICAL PERFECT PITCH [OMIM

    Lifescience Database Archive (English)

    Full Text Available e-recognition capacity and musical exposure and training, as well as demographic characteristics. The subjec...ts were selected from the musical communities of 4 large metropolitan areas. Perfect pitch was found to pred...fect pitch.) See 191200 for a discussion of a form of lack of musical ability, tune deafness. Schlaug et al....aterability in 30 healthy, right-handed professional musicians and compared the r...esults with those from nonmusicians matched for age, sex, and handedness. They found that musicians with per

  17. Almost-perfect secret sharing

    CERN Document Server

    Kaced, Tarik

    2011-01-01

    Splitting a secret s between several participants, we generate (for each value of s) shares for all participants. The goal: authorized groups of participants should be able to reconstruct the secret but forbidden ones get no information about it. In this paper we introduce several notions of non- perfect secret sharing, where some small information leak is permitted. We study its relation to the Kolmogorov complexity version of secret sharing (establishing some connection in both directions) and the effects of changing the secret size (showing that we can decrease the size of the secret and the information leak at the same time).

  18. Theoretical and computational dynamics of a compressible flow

    Science.gov (United States)

    Pai, Shih-I; Luo, Shijun

    1991-01-01

    An introduction to the theoretical and computational fluid dynamics of a compressible fluid is presented. The general topics addressed include: thermodynamics and physical properties of compressible fluids; 1D flow of an inviscid compressible fluid; shock waves; fundamental equations of the dynamics of a compressible inviscid non-heat-conducting and radiating fluid, method of small perturbations, linearized theory; 2D subsonic steady potential flow; hodograph and rheograph methods, exact solutions of 2D insentropic steady flow equations, 2D steady transonic and hypersonic flows, method of characteristics, linearized theory of 3D potential flow, nonlinear theory of 3D compressibe flow, anisentropic (rotational) flow of inviscid compressible fluid, electromagnetogasdynamics, multiphase flows, flows of a compressible fluid with transport phenomena.

  19. Renegotiation Perfection in Infinite Games

    Directory of Open Access Journals (Sweden)

    Julian C. Jamison

    2014-01-01

    Full Text Available We study the dynamic structure of equilibria in game theory. Allowing players in a game the opportunity to renegotiate, or switch to a feasible and Pareto superior equilibrium, can lead to welfare gains. However, in an extensive-form game this can also make it more difficult to enforce punishment strategies, leading to the question of which equilibria are feasible after all. This paper attempts to resolve that question by presenting the first definition of renegotiation-proofness in general games. This new concept, the renegotiation perfect set, satisfies five axioms. The first three axioms—namely Rationality, Consistency, and Internal Stability—characterize weakly renegotiation-proof sets. There is a natural generalized tournament defined on the class of all WRP sets, and the final two axioms—External Stability and Optimality—pick a unique “winner” from this tournament. The tournament solution concept employed, termed the catalog, is based on Dutta’s minimal covering set and can be applied to many settings other than renegotiation. It is shown that the renegotiation perfection concept is an extension of the standard renegotiation-proof definition for finite games, introduced by (Benoit and Krishna 1993, and that it captures the notion of a strongly renegotiation-proof equilibrium as defined by (Farrell and Maskin 1989.

  20. MAP Estimation, Message Passing, and Perfect Graphs

    CERN Document Server

    Jebara, Tony S

    2012-01-01

    Efficiently finding the maximum a posteriori (MAP) configuration of a graphical model is an important problem which is often implemented using message passing algorithms. The optimality of such algorithms is only well established for singly-connected graphs and other limited settings. This article extends the set of graphs where MAP estimation is in P and where message passing recovers the exact solution to so-called perfect graphs. This result leverages recent progress in defining perfect graphs (the strong perfect graph theorem), linear programming relaxations of MAP estimation and recent convergent message passing schemes. The article converts graphical models into nand Markov random fields which are straightforward to relax into linear programs. Therein, integrality can be established in general by testing for graph perfection. This perfection test is performed efficiently using a polynomial time algorithm. Alternatively, known decomposition tools from perfect graph theory may be used to prove perfection ...

  1. A perfect-fluid spacetime for a slightly deformed mass

    CERN Document Server

    Abishev, Medeu; Quevedo, Hernando; Toktarbay, Saken

    2015-01-01

    We present approximate exterior and interior solutions of Einstein's equations which describe the gravitational field of a static deformed mass distribution. The deformation of the source is taken into account up to the first order in the quadrupole.

  2. A perfect-fluid spacetime for a slightly deformed mass

    Science.gov (United States)

    Abishev, M.; Boshkayev, K.; Quevedo, H.; Toktarbay, S.

    We present approximate exterior and interior solutions of Einstein's equations which describe the gravitational field of a static deformed mass distribution. The deformation of the source is taken into account up to the first order in the quadrupole.

  3. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Directory of Open Access Journals (Sweden)

    Ivo Stachiv

    2015-11-01

    Full Text Available Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  4. Micro-/nanosized cantilever beams and mass sensors under applied axial tensile/compressive force vibrating in vacuum and viscous fluid

    Energy Technology Data Exchange (ETDEWEB)

    Stachiv, Ivo, E-mail: stachiv@fzu.cz [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China); Institute of Physics, Czech Academy of Sciences, Prague (Czech Republic); Fang, Te-Hua; Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China)

    2015-11-15

    Vibrating micro-/nanosized cantilever beams under an applied axial force are the key components of various devices used in nanotechnology. In this study, we perform a complete theoretical investigation of the cantilever beams under an arbitrary value of the axial force vibrating in a specific environment such as vacuum, air or viscous fluid. Based on the results easy accessible expressions enabling one the fast and highly accurate estimations of changes in the Q-factor and resonant frequencies of beam oscillating in viscous fluid caused by the applied axial force are derived and analyzed. It has been also shown that for beam-to-string and string vibrational regimes the mode shape starts to significantly deviate from the one known for a beam without axial force. Moreover, a linear dependency of the vibrational amplitude in resonance on the dimensionless tension parameter has been found. We revealed that only a large axial force, i.e. the string vibrational regime, significantly improves the Q-factor of beams submerged in fluid, while an increase of the axial force in beam and beam-to-string transition regimes has a negligibly small impact on the Q-factor enhancement. Experiments carried out on the carbon nanotubes and nanowires are in a good agreement with present theoretical predictions.

  5. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2000-01-01

    In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.

  6. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2008-01-01

    Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...

  7. Compressive phase-only filtering at extreme compression rates

    Science.gov (United States)

    Pastor-Calle, David; Pastuszczak, Anna; Mikołajczyk, Michał; Kotyński, Rafał

    2017-01-01

    We introduce an efficient method for the reconstruction of the correlation between a compressively measured image and a phase-only filter. The proposed method is based on two properties of phase-only filtering: such filtering is a unitary circulant transform, and the correlation plane it produces is usually sparse. Thanks to these properties, phase-only filters are perfectly compatible with the framework of compressive sensing. Moreover, the lasso-based recovery algorithm is very fast when phase-only filtering is used as the compression matrix. The proposed method can be seen as a generalization of the correlation-based pattern recognition technique, which is hereby applied directly to non-adaptively acquired compressed data. At the time of measurement, any prior knowledge of the target object for which the data will be scanned is not required. We show that images measured at extremely high compression rates may still contain sufficient information for target classification and localization, even if the compression rate is high enough, that visual recognition of the target in the reconstructed image is no longer possible. The method has been applied by us to highly undersampled measurements obtained from a single-pixel camera, with sampling based on randomly chosen Walsh-Hadamard patterns.

  8. 真实虚拟流方法在多介质可压缩流动模拟中的应用%Application of real ghost fluid method to simulation of compressible multi-fluid flows

    Institute of Scientific and Technical Information of China (English)

    陈宏; 朱卫兵; 张小彬; 孙润鹏; 郭金鑫

    2013-01-01

    In order to avoid the difficulties of the original ghost fluid method (GFM) in simulating the interaction between shock wave and material (fluid-fluid, gas-water) interface with large density rati-o, the real ghost fluid method (RGFM) was adopted to treat the ghost points near the material interface, the HLLC ( Harten-Lax-Van Leer with contact discontinuities) Riemann solver was applied to solve the Euler equations, and the fifth-order weighted essentially nonoscillatory (WENO) scheme was implemented to solve the level set equation. Numerical simulations were carried out for one-dimensional and two-dimensional examples, respectively. Simulated results show that the RGFM is superior to the GFM, and the images by the RGFM can display more details of the interaction between shock wave and material interface, which include the distinct deformation and fragmentation of the material interfaces with high density ratios.%为了克服原始虚拟流方法(ghost fluid method,GFM)在处理激波与大密度比流体-流体(气-水)界面相互作用时遇到的困难,采用真实虚拟流法(real ghost fluid method,RGFM)处理流体界面附近的虚拟点,结合HLLC(Harten-Lax-Van Leer with contact discontinuities)格式求解Euler方程,采用五阶WENO(weighted essentially nonoscillatory)格式求解level set输运方程.通过一维和二维算例的物质界面捕捉研究,证明RGFM在处理小密度比界面问题时优于GFM,同时RGFM还可用于求解激波与大密度比物质界面相互作用问题.计算表明,将RGFM引入到本文算法中,可精确捕捉到激波与界面(气气、气-水界面)相互作用的变化细节,包括大密度比界面的剧烈变形和破碎,并具有较高的计算分辨率.

  9. Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones

    Science.gov (United States)

    Mitchell, T. M.; Faulkner, D. R.

    2008-11-01

    Detailed experimental studies of the development of permeability of crustal rock during deformation are essential in helping to understand fault mechanics and constrain larger-scale models that predict bulk fluid flow within the crust. Permeability is particularly enhanced in the damage zone of faults, where microfracture damage accumulates under stress less than that required for macroscopic failure. Experiments performed in the prefailure region can provide data directly applicable to these zones of microfracture damage surrounding faults. The strength, permeability, and pore fluid volume evolution of initially intact crystalline rocks (Cerro Cristales granodiorite and Westerly granite) under increasing differential load leading to macroscopic failure has been determined at water pore pressures of 50 MPa and varying effective pressures from 10 to 50 MPa. Permeability is seen to increase by up to, and over, 2 orders of magnitude prior to macroscopic failure, with the greatest increase seen at lowest effective pressures. Postfailure permeability is shown to be over 3 orders of magnitude higher than initial intact permeabilities and approaches the lower limit of predicted in situ bulk crustal permeabilities. Increasing amplitude cyclic loading tests show permeability-stress hysteresis, with high permeabilities maintained as differential stress is reduced and the greatest permeability increases are seen between 90 and 99% of the failure stress. Prefailure permeabilities are nearly 7 to 9 orders of magnitude lower than that predicted by some high-pressure diffusive models suggesting that if these models are correct, microfracture matrix flow cannot dominate, and that bulk fluid flow must be dominated by larger-scale structures such as macrofractures. We present a model, based on our data, in which the permeability of a highly stressed fault tip process zone in low-permeability crystalline rocks increases by more than 2 orders of magnitude. Stress reduction related to

  10. Truncated Perfect Actions for Staggered Fermions

    CERN Document Server

    Bietenholz, W

    1998-01-01

    We discuss the behavior of free perfect staggered fermions and truncated versions thereof. The study includes flavor non-degenerate masses. We suggest a new blocking scheme, which provides excellent locality of the perfect lattice action. A truncation procedure adequate for the structure of staggered fermions is applied. We consider spectral and thermodynamic properties and compare truncated perfect actions, Symanzik improved and standard staggered fermions in two and four dimensions.

  11. Perfect Lattice Actions for Staggered Fermions

    CERN Document Server

    Bietenholz, W; Chandrasekharan, S; Wiese, U J

    1996-01-01

    We construct a perfect lattice action for staggered fermions by blocking from the continuum. The locality, spectrum and pressure of such perfect staggered fermions are discussed. We also derive a consistent fixed point action for free gauge fields and discuss its locality as well as the resulting static quark-antiquark potential. This provides a basis for the construction of (classically) perfect lattice actions for QCD using staggered fermions.

  12. Perfect competition according to Enrico Barone

    OpenAIRE

    Manuela Mosca; Michael E. Bradley

    2013-01-01

    The Italian economist Enrico Barone (1859- 1924) is best known for his contributions to marginal productivity theory and the socialist planning debate. This paper analyzes Barone’s contributions to the theory of perfect competition which are largely ignored in the secondary literature. It includes his methodology; the definition, conditions and outcomes of perfect competition; the institutional context of perfect competition; and the adjustment process. It also includes some of Barone’s graph...

  13. Neighborhood connected perfect domination in graphs

    Directory of Open Access Journals (Sweden)

    Kulandai Vel M.P.

    2012-12-01

    Full Text Available Let $G = (V, E$ be a connected graph. A set $S$ of vertices in $G$ is a perfect dominating set if every vertex $v$ in $V-S$ is adjacent to exactly one vertex in $S$. A perfect dominating set $S$ is said to be a neighborhood connected perfect dominating set (ncpd-set if the induced subgraph $$ is connected. The minimum cardinality of a ncpd-set of $G$ is called the neighborhood connected perfect domination number of $G$ and is denoted by $\\gamma_{ncp}(G$. In this paper we initiate a study of this parameter.

  14. Lossless Image Compression Using New Biorthogonal Wavelets

    Directory of Open Access Journals (Sweden)

    M. Santhosh

    2013-12-01

    Full Text Available Even though a large number of wavelets exist, one n eeds new wavelets for their specific applications. One of the basic wavelet categories is orthogonal wavel ets. But it was hard to find orthogonal and symmetric wavelets. Symmetricity is required for perfect reconstruction. Hence, a need for orthogonal and symmetric arises. The solution was in the form of biorthogonal wavelets which preserves perfect reconstruction condition. Though a number of biorthogonal wavelets are proposed in the literature, in this paper four new biorthogonal wavelets are proposed which gives bett er compression performance. The new wavelets are compared with traditional wavelets by using the des ign metrics Peak Signal to Noise Ratio (PSNR and Compression Ratio (CR. Set Partitioning in Hierarc hical Trees (SPIHT coding algorithm was utilized to incorporate compression of images.

  15. Perfect Actions and Operators for Lattice QCD

    Science.gov (United States)

    Wiese, Uwe-Jens

    1996-05-01

    Wilson's renormalization group implies that lattice actions located on a renormalized trajectory emanating from a fixed point represent perfect discretizations of continuum physics. With a perfect action the spectrum of a lattice theory is identical with the one of the continuum theory even at finite lattice spacing. Similarly, perfect operators yield cut-off independent matrix elements. Hence, continuum QCD can in principle be reconstructed from a lattice with finite spacing. In practice it is difficult to construct perfect actions and perfect operators explicitly. Here perturbation theory is used to derive perfect actions for quarks and gluons by performing a block renormalization group transformation directly from the continuum. The renormalized trajectory for free massive quarks is identified and a parameter in the renormalization group transformation is tuned such that for 1-d configurations the perfect action reduces to the nearest neighbor Wilson fermion action. Then the 4-d perfect action turns out to be extremely local as well, which is vital for numerical simulations. The fixed point action for free gluons is also obtained by blocking from the continuum. For 2-d configurations it reduces to the standard plaquette action, and for 4-d configurations it is still very local. With interactions between quarks and gluons switched on the perfect quark-gluon and 3-gluon vertex functions are computed analytically. In particular, a perfect clover term can be extracted from the quark-gluon vertex. The perturbatively perfect action is directly applicable to heavy quark physics. The construction of a perfect QCD action for light quarks should include nonperturbative effects, which is possible using numerical methods. Classically perfect quark and gluon fields are constructed as well. They allow to interpolate the continuum fields from the lattice data. In this way one can obtain information about space-time regions between lattice points. The classically perfect fields

  16. Quantum data compression of a qubit ensemble.

    Science.gov (United States)

    Rozema, Lee A; Mahler, Dylan H; Hayat, Alex; Turner, Peter S; Steinberg, Aephraim M

    2014-10-17

    Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could allow for a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized.

  17. Digital image compression in dermatology: format comparison.

    Science.gov (United States)

    Guarneri, F; Vaccaro, M; Guarneri, C

    2008-09-01

    Digital image compression (reduction of the amount of numeric data needed to represent a picture) is widely used in electronic storage and transmission devices. Few studies have compared the suitability of the different compression algorithms for dermatologic images. We aimed at comparing the performance of four popular compression formats, Tagged Image File (TIF), Portable Network Graphics (PNG), Joint Photographic Expert Group (JPEG), and JPEG2000 on clinical and videomicroscopic dermatologic images. Nineteen (19) clinical and 15 videomicroscopic digital images were compressed using JPEG and JPEG2000 at various compression factors and TIF and PNG. TIF and PNG are "lossless" formats (i.e., without alteration of the image), JPEG is "lossy" (the compressed image has a lower quality than the original), JPEG2000 has a lossless and a lossy mode. The quality of the compressed images was assessed subjectively (by three expert reviewers) and quantitatively (by measuring, point by point, the color differences from the original). Lossless JPEG2000 (49% compression) outperformed the other lossless algorithms, PNG and TIF (42% and 31% compression, respectively). Lossy JPEG2000 compression was slightly less efficient than JPEG, but preserved image quality much better, particularly at higher compression factors. For its good quality and compression ratio, JPEG2000 appears to be a good choice for clinical/videomicroscopic dermatologic image compression. Additionally, its diffusion and other features, such as the possibility of embedding metadata in the image file and to encode various parts of an image at different compression levels, make it perfectly suitable for the current needs of dermatology and teledermatology.

  18. Near-critical fluid boiling: overheating and wetting films.

    Science.gov (United States)

    Hegseth, J; Oprisan, A; Garrabos, Y; Lecoutre-Chabot, C; Nikolayev, V S; Beysens, D

    2008-08-01

    The heating of coexisting gas and liquid phases of pure fluid through its critical point makes the fluid extremely compressible, expandable, slows the diffusive transport, and decreases the contact angle to zero (perfect wetting by the liquid phase). We have performed experiments on near-critical fluids in a variable volume cell in the weightlessness of an orbiting space vehicle, to suppress buoyancy-driven flows and gravitational constraints on the liquid-gas interface. The high compressibility, high thermal expansion, and low thermal diffusivity lead to a pronounced adiabatic heating called the piston effect. We have directly visualized the near-critical fluid's boundary layer response to a volume quench when the external temperature is held constant. We have found that when the system's temperature T is increased at a constant rate past the critical temperature T(c), the interior of the fluid gains a higher temperature than the hot wall (overheating). This extends previous results in temperature quenching experiments in a similarly prepared system when the gas is clearly isolated from the wall. Large elliptical wetting film distortions are also seen during these ramps. By ray tracing through the elliptically shaped wetting film, we find very thick wetting film on the walls. This wetting film is at least one order of magnitude thicker than films that form in the Earth's gravity. The thick wetting film isolates the gas bubble from the wall allowing gas overheating to occur due to the difference in the piston effect response between gas and liquid. Remarkably, this overheating continues and actually increases when the fluid is ramped into the single-phase supercritical phase.

  19. Magnifying perfect lens with positive refraction

    CERN Document Server

    Tyc, Tomas

    2010-01-01

    We propose a device with a positive isotropic refractive index that creates a magnified perfect real image of an optically homogeneous three-dimensional region of space within geometrical optics. Its key ingredient is a new refractive index profile that can work as a perfect lens on its own, having a very moderate index range.

  20. A perfectness concept for multicriteria games

    NARCIS (Netherlands)

    van Megen, F.; Borm, P.E.M.; Tijs, S.H.

    1995-01-01

    This paper considers a refinement of equilibria for multicriteria games based on the perfectness concept of Selten (1975). Existence of perfect equilibrium points is shown and several characterizations are provided. Furthermore, contrary to the result for equilibria for multicriteria games, an examp

  1. A new characterization of trivially perfect graphs

    Directory of Open Access Journals (Sweden)

    Christian Rubio Montiel

    2015-03-01

    Full Text Available A graph $G$ is \\emph{trivially perfect} if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number $\\alpha(G$ equals the number of (maximal cliques $m(G$. We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.

  2. The perfect three: ontology as trinity

    Directory of Open Access Journals (Sweden)

    D.T. Williams

    1988-03-01

    Full Text Available The Ontological Argument fo r the existence of God is briefly examined with particular reference to its basic premise, the assumption of the perfection of God. Despite some problems with the idea, it is believed that perfection is a valid concept. The thrust of the article is that if a perfect God exists, such perfection requires at least the basic concepts of the doctrine of the Trinity . The author therefore believes th a t the idea of the Trinity is derivable in a rudimentary form without reference to either revelation or to the "vestigia" (the supposed reflection of the Trinity in the creation, but simply from the idea of perfection. Some authors, both medieval and modern are cited in support of the argument.

  3. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  4. Compressive beamforming

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Mosegaard, Klaus

    2014-01-01

    Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex...

  5. Characterizing perfect recall in Epistemic Temporal Logic

    CERN Document Server

    Witzel, Andreas

    2010-01-01

    We review the notion of perfect recall in the literature on interpreted systems, game theory, and epistemic logic. We give a (to our knowledge) novel frame condition for it, which is local and can straightforwardly be translated to a defining formula in a language that only has next-step temporal operators, such as epistemic temporal logic (ETL). It also gives rise to a complete axiomatization for S5 ETL frames with perfect recall. We then consider how to extend and consolidate the notion of perfect recall in sub-S5 settings, where the various notions discussed are no longer equivalent.

  6. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  7. Real time detection of leaks in non-compressible fluid flow systems: a time series approach; Deteccao em tempo real de vazamentos em redes de escoamento para fluidos incompressiveis: uma abordagem em series temporais

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cesar Augusto Fernandes de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Lab. SDV - Dutos]. E-mail: jlm@eq.ufrj.br

    2002-06-01

    Algorithms were developed for real time detection, estimation and location of leaks in flow systems operating with non-compressible fluids. Process inputs and outputs are assumed to be available by means of field sensing, treated through historical time series reconciliation and storage. The process presented herein was built as a pseudo stationary system for process data generation at the selected variables: nodal pressures, flow rates in pipes and input and output nodes. The procedure consists in generating data series during the occurrence of programmed events and use them during the training of ARX/ARMAX structure MIMO predictors, with constant update. A sudden leak is detected by a statistically significant instant deviation between a group of predictions and the measures of the process associated with the predictors' answers. Once the event is identified, the next step is to locate and estimate its size using another group of predictors trained through simulated process data of known leak events. These predictors use leak parameters (i.e., its location and orifice diameter) as additional inputs so that estimation can be performed in order to predict real answers to the process that are being deviated from the original predictions monitored during the manifestation of the event. (author)

  8. Calcul couple fluide/structure avec ANSYS : étude numérique et expérimentale d'une plaque élastique en contact avec un fluide lourd compressible

    Science.gov (United States)

    Sigrist, J. F.; Laine, C.; Peseux, B.

    2002-12-01

    Une préoccupation constante de tout industriel est la maîtrise des marges de dimensionnement de ses structures. Le recours aux techniques de calcul scientifique permet en phase de conception détaillée un dimensionnement au plus juste des structures, tout en respectant les différentes contraintes de conception (exigences fonctionnelles, conditions d'environnement, aspects réglementaires). Une meilleure maîtrise des marges passe donc par une meilleure connaissance de l'outil de calcul (précision intrinsèque, mise en œuvre de techniques de calcul plus ou moins élaborées) et la prise en compte d'une réalité physique plus complexe (avec par exemple un couplage entre différents phénomènes physiques) pour une meilleure représentativité du calcul. Une démarche globale de recherche et développement a été mise en place au sein du Service Scientifique et Technique de l'établissement DCN de Nantes Indret pour répondre à ce besoin. Nous présentons ici un exemple d'application pour le calcul de structures en présence de fluide. Cette étude numérique et expérimentale nous permet de valider conjointement le processus de calcul en bureau d'étude et les méthodes de mesure sur site dans le domaine de l'analyse fréquentielle de structures mouillées.

  9. Classification of eight dimensional perfect forms

    NARCIS (Netherlands)

    Dutour Sikiric, M.; Schuermann, A.; Vallentin, F.

    2007-01-01

    In this paper, we classify the perfect lattices in dimension 8. There are 10916 of them. Our classification heavily relies on exploiting symmetry in polyhedral computations. Here we describe algorithms making the classification possible.

  10. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  11. The internal consistency of perfect competition

    OpenAIRE

    Jakob Kapeller; Stephan Pühringer

    2010-01-01

    This article surveys some arguments brought forward in defense of the theory of perfect competition. While some critics propose that the theory of perfect competition, and thus also the theory of the firm, are logically flawed, (mainstream) economists defend their most popular textbook model by a series of apparently different arguments. Here it is examined whether these arguments are comparable, consistent and convincing from the point of view of philosophy of science.

  12. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  13. Perfectivity and time reference in Hausa

    Directory of Open Access Journals (Sweden)

    Mahamane L. Abdoulaye

    2008-01-01

    Full Text Available The relative marking in Hausa marks discourse presupposition in perfective and imperfective relative clauses and out-of-focus clauses of focus and fronted wh-questions. However, the Relative Perfective also appears in storyline narrative clauses and various accounts try to find a common feature between relative clauses and narrative context. This paper rejects the common feature approach to Hausa relative marking and presents a systematic grammaticalization account of the functions of the Relative Perfective. The paper shows that in temporal when relative clauses headed by look?cin d? 'time that', the aspectual contrast Relative Imperfective vs. Relative Perfective has vanished, and the Relative Perfective indexes the specific time of the event. The temporal relative clauses differ from locative and manner adverbial relative clauses, whose semantics (location and manner are not usual inflectional categories and they therefore maintain the aspectual contrast between Relative Perfective and Relative Imperfective. The paper shows that the new temporal category, the Specific Time Marker, spread to other environments and incorporated a time orientation feature in main clauses of narrative and dialogical discourse to become a simple past. The paper proposes a mixed tense and aspect TAM system for Hausa, a system positioned between aspect-only and tense-prominent systems.

  14. Viscosity of a nucleonic fluid

    CERN Document Server

    Mekjian, Aram Z

    2012-01-01

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  15. Nonlinear Acoustics and Shock Formation in Lossless Barotropic Green--Naghdi Fluids

    CERN Document Server

    Christov, Ivan C

    2016-01-01

    The equations of motion of lossless compressible nonclassical fluids under the so-called Green--Naghdi theory are considered for two classes of barotropic fluids: (\\textit{i}) perfect gases and (\\textit{ii}) liquids obeying a quadratic equation of state. An exact reduction in terms of a scalar acoustic potential and the (scalar) thermal displacement is achieved. Properties and simplifications of these model nonlinear acoustic equations for unidirectional flows are noted. Specifically, the requirement that the governing system of equations for such flows remain hyperbolic is shown to lead to restrictions on the physical parameters and/or applicability of the model. A weakly nonlinear model is proposed on the basis of neglecting only terms proportional to the square of the Mach number in the governing equations, without any further approximation or modification of the nonlinear terms. Shock formation via acceleration wave blowup is studied numerically in a one-dimensional context using a high-resolution Godunov...

  16. 可压缩流体饱和孔隙介质中孔隙压力波传播数值分析%Numerical analysis of propagation of pore pressure waves in compressible fluid saturated porous media

    Institute of Scientific and Technical Information of China (English)

    杨多兴; 李琦; 王舒

    2014-01-01

    首次将高精度时空守恒元/解元方法推广到可压缩流体饱和孔隙介质中孔隙压力波传播的数值计算中。将孔隙度梯度从源(汇)项中分离,直接引入流通量,改进了理论模型。通过对孔隙介质激波问题的数值模拟,验证了方法的精度和有效性。在此基础上,提出了孔隙介质中二维黎曼问题,并揭示了孔隙压力波存在接触间断、激波、膨胀波、压缩波等复杂的结构特征。该成果对二氧化碳地质封存、二氧化碳提高石油采收率、页岩气压裂开采以及地震破裂过程的研究具有重要的理论与应用意义。%The governing equations of the propagation of shock waves in compressible fluid saturated deformable porous media are improved by the way the porosity gradient terms are treated in the flow flux vector. An updated space-time conservation element and solution element (CE/SE) method, which is a new approach in computational fluid dynamics (CFD), is presented to depict global and local flux conservation in space-time domain. The physical model and the CE/SE method are both validated with the experimental study based on the head-on collision of a planar shock wave through a rigid porous material;and then good agreements are found to be evident. After that, the two-dimensional Riemann problem in the porous media is established. It is found that the wave structures of the pore pressure consist of shock waves, compaction waves, expansion waves and the contact discontinuity. To our best knowledge, this is the first time that pore pressure waves have been successfully simulated with the CE/SE method inside a multiphase deformable porous medium. The findings are potentially applicable to CO2 geological storage, CO2 enhanced oil recovery, shale gas exploration and earthquake rupture processes.

  17. Lift and drag in three-dimensional steady viscous and compressible flow

    CERN Document Server

    Liu, Luoqin; Kang, Linlin; Wu, Jiezhi

    2016-01-01

    In a recent paper, Liu, Zhu & Wu (2015, J. Fluid Mech. 784: 304; LZW for short) present a far-field theory for the aerodynamic force experienced by a body in a two-dimensional, viscous, compressible and steady flow. In this companion theoretical paper we do the same for three-dimensional flow. By a rigorous fundamental solution method of the linearized Navier-Stokes equations, we not only improve the far-field force formula for incompressible flow originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, but also prove that this final form holds universally true in a wide range of compressible flow, from subsonic to supersonic flows. We call this result the unified force theorem (UF theorem for short) and state it as a theorem, which is exactly the counterpart of the two-dimensional compressible Joukowski-Filon theorem obtained by LZW. Thus, the steady lift and drag are always exactly determined by the values of vector circula...

  18. NUMERICAL SIMULATION ON MULTI-FLUID INTERFACES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Enhancement of two-fluid mixing was numericallystudied by tracking the multi-fluid interfaces. Level set equations were used to capture the interfaces, and flow field was obtained by upwind TVD scheme to solve 2D Eulerian equations. The boundary conditions at interface of two fluids are determined by Ghost fluid method (GFM). The distributions of fluid parameters, such as pressure and density, were got at different time steps.The results show that the method presented in this paper can track the density discontinuity perfectly. Superior to previous results, the density discontinuity remains sharper. Also, the mixing of fluids can be greatly enhanced by setting disturbances along the initial fluid interfaces.``

  19. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  20. Perfect arborescence packing in preflow mincut graphs

    Energy Technology Data Exchange (ETDEWEB)

    Gabow, H.N. [Univ. of Colorado, Boulder, CO (United States)

    1996-12-31

    In a digraph with distinguished vertex a, for any vertex v {ne} a let {lambda}(v) equal the value of a maximum flow from a to v. A perfect packing of a-arborescences contains each vertex in {lambda}(v) arborescences and contains some fixed vertex in every arborescence. Determining if an arbitrary graph has a perfect packing is NP-complete. We present the most general known condition that guarantees the existence of a perfect packing: each vertex v {ne} a is separated from a by a set that has in-degree {lambda}(v) and out-degree no greater. This result is based on other useful properties of such graphs, e.g., they always have a pair of edges that can be {open_quotes}split off{close_quotes} preserving, values. We show a perfect packing can be found in O(nm{sup 2}) time, where n (m) is the number of vertices (edges). If the graph has a capacity function the time is the same as computing O(n{sup 2}) maximum network flows. We also show a preflow mincut graph has a fractional perfect packing using only m + n - 2 distinct arborescences.

  1. Subgame-perfect ϵ-equilibria in perfect information games with sigma-discrete discontinuities

    NARCIS (Netherlands)

    Flesch, Janos; Predtetchinski, Arkadi

    2016-01-01

    Multi-player perfect information games are known to admit a subgame-perfect ϵ-equilibrium, for every ϵ>0, under the condition that every player’s payoff function is bounded and continuous on the whole set of plays. In this paper, we address the question on which subsets of plays the condition of pay

  2. Overlapped optics induced perfect coherent effects

    Science.gov (United States)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  3. Lossless wavelet compression on medical image

    Science.gov (United States)

    Zhao, Xiuying; Wei, Jingyuan; Zhai, Linpei; Liu, Hong

    2006-09-01

    An increasing number of medical imagery is created directly in digital form. Such as Clinical image Archiving and Communication Systems (PACS), as well as telemedicine networks require the storage and transmission of this huge amount of medical image data. Efficient compression of these data is crucial. Several lossless and lossy techniques for the compression of the data have been proposed. Lossless techniques allow exact reconstruction of the original imagery, while lossy techniques aim to achieve high compression ratios by allowing some acceptable degradation in the image. Lossless compression does not degrade the image, thus facilitating accurate diagnosis, of course at the expense of higher bit rates, i.e. lower compression ratios. Various methods both for lossy (irreversible) and lossless (reversible) image compression are proposed in the literature. The recent advances in the lossy compression techniques include different methods such as vector quantization. Wavelet coding, neural networks, and fractal coding. Although these methods can achieve high compression ratios (of the order 50:1, or even more), they do not allow reconstructing exactly the original version of the input data. Lossless compression techniques permit the perfect reconstruction of the original image, but the achievable compression ratios are only of the order 2:1, up to 4:1. In our paper, we use a kind of lifting scheme to generate truly loss-less non-linear integer-to-integer wavelet transforms. At the same time, we exploit the coding algorithm producing an embedded code has the property that the bits in the bit stream are generated in order of importance, so that all the low rate codes are included at the beginning of the bit stream. Typically, the encoding process stops when the target bit rate is met. Similarly, the decoder can interrupt the decoding process at any point in the bit stream, and still reconstruct the image. Therefore, a compression scheme generating an embedded code can

  4. The maximum force in a column under constant speed compression

    CERN Document Server

    Kuzkin, Vitaly A

    2015-01-01

    Dynamic buckling of an elastic column under compression at constant speed is investigated assuming the first-mode buckling. Two cases are considered: (i) an imperfect column (Hoff's statement), and (ii) a perfect column having an initial lateral deflection. The range of parameters, where the maximum load supported by a column exceeds Euler static force is determined. In this range, the maximum load is represented as a function of the compression rate, slenderness ratio, and imperfection/initial deflection. Considering the results we answer the following question: "How slowly the column should be compressed in order to measure static load-bearing capacity?" This question is important for the proper setup of laboratory experiments and computer simulations of buckling. Additionally, it is shown that the behavior of a perfect column having an initial deflection differ significantlys form the behavior of an imperfect column. In particular, the dependence of the maximum force on the compression rate is non-monotoni...

  5. On the reduced mhd for compressible fluids

    Directory of Open Access Journals (Sweden)

    A. Gazol

    2000-01-01

    Full Text Available Com unmente, la turbulencia de la componente ionizada del Medio Interestelar es descrita en t erminos de la magnetohidrodin amica reducida (RMHD. Se muestra que dicha descripci on no necesita que los gradientes en la direcci on del campo magn etico ambiente sean peque~nos. Cuando el del plasma es lejano a la unidad, la din amica transversa governada por las ecuaciones de la RMHD puede coexistir, casi sin interacciones, con ondas de Alfv en no lineales que se propagan en la direcci on del campo magn etico ambiente. En cambio, para 1, los campos longitudinales (que en este caso no son despreciables est an acoplados con las ondas de Alfv en a peque~na escala, que no pueden ser ltradas.

  6. Perfect 800 Advanced Strategies for Top Students

    CERN Document Server

    Celenti, Dan

    2010-01-01

    Getting into the nation's most competitive universities requires more than a good SAT score, it requires a perfect score. Perfect 800: SAT Math gives advanced students the tools needed to master the SAT math test. Covering areas including arithmetic concepts; algebra; geometry; and additional topics such as probability and weighted average, the book offers exposure to a wide range of degrees of difficulty in a holistic approach that allows students to experience the "real thing," including the impact of time constraints on their performance. By emphasizing critical thinking and analytic skills

  7. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E

    2010-01-01

    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  8. Mechanical Energy Changes in Perfectly Inelastic Collisions

    Science.gov (United States)

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  9. The Binary Perfect Phylogeny with Persistent characters

    CERN Document Server

    Braghin, Chiara; Trucco, Gabriella; Bonizzoni, Paola

    2011-01-01

    The near-perfect phylogeny over binary set of characters has been proposed as an extension of the too restrictive model of the perfect phylogeny in order to model biological events such as homoplasy. However the model appears to be too general to model some situations and is computationally inefficient on some instances. In this paper we consider the problem of reconstructing a near-perfect phylogeny where only a type of homoplasy is allowed in the tree: we consider back mutations according to notion of {\\em persistency}, that is characters can be gained and lost at most once. The notion of persistency leads to the problem of the Persistent Perfect Phylogeny (referred as P-PPH). By exploring combinatorial properties of the problem we develop an exact algorithm for solving the P-PPH problem that in the worst case runs in time that is exponential in the number of characters, but is polynomial in the number of species. Indeed, we show that the P-PPH problem can be restated as a special case of the Incomplete Per...

  10. Perfect Phylogeny Problems with Missing Values.

    Science.gov (United States)

    Kirkpatrick, Bonnie; Stevens, Kristian

    2014-01-01

    The perfect phylogeny problem is of central importance to both evolutionary biology and population genetics. Missing values are a common occurrence in both sequence and genotype data, but they make the problem of finding a perfect phylogeny NPhard even for binary characters. We introduce new and efficient perfect phylogeny algorithms for broad classes of binary and multistate data with missing values. Specifically, we address binary missing data consistent with the rich data hypothesis (RDH) introduced by Halperin and Karp and give an efficient algorithm for enumerating phylogenies. This algorithm is useful for computing the probability of data with missing values under the coalescent model. In addition, we use the partition intersection (PI) graph and chordal graph theory to generalize the RDH to multi-state characters with missing values. For a bounded number of states, we provide a fixed parameter tractable algorithm for the perfect phylogeny problem with missing data. Utilizing the PI graph, we are able to show that under multiple biologically motivated models for character data, our generalized RDH holds with high probability, and we evaluate our results with extensive empirical analysis.

  11. Perfectly secure message transmission in two rounds

    NARCIS (Netherlands)

    G. Spini (Gabriele); Zémor, G (Gilles); M. Hirt; A. Smith

    2016-01-01

    textabstractIn the model that has become known as "Perfectly Secure Message Transmission"(PSMT), a sender Alice is connected to a receiver Bob through n parallel two-way channels. A computationally unbounded adversary Eve controls t of these channels, meaning she can acquire and alter any data that

  12. What is anthropological about The Perfect Human?

    DEFF Research Database (Denmark)

    Thomsen, Line Hassall

    2015-01-01

    Jørgen Leth has classified The Perfect Human as an anthropological film. But is the film anthropological at all? This article explores Leth’s connections with anthropology and finds that he is more inspired by anthropological framing than he is by anthropological research methods....

  13. Designing a perfect cornea: computational aspects

    Science.gov (United States)

    Rubinstein, Jacob; Wolansky, Gershon

    2002-12-01

    We analyze an algorithm for the design of a perfect cornea that exactly focuses a preselected object or a preselected wave front on the retina. The algorithm can be used, for example, in refractive surgery. We consider the sensitivity of the algorithm to various errors, including errors in the measurements of the aberrations, the original corneal topography and the ablation process.

  14. Perfect imaging without negative refraction for microwaves

    CERN Document Server

    Ma, Yun Gui; Sahebdivan, Sahar; Tyc, Tomas; Leonhardt, Ulf

    2010-01-01

    We demonstrate perfect imaging in Maxwell's fish eye for microwaves. Our data show that the field of a line source is imaged with subwavelength resolution over superwavelength distances, provided the field is allowed to leave through passive outlets that play the role of a detector array in imaging.

  15. Perfect Day: A Meditation about Teaching

    Science.gov (United States)

    Valadez, Gilbert

    2004-01-01

    When asked by a student in a seminar recently if he could remember a perfect day teaching elementary school, the author writes memories of one he distinctly remembers because he gained new insight into teaching on that particular day. After returning to work following the devastating loss of a younger 19 year-old brother in a car crash, he resumed…

  16. Perfectly Secure Oblivious RAM without Random Oracles

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Meldgaard, Sigurd Torkel; Nielsen, Jesper Buus

    2011-01-01

    We present an algorithm for implementing a secure oblivious RAM where the access pattern is perfectly hidden in the information theoretic sense, without assuming that the CPU has access to a random oracle. In addition we prove a lower bound on the amount of randomness needed for implementing...

  17. Le Perfectionnement en Phonetique (Perfecting Phonetics)

    Science.gov (United States)

    Laroche-Bouvy, Danielle

    1975-01-01

    This article describes the programs of the Institut d'Etudes Linguistiques et Phonetiques, located in Paris. The program focuses on perfecting the students' phonetic production of French. Both curriculum and teaching methods are described, as well as a course in phonetics for future teachers of French. (Text is in French.) (CLK)

  18. Noncommutative Fluid and Cosmological Perturbations

    CERN Document Server

    Das, Praloy

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the NC fluid dynamics and kinematics. In the second part we construct an extension of Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing in anisotropy and inhomogeneity in th...

  19. Laser Compression of Nanocrystalline Metals

    Science.gov (United States)

    Meyers, M. A.; Jarmakani, H. N.; Bringa, E. M.; Earhart, P.; Remington, B. A.; Vo, N. Q.; Wang, Y. M.

    2009-12-01

    Shock compression in nanocrystalline nickel is simulated over a range of pressures (10-80 GPa) and compared with experimental results. Laser compression carried out at Omega and Janus yields new information on the deformation mechanisms of nanocrystalline Ni. Although conventional deformation does not produce hardening, the extreme regime imparted by laser compression generates an increase in hardness, attributed to the residual dislocations observed in the structure by TEM. An analytical model is applied to predict the critical pressure for the onset of twinning in nanocrystalline nickel. The slip-twinning transition pressure is shifted from 20 GPa, for polycrystalline Ni, to 80 GPa, for Ni with g. s. of 10 nm. Contributions to the net strain from the different mechanisms of plastic deformation (partials, perfect dislocations, twinning, and grain boundary shear) were quantified in the nanocrystalline samples through MD calculations. The effect of release, a phenomenon often neglected in MD simulations, on dislocation behavior was established. A large fraction of the dislocations generated at the front are annihilated.

  20. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  1. Compressive Sensing Over Networks

    CERN Document Server

    Feizi, Soheil; Effros, Michelle

    2010-01-01

    In this paper, we demonstrate some applications of compressive sensing over networks. We make a connection between compressive sensing and traditional information theoretic techniques in source coding and channel coding. Our results provide an explicit trade-off between the rate and the decoding complexity. The key difference of compressive sensing and traditional information theoretic approaches is at their decoding side. Although optimal decoders to recover the original signal, compressed by source coding have high complexity, the compressive sensing decoder is a linear or convex optimization. First, we investigate applications of compressive sensing on distributed compression of correlated sources. Here, by using compressive sensing, we propose a compression scheme for a family of correlated sources with a modularized decoder, providing a trade-off between the compression rate and the decoding complexity. We call this scheme Sparse Distributed Compression. We use this compression scheme for a general multi...

  2. A finite volume method for fluctuating hydrodynamics of simple fluids

    Science.gov (United States)

    Narayanan, Kiran; Samtaney, Ravi; Moran, Brian

    2015-11-01

    Fluctuating hydrodynamics accounts for stochastic effects that arise at mesoscopic and macroscopic scales. We present a finite volume method for numerical solutions of the fluctuating compressible Navier Stokes equations. Case studies for simple fluids are demonstrated via the use of two different equations of state (EOS) : a perfect gas EOS, and a Lennard-Jones EOS for liquid argon developed by Johnson et al. (Mol. Phys. 1993). We extend the fourth order conservative finite volume scheme originally developed by McCorquodale and Colella (Comm. in App. Math. & Comput. Sci. 2011), to evaluate the deterministic and stochastic fluxes. The expressions for the cell-centered discretizations of the stochastic shear stress and stochastic heat flux are adopted from Espanol, P (Physica A. 1998), where the discretizations were shown to satisfy the fluctuation-dissipation theorem. A third order Runge-Kutta scheme with weights proposed by Delong et al. (Phy. Rev. E. 2013) is used for the numerical time integration. Accuracy of the proposed scheme will be demonstrated. Comparisons of the numerical solution against theory for a perfect gas as well as liquid argon will be presented. Regularizations of the stochastic fluxes in the limit of zero mesh sizes will be discussed. Supported by KAUST Baseline Research Funds.

  3. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  4. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  5. Structural Transition in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Boris I. Sedunov

    2011-01-01

    Full Text Available The extension of the saturation curve ( on the PT diagram in the supercritical region for a number of monocomponent supercritical fluids by peak values for different thermophysical properties, such as heat capacities and and compressibility has been studied. These peaks signal about some sort of fluid structural transition in the supercritical region. Different methods give similar but progressively diverging curves st( for this transition. The zone of temperatures and pressures near these curves can be named as the zone of the fluid structural transition. The outstanding properties of supercritical fluids in this zone help to understand the physical sense of the fluid structural transition.

  6. Perfect drain for the Maxwell fish eye lens

    Science.gov (United States)

    González, Juan C.; Benítez, Pablo; Miñano, Juan C.

    2011-02-01

    Perfect imaging of electromagnetic waves using the Maxwell fish eye (MFE) requires a new concept: a point called the perfect drain that we shall call the perfect point drain. From the mathematical point of view, a perfect point drain is just like an ideal point source, except that it drains power from the electromagnetic field instead of generating it. We introduce here the perfect drain for the MFE as a dissipative region of non-zero size that completely drains the power from the point source. To accomplish this goal, the region must have a precise complex permittivity that depends on its size as well as on the frequency. The perfect point drain is obtained when the diameter of the perfect drain tends to zero. This interpretation of the perfect point drain is connected well with common concepts of electromagnetic theory, opening up both modeling in computer simulations and experimental verification of setups containing a perfect point drain.

  7. Explaining evolution via constrained persistent perfect phylogeny.

    Science.gov (United States)

    Bonizzoni, Paola; Carrieri, Anna Paola; Della Vedova, Gianluca; Trucco, Gabriella

    2014-01-01

    The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic procedure for representing the evolution of genomic binary characters in several frameworks, such as for example in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption, that is no character can mutate more than once in the whole tree. A main open problem regarding the model is finding generalizations that retain the computational tractability of the original model but are more flexible in modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special case of back mutations that has been considered in the study of the evolution of protein domains (where a domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed on the paths of the tree. We define a natural generalization of the PPP problem obtained by requiring that for some pairs (character, species), neither the species nor any of its ancestors can have the character. In other words, some characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for solving the CPPP problem where the parameter is the number of characters. A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model allows to explain efficiently data that do not

  8. Taming electromagnetic metamaterials for isotropic perfect absorbers

    Directory of Open Access Journals (Sweden)

    Doan Tung Anh

    2015-07-01

    Full Text Available Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  9. How To Boil the Perfect Egg

    Institute of Scientific and Technical Information of China (English)

    小雨

    2007-01-01

    A British inventor says he has cracked(破解)the age-old riddle(难题)of how to boil the perfect egg,get rid of(摆脱)the water. Simon Rhymes uses powerful light bulbs instead of boiling water to cook the egg. The gadget(小发明)does the job in six minutes,and then chons off(削)the top of

  10. Mechanical Energy Changes in Perfectly Inelastic Collisions

    Science.gov (United States)

    2013-04-01

    moving slow. References 1. J. W. Zwart, “A safe and inexpensive ballistic pendulum ,” Phys. Teach. 25, 447–448 (Oct. 1987). 2. In a perfectly...that one is not satisfied with the maximum height h reached by a bal- listic pendulum after a bullet (of mass m and speed u) is fired into it, and...3) in the limit that m << M. Maximizing the height requires phase matching between the period of the pendulum and the

  11. Another Class of Perfect Nonlinear Polynomial Functions

    Directory of Open Access Journals (Sweden)

    Menglong Su

    2013-01-01

    Full Text Available Perfect nonlinear (PN functions have been an interesting subject of study for a long time and have applications in coding theory, cryptography, combinatorial designs, and so on. In this paper, the planarity of the trinomials xpk+1+ux2+vx2pk over GF(p2k are presented. This class of PN functions are all EA-equivalent to x2.

  12. An introduction to theoretical fluid mechanics

    CERN Document Server

    Childress, Stephen

    2009-01-01

    This book gives an overview of classical topics in fluid dynamics, focusing on the kinematics and dynamics of incompressible inviscid and Newtonian viscous fluids, but also including some material on compressible flow. The topics are chosen to illustrate the mathematical methods of classical fluid dynamics. The book is intended to prepare the reader for more advanced topics of current research interest.

  13. Solute drag on perfect and extended dislocations

    Science.gov (United States)

    Sills, R. B.; Cai, W.

    2016-04-01

    The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.

  14. HOTTER, SMALLER, DENSER, FASTER...AND NEARLY-PERFECT: WHAT IS THE MATTER AT RHIC?

    Energy Technology Data Exchange (ETDEWEB)

    STEINBERG,P.

    2006-07-03

    The experimental and theoretical status of the ''near perfect fluid'' at RHIC is discussed. While the hydrodynamic paradigm for understanding collisions at RHIC is well established, there remain many important open questions to address in order to understand its relevance and scope. It is also a crucial issue to understand how the early equilibration is achieved, requiring insight into the active degrees of freedom at early times.

  15. Influencing factors of compressive strength of solidified inshore saline soil using SH lime-ash

    Institute of Scientific and Technical Information of China (English)

    覃银辉; 刘付华; 周琦

    2008-01-01

    Through unconfined compressive strength test,influencing factors on compressive strength of solidified inshore saline soil with SH lime-ash,ratio of lime-ash(1-K),quantity of lime-ash,age,degree of compression and salt content were studied.The results show that because inshore saline soil has special engineering characteristic,more influencing factors must be considered compared with ordinary soil for the perfect effect of solidifying.

  16. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  17. Bioimpedance of soft tissue under compression.

    Science.gov (United States)

    Dodde, R E; Bull, J L; Shih, A J

    2012-06-01

    In this paper compression-dependent bioimpedance measurements of porcine spleen tissue are presented. Using a Cole-Cole model, nonlinear compositional changes in extracellular and intracellular makeup; related to a loss of fluid from the tissue, are identified during compression. Bioimpedance measurements were made using a custom tetrapolar probe and bioimpedance circuitry. As the tissue is increasingly compressed up to 50%, both intracellular and extracellular resistances increase while bulk membrane capacitance decreases. Increasing compression to 80% results in an increase in intracellular resistance and bulk membrane capacitance while extracellular resistance decreases. Tissues compressed incrementally to 80% show a decreased extracellular resistance of 32%, an increased intracellular resistance of 107%, and an increased bulk membrane capacitance of 64% compared to their uncompressed values. Intracellular resistance exhibits double asymptotic curves when plotted against the peak tissue pressure during compression, possibly indicating two distinct phases of mechanical change in the tissue during compression. Based on these findings, differing theories as to what is happening at a cellular level during high tissue compression are discussed, including the possibility of cell rupture and mass exudation of cellular material.

  18. Perfect Crystals of $U_{q}(G_{2}^{(1)})$

    CERN Document Server

    Yamane, S

    1997-01-01

    The notion of perfect crystals was introduced in "Perfect Crystal and Vertex Models", (Internat. J. Modern Phys. A7(1992)449-484) by S-J. Kang et al. In this paper, we give a series of perfect crystals of $U_q(G_2^{(1)})$.

  19. Conjugate metamaterials and the perfect lens

    CERN Document Server

    Xu, Yadong; Xu, Lin; Chen, Huanyang

    2015-01-01

    In this letter, we show how transformation optics makes it possible to design what we call conjugate metamaterials. We show that these materials can also serve as substrates for making a subwavelength-resolution lens. The so-called "perfect lens", which is a lens that could focus all components of light (including propagating and evanescent waves), can be regarded as a limiting case, in which the respective conjugate metamaterials approach the characteristics of left-handed metamaterials, which have a negative refractive index.

  20. Diamagnetic expansions for perfect quantum gases

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Louis, Delphine

    2006-01-01

    In this work we study the diamagnetic properties of a perfect quantum gas in the presence of a constant magnetic field of intensity B. We investigate the Gibbs semigroup associated with the one particle operator at finite volume, and study its Taylor series with respect to the field parameter omega......:=eB/c in different topologies. This allows us to prove the existence of the thermodynamic limit for the pressure and for all its derivatives with respect to omega (the so-called generalized susceptibilities)....

  1. Filtering with perfectly correlated measurement noise.

    Science.gov (United States)

    Reasenberg, R.

    1972-01-01

    Examination of (radar) Doppler data which are formed by mi1ing the returning microwave signal with a replica of the transmitted signal, counting the cycles of the beat, and sampling the counter at evenly spaced intervals t sub i. It is shown that the amount of information which can be extracted from a set of data may be larger if the associated noise is perfectly correlated than if it is white, and that the use of the white noise assumption in the filter may result in the loss of some of this information.

  2. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  3. Achieving global perfect homeostasis through transporter regulation

    Science.gov (United States)

    Springer, Michael

    2017-01-01

    Nutrient homeostasis—the maintenance of relatively constant internal nutrient concentrations in fluctuating external environments—is essential to the survival of most organisms. Transcriptional regulation of plasma membrane transporters by internal nutrient concentrations is typically assumed to be the main mechanism by which homeostasis is achieved. While this mechanism is homeostatic we show that it does not achieve global perfect homeostasis—a condition where internal nutrient concentrations are completely independent of external nutrient concentrations for all external nutrient concentrations. We show that the criterion for global perfect homeostasis is that transporter levels must be inversely proportional to net nutrient flux into the cell and that downregulation of active transporters (activity-dependent regulation) is a simple and biologically plausible mechanism that meets this criterion. Activity-dependent transporter regulation creates a trade-off between robustness and efficiency, i.e., the system's ability to withstand perturbation in external nutrients and the transporter production rate needed to maintain homeostasis. Additionally, we show that a system that utilizes both activity-dependent transporter downregulation and regulation of transporter synthesis by internal nutrient levels can create a system that mitigates the shortcomings of each of the individual mechanisms. This analysis highlights the utility of activity-dependent regulation in achieving homeostasis and calls for a re-examination of the mechanisms of regulation of other homeostatic systems. PMID:28414718

  4. Sublithographic Architecture: Shifting the Responsibility for Perfection

    Science.gov (United States)

    Dehon, A.

    In the past, processing had orders of magnitude between devices and atoms (e.g., with silicon atom lattice spacing around 0.5 nm, a minimum size feature was roughly 2000 atoms wide when we had 1 μm feature sizes). It was the process engineer's job to craft this large collection of atoms into "perfect" devices. The circuit designer and architect could then design systems knowing the process engineer would always give them a set of perfect devices. As we continue to shrink our devices, we no longer have orders of magnitude between the devices and the atoms. As a result, the circuit designers and architects are beginning to work within a similar realm of atoms. Consequently, they must assume some of the responsibilities for dealing with atomic-scale imperfections and uncertainty. This demands a significant shift in our abstraction hierarchy, the responsibilities and expectations at each level in this hierarchy, our fabrication techniques, our testing strategies, and our approaches to design for these atomic-scale computing systems.

  5. Modelling anisotropic fluid spheres in general relativity

    CERN Document Server

    Boonserm, Petarpa; Visser, Matt

    2015-01-01

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  6. The role of elastic compressibility in dynamic subduction models

    Science.gov (United States)

    Austmann, Walter; Govers, Rob; Burov, Evgenii

    2014-05-01

    Recent advances in geodynamic numerical models show a trend towards more realistic rheologies. The Earth is no longer modeled as a purely viscous fluid, but the effects of, for example, elasticity and plasticity are also included. However, by making such improvements, it is essential to include these more complex rheologies in a consistent way. Specifically, compressibility needs also to be included, an effect that is commonly neglected in numerical models. Recently, we showed that the effect of elastic compressibility is significant. This was done for a gravity driven cylinder in a homogeneous Maxwell fluid bounded by closed boundaries. For a fluid with a realistic compressibility (Poisson ratio equals 0.3), the settling velocity showed a discrepancy with the semi-analytical steady state incompressible solution of approximately 40%. The motion of the fluid was no longer restricted by a small region around the cylinder, but the motion of the cylinder compressed also the fluid near the bottom boundary. This compression decreased the resistance on the cylinder and resulted in a larger settling velocity. Here, we examine the influence of elastic compressibility in an oceanic subduction setting. The slab is driven by slab pull and a far field prescribed plate motion. Preliminary results indicate that elastic compressibility has a significant effect on the fluid motion. Differences with respect to nearly incompressible solution are most significant near material boundaries. In line with our earlier findings, the flow is increased in regions of confined flow, such as the mantle wedge or the subduction channel. As a consequence, an increasing compressibility results in a larger slab velocity. We seek to identify surface observables, such as topography and plate motion, that allow us to distinguish the compressible and incompressible behavior.

  7. Do musicians with perfect pitch have more autism traits than musicians without perfect pitch?

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A; Heaton, Pamela

    2012-01-01

    Perfect pitch, also known as absolute pitch (AP), refers to the rare ability to identify or produce a musical tone correctly without the benefit of an external reference. AP is often considered to reflect musical giftedness, but it has also been associated with certain disabilities due to increased...

  8. Focus on Compression Stockings

    Science.gov (United States)

    ... the stocking every other day with a mild soap. Do not use Woolite™ detergent. Use warm water ... compression clothing will lose its elasticity and its effectiveness. Compression stockings last for about 4-6 months ...

  9. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  10. Microbunching and RF Compression

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-05-23

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  11. Negative Refraction Does Not Make Perfect Lenses

    CERN Document Server

    Yang, Weiguo

    2013-01-01

    The widely-accepted theoretical treatment of the electromagnetic boundary problem of evanescent wave transfer at an interface between a normal medium of n=1 and an ideal negative index medium of n=-1 neglects the non-zero induced surface current and charge densities at the interface and is self-inconsistent. We re-solve the electromagnetic boundary problem by taking into account the non-zero induced surface current and charge densities that have been neglected so far by others. We give the exact induced surface current and charge distributions for this special case and solve the refracted and reflected fields analytically using Green's function method. The self-consistent solution yields a transmission coefficient of 1 and reflection coefficient of 0 for all evanescent waves. Accordingly, we found that, on the contrary to the popular belief, negative index of refraction does not make perfect lenses.

  12. Perfect Multi-Channel Flat Reflectors

    CERN Document Server

    Asadchy, V S; Elsakka, A; Albooyeh, M; Tretyakov, S A

    2016-01-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here we introduce a concept of multi-channel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions or polarization states simultaneously and independently. In particular, we reveal a possibility to create perfect multi-channel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three fundamental classes of multi-channel mirrors. Together they form a basis of all possible reflection functionalities achievable with flat periodically modulated reflectors. To demonstrate the potential of the introduced concept, we design and experimentally test one of the basis multi-channel reflectors, confirming the desired multi-channel response. Furthermore, by extending the concept to reflectors suppor...

  13. Hiding Quantum Information in the Perfect Code

    CERN Document Server

    Shaw, Bilal A

    2010-01-01

    We present and analyze a protocol for quantum steganography where the sender (Alice) encodes her steganographic information into the error syndromes of the perfect (five-qubit) quantum error-correcting code, and sends it to the receiver (Bob) over a depolarizing channel. Alice and Bob share a classical secret key, and hide quantum information in such a way that to an eavesdropper (Eve) without access to the secret key, the quantum message looks like an innocent codeword with a typical sequence of quantum errors. We calculate the average rate of key consumption, and show how the protocol improves in performance as information is spread over multiple codeword blocks. Alice and Bob utilize different encodings to optimize the average number of steganographic bits that they can send to each other while matching the error statistics of the depolarizing channel.

  14. Electromagnetic Detection of a Perfect Carpet Cloak

    Science.gov (United States)

    Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile

    2015-01-01

    It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics. PMID:25997798

  15. Interference theory of metamaterial perfect absorbers

    CERN Document Server

    Chen, Hou-Tong

    2011-01-01

    The impedance matching in metamaterial perfect absorbers has been believed to involve and rely on magnetic resonant response, with a direct evidence from the anti-parallel directions of surface currents in the metal structures. Here we present a different theoretical interpretation based on interferences, which shows that the two layers of metal structure in metamaterial absorbers are linked only by multiple reflections with negligible near-field interactions or magnetic resonances. This is further supported by the out-of-phase surface currents derived at the interfaces of resonator array and ground plane through multiple reflections and superpositions. The theory developed here explains all features observed in narrowband metamaterial absorbers and therefore provides a profound understanding of the underlying physics.

  16. The surveyors' quest for perfect alignment

    CERN Multimedia

    2003-01-01

    Photogrammetry of a CMS endcap and part of the hadronic calorimeter.The structure was covered with targets photographed by digital cameras. Perfect alignment.... Although CERN's surveyors do not claim to achieve it, they are constantly striving for it and deploy all necessary means to come as close as they can. In their highly specialised field of large-scale metrology, the solution lies in geodesy and photogrammetry, both of which are based on increasingly sophisticated instruments and systems. In civil engineering, these techniques are used for non-destructive inspection of bridges, dams and other structures, while industrial applications include dimensional verification and deformation measurement in large mechanical assemblies. The same techniques also come into play for the metrology of research tools such as large telescopes and of course, particle accelerators. Particle physics laboratories are especially demanding customers, and CERN has often asked for the impossible. As a result, the alignment metro...

  17. Haplotyping as perfect phylogeny: a direct approach.

    Science.gov (United States)

    Bafna, Vineet; Gusfield, Dan; Lancia, Giuseppe; Yooseph, Shibu

    2003-01-01

    A full haplotype map of the human genome will prove extremely valuable as it will be used in large-scale screens of populations to associate specific haplotypes with specific complex genetic-influenced diseases. A haplotype map project has been announced by NIH. The biological key to that project is the surprising fact that some human genomic DNA can be partitioned into long blocks where genetic recombination has been rare, leading to strikingly fewer distinct haplotypes in the population than previously expected (Helmuth, 2001; Daly et al., 2001; Stephens et al., 2001; Friss et al., 2001). In this paper we explore the algorithmic implications of the no-recombination in long blocks observation, for the problem of inferring haplotypes in populations. This assumption, together with the standard population-genetic assumption of infinite sites, motivates a model of haplotype evolution where the haplotypes in a population are assumed to evolve along a coalescent, which as a rooted tree is a perfect phylogeny. We consider the following algorithmic problem, called the perfect phylogeny haplotyping problem (PPH), which was introduced by Gusfield (2002) - given n genotypes of length m each, does there exist a set of at most 2n haplotypes such that each genotype is generated by a pair of haplotypes from this set, and such that this set can be derived on a perfect phylogeny? The approach taken by Gusfield (2002) to solve this problem reduces it to established, deep results and algorithms from matroid and graph theory. Although that reduction is quite simple and the resulting algorithm nearly optimal in speed, taken as a whole that approach is quite involved, and in particular, challenging to program. Moreover, anyone wishing to fully establish, by reading existing literature, the correctness of the entire algorithm would need to read several deep and difficult papers in graph and matroid theory. However, as stated by Gusfield (2002), many simplifications are possible and the

  18. LensPerfect Analysis of Abell 1689

    Science.gov (United States)

    Coe, Dan A.

    2007-12-01

    I present the first massmap to perfectly reproduce the position of every gravitationally-lensed multiply-imaged galaxy detected to date in ACS images of Abell 1689. This massmap was obtained using a powerful new technique made possible by a recent advance in the field of Mathematics. It is the highest resolution assumption-free Dark Matter massmap to date, with the resolution being limited only by the number of multiple images detected. We detect 8 new multiple image systems and identify multiple knots in individual galaxies to constrain a grand total of 168 knots within 135 multiple images of 42 galaxies. No assumptions are made about mass tracing light, and yet the brightest visible structures in A1689 are reproduced in our massmap, a few with intriguing positional offsets. Our massmap probes radii smaller than that resolvable in current Dark Matter simulations of galaxy clusters. And at these radii, we observe slight deviations from the NFW and Sersic profiles which describe simulated Dark Matter halos so well. While we have demonstrated that our method is able to recover a known input massmap (to limited resolution), further tests are necessary to determine the uncertainties of our mass profile and positions of massive subclumps. I compile the latest weak lensing data from ACS, Subaru, and CFHT, and attempt to fit a single profile, either NFW or Sersic, to both the observed weak and strong lensing. I confirm the finding of most previous authors, that no single profile fits extremely well to both simultaneously. Slight deviations are revealed, with the best fits slightly over-predicting the mass profile at both large and small radius. Our easy-to-use software, called LensPerfect, will be made available soon. This research was supported by the European Commission Marie Curie International Reintegration Grant 017288-BPZ and the PNAYA grant AYA2005-09413-C02.

  19. Hyperspectral data compression

    CERN Document Server

    Motta, Giovanni; Storer, James A

    2006-01-01

    Provides a survey of results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. This work covers topics such as compression architecture, lossless compression, lossy techniques, and more. It also describes a lossless algorithm based on vector quantization.

  20. Compressed gas manifold

    Science.gov (United States)

    Hildebrand, Richard J.; Wozniak, John J.

    2001-01-01

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  1. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  2. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  3. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1...

  4. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Mohammadkazem Shaker

    2011-01-01

    Full Text Available   The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  5. Inter-Faith Reading of Perfect Man With Mystical Approach

    Directory of Open Access Journals (Sweden)

    Shaker, M.K

    2011-01-01

    Full Text Available The expression Insan –e kamil (perfect man is often said to have first been used by Muhyiddin ibn 'Arabi (1165 -1240AD, though the concept of the term is much older. In his theosophical teaching, the doctrine of insan e- kamil, is held a prominent place. After him two other great Sufis, Aziz Nasafi (1300AD and 'Abd al- karim ibn Ibrahim al- Jili (1366 – 1424 AD, each wrote a work on this very issue. These works are regarded as explanations of Ibn Arabi’s teachings on human perfection. In Islamic mysticism, Perfect man is the one who within their soul possesses all God's names and attributes. Thus the perfect man’s existence, reality and inner might become a clear mirror and a complete reflection of the Perfection, Beauty and Glory of the Essence of the One, so that he becomes Godlike. However, the idea of human perfectibility going back to other religions and human schools even before Islam. In Abrahimic religions there are some joint teachings that could be considered as main statements for the doctrine of Perfect Man In Jewish scriptures the notion of human creation in God's image suggests that the human being is able to be God's like and the perfection is available to him. However, Jews do not believe a perfect man. They hold that even Moses is not a perfect man. In Christianity, Although Jesus encourages his followers to be perfect like their heavenly fathers, the doctrine of original sin to be considered as an obstacle for human perfectibility.This essay examines some significant element in human perfectibility from the view points of some scholars of Judaism, Christianity and Islam and presents some similarities and differences of their view points.

  6. Amniotic fluid

    Science.gov (United States)

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  7. An Absorbing Boundary Condition for the Lattice Boltzmann Method Based on the Perfectly Matched Layer

    Science.gov (United States)

    Najafi-Yazdi, A.; Mongeau, L.

    2012-01-01

    The Lattice Boltzmann Method (LBM) is a well established computational tool for fluid flow simulations. This method has been recently utilized for low Mach number computational aeroacoustics. Robust and nonreflective boundary conditions, similar to those used in Navier-Stokes solvers, are needed for LBM-based aeroacoustics simulations. The goal of the present study was to develop an absorbing boundary condition based on the perfectly matched layer (PML) concept for LBM. The derivation of formulations for both two and three dimensional problems are presented. The macroscopic behavior of the new formulation is discussed. The new formulation was tested using benchmark acoustic problems. The perfectly matched layer concept appears to be very well suited for LBM, and yielded very low acoustic reflection factor. PMID:23526050

  8. Approximation of a Class of Incompressible Third Grade Fluids Equations

    Directory of Open Access Journals (Sweden)

    Zeqi Zhu

    2015-01-01

    Full Text Available This paper discusses the approximation of weak solutions for a class of incompressible third grade fluids equations. We first introduce a family of perturbed slightly compressible third grade fluids equations (depending on a positive parameter ϵ which approximate the incompressible equations as ϵ→0+. Then we prove the existence and uniqueness of weak solutions for the slightly compressible equations and establish that the solutions of the slightly compressible equations converge to the solutions of the incompressible equations.

  9. Perfect drain for the Maxwell Fish Eye lens

    CERN Document Server

    Gonzalez, Juan C; Minano, Juan C

    2010-01-01

    Perfect imaging for electromagnetic waves using the Maxwell Fish Eye (MFE) requires a new concept: the perfect drain. From the mathematical point of view, a perfect point drain is just like an ideal point source, except that it drains power from the electromagnetic field instead of generating it. We show here that the perfect drain for the MFE can be seen as a dissipative region the diameter of which tends to zero. The complex permittivity $\\varepsilon$ of this region cannot take arbitrary values, however, since it depends on the size of the drain as well as on the frequency. This interpretation of the perfect drain connects well with central concepts of electromagnetic theory. This opens up both the modeling in computer simulations and the experimental verification of the perfect drain.

  10. Directional perfect absorption using deep subwavelength low permittivity films

    CERN Document Server

    Luk, Ting S; Kim, Iltai; Feng, Simin; Jun, Young Chul; Liu, Sheng; Wright, Jeremy B; Brener, Igal; Catrysse, Peter B; Fan, Shanhui; Sinclair, Michael B

    2014-01-01

    We experimentally demonstrate single beam directional perfect absorption (to within experimental accuracy) of p-polarized light in the near-infrared using unpatterned, deep subwavelength films of indium tin oxide (ITO) on Ag. The experimental perfect absorption occurs slightly above the epsilon-near-zero (ENZ) frequency of ITO where the permittivity is less than one. Remarkably, we obtain perfect absorption for films whose thickness is as low as ~1/50th of the operating free-space wavelength and whose single pass attenuation is only ~ 5%. We further derive simple analytical conditions for perfect absorption in the subwavelength-film regime that reveal the constraints that the ITO permittivity must satisfy if perfect absorption is to be achieved. Then, to get a physical insight on the perfect absorption properties, we analyze the eigenmodes of the layered structure by computing both the real-frequency/complex-wavenumber and the complex-frequency/real-wavenumber modal dispersion diagrams. These analyses allow u...

  11. Comment on 'Perfect drain for the Maxwell fish eye lens'

    CERN Document Server

    Sun, Fei

    2012-01-01

    The non-magnetic loss material has been proposed (2011 New J. Phys. 13 023038) to mimic a passive perfect drain in the Maxwell's fish eye lens (MFL). In this comment, we argue that this passive medium can only be treated as a perfect absorber which can totally absorb all incident radiation without scattering by it, but it cannot mimic a delta function at the image point. As a result, this passive medium cannot help to achieve a perfect focusing in MFL.

  12. Global existence and uniqueness of nonlinear evolutionary fluid equations

    CERN Document Server

    Qin, Yuming; Wang, Taige

    2015-01-01

    This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. These types of partial differential equations arise in many fields of mathematics, but also in other branches of science such as physics and fluid dynamics. This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering.

  13. Product Perfect Z2Z4-linear codes in Steganography

    CERN Document Server

    Rifa, J

    2010-01-01

    Product perfect codes have been proven to enhance the performance of the F5 steganographic method, whereas perfect Z2Z4-linear codes have been recently introduced as an efficient way to embed data, conforming to the +/-1-steganography. In this paper, we present two steganographic methods. On the one hand, a generalization of product perfect codes is made. On the other hand, this generalization is applied to perfect Z2Z4-linear codes. Finally, the performance of the proposed methods is evaluated and compared with those of the aforementioned schemes.

  14. Compression device for feeding a waste material to a reactor

    Science.gov (United States)

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  15. Method for preventing jamming conditions in a compression device

    Science.gov (United States)

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2002-06-18

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  16. Application study of image segmentation methods on pattern recognition in the course of wood across-compression

    Institute of Scientific and Technical Information of China (English)

    曹军; 孙丽萍; 张冬妍; 姜宇

    2000-01-01

    Image segmentation is one of important steps on pattern recognition study in the course of wood across-compression. By comparing and studying processing methods on finding cell space and cell wall, this paper puts forward some image segmentation methods that are suitable for study of cell images of wood cross-grained compression. The method of spline function fitting was used for linking edges of cell, which perfects the study of pattern recognition in the course of wood across-compression.

  17. Blackfold as a Conformal Fluid

    CERN Document Server

    Sadeghi, Jafar

    2015-01-01

    In this paper we review some properties of higher dimensional black holes. In that case we take advantages of fluid/gravity duality and obtain the fluid properties of higher dimensional black holes on the boundary. So we consider two natural and charged blackfold cases and extract the Brown-York stress energy tensor (tensor of fluid) on the boubdary. As we konw, the compactification of some directions in any asymptotically AdS black branes corresponds to some kind of Ricci-flat spacetime. For example the nautral black holes spacetime is Ricci-flat. So by calculating the AAdS form of that metric the dual renormalized holographic stress tensor has been exracted. This stress tensor is conserved and traceless, also it is same as perfect fluid.

  18. The Quantum Theory of Fluids

    CERN Document Server

    Gripaios, Ben

    2014-01-01

    The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.

  19. Application of adaptive wavelet transforms via lifting in image data compression

    Science.gov (United States)

    Ye, Shujiang; Zhang, Ye; Liu, Baisen

    2008-10-01

    The adaptive wavelet transforms via lifting is proposed. In the transform, update filter is selected by the signal's character. Perfect reconstruction is possible without any overhead cost. To make sure the system's stability, in the lifting scheme of adaptive wavelet, update step is placed before prediction step. The Adaptive wavelet transforms via lifting is benefit for the image compression, because of the high stability, the small coefficients of high frequency parts, and the perfect reconstruction. With the adaptive wavelet transforms via lifting and the SPIHT, the image compression is realized in this paper, and the result is pleasant.

  20. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  1. Coherent perfect absorption in photonic structures

    CERN Document Server

    Baldacci, Lorenzo; Tredicucci, Alessandro

    2016-01-01

    The ability to drive a system with an external input is a fundamental aspect of light-matter interaction. The coherent perfect absorption (CPA) phenomenon extends to the general multibeam interference phenomenology the well known critical coupling concepts. This interferometric control of absorption can be employed to reach full delivery of optical energy to nanoscale systems such as plasmonic nanoparticles, and multi-port interference can be used to enhance the absorption of a nanoscale device when it is embedded in a strongly scattering system, with potential applications to nanoscale sensing. Here we review the two-port CPA in reference to photonic structures which can resonantly couple to the external fields. A revised two-port theory of CPA is illustrated, which relies on the Scattering Matrix formalism and is valid for all linear two-port systems with reciprocity. Through a semiclassical approach, treating two-port critical coupling conditions in a non-perturbative regime, it is demonstrated that the st...

  2. Perfect crystal interferometer and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1996-08-01

    The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)

  3. Practice makes two hemispheres almost perfect.

    Science.gov (United States)

    Cherbuin, Nicolas; Brinkman, Cobie

    2005-08-01

    Some tasks produce a performance advantage for conditions that require the processing of stimuli in two visual fields compared to conditions where single hemifield processing is sufficient. This advantage, however, disappears with practice. Although no definitive evidence yet exists, there are several possible mechanisms that might lead to improved performance of within- compared to across-hemisphere processing with practice. These include a shift from a more demanding, algorithmic strategy to a less demanding memory-retrieval strategy (e.g., [G. Logan, Toward an instance theory of automatisation. Psych. Rev. 95 (1988) 492-527]), as discussed by Weissman and Compton [D.H. Weissman, R.J. Compton, Practice makes a hemisphere perfect: the advantage of interhemispheric recruitment is eliminated with practice. Laterality, 8 (4) (2003) 361-375], and/or a more generalised practice effect [K. Kirsner, C. Speelman, Skill acquisition and repetition priming: one principle, many processes? J. Exp. Psychol., Learn. Mem. Cogn., 22 (1996) 563-575]. Contrary to Weissman and Compton findings, our results suggest that although single-hemisphere performance improves with practice, bi-hemispheric performance also improves substantially. Furthermore, these effects do not appear to be due to a shift in strategy but rather due to a general practice effect.

  4. Experiments of cylindrical isentropic compression by ultrahigh magnetic field

    Directory of Open Access Journals (Sweden)

    Gu Zhuowei

    2015-01-01

    Full Text Available The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5–6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  5. Lossless Medical Image Compression

    Directory of Open Access Journals (Sweden)

    Nagashree G

    2014-06-01

    Full Text Available Image compression has become an important process in today‟s world of information exchange. Image compression helps in effective utilization of high speed network resources. Medical Image Compression is very important in the present world for efficient archiving and transmission of images. In this paper two different approaches for lossless image compression is proposed. One uses the combination of 2D-DWT & FELICS algorithm for lossy to lossless Image Compression and another uses combination of prediction algorithm and Integer wavelet Transform (IWT. To show the effectiveness of the methodology used, different image quality parameters are measured and shown the comparison of both the approaches. We observed the increased compression ratio and higher PSNR values.

  6. A Perfectly Matched Layer for Peridynamics in Two Dimensions

    Science.gov (United States)

    2013-04-01

    perfectly bonded carbon nanotube in polymer composites KHONDAKER SAKIL AHMED and ANG KOK KENG 753 A perfectly matched layer for peridynamics in two...der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach”, Model. Simul. Mater. Sci

  7. A cross-linguistic discourse analysis of the perfect

    NARCIS (Netherlands)

    Swart, Henriëtte de

    2007-01-01

    Since Reichenbach (1947), the Present Perfect has been discussed in relation to the Simple Past. The Reichenbachian characterization E-R,S has led to the view that the English Present Perfect, with its restrictions on modification by time adverbials and its resistance to narrative structure is the P

  8. Celiac Artery Compression Syndrome

    Directory of Open Access Journals (Sweden)

    Mohammed Muqeetadnan

    2013-01-01

    Full Text Available Celiac artery compression syndrome is a rare disorder characterized by episodic abdominal pain and weight loss. It is the result of external compression of celiac artery by the median arcuate ligament. We present a case of celiac artery compression syndrome in a 57-year-old male with severe postprandial abdominal pain and 30-pound weight loss. The patient eventually responded well to surgical division of the median arcuate ligament by laparoscopy.

  9. Lecture notes: Astrophysical fluid dynamics

    CERN Document Server

    Ogilvie, Gordon I

    2016-01-01

    These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes, and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is 'frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, includin...

  10. Persistent Perfect Entanglement in Atomic Systems

    Science.gov (United States)

    Ali Can, Muhammet

    2004-03-01

    It has been shown recently [1] that a pure entangled state of two-level atoms can be obtained in an optical resonator through the exchange by cavity photons. Unfortunately, the lifetime of such an entangled state, caused by the radiative decay time for the dipole transitions is very short. The situation can be improved through the use of three-level atoms with lambda-type transition [2]. In this case, the cavity field pumps transition between the lowest (ground) and highest (excited) states. Then, the decay of the excited state can populate the intermediate state. This is just the Raman-type process with emission of Stokes photon in atomic system. Because of the selection rules by the parity conservation, the dipole decay from the intermediate state to the ground state is forbidden. If the Stokes photons created by the transitions from the excited state to the ground state are discarded (through the use of cavity leakage of absorption), the final state of atomic system is stabile or at least durable. In the case of 2n three-level atoms, this can lead to the N-qubit perfect entangled state, where N=2j+1 and j is an odd ``spin'' corresponding to the SU(2) algebra in the Hilbert space H=(C2)^ otimes N In fact, these are the SU(2) phase states of odd ``spin'' have been discussed in [3] in the context of two-level atoms. The possibility to create and observe these states with present experimental technique is discussed. [1] A. Beige, S. Bose, D. Braun, S.F. Huelga, P.L. Knight, M.B. Plenio, and V. Verdal. J. Mod. Optics 47, 2583 (2000). [2] M.A. Can, A.A. Klyachko, and A.S. Shumovsky. Appl. Phys. Lett. 81, 5072 (2002). [3] M.A. Can, A.A. Klyachko, and A.S. Shumovsky. Phys. Rev. A 66, 022111 (2002).

  11. Construction of random perfect phylogeny matrix

    Directory of Open Access Journals (Sweden)

    Mehdi Sadeghi

    2010-11-01

    Full Text Available Mehdi Sadeghi1,2, Hamid Pezeshk4, Changiz Eslahchi3,5, Sara Ahmadian6, Sepideh Mah Abadi61National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; 2School of Computer Science, 3School of Mathematics, Institute for Research in Fundamental Sciences (IPM, Tehran, Iran; 4School of Mathematics, Statistics and Computer Sciences, Center of Excellence in Biomathematics, College of Science, University of Tehran, Tehran, Iran; 5Department of Mathematics, Shahid Beheshti University, G.C., Tehran, Iran; 6Department of Computer Engineering, Sharif University of Technology, Tehran, IranPurpose: Interest in developing methods appropriate for mapping increasing amounts of genome-wide molecular data are increasing rapidly. There is also an increasing need for methods that are able to efficiently simulate such data.Patients and methods: In this article, we provide a graph-theory approach to find the necessary and sufficient conditions for the existence of a phylogeny matrix with k nonidentical haplotypes, n single nucleotide polymorphisms (SNPs, and a population size of m for which the minimum allele frequency of each SNP is between two specific numbers a and b.Results: We introduce an O(max(n2, nm algorithm for the random construction of such a phylogeny matrix. The running time of any algorithm for solving this problem would be Ω (nm.Conclusion: We have developed software, RAPPER, based on this algorithm, which is available at http://bioinf.cs.ipm.ir/softwares/RAPPER.Keywords: perfect phylogeny, minimum allele frequency (MAF, tree, recursive algorithm 

  12. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  13. Wavelet image compression

    CERN Document Server

    Pearlman, William A

    2013-01-01

    This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 S

  14. Stiffness of compression devices

    Directory of Open Access Journals (Sweden)

    Giovanni Mosti

    2013-03-01

    Full Text Available This issue of Veins and Lymphatics collects papers coming from the International Compression Club (ICC Meeting on Stiffness of Compression Devices, which took place in Vienna on May 2012. Several studies have demonstrated that the stiffness of compression products plays a major role for their hemodynamic efficacy. According to the European Committee for Standardization (CEN, stiffness is defined as the pressure increase produced by medical compression hosiery (MCH per 1 cm of increase in leg circumference.1 In other words stiffness could be defined as the ability of the bandage/stockings to oppose the muscle expansion during contraction.

  15. A multiband perfect absorber based on hyperbolic metamaterials.

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; ElKabbash, Mohamed; Alapan, Yunus; Rashed, Alireza R; Gurkan, Umut A; Strangi, Giuseppe

    2016-05-18

    In recent years, considerable research efforts have been focused on near-perfect and perfect light absorption using metamaterials spanning frequency ranges from microwaves to visible frequencies. This relatively young field is currently facing many challenges that hampers its possible practical applications. In this paper, we present grating coupled-hyperbolic metamaterials (GC-HMM) as multiband perfect absorber that can offer extremely high flexibility in engineering the properties of electromagnetic absorption. The fabricated GC-HMMs exhibit several highly desirable features for technological applications such as polarization independence, wide angle range, broad- and narrow- band modes, multiband perfect and near perfect absorption in the visible to near-IR and mid-IR spectral range. In addition, we report a direct application of the presented system as an absorption based plasmonic sensor with a record figure of merit for this class of sensors.

  16. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  17. Bringing the 'perfect lens' into focus by near-perfect compensation of losses without gain media

    CERN Document Server

    Adams, Wyatt; Zhang, Xu; Güney, Durdu Ö

    2016-01-01

    In this paper, the optical properties and imaging performance of a non-ideal Pendry's negative index flat lens with a practical value for loss are studied. Analytical calculations of the optical properties of the lens are performed, and those results are used to further study the lens and corresponding imaging system numerically. The plasmon injection scheme for loss compensation in negative index metamaterials is applied to the results from the imaging system, resulting in a perfect reconstruction of a previously unresolved image that demonstrates sub-diffraction-limit resolution.

  18. Compression Ratio Adjuster

    Science.gov (United States)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  19. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. We present several numerical tests of two-phase granular flows over sloping topography that are compared to the results of the model proposed by {Pitman and Le} [2005]. In particular, we quantify the role of the fluid and compression/dilatation processes on granular flow velocity field and runout distance. F. Bouchut, E.D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase shallow debris flow model with energy balance, {ESAIM: Math. Modelling Num. Anal.}, 49, 101-140 (2015). F. Bouchut, E. D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase two-layer model for fluidized granular flows with dilatancy effects, {J. Fluid Mech.}, submitted (2016). R.M. Iverson, M. Logan, R.G. LaHusen, M. Berti, The perfect debris flow? Aggregated results from 28 large-scale experiments, {J. Geophys. Res.}, 115, F03005 (2010). R. Jackson, The Dynamics of Fluidized Particles, {Cambridges Monographs on Mechanics} (2000). E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, {Phil.Trans. R. Soc. A}, 363, 1573-1601 (2005). S. Roux, F. Radjai, Texture-dependent rigid plastic behaviour, {Proceedings: Physics of Dry Granular Media}, September 1997. (eds. H. J. Herrmann et al.). Kluwer. Cargèse, France, 305-311 (1998).

  20. 中药口服、敷脐联合静脉补液治疗肝胃不和型妊娠剧吐32例%32 Cases of Hyperemesis Gravidarum of Disharmony Pattern between the Liver and Stomach Treated with Oral Administration of Herbal Medicine,Umbilicus Compress and Intravenous Fluid Infusion

    Institute of Scientific and Technical Information of China (English)

    单崇武; 王瑞霞

    2012-01-01

    Objective To explore the clinical efficacy on hyperemesis gravidarum of disharmony pattern between the liver and stomach treated with oral administration of herbal medicine, umbilicus compress and intravenous fluid infusion. Methods From September 2008 to June 2010,66 cases of hyperemesis gravidarum of disharmony pattern between the liver and stomach treated in Digestive Department, Gynecology Clinic and Admission Department were divided randomly into two groups. In a control group( 34 cases ),the intravenous fluid infusion was applied simply. In an observation group( 32 cases ), the oral administration of herbal medicine for clearing away liver fire and harmonizing the stomach,and umbilicus compress were adopted,in combination with intravenous fluid infusion. Results Of 32 cases in treatment group, 13 cases were cured, 12 cases remarkably effective,5 cases effective and 2 cases failed. The total effective rate was 93. 75%. Of 34 cases in control group, 10 cases were cured, 11 cases remarkably effective,7 cases effective and 6 cases failed. The total effective rate was 82. 35% . By the statistical management, the difference was significant statistically in comparison of the total effective rate between two groups( P < 0. 05 ). The efficacy in treatment group was superior to that in control group. Conclusion The combined treatment of the oral administration of herbal medicine for clearing away liver fire and harmonizing the stomach, umbilicus compress and intravenous fluid infusion achieves a significant efficacy on hyperemesis gravidarum. Such treatment program is a kind practical therapy of the integrated Chinese and western medicine and deserves to be promoted in clinical practice.%目的 探讨清肝和胃中药口服、敷脐联合静脉补液治疗肝胃不和型妊娠剧吐的临床疗效.方法 将2008年9月~2010年6月就诊于消化科及妇科门诊、住院部的66例肝胃不和型妊娠剧吐患者随机分为两组.对照组34例,单纯采

  1. Spectral Animation Compression

    Institute of Scientific and Technical Information of China (English)

    Chao Wang; Yang Liu; Xiaohu Guo; Zichun Zhong; Binh Le; Zhigang Deng

    2015-01-01

    This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.

  2. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  3. Impedance of tissue-mimicking phantom material under compression

    Directory of Open Access Journals (Sweden)

    Barry Belmont

    2013-02-01

    Full Text Available The bioimpedance of tissues under compression is a field in need of study. While biological tissues can become compressed in a myriad of ways, very few experiments have been conducted to describe the relationship between the passive electrical properties of a material (impedance/admittance during mechanical deformation. Of the investigations that have been conducted, the exodus of fluid from samples under compression has been thought to be the cause of changes in impedance, though until now was not measured directly. Using a soft tissue-mimicking phantom material (tofu whose passive electrical properties are a function of the conducting fluid held within its porous structure, we have shown that the mechanical behavior of a sample under compression can be measured through bioimpedance techniques.

  4. Compressible turbulence transport equations for generalized second order closure

    Energy Technology Data Exchange (ETDEWEB)

    Cloutman, L D

    1999-05-01

    Progress on the theory of second order closure in turbulence models of various types requires knowledge of the transport equations for various turbulence correlations. This report documents a procedure that provides such equations for a wide variety of turbulence averages for compressible flows of a multicomponent fluid. Generalizing some work by Germano for incompressible flows, we introduce an appropriate extension of his generalized second order correlations and use a generalized mass-weighted averaging procedure to derive transport equations for the correlations. The averaging procedure includes all of the commonly used averages as special cases. The resulting equations provide an internally consistent starting point for future work in developing single-point statistical turbulence transport models for fluid flows. The form invariance of the in-compressible equations also holds for the compressible case, and we discuss some of the closure issues and frequently ignored complications of statistical turbulence models of compressible flows.

  5. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  6. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2001-01-01

    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  7. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  8. A general framework for perfect simulation of long memory processes

    CERN Document Server

    De Santis, Emilio

    2010-01-01

    In this paper a general approach for the perfect simulation of a stationary process with at most countable state space is outlined. The process is specified through a kernel, prescribing the probability of each state conditional to the whole past history. We follow the seminal paper of Comets, Fernandez and Ferrari, where sufficient conditions for the construction of a certain perfect simulation algorithm have been given. We generalize this approach by defining backward coalescence times for these kind of processes; this allows us to construct perfect simulation algorithms under weaker conditions.

  9. Metasurfaces for perfect and full control of refraction and reflection

    CERN Document Server

    Asadchy, V; Tcvetkova, S; Ra'di, Y; Tretyakov, S A

    2016-01-01

    In this talk we present and discuss a new general approach to the synthesis of metasurfaces for full control of transmitted and reflected fields. The method is based on the use of an equivalent impedance matrix which connects the tangential field components at the two sides on the metasurface. Finding the impedance matrix components, we are able to synthesize metasurfaces which perfectly realize the desired response. We will explain possible alternative physical realizations and reveal the crucial role of bianisotropic coupling to achieve full control of transmission through perfectly matched metasurfaces. This abstract summarizes our results on metasurfaces for perfect refraction into an arbitrary direction.

  10. Nikishin systems are perfect. Case of unbounded and touching supports

    CERN Document Server

    Prieto, Fidalgo; Lagomasino, G López

    2010-01-01

    K. Mahler introduced the concept of perfect systems in the theory of simultaneous Hermite-Pad\\'{e} approximation of analytic functions. Recently, we proved that Nikishin systems, generated by measures with bounded support and non-intersecting consecutive supports contained on the real line, are perfect. Here, we prove that they are also perfect when the supports of the generating measures are unbounded or touch at one point. As an application, we give a version of Stieltjes' theorem in the context of simultaneous Hermite-Pad\\'e approximation.

  11. Perfect Lattice Perturbation Theory A Study of the Anharmonic Oscillator

    CERN Document Server

    Bietenholz, W

    1999-01-01

    As an application of perfect lattice perturbation theory, we construct an O(\\lambda) perfect lattice action for the anharmonic oscillator analytically in momentum space. In coordinate space we obtain a set of 2-spin and 4-spin couplings \\propto \\lambda, which we evaluate for various masses. These couplings never involve variables separated by more than two lattice spacings. The O(\\lambda) perfect action is simulated and compared to the standard action. We discuss the improvement for the first two energy gaps \\Delta E_1, \\Delta E_2 and for the scaling quantity \\Delta E_2 / \\Delta E1 in different regimes of the interaction parameter, and of the correlation length.

  12. Means and method for the recovery of expansion work in a vapor compression cycle device

    Energy Technology Data Exchange (ETDEWEB)

    Vakil, H.B.

    1981-12-08

    Recovery of substantially all of the work associated with the expansion of a multi-component working fluid mixture in a vapor compression cycle device is enabled by conveying working fluid in a liquid phase from a condenser to a coldest portion of an evaporator assembly in a countercurrent heat exchange relationship with fluid flowing through the evaporator assembly.

  13. Effects of compression on the sound absorption of fibrous

    DEFF Research Database (Denmark)

    Castagnede, Bernard; Akninen, Achour; Brouard, Achour

    2000-01-01

    During the compression of a fibrous mat, it is well known that the absorption properties are decreasing. In order to predict this change, some heuristic formulae are proposed which take into account the modifications of the physical parameters(porosity, resistivity, tortousity and shappe factors)......) which enter in the standard "equivalent fluid" model. Numerical predictions are then discussed and compared to experimental data obtained on a fibrous material(uncompressed and the compressed) used in automotive industry....

  14. Qualitative analysis of collapsing isotropic fluid spacetimes

    CERN Document Server

    Giambò, Roberto

    2013-01-01

    The structure of the Einstein field equations describing the gravitational collapse of spherically symmetric isotropic fluids is analyzed here for general equations of state. A suitable system of coordinates is constructed which allows us, under a hypothesis of Taylor-expandability with respect to one of the coordinates, to approach the problem of the nature of the final state without knowing explicitely the metric. The method is applied to investigate the singularities of linear barotropic perfect fluids solutions and to a family of accelerating fluids.

  15. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander

    2005-08-29

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  16. Meanings and Distribution of the Perfect in Present-Day American English Prose.

    Science.gov (United States)

    Dubois, Betty Lou

    This paper explores the meanings and distribution of the perfect in contemporary American English prose, with reference to problems encountered in teaching English as a second language. The English perfect comprises forms traditionally called present perfect tense, past perfect tense, and perfects of the infinitive, gerund and present participle.…

  17. Artificial Perfect Electric Conductor-Perfect Magnetic Conductor Anisotropic Metasurface for Generating Orbital Angular Momentum of Microwave with Nearly Perfect Conversion Efficiency

    CERN Document Server

    Chen, Menglin L N; Sha, Wei E I

    2016-01-01

    Orbital angular momentum (OAM) is a promising degree of freedom for fundamental studies in electromagnetics and quantum mechanics. The unlimited state space of OAM shows a great potential to enhance channel capacities of classical and quantum communications. By exploring the Pancharatnam-Berry phase concept and engineering anisotropic scatterers in a metasurface with spatially varying orientations, a plane wave with zero OAM can be converted to a vortex beam carrying nonzero OAM. In this paper, we proposed two types of novel PEC (perfect electric conductor)-PMC (perfect magnetic conductor) anisotropic metasurfaces. One is composed of azimuthally continuous loops and the other is constructed by azimuthally discontinuous dipole scatterers. Both types of metasurfaces are mounted on a mushroom-type high impedance surface. Compared to previous metasurface designs for generating OAM, the proposed ones achieve nearly perfect conversion efficiency. In view of the eliminated vertical component of electric field, the c...

  18. Cascade of kinetic energy in three-dimensional compressible turbulence.

    Science.gov (United States)

    Wang, Jianchun; Yang, Yantao; Shi, Yipeng; Xiao, Zuoli; He, X T; Chen, Shiyi

    2013-05-24

    The conservative cascade of kinetic energy is established using both Fourier analysis and a new exact physical-space flux relation in a simulated compressible turbulence. The subgrid scale (SGS) kinetic energy flux of the compressive mode is found to be significantly larger than that of the solenoidal mode in the inertial range, which is the main physical origin for the occurrence of Kolmogorov's -5/3 scaling of the energy spectrum in compressible turbulence. The perfect antiparallel alignment between the large-scale strain and the SGS stress leads to highly efficient kinetic energy transfer in shock regions, which is a distinctive feature of shock structures in comparison with vortex structures. The rescaled probability distribution functions of SGS kinetic energy flux collapse in the inertial range, indicating a statistical self-similarity of kinetic energy cascades.

  19. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...... the ratio of nominal indentation hardness to yield strength. A linear relation is found between the nominal indentation hardness and the logarithm of the ratio of Young's modulus to yield strength, but with a different coefficient than reported in previous studies. The nominal indentation hardness decreases...

  20. Vascular compression syndromes.

    Science.gov (United States)

    Czihal, Michael; Banafsche, Ramin; Hoffmann, Ulrich; Koeppel, Thomas

    2015-11-01

    Dealing with vascular compression syndromes is one of the most challenging tasks in Vascular Medicine practice. This heterogeneous group of disorders is characterised by external compression of primarily healthy arteries and/or veins as well as accompanying nerval structures, carrying the risk of subsequent structural vessel wall and nerve damage. Vascular compression syndromes may severely impair health-related quality of life in affected individuals who are typically young and otherwise healthy. The diagnostic approach has not been standardised for any of the vascular compression syndromes. Moreover, some degree of positional external compression of blood vessels such as the subclavian and popliteal vessels or the celiac trunk can be found in a significant proportion of healthy individuals. This implies important difficulties in differentiating physiological from pathological findings of clinical examination and diagnostic imaging with provocative manoeuvres. The level of evidence on which treatment decisions regarding surgical decompression with or without revascularisation can be relied on is generally poor, mostly coming from retrospective single centre studies. Proper patient selection is critical in order to avoid overtreatment in patients without a clear association between vascular compression and clinical symptoms. With a focus on the thoracic outlet-syndrome, the median arcuate ligament syndrome and the popliteal entrapment syndrome, the present article gives a selective literature review on compression syndromes from an interdisciplinary vascular point of view.

  1. Critical Data Compression

    CERN Document Server

    Scoville, John

    2011-01-01

    A new approach to data compression is developed and applied to multimedia content. This method separates messages into components suitable for both lossless coding and 'lossy' or statistical coding techniques, compressing complex objects by separately encoding signals and noise. This is demonstrated by compressing the most significant bits of data exactly, since they are typically redundant and compressible, and either fitting a maximally likely noise function to the residual bits or compressing them using lossy methods. Upon decompression, the significant bits are decoded and added to a noise function, whether sampled from a noise model or decompressed from a lossy code. This results in compressed data similar to the original. For many test images, a two-part image code using JPEG2000 for lossy coding and PAQ8l for lossless coding produces less mean-squared error than an equal length of JPEG2000. Computer-generated images typically compress better using this method than through direct lossy coding, as do man...

  2. The Ideology of the Perfect Dictionary: How Efficient Can a ...

    African Journals Online (AJOL)

    rbr

    memory. Lexicographers, in their search for perfection and in compliance with users' wishes, are constantly ..... well as music, history and psychology. Looking at ..... An Experiment Using Electronic Dictionaries with EFL Students. [online].

  3. Perfection and the Bomb: Nuclear Weapons, Teleology, and Motives.

    Science.gov (United States)

    Brummett, Barry

    1989-01-01

    Uses Kenneth Burke's theory of perfection to explore the vocabularies of nuclear weapons in United States public discourse and how "the Bomb" as a God term has gained imbalanced ascendancy in centers of power. (MS)

  4. An improved perfectly matched layer for the eigenmode expansion technique

    DEFF Research Database (Denmark)

    Gregersen, Niels; Mørk, Jesper

    2008-01-01

    When performing optical simulations for rotationally symmetric geometries using the eigenmode expansion technique, it is necessary to place the geometry under investigation inside a cylinder with perfectly conducting walls. The parasitic reflections at the boundary of the computational domain can...

  5. The West Perfecting Its Techniques To Hurt China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Spanish Website Rebellion published an article titled The West Perfecting Its Techniques to Hurt China by U.S. writer, filmmaker and journalist Andre Vltchek on November 12, 2010. Excerpts from the article follow:

  6. Perfect and broadband acoustic absorption by critical coupling

    CERN Document Server

    Romero-García, V; Richoux, O; Merkel, A; Tournat, V; Pagneux, V

    2015-01-01

    We experimentally and analytically report broadband and narrowband perfect absorption in two different acoustic waveguide-resonator geometries by the mechanism of critical coupling. In the first geometry the resonator (a Helmholtz resonator) is side-loaded to the waveguide and it has a moderate quality factor. In the second geometry the resonator (a viscoelastic porous plate) is in-line loaded and it contains two resonant modes with low quality factor. The interplay between the energy leakage of the resonant modes into the waveguide and the inherent losses of the system reveals a perfect and a broadband nearly perfect absorption. The results shown in this work can motivate relevant research for the design of broadband perfect absorbers in other domains of wave physics.

  7. A general framework for perfect simulation of long memory processes

    OpenAIRE

    De Santis, Emilio; Piccioni, Mauro

    2010-01-01

    In this paper a general approach for the perfect simulation of a stationary process with at most countable state space is outlined. The process is specified through a kernel, prescribing the probability of each state conditional to the whole past history. We follow the seminal paper of Comets, Fernandez and Ferrari, where sufficient conditions for the construction of a certain perfect simulation algorithm have been given. We generalize this approach by defining backward coalescence times for ...

  8. Circuital model for the spherical geodesic waveguide perfect drain

    Science.gov (United States)

    González, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; Miñano, Juan C.

    2012-08-01

    The perfect drain for the Maxwell fish eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex permittivity that depends on frequency. However, this material is only a theoretical material, so it cannot be used in practical devices. The perfect drain has been claimed as necessary for achieving super-resolution (Leonhardt 2009 New J. Phys. 11 093040), which has increased the interest in practical perfect drains suitable for manufacturing. Here, we present a practical perfect drain that is designed using a simple circuit (made of a resistance and a capacitor) connected to the coaxial line. Moreover, we analyze the super-resolution properties of a device equivalent to the MFE, known as a spherical geodesic waveguide, loaded with this perfect drain. The super-resolution analysis for this device is carried out using COMSOL Multiphysics. The results of simulations predict a super-resolution of up to λ/3000.

  9. Circuital model for the Maxwell Fish Eye perfect drain

    CERN Document Server

    Gonzalez, Juan C; Minano, Juan C; Benitez, Pablo

    2012-01-01

    Perfect drain for the Maxwell Fish Eye (MFE) is a non-magnetic dissipative region placed in the focal point to absorb all the incident radiation without reflection or scattering. The perfect drain was recently designed as a material with complex electrical permittivity that depends on frequency. However, this material is only a theoretical material, so it can not be used in practical devices. Recently, the perfect drain has been claimed as necessary to achieve super-resolution [Leonhard 2009, New J. Phys. 11 093040], which has increased the interest for practical perfect drains suitable for manufacturing. Here, we analyze the super-resolution properties of a device equivalent to the MFE, known as Spherical Geodesic Waveguide (SGW), loaded with the perfect drain. In the SGW the source and drain are implemented with coaxial probes. The perfect drain is realized using a circuit (made of a resistance and a capacitor) connected to the drain coaxial probes. Super-resolution analysis for this device is done in Comso...

  10. Perfect state transfer of quantum walks on quotient graphs

    CERN Document Server

    Bachman, R; Fuller, J; Landry, M; Opperman, M; Tamon, C; Tollefson, A

    2011-01-01

    We study perfect state transfer of quantum walks on graphs using equitable partitions. A main observation we use throughout is that a graph has perfect state transfer if and only if its quotient graph modulo some equitable partition has perfect state transfer. We use this observation to prove the following results: i) If a quotient graph $G/\\pi$ has perfect state transfer for some equitable partition $\\pi$, then $G$ also has perfect state transfer. This lifting property can be used to show that there is a graph $G$ with perfect state transfer between two of its vertices $u$ and $v$ but which has no automorphism mapping $u$ to $v$. This answers a question of Godsil. ii) For a collection of graphs $\\{G_{k}\\}$ and their equitable partitions $\\pi_{k}$, there is an equitable partition $\\pi$ so that $\\Box_{k} (G_{k}/\\pi_{k}) \\cong (\\Box_{k} G_{k})/\\pi$. This generalizes a construction of Feder \\cite{f06} which was obtained from a $k$-boson quantum walk on a single graph. Our construction yields new families of weig...

  11. Prediction by Compression

    CERN Document Server

    Ratsaby, Joel

    2010-01-01

    It is well known that text compression can be achieved by predicting the next symbol in the stream of text data based on the history seen up to the current symbol. The better the prediction the more skewed the conditional probability distribution of the next symbol and the shorter the codeword that needs to be assigned to represent this next symbol. What about the opposite direction ? suppose we have a black box that can compress text stream. Can it be used to predict the next symbol in the stream ? We introduce a criterion based on the length of the compressed data and use it to predict the next symbol. We examine empirically the prediction error rate and its dependency on some compression parameters.

  12. LZW Data Compression

    Directory of Open Access Journals (Sweden)

    Dheemanth H N

    2016-07-01

    Full Text Available Lempel–Ziv–Welch (LZW is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch. LZW compression is one of the Adaptive Dictionary techniques. The dictionary is created while the data are being encoded. So encoding can be done on the fly. The dictionary need not be transmitted. Dictionary can be built up at receiving end on the fly. If the dictionary overflows then we have to reinitialize the dictionary and add a bit to each one of the code words. Choosing a large dictionary size avoids overflow, but spoils compressions. A codebook or dictionary containing the source symbols is constructed. For 8-bit monochrome images, the first 256 words of the dictionary are assigned to the gray levels 0-255. Remaining part of the dictionary is filled with sequences of the gray levels.LZW compression works best when applied on monochrome images and text files that contain repetitive text/patterns.

  13. Reference Based Genome Compression

    CERN Document Server

    Chern, Bobbie; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.

  14. Viscous fingering with partial miscible fluids

    Science.gov (United States)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2015-11-01

    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Studies of viscous fingering have focused on fluids that are either fully miscible or perfectly immiscible. In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other. Following our recent work for miscible (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a Hele-Shaw cell, when the two fluids have limited (but nonzero) solubility in one another. Partial miscibility is characterized through the design of thermodynamic free energy of the two-fluid system. We elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution.

  15. Bianchi Type-I cosmological mesonic stiff fluid models in Lyra's geometry

    Indian Academy of Sciences (India)

    S D Katore; S V Thakare; K S Adhao

    2008-07-01

    Bianchi Type-I cosmological models in Lyra's geometry are obtained when the source of gravitational field is a perfect fluid coupled with massless mesonic scalar field. Some physical and kinematical properties of the models are also discussed.

  16. Deep Blind Compressed Sensing

    OpenAIRE

    Singh, Shikha; Singhal, Vanika; Majumdar, Angshul

    2016-01-01

    This work addresses the problem of extracting deeply learned features directly from compressive measurements. There has been no work in this area. Existing deep learning tools only give good results when applied on the full signal, that too usually after preprocessing. These techniques require the signal to be reconstructed first. In this work we show that by learning directly from the compressed domain, considerably better results can be obtained. This work extends the recently proposed fram...

  17. Reference Based Genome Compression

    OpenAIRE

    Chern, Bobbie; Ochoa, Idoia; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy

    2012-01-01

    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target gen...

  18. Formation of Singularities in One-dimensional Compressible Fluids with Dissipative Term%具耗散一维可压流体方程组奇性形成(英文)

    Institute of Scientific and Technical Information of China (English)

    刘法贵; 秦玉明

    2002-01-01

    The global existence and formation of singularities of classical solutions to the Cauchy problem in one-dimensionalcompressible fluids with dissipative term 2au(α>0) are considered. It is proved that if the initial amount of the entropy and a are smaller than that of sound waves, then classical (periodic) solutions will develop shocks in a finite time. Moreover, some quantitative estimates of lifespan of classical (periodic) solutions and a result on global existence of classical solutions are given.%考虑具耗散项2αu(α>0)可压缩流体方程组Cauchy问题经典解整体存在性与解的奇性形成.如果熵和α小于声波能量,证明了其经典解必在有限时间内产生激波,进一步给出了经典解的生命区间跨度估计.

  19. Adaptive Lattice Boltzmann Model for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new lattice Boltzmann model for compressible flows is presented. The main difference from the standard lattice Boltzmann model is that the particle velocities are no longer constant, but vary with the mean velocity and internal energy. The adaptive nature of the particle velocities permits the mean flow to have a high Mach number. The introduction of a particle potential energy makes the model suitable for a perfect gas with arbitrary specific heat ratio. The Navier-Stokes (N-S) equations are derived by the Chapman-Enskog method from the BGK Boltzmann equation. Two kinds of simulations have been carried out on the hexagonal lattice to test the proposed model. One is the Sod shock-tube simulation. The other is a strong shock of Mach number 5.09 diffracting around a corner.

  20. Alternative Compression Garments

    Science.gov (United States)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  1. Fluid mechanics

    CERN Document Server

    Kundu, Pijush K; Dowling, David R

    2011-01-01

    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  2. Equilibrium states of homogeneous sheared compressible turbulence

    Science.gov (United States)

    Riahi, M.; Lili, T.

    2011-06-01

    Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT). The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS) of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997)] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995)] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10) in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  3. Equilibrium states of homogeneous sheared compressible turbulence

    Directory of Open Access Journals (Sweden)

    M. Riahi

    2011-06-01

    Full Text Available Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT. The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St 10 in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  4. Static-Fluid Black Holes

    CERN Document Server

    Cho, Inyong

    2016-01-01

    We investigate black holes formed by static perfect fluid with $p=-\\rho/3$. These represent the black holes in $S_3$ and $H_3$ spatial geometries. There are three classes of black-hole solutions, two $S_3$ types and one $H_3$ type. The interesting solution is the one of $S_3$ type which possesses two singularities. The one is at the north pole behind the horizon, and the other is naked at the south pole. The observers, however, are free from falling to the naked singularity. There are also nonstatic cosmological solutions in $S_3$ and $H_3$, and a singular static solution in $H_3$.

  5. Fluid Mechanics of Spinning Rockets.

    Science.gov (United States)

    1987-01-01

    internal energy dissipation is present. A classic case was the instability exhibited by the first American earth satellite, the Explorer I, which...measure the pressure fluctuations. Water was used as the working fluid. This is acceptable in these simulations, since compressibility is not a...nozzle are responsible for the the apparition of the instability late in the motor bum. In conclusion, it has been shown that an unsteady internal gas

  6. Super-strong magneto-rheological fluids

    Science.gov (United States)

    Tao, R.

    2001-03-01

    A typical MR fluid is a suspension of magnetic particles of micrometer size in a liquid. Upon application of a strong magnetic field, the fluid turns into a solid. This process is reversible and the response time is of milliseconds. MR fluids presently have a yield shear stress around 80 kPa, which is adequate for applications in shock absorbers and vibration dampers, but is inadequate for automobile clutch etc. Efforts in searching for new materials in the past decades came with limited results. Thus we have developed a new approach to change the microstructure of MR fluids and make them super-strong. It is well known that under a strong magnetic field, the ideal structure of MR fluids is a body-centered tetragonal (bct) lattice. The mechanical strength of MR fluids strongly depends on the microstructure. A bct-lattice based thick column has a much higher yield stress than a single-chain structure. When a magnetic field is applied to a MR fluid, the particles first form chains. With time, the chains may aggregate into columns. However, the unassisted aggregation is not very useful, as it is slow and produces columns with a limited thickness. Our method is based on assisted aggregations. Immediately after a magnetic field is applied, we compress the MR fluid in the field direction before a shear force is applied. The compression pushes the induced chains together to form thick columns. This microstructure change greatly enhances the yield stress. The experiment on an iron-based MR fluid finds 800 kPa for the yield stress, ten times stronger than that without the compression. When the magnetic field is removed, the MR fluid still returns to the liquid state quickly. The upper limit of this structure-enhanced yield stress seems well above 800 kPa. The super-strong MR fluids are suitable for many industrial applications. *Supported by NSF Grant 0196022

  7. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  8. Transverse Compression of Tendons.

    Science.gov (United States)

    Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.

  9. Perfect control of reflection and refraction using spatially dispersive metasurfaces

    CERN Document Server

    Asadchy, V S; Tcvetkova, S N; Díaz-Rubio, A; Ra'di, Y; Tretyakov, S A

    2016-01-01

    Non-uniform metasurfaces (electrically thin composite layers) can be used for shaping refracted and reflected electromagnetic waves. However, known design approaches based on the generalized refraction and reflection laws do not allow realization of perfectly performing devices: there are always some parasitic reflections into undesired directions. In this paper we introduce and discuss a general approach to the synthesis of metasurfaces for full control of transmitted and reflected fields and show that perfect performance can be realized. The method is based on the use of an equivalent impedance matrix model which connects the tangential field components at the two sides on the metasurface. With this approach we are able to understand what physical properties of the metasurface are needed in order to perfectly realize the desired response. Furthermore, we determine the required polarizabilities of the metasurface unit cells and discuss suitable cell structures. It appears that only spatially dispersive metas...

  10. Perfect vortex beam: Fourier transformation of a Bessel beam.

    Science.gov (United States)

    Vaity, Pravin; Rusch, Leslie

    2015-02-15

    We derive a mathematical description of a perfect vortex beam as the Fourier transformation of a Bessel beam. Building on this development, we experimentally generate Bessel-Gauss beams of different orders and Fourier transform them to form perfect vortex beams. By controlling the radial wave vector of a Bessel-Gauss beam, we can control the ring radius of the generated beam. Our theoretical predictions match with the experimental results and also provide an explanation for previous published works. We find the perfect vortex resembles that of an orbital angular momentum (OAM) mode supported in annular profiled waveguides. Our prefect vortex beam generation method can be used to excite OAM modes in an annular core fiber.

  11. Price-Value Potential for Near-Perfectly Competitive Markets

    Directory of Open Access Journals (Sweden)

    Sergey K. Aityan

    2011-01-01

    Full Text Available This study introduces price-value potential to be used instead of price for market analysis by analogy with free energy or thermodynamic potential in physics. A conservation principle is proposed for price-value potential. It is shown that price-value potential provides a constructive way for market analysis by identifying variation of equilibrium prices and quantities for different products in market equilibrium. A perturbation theory for a group of products with small differentiations on near-perfectly competitive markets was developed for illustration of the approach. The concept of price-value potential is illustrated in a simple example of a near-perfectly competitive market. It is shown that the equilibrium prices and quantities for products differ due to product differentiation that makes such an approach a constructive enhancement to the classical model of perfect competition.

  12. Asymptotic cosmological regimes in scalar-torsion gravity with a perfect fluid

    Energy Technology Data Exchange (ETDEWEB)

    Skugoreva, Maria A. [Kazan Federal University, Kazan (Russian Federation); Toporensky, Alexey V. [Kazan Federal University, Kazan (Russian Federation); Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow (Russian Federation)

    2016-06-15

    We consider the cosmological dynamics of a nonminimally coupled scalar field in scalar-torsion gravity in the presence of hydrodynamical matter. The potential of the scalar field have been chosen as power law with negative index, this type of potentials is usually used in quintessence scenarios. We identify several asymptotic regimes, including de Sitter, kinetic dominance, kinetic tracker, and tracker solutions and study the conditions for their existence and stability. We show that for each combination of coupling constant and potential power index one of the regimes studied in the present paper is stable to the future. (orig.)

  13. A variational H(div) finite element discretisation for perfect incompressible fluids

    OpenAIRE

    Natale, Andrea; Cotter, Colin J.

    2016-01-01

    We propose a finite element discretisation approach for the incompressible Euler equations which mimics their geometric structure and their variational derivation. In particular, we derive a finite element method that arises from a nonholonomic variational principle and an appropriately defined Lagrangian, where finite element H(div) vector fields are identified with advection operators; this is the first successful extension of the structure-preserving discretisation of Pavlov et al. (2009) ...

  14. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  15. Asymptotic cosmological regimes in scalar-torsion gravity with a perfect fluid

    CERN Document Server

    Skugoreva, Maria

    2016-01-01

    We consider cosmological dynamics of nonminimally coupled scalar field in the scalar-torsion gravity in the presence of a hydrodynamical matter. Potential of the scalar field have been chosen as power-law with negative index, this type of potentials is usually used in quintessence scenarios. We identify several asymptotic regimes, including de Sitter, kinetic dominance, kinetic tracker and tracker solution and study conditions for their existence and stability. We show that for each combination of coupling constant and potential power index one of regimes studied in the present paper is stable to the future.

  16. Cosmology with moving bimetric fluids

    CERN Document Server

    García-García, Carlos; Martín-Moruno, Prado

    2016-01-01

    We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function allow to reproduce the behaviour of different dark fluids. In particular, the Gordon ansatz is suitable for the description of various kinds of slowly-moving fluids, whereas the Kerr-Schild one is shown to describe a null dark energy component. The motion of those dark fluids with respect to the CMB is shown to generate, in turn, a relative motion of baryonic matter with respect to radition which contributes to the CMB anisotropies. CMB dipole observations are able to set stringent limits on the dark sector described by ...

  17. SYMBOLIC VERSOR COMPRESSION ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Li Hongbo

    2009-01-01

    In an inner-product space, an invertible vector generates a reflection with re-spect to a hyperplane, and the Clifford product of several invertible vectors, called a versor in Clifford algebra, generates the composition of the corresponding reflections, which is an orthogonal transformation. Given a versor in a Clifford algebra, finding another sequence of invertible vectors of strictly shorter length but whose Clifford product still equals the input versor, is called versor compression. Geometrically, versor compression is equivalent to decomposing an orthogoual transformation into a shorter sequence of reflections. This paper proposes a simple algorithm of compressing versors of symbolic form in Clifford algebra. The algorithm is based on computing the intersections of lines with planes in the corresponding Grassmann-Cayley algebra, and is complete in the case of Euclidean or Minkowski inner-product space.

  18. Image compression for dermatology

    Science.gov (United States)

    Cookson, John P.; Sneiderman, Charles; Colaianni, Joseph; Hood, Antoinette F.

    1990-07-01

    Color 35mm photographic slides are commonly used in dermatology for education, and patient records. An electronic storage and retrieval system for digitized slide images may offer some advantages such as preservation and random access. We have integrated a system based on a personal computer (PC) for digital imaging of 35mm slides that depict dermatologic conditions. Such systems require significant resources to accommodate the large image files involved. Methods to reduce storage requirements and access time through image compression are therefore of interest. This paper contains an evaluation of one such compression method that uses the Hadamard transform implemented on a PC-resident graphics processor. Image quality is assessed by determining the effect of compression on the performance of an image feature recognition task.

  19. Integer wavelet transform for embedded lossy to lossless image compression.

    Science.gov (United States)

    Reichel, J; Menegaz, G; Nadenau, M J; Kunt, M

    2001-01-01

    The use of the discrete wavelet transform (DWT) for embedded lossy image compression is now well established. One of the possible implementations of the DWT is the lifting scheme (LS). Because perfect reconstruction is granted by the structure of the LS, nonlinear transforms can be used, allowing efficient lossless compression as well. The integer wavelet transform (IWT) is one of them. This is an interesting alternative to the DWT because its rate-distortion performance is similar and the differences can be predicted. This topic is investigated in a theoretical framework. A model of the degradations caused by the use of the IWT instead of the DWT for lossy compression is presented. The rounding operations are modeled as additive noise. The noise are then propagated through the LS structure to measure their impact on the reconstructed pixels. This methodology is verified using simulations with random noise as input. It predicts accurately the results obtained using images compressed by the well-known EZW algorithm. Experiment are also performed to measure the difference in terms of bit rate and visual quality. This allows to a better understanding of the impact of the IWT when applied to lossy image compression.

  20. Compressible Quasi-geostrophic Convection without the Anelastic Approximation

    Science.gov (United States)

    Calkins, M. A.; Marti, P.; Julien, K. A.

    2014-12-01

    Fluid compressibility is known to be an important, non-negligible component of the dynamics of many planetary atmospheres and stellar convection zones, yet imposes severe computational constraints on numerical simulations of the compressible Navier-Stokes equations (NSE). An often employed reduced form of the NSE are the anelastic equations, which maintain fluid compressibility in the form of a depth varying, adiabatic background state onto which the perturbations cannot feed back. We present the linear theory of compressible rotating convection in a local-area, plane layer geometry. An important dimensionless parameter in convection is the ratio of kinematic viscosity to thermal diffusivity, or the Prandtl number, Pr. It is shown that the anelastic approximation cannot capture the linear instability of gases with Prandtl numbers less than approximately 0.5 in the limit of rapid rotation; the time derivative of the density fluctuation appearing in the conservation of mass equation remains important for these cases and cannot be neglected. An alternative compressible, geostrophically balanced equation set has been derived and preliminary results utilizing this new equation set are presented. Notably, this new set of equations satisfies the Proudman-Taylor theorem on small axial scales even for strongly compressible flows, does not require the flow to be nearly adiabatic, and thus allows for feedback onto the background state.