WorldWideScience

Sample records for compressible flow

  1. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  2. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  3. Magnetic compression into Brillouin flow

    International Nuclear Information System (INIS)

    Becker, R.

    1977-01-01

    The trajectories of beam edge electrons are calculated in the transition region between an electrostatic gun and an increasing magnetic field for various field shapes, transition length, and cathode fluxes, assuming that the resultant beam is of Brillouin flow type. The results give a good physical interpretation to the axial gradient of the magnetic field being responsible for the amount of magnetic compression and also for the proper injection conditions. Therefore it becomes possible to predict from the known characteristics of any fairly laminary electrostatic gun the necessary axial gradient of the magnetic field and the axial position of the gun with respect to the field build-up. (orig.) [de

  4. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  5. Computer program for compressible flow network analysis

    Science.gov (United States)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  6. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  7. Large Eddy Simulation for Compressible Flows

    CERN Document Server

    Garnier, E; Sagaut, P

    2009-01-01

    Large Eddy Simulation (LES) of compressible flows is still a widely unexplored area of research. The authors, whose books are considered the most relevant monographs in this field, provide the reader with a comprehensive state-of-the-art presentation of the available LES theory and application. This book is a sequel to "Large Eddy Simulation for Incompressible Flows", as most of the research on LES for compressible flows is based on variable density extensions of models, methods and paradigms that were developed within the incompressible flow framework. The book addresses both the fundamentals and the practical industrial applications of LES in order to point out gaps in the theoretical framework as well as to bridge the gap between LES research and the growing need to use it in engineering modeling. After introducing the fundamentals on compressible turbulence and the LES governing equations, the mathematical framework for the filtering paradigm of LES for compressible flow equations is established. Instead ...

  8. Mathematical theory of compressible fluid flow

    CERN Document Server

    von Mises, Richard

    2004-01-01

    A pioneer in the fields of statistics and probability theory, Richard von Mises (1883-1953) made notable advances in boundary-layer-flow theory and airfoil design. This text on compressible flow, unfinished upon his sudden death, was subsequently completed in accordance with his plans, and von Mises' first three chapters were augmented with a survey of the theory of steady plane flow. Suitable as a text for advanced undergraduate and graduate students - as well as a reference for professionals - Mathematical Theory of Compressible Fluid Flow examines the fundamentals of high-speed flows, with

  9. Compressible flow in fluidic oscillators

    Science.gov (United States)

    Graff, Emilio; Hirsch, Damian; Gharib, Mory

    2013-11-01

    We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.

  10. Adaptive Methods for Compressible Flow

    Science.gov (United States)

    1994-03-01

    labor -intensive task of purpose of this work is to demonstrate the generating acceptable surface triangulations, advantages of integrating the CAD/CAM...sintilar results). L 1 (’-1)(2sn~p) boundary error (MUSCL) The flow variables wre then given by .04 .78% M=asOIne/i .02 AM% v= acosO /sintt .01 .0 p

  11. Compressed-air flow control system.

    Science.gov (United States)

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  12. Cartesian anisotropic mesh adaptation for compressible flow

    International Nuclear Information System (INIS)

    Keats, W.A.; Lien, F.-S.

    2004-01-01

    Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

  13. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  14. Multidomain spectral solution of compressible viscous flows

    International Nuclear Information System (INIS)

    Kopriva, D.A.

    1994-01-01

    We develop a nonoverlapping mutidomain spectral collocation method to solve compressible viscous flows. At the interfaces, the advection terms are treated with a characteristic correction method. The diffusion terms are treated with a penalty method. Spectral accuracy is demonstrated on linear model problems in one and two space dimensions. The method is applied to a subsonic and supersonic flow over a flat plate. The results are compared to solutions of the boundary-layer equations which show that two digit accuracy in the adiabatic plate temperature is obtained with 16 points in the boundary layer for a freestream Mach number of two. A second application is to a transonic flow in a two-dimensional converging-diverging nozzle, where the computed results are compared to experimental data

  15. Transient compressible flows in porous media

    International Nuclear Information System (INIS)

    Morrison, F.A. Jr.

    1975-09-01

    Transient compressible flow in porous media was investigated analytically. The major portion of the investigation was directed toward improving and understanding of dispersion in these flows and developing rapid accurate numerical techniques for predicting the extent of dispersion. The results are of interest in the containment of underground nuclear experiments. The transient one-dimensional transport of a trace component in a gas flow is analyzed. A conservation equation accounting for the effects of convective transport, dispersive transport, and decay, is developed. This relation, as well as a relation governing the fluid flow, is used to predict trace component concentration as a function of position and time. A detailed analysis of transport associated with the isothermal flow of an ideal gas is done. Because the governing equations are nonlinear, numerical calculations are performed. The ideal gas flow is calculated using a highly stable implicit iterative procedure with an Eulerian mesh. In order to avoid problems of anomolous dispersion associated with finite difference calculation, trace component convection and dispersion are calculated using a Lagrangian mesh. Details of the Eulerian-Lagrangian numerical technique are presented. Computer codes have been developed and implemented on the Lawrence Livermore Laboratory computer system

  16. Schwarz-based algorithms for compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Tidriri, M.D. [ICASE, Hampton, VA (United States)

    1996-12-31

    To compute steady compressible flows one often uses an implicit discretization approach which leads to a large sparse linear system that must be solved at each time step. In the derivation of this system one often uses a defect-correction procedure, in which the left-hand side of the system is discretized with a lower order approximation than that used for the right-hand side. This is due to storage considerations and computational complexity, and also to the fact that the resulting lower order matrix is better conditioned than the higher order matrix. The resulting schemes are only moderately implicit. In the case of structured, body-fitted grids, the linear system can easily be solved using approximate factorization (AF), which is among the most widely used methods for such grids. However, for unstructured grids, such techniques are no longer valid, and the system is solved using direct or iterative techniques. Because of the prohibitive computational costs and large memory requirements for the solution of compressible flows, iterative methods are preferred. In these defect-correction methods, which are implemented in most CFD computer codes, the mismatch in the right and left hand side operators, together with explicit treatment of the boundary conditions, lead to a severely limited CFL number, which results in a slow convergence to steady state aerodynamic solutions. Many authors have tried to replace explicit boundary conditions with implicit ones. Although they clearly demonstrate that high CFL numbers are possible, the reduction in CPU time is not clear cut.

  17. Subsampling-based compression and flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Agranovsky, Alexy; Camp, David; Joy, I; Childs, Hank

    2016-01-19

    As computational capabilities increasingly outpace disk speeds on leading supercomputers, scientists will, in turn, be increasingly unable to save their simulation data at its native resolution. One solution to this problem is to compress these data sets as they are generated and visualize the compressed results afterwards. We explore this approach, specifically subsampling velocity data and the resulting errors for particle advection-based flow visualization. We compare three techniques: random selection of subsamples, selection at regular locations corresponding to multi-resolution reduction, and introduce a novel technique for informed selection of subsamples. Furthermore, we explore an adaptive system which exchanges the subsampling budget over parallel tasks, to ensure that subsampling occurs at the highest rate in the areas that need it most. We perform supercomputing runs to measure the effectiveness of the selection and adaptation techniques. Overall, we find that adaptation is very effective, and, among selection techniques, our informed selection provides the most accurate results, followed by the multi-resolution selection, and with the worst accuracy coming from random subsamples.

  18. Flux Limiter Lattice Boltzmann for Compressible Flows

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Physical and numerical modelling of low mach number compressible flows

    International Nuclear Information System (INIS)

    Paillerre, H.; Clerc, S.; Dabbene, F.; Cueto, O.

    1999-01-01

    This article reviews various physical models that may be used to describe compressible flow at low Mach numbers, as well as the numerical methods developed at DRN to discretize the different systems of equations. A selection of thermal-hydraulic applications illustrate the need to take into account compressibility and multidimensional effects as well as variable flow properties. (authors)

  20. Compressible turbulent flows: aspects of prediction and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik

    2007-03-15

    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  1. Meshless Method for Simulation of Compressible Flow

    Science.gov (United States)

    Nabizadeh Shahrebabak, Ebrahim

    In the present age, rapid development in computing technology and high speed supercomputers has made numerical analysis and computational simulation more practical than ever before for large and complex cases. Numerical simulations have also become an essential means for analyzing the engineering problems and the cases that experimental analysis is not practical. There are so many sophisticated and accurate numerical schemes, which do these simulations. The finite difference method (FDM) has been used to solve differential equation systems for decades. Additional numerical methods based on finite volume and finite element techniques are widely used in solving problems with complex geometry. All of these methods are mesh-based techniques. Mesh generation is an essential preprocessing part to discretize the computation domain for these conventional methods. However, when dealing with mesh-based complex geometries these conventional mesh-based techniques can become troublesome, difficult to implement, and prone to inaccuracies. In this study, a more robust, yet simple numerical approach is used to simulate problems in an easier manner for even complex problem. The meshless, or meshfree, method is one such development that is becoming the focus of much research in the recent years. The biggest advantage of meshfree methods is to circumvent mesh generation. Many algorithms have now been developed to help make this method more popular and understandable for everyone. These algorithms have been employed over a wide range of problems in computational analysis with various levels of success. Since there is no connectivity between the nodes in this method, the challenge was considerable. The most fundamental issue is lack of conservation, which can be a source of unpredictable errors in the solution process. This problem is particularly evident in the presence of steep gradient regions and discontinuities, such as shocks that frequently occur in high speed compressible flow

  2. Weak-strong clustering transition in renewing compressible flows

    OpenAIRE

    Dhanagare, Ajinkya; Musacchio, Stefano; Vincenzi, Dario

    2014-01-01

    International audience; We investigate the statistical properties of Lagrangian tracers transported by a time-correlated compressible renewing flow. We show that the preferential sampling of the phase space performed by tracers yields significant differences between the Lagrangian statistics and its Eulerian counterpart. In particular, the effective compressibility experienced by tracers has a non-trivial dependence on the time correlation of the flow. We examine the consequence of this pheno...

  3. A multiphase compressible model for the simulation of multiphase flows

    International Nuclear Information System (INIS)

    Caltagirone, J.P.; Vincent, St.; Caruyer, C.

    2011-01-01

    A compressible model able to manage incompressible two-phase flows as well as compressible motions is proposed. After a presentation of the multiphase compressible concept, the new model and related numerical methods are detailed on fixed structured grids. The presented model is a 1-fluid model with a reformulated mass conservation equation which takes into account the effects of compressibility. The coupling between pressure and flow velocity is ensured by introducing mass conservation terms in the momentum and energy equations. The numerical model is then validated with four test cases involving the compression of an air bubble by water, the liquid injection in a closed cavity filled with air, a bubble subjected to an ultrasound field and finally the oscillations of a deformed air bubble in melted steel. The numerical results are compared with analytical results and convergence orders in space are provided. (authors)

  4. Application of PDF methods to compressible turbulent flows

    Science.gov (United States)

    Delarue, B. J.; Pope, S. B.

    1997-09-01

    A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.

  5. Compressible fluid flows driven by stochastic forcing

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Maslowski, B.; Novotný, A.

    2013-01-01

    Roč. 254, č. 3 (2013), s. 1342-1358 ISSN 0022-0396 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Institutional support: RVO:67985840 Keywords : stochastic Navier-Stokes equations * compressible fluid * random driving force Subject RIV: BA - General Mathematics Impact factor: 1.570, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022039612004135

  6. Integral representation in the hodograph plane of compressible flow

    DEFF Research Database (Denmark)

    Hansen, Erik Bent; Hsiao, G.C.

    2003-01-01

    Compressible flow is considered in the hodograph plane. The linearity of the equation determining the stream function is exploited to derive a representation formula involving boundary data only, and a fundamental solution to the adjoint equation. For subsonic flow, an efficient algorithm...

  7. Videos and images from 25 years of teaching compressible flow

    Science.gov (United States)

    Settles, Gary

    2008-11-01

    Compressible flow is a very visual topic due to refractive optical flow visualization and the public fascination with high-speed flight. Films, video clips, and many images are available to convey this in the classroom. An overview of this material is given and selected examples are shown, drawn from educational films, the movies, television, etc., and accumulated over 25 years of teaching basic and advanced compressible-flow courses. The impact of copyright protection and the doctrine of fair use is also discussed.

  8. Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability

    Science.gov (United States)

    Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott

    2017-11-01

    The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.

  9. Combustion and Mixing Studies in Compressible Flows.

    Science.gov (United States)

    1996-09-01

    Astronautics 2 FULLER ET AL. dence times. It is a primary concern in hypersonic aircraft In fact, studies conducted by Povinelli et al.1 3 and Schetz...downstream. It was reasoned that pressure gradients in the swirling flow. Povinelli et al." such behavior should lead to increased turbulence levels...E.M., "Design and Calibration of Stagnation Tem- tion, 1968, pp. 1153-1162.11 .perature Probes for Use at High Supersonic Speeds and Elevated Povinelli

  10. Spatial correlations in compressible granular flows

    OpenAIRE

    Van Noije, T. P. C.; Ernst, M. H.; Brito López, Ricardo

    1998-01-01

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which shifts to smaller wave numbers (growing correlation length). Furthermore, the inclusion of longitudinal velocity fluctuations changes long-range correlations in the flow field qualitatively and exten...

  11. Pressure correction schemes for compressible flows

    International Nuclear Information System (INIS)

    Kheriji, W.

    2011-01-01

    This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods. The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MA C scheme. An upwind finite volume discretization of the mass balance guarantees the positivity of the density. The positivity of the internal energy is obtained by discretizing the internal energy balance by an upwind finite volume scheme and b y coupling the discrete internal energy balance with the pressure correction step. A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, and a renormalisation step for the pressure is added to the algorithm; this ensures the control in time of the integral of the total energy over the domain. All these a priori estimates imply the existence of a discrete solution by a topological degree argument. The application of this scheme to Euler equations raises an additional difficulty. Indeed, obtaining correct shocks requires the scheme to be consistent with the total energy balance, property which we obtain as follows. First of all, a local discrete kinetic energy balance is established; it contains source terms winch we somehow compensate in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests. Similar results are obtained for the baro-tropic Navier-Stokes equations. (author)

  12. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  13. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  14. Analysis of the transient compressible vapor flow in heat pipe

    Science.gov (United States)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  15. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.

  16. Flow-induced vibration of helical coil compression springs

    International Nuclear Information System (INIS)

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  17. Vortex breakdown of compressible swirling flows in a pipe

    Science.gov (United States)

    Lee, Harry; Rusak, Zvi; Wang, Shixiao

    2017-11-01

    The manifold of branches of steady and axisymmetric states of compressible subsonic swirling flows in a finite-length straight circular pipe are developed. The analysis is based on Rusak et al. (2015) nonlinear partial differential equation for the solution of the flow stream function in terms of the inlet flow total enthalpy, entropy and circulation functions. This equation reflects the complicated thermo-physical interactions in the flows. The flow problem is solved numerically using a finite difference approach with a penalty procedure for identifying vortex breakdown and wall-separation states. Several types of solutions are found and used to form the bifurcation diagram of steady compressible flows with swirl as the inlet swirl level is increased at a fixed inlet Mach number. Results are compared with predictions from the global analysis approach of Rusak et al. (2015). The computed results provide theoretical predictions of the critical swirl levels for the first appearance of vortex breakdown states as a function of the inlet Mach number. The shows the delay in the appearance of breakdown with increase of the inlet axial flow Mach number in the subsonic range of operation.

  18. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    Science.gov (United States)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  19. Viscous and gravitational fingering in multiphase compositional and compressible flow

    Science.gov (United States)

    Moortgat, Joachim

    2016-03-01

    Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.

  20. Three-dimensional lattice Boltzmann model for compressible flows.

    Science.gov (United States)

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  1. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures......An approach to modelling unsteady compressible flow that is primarily one dimensional is presented. The approach was developed for creating distributed models of machines with reciprocating pistons but it is not limited to this application. The approach is based on the integral form of the unsteady...... conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction...

  2. Acceleration methods for multi-physics compressible flow

    Science.gov (United States)

    Peles, Oren; Turkel, Eli

    2018-04-01

    In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation

  3. Coherent structures in compressible free-shear-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  4. Methods for compressible multiphase flows and their applications

    Science.gov (United States)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  5. A GPU-accelerated implicit meshless method for compressible flows

    Science.gov (United States)

    Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng

    2018-05-01

    This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.

  6. Low-Reynolds number compressible flow around a triangular airfoil

    Science.gov (United States)

    Munday, Phillip; Taira, Kunihiko; Suwa, Tetsuya; Numata, Daiju; Asai, Keisuke

    2013-11-01

    We report on the combined numerical and experimental effort to analyze the nonlinear aerodynamics of a triangular airfoil in low-Reynolds number compressible flow that is representative of wings on future Martian air vehicles. The flow field around this airfoil is examined for a wide range of angles of attack and Mach numbers with three-dimensional direct numerical simulations at Re = 3000 . Companion experiments are conducted in a unique Martian wind tunnel that is placed in a vacuum chamber to simulate the Martian atmosphere. Computational findings are compared with pressure sensitive paint and direct force measurements and are found to be in agreement. The separated flow from the leading edge is found to form a large leading-edge vortex that sits directly above the apex of the airfoil and provides enhanced lift at post stall angles of attack. For higher subsonic flows, the vortical structures elongate in the streamwise direction resulting in reduced lift enhancement. We also observe that the onset of spanwise instability for higher angles of attack is delayed at lower Mach numbers. Currently at Mitsubishi Heavy Industries, Ltd., Nagasaki.

  7. Self-organization in three-dimensional compressible magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Sato, Tetsuya.

    1987-07-01

    A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)

  8. Mechanics of occurrence of critical flow in compressible two-phase flow

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Sudo, Yukio

    1976-01-01

    Fundamental framework of mechanics for the occurrence of critical flow is investigated, following the principle that the critical flow appears as a limit in a continuous change of state of flow along a nozzle (or a pipe) and should be derived only from simultaneous mechanical equations concerned with the flow. Mathematical procedures with which the critical flow: (i) the single phase flow of an arbitrary fluid, unrestricted by the equation of state of ideal gas, where the number of simultaneous equations is equal to the number of independent variables, and (ii) the one-component, separated two-phase flow under saturated condition, where the number of equations exceeds that of variables. In each case, interesting mechanism of leading to the occurrence of a limiting state of flow at a definite cross-section in a nozzle (incl. a pipe) is clarified, and a definite state of flow at the critical cross-section is also determined. Then, the analysis is extended to the critical flow which should appear in the completely isolated and the homogeneously dispersed, two-component, two-phase flow (composed of a compressible and an incompressible substance). It is found that the analyses of these special flow patterns provide several supplementary information to the mechanics of critical flow. (auth.)

  9. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.

    Science.gov (United States)

    Chattoraj, Sayantan; Sun, Changquan Calvin

    2018-04-01

    Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. A Finite Element Method for Simulation of Compressible Cavitating Flows

    Science.gov (United States)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  11. Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity

    Science.gov (United States)

    Jiang, Fei

    2018-04-01

    We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.

  12. Polar-coordinate lattice Boltzmann modeling of compressible flows

    Science.gov (United States)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro

    2014-01-01

    We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.

  13. Ill-posedness of Dynamic Equations of Compressible Granular Flow

    Science.gov (United States)

    Shearer, Michael; Gray, Nico

    2017-11-01

    We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.

  14. Twopool strategy and the combined compressible/incompressible flow problem

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Abramson, P.B.

    1979-01-01

    Most recent numerical modeling of two-phase flow involves an implicit determination of a pressure field upon which computational efficiency is strongly dependent. While cell by cell schemes (which treat the pressures in adjacent cells as known source terms) offer fast running times, permit the use of large time steps limited by a Courant condition restriction based on material velocities, and favor enhanced implicit coupling between the thermodynamic and hydrodynamic variables within individual cells, strong implicit coupling (as obtained with elimination schemes) between pressures in adjacent cells in pure single-phase liquid regions is necessary for the calculation of combined two-phase (compressible)/single-phase (incompressible) flows. The TWOPOOL strategy, which consists of a separation in the determination of a pressure field between the single-phase liquid cells where elimination is used and the two-phase cells where a cell by cell scheme is used, constitutes the fastest running strategy which permits the use of large time steps limited only by a Courant condition restriction based on material velocities

  15. Compressible flow modelling in unstructured mesh topologies using numerical methods developed for incompressible flows

    International Nuclear Information System (INIS)

    Caruso, A.; Mechitoua, N.; Duplex, J.

    1995-01-01

    The R and D thermal hydraulic codes, notably the finite difference codes Melodie (2D) and ESTET (3D) or the 2D and 3D versions of the finite element code N3S were initially developed for incompressible, possibly dilatable, turbulent flows, i.e. those where density is not pressure-dependent. Subsequent minor modifications to these finite difference code algorithms enabled extension of their scope to subsonic compressible flows. The first applications in both single-phase and two flow contexts have now been completed. This paper presents the techniques used to adapt these algorithms for the processing of compressible flows in an N3S type finite element code, whereby complex geometries normally difficult to model in finite difference meshes could be successfully dealt with. The development of version 3.0 of he N3S code led to dilatable flow calculations at lower cost. On this basis, a 2-D prototype version of N3S was programmed, tested and validated, drawing maximum benefit from Cray vectorization possibilities and from physical, numerical or data processing experience with other fluid dynamics codes, such as Melodie, ESTET or TELEMAC. The algorithms are the same as those used in finite difference codes, but their formulation is variational. The first part of the paper deals with the fundamental equations involved, expressed in basic form, together with the associated digital method. The modifications to the k-epsilon turbulence model extended to compressible flows are also described. THe second part presents the algorithm used, indicating the additional terms required by the extension. The third part presents the equations in integral form and the associated matrix systems. The solutions adopted for calculation of the compressibility related terms are indicated. Finally, a few representative applications and test cases are discussed. These include subsonic, but also transsonic and supersonic cases, showing the shock responses of the digital method. The application of

  16. Compressible turbulent channel flow with impedance boundary conditions

    Science.gov (United States)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  17. Advanced Fluid Reduced Order Models for Compressible Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Tezaur, Irina Kalashnikova [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maddix, Danielle [Stanford Univ., CA (United States); Mussoni, Erin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Balajewicz, Maciej [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2017-09-01

    This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.

  18. On some Approximation Schemes for Steady Compressible Viscous Flow

    Science.gov (United States)

    Bause, M.; Heywood, J. G.; Novotny, A.; Padula, M.

    This paper continues our development of approximation schemes for steady compressible viscous flow based on an iteration between a Stokes like problem for the velocity and a transport equation for the density, with the aim of improving their suitability for computations. Such schemes seem attractive for computations because they offer a reduction to standard problems for which there is already highly refined software, and because of the guidance that can be drawn from an existence theory based on them. Our objective here is to modify a recent scheme of Heywood and Padula [12], to improve its convergence properties. This scheme improved upon an earlier scheme of Padula [21], [23] through the use of a special ``effective pressure'' in linking the Stokes and transport problems. However, its convergence is limited for several reasons. Firstly, the steady transport equation itself is only solvable for general velocity fields if they satisfy certain smallness conditions. These conditions are met here by using a rescaled variant of the steady transport equation based on a pseudo time step for the equation of continuity. Another matter limiting the convergence of the scheme in [12] is that the Stokes linearization, which is a linearization about zero, has an inevitably small range of convergence. We replace it here with an Oseen or Newton linearization, either of which has a wider range of convergence, and converges more rapidly. The simplicity of the scheme offered in [12] was conducive to a relatively simple and clearly organized proof of its convergence. The proofs of convergence for the more complicated schemes proposed here are structured along the same lines. They strengthen the theorems of existence and uniqueness in [12] by weakening the smallness conditions that are needed. The expected improvement in the computational performance of the modified schemes has been confirmed by Bause [2], in an ongoing investigation.

  19. Behaviour of venous flow rates in intermittent sequential pneumatic compression of the legs using different compression strengths

    International Nuclear Information System (INIS)

    Fassmann-Glaser, I.

    1984-01-01

    A study with 25 patients was performed in order to find out whether intermittent, sequential, pneumatic leg compression is of value in the preventive management of thrombosis due to its effect on the venous flow rates. For this purpose, xenon 133 was injected into one of the foot veins and the flow rate in each case determined for the distance between instep and inguen using different compression strengths, with pressure being exerted on the ankle, calf and thigh. Increased flow rates were already measured at an average pressure value of 34.5 mmHg, while the maximum effect was achieved by exerting a pressure of 92.5 mmHg, which increased the flow rate by 366% as compared to the baseline value. The results point to a significant improvement of the venous flow rates due to intermittent, sequential, pneumatic leg compression and thus provide evidence to prove the value of this method in the prevention of hemostasis and thrombosis. (TRV) [de

  20. On the Representation of Aquifer Compressibility in General Subsurface Flow Codes: How an Alternate Definition of Aquifer Compressibility Matches Results from the Groundwater Flow Equation

    Science.gov (United States)

    Birdsell, D.; Karra, S.; Rajaram, H.

    2017-12-01

    The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.

  1. Lattice Boltzmann methods for thermal flows: Continuum limit and applications to compressible Rayleigh Taylor systems

    NARCIS (Netherlands)

    Scagliarini, Andrea; Biferale, L.; Sbragaglia, M.; Sugiyama, K.; Toschi, F.

    2010-01-01

    We compute the continuum thermohydrodynamical limit of a new formulation of lattice kinetic equations for thermal compressible flows, recently proposed by Sbragaglia et al. [J. Fluid Mech. 628, 299 (2009)] . We show that the hydrodynamical manifold is given by the correct compressible

  2. Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow

    Science.gov (United States)

    Moortgat, J.; Amooie, M. A.; Soltanian, M. R.

    2016-12-01

    Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows

  3. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Science.gov (United States)

    Kryštůfek, P.; Kozel, K.

    2014-03-01

    The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  4. Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil

    Directory of Open Access Journals (Sweden)

    Kryštůfek P.

    2014-03-01

    Full Text Available The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.

  5. Numerical Solution of Compressible Steady Flows around the NACA 0012 Airfoil

    Directory of Open Access Journals (Sweden)

    Kozel K

    2013-04-01

    Full Text Available The article presents results of a numerical solution of subsonic and transonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the NACA 0012 airfoil. Authors used Runge-Kutta method to numerically solve the flows around the NACA 0012 airfoil.

  6. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-01-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary

  7. The boundary data immersion method for compressible flows with application to aeroacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Schlanderer, Stefan C., E-mail: stefan.schlanderer@unimelb.edu.au [Faculty for Engineering and the Environment, University of Southampton, SO17 1BJ Southampton (United Kingdom); Weymouth, Gabriel D., E-mail: G.D.Weymouth@soton.ac.uk [Faculty for Engineering and the Environment, University of Southampton, SO17 1BJ Southampton (United Kingdom); Sandberg, Richard D., E-mail: richard.sandberg@unimelb.edu.au [Department of Mechanical Engineering, University of Melbourne, Melbourne VIC 3010 (Australia)

    2017-03-15

    This paper introduces a virtual boundary method for compressible viscous fluid flow that is capable of accurately representing moving bodies in flow and aeroacoustic simulations. The method is the compressible extension of the boundary data immersion method (BDIM, Maertens & Weymouth (2015), ). The BDIM equations for the compressible Navier–Stokes equations are derived and the accuracy of the method for the hydrodynamic representation of solid bodies is demonstrated with challenging test cases, including a fully turbulent boundary layer flow and a supersonic instability wave. In addition we show that the compressible BDIM is able to accurately represent noise radiation from moving bodies and flow induced noise generation without any penalty in allowable time step.

  8. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng; Lee, Bok Jik; Im, Hong G.

    2016-01-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary

  9. Calculation of external-internal flow fields for mixed-compression inlets

    Science.gov (United States)

    Chyu, W. J.; Kawamura, T.; Bencze, D. P.

    1987-01-01

    Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.

  10. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Liou, Meng-Sing

    2007-01-01

    In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion

  11. Exact partial solution to the compressible flow problems of jet formation and penetration in plane, steady flow

    International Nuclear Information System (INIS)

    Karpp, R.R.

    1984-01-01

    The particle solution of the problem of the symmetric impact of two compressible fluid stream is derived. The plane two-dimensional flow is assumed to be steady, and the inviscid compressible fluid is of the Chaplygin (tangent gas) type. The equations governing this flow are transformed to the hodograph plane where an exact, closed-form solution for the stream function is obtained. The distribution of fluid properties along the plane of symmetry and the shape of free surface streamlines are determined by transformation back to the physical plane. The problem of a compressible fluid jet penetrating an infinite target of similar material is also solved by considering a limiting case of this solution. Differences between compressible and incompressible flows of the type considered are illustrated

  12. On the implicit density based OpenFOAM solver for turbulent compressible flows

    Science.gov (United States)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  13. Modeling of Compressible Flow with Friction and Heat Transfer Using the Generalized Fluid System Simulation Program (GFSSP)

    Science.gov (United States)

    Bandyopadhyay, Alak; Majumdar, Alok

    2007-01-01

    The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.

  14. Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance.

    Science.gov (United States)

    Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H

    2013-06-01

    Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.

  15. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Energy Technology Data Exchange (ETDEWEB)

    Nec, Y [Thompson Rivers University, Kamloops, British Columbia (Canada); Huculak, G, E-mail: cranberryana@gmail.com, E-mail: greg@gnhconsulting.ca [GNH Consulting, Delta, British Columbia (Canada)

    2017-12-15

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  16. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Science.gov (United States)

    Nec, Y.; Huculak, G.

    2017-12-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.

  17. Solution of weakly compressible isothermal flow in landfill gas collection networks

    International Nuclear Information System (INIS)

    Nec, Y; Huculak, G

    2017-01-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  18. Hydromagnetic stability of rotating stratified compressible fluid flows

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, V; Kandaswamy, P [Dept. of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India; Debnath, L [Dept. of Mathematics, University of Central Florida, Orlando, USA

    1984-09-01

    The hydromagnetic stability of a radially stratified compressible fluid rotating between two coaxial cylinders is investigated. The stability with respect to axisymmetric disturbances is examined. The fluid system is found to be thoroughly stable to axisymmetric disturbances provided the fluid rotates very rapidly. The system is shown to be unstable to non-axisymmetric disturbances, and the slow amplifying hydromagnetic wave modes propagate against the basic rotation. The lower and upper bounds of the azimuthal phase speeds of the amplifying waves are determined. A quadrant theorem on the slow waves characteristic of a rapidly rotating fluid is derived. Special attention is given to the effects of compressibility of the fluid. Some results concerning the stability of an incompressible fluid system are obtained as special cases of the present analysis.

  19. Numerical Modeling of Compressible Flow and Its Control

    Science.gov (United States)

    2014-03-01

    such that the plate centerline corresponded to z = 0. The medium grid was then constructed from the coarse grid using a cubic spline to divide each...implicit terms were linearized in the standard thin layer manner. The implicit terms were evaluated with second- order spatial accuracy, yielding a...compression ramp. The configuration included a flat- plate region to develop an equilibrium turbulent boundary layer at Mach 2.25, which was validated

  20. Numerical analysis of compressible steady, unsteady, and inviscid, viscous flows in ca scads and effects of viscosity on the flows

    International Nuclear Information System (INIS)

    Shirani, E.; Zirak, S.

    2001-01-01

    Compressible flows for unsteady, inviscid and viscous cases have been studied. Important features of flows such as formation of shock waves across the flow in an unsteady flow as well as interaction of shock waves with boundary layers and their effects on the flow around the blades have been analyzed. Jameson control volume approach was used to spatially integrate the flow equations and the fourth order Runge-Kutta method was used for time integration. The obtained finite difference equations were used to simulate inviscid and viscous flows in V KI cascades and the effects of viscosity, angle of attack, bal de pitches and back pressure on the flow were obtained. It was shown that when the flow was assumed inviscid, the error on the distribution of pressure on the blades were about ten percent. Finally, unsteady flow were simulated and formation of shock waves and their motions were analyzed

  1. Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations

    NARCIS (Netherlands)

    Luo, X.; Lamanna, G.; Holten, A.P.C.; Dongen, van M.E.H.

    2007-01-01

    Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and exptl. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of expt. are carried out in such a tube.

  2. The influence of external compression on muscle blood flow during exercise

    International Nuclear Information System (INIS)

    Styf, J.

    1990-01-01

    Intramuscular pressures and muscle blood flow were measured in the anterior tibial muscle during dynamic concentric exercise in 14 subjects. Pressures were recorded by the microcapillary infusion method and muscle blood flow by the 133-Xenon clearance technique. Muscle blood flow during constant exercise decreased from 34.5 (SD = 10.3) to 10.6 (SD = 4.9) ml/100 g/min (P less than 0.001) when muscle relaxation pressure was increased from 13.5 (SD = 2.7) to 39.9 (SD = 9.0) mm Hg by external compression. Muscle relaxation pressure during exercise is the intramuscular pressure between contractions. External compression of the lower limb during exercise impedes muscle blood flow by increasing muscle relaxation pressure. The experimental model seems suitable to study the influence of external compression by knee braces on intramuscular pressure during exercise

  3. Dynamic alteration of regional cerebral blood flow during carotid compression and proof of reversibility

    International Nuclear Information System (INIS)

    Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S

    2012-01-01

    It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression

  4. Modelling and simulation of the compressible turbulence in supersonic shear flows

    International Nuclear Information System (INIS)

    Guezengar, Dominique

    1997-02-01

    This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr

  5. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  6. Investigation of turbulence models with compressibility corrections for hypersonic boundary flows

    Directory of Open Access Journals (Sweden)

    Han Tang

    2015-12-01

    Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.

  7. Least median of squares filtering of locally optimal point matches for compressible flow image registration

    International Nuclear Information System (INIS)

    Castillo, Edward; Guerrero, Thomas; Castillo, Richard; White, Benjamin; Rojo, Javier

    2012-01-01

    Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. (paper)

  8. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    Science.gov (United States)

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  9. A direct Eulerian method for the simulation of multi-material compressible flows with material sliding

    International Nuclear Information System (INIS)

    Motte, R.; Braeunig, J.P.; Peybernes, M.

    2012-01-01

    As the simulation of compressible flows with several materials is essential for applications studied within the CEA-DAM, the authors propose an approach based on finite volumes with centred variables for the resolution of compressible Euler equations. Moreover, they allow materials to slide with respect to each other as it is the case for water and air, for example. A conservation law is written for each material in a hybrid grid, and a condition of contact between materials under the form of fluxes is expressed. It is illustrated by the case of an intense shock propagating in water and interacting with an air bubble which will be strongly deformed and compressed

  10. Numerical Solution of Inviscid Compressible Steady Flows around the RAE 2822 Airfoil

    Science.gov (United States)

    Kryštůfek, P.; Kozel, K.

    2015-05-01

    The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Euler equations in 2D compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil. The results are compared with the solution using the software Ansys Fluent 15.0.7.

  11. Effect of compressibility on the global stability of axisymmetric wake flows

    OpenAIRE

    Meliga , Philippe; Sipp , D.; Chomaz , Jean-Marc

    2010-01-01

    International audience; We study the linear dynamics of global eigenmodes in compressible axisymmetric wake flows, up to the high subsonic regime. We consider both an afterbody flow at zero angle of attack and a sphere, and find that the sequence of bifurcations destabilizing the axisymmetric steady flow is independent of the Mach number and reminiscent of that documented in the incompressible wake past a sphere and a disk (Natarajan & Acrivos, J. Fluid Mech., vol. 254, 1993, p. 323), hence s...

  12. Quantifying Compressibility and Slip in Multiparticle Collision (MPC Flow Through a Local Constriction

    Directory of Open Access Journals (Sweden)

    Tahmina Akhter

    2014-01-01

    Full Text Available The flow of a compressible fluid with slip through a cylinder with an asymmetric local constriction has been considered both numerically, as well as analytically. For the numerical work, a particle-based method whose dynamics is governed by the multiparticle collision (MPC rule has been used together with a generalized boundary condition that allows for slip at the wall. Since it is well known that an MPC system corresponds to an ideal gas and behaves like a compressible, viscous flow on average, an approximate analytical solution has been derived from the compressible Navier–Stokes equations of motion coupled to an ideal gas equation of state using the Karman–Pohlhausen method. The constriction is assumed to have a polynomial form, and the location of maximum constriction is varied throughout the constricted portion of the cylinder. Results for centerline densities and centerline velocities have been compared for various Reynolds numbers, Mach numbers, wall slip values and flow geometries.

  13. On heat transfer of weakly compressible power-law flows

    Directory of Open Access Journals (Sweden)

    Li Botong

    2017-01-01

    Full Text Available This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties.

  14. Construction and analysis of compressible flow calculation algorithms

    International Nuclear Information System (INIS)

    Desideri, Jean-Antoine

    1993-01-01

    The aim of this study is to give a theoretical rationale of a 'paradox' related to the behavior at the stagnation point of some numerical solutions obtained by conventional methods for Eulerian non-equilibrium flows. This 'paradox' concerns the relationship between the solutions given by equilibrium and non-equilibrium models and was raised by several experts during the 'Workshop on Hypersonic Flows for Reentry Problems, Part 1. Antibes 1990'. In the first part, we show that equilibrium conditions are reached at the stagnation point and we analyse the sensitivity of these equilibrium conditions to the flow variables. In the second part, we develop an analysis of the behavior of the mathematical solution to an Eulerian non-equilibrium flow in the vicinity of the stagnation point, which gives an explanation to the described 'paradox'. Then, a numerical procedure, integrating the species convection equations projected on the stagnation point streamline in a Lagrangian time approach, gives a numerical support to the theoretical predictions. We also propose two numerical integration procedures, that allow us to recompute, starting from the equilibrium conditions at the stagnation point, the flow characteristics at the body. The validity limits of these procedures are discussed and the results obtained for a Workshop test-case are compared with the results given by several contributors. Finally, we survey briefly the influence of the local behavior of the solution on the coupling technique to a boundary layer calculation. (author) [fr

  15. On compressible and piezo-viscous flow in thin porous media.

    Science.gov (United States)

    Pérez-Ràfols, F; Wall, P; Almqvist, A

    2018-01-01

    In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.

  16. Three dimensional simulation of compressible and incompressible flows through the finite element method

    International Nuclear Information System (INIS)

    Costa, Gustavo Koury

    2004-11-01

    Although incompressible fluid flows can be regarded as a particular case of a general problem, numerical methods and the mathematical formulation aimed to solve compressible and incompressible flows have their own peculiarities, in such a way, that it is generally not possible to attain both regimes with a single approach. In this work, we start from a typically compressible formulation, slightly modified to make use of pressure variables and, through augmenting the stabilising parameters, we end up with a simplified model which is able to deal with a wide range of flow regimes, from supersonic to low speed gas flows. The resulting methodology is flexible enough to allow for the simulation of liquid flows as well. Examples using conservative and pressure variables are shown and the results are compared to those published in the literature, in order to validate the method. (author)

  17. Compressible gas flow through idealized cracks of large aspect ratio

    International Nuclear Information System (INIS)

    Chivers, T.C.; Skinner, J.; Williams, M.E.

    1975-07-01

    Gas flow through large aspect ratio idealized cracks is considered, where isothermal conditions with choking at exit are assumed in the theoretical analysis. For smooth wall cracks, comparisons are made between experimentally determined flowrates and those predicted, and good agreement is shown. This is followed by consideration of flow through a notional crack to examine the influence of width and surface roughness. By considering flow as simply proportional to Wsup(n), the treatment shows 'n' to reduce with W increasing, but surface roughness increases 'n' over the value appropriate to smooth conditions. From these observations it is concluded that further work is required to determine:- (i) real crack geometry and its influence on any leak-before-break philosophy, and (ii) the influence of real surface roughness on flowrate. (author)

  18. Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows

    Science.gov (United States)

    Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang

    2018-04-01

    In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.

  19. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-05-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.

  20. Numerical solver for compressible two-fluid flow

    NARCIS (Netherlands)

    J. Naber (Jorick)

    2005-01-01

    textabstractThis report treats the development of a numerical solver for the simulation of flows of two non-mixing fluids described by the two-dimensional Euler equations. A level-set equation in conservative form describes the interface. After each time step the deformed level-set function is

  1. On mathematical modelling and numerical simulation of transient compressible flow across open boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Rian, Kjell Erik

    2003-07-01

    In numerical simulations of turbulent reacting compressible flows, artificial boundaries are needed to obtain a finite computational domain when an unbounded physical domain is given. Artificial boundaries which fluids are free to cross are called open boundaries. When calculating such flows, non-physical reflections at the open boundaries may occur. These reflections can pollute the solution severely, leading to inaccurate results, and the generation of spurious fluctuations may even cause the numerical simulation to diverge. Thus, a proper treatment of the open boundaries in numerical simulations of turbulent reacting compressible flows is required to obtain a reliable solution for realistic conditions. A local quasi-one-dimensional characteristic-based open-boundary treatment for the Favre-averaged governing equations for time-dependent three-dimensional multi-component turbulent reacting compressible flow is presented. A k-{epsilon} model for turbulent compressible flow and Magnussen's EDC model for turbulent combustion is included in the analysis. The notion of physical boundary conditions is incorporated in the method, and the conservation equations themselves are applied on the boundaries to complement the set of physical boundary conditions. A two-dimensional finite-difference-based computational fluid dynamics code featuring high-order accurate numerical schemes was developed for the numerical simulations. Transient numerical simulations of the well-known, one-dimensional shock-tube problem, a two-dimensional pressure-tower problem in a decaying turbulence field, and a two-dimensional turbulent reacting compressible flow problem have been performed. Flow- and combustion-generated pressure waves seem to be well treated by the non-reflecting subsonic open-boundary conditions. Limitations of the present open-boundary treatment are demonstrated and discussed. The simple and solid physical basis of the method makes it both favourable and relatively easy to

  2. A blended pressure/density based method for the computation of incompressible and compressible flows

    International Nuclear Information System (INIS)

    Rossow, C.-C.

    2003-01-01

    An alternative method to low speed preconditioning for the computation of nearly incompressible flows with compressible methods is developed. For this approach the leading terms of the flux difference splitting (FDS) approximate Riemann solver are analyzed in the incompressible limit. In combination with the requirement of the velocity field to be divergence-free, an elliptic equation to solve for a pressure correction to enforce the divergence-free velocity field on the discrete level is derived. The pressure correction equation established is shown to be equivalent to classical methods for incompressible flows. In order to allow the computation of flows at all speeds, a blending technique for the transition from the incompressible, pressure based formulation to the compressible, density based formulation is established. It is found necessary to use preconditioning with this blending technique to account for a remaining 'compressible' contribution in the incompressible limit, and a suitable matrix directly applicable to conservative residuals is derived. Thus, a coherent framework is established to cover the discretization of both incompressible and compressible flows. Compared with standard preconditioning techniques, the blended pressure/density based approach showed improved robustness for high lift flows close to separation

  3. Effects of graded mechanical compression of rabbit sciatic nerve on nerve blood flow and electrophysiological properties.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Nakanishi, Yoshitaka; Uchida, Kenzo; Kokubo, Yasuo; Miyazaki, Tsuyoshi; Takeno, Kenichi; Awara, Kosuke; Mwaka, Erisa S; Iwamoto, Yukihide; Baba, Hisatoshi

    2010-04-01

    Entrapment neuropathy is a frequent clinical problem that can be caused by, among other factors, mechanical compression; however, exactly how a compressive force affects the peripheral nerves remains poorly understood. In this study, using a rabbit model of sciatic nerve injury (n=12), we evaluated the time-course of changes in intraneural blood flow, compound nerve action potentials, and functioning of the blood-nerve barrier during graded mechanical compression. Nerve injury was applied using a compressor equipped with a custom-made pressure transducer. Cessation of intraneural blood flow was noted at a mean compressive force of 0.457+/-0.022 N (+/-SEM), and the compound action potential became zero at 0.486+/-0.031 N. Marked extravasation of Evans blue albumin was noted after 20 min of intraneural ischemia. The functional changes induced by compression are likely due to intraneural edema, which could subsequently result in impairment of nerve function. These changes may be critical factors in the development of symptoms associated with nerve compression. (c) 2009 Elsevier Ltd. All rights reserved.

  4. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Gary Wayne [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  5. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    International Nuclear Information System (INIS)

    Pinkerton, G.W.

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression

  6. Spectral Element Method for the Simulation of Unsteady Compressible Flows

    Science.gov (United States)

    Diosady, Laslo Tibor; Murman, Scott M.

    2013-01-01

    This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.

  7. Influence of sequential room-temperature compressive creep on flow stress of TA2

    Science.gov (United States)

    Mengyuan, Zhang; Boqin, Gu; Jiahui, Tao

    2018-03-01

    This paper studied the sequential room temperature compressive creep and its effects on compressive properties of TA2 with stress-control loading pattern by using cylindrical compressive test specimen. The significant time-dependent deformation under constant load was observed in the TA2 at room temperature, and the deformation was dependent on the loading process under the same loading stress rate. It was also found that the occurrence of room temperature compressive creep obviously enhanced the subsequent yielding strength and flow stress of TA2 due to the increase of network dislocation density. And the effects of room temperature creep on the strain rate-stress behavior could be explained by the local mobile dislocation density model.

  8. Numerical solution of compressible flow equations inside an ejector

    International Nuclear Information System (INIS)

    Omid khah, M. R.; Navid Famili, M. H.; Jalili Keshtiban, E.

    2002-01-01

    Ejector is important equipment in the chemical industry. It is mainly used for vaccuming and mixing of flows. In the present work a computer modeling of the flow inside an ejector is used to give a better understanding of the principle of the operation of an ejector. Since the fluid inside an ejector passes through subsonic, sonic and supersonic regimens, the pressure field is used as the controlling variable and the density is found through the constitutive equations. The control volume method with a co-location grid, attached to the boundary is used to discretize the domain. The overall solution is obtained by the SIMPLEC method and to dissociate the pressure and the velocity grid Rhie-Chow interpolation method is employed. A central difference approximation method is used to approximate the density on the elements borders and the upwind approximation is used to correct the density correction factors. Both upwind, quick and minimum gradient methods were used to approximate the momentum variables on the control volumes. The resultant matrices are solved with the tri-diagonal method. The accuracy of the model is checked by simulating a flow regiment in a converging-diverging nozzle, and comparing the results with the available experimental data. The results show that for an inviscid the first order approximation produce as an accurate results as the higher order approximations while it has a better stability. However, for the viscous fluid the second order approximation produces a better understanding of the physics of the problem. The solution also showes that the flow field inside an ejector is a complex one and the shock wave has a great influence on the pressure field especially close to the walls. The upper convective quick method did not converge well in the shock calculations while the slowest descent method had a very stable behavior in the analysis of the shock behavior

  9. High-Fidelity Numerical Modeling of Compressible Flow

    Science.gov (United States)

    2015-11-01

    using exact flux Jacobians. The data-parallel line relaxation (DPLR) method, based on the Gauss - Seidel line relaxation method of MacCormack,29 is...then employed to solve the resulting linear system. To improve performance on parallel systems, the DPLR method replaces the Gauss - Seidel sweeps with a...boundary-layer height and edge velocity), but that higher-moments, like secondary flow, required more iterations to converge . Since the medium and fine grids

  10. Scalar conservation and boundedness in simulations of compressible flow

    Science.gov (United States)

    Subbareddy, Pramod K.; Kartha, Anand; Candler, Graham V.

    2017-11-01

    With the proper combination of high-order, low-dissipation numerical methods, physics-based subgrid-scale models, and boundary conditions it is becoming possible to simulate many combustion flows at relevant conditions. However, non-premixed flows are a particular challenge because the thickness of the fuel/oxidizer interface scales inversely with Reynolds number. Sharp interfaces can also be present in the initial or boundary conditions. When higher-order numerical methods are used, there are often aphysical undershoots and overshoots in the scalar variables (e.g. passive scalars, species mass fractions or progress variable). These numerical issues are especially prominent when low-dissipation methods are used, since sharp jumps in flow variables are not always coincident with regions of strong variation in the scalar fields: consequently, special detection mechanisms and dissipative fluxes are needed. Most numerical methods diffuse the interface, resulting in artificial mixing and spurious reactions. In this paper, we propose a numerical method that mitigates this issue. We present methods for passive and active scalars, and demonstrate their effectiveness with several examples.

  11. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.

    Science.gov (United States)

    Hamamoto, Yuichiro; Ogata, Tadanori; Morino, Tadao; Hino, Masayuki; Yamamoto, Haruyasu

    2007-08-15

    An in vivo study to measure rat spinal cord blood flow in real-time at the site of compression using a newly developed device. To evaluate the change in thoracic spinal cord blood flow by compression force and to clarify the association between blood flow recovery and motor deficiency after a spinal cord compression injury. Until now, no real-time measurement of spinal cord blood flow at the site of compression has been conducted. In addition, it has not been clearly determined whether blood flow recovery is related to motor function after a spinal cord injury. Our blood flow measurement system was a combination of a noncontact type laser Doppler system and a spinal cord compression device. The rat thoracic spinal cord was exposed at the 11th vertebra and spinal cord blood flow at the site of compression was continuously measured before, during, and after the compression. The functioning of the animal's hind-limbs was evaluated by the Basso, Beattie and Bresnahan scoring scale and the frequency of voluntary standing. Histologic changes such as permeability of blood-spinal cord barrier, microglia proliferation, and apoptotic cell death were examined in compressed spinal cord tissue. The spinal blood flow decreased on each increase in the compression force. After applying a 5-g weight, the blood flow decreased to compression), while no significant difference was observed between the 20-minute ischemia group and the sham group. In the 20-minute ischemia group, the rats whose spinal cord blood flow recovery was incomplete showed significant motor function loss compared with rats that completely recovered blood flow. Extensive breakdown of blood-spinal cord barrier integrity and the following microglia proliferation and apoptotic cell death were detected in the 40-minute complete ischemia group. Duration of ischemia/compression and blood flow recovery of the spinal cord are important factors in the recovery of motor function after a spinal cord injury.

  12. Symmetries of the Euler compressible flow equations for general equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baty, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-15

    The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford and Ovsiannikov on symmetry classification.

  13. A soap film shock tube to study two-dimensional compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)

    2001-07-01

    A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)

  14. Control volume based modelling in one space dimension of oscillating, compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    We present an approach for modelling unsteady, primarily one-dimensional, compressible flow. The conservation laws for mass, energy, and momentum are applied to a staggered mesh of control volumes and loss mechanisms are included directly as extra terms. Heat transfer, flow friction, and multidim...... are presented. The capabilities of the approach are illustrated with an example solution and an experimental validation of a Stirling engine model....

  15. Compressible fluid flow through rocks of variable permeability

    International Nuclear Information System (INIS)

    Lin, W.

    1977-01-01

    The effectiveness of course-grained igneous rocks as shelters for burying radioactive waste can be assessed by determining the rock permeabilities at their in situ pressures and stresses. Analytical and numerical methods were used to solve differential equations of one-dimensional fluid flow through rocks with permeabilities from 10 4 to 1 nD. In these calculations, upstream and downstream reservoir volumes of 5, 50, and 500 cm 3 were used. The optimal size combinations of the two reservoirs were determined for measurements of permeability, stress, strain, acoustic velocity, and electrical conductivity on low-porosity, coarse-grained igneous rocks

  16. Simulation techniques for spatially evolving instabilities in compressible flow over a flat plate

    NARCIS (Netherlands)

    Wasistho, B.; Geurts, Bernardus J.; Kuerten, Johannes G.M.

    1997-01-01

    In this paper we present numerical techniques suitable for a direct numerical simulation in the spatial setting. We demonstrate the application to the simulation of compressible flat plate flow instabilities. We compare second and fourth order accurate spatial discretization schemes in combination

  17. Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations

    NARCIS (Netherlands)

    B. Sanderse (Benjamin); I. Eskerud Smith (Ivar); M.H.W. Hendrix (Maurice)

    2017-01-01

    textabstractIn this paper we analyse different time integration methods for the two-fluid model and propose the BDF2 method as the preferred choice to simulate transient compressible multiphase flow in pipelines. Compared to the prevailing Backward Euler method, the BDF2 scheme has a significantly

  18. Comparison of high order algorithms in Aerosol and Aghora for compressible flows

    Directory of Open Access Journals (Sweden)

    Mbengoue D. A.

    2013-12-01

    Full Text Available This article summarizes the work done within the Colargol project during CEMRACS 2012. The aim of this project is to compare the implementations of high order finite element methods for compressible flows that have been developed at ONERA and at INRIA for about one year, within the Aghora and Aerosol libraries.

  19. A discrete model for compressible flows in heterogeneous media

    International Nuclear Information System (INIS)

    Le Metayer, O.; Massol, A.; Favrie, N.; Hank, S.

    2011-01-01

    This work deals with the building of a discrete model able to describe and to predict the evolution of complex gas flows in heterogeneous media. In many physical applications, large scales numerical simulation is no longer possible because of a lack of computing resources. Indeed the medium topology may be complex due to the presence of many obstacles (walls, pipes, equipments, geometric singularities etc.). Aircraft powerplant compartments are examples where topology is complex due to the presence of pipes, ducts, coolers and other equipment. Other important examples are gas explosions and large scale dispersion of hazardous materials in urban places, cities or underground involving obstacles such as buildings and various infrastructures. In all cases efficient safety responses are required. Then a new discrete model is built and solved in reasonable execution times for large cells volumes including such obstacles. Quantitative comparisons between experimental and numerical results are shown for different significant test cases, showing excellent agreement.

  20. Effect of lower limb compression on blood flow and performance in elite wheelchair rugby athletes.

    Science.gov (United States)

    Vaile, Joanna; Stefanovic, Brad; Askew, Christopher D

    2016-01-01

    To investigate the effects of compression socks worn during exercise on performance and physiological responses in elite wheelchair rugby athletes. In a non-blinded randomized crossover design, participants completed two exercise trials (4 × 8 min bouts of submaximal exercise, each finishing with a timed maximal sprint) separated by 24 hr, with or without compression socks. National Sports Training Centre, Queensland, Australia. Ten national representative male wheelchair rugby athletes with cervical spinal cord injuries volunteered to participate. Participants wore medical grade compression socks on both legs during the exercise task (COMP), and during the control trial no compression was worn (CON). The efficacy of the compression socks was determined by assessments of limb blood flow, core body temperature, heart rate, and ratings of perceived exertion, perceived thermal strain, and physical performance. While no significant differences between conditions were observed for maximal sprint time, average lap time was better maintained in COMP compared to CON (Pbenefit may be associated with an augmentation of upper limb blood flow.

  1. Numerical simulation of compressible two-phase flow using a diffuse interface method

    International Nuclear Information System (INIS)

    Ansari, M.R.; Daramizadeh, A.

    2013-01-01

    Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems

  2. Improving the performance of a compression ignition engine by directing flow of inlet air

    Science.gov (United States)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  3. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  4. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  5. Analysis of the one-dimensional transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, Jong H.; Faghri, Amir; Chang, Won S.

    1991-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.

  6. Modification of Flow Stress Curves and Constitutive Equations During Hot Compression Deformation of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    FU Ping

    2017-08-01

    Full Text Available The flow stress behavior of 5083 aluminum alloy was investigated under hot compression deformation at 523-723K,strain rates of 0.01-10s-1 and true strains of 0-0.7 with Gleeble-3800 thermal simulator. Based on the heat transfer effect on alloy deformation heat effect, the flow stress curves were corrected. The results show that influence of heat conduction can not be neglected and becomes more obvious with the increase of true strain. The corrected flow stress has little influence on the peak stress, but the steady flow stress softening trends to be diminished to some degree. The flow stress can be predicted by the Zener-Hollomon parameters in the constitutive equation. The corrected measured value exhibits a good agreement with the flow stress predicted by the constitutive equation, and the average relative error is only 5.21%.

  7. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    Science.gov (United States)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  8. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Energy Technology Data Exchange (ETDEWEB)

    Avital, E J; Salvatore, E [School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd London E1 4NS (United Kingdom); Munjiza, A [Civil Engineering, University of Split, Livanjska 2100 Split (Croatia); Suponitsky, V; Plant, D; Laberge, M, E-mail: e.avital@qmul.ac.uk [General Fusion Inc.,108-3680 Bonneville Place, Burnaby, BC V3N 4T5 (Canada)

    2017-08-15

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots. (paper)

  9. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Science.gov (United States)

    Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.

    2017-08-01

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.

  10. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    Science.gov (United States)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  11. Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-09-15

    Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the

  12. Nonaffine deformation under compression and decompression of a flow-stabilized solid

    Science.gov (United States)

    Ortiz, Carlos P.; Riehn, Robert; Daniels, Karen E.

    2016-08-01

    Understanding the particle-scale transition from elastic deformation to plastic flow is central to making predictions about the bulk material properties and response of disordered materials. To address this issue, we perform experiments on flow-stabilized solids composed of micron-scale spheres within a microfluidic channel, in a regime where particle inertia is negligible. Each solid heap exists within a stress field imposed by the flow, and we track the positions of particles in response to single impulses of fluid-driven compression or decompression. We find that the resulting deformation field is well-decomposed into an affine field, with a constant strain profile throughout the solid, and a non-affine field. The magnitude of this non-affine response decays with the distance from the free surface in the long-time limit, suggesting that the distance from jamming plays a significant role in controlling the length scale of plastic flow. Finally, we observe that compressive pulses create more rearrangements than decompressive pulses, an effect that we quantify using the D\\text{min}2 statistic for non-affine motion. Unexpectedly, the time scale for the compression response is shorter than for decompression at the same strain (but unequal pressure), providing insight into the coupling between deformation and cage-breaking.

  13. Application of a New Hybrid RANS/LES Modeling Paradigm to Compressible Flow

    Science.gov (United States)

    Oliver, Todd; Pederson, Clark; Haering, Sigfried; Moser, Robert

    2017-11-01

    It is well-known that traditional hybrid RANS/LES modeling approaches suffer from a number of deficiencies. These deficiencies often stem from overly simplistic blending strategies based on scalar measures of turbulence length scale and grid resolution and from use of isotropic subgrid models in LES regions. A recently developed hybrid modeling approach has shown promise in overcoming these deficiencies in incompressible flows [Haering, 2015]. In the approach, RANS/LES blending is accomplished using a hybridization parameter that is governed by an additional model transport equation and is driven to achieve equilibrium between the resolved and unresolved turbulence for the given grid. Further, the model uses an tensor eddy viscosity that is formulated to represent the effects of anisotropic grid resolution on subgrid quantities. In this work, this modeling approach is extended to compressible flows and implemented in the compressible flow solver SU2 (http://su2.stanford.edu/). We discuss both modeling and implementation challenges and show preliminary results for compressible flow test cases with smooth wall separation.

  14. Two compressible and immiscible flow in porous media: mathematical and numerical analysis

    International Nuclear Information System (INIS)

    Khalil, Z.

    2010-01-01

    The aim of this thesis is the study of Cauchy problem (existence of weak solutions) for three degenerate highly coupled parabolic systems modeling compressible immiscible flow in porous media. The motivation of this work is a benchmark of the GNR MoMaS, to study the impact of the gas flow due to the corrosion of ferrous materials in a radioactive waste storage site. This thesis is divided into three independent chapters. Firstly, we look at a problem modeling the flow of two immiscible phases and considering one phase is compressible and the other is incompressible (water/gas). Secondly, we consider the problem modeling two-compressible immiscible flow in porous media. An existence results for both problems established by a semi-discretization method. Finally, The fourth chapter is devoted to the construction and convergence of a multi-dimensional finite volume method (upwind scheme) for the gas-water model under the assumption that the gas density is a function of a global pressure. (author)

  15. An exponential material model for prediction of the flow curves of several AZ series magnesium alloys in tension and compression

    International Nuclear Information System (INIS)

    Fereshteh-Saniee, F.; Barati, F.; Badnava, H.; Fallah Nejad, Kh.

    2012-01-01

    Highlights: ► The exponential model can represent flow behaviors of AZ series Mg alloys very well. ► Strain rate sensitivities of AZ series Mg alloys in compression are nearly the same. ► Effect of zinc element on tensile activation energy is higher than on compressive one. ► Activation energies of AZ80 and AZ81 in tension were greater than in compression. ► Tensile and compressive rate sensitivities of AZ80 are not close to each other. -- Abstract: This paper is concerned with flow behaviors of several magnesium alloys, such as AZ31, AZ80 and AZ81, in tension and compression. The experiments were performed at elevated temperatures and for various strain rates. In order to eliminate the effect of inhomogeneous deformation in tensile and compression tests, the Bridgeman’s and numerical correction factors were respectively employed. A two-section exponential mathematical model was also utilized for prediction of flow stresses of different magnesium alloys in tension and compression. Moreover, based on the compressive flow model proposed, the peak stress and the relevant true strain could be estimated. The true stress and strain of the necking point can also be predicted using the corresponding relations. It was found that the flow behaviors estimated by the exponential flow model were encouragingly in very good agreement with experimental findings.

  16. Exact partial solution to the steady-state, compressible fluid flow problems of jet formation and jet penetration

    International Nuclear Information System (INIS)

    Karpp, R.R.

    1980-10-01

    This report treats analytically the problem of the symmetric impact of two compressible fluid streams. The flow is assumed to be steady, plane, inviscid, and subsonic and that the compressible fluid is of the Chaplygin (tangent gas) type. In the analysis, the governing equations are first transformed to the hodograph plane where an exact, closed-form solution is obtained by standard techniques. The distributions of fluid properties along the plane of symmetry as well as the shapes of the boundary streamlines are exactly determined by transforming the solution back to the physical plane. The problem of a compressible fluid jet penetrating into an infinite target of similar material is also exactly solved by considering a limiting case of this solution. This new compressible flow solution reduces to the classical result of incompressible flow theory when the sound speed of the fluid is allowed to approach infinity. Several illustrations of the differences between compressible and incompressible flows of the type considered are presented

  17. Inertia and compressibility effects on density waves and Ledinegg phenomena in two-phase flow systems

    International Nuclear Information System (INIS)

    Ruspini, L.C.

    2012-01-01

    Highlights: ► The stability influence of piping fluid inertia on two-phase instabilities is studied. ► Inlet inertia stabilizes the system while outlet inertia destabilizes it. ► High-order modes oscillations are found and analyzed. ► The effect of compressible volumes in the system is studied. ► Inlet compressibility destabilizes the system while outlet comp. stabilizes it. - Abstract: The most common kind of static and dynamic two-phase flow instabilities namely Ledinegg and density wave oscillations are studied. A new model to study two-phase flow instabilities taking into account general parameters from real systems is proposed. The stability influence of external parameters such as the fluid inertia and the presence of compressible gases in the system is analyzed. High-order oscillation modes are found to be related with the fluid inertia of external piping. The occurrence of high-order modes in experimental works is analyzed with focus on the results presented in this work. Moreover, both inertia and compressibility are proven to have a high impact on the stability limits of the systems. The performed study is done by modeling the boiling channel using a one dimensional equilibrium model. An incompressible transient model describes the evolution of the flow and pressure in the non-heated regions and an ideal gas model is used to simulate the compressible volumes in the system. The use of wavelet decomposition analysis is proven to be an efficient tool in stability analysis of several frequencies oscillations.

  18. Effects of cord compression on fetal blood flow distribution and O2 delivery

    International Nuclear Information System (INIS)

    Itskovitz, J.; LaGamma, E.F.; Rudolph, A.M.

    1987-01-01

    The authors used the radionuclide microsphere technique in nine fetal lambs to examine the effect of partial cord compression on distribution of cardiac output and O 2 delivery to fetal organs and venous flow patterns. With a 50% reduction in umbilical blood flow the fraction of fetal cardiac output distributed to the brain, heart, carcass, kidneys, and gastrointestinal tract increased. Pulmonary blood flow fell. O 2 delivery to the brain and myocardium was maintained but was reduced to peripheral, renal, and gastrointestinal circulations. Hepatic blood flow decreased and O 2 delivery fell by 75%. The proportion of umbilical venous blood passing through the ductus venosus increased from 43.9 to 71.8%. The preferential distribution of ductus venosus blood flow through the foramen ovale was enhanced and the proportion of O 2 delivery to upper body organs derived from the ductus venosus increased. Abdominal inferior vena caval blood flow increased, and it was also preferentially distributed through the foramen ovale and constituted the major fraction of the arterial blood supply to the upper body organs. Thus cord compression modified the distribution of cardiac output and the patterns of venous returns in the fetus. This pattern of circulatory response differs from that observed with other causes of reduced O 2 delivery

  19. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng

    2016-05-20

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.

  20. A new representation of rotational flow fields satisfying Euler's equation of an ideal compressible fluid

    International Nuclear Information System (INIS)

    Kambe, Tsutomu

    2013-01-01

    A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)

  1. Simulation of unsteady compressible flow in a channel with vibrating walls - Influence of the frequency

    Czech Academy of Sciences Publication Activity Database

    Punčochářová-Pořízková, P.; Kozel, K.; Horáček, Jaromír

    2011-01-01

    Roč. 46, č. 1 (2011), s. 404-410 ISSN 0045-7930 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite volume method * unsteady flow * low Mach number * viscous compressible fluid Subject RIV: BI - Acoustics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793010003439

  2. Temperature measurement in a compressible flow field using laser-induced iodine fluorescence

    Science.gov (United States)

    Fletcher, D. G.; Mcdaniel, J. C.

    1987-01-01

    The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flowfield using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.

  3. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  4. Propagation of Shock on NREL Phase VI Wind Turbine Airfoil under Compressible Flow

    Directory of Open Access Journals (Sweden)

    Mohammad A. Hossain

    2013-01-01

    Full Text Available The work is focused on numeric analysis of compressible flow around National Renewable Energy Laboratory (NREL phase VI wind turbine blade airfoil S809. Although wind turbine airfoils are low Reynolds number airfoils, a reasonable investigation of compressible flow under extreme condition might be helpful. A subsonic flow (mach no. M=0.8 has been considered for this analysis and the impacts of this flow under seven different angles of attack have been determined. The results show that shock takes place just after the mid span at the top surface and just before the mid span at the bottom surface at zero angle of attack. Slowly the shock waves translate their positions as angle of attack increases. A relative translation of the shock waves in upper and lower face of the airfoil are presented. Variation of Turbulent viscosity ratio and surface Y+ have also been determined. A k-ω SST turbulent model is considered and the commercial CFD code ANSYS FLUENT is used to find the pressure coefficient (Cp as well as the lift (CL and drag coefficients (CD. A graphical comparison of shock propagation has been shown with different angle of attack. Flow separation and stream function are also determined.

  5. Applicability of higher-order TVD method to low mach number compressible flows

    International Nuclear Information System (INIS)

    Akamatsu, Mikio

    1995-01-01

    Steep gradients of fluid density are the influential factor of spurious oscillation in numerical solutions of low Mach number (M<<1) compressible flows. The total variation diminishing (TVD) scheme is a promising remedy to overcome this problem and obtain accurate solutions. TVD schemes for high-speed flows are, however, not compatible with commonly used methods in low Mach number flows using pressure-based formulation. In the present study a higher-order TVD scheme is constructed on a modified form of each individual scalar equation of primitive variables. It is thus clarified that the concept of TVD is applicable to low Mach number flows within the framework of the existing numerical method. Results of test problems of the moving interface of two-component gases with the density ratio ≥ 4, demonstrate the accurate and robust (wiggle-free) profile of the scheme. (author)

  6. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)

    2017-06-15

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  7. A renormalization group scaling analysis for compressible two-phase flow

    International Nuclear Information System (INIS)

    Chen, Y.; Deng, Y.; Glimm, J.; Li, G.; Zhang, Q.; Sharp, D.H.

    1993-01-01

    Computational solutions to the Rayleigh--Taylor fluid mixing problem, as modeled by the two-fluid two-dimensional Euler equations, are presented. Data from these solutions are analyzed from the point of view of Reynolds averaged equations, using scaling laws derived from a renormalization group analysis. The computations, carried out with the front tracking method on an Intel iPSC/860, are highly resolved and statistical convergence of ensemble averages is achieved. The computations are consistent with the experimentally observed growth rates for nearly incompressible flows. The dynamics of the interior portion of the mixing zone is simplified by the use of scaling variables. The size of the mixing zone suggests fixed-point behavior. The profile of statistical quantities within the mixing zone exhibit self-similarity under fixed-point scaling to a limited degree. The effect of compressibility is also examined. It is found that, for even moderate compressibility, the growth rates fail to satisfy universal scaling, and moreover, increase significantly with increasing compressibility. The growth rates predicted from a renormalization group fixed-point model are in a reasonable agreement with the results of the exact numerical simulations, even for flows outside of the incompressible limit

  8. Identifiability of location and magnitude of flow barriers in slightly compressible flow

    NARCIS (Netherlands)

    Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Hof, Van den P.M.J.; Jansen, J.D.

    2015-01-01

    Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between

  9. Identifiability of location and magnitude of flow barriers in slightly compressible flow

    NARCIS (Netherlands)

    Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Van den Hof, P.; Jansen, J.D.

    2016-01-01

    Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between

  10. Application of a finite element method to the calculation of compressible subsonic flows

    International Nuclear Information System (INIS)

    Montagne, J.L.

    1980-01-01

    The accidental transients in nuclear reactors requires two-phase flow calculation in complicated geometries. In the present case, the flow has been limited to the study of an homogeneous bidimensional flow model. One obtains equations analogous to those for compressible gas. The two-phase nature leads to sudden variations of specific mass as a function of pressure and enthalpy. In practice, the flows are in a transport regime, this is why one has sought a stable discretization scheme for the hyperbolic system of Euler equations. In order to take into account the thermal phenomena, the natural variables were kept, flow rate, pressure enthalpy and the equations were used in their conservative form. A Galerkin method was used to solve the momentum conservation equation. The space to which the flow rates belong is submitted to a matching condition, the normal component of these vectors is continuous at the boundary between elements. The pressures, enthalpy specific mass, in contrast, are discontinuous between two elements. Correspondences must be established between these two type of discretization. The program set into operation uses a discretization of lowest order, and has been conceived for processing time steps conditioned only by the flow speed. It has been tested in two cases where the thermal phenomena are important: cool liquid introduced in vapor, and heating along a plate [fr

  11. Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.

  12. Computation of compressible quasi-axisymmetric slender vortex flow and breakdown

    Science.gov (United States)

    Kandil, Osama A.; Kandil, Hamdy A.

    1991-01-01

    The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic, quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown were captured. The problem was also calculated using the Euler solver of the same code; the results were compared with those of the Navier-Stokes solver. The effect of the initial swirl was investigated.

  13. Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G. [Swedish Institute of Space Physics, Kiruna (Sweden); Livadiotis, G. [Southwest Research Institute, San Antonio, Texas (United States)

    2017-03-20

    We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying along the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.

  14. An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Jung, Chul Min [Advanced Naval Technology CenterNSRDI, ADD, Changwon (Korea, Republic of)

    2016-09-15

    This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme.

  15. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  16. An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow

    International Nuclear Information System (INIS)

    Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu; Jung, Chul Min

    2016-01-01

    This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme

  17. Pre-compression volume on flow ripple reduction of a piston pump

    Science.gov (United States)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  18. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    Science.gov (United States)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  19. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    Science.gov (United States)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  20. Numerical research of the compressible flow in a vortex tube using OpenFOAM software

    Directory of Open Access Journals (Sweden)

    Burazer Jela M.

    2017-01-01

    Full Text Available The work presented in this paper is dealing with numerical simulation of energy separation mechanism and flow phenomena within a Ranque-Hilsch vortex tube. Simulation of turbulent, compressible, highly swirling flow inside vortex tube is performed using RANS approach, with Favre averaged conservation equations. For turbulence closure, k-ε and k-ω shear-stress transport models are used. It is assumed that the mean flow is axisymmetric, so the 2-D computational domain is used. Computations were performed using open-source CFD software Open- FOAM. All compressible solvers available within OpenFOAM were tested, and it was found that most of the solvers cannot predict energy separation. Code of two chosen solvers, which proved as the most robust, is modified in terms of mean energy equation implementation. Newly created solvers predict physically accepted behavior in vortex tube, with good agreement with experimental results. Comparison between performances of solvers is also presented. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046

  1. The effect of compressed air massage on skin blood flow and temperature.

    Science.gov (United States)

    Mars, Maurice; Maharaj, Sunil S; Tufts, Mark

    2005-01-01

    Compressed air massage is a new treatment modality that uses air under pressure to massage skin and muscle. It is claimed to improve skin blood flow but this has not been verified. Several pilot studies were undertaken to determine the effects of compressed air massage on skin blood flow and temperature. Skin blood flow (SBF), measured using laser Doppler fluxmetry and skin temperature was recorded under several different situations: (i) treatment, at 1 Bar pressure using a single-hole (5-mm) applicator head, for 1 min at each of several sites on the right and left lower legs, with SBF measured on the dorsum of the left foot; (ii) at the same treatment pressure, SBF was measured over the left tibialis anterior when treatment was performed at different distances from the probe; (iii) SBF and skin temperature of the lower leg were measured with treatment at 0 or 1 Bar for 45 min, using two different applicator heads; (iv) SBF was measured on the dorsum of the foot of 10 subjects with treatment for 1 min at 0, 0.5, 1, 1.5 and 2 Bar using three different applicator heads. (i) SBF of the left foot was not altered by treatment of the right leg or chest, but was significantly increased during treatment of the left sole and first web, p Compressed air massage causes an immediate increase in SBF, and an immediate fall in SBF when treatment is stopped. The effect appears to be locally and not centrally mediated and is related to the pressure used. Treatment cools the skin for at least 15 min after a 45-min treatment.

  2. Toluene laser-induced fluorescence imaging of compressible flows in an expansion tube

    Science.gov (United States)

    Miller, V. A.; Gamba, M.; Mungal, M. G.; Hanson, R. K.; Mohri, K.; Schulz, C.

    2011-11-01

    Laser-induced fluorescence (LIF) imaging using toluene as a tracer molecule has been developed for high-speed, low-to-moderate enthalpy conditions in the Stanford 6-inch Expansion Tube. The approach is demonstrated on three canonical compressible flow configurations: (i) supersonic flow over a 20° wedge, (ii) around a cylinder, and (iii) a supersonic boundary layer. Under constant-pressure conditions, toluene LIF offers unique sensitivity to temperature and can therefore be used as an accurate thermometry diagnostic for supersonic flows; on the other hand, for variable-pressure flow fields (e.g., flow around a blunt body), toluene LIF imaging is demonstrated to be an effective flow visualization tool. The three configurations selected demonstrate the diagnostic in these two capacities. For all configurations considered in the study, toluene (0.6% by volume) is seeded into a nitrogen freestream at a Mach number ~ 2.2, T ~ 500K, and p ~ 1.5 bar. A frequency-quadrupled pulsed Nd:YAG laser is used to excite the tracer, and the resulting fluorescence is captured by an ICCD camera. Synthetic fluorescence signals from CFD solutions of each case have been computed and compare favorably to measured signals. Sponsored by DoE PSAAP at Stanford University.

  3. Preconditioned characteristic boundary conditions based on artificial compressibility method for solution of incompressible flows

    Science.gov (United States)

    Hejranfar, Kazem; Parseh, Kaveh

    2017-09-01

    The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.

  4. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    Science.gov (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  5. An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

    Science.gov (United States)

    Del Pino, S.; Labourasse, E.; Morel, G.

    2018-06-01

    We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.

  6. Chemically reacting flow of a compressible thermally radiating two-component plasma

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper studies the compressible flow of a hot two-component plasma in the presence of gravitation and chemical reaction in a vertical channel. For the optically thick gas approximation, closed form analytical solutions are possible. Asymptotic solutions are also obtained for the general differential approximation when the temperature of the two bounding walls are the same. In the general case the problem is reduced to the solution of standard nonlinear integral equations which can be tackled by iterative procedure. The results are discussed quantitatively. The problem may be applicable to the understanding of explosive hydrogen-burning model of solar flares. (author). 6 refs, 4 figs

  7. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  8. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Science.gov (United States)

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  9. Analysis of compressible light dynamic stall flow at transitional Reynolds numbers

    DEFF Research Database (Denmark)

    Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.

    1996-01-01

    Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...

  10. Numerical simulation of fluid-structure interaction of compressible flow and elastic structure

    Czech Academy of Sciences Publication Activity Database

    Hasnedlová, J.; Feistauer, M.; Horáček, Jaromír; Kosík, A.; Kučera, V.

    2013-01-01

    Roč. 95, Suppl 1 (2013), s. 343-361 ISSN 0010-485X R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : fluid–structure interaction * compressible flow * discontinuous Galerkin finite element method * coupling algorithms Subject RIV: BI - Acoustics Impact factor: 1.055, year: 2013 http://link.springer.com/article/10.1007%2Fs00607-012-0240-x

  11. Quasi-isentropic compression using compressed water flow generated by underwater electrical explosion of a wire array

    Science.gov (United States)

    Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.

    2018-05-01

    A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.

  12. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul

    2015-01-01

    Highlights: • The effects of electrode compression on VRFB are examined. • The electronic conductivity is improved when the compression is increased. • The kinetic losses are similar regardless of the electrode compression level. • The vanadium distribution is more uniform within highly compressed electrode. - Abstract: The porous carbon felt electrode is one of the major components of all-vanadium redox flow batteries (VRFBs). These electrodes are necessarily compressed during stack assembly to prevent liquid electrolyte leakage and diminish the interfacial contact resistance among VRFB stack components. The porous structure and properties of carbon felt electrodes have a considerable influence on the electrochemical reactions, transport features, and cell performance. Thus, a numerical study was performed herein to investigate the effects of electrode compression on the charge and discharge behavior of VRFBs. A three-dimensional, transient VRFB model developed in a previous study was employed to simulate VRFBs under two degrees of electrode compression (10% vs. 20%). The effects of electrode compression were precisely evaluated by analysis of the solid/electrolyte potential profiles, transfer current density, and vanadium concentration distributions, as well as the overall charge and discharge performance. The model predictions highlight the beneficial impact of electrode compression; the electronic conductivity of the carbon felt electrode is the main parameter improved by electrode compression, leading to reduction in ohmic loss through the electrodes. In contrast, the kinetics of the redox reactions and transport of vanadium species are not significantly altered by the degree of electrode compression (10% to 20%). This study enhances the understanding of electrode compression effects and demonstrates that the present VRFB model is a valuable tool for determining the optimal design and compression of carbon felt electrodes in VRFBs.

  13. Analysis of a discrete element method and coupling with a compressible fluid flow method

    International Nuclear Information System (INIS)

    Monasse, L.

    2011-01-01

    This work aims at the numerical simulation of compressible fluid/deformable structure interactions. In particular, we have developed a partitioned coupling algorithm between a Finite Volume method for the compressible fluid and a Discrete Element method capable of taking into account fractures in the solid. A survey of existing fictitious domain methods and partitioned algorithms has led to choose an Embedded Boundary method and an explicit coupling scheme. We first showed that the Discrete Element method used for the solid yielded the correct macroscopic behaviour and that the symplectic time-integration scheme ensured the preservation of energy. We then developed an explicit coupling algorithm between a compressible inviscid fluid and an un-deformable solid. Mass, momentum and energy conservation and consistency properties were proved for the coupling scheme. The algorithm was then extended to the coupling with a deformable solid, in the form of a semi implicit scheme. Finally, we applied this method to unsteady inviscid flows around moving structures: comparisons with existing numerical and experimental results demonstrate the excellent accuracy of our method. (author) [fr

  14. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations

    Science.gov (United States)

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  15. Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery.

    Science.gov (United States)

    Zuj, K A; Prince, C N; Hughson, R L; Peterson, S D

    2018-02-01

    This study tested the hypothesis that intermittent compression of the lower limb would increase blood flow during exercise and postexercise recovery. Data were collected from 12 healthy individuals (8 men) who performed 3 min of standing plantar flexion exercise. The following three conditions were tested: no applied compression (NoComp), compression during the exercise period only (ExComp), and compression during 2 min of standing postexercise recovery. Doppler ultrasound was used to determine superficial femoral artery (SFA) blood flow responses. Mean arterial pressure (MAP) and cardiac stroke volume (SV) were assessed using finger photoplethysmography, with vascular conductance (VC) calculated as VC = SFA flow/MAP. Compared with the NoComp condition, compression resulted in increased MAP during exercise [+3.5 ± 4.1 mmHg (mean ± SD)] but not during postexercise recovery (+1.6 ± 5.9 mmHg). SV increased with compression during both exercise (+4.8 ± 5.1 ml) and recovery (+8.0 ± 6.6 ml) compared with NoComp. There was a greater increase in SFA flow with compression during exercise (+52.1 ± 57.2 ml/min) and during recovery (+58.6 ± 56.7 ml/min). VC immediately following exercise was also significantly greater in the ExComp condition compared with the NoComp condition (+0.57 ± 0.42 ml·min -1 ·mmHg -1 ), suggesting the observed increase in blood flow during exercise was in part because of changes in VC. Results from this study support the hypothesis that intermittent compression applied during exercise and recovery from exercise results in increased limb blood flow, potentially contributing to changes in exercise performance and recovery. NEW & NOTEWORTHY Blood flow to working skeletal muscle is achieved in part through the rhythmic actions of the skeletal muscle pump. This study demonstrated that the application of intermittent pneumatic compression during the diastolic phase of the cardiac cycle, to mimic the mechanical

  16. Go with the Flow. Moving meshes and solution monitoring for compressible flow simulation

    NARCIS (Netherlands)

    van Dam, A.

    2009-01-01

    The simulation of time-dependent physical problems, such as flows of some kind, places high demands on the domain discretization in order to obtain high accuracy of the numerical solution. We present a moving mesh method in which the mesh points automatically move towards regions where high spatial

  17. Variational energy principle for compressible, baroclinic flow. 2: Free-energy form of Hamilton's principle

    Science.gov (United States)

    Schmid, L. A.

    1977-01-01

    The first and second variations are calculated for the irreducible form of Hamilton's Principle that involves the minimum number of dependent variables necessary to describe the kinetmatics and thermodynamics of inviscid, compressible, baroclinic flow in a specified gravitational field. The form of the second variation shows that, in the neighborhood of a stationary point that corresponds to physically stable flow, the action integral is a complex saddle surface in parameter space. There exists a form of Hamilton's Principle for which a direct solution of a flow problem is possible. This second form is related to the first by a Friedrichs transformation of the thermodynamic variables. This introduces an extra dependent variable, but the first and second variations are shown to have direct physical significance, namely they are equal to the free energy of fluctuations about the equilibrium flow that satisfies the equations of motion. If this equilibrium flow is physically stable, and if a very weak second order integral constraint on the correlation between the fluctuations of otherwise independent variables is satisfied, then the second variation of the action integral for this free energy form of Hamilton's Principle is positive-definite, so the action integral is a minimum, and can serve as the basis for a direct trail and error solution. The second order integral constraint states that the unavailable energy must be maximum at equilibrium, i.e. the fluctuations must be so correlated as to produce a second order decrease in the total unavailable energy.

  18. Isentropic Gas Flow for the Compressible Euler Equation in a Nozzle

    Science.gov (United States)

    Tsuge, Naoki

    2013-08-01

    We study the motion of isentropic gas in a nozzle. Nozzles are used to increase the thrust of engines or to accelerate a flow from subsonic to supersonic. Nozzles are essential parts for jet engines, rocket engines and supersonicwind tunnels. In the present paper, we consider unsteady flow, which is governed by the compressible Euler equation, and prove the existence of global solutions for the Cauchy problem. For this problem, the existence theorem has already been obtained for initial data away from the sonic state, (Liu in Commun Math Phys 68:141-172, 1979). Here, we are interested in the transonic flow, which is essential for engineering and physics. Although the transonic flow has recently been studied (Tsuge in J Math Kyoto Univ 46:457-524, 2006; Lu in Nonlinear Anal Real World Appl 12:2802-2810, 2011), these papers assume monotonicity of the cross section area. Here, we consider the transonic flow in a nozzle with a general cross section area. When we prove global existence, the most difficult point is obtaining a bounded estimate for approximate solutions. To overcome this, we employ a new invariant region that depends on the space variable. Moreover, we introduce a modified Godunov scheme. The corresponding approximate solutions consist of piecewise steady-state solutions of an auxiliary equation, which yield a desired bounded estimate. In order to prove their convergence, we use the compensated compactness framework.

  19. One-dimensional model of steady, compressible channel flow with mass, momentum, and energy addition

    International Nuclear Information System (INIS)

    Johnston, S.C.

    1976-09-01

    A one-dimensional model of steady, compressible channel flow with mass, momentum and energy addition is discussed. An exact solution to the governing equations was found and from it a similarity parameter relating dimensionless mass, momentum and energy addition identified. This similarity parameter is used to make two flows having different dimensionless mass, momentum and energy additions equivalent. Application of the similarity parameter to the LASL Intense Neutron Source experiment and the Sandia simulation of that experiment results in an expression relating the dimensionless mass addition of combustible gas required in the Sandia experiment to dimensionless energy addition in the LASL experiment. Results of the analysis indicate that the Sandia experiment can realistically simulate the energy addition in the LASL Intense Neutron Source experiment

  20. Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2010-12-01

    Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.

  1. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field

    Science.gov (United States)

    Moawad, S. M.; Moawad

    2013-10-01

    The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.

  2. Numerically stable fluid–structure interactions between compressible flow and solid structures

    KAUST Repository

    Grétarsson, Jón Tómas

    2011-04-01

    We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. © 2011 Elsevier Inc.

  3. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    Science.gov (United States)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  4. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  5. Laser driven supersonic flow over a compressible foam surface on the Nike laser

    International Nuclear Information System (INIS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Velikovich, A. L.; Weaver, J. L.; Plewa, T.

    2010-01-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  6. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  7. Progress in the Development of Compressible, Multiphase Flow Modeling Capability for Nuclear Reactor Flow Applications

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta

    2008-10-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.

  8. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    Science.gov (United States)

    Genin, Franklin

    The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is

  9. Tribological properties of high-speed steel treated by compression plasma flow

    International Nuclear Information System (INIS)

    Cherenda, K.K.; Uglov, V.V.; Anishchik, V.M.; Stalmashonak, A.K.; Astashinski, V.M.

    2004-01-01

    Full text: The investigation of tribological properties of two high-speed steels AISI M2 and AISI Tl treated by the nitrogen compression plasma flow was the main aim of this work. Two types of samples were investigated before and after quenching. The plasma flow was received in a magneto-plasma compressor. The impulse duration was ∼100 μs, the number of impulses varied in the range of 1-5, the nitrogen pressure in the chamber was 400-4000 Pa, the energy absorbed by the sample was 2-10 J/cm 2 per impulse. Tribological properties were examined by means of a tribometer TAYl under conditions of dry friction. The Vickers's microhardness was measured by a hard meter PMT3. X-ray diffraction analysis, Auger electron spectroscopy, scanning electron microscopy and energy dispersion microanalysis were used for samples characterization. The earlier conducted investigations showed that the compression plasma flow suited well for the improvement of tribological properties of iron and low-alloyed steels due to the formation of hardening nitrides in the near surface layer. It was found that in the case of high-speed steels only not quenched samples had increased hardness after treatment. The latter can be explained by the formation of hardening nitrides though the phase analysis did not clearly reveal their presence. The element composition confirmed the presence of nitrogen in the surface layer with the concentration up to 30 at. %. The treatment of quenched samples almost always resulted in the hardness decrease due to the dissolution or partial dissolution of alloying elements carbides: M 6 C, MC, M 23 C 6 . The rate of carbides dissolution increased with the growth of the energy absorbed by the sample. The treated samples showed a lower value of the friction coefficient than the untreated one. It could be explained by the formation of nitrogenous austenite which was found out by the phase analysis. At the same time the compression plasma flow strongly influenced surface

  10. Thermodynamic bounds for existence of normal shock in compressible fluid flow in pipes

    Directory of Open Access Journals (Sweden)

    SERGIO COLLE

    Full Text Available Abstract The present paper is concerned with the thermodynamic theory of the normal shock in compressible fluid flow in pipes, in the lights of the pioneering works of Lord Rayleigh and G. Fanno. The theory of normal shock in pipes is currently presented in terms of the Rayleigh and Fanno curves, which are shown to cross each other in two points, one corresponding to a subsonic flow and the other corresponding to a supersonic flow. It is proposed in this paper a novel differential identity, which relates the energy flux density, the linear momentum flux density, and the entropy, for constant mass flow density. The identity so obtained is used to establish a theorem, which shows that Rayleigh and Fanno curves become tangent to each other at a single sonic point. At the sonic point the entropy reaches a maximum, either as a function of the pressure and the energy density flux or as a function of the pressure and the linear momentum density flux. A Second Law analysis is also presented, which is fully independent of the Second Law analysis based on the Rankine-Hugoniot adiabatic carried out by Landau and Lifshitz (1959.

  11. Evolution of the Orszag-Tang vortex system in a compressible medium. I - Initial average subsonic flow

    Science.gov (United States)

    Dahlburg, R. B.; Picone, J. M.

    1989-01-01

    The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.

  12. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  13. A ghost fluid method for sharp interface simulations of compressible multiphase flows

    International Nuclear Information System (INIS)

    Majidi, Sahand; Afshari, Asghar

    2016-01-01

    A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

  14. A ghost fluid method for sharp interface simulations of compressible multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, Sahand; Afshari, Asghar [University of Tehran, Teheran (Iran, Islamic Republic of)

    2016-04-15

    A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.

  15. Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.

    Science.gov (United States)

    Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie

    2016-12-01

    We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.

  16. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    Science.gov (United States)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  17. Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows

    Science.gov (United States)

    Saurel, Richard; Pantano, Carlos

    2018-01-01

    Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.

  18. A Schur complement method for compressible two-phase flow models

    International Nuclear Information System (INIS)

    Dao, Thu-Huyen; Ndjinga, Michael; Magoules, Frederic

    2014-01-01

    In this paper, we will report our recent efforts to apply a Schur complement method for nonlinear hyperbolic problems. We use the finite volume method and an implicit version of the Roe approximate Riemann solver. With the interface variable introduced in [4] in the context of single phase flows, we are able to simulate two-fluid models ([12]) with various schemes such as upwind, centered or Rusanov. Moreover, we introduce a scaling strategy to improve the condition number of both the interface system and the local systems. Numerical results for the isentropic two-fluid model and the compressible Navier-Stokes equations in various 2D and 3D configurations and various schemes show that our method is robust and efficient. The scaling strategy considerably reduces the number of GMRES iterations in both interface system and local system resolutions. Comparisons of performances with classical distributed computing with up to 218 processors are also reported. (authors)

  19. An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali; Samtaney, Ravi

    2016-01-01

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.

  20. Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow

    KAUST Repository

    Kou, Jisheng

    2017-12-06

    In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.

  1. An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali

    2016-06-03

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.

  2. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Directory of Open Access Journals (Sweden)

    Nicolas Craquelin

    2010-12-01

    Full Text Available We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  3. Performance evaluation for compressible flow calculations on five parallel computers of different architectures

    International Nuclear Information System (INIS)

    Kimura, Toshiya.

    1997-03-01

    A two-dimensional explicit Euler solver has been implemented for five MIMD parallel computers of different machine architectures in Center for Promotion of Computational Science and Engineering of Japan Atomic Energy Research Institute. These parallel computers are Fujitsu VPP300, NEC SX-4, CRAY T94, IBM SP2, and Hitachi SR2201. The code was parallelized by several parallelization methods, and a typical compressible flow problem has been calculated for different grid sizes changing the number of processors. Their effective performances for parallel calculations, such as calculation speed, speed-up ratio and parallel efficiency, have been investigated and evaluated. The communication time among processors has been also measured and evaluated. As a result, the differences on the performance and the characteristics between vector-parallel and scalar-parallel computers can be pointed, and it will present the basic data for efficient use of parallel computers and for large scale CFD simulations on parallel computers. (author)

  4. Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches

    Science.gov (United States)

    Bresch, D.; Fernández-Nieto, E. D.; Ionescu, I. R.; Vigneaux, P.

    In this paper we propose a well-balanced finite volume/augmented Lagrangian method for compressible visco-plastic models focusing on a compressible Bingham type system with applications to dense avalanches. For the sake of completeness we also present a method showing that such a system may be derived for a shallow flow of a rigid-viscoplastic incompressible fluid, namely for incompressible Bingham type fluid with free surface. When the fluid is relatively shallow and spreads slowly, lubrication-style asymptotic approximations can be used to build reduced models for the spreading dynamics, see for instance [N.J. Balmforth et al., J. Fluid Mech (2002)]. When the motion is a little bit quicker, shallow water theory for non-Newtonian flows may be applied, for instance assuming a Navier type boundary condition at the bottom. We start from the variational inequality for an incompressible Bingham fluid and derive a shallow water type system. In the case where Bingham number and viscosity are set to zero we obtain the classical Shallow Water or Saint-Venant equations obtained for instance in [J.F. Gerbeau, B. Perthame, DCDS (2001)]. For numerical purposes, we focus on the one-dimensional in space model: We study associated static solutions with sufficient conditions that relate the slope of the bottom with the Bingham number and domain dimensions. We also propose a well-balanced finite volume/augmented Lagrangian method. It combines well-balanced finite volume schemes for spatial discretization with the augmented Lagrangian method to treat the associated optimization problem. Finally, we present various numerical tests.

  5. A parallel finite-volume finite-element method for transient compressible turbulent flows with heat transfer

    International Nuclear Information System (INIS)

    Masoud Ziaei-Rad

    2010-01-01

    In this paper, a two-dimensional numerical scheme is presented for the simulation of turbulent, viscous, transient compressible flows in the simultaneously developing hydraulic and thermal boundary layer region. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. This combination together with a new method applied for the boundary conditions allows for accurate computation of the variables in the entrance region and for a wide range of flow fields from subsonic to transonic. The Roe-Riemann solver is used for the convective terms, whereas the standard Galerkin technique is applied for the viscous terms. A modified κ-ε model with a two-layer equation for the near-wall region combined with a compressibility correction is used to predict the turbulent viscosity. Parallel processing is also employed to divide the computational domain among the different processors to reduce the computational time. The method is applied to some test cases in order to verify the numerical accuracy. The results show significant differences between incompressible and compressible flows in the friction coefficient, Nusselt number, shear stress and the ratio of the compressible turbulent viscosity to the molecular viscosity along the developing region. A transient flow generated after an accidental rupture in a pipeline was also studied as a test case. The results show that the present numerical scheme is stable, accurate and efficient enough to solve the problem of transient wall-bounded flow.

  6. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    Science.gov (United States)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  7. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2013-09-01

    We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.

  8. Central upwind scheme for a compressible two-phase flow model.

    Science.gov (United States)

    Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.

  9. Determination of mean pressure from PIV in compressible flows using the Reynolds-averaging approach

    Science.gov (United States)

    van Gent, Paul L.; van Oudheusden, Bas W.; Schrijer, Ferry F. J.

    2018-03-01

    The feasibility of computing the flow pressure on the basis of PIV velocity data has been demonstrated abundantly for low-speed conditions. The added complications occurring for high-speed compressible flows have, however, so far proved to be largely inhibitive for the accurate experimental determination of instantaneous pressure. Obtaining mean pressure may remain a worthwhile and realistic goal to pursue. In a previous study, a Reynolds-averaging procedure was developed for this, under the moderate-Mach-number assumption that density fluctuations can be neglected. The present communication addresses the accuracy of this assumption, and the consistency of its implementation, by evaluating of the relevance of the different contributions resulting from the Reynolds-averaging. The methodology involves a theoretical order-of-magnitude analysis, complemented with a quantitative assessment based on a simulated and a real PIV experiment. The assessments show that it is sufficient to account for spatial variations in the mean velocity and the Reynolds-stresses and that temporal and spatial density variations (fluctuations and gradients) are of secondary importance and comparable order-of-magnitude. This result permits to simplify the calculation of mean pressure from PIV velocity data and to validate the approximation of neglecting temporal and spatial density variations without having access to reference pressure data.

  10. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali

    2017-02-25

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost-fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  11. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow

    International Nuclear Information System (INIS)

    Mook, W M; Niederberger, C; Bechelany, M; Philippe, L; Michler, J

    2010-01-01

    Characterizing the mechanical response of isolated nanostructures is vitally important to fields such as microelectromechanical systems (MEMS) where the behaviour of nanoscale contacts can in large part determine system reliability and lifetime. To address this challenge directly, single crystal gold nanodots are compressed inside a high resolution scanning electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. These structures load elastically, and then yield in a stochastic manner, at loads ranging from 16 to 110 μN, which is up to five times higher than the load necessary for flow after yield. Yielding is immediately followed by displacement bursts equivalent to 1-50% of the initial height, depending on the yield point. During the largest displacement bursts, strain energy within the structure is released while new surface area is created in the form of localized slip bands, which are evident in both the SEM movies and still-images. A first order estimate of the apparent energy release rate, in terms of fracture mechanics concepts, for bursts representing 5-50% of the structure's initial height is on the order of 10-100 J m -2 , which is approximately two orders of magnitude lower than bulk values. Once this initial strain burst during yielding has occurred, the structures flow in a ductile way. The implications of this behaviour, which is analogous to a brittle to ductile transition, are discussed with respect to mechanical reliability at the micro- and nanoscales.

  12. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    KAUST Repository

    Almarouf, Mohamad Abdulilah Alhusain Alali; Samtaney, Ravi

    2017-01-01

    We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost-fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  13. Central upwind scheme for a compressible two-phase flow model.

    Directory of Open Access Journals (Sweden)

    Munshoor Ahmed

    Full Text Available In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.

  14. ESE a 2D compressible multiphase flow code developed for MFCI analysis - code validation

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    1998-01-01

    ESE (Evaluation of Steam Explosions) is a general second order accurate two-dimensional compressible multiphase flow computer code. It has been developed to model the interaction of molten core debris with water during the first premixing stage of a steam explosion. A steam explosion is a physical event, which may occur during a severe reactor accident following core meltdown when the molten fuel comes into contact with the coolant water. Since the exchanges of mass, momentum and energy are regime dependent, different exchange laws have been incorporated in ESE for the major flow regimes. With ESE a number of premixing experiments performed at the Oxford University and at the QUEOS facility at Forschungszentrum Karlsruhe has been simulated. In these premixing experiments different jets of spheres were injected in a water poll. The ESE validation plan was carefully chosen, starting from very simple, well-defined problems, and gradually working up to more complicated ones. The results of ESE simulations, which were compared to experimental data and also to first order accurate calculations, are presented in form graphs. Most of the ESE results agree qualitatively as quantitatively reasonably well with experimental data and in general better than the results obtained with the first order accurate calculation.(author)

  15. Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes

    Science.gov (United States)

    Capuano, M.; Bogey, C.; Spelt, P. D. M.

    2018-05-01

    A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.

  16. CCAN and TCAN - 1 1/2-D compressible-flow and time-dependent codes for conductor analysis

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Wan, A.S.; Yang, T.F.

    1983-01-01

    This report documents the computer programs CCAN (steady-state Compressible flow Conductor ANalysis) and TCAN (Time-dependent incompressible-flow Conductor ANalysis). These codes calculate temperature, pressure, power and other engineering quantities along the length of an actively-cooled electrical conductor. Present versions contain detailed property information for copper and aluminum conductors; and gaseous helium, liquid nitrogen and water coolants. CCAN and TCAN are available on the NMFECC CDC 7600

  17. Spinal cord blood flow measured by 14C-iodoantipyrine autoradiography during and after graded spinal cord compression in rats

    International Nuclear Information System (INIS)

    Holtz, A.; Nystroem, B.G.; Gerdin, B.

    1989-01-01

    The relations between degree of thoracic spinal cord compression causing myelographic block, reversible paraparesis, and extinction of the sensory evoked potential on one hand, and spinal cord blood flow on the other, were investigated. This was done in rats using the blocking weight-technique and 14 C-iodoantipyrine autoradiography. A load of 9 g caused myelographic block. Five minutes of compression with that load caused a reduction of spinal cord blood flow to about 25%, but 5 and 60 minutes after the compression spinal cord blood flow was restored to 60% of the pretrauma value. A load of 35 g for 5 minutes caused transient paraparesis. Recovery to about 30% was observed 5 and 60 minutes thereafter. During compression at a load of 55 g, which caused almost total extinction of sensory evoked potential and irreversible paraplegia, spinal cord blood flow under the load ceased. The results indicate that myelographic block occurs at a load which does not cause irreversible paraparesis and that a load which permits sensory evoked potential to be elicited results in potentially salvageable damage

  18. Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.

    Science.gov (United States)

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-03-21

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.

  19. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-05-01

    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  20. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    International Nuclear Information System (INIS)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-01-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  1. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    Science.gov (United States)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-08-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  2. Investigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow

    Directory of Open Access Journals (Sweden)

    Seyed mohammadjavad Zeidi

    2015-04-01

    Full Text Available Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001. Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results include the effects of contraction inside nozzle’s orifice, effect of compressibility; effect of injection pressures and several orifice entries are also simulated in this study. For considering the effect of compressibility a user defined function used in this simulation. Cavitation model which is used in this simulation is Singhal et al. cavitation model. Presto discretization method is used for Pressure equation and second upwind discretization method is used for Momentum equation. Converging Singhal et al. cavitation model is very challenging and it needs several efforts and simulations.

  3. Marked Increase in Flow Velocities During Deep Expiration: A Duplex Doppler Sign of Celiac Artery Compression Syndrome

    International Nuclear Information System (INIS)

    Erden, Ayse; Yurdakul, Mehmet; Cumhur, Turhan

    1999-01-01

    Symptoms of chronic mesenteric ischemia develop when the celiac artery is constricted by the median arcuate ligament of the diaphragm. Lateral aortography is the primary modality for diagnosing ligamentous compression of the celiac artery. However, duplex Doppler sonography performed during deep expiration can cause a marked increase in flow velocities at the compressed region of the celiac artery and suggest the diagnosis of celiac arterial constriction due to the diaphragmatic ligament. RID='''' ID='''' Correspondence to: A. Erden, M.D., Hafta sokak. 23/6, Gaziosmanpasa, 06700 Ankara, Turkey

  4. Simulation investigation of flow field inside the rotary engine : during intake and compression stroke

    Energy Technology Data Exchange (ETDEWEB)

    Poojitganont, T.; Berg, H.P.; Izweik, H.T. [Brandenburg Univ. of Technology Cottbus, Cottbus (Germany)

    2009-07-01

    As a result of continuously increasing oil prices, automotive industries are looking for alternative power sources for their automobiles. An excellent solution is the hybrid system. However due to the additional weight of its batteries, this causes the total weight of the car to increase. This higher battery weight can be compensated by reducing the weight of the engine. A rotary engine, such as the Wankel rotary engine, has a more attractive power to weight ratio than the normal reciprocating engine. The rotary engine can be treated and evaluated with respect to performance characteristics as a displacement type, four-stroke internal combustion engine, one-cycle similar to the reciprocating engine. For any combustion engine to reach the maximum power output, the mixture formation inside the engine should be considered. The flow phenomenon inside the engine is a key parameter which involves the mixture formation mechanism. This paper investigated the spray characteristic from the injector and the flow phenomena inside the combustion chamber. Its behaviours were studied using computational fluid dynamics simulation. The simulation setup was described in detail, with reference to meshes; initial condition; and boundary condition. Verification of the calculation was also presented. A comparison of the temperature during compression stroke from the analytical calculation and the adiabetic system simulation were also illustrated. Simulation results showed that the speed of the engine provides a proportional effect on the magnitude of air velocity inside the engine, whereas the circulation region can be expanded by increasing the intake pressure during the intake stroke. 9 refs., 1 tab., 13 figs.

  5. An implicit numerical model for multicomponent compressible two-phase flow in porous media

    Science.gov (United States)

    Zidane, Ali; Firoozabadi, Abbas

    2015-11-01

    We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.

  6. Interactions of solitary waves and compression/expansion waves in core-annular flows

    Science.gov (United States)

    Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark

    2017-11-01

    The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).

  7. Nonlinear parameter estimation in inviscid compressible flows in presence of uncertainties

    International Nuclear Information System (INIS)

    Jemcov, A.; Mathur, S.

    2004-01-01

    The focus of this paper is on the formulation and solution of inverse problems of parameter estimation using algorithmic differentiation. The inverse problem formulated here seeks to determine the input parameters that minimize a least squares functional with respect to certain target data. The formulation allows for uncertainty in the target data by considering the least squares functional in a stochastic basis described by the covariance of the target data. Furthermore, to allow for robust design, the formulation also accounts for uncertainties in the input parameters. This is achieved using the method of propagation of uncertainties using the directional derivatives of the output parameters with respect to unknown parameters. The required derivatives are calculated simultaneously with the solution using generic programming exploiting the template and operator overloading features of the C++ language. The methodology described here is general and applicable to any numerical solution procedure for any set of governing equations but for the purpose of this paper we consider a finite volume solution of the compressible Euler equations. In particular, we illustrate the method for the case of supersonic flow in a duct with a wedge. The parameter to be determined is the inlet Mach number and the target data is the axial component of velocity at the exit of the duct. (author)

  8. On the modelling of compressible inviscid flow problems using AUSM schemes

    Directory of Open Access Journals (Sweden)

    Hajžman M.

    2007-11-01

    Full Text Available During last decades, upwind schemes have become a popular method in the field of computational fluid dynamics. Although they are only first order accurate, AUSM (Advection Upstream Splitting Method schemes proved to be well suited for modelling of compressible flows due to their robustness and ability of capturing shock discontinuities. In this paper, we review the composition of the AUSM flux-vector splitting scheme and its improved version noted AUSM+, proposed by Liou, for the solution of the Euler equations. Mach number splitting functions operating with values from adjacent cells are used to determine numerical convective fluxes and pressure splitting is used for the evaluation of numerical pressure fluxes. Both versions of the AUSM scheme are applied for solving some test problems such as one-dimensional shock tube problem and three dimensional GAMM channel. Features of the schemes are discussed in comparison with some explicit central schemes of the first order accuracy (Lax-Friedrichs and of the second order accuracy (MacCormack.

  9. On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows

    Science.gov (United States)

    Soni, V.; Hadjadj, A.; Roussel, O.

    2017-12-01

    In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.

  10. Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elsayed

    2013-01-01

    Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.

  11. RELAP-7 Progress Report: A Mathematical Model for 1-D Compressible, Single-Phase Flow Through a Branching Junction

    Energy Technology Data Exchange (ETDEWEB)

    Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-14

    In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an active component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].

  12. Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena

    Directory of Open Access Journals (Sweden)

    Le Métayer O.

    2013-07-01

    Full Text Available Phase changes and heat exchanges are examples of physical processes appearing in many industrial applications involving multiphase compressible flows. Their knowledge is of fundamental importance to reproduce correctly the resulting effects in simulation tools. A fine description of the flow topology is thus required to obtain the interfacial area between phases. This one is responsible for the dynamics and the kinetics of heat and mass transfer when evaporation or condensation occurs. Unfortunately this exchange area cannot be obtained easily and accurately especially when complex mixtures (drops, bubbles, pockets of very different sizes appear inside the transient medium. The natural way to solve this specific trouble consists in using a thin grid to capture interfaces at all spatial scales. But this possibility needs huge computing resources and can be hardly used when considering physical systems of large dimensions. A realistic method is to consider instantaneous exchanges between phases by the way of additional source terms in a full non-equilibrium multiphase flow model [2,15,17]. In this one each phase obeys its own equation of state and has its own set of equations and variables (pressure, temperature, velocity, energy, entropy,.... When enabling the relaxation source terms the multiphase mixture instantaneously tends towards a mechanical or thermodynamic equilibrium state at each point of the flow. This strategy allows to mark the boundaries of the real flow behavior and to magnify the dominant physical effects (heat exchanges, evaporation, drag,... inside the medium. A description of the various relaxation processes is given in the paper. Les changements de phase et les transferts de chaleur sont des exemples de phénomènes physiques présents dans de nombreuses applications industrielles faisant intervenir des écoulements compressibles multiphasiques. La connaissance des mécanismes associés est primordiale afin de reproduire

  13. A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2014-01-01

    Full Text Available Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR. The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

  14. Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals

    Science.gov (United States)

    Wu, Guochun; Tan, Zhong

    2018-06-01

    In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.

  15. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    Science.gov (United States)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  16. Numerical simulation of compressible multiphase flows with or without phase transition. Application to laser plasma interaction

    International Nuclear Information System (INIS)

    Perrier, V.

    2007-07-01

    This work deals with the modelling and simulation of compressible flows. A seven equations model is obtained by homogenizing the Euler system. Fluctuation terms are modeled as relaxation terms. When the relaxation terms tend to infinity, which means that the phases are well mixed, a five equations model is obtained via an asymptotic expansion. This five equations model is strictly hyperbolic, but nonconservative. The discretization of this model is obtained by an asymptotic expansion of a scheme for the seven equations model. The numerical method is implemented, validated on analytic cases, and compared with experiments in the case of multiphase shocks. We are then interested in the modelling of phase transition with two equations of state. Optimization of the mixture entropy leads to the fact that three zones can be separated: one in which the pure liquid is the most stable, one in which the pure gas is the most stable, and one in which a mixture with equality of temperature, pressure and chemical potentials is the most stable. Conditions are given on the coupling of the two equations of state for ensuring that the mixture equation of state is convex, and that the system is strictly hyperbolic. In order to take into account phase transition, a vaporization wave is introduced in the solution of the Riemann problem, that is modeled as a deflagration wave. It is then proved that the usual closure, the Chapman-Jouguet closure, is wrong in general, and a correct closure in the case when both fluids have a perfect gas equation of state. Last, the solution of the Riemann problem is implemented in a multiphase code, and validated on analytic cases. In the same code, models of laser release and thermal conduction are implemented to simulate laser ablation. The results are comparable to the ones obtained with scale laws. The last chapter, fully independent, is concerned with correctors in stochastic homogenization in the case of heavy tails process. (author)

  17. Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor-Green flows

    Science.gov (United States)

    Peng, Naifu; Yang, Yue

    2018-01-01

    We investigate the evolution of vortex-surface fields (VSFs) in compressible Taylor-Green flows at Mach numbers (Ma) ranging from 0.5 to 2.0 using direct numerical simulation. The formulation of VSFs in incompressible flows is extended to compressible flows, and a mass-based renormalization of VSFs is used to facilitate characterizing the evolution of a particular vortex surface. The effects of the Mach number on the VSF evolution are different in three stages. In the early stage, the jumps of the compressive velocity component near shocklets generate sinks to contract surrounding vortex surfaces, which shrink vortex volume and distort vortex surfaces. The subsequent reconnection of vortex surfaces, quantified by the minimal distance between approaching vortex surfaces and the exchange of vorticity fluxes, occurs earlier and has a higher reconnection degree for larger Ma owing to the dilatational dissipation and shocklet-induced reconnection of vortex lines. In the late stage, the positive dissipation rate and negative pressure work accelerate the loss of kinetic energy and suppress vortex twisting with increasing Ma.

  18. Numerically stable fluid–structure interactions between compressible flow and solid structures

    KAUST Repository

    Gré tarsson, Jó n Tó mas; Kwatra, Nipun; Fedkiw, Ronald

    2011-01-01

    ] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous

  19. Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong-Kil; Yoon, Jun-Kyu [Gachon Univ., Sungnam (Korea, Republic of); Kim, Kwang-Chu [KEPCO-E& C, Kimchun (Korea, Republic of)

    2017-10-15

    A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general . In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

  20. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  1. Supercomputer implementation of finite element algorithms for high speed compressible flows. Progress report, period ending 30 June 1986

    International Nuclear Information System (INIS)

    Thornton, E.A.; Ramakrishnan, R.

    1986-06-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

  2. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    International Nuclear Information System (INIS)

    Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.

    2015-01-01

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated

  3. Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2011-05-01

    Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown

  4. Simulation of 2-D Compressible Flows on a Moving Curvilinear Mesh with an Implicit-Explicit Runge-Kutta Method

    KAUST Repository

    AbuAlSaud, Moataz

    2012-07-01

    The purpose of this thesis is to solve unsteady two-dimensional compressible Navier-Stokes equations for a moving mesh using implicit explicit (IMEX) Runge- Kutta scheme. The moving mesh is implemented in the equations using Arbitrary Lagrangian Eulerian (ALE) formulation. The inviscid part of the equation is explicitly solved using second-order Godunov method, whereas the viscous part is calculated implicitly. We simulate subsonic compressible flow over static NACA-0012 airfoil at different angle of attacks. Finally, the moving mesh is examined via oscillating the airfoil between angle of attack = 0 and = 20 harmonically. It is observed that the numerical solution matches the experimental and numerical results in the literature to within 20%.

  5. Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles

    International Nuclear Information System (INIS)

    Li, N.; Mara, N.A.; Wang, Y.Q.; Nastasi, M.; Misra, A.

    2011-01-01

    Research highlights: → Firstly micro-pillar compression technique has been used to measure the implanted metal films. → The magnitude of radiation hardening decreased with decreasing layer thickness. → When thickness decreases to 2.5 nm, no hardening and no loss in deformability after implantation. -- Focused-ion-beam machined compression specimens were used to investigate the effect of nanometer-scale helium bubbles on the strength and deformability of sputter-deposited Cu and Cu/Nb multilayers with different layer thickness. The flow strength of Cu films increased by more than a factor of 2 due to helium bubbles but in multilayers, the magnitude of radiation hardening decreased with decreasing layer thickness. When the layer thickness decreases to 2.5 nm, insignificant hardening and no measurable loss in deformability is observed after implantation.

  6. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.

    Science.gov (United States)

    Davis, Mark T; Potter, Catherine B; Walker, Gavin M

    2018-06-10

    Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The flow behavior and constitutive equation in isothermal compression of FGH4096-GH4133B dual alloy

    International Nuclear Information System (INIS)

    Liu, Yanhui; Yao, Zekun; Ning, Yongquan; Nan, Yang; Guo, Hongzhen; Qin, Chun; Shi, Zhifeng

    2014-01-01

    Highlights: • Hot compression behaviors of the FGH4096-GH4133B dual alloy were investigated. • Constitutive equation also represented deformation behavior of a dual alloy. • The effects of deformation activation energy on the microstructures were discussed. • Constitutive equation represented an accurate and precise estimate of flow stress. - Abstract: The electron beam welding of superalloy FGH4096 and GH4133B was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam weldments. Isothermal compression tests were carried out on electron beam weldments FGH4096-GH4133B alloy at the temperatures of 1020–11140 °C (the nominal γ′-transus temperature is about 1080 °C) and the strain rates of 0.001–1.0 s −1 with the height reduction of 50%. True stress–true strain curves are sensitive to the deformation temperature and strain rate, and the flow stress decreases with the increasing deformation temperature and the decreasing strain rate. The true stress–true strain curves can indicate the intrinsic relationship between the flow stress and the thermal-dynamic behavior. The apparent activation energy of deformation at the strain of 0.6 was calculated to be 550 kJ/mol, and the apparent activation energy has a great effect on the microstructure. The constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling the hot deformation process of FGH4096-GH4133B electron beam weldments. The constitutive equation at the strain of 0.6 was established using the hyperbolic law. The relationship between the strain and the values of parameters was studied, and the cubic functions were built. The constitutive equation during the whole process can be obtained based on the parameters under different strains. Comparing the experimental flow stress and the calculated flow stress, the constitutive equation obtained in this paper can be very good

  8. A Numerical Scheme Based on an Immersed Boundary Method for Compressible Turbulent Flows with Shocks: Application to Two-Dimensional Flows around Cylinders

    Directory of Open Access Journals (Sweden)

    Shun Takahashi

    2014-01-01

    Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.

  9. Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows.

    Science.gov (United States)

    Yang, L M; Shu, C; Wang, Y

    2016-03-01

    In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.

  10. Application of a two-dimensional model for predicting the pressure-flow and compression properties during column packing scale-up.

    Science.gov (United States)

    McCue, Justin T; Cecchini, Douglas; Chu, Cathy; Liu, Wei-Han; Spann, Andrew

    2007-03-23

    A two-dimensional model was formulated to describe the pressure-flow behavior of compressible stationary phases for protein chromatography at different temperatures and column scales. The model was based on the assumption of elastic deformation of the solid phase and steady-state Darcy flow. Using a single fitted value for the empirical modulus parameters, the model was applied to describe the pressure-flow behavior of several adsorbents packed using both fluid flow and mechanical compression. Simulations were in agreement with experimental data and accurately predicted the pressure-flow and compression behavior of three adsorbents over a range of column scales and operating temperatures. Use of the described theoretical model potentially improves the accuracy of the column scale-up process, allowing the use of limited laboratory scale data to predict column performance in large scale applications.

  11. An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows

    Science.gov (United States)

    Zheng, H. W.; Shu, C.; Chew, Y. T.

    2008-07-01

    In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.

  12. Experimental and numerical study of two-phase flows at the inlet of evaporators in vapour compression cycles

    International Nuclear Information System (INIS)

    Ahmad, M.

    2007-09-01

    Maldistribution of liquid-vapour two phase flows causes a significant decrease of the thermal and hydraulic performance of evaporators in thermodynamic vapour compression cycles. A first experimental installation was used to visualize the two phase flow evolution between the expansion valve and the evaporator inlet. A second experimental set-up simulating a compact heat exchanger has been designed to identify the functional and geometrical parameters creating the best distribution of the two phases in the different channels. An analysis and a comprehension of the relation between the geometrical and functional parameters with the flow pattern inside the header and the two phase distribution, has been established. A numerical simulations of a stratified flow and a stratified jet flow have been carried out using two CFD codes: FLUENT and NEPTUNE. In the case of a fragmented jet configuration, a global definition of the interfacial area concentration for a separated phases and dispersed phases flow has been established and a model calculating the fragmented mass fraction has been developed. (author)

  13. On numerical solution of compressible flow in time-dependent domains

    Czech Academy of Sciences Publication Activity Database

    Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopová, Jaroslava

    2012-01-01

    Roč. 137, č. 1 (2012), s. 1-16 ISSN 0862-7959 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : compressible Navier-Stokes equations * arbitrary Lagrangian-Eulerian method * discontinuous Galerkin finite element method * interior and boundary penalty Subject RIV: BI - Acoustics

  14. On the modeling of gas flow through porous compression packings used in valve stuffing-boxes

    International Nuclear Information System (INIS)

    Kazeminia, Mehdi; Bouzid, Abdel-Hakim

    2015-01-01

    Predicting leak rate through porous compression packing rings is a significant challenge for the design of packed stuffing boxes. Although few studies have been conducted to predict the leak rate through these seals, there is no comprehensive standard procedure to be used to design compression packings for a maximum tolerated leak for a given application. With the ubiquitous use of the yarned packing rings and the strict regulations on fugitive emissions and the new environment protection laws quantification of leak rate through yarned stuffing boxes becomes more than necessary and a tightness criteria based design procedure must be developed. In this study a new approach to predict leak rate through compression packing rings has been developed. It is based on Darcy's model to which Klinkenberg slip effect is incorporated. The predicted leak rates are compared to those measured experimentally using two different graphite-based packing rings subjected to different compression levels and pressures. A good agreement is found between the predicted and the measured leak rates which illustrates the validity of the developed model. (author)

  15. Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method

    Czech Academy of Sciences Publication Activity Database

    Kosík, Adam; Feistauer, M.; Hadrava, Martin; Horáček, Jaromír

    2015-01-01

    Roč. 267, September (2015), s. 382-396 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : discontinuous Galerkin method * nonlinear elasticity * compressible viscous flow * fluid–structure interaction Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315002453/pdfft?md5=02d46bc730e3a7fb8a5008aaab1da786&pid=1-s2.0-S0096300315002453-main.pdf

  16. VNAP2: a computer program for computation of two-dimensional, time-dependent, compressible, turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Cline, M.C.

    1981-08-01

    VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  17. Numerical and theoretical aspects of the modelling of compressible two-phase flow by interface capture methods

    International Nuclear Information System (INIS)

    Kokh, S.

    2001-01-01

    This research thesis reports the development of a numerical direct simulation of compressible two-phase flows by using interface capturing methods. These techniques are based on the use of an Eulerian fixed grid to describe flow variables as well as the interface between fluids. The author first recalls conventional interface capturing methods and makes the distinction between those based on discontinuous colour functions and those based on level set functions. The approach is then extended to a five equation model to allow the largest as possible choice of state equations for the fluids. Three variants are developed. A solver inspired by the Roe scheme is developed for one of them. These interface capturing methods are then refined, more particularly for problems of numerical diffusion at the interface. A last part addresses the study of dynamic phase change. Non-conventional thermodynamics tools are used to study the structures of an interface which performs phase transition [fr

  18. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method

    Science.gov (United States)

    Muralidharan, Balaji; Menon, Suresh

    2018-03-01

    A high-order adaptive Cartesian cut-cell method, developed in the past by the authors [1] for simulation of compressible viscous flow over static embedded boundaries, is now extended for reacting flow simulations over moving interfaces. The main difficulty related to simulation of moving boundary problems using immersed boundary techniques is the loss of conservation of mass, momentum and energy during the transition of numerical grid cells from solid to fluid and vice versa. Gas phase reactions near solid boundaries can produce huge source terms to the governing equations, which if not properly treated for moving boundaries, can result in inaccuracies in numerical predictions. The small cell clustering algorithm proposed in our previous work is now extended to handle moving boundaries enforcing strict conservation. In addition, the cell clustering algorithm also preserves the smoothness of solution near moving surfaces. A second order Runge-Kutta scheme where the boundaries are allowed to change during the sub-time steps is employed. This scheme improves the time accuracy of the calculations when the body motion is driven by hydrodynamic forces. Simple one dimensional reacting and non-reacting studies of moving piston are first performed in order to demonstrate the accuracy of the proposed method. Results are then reported for flow past moving cylinders at subsonic and supersonic velocities in a viscous compressible flow and are compared with theoretical and previously available experimental data. The ability of the scheme to handle deforming boundaries and interaction of hydrodynamic forces with rigid body motion is demonstrated using different test cases. Finally, the method is applied to investigate the detonation initiation and stabilization mechanisms on a cylinder and a sphere, when they are launched into a detonable mixture. The effect of the filling pressure on the detonation stabilization mechanisms over a hyper-velocity sphere launched into a hydrogen

  19. On the low Mach number limit of compressible flows in exterior moving domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Kreml, Ondřej; Mácha, Václav; Nečasová, Šárka

    2016-01-01

    Roč. 16, č. 3 (2016), s. 705-722 ISSN 1424-3199 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * incompressible limit * moving domain Subject RIV: BA - General Mathematics Impact factor: 1.038, year: 2016 http://link.springer.com/article/10.1007%2Fs00028-016-0338-2

  20. Numerical solution of compressible and incompressible unsteady flows in channel inspired by vocal tract

    Czech Academy of Sciences Publication Activity Database

    Pořízková, P.; Kozel, Karel; Horáček, Jaromír

    2014-01-01

    Roč. 270, November (2014), s. 323-329 ISSN 0377-0427 R&D Projects: GA ČR(CZ) GAP101/11/0207; GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : compressible * incompressible * unsteady * CFD * acoustic * vocal tract Subject RIV: BI - Acoustics Impact factor: 1.266, year: 2014 http://www.sciencedirect.com/science/article/pii/S0377042713007188#

  1. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  2. An efficient finite differences method for the computation of compressible, subsonic, unsteady flows past airfoils and panels

    Science.gov (United States)

    Colera, Manuel; Pérez-Saborid, Miguel

    2017-09-01

    A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.

  3. Compressibility and rarefaction effects on entropy and entropy generation in micro/nano Couette flow using DSMC

    International Nuclear Information System (INIS)

    Ejtehadi, Omid; Esfahani, Javad Abolfazli; Roohi, Ehsan

    2012-01-01

    In the present work, compressible flow of argon gas in the famous problem of Couette flow in micro/nano-scale is considered and numerically analyzed using the direct simulation Monte Carlo (DSMC) method. The effects of compressibility and rarefaction on entropy and entropy generation in terms of viscous dissipation and thermal diffusion are studied in a wide range of Mach and Knudsen numbers and the observed physics are discussed. In this regard, we computed entropy by using its kinetic theory formulation in a microscopic way while the entropy generation distribution is achieved by applying a semi-microscopic approach and thoroughly free from equilibrium assumptions. The results of our simulations demonstrated that the entropy profiles are in accordance with the temperature profiles. It is also illustrated that the increase of Mach number will result in non-uniform entropy profiles with increase in the vicinity of the central regions of the channel. Moreover, generation of entropy in all regions of the domain stages clear growth. By contrast, increasing the Knudsen number has inverse effects such as: uniform entropy profiles and a falling off in entropy generation amount throughout the channel.

  4. Compressible magma flow in a two-dimensional elastic-walled dike

    NARCIS (Netherlands)

    Woods, A.W.; Bokhove, Onno; de Boer, A; Hill, B.E.

    2006-01-01

    The ascent of magma to the Earth's surface is commonly modeled by assuming a fixed dike or flow geometry from a deep subsurface reservoir to the surface. In practice, however, this flow geometry is produced by deformation of the crust by ascending overpressured magma. Here, we explore how this

  5. MacCormack's technique-based pressure reconstruction approach for PIV data in compressible flows with shocks

    Science.gov (United States)

    Liu, Shun; Xu, Jinglei; Yu, Kaikai

    2017-06-01

    This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.

  6. Quasiconservation laws for compressible three-dimensional Navier-Stokes flow.

    Science.gov (United States)

    Gibbon, J D; Holm, D D

    2012-10-01

    We formulate the quasi-Lagrangian fluid transport dynamics of mass density ρ and the projection q=ω·∇ρ of the vorticity ω onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of ρ. That is, in this formulation, level sets of ρ (isopycnals) are impermeable to the transport of the projection q.

  7. Navier-Stokes analysis and experimental data comparison of compressible flow within ducts

    Science.gov (United States)

    Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.

    1992-01-01

    Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models

  8. An anti-diffusive Lagrange-Remap scheme for multi-material compressible flows with an arbitrary number of components

    Directory of Open Access Journals (Sweden)

    Kokh Samuel

    2012-04-01

    Full Text Available We propose a method dedicated to the simulation of interface flows involving an arbitrary number m of compressible components. Our task is two-fold: we first introduce a m-component flow model that generalizes the two-material five-equation model of [2,3]. Then, we present a discretization strategy by means of a Lagrange-Remap [8,10] approach following the lines of [5,7,12]. The projection step involves an anti-dissipative mechanism derived from [11,12]. This feature allows to prevent the numerical diffusion of the material interfaces. We present two-dimensional simulation results of three-material flow. Nous proposons une méthode de simulation pour des écoulements comportant un nombre arbitraire m de composants compressibles séparés par des interfaces. Nous procdons en deux tapes : tout d’abord nous introduisons un modèle d’écoulementm composants qui généralise le modèle à cinq équations de [2,3]. Ensuite nous présentons une stratégie de discrétisation de type Lagrange-Projection [8,10] inspirée de [5,7,12]. La phase de projection met en œuvre une technique de transport anti-diffusive [11,12] qui permet de limiter la diffusion numérique des interfaces matérielles. Nous présentons des résultats de calcul bidimensionnel d’écoulement à trois composants.

  9. Numerical Investigation of the Influences of Wellbore Flow on Compressed Air Energy Storage in Aquifers

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-01-01

    Full Text Available With the blossoming of intermittent energy, compressed air energy storage (CAES has attracted much attention as a potential large-scale energy storage technology. Compared with caverns as storage vessels, compressed air energy storage in aquifers (CAESA has the advantages of wide availability and lower costs. The wellbore can play an important role as the energy transfer mechanism between the surroundings and the air in CAESA system. In this paper, we investigated the influences of the well screen length on CAESA system performance using an integrated wellbore-reservoir simulator (T2WELL/EOS3. The results showed that the well screen length can affect the distribution of the initial gas bubble and that a system with a fully penetrating wellbore can obtain acceptably stable pressurized air and better energy efficiencies. Subsequently, we investigated the impact of the energy storage scale and the target aquifer depth on the performance of a CAESA system using a fully penetrating wellbore. The simulation results demonstrated that larger energy storage scales exhibit better performances of CAESA systems. In addition, deeper target aquifer systems, which could decrease the energy loss by larger storage density and higher temperature in surrounding formation, can obtain better energy efficiencies.

  10. Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows

    Science.gov (United States)

    Zwick, David; Hackl, Jason; Balachandar, S.

    2017-11-01

    Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.

  11. Finite element methods in incompressible, adiabatic, and compressible flows from fundamental concepts to applications

    CERN Document Server

    Kawahara, Mutsuto

    2016-01-01

    This book focuses on the finite element method in fluid flows. It is targeted at researchers, from those just starting out up to practitioners with some experience. Part I is devoted to the beginners who are already familiar with elementary calculus. Precise concepts of the finite element method remitted in the field of analysis of fluid flow are stated, starting with spring structures, which are most suitable to show the concepts of superposition/assembling. Pipeline system and potential flow sections show the linear problem. The advection–diffusion section presents the time-dependent problem; mixed interpolation is explained using creeping flows, and elementary computer programs by FORTRAN are included. Part II provides information on recent computational methods and their applications to practical problems. Theories of Streamline-Upwind/Petrov–Galerkin (SUPG) formulation, characteristic formulation, and Arbitrary Lagrangian–Eulerian (ALE) formulation and others are presented with practical results so...

  12. Computation of 2D compressible flows with a finite element method

    International Nuclear Information System (INIS)

    Montagne, J.L.

    1981-04-01

    When the homogeneous modelisation of the two phase flow is used the set of equations describing the flow is similar to an Euler system. Mixed finite elements are appropriate to discretize the equations. First, main properties of this kind of elements are reminded. Then, some properties of semi-implicite schemes on stability and entropy are given. Numerical tests have been performed, and the scheme gave satisfactory results

  13. Compressible flows with periodic vortical disturbances around lifting airfoils. Ph.D. Thesis - Notre Dame Univ.

    Science.gov (United States)

    Scott, James R.

    1991-01-01

    A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a

  14. Mathematical modelling and numerical resolution of multi-phase compressible fluid flows problems

    International Nuclear Information System (INIS)

    Lagoutiere, Frederic

    2000-01-01

    This work deals with Eulerian compressible multi-species fluid dynamics, the species being either mixed or separated (with interfaces). The document is composed of three parts. The first parts devoted to the numerical resolution of model problems: advection equation, Burgers equation, and Euler equations, in dimensions one and two. The goal is to find a precise method, especially for discontinuous initial conditions, and we develop non dissipative algorithms. They are based on a downwind finite-volume discretization under some stability constraints. The second part treats of the mathematical modelling of fluids mixtures. We construct and analyse a set of multi-temperature and multi-pressure models that are entropy, symmetrizable, hyperbolic, not ever conservative. In the third part, we apply the ideas developed in the first part (downwind discretization) to the numerical resolution of the partial differential problems we have constructed for fluids mixtures in the second part. We present some numerical results in dimensions one and two. (author) [fr

  15. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  16. Three dimensional simulation of compressible and incompressible flows through the finite element method; Simulacao tridimensional de escoamentos compressiveis e incompressiveis atraves do metodo dos elementos finitos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Gustavo Koury

    2004-11-15

    Although incompressible fluid flows can be regarded as a particular case of a general problem, numerical methods and the mathematical formulation aimed to solve compressible and incompressible flows have their own peculiarities, in such a way, that it is generally not possible to attain both regimes with a single approach. In this work, we start from a typically compressible formulation, slightly modified to make use of pressure variables and, through augmenting the stabilising parameters, we end up with a simplified model which is able to deal with a wide range of flow regimes, from supersonic to low speed gas flows. The resulting methodology is flexible enough to allow for the simulation of liquid flows as well. Examples using conservative and pressure variables are shown and the results are compared to those published in the literature, in order to validate the method. (author)

  17. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    International Nuclear Information System (INIS)

    Gan Yanbiao; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar-Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Numerical investigation of the effects of compressibility on the flutter of a cantilevered plate in an inviscid, subsonic, open flow

    Science.gov (United States)

    Colera, Manuel; Pérez-Saborid, Miguel

    2018-06-01

    We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.

  19. Improved solution for saturated-unsaturated flow to a partially penetrating well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.

  20. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    Science.gov (United States)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  1. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); St Clair, Jeffrey G. [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States); Balachandar, S. [Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States)

    2016-05-07

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force is well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.

  2. Saturated-unsaturated flow in a compressible leaky-unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.

    2012-06-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  3. On equivalency of various expressions for speed of wave propagation for compressible liquid flows with heat transfer

    International Nuclear Information System (INIS)

    Chawla, T.C.

    1978-01-01

    It is demonstrated that for a compressible flow model with heat transfer, the introduction of a specific state equation to supplement the continuity, momentum an enthalpy equations, leads to a very specific form of an expression for a speed of wave propagation. Consequently, the numerous expressions obtained for various choices of state equations are not easily identifiable and, therefore, can not be evaluated directly in terms of measurable properties. By use of the various thermodynamic relationships, it has been shown that these expressions are all equivalent and are identifiable as isentropic sonic velocity. As a corollary to this demonstration, expressions have also been obtained in terms of measurable properties for various thermodynamic-state variables occurring in the coefficients of the governing equations. These expressions are required if loss in accuracy owing to noise introduced in the direct numerical differentiation of the derivatives that these state-variables represent is to be avoided. (author)

  4. CERCLA document flow: Compressing the schedule, saving costs, and expediting review at the Savannah River Site

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1991-01-01

    The purpose of this paper is to convey the logic of the CERCLA document flow including Work Plans, Characterization Studies, Risk Assessments, Remedial Investigations, Feasibility Studies, proposed plans, and Records of Decision. The intent is to show how schedules at the Savannah River Site are being formulated to accomplish work using an observational approach where carefully planned tasks can be initiated early and carried out in parallel. This paper will share specific proactive experience in working with the EPA to expedite projects, begin removal actions, take interim actions, speed document flow, and eliminate unnecessary documents from the review cycle

  5. The three-dimensional compressible flow in a radial inflow turbine scroll

    Science.gov (United States)

    Hamed, A.; Tabakoff, W.; Malak, M.

    1984-01-01

    This work presents the results of an analytical study and an experimental investigation of the three-dimensional flow in a turbine scroll. The finite element method is used in the iterative numerical solution of the locally linearized governing equations for the three-dimensional velocity potential field. The results of the numerical computations are compared with the experimental measurements in the scroll cross sections, which were obtained using laser Doppler velocimetry and hot wire techniques. The results of the computations show a variation in the flow conditions around the rotor periphery which was found to depend on the scroll geometry.

  6. An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials

    CSIR Research Space (South Africa)

    Malan, AG

    2011-08-01

    Full Text Available to modelling both forced convection as well as heat transfer and fluid flow through heterogeneous saturated porous materials via an edge-based finite volume discretization scheme. A volume-averaged set of local thermal disequilibrium governing equations...

  7. Numerical simulation of unsteady compressible low Mach number flow in a channel

    Czech Academy of Sciences Publication Activity Database

    Punčochářová-Pořízková, P.; Kozel, Karel; Horáček, Jaromír; Fürst, J.

    2010-01-01

    Roč. 17, č. 2 (2010), s. 83-97 ISSN 1802-1484 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : CFD * finite volume method * unsteady flow * low Mach number Subject RIV: BI - Acoustics

  8. Dynamics of compressible gas-liquid flows with a stiff density ratio

    International Nuclear Information System (INIS)

    Cortes, Julien

    1999-01-01

    This work is devoted to the study of transient two-phase flows when the ratio of the two densities is stiff. At first, we review briefly some of the basic principles about two-phase flow, hyperbolicity and the finite volume method. Then we develop a perturbation method, based on the stiffness of the density ratio, to examine the Eigen-structure of two-fluid models. Indeed, in such models, complex phasic interactions yield a complex Eigen-structure which may raise numerous problems in simulations. We show that our approach provides a convenient frame to study the hyperbolicity of such models. At this stage, advanced numerical tests are computed showing the efficiency of our approach in the context of unstructured multidimensional meshes. Our tests are validated for non-equilibrium flows using experimental data or through mesh refinements. At last, we use the scaling of the densities to analyse how momentum is transferred between phases in the context of bubbly flows. We study the relevance of a stiff relaxation term related to the ratio of the densities using linear stability properties and Chapman-Enskog expansions. Our results and some numerical computations tends to show that such a system is apparently well-posed despite being 'weakly' hyperbolic. (author) [fr

  9. Well-balanced compressible cut-cell simulation of atmospheric flow.

    Science.gov (United States)

    Klein, R; Bates, K R; Nikiforakis, N

    2009-11-28

    Cut-cell meshes present an attractive alternative to terrain-following coordinates for the representation of topography within atmospheric flow simulations, particularly in regions of steep topographic gradients. In this paper, we present an explicit two-dimensional method for the numerical solution on such meshes of atmospheric flow equations including gravitational sources. This method is fully conservative and allows for time steps determined by the regular grid spacing, avoiding potential stability issues due to arbitrarily small boundary cells. We believe that the scheme is unique in that it is developed within a dimensionally split framework, in which each coordinate direction in the flow is solved independently at each time step. Other notable features of the scheme are: (i) its conceptual and practical simplicity, (ii) its flexibility with regard to the one-dimensional flux approximation scheme employed, and (iii) the well-balancing of the gravitational sources allowing for stable simulation of near-hydrostatic flows. The presented method is applied to a selection of test problems including buoyant bubble rise interacting with geometry and lee-wave generation due to topography.

  10. Influence of compressive gear on powerlifting performance: role of blood flow restriction training.

    Science.gov (United States)

    Godawa, Travis M; Credeur, Daniel P; Welsch, Michael A

    2012-05-01

    This study investigated the effects of powerlifting gear on training volume and performance, defined by the squat, bench press, and deadlift. Eighteen powerlifters (18-26 years) were randomized into either a group that trained and competed using compressive gear (CG) or without the gear (NON). Training volume, volume progression, and powerlifting performance were assessed before and after 10 weeks of training. Training volume increased in the first 4 weeks for both groups. Volume lifted for squat and the totals were greater in the CG. There was an increase in squat (19.05 ± 30.97 lb, p = 0.02), deadlift (19.05 ± 21.17 lb, p = 0.001), and the total score (44.00 ± 60.44 lb, p = 0.005) for both the groups. The improvements in squat (CG = 33.85 vs. NON = 5.74, p = 0.07) and totals (CG = 66.59 vs. NON = 23.67, p = 0.15) were greater in the CG. Both groups showed a significant and similar increase in the Wilks scores (+13.54 points, p = 0.03). There was a trend toward greater volume progression in those wearing CG during the initial stages of training. Both the groups significantly improved performance for the squat, and deadlift, and had higher totals, and Wilks scores, indicating significant strength gains. The greater magnitude of improvements in the squat and totals for the CG lifters suggests an ergogenic potential of training with powerlifting gear.

  11. Numerical Simulation of Unsteady Compressible Flow in Convergent Channel: Pressure Spectral Analysis

    Czech Academy of Sciences Publication Activity Database

    Pořízková, P.; Kozel, Karel; Horáček, Jaromír

    2012-01-01

    Roč. 2012, č. 545120 (2012), s. 1-9 ISSN 1110-757X R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite volume method * simulation of flow in vibrating glottis * biomechanics of voice Subject RIV: BI - Acoustics Impact factor: 0.834, year: 2012 http://www.hindawi.com/journals/jam/2012/545120/

  12. Computational simulation of coupled nonequilibrium discharge and compressible flow phenomena in a microplasma thruster

    International Nuclear Information System (INIS)

    Deconinck, Thomas; Mahadevan, Shankar; Raja, Laxminarayan L.

    2009-01-01

    The microplasma thruster (MPT) concept is a simple extension of a cold gas micronozzle propulsion device, where a direct-current microdischarge is used to preheat the gas stream to improve the specific impulse of the device. Here we study a prototypical MPT device using a detailed, self-consistently coupled plasma and flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Compared to a cold gas micronozzle, a significant increase in specific impulse is obtained from the power deposition in the diverging section of the MPT nozzle. For a discharge voltage of 750 V, a power input of 650 mW, and an argon mass flow rate of 5 SCCM (SCCM denotes cubic centimeter per minute at STP), the specific impulse of the device is increased by a factor of ∼1.5 to about 74 s. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the MPT concept as a simple and effective approach to improve the performance of micronozzle cold gas propulsion devices.

  13. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  14. Physics-Based Preconditioning of a Compressible Flow Solver for Large-Scale Simulations of Additive Manufacturing Processes

    Science.gov (United States)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre

    2017-11-01

    We present a new block-based Schur complement preconditioner for simulating all-speed compressible flow with phase change. The conservation equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit time discretization schemes. The resulting set of non-linear equations is converged using a robust Newton-Krylov framework. Due to the stiffness of the underlying physics associated with stiff acoustic waves and viscous material strength effects, we solve for the primitive-variables (pressure, velocity, and temperature). To enable convergence of the highly ill-conditioned linearized systems, we develop a physics-based preconditioner, utilizing approximate block factorization techniques to reduce the fully-coupled 3×3 system to a pair of reduced 2×2 systems. We demonstrate that our preconditioned Newton-Krylov framework converges on very stiff multi-physics problems, corresponding to large CFL and Fourier numbers, with excellent algorithmic and parallel scalability. Results are shown for the classic lid-driven cavity flow problem as well as for 3D laser-induced phase change. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. A Novel A Posteriori Investigation of Scalar Flux Models for Passive Scalar Dispersion in Compressible Boundary Layer Flows

    Science.gov (United States)

    Braman, Kalen; Raman, Venkat

    2011-11-01

    A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.

  16. A Parallel Non-Overlapping Domain-Decomposition Algorithm for Compressible Fluid Flow Problems on Triangulated Domains

    Science.gov (United States)

    Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai

    1998-01-01

    This paper considers an algebraic preconditioning algorithm for hyperbolic-elliptic fluid flow problems. The algorithm is based on a parallel non-overlapping Schur complement domain-decomposition technique for triangulated domains. In the Schur complement technique, the triangulation is first partitioned into a number of non-overlapping subdomains and interfaces. This suggests a reordering of triangulation vertices which separates subdomain and interface solution unknowns. The reordering induces a natural 2 x 2 block partitioning of the discretization matrix. Exact LU factorization of this block system yields a Schur complement matrix which couples subdomains and the interface together. The remaining sections of this paper present a family of approximate techniques for both constructing and applying the Schur complement as a domain-decomposition preconditioner. The approximate Schur complement serves as an algebraic coarse space operator, thus avoiding the known difficulties associated with the direct formation of a coarse space discretization. In developing Schur complement approximations, particular attention has been given to improving sequential and parallel efficiency of implementations without significantly degrading the quality of the preconditioner. A computer code based on these developments has been tested on the IBM SP2 using MPI message passing protocol. A number of 2-D calculations are presented for both scalar advection-diffusion equations as well as the Euler equations governing compressible fluid flow to demonstrate performance of the preconditioning algorithm.

  17. Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow

    Science.gov (United States)

    Picone, J. Michael; Dahlburg, Russell B.

    1991-01-01

    A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.

  18. Intermittent pneumatic leg compressions enhance muscle performance and blood flow in a model of peripheral arterial insufficiency.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Yang, Hsiao T; Terjung, Ronald; Laughlin, M H

    2012-05-01

    Despite the escalating prevalence in the aging population, few therapeutic options exist to treat patients with peripheral arterial disease. Application of intermittent pneumatic leg compressions (IPC) is regarded as a promising noninvasive approach to treat this condition, but the clinical efficacy, as well the mechanistic basis of action of this therapy, remain poorly defined. We tested the hypothesis that 2 wk of daily application of IPC enhances exercise tolerance by improving blood flow and promoting angiogenesis in skeletal muscle in a model of peripheral arterial insufficiency. Male Sprague-Dawley rats were subjected to bilateral ligation of the femoral artery and randomly allocated to treatment or sham groups. Animals were anesthetized daily and exposed to 1-h sessions of bilateral IPC or sham treatment for 14-16 consecutive days. A third group of nonligated rats was also studied. Marked increases in treadmill exercise tolerance (∼33%, P < 0.05) and improved muscle performance in situ (∼10%, P < 0.05) were observed in IPC-treated animals. Compared with sham-treated controls, blood flow measured with isotope-labeled microspheres during in situ contractions tended to be higher in IPC-treated animals in muscles composed of predominantly fast-twitch white fibers, such as the plantaris (∼93%, P = 0.02). Capillary contacts per fiber and citrate synthase activity were not significantly altered by IPC treatment. Collectively, these data indicate that IPC improves exercise tolerance in a model of peripheral arterial insufficiency in part by enhancing blood flow to collateral-dependent tissues.

  19. A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers

    Science.gov (United States)

    Deck, Sébastien; Weiss, Pierre-Elie; Renard, Nicolas

    2018-06-01

    A turbulent inflow for a rapid and low noise switch from RANS to Wall-Modelled LES on curvilinear grids with compressible flow solvers is presented. It can be embedded within the computational domain in practical applications with WMLES grids around three-dimensional geometries in a flexible zonal hybrid RANS/LES modelling context. It relies on a physics-motivated combination of Zonal Detached Eddy Simulation (ZDES) as the WMLES technique together with a Dynamic Forcing method processing the fluctuations caused by a Zonal Immersed Boundary Condition describing roughness elements. The performance in generating a physically-sound turbulent flow field with the proper mean skin friction and turbulent profiles after a short relaxation length is equivalent to more common inflow methods thanks to the generation of large-scale streamwise vorticity by the roughness elements. Comparisons in a low Mach-number zero-pressure-gradient flat-plate turbulent boundary layer up to Reθ = 6 100 reveal that the pressure field is dominated by the spurious noise caused by the synthetic turbulence methods (Synthetic Eddy Method and White Noise injection), contrary to the new low-noise approach which may be used to obtain the low-frequency component of wall pressure and reproduce its intermittent nature. The robustness of the method is tested in the flow around a three-element airfoil with WMLES in the upper boundary layer near the trailing edge of the main element. In spite of the very short relaxation distance allowed, self-sustainable resolved turbulence is generated in the outer layer with significantly less spurious noise than with the approach involving White Noise. The ZDES grid count for this latter test case is more than two orders of magnitude lower than the Wall-Resolved LES requirement and a unique mesh is involved, which is much simpler than some multiple-mesh strategies devised for WMLES or turbulent inflow.

  20. Numerical simulation of energy equation with viscous dissipation for compressible flow over cones

    International Nuclear Information System (INIS)

    Asif, M.; Chughtai, I.R.

    1998-01-01

    A finite volume discretization technique has been used to solve the energy equation with viscous dissipation. The effects of viscous heat dissipation for Mach numbers 1.5 and 2.0, at an angle of attack of 0 degree, over sharp and blunt cones have been studied. Algebraic equations have been solved using line-by-line Tda method. Supersonic flow over cones has been analyzed and discussed with and without considering the viscous dissipation effects. It has been found that the effects of viscous dissipation increase with the increase in Mach number. Viscous dissipation affects the temperature distribution of the body. However, the temperature difference in these cases was insignificant. This may be due to the fact that these analysis have been done at 0 km altitude. (author)

  1. Modelling and simulation of compressible fluid flow in oil reservoir: a case study of the Jubilee Field, Tano Basin (Ghana)

    International Nuclear Information System (INIS)

    Gawusu, S.

    2015-07-01

    Oil extraction represents an important investment and the control of a rational exploitation of a field means mastering various scientific techniques including the understanding of the dynamics of fluids in place. This thesis presents a theoretical investigation of the dynamic behaviour of an oil reservoir during its exploitation. The study investigated the dynamics of fluid flow patterns in a homogeneous oil reservoir using the Radial Diffusivity Equation (RDE) as well as two phase oil-water flow equations. The RDE model was solved analytically and numerically for pressure using the Constant Terminal Rate Solution (CTRS) and the fully implicit Finite Difference Method (FDM) respectively. The mathematical derivations of the models and their solution procedures were presented to allow for easy utilization of the techniques for reservoir and engineering applications. The study predicted that the initial oil reservoir pressure will be able to do the extraction for a very long time before any other recovery method will be used to aid in the extraction process depending on the rate of production. Reservoir simulation describing a one dimensional radial flow of a compressible fluid in porous media may be adequately performed using ordinary laptop computers as revealed by the study. For the simulation of MATLAB, the case of the Jubilee Fields, Tano Basin was studied, an algorithm was developed for the simulation of pressure in the reservoir. It ensues from the analysis of the plots of pressure vrs time and space that the Pressure Transient Analysis (PTA) was duly followed. The approximate solutions of the analytical and numerical solutions to the Radial Diffusivity Equation (RDE) were in excellent agreement, thus the reservoir simulation model developed can be used to describe typical pressure-time relationships that are used in conventional Pressure Transient Analysis (PTA). The study was extended to two phase oil-water flow in reservoirs. The flow of fluids in multi

  2. Dynamics of Two Point Vortices in an External Compressible Shear Flow

    Science.gov (United States)

    Vetchanin, Evgeny V.; Mamaev, Ivan S.

    2017-12-01

    This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the "reversible pitch-fork" bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.

  3. Numerical analysis for two-dimensional compressible and two-phase flow fields of air-water in Eulerian grid framework

    International Nuclear Information System (INIS)

    Park, Chan Wook; Lee, Sung Su

    2008-01-01

    Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated

  4. A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations

    International Nuclear Information System (INIS)

    Saurel, Richard; Franquet, Erwin; Daniel, Eric; Le Metayer, Olivier

    2007-01-01

    A new projection method is developed for the Euler equations to determine the thermodynamic state in computational cells. It consists in the resolution of a mechanical relaxation problem between the various sub-volumes present in a computational cell. These sub-volumes correspond to the ones traveled by the various waves that produce states with different pressures, velocities, densities and temperatures. Contrarily to Godunov type schemes the relaxed state corresponds to mechanical equilibrium only and remains out of thermal equilibrium. The pressure computation with this relaxation process replaces the use of the conventional equation of state (EOS). A simplified relaxation method is also derived and provides a specific EOS (named the Numerical EOS). The use of the Numerical EOS gives a cure to spurious pressure oscillations that appear at contact discontinuities for fluids governed by real gas EOS. It is then extended to the computation of interface problems separating fluids with different EOS (liquid-gas interface for example) with the Euler equations. The resulting method is very robust, accurate, oscillation free and conservative. For the sake of simplicity and efficiency the method is developed in a Lagrange-projection context and is validated over exact solutions. In a companion paper [F. Petitpas, E. Franquet, R. Saurel, A relaxation-projection method for compressible flows. Part II: computation of interfaces and multiphase mixtures with stiff mechanical relaxation. J. Comput. Phys. (submitted for publication)], the method is extended to the numerical approximation of a non-conservative hyperbolic multiphase flow model for interface computation and shock propagation into mixtures

  5. A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed; Saad, Mazen Naufal B M

    2014-01-01

    We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.

  6. A cut-cell finite volume - finite element coupling approach for fluid-structure interaction in compressible flow

    Science.gov (United States)

    Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.

    2016-02-01

    We present a loosely coupled approach for the solution of fluid-structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet-Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid-structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.

  7. A cut-cell finite volume – finite element coupling approach for fluid–structure interaction in compressible flow

    International Nuclear Information System (INIS)

    Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.

    2016-01-01

    We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.

  8. A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2014-06-28

    We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.

  9. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  10. Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations

    International Nuclear Information System (INIS)

    Li Jiequan; Li Qibing; Xu Kun

    2011-01-01

    The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an

  11. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    Science.gov (United States)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  12. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.

    Science.gov (United States)

    Hurychová, Hana; Lebedová, Václava; Šklubalová, Zdenka; Dzámová, Pavlína; Svěrák, Tomáš; Stoniš, Jan

    Flowability of powder excipients is directly influenced by their size and shape although the granulometric influence of the flow and shear behaviour of particulate matter is not studied frequently. In this work, the influence of particle size on the mass flow rate through the orifice of a conical hopper, and the cohesion and flow function was studied for four free-flowable size fractions of sorbitol for direct compression in the range of 0.080-0.400 mm. The particles were granulometricaly characterized using an optical microscopy; a boundary fractal dimension of 1.066 was estimated for regular sorbitol particles. In the particle size range studied, a non-linear relationship between the mean particle size and the mass flow rate Q10 (g/s) was detected having amaximum at the 0.245mm fraction. The best flow properties of this fraction were verified with aJenike shear tester due to the highest value of flow function and the lowest value of the cohesion. The results of this work show the importance of the right choice of the excipient particle size to achieve the best flow behaviour of particulate material.Key words: flowability size fraction sorbitol for direct compaction Jenike shear tester fractal dimension.

  13. Applications of the computer codes FLUX2D and PHI3D for the electromagnetic analysis of compressed magnetic field generators and power flow channels

    International Nuclear Information System (INIS)

    Hodgdon, M.L.; Oona, H.; Martinez, A.R.; Salon, S.; Wendling, P.; Krahenbuhl, L.; Nicolas, A.; Nicolas, L.

    1990-01-01

    The authors present the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of a helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. The authors' third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic filed problems in cases of special and ideal geometries, the solution of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations

  14. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    International Nuclear Information System (INIS)

    Limbach, P; Müller, T; Skoda, R

    2015-01-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model. (paper)

  15. Thermodynamique de l'écoulement diphasique compressible à deux constituants de Fanno Thermodynamic of Two-Phase Two Component Compressible Fanno Type Flow

    Directory of Open Access Journals (Sweden)

    Attou A.

    2006-12-01

    -liquid flow through a duct with a constant cross-sectional area is studied from a thermodynamics point of view. By assuming the two-phase mixture as homogeneous, the treatment of the physical conservation laws makes it possible to obtain an analytical equation of the fluid evolution which expresses the difference between the Fanno and the isothermal evolutions. On the basis of its differential form and the second principle of thermodynamic, the properties of this flow are discussed. The determination of the Fanno limit shows the existence of a maximum length of the duct. For a length greater than this maximum one, the flow is no more possible. One shows that this maximum length is a function of the mass quality as well as the initial conditions, i. e. the inlet state variables and the inlet velocity. The results are systematically verified by considering the limit of a single phase ideal gas flow. The theory allows to understand and to justify the existence of the so-called multichoked flow. It is applied to the two-phase flow through discharge lines involving geometrical singularities (sudden enlargement for example. The proposed model is validated on the basis of experimental data obtained for quasi steady-state discharges of pure nitrogen and water-nitrogen mixture through a complex pressure relief line involving several abrupt enlargements. The critical configuration and the maximum mass flowrate as well as the variables of the flow (pressure and temperature predicted from the model are in good agreement with the experimental results.

  16. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    Science.gov (United States)

    Daude, F.; Galon, P.

    2018-06-01

    A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.

  17. Use of a generalized Stokes number to determine the aerodynamic capture efficiency of non-Stokesian particles from a compressible gas flow

    Science.gov (United States)

    Israel, R.; Rosner, D. E.

    1983-01-01

    The aerodynamic capture efficiency of small but nondiffusing particles suspended in a high-speed stream flowing past a target is known to be influenced by parameters governing small particle inertia, departures from the Stokes drag law, and carrier fluid compressibility. By defining an effective Stokes number in terms of the actual (prevailing) particle stopping distance, local fluid viscosity, and inviscid fluid velocity gradient at the target nose, it is shown that these effects are well correlated in terms of a 'standard' (cylindrical collector, Stokes drag, incompressible flow, sq rt Re much greater than 1) capture efficiency curve. Thus, a correlation follows that simplifies aerosol capture calculations in the parameter range already included in previous numerical solutions, allows rational engineering predictions of deposition in situations not previously specifically calculated, and should facilitate the presentation of performance data for gas cleaning equipment and aerosol instruments.

  18. Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (dieselbiogas) mode

    Science.gov (United States)

    Ambarita, H.

    2018-02-01

    The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.

  19. Experiments on hydraulically-compensated Compressed Air Energy Storage (CAES) system using large-diameter vertical pipe two-phase flow test facility: test facility and test procedure

    International Nuclear Information System (INIS)

    Ohtsu, Iwao; Murata, Hideo; Kukita, Yutaka; Kumamaru, Hiroshige.

    1996-07-01

    JAERI, the University of Tokyo, the Central Research Institute of Electric Power Industry and Shimizu Corporation jointing performed and experimental study on two-phase flow in the hydraulically-compensated Compressed Air Energy Storage (CAES) system with a large-diameter vertical pipe two-phase flow test facility from 1993 to 1995. A hydraulically-compensated CAES system is a proposed, conceptual energy storage system where energy is stored in the form of compressed air in an underground cavern which is sealed by a deep (several hundred meters) water shaft. The shaft water head maintains a constant pressure in the cavern, of several mega Pascals, even during loading or unloading of the cavern with air. The dissolved air in the water, however, may create voids in the shaft when the water rises through the shaft during the loading, being forced by the air flow into the cavern. The voids may reduce the effective head of the shaft, and thus the seal may fail, if significant bubbling should occur in the shaft. This bubbling phenomenon (termed 'Champaign effect') and potential failure of the water seal ('blowout') are simulated in a scaled-height, scaled-diameter facility. Carbon dioxide is used to simulate high solubility of air in the full-height, full-pressure system. This report describes the expected and potential two-phase flow phenomena in a hydraulically-compensated CAES system, the test facility and the test procedure, a method to estimate quantities which are not directly measured by using measured quantities and hydrodynamic basic equations, and desirable additional instrumentation. (author)

  20. Advancement of compressible multiphase flows and sodium-water reaction analysis program SERAPHIM. Validation of a numerical method for the simulation of highly underexpanded jets

    International Nuclear Information System (INIS)

    Uchibori, Akihiro; Ohshima, Hiroyuki; Watanabe, Akira

    2010-01-01

    SERAPHIM is a computer program for the simulation of the compressible multiphase flow involving the sodium-water chemical reaction under a tube failure accident in a steam generator of sodium cooled fast reactors. In this study, the numerical analysis of the highly underexpanded air jets into the air or into the water was performed as a part of validation of the SERAPHIM program. The multi-fluid model, the second-order TVD scheme and the HSMAC method considering a compressibility were used in this analysis. Combining these numerical methods makes it possible to calculate the multiphase flow including supersonic gaseous jets. In the case of the air jet into the air, the calculated pressure, the shape of the jet and the location of a Mach disk agreed with the existing experimental results. The effect of the difference scheme and the mesh resolution on the prediction accuracy was clarified through these analyses. The behavior of the air jet into the water was also reproduced successfully by the proposed numerical method. (author)

  1. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-05-01

    Full Text Available of the gas has a noteworthy effect on predicted pressure loads in liquid–gas flow in certain instances. With the aim of providing a more accurate numerical representation of dynamic two-fluid flow, the solver is subsequently extended to account for variations...

  2. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    Science.gov (United States)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.

    1991-01-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  3. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  4. Aero-Optical Wavefront Propagation and Refractive Fluid Interfaces in Large-Reynolds-Number Compressible Turbulent Flows

    National Research Council Canada - National Science Library

    Catrakis, Haris J; Jefferies, Rhett

    2005-01-01

    ... of the refractive field and interfaces. Direct, non-intrusive, and non-integrated imaging of the refractive index field in purely gaseous flows is achieved using laser induced fluorescence of acetone vapor molecularly premixed in air...

  5. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  6. Depicting mass flow rate of R134a /LPG refrigerant through straight and helical coiled adiabatic capillary tubes of vapor compression refrigeration system using artificial neural network approach

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2018-07-01

    In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.

  7. Invariant and partially-invariant solutions of the equations describing a non-stationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions

    Science.gov (United States)

    Grundland, A. M.; Lalague, L.

    1996-04-01

    This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.

  8. Operational procedure for computer program for design point characteristics of a compressed-air generator with through-flow combustor for V/STOL applications

    Science.gov (United States)

    Krebs, R. P.

    1971-01-01

    The computer program described in this report calculates the design-point characteristics of a compressed-air generator for use in V/STOL applications such as systems with a tip-turbine-driven lift fan. The program computes the dimensions and mass, as well as the thermodynamic performance of a model air generator configuration which involves a straight through-flow combustor. Physical and thermodynamic characteristics of the air generator components are also given. The program was written in FORTRAN IV language. Provision has been made so that the program will accept input values in either SI units or U.S. customary units. Each air generator design-point calculation requires about 1.5 seconds of 7094 computer time for execution.

  9. FLUST-2D - A computer code for the calculation of the two-dimensional flow of a compressible medium in coupled retangular areas

    International Nuclear Information System (INIS)

    Enderle, G.

    1979-01-01

    The computer-code FLUST-2D is able to calculate the two-dimensional flow of a compressible fluid in arbitrary coupled rectangular areas. In a finite-difference scheme the program computes pressure, density, internal energy and velocity. Starting with a basic set of equations, the difference equations in a rectangular grid are developed. The computational cycle for coupled fluid areas is described. Results of test calculations are compared to analytical solutions and the influence of time step and mesh size are investigated. The program was used to precalculate the blowdown experiments of the HDR experimental program. Downcomer, plena, internal vessel region, blowdown pipe and a containment area have been modelled two-dimensionally. The major results of the precalculations are presented. This report also contains a description of the code structure and user information. (orig.) [de

  10. The Microstructural Evolution and Special Flow Behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr During Isothermal Compression at a Low Strain Rate

    Science.gov (United States)

    Sun, J. Z.; Li, M. Q.; Li, H.

    2017-09-01

    The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s-1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress-strain curves for 1073 and 1113 K abnormally intersect at a strain of 0.35, related to the α → β phase transformation and distinct growth of the β grain size.

  11. A Study on Effects of the Transient Compression by Tightly Tied Necktie on Blood Flow in the Internal Jugular Veins Using 2D-PC MRA

    International Nuclear Information System (INIS)

    Kim, Keung Sik; Chung, Tae Sub; Lee, Bum Soo; Park, In Kook; Kim, Hyun Soo; Yoo, Beong Gyu

    2008-01-01

    any disturbances or compressions. However, when wearing a necktie tightly, ECTRICKS-CEMRA showed severe compression onto both internal jugular veins in all 25 volunteers. In conclusion, the result of the study showed that the tightly worn necktie instantly presses more internal jugular veins than internal carotid arteries, thereby significantly reducing the blood flow speed and leading to the temporary occlusion. Thus, the defecation or washing the face under the tightly tied necktie situations can cause the unexpected and temporary compression or occlusion of the internal jugular veins, subsequently leading to the occurrences of the stroke due to the secondary intracranial venous hypertension.

  12. A high order compact least-squares reconstructed discontinuous Galerkin method for the steady-state compressible flows on hybrid grids

    Science.gov (United States)

    Cheng, Jian; Zhang, Fan; Liu, Tiegang

    2018-06-01

    In this paper, a class of new high order reconstructed DG (rDG) methods based on the compact least-squares (CLS) reconstruction [23,24] is developed for simulating the two dimensional steady-state compressible flows on hybrid grids. The proposed method combines the advantages of the DG discretization with the flexibility of the compact least-squares reconstruction, which exhibits its superior potential in enhancing the level of accuracy and reducing the computational cost compared to the underlying DG methods with respect to the same number of degrees of freedom. To be specific, a third-order compact least-squares rDG(p1p2) method and a fourth-order compact least-squares rDG(p2p3) method are developed and investigated in this work. In this compact least-squares rDG method, the low order degrees of freedom are evolved through the underlying DG(p1) method and DG(p2) method, respectively, while the high order degrees of freedom are reconstructed through the compact least-squares reconstruction, in which the constitutive relations are built by requiring the reconstructed polynomial and its spatial derivatives on the target cell to conserve the cell averages and the corresponding spatial derivatives on the face-neighboring cells. The large sparse linear system resulted by the compact least-squares reconstruction can be solved relatively efficient when it is coupled with the temporal discretization in the steady-state simulations. A number of test cases are presented to assess the performance of the high order compact least-squares rDG methods, which demonstrates their potential to be an alternative approach for the high order numerical simulations of steady-state compressible flows.

  13. The Compression Flow as a Measure to Estimate the Cognitive Impairment Severity in Resting State fMRI and 18FDG-PET Alzheimer's Disease Connectomes

    Directory of Open Access Journals (Sweden)

    Antonio Giuliano Zippo

    2015-12-01

    Full Text Available The human brain appears organized in compartments characterized by seemingly specific functional purposes on many spatial scales. A complementary functional state binds information from specialized districts to return what is called integrated information. This fundamental network dynamics undergoes to severe disarrays in diverse degenerative conditions such as Alzheimer's Diseases (AD. The AD represents a multifarious syndrome characterized by structural, functional and metabolic landmarks. In particular, in the early stages of AD, adaptive functional modifications of the brain networks mislead initial diagnoses because cognitive abilities may result indiscernible from normal subjects. As a matter of facts, current measures of functional integration fail to catch significant differences among normal, mild cognitive impairment (MCI and even AD subjects. The aim of this work is to introduce a new topological feature called Compression Flow (CF to finely estimate the extent of the functional integration in the brain networks. The method uses a Monte Carlo-like estimation of the information integration flows returning the compression ratio between the size of the injected information and the size of the condensed information within the network. We analyzed the resting state connectomes of 75 subjects of the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI repository. Our analyses are focused on the 18FGD-PET and functional MRI (fMRI acquisitions in several clinical screening conditions. Results indicated that CF effectively discriminate MCI, AD and normal subjects by showing a significant decrease of the functional integration in the AD and MCI brain connectomes. This result did not emerge by using a set of common complex network statistics. Furthermore, CF was best correlated with individual clinical scoring scales. In conclusion, we presented a novel measure to quantify the functional integration that resulted efficient to discriminate

  14. Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans.

    Directory of Open Access Journals (Sweden)

    Andrzej F Frydrychowski

    Full Text Available PURPOSE: The aim of this study was to assess the effect of acute bilateral jugular vein compression on: (1 pial artery pulsation (cc-TQ; (2 cerebral blood flow velocity (CBFV; (3 peripheral blood pressure; and (4 possible relations between mentioned parameters. METHODS: Experiments were performed on a group of 32 healthy 19-30 years old male subjects. cc-TQ and the subarachnoid width (sas-TQ were measured using near-infrared transillumination/backscattering sounding (NIR-T/BSS, CBFV in the left anterior cerebral artery using transcranial Doppler, blood pressure was measured using Finapres, while end-tidal CO(2 was measured using medical gas analyser. Bilateral jugular vein compression was achieved with the use of a sphygmomanometer held on the neck of the participant and pumped at the pressure of 40 mmHg, and was performed in the bend-over (BOPT and swayed to the back (initial position. RESULTS: In the first group (n = 10 during BOPT, sas-TQ and pulse pressure (PP decreased (-17.6% and -17.9%, respectively and CBFV increased (+35.0%, while cc-TQ did not change (+1.91%. In the second group, in the initial position (n = 22 cc-TQ and CBFV increased (106.6% and 20.1%, respectively, while sas-TQ and PP decreases were not statistically significant (-15.5% and -9.0%, respectively. End-tidal CO(2 remained stable during BOPT and venous compression in both groups. Significant interdependence between changes in cc-TQ and PP after bilateral jugular vein compression in the initial position was found (r = -0.74. CONCLUSIONS: Acute bilateral jugular venous insufficiency leads to hyperkinetic cerebral circulation characterised by augmented pial artery pulsation and CBFV and direct transmission of PP into the brain microcirculation. The Windkessel effect with impaired jugular outflow and more likely increased intracranial pressure is described. This study clarifies the potential mechanism linking jugular outflow insufficiency with arterial small vessel cerebral

  15. Numerical investigation on compressible flow characteristics in axial compressors using a multi block finite-volume scheme

    International Nuclear Information System (INIS)

    Farhanieh, B.; Amanifard, N.; Ghorbanian, K.

    2002-01-01

    An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Mon tonic Upstream Scheme for Conservation Laws was added to flux splitting schemes. The Baldwin-Lo max (B L) turbulence model was implemented to solve the turbulent case studies. Implicit solution was also provided using Lower and Upper (L U) decomposition technique to compare with explicit solutions. To validate the numerical procedure, two test cases are prepared and flow over a Na Ca 0012 airfoil was investigated and the pressure coefficients were compared to the reference data. The numerical solver was implemented to study the flow passing over a compressor cascade. The results of various combinations of splitting schemes and the Mon tonic Upstream Scheme for Conventional Laws limiter were compared with each other to find the suitable methods in cascade problems. Finally the convergence histories of implemented schemes were compared to each other to show the behavior of the solver in using various methods before implementation of them in flow instability studies

  16. Three-dimensional saturated-unsaturated flow with axial symmetry to a partially penetrating well in a compressible unconfined aquifer

    Science.gov (United States)

    Tartakovsky, Guzel D.; Neuman, Shlomo P.

    2007-01-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our

  17. A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: Towards minimalism

    Science.gov (United States)

    Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi

    2018-06-01

    Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.

  18. An analysis of supersonic flows with low-Reynolds number compressible two-equation turbulence models using LU finite volume implicit numerical techniques

    Science.gov (United States)

    Lee, J.

    1994-01-01

    A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.

  19. A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows

    Science.gov (United States)

    Lei, Xin; Li, Jiequan

    2018-04-01

    This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.

  20. An unstaggered central scheme on nonuniform grids for the simulation of a compressible two-phase flow model

    Energy Technology Data Exchange (ETDEWEB)

    Touma, Rony [Department of Computer Science & Mathematics, Lebanese American University, Beirut (Lebanon); Zeidan, Dia [School of Basic Sciences and Humanities, German Jordanian University, Amman (Jordan)

    2016-06-08

    In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential of the proposed scheme.

  1. Numerical simulation of compressible multiphase flows with or without phase transition. Application to laser plasma interaction; Modelisation et simulation d'ecoulements multiphasiques compressibles avec ou sans changement de phase. Application a l'interaction laser-plasma

    Energy Technology Data Exchange (ETDEWEB)

    Perrier, V

    2007-07-15

    This work deals with the modelling and simulation of compressible flows. A seven equations model is obtained by homogenizing the Euler system. Fluctuation terms are modeled as relaxation terms. When the relaxation terms tend to infinity, which means that the phases are well mixed, a five equations model is obtained via an asymptotic expansion. This five equations model is strictly hyperbolic, but nonconservative. The discretization of this model is obtained by an asymptotic expansion of a scheme for the seven equations model. The numerical method is implemented, validated on analytic cases, and compared with experiments in the case of multiphase shocks. We are then interested in the modelling of phase transition with two equations of state. Optimization of the mixture entropy leads to the fact that three zones can be separated: one in which the pure liquid is the most stable, one in which the pure gas is the most stable, and one in which a mixture with equality of temperature, pressure and chemical potentials is the most stable. Conditions are given on the coupling of the two equations of state for ensuring that the mixture equation of state is convex, and that the system is strictly hyperbolic. In order to take into account phase transition, a vaporization wave is introduced in the solution of the Riemann problem, that is modeled as a deflagration wave. It is then proved that the usual closure, the Chapman-Jouguet closure, is wrong in general, and a correct closure in the case when both fluids have a perfect gas equation of state. Last, the solution of the Riemann problem is implemented in a multiphase code, and validated on analytic cases. In the same code, models of laser release and thermal conduction are implemented to simulate laser ablation. The results are comparable to the ones obtained with scale laws. The last chapter, fully independent, is concerned with correctors in stochastic homogenization in the case of heavy tails process. (author)

  2. Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model

    Science.gov (United States)

    Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.

  3. Interactive computer graphics applications for compressible aerodynamics

    Science.gov (United States)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  4. Advances in compressible turbulent mixing

    International Nuclear Information System (INIS)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately

  5. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  6. Numerical study of compositional compressible degenerate two-phase flow in saturated–unsaturated heterogeneous porous media

    KAUST Repository

    Saad, Ali S.; Saad, Bilal Mohammed; Saad, Mazen

    2016-01-01

    We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.

  7. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression

    International Nuclear Information System (INIS)

    Fossum, A.F.; Brodsky, N.S.; Chan, K.S.; Munson, D.E.

    1992-01-01

    Recent concern over the potential for creep induced development of a damaged rock zone adjacent to shafts and rooms at the Waste Isolation Pilot Plant (WIPP) has motivated the formulation of a coupled constitutive description of continuum salt creep and damage. This constitutive model gives time-dependent inelastic flow and pressure-sensitive damage in crystalline solids. Initially the constitutive model was successfully used to simulate multiaxial, i.e. true triaxial, experiments obtained at relatively high, 2.5 to 20 MPa, confining pressures. Predictions of the complete creep curve, including the heretofore unmodeled tertiary creep, were also demonstrated. However, comparisons of model predictions with data were hampered because the bulk of the creep data existing on WIPP salt was intentionally obtained under confining pressures typically greater than 15 MPa, in an attempt to match the underground in situ lithostatic pressure level. It was realized that the high confining pressures suppressed tertiary creep and resulted in better defined steady state creep responses. To address the tertiary creep process directly, a number of creep tests were conducted at lower confining pressures for the explicit purpose of creating dilatant behavior

  8. Numerical study of compositional compressible degenerate two-phase flow in saturated–unsaturated heterogeneous porous media

    KAUST Repository

    Saad, Ali S.

    2016-01-02

    We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.

  9. Analysis and numerical simulation of compressible two-phase flows using relaxation methods. Contribution to the treatment of vanishing phases

    International Nuclear Information System (INIS)

    Saleh, K.

    2012-01-01

    This thesis deals with the Baer-Nunziato two-phase flow model. The main objective of this work is to propose some techniques to cope with phase vanishing regimes which produce important instabilities in the model and its numerical simulations. Through analysis and simulation methods using Suliciu relaxation approximations, we prove that in these regimes, the solutions can be stabilised by introducing some extra dissipation of the total mixture entropy. In a first approach, called the Eulerian approach, the exact resolution of the relaxation Riemann problem provides an accurate entropy-satisfying numerical scheme, which turns out to be much more efficient in terms of CPU-cost than the classical and very simple Rusanov's scheme. Moreover, the scheme is proved to handle the vanishing phase regimes with great stability. The scheme, first developed in 1D, is then extended in 3D and implemented in an industrial code developed by EDF. The second approach, called the acoustic splitting approach, considers a separation of fast acoustic waves from slow material waves. The objective is to avoid the resonance due to the interaction between these two types of waves, and to allow an implicit treatment of the acoustics, while material waves are explicitly discretized. The resulting scheme is very simple and allows to deal simply with phase vanishing. The originality of this work is to use new dissipative closure laws for the interfacial velocity and pressure, in order to control the solutions of the Riemann problem associated with the acoustic step, in the phase vanishing regimes. (author)

  10. Pressure correction schemes for compressible flows: application to baro-tropic Navier-Stokes equations and to drift-flux model

    International Nuclear Information System (INIS)

    Gastaldo, L.

    2007-11-01

    We develop in this PhD thesis a simulation tool for bubbly flows encountered in some late phases of a core-melt accident in pressurized water reactors, when the flow of molten core and vessel structures comes to chemically interact with the concrete of the containment floor. The physical modelling is based on the so-called drift-flux model, consisting of mass balance and momentum balance equations for the mixture (Navier-Stokes equations) and a mass balance equation for the gaseous phase. First, we propose a pressure correction scheme for the compressible Navier-Stokes equations based on mixed non-conforming finite elements. An ad hoc discretization of the advection operator, by a finite volume technique based on a dual mesh, ensures the stability of the velocity prediction step. A priori estimates for the velocity and the pressure yields the existence of the solution. We prove that this scheme is stable, in the sense that the discrete entropy is decreasing. For the conservation equation of the gaseous phase, we build a finite volume discretization which satisfies a discrete maximum principle. From this last property, we deduce the existence and the uniqueness of the discrete solution. Finally, on the basis of these works, a conservative and monotone scheme which is stable in the low Mach number limit, is build for the drift-flux model. This scheme enjoys, moreover, the following property: the algorithm preserves a constant pressure and velocity through moving interfaces between phases (i.e. contact discontinuities of the underlying hyperbolic system). In order to satisfy this property at the discrete level, we build an original pressure correction step which couples the mass balance equation with the transport terms of the gas mass balance equation, the remaining terms of the gas mass balance being taken into account with a splitting method. We prove the existence of a discrete solution for the pressure correction step. Numerical results are presented; they

  11. Radiological assessment of natural radionuclides in soil within and around crude oil flow and gas compression stations in the Niger Delta, Nigeria

    International Nuclear Information System (INIS)

    Ademola, J.A.; Atare, E.E.

    2010-01-01

    Natural radionuclide concentrations in soil samples collected within and around crude oil flow and gas compression stations in the Niger Delta, Nigeria, were determined using gamma-ray spectroscopy. The mean activity concentrations of 40 K, 238 U and 232 Th varied from 30.1 ± 3.0 to 59.0 ± 17.1, B.D.L. to 8.8 ± 2.3 and 7.9 ± 3.7 to 10.9 ± 1.9 Bq.kg-1, respectively. The 40 K, 238 U and 232 Th contents of the soil samples are very low compared with the world average for natural background area. The absorbed dose rate and effective dose ranged from 6.9 to 11.1 n Gy.h-1 and 8.5 to 13.6 μSv.y-1, respectively. The annual gonadal dose equivalent rate ranged from 48.9 to 77.5 μSv.y-1, which is lower than the world average of 0.30 mSv.y-1. The radium equivalent activity and the external hazard index of the soil samples were below the recommended limits of 370 Bq.kg-1 and unity, respectively. The results obtained reveal that there is no significant radiation hazard due to natural radionuclides of the soil samples in the studied areas. (authors)

  12. Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2012-06-01

    Full Text Available combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume-of-fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting...

  13. Speech Compression

    Directory of Open Access Journals (Sweden)

    Jerry D. Gibson

    2016-06-01

    Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.

  14. Experimental and numerical study of two-phase flows at the inlet of evaporators in vapour compression cycles; Etude experimentale et numerique d'ecoulements diphasiques a l'entree des evaporateurs de cycles thermodynamiques

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M

    2007-09-15

    Maldistribution of liquid-vapour two phase flows causes a significant decrease of the thermal and hydraulic performance of evaporators in thermodynamic vapour compression cycles. A first experimental installation was used to visualize the two phase flow evolution between the expansion valve and the evaporator inlet. A second experimental set-up simulating a compact heat exchanger has been designed to identify the functional and geometrical parameters creating the best distribution of the two phases in the different channels. An analysis and a comprehension of the relation between the geometrical and functional parameters with the flow pattern inside the header and the two phase distribution, has been established. A numerical simulations of a stratified flow and a stratified jet flow have been carried out using two CFD codes: FLUENT and NEPTUNE. In the case of a fragmented jet configuration, a global definition of the interfacial area concentration for a separated phases and dispersed phases flow has been established and a model calculating the fragmented mass fraction has been developed. (author)

  15. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  16. DNABIT Compress – Genome compression algorithm

    OpenAIRE

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...

  17. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  18. An Efficient, Semi-implicit Pressure-based Scheme Employing a High-resolution Finitie Element Method for Simulating Transient and Steady, Inviscid and Viscous, Compressible Flows on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Richard C. Martineau; Ray A. Berry

    2003-04-01

    A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson

  19. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    Science.gov (United States)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  20. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  1. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  2. Perceptual Image Compression in Telemedicine

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  3. Reply to Comment by Roques et al. on "Base Flow Recession from Unsaturated-Saturated Porous Media considering Lateral Unsaturated Discharge and Aquifer Compressibility"

    Science.gov (United States)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith

    2018-04-01

    Roques et al. (https://doi.org/10.1002/2017WR022085) claims that they have proposed an exponential time step (ETS) method to improve the computing method of Liang et al. (https://doi.org/10.1002/2017WR020938) which used a constant time step (CTS) method on the derivative for dQ/dt in field data, where Q is the base flow discharge and t is the time since the start of base flow recession. This reply emphasizes that the main objective of Liang et al. (https://doi.org/10.1002/2017WR020938) was to develop an analytical model to investigate the effects of the unsaturated flow on base flow recession, not on the data interpretation methods. The analytical model indicates that the base flow recession hydrograph behaves as dQ/dt ˜aQb with the exponent b close to 1 at late times, which is consistent with previous theoretical models. The model of Liang et al. (https://doi.org/10.1002/2017WR020938) was applied to field data where the derivative of dQ/dt was computed using the CTS method, a method that has been widely adopted in previous studies. The ETS method proposed by Roques et al. (https://doi.org/10.1016/j.advwatres.2017.07.013) appears to be a good alternative but its accuracy needs further validation. Using slopes to fit field data as proposed by Roques et al. (https://doi.org/10.1002/2017WR022085) appears to match data satisfactorily at early times whereas it performs less satisfactorily at late times and leads to the exponent b being obviously larger than 1.

  4. Excess molar volumes and isentropic compressibilities of binary ...

    Indian Academy of Sciences (India)

    Excess molar volume; binary liquid mixtures; isentropic compressibility; intermolecular interactions. ... mixtures are essential for fluid flow, mass flow and heat transfer processes in chemical ... Experimentally determined values of density(ρ).

  5. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  6. A new method to detect cerebral blood flow waveform in synchrony with chest compression by near-infrared spectroscopy during CPR.

    Science.gov (United States)

    Koyama, Yasuaki; Wada, Takafumi; Lohman, Brandon D; Takamatsu, Yuka; Matsumoto, Junichi; Fujitani, Shigeki; Taira, Yasuhiko

    2013-10-01

    The objective of the study is to demonstrate the utility of near-infrared spectroscopy (NIRS) in evaluating chest compression (CC) quality in cardiac arrest (CA) patients as well as determine its prognosis predictive value. We present a nonconsecutive case series of adult patients with CA whose cardiopulmonary resuscitation (CPR) was monitored with NIRS and collected the total hemoglobin concentration change (ΔcHb), the tissue oxygen index (TOI), and the ΔTOI to assess CC quality in a noninvasive fashion. During CPR, ΔcHb displayed waveforms monitor, which we regarded as a surrogate for CC quality. Total hemoglobin concentration change waveforms responded accurately to variations or cessations of CCs. In addition, a TOI greater than 40% measured upon admission appears to be significant in predicting patient's outcome. Of 15 patients, 6 had a TOI greater than 40% measured upon admission, and 67% of the latter were in return of spontaneous circulation after CPR and were found to be significantly different between return of spontaneous circulation and death (P = .047; P < .05). Near-infrared spectroscopy reliably assesses the quality of CCs in patients with CA demonstrated by synchronous waveforms during CPR and possible prognostic predictive value, although further investigation is warranted. © 2013 Elsevier Inc. All rights reserved.

  7. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    Science.gov (United States)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  8. Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous-media reservoir used for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.

    1979-10-01

    The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.

  9. Revisiting the Fundamentals and Capabilities of the Stack Compression Test

    DEFF Research Database (Denmark)

    Alves, L.M.; Nielsen, Chris Valentin; Martin, P.A.F.

    2011-01-01

    performance by comparing the flow curves obtained from its utilisation with those determined by means of compressive testing carried out on solid cylinder specimens of the same material. Results show that mechanical testing of materials by means of the stack compression test is capable of meeting...... the increasing demand of accurate and reliable flow curves for sheet metals....

  10. Sudden viscous dissipation in compressing plasma turbulence

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  11. Thermodynamic and aerodynamic meanline analysis of wet compression in a centrifugal compressor

    International Nuclear Information System (INIS)

    Kang, Jeong Seek; Cha, Bong Jun; Yang, Soo Seok

    2006-01-01

    Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases

  12. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  13. An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows

    Science.gov (United States)

    Papoutsakis, Andreas; Sazhin, Sergei S.; Begg, Steven; Danaila, Ionut; Luddens, Francky

    2018-06-01

    We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian

  14. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix; Gregson, James; Wetzstein, Gordon; Raskar, Ramesh; Heidrich, Wolfgang

    2014-01-01

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  15. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  16. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  17. Mining compressing sequential problems

    NARCIS (Netherlands)

    Hoang, T.L.; Mörchen, F.; Fradkin, D.; Calders, T.G.K.

    2012-01-01

    Compression based pattern mining has been successfully applied to many data mining tasks. We propose an approach based on the minimum description length principle to extract sequential patterns that compress a database of sequences well. We show that mining compressing patterns is NP-Hard and

  18. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  19. Compressibility effects on turbulent mixing

    Science.gov (United States)

    Panickacheril John, John; Donzis, Diego

    2016-11-01

    We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.

  20. Pressure correction schemes for compressible flows: application to baro-tropic Navier-Stokes equations and to drift-flux model; Methodes de correction de pression pour les ecoulements compressibles: application aux equations de Navier-Stokes barotropes et au modele de derive

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldo, L

    2007-11-15

    We develop in this PhD thesis a simulation tool for bubbly flows encountered in some late phases of a core-melt accident in pressurized water reactors, when the flow of molten core and vessel structures comes to chemically interact with the concrete of the containment floor. The physical modelling is based on the so-called drift-flux model, consisting of mass balance and momentum balance equations for the mixture (Navier-Stokes equations) and a mass balance equation for the gaseous phase. First, we propose a pressure correction scheme for the compressible Navier-Stokes equations based on mixed non-conforming finite elements. An ad hoc discretization of the advection operator, by a finite volume technique based on a dual mesh, ensures the stability of the velocity prediction step. A priori estimates for the velocity and the pressure yields the existence of the solution. We prove that this scheme is stable, in the sense that the discrete entropy is decreasing. For the conservation equation of the gaseous phase, we build a finite volume discretization which satisfies a discrete maximum principle. From this last property, we deduce the existence and the uniqueness of the discrete solution. Finally, on the basis of these works, a conservative and monotone scheme which is stable in the low Mach number limit, is build for the drift-flux model. This scheme enjoys, moreover, the following property: the algorithm preserves a constant pressure and velocity through moving interfaces between phases (i.e. contact discontinuities of the underlying hyperbolic system). In order to satisfy this property at the discrete level, we build an original pressure correction step which couples the mass balance equation with the transport terms of the gas mass balance equation, the remaining terms of the gas mass balance being taken into account with a splitting method. We prove the existence of a discrete solution for the pressure correction step. Numerical results are presented; they

  1. Compression for radiological images

    Science.gov (United States)

    Wilson, Dennis L.

    1992-07-01

    The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.

  2. OpenACC directive-based GPU acceleration of an implicit reconstructed discontinuous Galerkin method for compressible flows on 3D unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Jialin [North Carolina State Univ., Raleigh, NC (United States); Xia, Yidong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Lixiang [North Carolina State Univ., Raleigh, NC (United States); Luo, Hong [North Carolina State Univ., Raleigh, NC (United States); Edwards, Jack [North Carolina State Univ., Raleigh, NC (United States); Mueller, Frank [North Carolina State Univ., Raleigh, NC (United States)

    2016-09-01

    In this study, we use a combination of modeling techniques to describe the relationship between fracture radius that might be accomplished in a hypothetical enhanced geothermal system (EGS) and drilling distance required to create and access those fractures. We use a combination of commonly applied analytical solutions for heat transport in parallel fractures and 3D finite-element method models of more realistic heat extraction geometries. For a conceptual model involving multiple parallel fractures developed perpendicular to an inclined or horizontal borehole, calculations demonstrate that EGS will likely require very large fractures, of greater than 300 m radius, to keep interfracture drilling distances to ~10 km or less. As drilling distances are generally inversely proportional to the square of fracture radius, drilling costs quickly escalate as the fracture radius decreases. It is important to know, however, whether fracture spacing will be dictated by thermal or mechanical considerations, as the relationship between drilling distance and number of fractures is quite different in each case. Information about the likelihood of hydraulically creating very large fractures comes primarily from petroleum recovery industry data describing hydraulic fractures in shale. Those data suggest that fractures with radii on the order of several hundred meters may, indeed, be possible. The results of this study demonstrate that relatively simple calculations can be used to estimate primary design constraints on a system, particularly regarding the relationship between generated fracture radius and the total length of drilling needed in the fracture creation zone. Comparison of the numerical simulations of more realistic geometries than addressed in the analytical solutions suggest that simple proportionalities can readily be derived to relate a particular flow field.

  3. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  4. Lagrangian statistics in compressible isotropic homogeneous turbulence

    Science.gov (United States)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  5. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  6. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  7. Rapid depressurization of a compressible fluid

    International Nuclear Information System (INIS)

    Dang, M.; Dupont, J.F.; Weber, H.

    1978-08-01

    The rapid depressurization of a plenum is a situation frequently encountered in the dynamical analysis of nuclear gas cycles of the HHT type. Various methods of numerical analyses for a 1-dimensional flow model are examined: finite difference method; control volume method; method of characteristics. Based on the shallow water analogy to compressible flow, the numerical results are compared with those from a water table set up to simulate a standard problem. (Auth.)

  8. The dynamics of surge in compression systems

    Indian Academy of Sciences (India)

    is of interest to study compression-system surge to understand its dynamics in order ... Internal problems like compressor going into rotating stall, resulting in loss of ... of water column, was used for mass-flow measurement at the impeller entry.

  9. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  10. Experiments with automata compression

    NARCIS (Netherlands)

    Daciuk, J.; Yu, S; Daley, M; Eramian, M G

    2001-01-01

    Several compression methods of finite-state automata are presented and evaluated. Most compression methods used here are already described in the literature. However, their impact on the size of automata has not been described yet. We fill that gap, presenting results of experiments carried out on

  11. Quasilinear Hyperbolic Systems, Compressible Flows, and Waves

    CERN Document Server

    Sharma, Vishnu D

    2010-01-01

    Filled with practical examples, this book presents a self-contained discussion of quasilinear hyperbolic equations and systems with applications. It emphasizes nonlinear theory and introduces some of the most active research in the field. The author elucidates all necessary mathematical concepts in the first three chapters, including an introduction to general wave propagation problems. He highlights the application of various approaches, such as singular surface theory, asymptotic methods, and self-similarity, to solve practical physical problems from areas, including gasdynamics, radiation g

  12. Spatial correlations in compressible granular flows

    NARCIS (Netherlands)

    van Noije, T.P.C.; Ernst, M.H.; Brito, R.

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which

  13. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  14. Temporal compression in episodic memory for real-life events.

    Science.gov (United States)

    Jeunehomme, Olivier; Folville, Adrien; Stawarczyk, David; Van der Linden, Martial; D'Argembeau, Arnaud

    2018-07-01

    Remembering an event typically takes less time than experiencing it, suggesting that episodic memory represents past experience in a temporally compressed way. Little is known, however, about how the continuous flow of real-life events is summarised in memory. Here we investigated the nature and determinants of temporal compression by directly comparing memory contents with the objective timing of events as measured by a wearable camera. We found that episodic memories consist of a succession of moments of prior experience that represent events with varying compression rates, such that the density of retrieved information is modulated by goal processing and perceptual changes. Furthermore, the results showed that temporal compression rates remain relatively stable over one week and increase after a one-month delay, particularly for goal-related events. These data shed new light on temporal compression in episodic memory and suggest that compression rates are adaptively modulated to maintain current goal-relevant information.

  15. Effects of water compressibility on the pressure fluctuation prediction in pump turbine

    International Nuclear Information System (INIS)

    Yin, J L; Wang, D Z; Wang, L Q; Wu, Y L; Wei, X Z

    2012-01-01

    The compressible effect of water is a key factor in transient flows. However, it is always neglected in the unsteady simulations for hydraulic machinery. In light of this, the governing equation of the flow is deduced to combine the compressibility of water, and then simulations with compressible and incompressible considerations to the typical unsteady flow phenomenon (Rotor stator interaction) in a pump turbine model are carried out and compared with each other. The results show that water compressibility has great effects on the magnitude and frequency of pressure fluctuation. As the operating condition concerned, the compressibility of water will induce larger pressure fluctuation, which agrees better with measured data. Moreover, the lower frequency component of the pressure signal can only be captured with the combination of water compressibility. It can be concluded that water compressibility is a fatal factor, which cannot be neglected in the unsteady simulations for pump turbines.

  16. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  17. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  18. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  19. Medullary compression syndrome

    International Nuclear Information System (INIS)

    Barriga T, L.; Echegaray, A.; Zaharia, M.; Pinillos A, L.; Moscol, A.; Barriga T, O.; Heredia Z, A.

    1994-01-01

    The authors made a retrospective study in 105 patients treated in the Radiotherapy Department of the National Institute of Neoplasmic Diseases from 1973 to 1992. The objective of this evaluation was to determine the influence of radiotherapy in patients with medullary compression syndrome in aspects concerning pain palliation and improvement of functional impairment. Treatment sheets of patients with medullary compression were revised: 32 out of 39 of patients (82%) came to hospital by their own means and continued walking after treatment, 8 out of 66 patients (12%) who came in a wheelchair or were bedridden, could mobilize by their own after treatment, 41 patients (64%) had partial alleviation of pain after treatment. In those who came by their own means and did not change their characteristics, functional improvement was observed. It is concluded that radiotherapy offers palliative benefit in patients with medullary compression syndrome. (authors). 20 refs., 5 figs., 6 tabs

  20. Asymptotic stability of steady compressible fluids

    CERN Document Server

    Padula, Mariarosaria

    2011-01-01

    This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...

  1. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  2. Compressible generalized Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Málek, Josef; Rajagopal, K.R.

    2010-01-01

    Roč. 61, č. 6 (2010), s. 1097-1110 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z20760514 Keywords : power law fluid * uniform temperature * compressible fluid Subject RIV: BJ - Thermodynamics Impact factor: 1.290, year: 2010

  3. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  4. Compression of Infrared images

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren

    2017-01-01

    best for bits-per-pixel rates below 1.4 bpp, while HEVC obtains best performance in the range 1.4 to 6.5 bpp. The compression performance is also evaluated based on maximum errors. These results also show that HEVC can achieve a precision of 1°C with an average of 1.3 bpp....

  5. Gas compression infrared generator

    International Nuclear Information System (INIS)

    Hug, W.F.

    1980-01-01

    A molecular gas is compressed in a quasi-adiabatic manner to produce pulsed radiation during each compressor cycle when the pressure and temperature are sufficiently high, and part of the energy is recovered during the expansion phase, as defined in U.S. Pat. No. 3,751,666; characterized by use of a cylinder with a reciprocating piston as a compressor

  6. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow

  7. A method of automatic control of the process of compressing pyrogas in olefin production

    Energy Technology Data Exchange (ETDEWEB)

    Podval' niy, M.L.; Bobrovnikov, N.R.; Kotler, L.D.; Shib, L.M.; Tuchinskiy, M.R.

    1982-01-01

    In the known method of automatically controlling the process of compressing pyrogas in olefin production by regulating the supply of cooling agents to the interstage coolers of the compression unit depending on the flow of hydrocarbons to the compression unit, to raise performance by lowering deposition of polymers on the flow through surfaces of the equipment, the coolant supply is also regulated as a function of the flows of hydrocarbons from the upper and lower parts of the demethanizer and the bottoms of the stripping tower. The coolant supply is regulated proportional to the difference between the flow of stripping tower bottoms and the ratio of the hydrocarbon flow from the upper and lower parts of the demethanizer to the hydrocarbon flow in the compression unit. With an increase in the proportion of light hydrocarbons (sum of upper and lower demethanizer products) in the total flow of pyrogas going to compression, the flow of coolant to the compression unit is reduced. Condensation of the given fractions in the separators, their amount in condensate going through the piping to the stripping tower, is reduced. With the reduction in the proportion of light hydrocarbons in the pyrogas, the flow of coolant is increased, thus improving condensation of heavy hydrocarbons in the separators and removing them from the compression unit in the bottoms of the stripping tower.

  8. Role of Compressibility on Tsunami Propagation

    Science.gov (United States)

    Abdolali, Ali; Kirby, James T.

    2017-12-01

    In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.Plain Language SummarySubmarine earthquakes and submarine mass failures (SMFs), can generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e. Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically neglected parameters in these models cause discrepancies between model outputs and observations. Most of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean has been developed, validated and tested for simplified and real cases against three dimensional and incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model development

  9. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  10. Poor chest compression quality with mechanical compressions in simulated cardiopulmonary resuscitation: a randomized, cross-over manikin study.

    Science.gov (United States)

    Blomberg, Hans; Gedeborg, Rolf; Berglund, Lars; Karlsten, Rolf; Johansson, Jakob

    2011-10-01

    Mechanical chest compression devices are being implemented as an aid in cardiopulmonary resuscitation (CPR), despite lack of evidence of improved outcome. This manikin study evaluates the CPR-performance of ambulance crews, who had a mechanical chest compression device implemented in their routine clinical practice 8 months previously. The objectives were to evaluate time to first defibrillation, no-flow time, and estimate the quality of compressions. The performance of 21 ambulance crews (ambulance nurse and emergency medical technician) with the authorization to perform advanced life support was studied in an experimental, randomized cross-over study in a manikin setup. Each crew performed two identical CPR scenarios, with and without the aid of the mechanical compression device LUCAS. A computerized manikin was used for data sampling. There were no substantial differences in time to first defibrillation or no-flow time until first defibrillation. However, the fraction of adequate compressions in relation to total compressions was remarkably low in LUCAS-CPR (58%) compared to manual CPR (88%) (95% confidence interval for the difference: 13-50%). Only 12 out of the 21 ambulance crews (57%) applied the mandatory stabilization strap on the LUCAS device. The use of a mechanical compression aid was not associated with substantial differences in time to first defibrillation or no-flow time in the early phase of CPR. However, constant but poor chest compressions due to failure in recognizing and correcting a malposition of the device may counteract a potential benefit of mechanical chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Adiabatic liquid piston compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tage [Danish Technological Institute, Aarhus (Denmark); Elmegaard, B. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Schroeder Pedersen, A. [Technical Univ. of Denmark. DTU Energy Conversion, Risoe Campus, Roskilde (Denmark)

    2013-01-15

    combination of features may make these systems superior to the ALP-CAES solution. The new systems are delivered by companies such as LightSail Energy and General Compression. Apparently, these new systems use piston compressors/expanders, at least for the prototypes. However, for large scale systems, piston mechanisms are not the most economical solution. In terms of large scale systems, turbo machinery is the only economical solution. 5) Even adiabatic CAES systems seem to add more cost to the electricity than can be accepted in the Danish power system. This added cost is primarily due to the investment in turbine/generator, heat exchangers, and a large quantity of thermal oil. To improve the economy, it would be relevant to investigate the possibility of replacing the thermal oil by water, for example by injecting the water directly into the air flow between the different compression stages to get a direct heat exchange between water and air. This investigation would focus on direct heat exchange in combination with turbo machinery. (Author)

  12. LZ-Compressed String Dictionaries

    OpenAIRE

    Arz, Julian; Fischer, Johannes

    2013-01-01

    We show how to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm. Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed text. We achieve compression ratios often outperforming the existing alternatives, especially on dictionaries containing many repeated substrings. Our query times remain competitive.

  13. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  14. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  15. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander

    2005-08-29

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  16. Digital cinema video compression

    Science.gov (United States)

    Husak, Walter

    2003-05-01

    The Motion Picture Industry began a transition from film based distribution and projection to digital distribution and projection several years ago. Digital delivery and presentation offers the prospect to increase the quality of the theatrical experience for the audience, reduce distribution costs to the distributors, and create new business opportunities for the theater owners and the studios. Digital Cinema also presents an opportunity to provide increased flexibility and security of the movies for the content owners and the theater operators. Distribution of content via electronic means to theaters is unlike any of the traditional applications for video compression. The transition from film-based media to electronic media represents a paradigm shift in video compression techniques and applications that will be discussed in this paper.

  17. Fingerprints in compressed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge

    2017-01-01

    In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S......[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(log⁡N) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(log⁡log⁡N) query time...

  18. Dynamic mode decomposition for compressive system identification

    Science.gov (United States)

    Bai, Zhe; Kaiser, Eurika; Proctor, Joshua L.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Dynamic mode decomposition has emerged as a leading technique to identify spatiotemporal coherent structures from high-dimensional data. In this work, we integrate and unify two recent innovations that extend DMD to systems with actuation and systems with heavily subsampled measurements. When combined, these methods yield a novel framework for compressive system identification, where it is possible to identify a low-order model from limited input-output data and reconstruct the associated full-state dynamic modes with compressed sensing, providing interpretability of the state of the reduced-order model. When full-state data is available, it is possible to dramatically accelerate downstream computations by first compressing the data. We demonstrate this unified framework on simulated data of fluid flow past a pitching airfoil, investigating the effects of sensor noise, different types of measurements (e.g., point sensors, Gaussian random projections, etc.), compression ratios, and different choices of actuation (e.g., localized, broadband, etc.). This example provides a challenging and realistic test-case for the proposed method, and results indicate that the dominant coherent structures and dynamics are well characterized even with heavily subsampled data.

  19. Relationship between chest compression rates and outcomes from cardiac arrest.

    Science.gov (United States)

    Idris, Ahamed H; Guffey, Danielle; Aufderheide, Tom P; Brown, Siobhan; Morrison, Laurie J; Nichols, Patrick; Powell, Judy; Daya, Mohamud; Bigham, Blair L; Atkins, Dianne L; Berg, Robert; Davis, Dan; Stiell, Ian; Sopko, George; Nichol, Graham

    2012-06-19

    Guidelines for cardiopulmonary resuscitation recommend a chest compression rate of at least 100 compressions per minute. Animal and human studies have reported that blood flow is greatest with chest compression rates near 120/min, but few have reported rates used during out-of-hospital (OOH) cardiopulmonary resuscitation or the relationship between rate and outcome. The purpose of this study was to describe chest compression rates used by emergency medical services providers to resuscitate patients with OOH cardiac arrest and to determine the relationship between chest compression rate and outcome. Included were patients aged ≥ 20 years with OOH cardiac arrest treated by emergency medical services providers participating in the Resuscitation Outcomes Consortium. Data were abstracted from monitor-defibrillator recordings during cardiopulmonary resuscitation. Multiple logistic regression analysis assessed the association between chest compression rate and outcome. From December 2005 to May 2007, 3098 patients with OOH cardiac arrest were included in this study. Mean age was 67 ± 16 years, and 8.6% survived to hospital discharge. Mean compression rate was 112 ± 19/min. A curvilinear association between chest compression rate and return of spontaneous circulation was found in cubic spline models after multivariable adjustment (P=0.012). Return of spontaneous circulation rates peaked at a compression rate of ≈ 125/min and then declined. Chest compression rate was not significantly associated with survival to hospital discharge in multivariable categorical or cubic spline models. Chest compression rate was associated with return of spontaneous circulation but not with survival to hospital discharge in OOH cardiac arrest.

  20. WSNs Microseismic Signal Subsection Compression Algorithm Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Zhouzhou Liu

    2015-01-01

    Full Text Available For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic signals and the compression perception theory (CS used in the transmission process. The algorithm will be collected as a number of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring (Q-CSDR algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4 of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

  1. Compressed sensing electron tomography

    International Nuclear Information System (INIS)

    Leary, Rowan; Saghi, Zineb; Midgley, Paul A.; Holland, Daniel J.

    2013-01-01

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform

  2. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  3. Hydrodynamics of compressible superfluids in confined geometries

    International Nuclear Information System (INIS)

    Malmi-Kakkada, Abdul N; Valls, Oriol T; Dasgupta, Chandan

    2014-01-01

    We present a study of the hydrodynamics of compressible superfluids in confined geometries. We use a perturbative procedure in terms of the dimensionless expansion parameter (v/v s ) 2 where v is the typical speed of the flow and v s is the speed of sound. A zero value of this parameter corresponds to the incompressible limit. We apply the procedure to two specific problems: the case of a trapped superfluid with a Gaussian profile of the local density, and that of a superfluid confined in a rotating obstructed cylinder. We find that the corrections due to finite compressibility which are, as expected, negligible for liquid He, are important but amenable to the perturbative treatment for typical ultracold atomic systems. (paper)

  4. Single-particle dispersion in compressible turbulence

    Science.gov (United States)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  5. 1999 Annual report: compression + power + service

    International Nuclear Information System (INIS)

    2000-01-01

    Enerflex manufactures, services and leases compression systems for the production and processing of natural gas and gas-fueled power generation systems. Design, engineering, project management, financing, installation commissioning and after-sales service are also part of Enerflex's arsenal of tools to ensure innovation, and high standards of quality and service. In 1999, Enerflex suffered an 18 per cent decline in revenues from $315 million in 1998 to $257 million in 1999, entirely due to lower sales of big ticket compression equipment in Canada. At the same time, revenues from international sales and service increased to $ 61.8 million in 1999, from $ 53 million in 1998. The company successfully completed the move to a new 328,000 sq. ft state-of-the-art manufacturing facility, and made its first significant sale to the United States in 1999 in the form of delivering a coal bed methane project in the Powder River area of Wyoming, and power generation equipment to Massachusetts. Although in the short term unusually warm average temperatures, industry cash flows, and access to capital may determine demand for the company's products and services, the long-term fundamentals are positive and demand for compression equipment and power generation systems is likely to grow. Indeed, in the fourth quarter of 1999, market conditions improved significantly and the company recorded its highest quarterly revenues and earnings during the last quarter. The annual review provides further details about the operations of the company's various divisions, (Compression and Power Systems, Parts and Compression Services, Leasing and Financing), management's review of the company's overall operations and finances, audited financial statements, and shareholders' information

  6. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  7. Fast Compressive Tracking.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  8. SeqCompress: an algorithm for biological sequence compression.

    Science.gov (United States)

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Comparative data compression techniques and multi-compression results

    International Nuclear Information System (INIS)

    Hasan, M R; Ibrahimy, M I; Motakabber, S M A; Ferdaus, M M; Khan, M N H

    2013-01-01

    Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms

  10. Analysis by compression

    DEFF Research Database (Denmark)

    Meredith, David

    MEL is a geometric music encoding language designed to allow for musical objects to be encoded parsimoniously as sets of points in pitch-time space, generated by performing geometric transformations on component patterns. MEL has been implemented in Java and coupled with the SIATEC pattern...... discovery algorithm to allow for compact encodings to be generated automatically from in extenso note lists. The MEL-SIATEC system is founded on the belief that music analysis and music perception can be modelled as the compression of in extenso descriptions of musical objects....

  11. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  12. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  13. Free compression tube. Applications

    Science.gov (United States)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  14. Photon compression in cylinders

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1977-01-01

    It has been shown theoretically that intense microwave radiation is absorbed non-classically by a newly enunciated mechanism when interacting with hydrogen plasma. Fields > 1 Mg, lambda > 1 mm are within this regime. The predicted absorption, approximately P/sub rf/v/sub theta/sup e/, has not yet been experimentally confirmed. The applications of such a coupling are many. If microwave bursts approximately > 5 x 10 14 watts, 5 ns can be generated, the net generation of power from pellet fusion as well as various military applications becomes feasible. The purpose, then, for considering gas-gun photon compression is to obtain the above experimental capability by converting the gas kinetic energy directly into microwave form. Energies of >10 5 joules cm -2 and powers of >10 13 watts cm -2 are potentially available for photon interaction experiments using presently available technology. The following topics are discussed: microwave modes in a finite cylinder, injection, compression, switchout operation, and system performance parameter scaling

  15. Fingerprints in Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

    2013-01-01

    The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...... derivative that captures LZ78 compression and its variations) we get O(loglogN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logNlogℓ) and O....... That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP...

  16. Performance of a hydraulic air compressor for use in compressed air energy storage power systems

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. A.; Ahrens, F. W.

    1978-01-01

    A fluid mechanical analysis of a hydraulic air compression system for Compressed Air Energy Storage (CAES) application is presented. With this compression concept, air is charged into an underground reservoir, for later use in power generation, by entraining bubbles into a downward flow of water from a surface reservoir. Upon releasing the air in the underground reservoir, the water is pumped back to the surface. The analytical model delineated is used to predict the hydraulic compressor performance characteristics (pumping power, pump head, compression efficiency) as a function of water flow rate and system geometrical parameters. The results indicate that, although large water pumps are needed, efficiencies as high as 90% (relative to ideal isothermal compression) can be expected. This should result in lower compression power than for conventional compressor systems, while eliminating the need for the usual intercoolers and aftercooler.

  17. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  18. Generalized massive optimal data compression

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin

    2018-05-01

    In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.

  19. New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars

    Science.gov (United States)

    Hossain, Murshed; Mullan, D. J.

    1990-01-01

    Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.

  20. Compression behavior of a ferritic-martensitic Cr-Mo steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Pantleon, Wolfgang

    2012-01-01

    The compression behavior of a ferritic-martensitic Cr-Mo steel is characterized for strain rates ranging from 10-4 s-1 to 10-1 s-1 and engineering strains up to 40%. Adiabatic heating causes a reduction in flow stress during continuous compression at a strain rate of 10-1 s-1. No reduction...... in the flow stress is observed if interrupted compression tests are performed with loading and holding steps. Two work-hardening stages with work-hardening rates decreasing linearly with the flow stress are identified and interpreted in terms of the KocksMecking model. The microstructural evolution...

  1. Mammographic compression in Asian women.

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (pAsian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  2. Three-dimensional numerical simulation for plastic injection-compression molding

    Science.gov (United States)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  3. Efficiency increase in ship's primal energy system using a multistage compression with intercooling

    Directory of Open Access Journals (Sweden)

    Landeka Petar

    2016-01-01

    Full Text Available This paper focuses on an analysis of the potential increase of efficiency in ship's primal energy system using a turbocharger with multistage compression with intercooling, and diverting a greater flow of exhaust gases to power turbine of waste heat recovery system (WHR. Analysis of potential efficiency increase has been made for various stages of compression for a 100 % main engine load, and an analysis of five stage compression with intercooling for a main engine load between 50% and 100%.

  4. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  5. Lagrangian investigations of vorticity dynamics in compressible turbulence

    Science.gov (United States)

    Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji

    2017-10-01

    In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.

  6. Double-diffusive convection of compressible rotating Walters' (B ...

    African Journals Online (AJOL)

    user

    A great number of applications of such a flow in geophysics are found in a ... We have considered an infinite, horizontal, compressible electrically conducting Walters' (Model B′) fluid layer of .... Linearized stability theory and normal mode analysis .... boundaries the boundary conditions are (see Chandrasekhar, 1981). 2.

  7. Direct compression properties of microcrystalline cellulose and its ...

    African Journals Online (AJOL)

    The influence of silicified microcrystalline cellulose (SMCC) on the flow, compaction and tableting properties of metronidazole powder was investigated. The study compared medium grades of both SMCC and standard microcrystalline cellulose (MCC) as direct compressible excipients. The bulk densities, Hausner quotient ...

  8. On the Preconditioning of a Newton-Krylov Solver for a High-Order reconstructed Discontinuous Galerkin Discretization of All-Speed Compressible Flow with Phase Change for Application in Laser-Based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Weston, Brian T. [Univ. of California, Davis, CA (United States)

    2017-05-17

    This dissertation focuses on the development of a fully-implicit, high-order compressible ow solver with phase change. The work is motivated by laser-induced phase change applications, particularly by the need to develop large-scale multi-physics simulations of the selective laser melting (SLM) process in metal additive manufacturing (3D printing). Simulations of the SLM process require precise tracking of multi-material solid-liquid-gas interfaces, due to laser-induced melting/ solidi cation and evaporation/condensation of metal powder in an ambient gas. These rapid density variations and phase change processes tightly couple the governing equations, requiring a fully compressible framework to robustly capture the rapid density variations of the ambient gas and the melting/evaporation of the metal powder. For non-isothermal phase change, the velocity is gradually suppressed through the mushy region by a variable viscosity and Darcy source term model. The governing equations are discretized up to 4th-order accuracy with our reconstructed Discontinuous Galerkin spatial discretization scheme and up to 5th-order accuracy with L-stable fully implicit time discretization schemes (BDF2 and ESDIRK3-5). The resulting set of non-linear equations is solved using a robust Newton-Krylov method, with the Jacobian-free version of the GMRES solver for linear iterations. Due to the sti nes associated with the acoustic waves and thermal and viscous/material strength e ects, preconditioning the GMRES solver is essential. A robust and scalable approximate block factorization preconditioner was developed, which utilizes the velocity-pressure (vP) and velocity-temperature (vT) Schur complement systems. This multigrid block reduction preconditioning technique converges for high CFL/Fourier numbers and exhibits excellent parallel and algorithmic scalability on classic benchmark problems in uid dynamics (lid-driven cavity ow and natural convection heat transfer) as well as for laser

  9. EVALUATION OF MODIFIED RICE STARCH, A NEW EXCIPIENT FOR DIRECT COMPRESSION

    NARCIS (Netherlands)

    BOS, CE; BOLHUIS, GK; LERK, CF; DUINEVELD, CAA

    1992-01-01

    The compression characteristics of modified rice starch (Primotab(R)ET), a new excipient for the preparation of tablets by direct compression is evaluated. Modified rice starch is an agglomerated rice starch product. It has excellent flowing and disintegration properties. In contrast to other

  10. Application specific compression : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  11. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  12. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  13. Data Compression with Linear Algebra

    OpenAIRE

    Etler, David

    2015-01-01

    A presentation on the applications of linear algebra to image compression. Covers entropy, the discrete cosine transform, thresholding, quantization, and examples of images compressed with DCT. Given in Spring 2015 at Ocean County College as part of the honors program.

  14. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  15. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  16. Evaluation of mammogram compression efficiency

    International Nuclear Information System (INIS)

    Przelaskowski, A.; Surowski, P.; Kukula, A.

    2005-01-01

    Lossy image coding significantly improves performance over lossless methods, but a reliable control of diagnostic accuracy regarding compressed images is necessary. The acceptable range of compression ratios must be safe with respect to as many objective criteria as possible. This study evaluates the compression efficiency of digital mammograms in both numerically lossless (reversible) and lossy (irreversible) manner. Effective compression methods and concepts were examined to increase archiving and telediagnosis performance. Lossless compression as a primary applicable tool for medical applications was verified on a set 131 mammograms. Moreover, nine radiologists participated in the evaluation of lossy compression of mammograms. Subjective rating of diagnostically important features brought a set of mean rates given for each test image. The lesion detection test resulted in binary decision data analyzed statistically. The radiologists rated and interpreted malignant and benign lesions, representative pathology symptoms, and other structures susceptible to compression distortions contained in 22 original and 62 reconstructed mammograms. Test mammograms were collected in two radiology centers for three years and then selected according to diagnostic content suitable for an evaluation of compression effects. Lossless compression efficiency of the tested coders varied, but CALIC, JPEG-LS, and SPIHT performed the best. The evaluation of lossy compression effects affecting detection ability was based on ROC-like analysis. Assuming a two-sided significance level of p=0.05, the null hypothesis that lower bit rate reconstructions are as useful for diagnosis as the originals was false in sensitivity tests with 0.04 bpp mammograms. However, verification of the same hypothesis with 0.1 bpp reconstructions suggested their acceptance. Moreover, the 1 bpp reconstructions were rated very similarly to the original mammograms in the diagnostic quality evaluation test, but the

  17. The comparative analysis of the compressible plasma streams generated in QSPA from the various gases

    International Nuclear Information System (INIS)

    Kozlov, A.N.; Drukarenko, S.P.; Seytkhalilova, E.I.; Velichkin, M.A.; Solyakov, D.G.

    2012-01-01

    The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed.

  18. Compression etiology in tendinopathy.

    Science.gov (United States)

    Almekinders, Louis C; Weinhold, Paul S; Maffulli, Nicola

    2003-10-01

    Recent studies have emphasized that the etiology of tendinopathy is not as simple as was once thought. The etiology is likely to be multifactorial. Etiologic factors may include some of the traditional factors such as overuse, inflexibility, and equipment problems; however, other factors need to be considered as well, such as age-related tendon degeneration and biomechanical considerations as outlined in this article. More research is needed to determine the significance of stress-shielding and compression in tendinopathy. If they are confirmed to play a role, this finding may significantly alter our approach in both prevention and in treatment through exercise therapy. The current biomechanical studies indicate that certain joint positions are more likely to place tensile stress on the area of the tendon commonly affected by tendinopathy. These joint positions seem to be different than the traditional positions for stretching exercises used for prevention and rehabilitation of tendinopathic conditions. Incorporation of different joint positions during stretching exercises may exert more uniform, controlled tensile stress on these affected areas of the tendon and avoid stresshielding. These exercises may be able to better maintain the mechanical strength of that region of the tendon and thereby avoid injury. Alternatively, they could more uniformly stress a healing area of the tendon in a controlled manner, and thereby stimulate healing once an injury has occurred. Additional work will have to prove if a change in rehabilitation exercises is more efficacious that current techniques.

  19. Axial Compressive Strength of Foamcrete with Different Profiles and Dimensions

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Lightweight foamcrete is a versatile material; primarily consist of a cement based mortar mixed with at least 20% volume of air. High flow ability, lower self-weight, minimal requirement of aggregate, controlled low strength and good thermal insulation properties are a few characteristics of foamcrete. Its dry densities, typically, is below 1600kg/m3 with compressive strengths maximum of 15MPa. The ASTM standard provision specifies a correction factor for concrete strengths of between 14 and 42MPa to compensate for the reduced strength when the aspect height-to-diameter ratio of specimen is less than 2.0, while the CEB-FIP provision specifically mentions the ratio of 150 x 300mm cylinder strength to 150 mm cube strength. However, both provisions requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength of foamcrete. This proposed laboratory work is intended to study the effect of different dimensions and profiles on the axial compressive strength of concrete. Specimens of various dimensions and profiles are cast with square and circular cross-sections i.e., cubes, prisms and cylinders, and to investigate their behavior in compression strength at 7 and 28 days. Hypothetically, compressive strength will decrease with the increase of concrete specimen dimension and concrete specimen with cube profile would yield comparable compressive strength to cylinder (100 x 100 x 100mm cube to 100dia x 200mm cylinder.

  20. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  1. Context-Aware Image Compression.

    Directory of Open Access Journals (Sweden)

    Jacky C K Chan

    Full Text Available We describe a physics-based data compression method inspired by the photonic time stretch wherein information-rich portions of the data are dilated in a process that emulates the effect of group velocity dispersion on temporal signals. With this coding operation, the data can be downsampled at a lower rate than without it. In contrast to previous implementation of the warped stretch compression, here the decoding can be performed without the need of phase recovery. We present rate-distortion analysis and show improvement in PSNR compared to compression via uniform downsampling.

  2. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  3. Compressible stability of growing boundary layers using parabolized stability equations

    Science.gov (United States)

    Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.

    1991-01-01

    The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.

  4. Efficient Reservoir Simulation with Cubic Plus Association and Cross-Association Equation of State for Multicomponent Three-Phase Compressible Flow with Applications in CO2 Storage and Methane Leakage

    Science.gov (United States)

    Moortgat, J.

    2017-12-01

    We present novel simulation tools to model multiphase multicomponent flow and transport in porous media for mixtures that contain non-polar hydrocarbons, self-associating polar water, and cross-associating molecules like methane, ethane, unsaturated hydrocarbons, CO2 and H2S. Such mixtures often occur when CO2 is injected and stored in saline aquifers, or when methane is leaking into groundwater. To accurately predict the species transfer between aqueous, gaseous and oleic phases, and the subsequent change in phase properties, the self- and cross-associating behavior of molecules needs to be taken into account, particularly at the typical temperatures and pressures in deep formations. The Cubic-Plus-Association equation-of-state (EOS) has been demonstrated to be highly accurate for such problems but its excessive computational cost has prevented widespread use in reservoir simulators. We discuss the thermodynamical framework and develop sophisticated numerical algorithms that allow reservoir simulations with efficiencies comparable to a simple cubic EOS. This approach improves our predictive powers for highly nonlinear fluid behavior related to geological carbon sequestration, such as density driven flow and natural convection (solubility trapping), evaporation of water into the CO2-rich gas phase, and competitive dissolution-evaporation when CO2 is injected in, e.g., methane saturated aquifers. Several examples demonstrate the accuracy and robustness of this EOS framework for complex applications.

  5. A dynamic counterpart of Lamb vector in viscous compressible aerodynamics

    International Nuclear Information System (INIS)

    Liu, L Q; Wu, J Z; Shi, Y P; Zhu, J Y

    2014-01-01

    The Lamb vector is known to play a key role in incompressible fluid dynamics and vortex dynamics. In particular, in low-speed steady aerodynamics it is solely responsible for the total force acting on a moving body, known as the vortex force, with the classic two-dimensional (exact) Kutta–Joukowski theorem and three-dimensional (linearized) lifting-line theory as the most famous special applications. In this paper we identify an innovative dynamic counterpart of the Lamb vector in viscous compressible aerodynamics, which we call the compressible Lamb vector. Mathematically, we present a theorem on the dynamic far-field decay law of the vorticity and dilatation fields, and thereby prove that the generalized Lamb vector enjoys exactly the same integral properties as the Lamb vector does in incompressible flow, and hence the vortex-force theory can be generalized to compressible flow with exactly the same general formulation. Moreover, for steady flow of polytropic gas, we show that physically the force exerted on a moving body by the gas consists of a transverse force produced by the original Lamb vector and a new longitudinal force that reflects the effects of compression and irreversible thermodynamics. (paper)

  6. Incompressible limit of compressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Bessaih, H.

    1994-01-01

    In this paper we study the system which describes the motion of compressible viscous fluid in a bounded domain Ω of R 3 . When we introduce a parameter λ, that is the inverse of the Mach number, we prove, under small initial data and external force (for barotropic flows), that the solution of Navier-Stokes equations is the incompressible limit of the solution of compressible Navier-Stokes equations, as the Mach number becomes small. For this, we show the existence of a solution verifying estimates independent of λ. Compactness argument allow us to pass to the limit on λ in the nonlinear terms. (author). 17 refs

  7. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    Science.gov (United States)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  8. Simulated and experimental compression of a compact toroid

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J N; Hwang, D Q; Horton, R D; Evans, R W; Owen, J M

    2009-05-06

    We present simulation results and experimental data for the compression of a compact toroid by a conducting nozzle without a center electrode. In both simulation and experiment, the flow of the plasma is greatly obstructed by even modest magnetic fields. A simple mechanism for this obstruction is suggested by our simulations. In particular, the configuration of the plasmoid's magnetic field plays a significant role in the success of the experiment. We analyze two types of plasma configurations under compression and demonstrate that the results from the simulations matches those from the experiments, and that the mechanism predicts the different behaviors observed in the two cases.

  9. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  10. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  11. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  12. Nonlinear compression of optical solitons

    Indian Academy of Sciences (India)

    linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.

  13. Quality between mechanical compression on reducible stretcher versus manual compression on standard stretcher in small elevator.

    Science.gov (United States)

    Kim, Tae Han; Hong, Ki Jeong; Sang Do, Shin; Kim, Chu Hyun; Song, Sung Wook; Song, Kyoung Jun; Ro, Young Sun; Ahn, Ki Ok; Jang, Dayea Beatrice

    2016-08-01

    Manual cardiopulmonary resuscitation (CPR) during vertical transport in small elevators using standard stretcher for out-of-hospital cardiac arrest can raise concerns with diminishing quality. Mechanical CPR on a reducible stretcher (RS-CPR) that can be shortened in the length was tested to compare the CPR quality with manual CPR on a standard stretcher (SS-CPR). A randomized crossover manikin simulation was designed. Three teams of emergency medical technicians were recruited to perform serial CPR simulations using two different protocols (RS-CPR and SS-CPR) according to a randomization; the first 6 minutes of manual CPR at the scene was identical for both scenarios and two different protocols during vertical transport in a small elevator followed on a basis of cross-over assignment. The LUCAS-2 Chest Compression System (Zolife AB, Lund, Sweden) was used for RS-CPR. CPR quality was measured using a resuscitation manikin (Resusci Anne QCPR, Laerdal Medical, Stavanger, Norway) in terms of no flow fraction, compression depth, and rate (median and IQR). A total of 42 simulations were analyzed. CPR quality did not differ significantly at the scene. No flow fraction (%) was significantly lower when the stretcher was moving in RS-CPR then SS-CPR (36.0 (33.8-38.7) vs 44.0 (36.8-54.4), P< .01). RS-CPR showed significantly better quality than SS-CPR; 93.2 (50.6-95.6) vs 14.8 (0-20.8) for adequate depth (P< 0.01), and 97.5 (96.6-98.2) vs 68.9(43.4-78.5) for adequate rate (P< .01). Mechanical CPR on a reducible stretcher during vertical transport showed significant improvement in CPR quality in terms of no-flow fraction, compression depth, and rate compared with manual CPR on a standard stretcher. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  15. Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Yoshizawa, A.

    1996-01-01

    Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics

  16. Compression of magnetohydrodynamic simulation data using singular value decomposition

    International Nuclear Information System (INIS)

    Castillo Negrete, D. del; Hirshman, S.P.; Spong, D.A.; D'Azevedo, E.F.

    2007-01-01

    Numerical calculations of magnetic and flow fields in magnetohydrodynamic (MHD) simulations can result in extensive data sets. Particle-based calculations in these MHD fields, needed to provide closure relations for the MHD equations, will require communication of this data to multiple processors and rapid interpolation at numerous particle orbit positions. To facilitate this analysis it is advantageous to compress the data using singular value decomposition (SVD, or principal orthogonal decomposition, POD) methods. As an example of the compression technique, SVD is applied to magnetic field data arising from a dynamic nonlinear MHD code. The performance of the SVD compression algorithm is analyzed by calculating Poincare plots for electron orbits in a three-dimensional magnetic field and comparing the results with uncompressed data

  17. Effect of compressive force on PEM fuel cell performance

    Science.gov (United States)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  18. 29 CFR 1917.154 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  19. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  20. The thermoviscoplastic response of polycrystalline tungsten in compression

    International Nuclear Information System (INIS)

    Lennon, A.M.; Ramesh, K.T.

    2000-01-01

    The thermomechanical response of commercially pure polycrystalline tungsten was investigated over a wide range of strain rates and temperatures. The material was examined in two forms: one an equiaxed recrystallized microstructure and the other a heavily deformed extruded microstructure that was loaded in compression along the extrusion axis. Low strain rate (10 -3 -10 0 s -1 ) compression experiments were conducted on an MTS servo-hydraulic load frame equipped with an infra-red furnace capable of sustaining specimen temperatures in excess of 600 C. High strain rate (10 3 -10 4 s -1 ) experiments were performed on a compression Kolsky bar equipped with an infra-red heating system capable of developing specimen temperatures as high as 800 C. Pressure-shear plate impact experiments were used to obtain shear stress versus shear strain curves at very high rates (∝10 4 -10 5 s -1 ). The recrystallized material was able to sustain very substantial plastic deformations in compression (at room temperature), with a flow stress that appears to be rate-dependent. Intergranular microcracks were developed during the compressive deformations. Under quasi-static loadings a few relatively large axial splitting cracks were formed, while under dynamic loadings a very large number of small, uniformly distributed microcracks (that did not link up to form macrocracks) were developed. The rate of nucleation of microcracks increased dramatically with strain rate. The extruded tungsten is also able to sustain large plastic deformations in compression, with a flow stress that increases with the rate of deformation. The strain hardening of the extruded material is lower than that of the recrystallized material, and is relatively insensitive to the strain rate. (orig.)

  1. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  2. An experimental study of the effects of bodyside compression on forward swept sidewall compression inlets ingesting a turbulent boundary layer

    Science.gov (United States)

    Rodi, Patrick E.

    1993-01-01

    Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.

  3. University of Arizona Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Joseph [Univ. of Arizona, Tucson, AZ (United States); Muralidharan, Krishna [Univ. of Arizona, Tucson, AZ (United States)

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  4. Exact Theory of Compressible Fluid Turbulence

    Science.gov (United States)

    Drivas, Theodore; Eyink, Gregory

    2017-11-01

    We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.

  5. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2016-01-01

    Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black......, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block...

  6. Lagrangian particle method for compressible fluid dynamics

    Science.gov (United States)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  7. Compression of Probabilistic XML Documents

    Science.gov (United States)

    Veldman, Irma; de Keijzer, Ander; van Keulen, Maurice

    Database techniques to store, query and manipulate data that contains uncertainty receives increasing research interest. Such UDBMSs can be classified according to their underlying data model: relational, XML, or RDF. We focus on uncertain XML DBMS with as representative example the Probabilistic XML model (PXML) of [10,9]. The size of a PXML document is obviously a factor in performance. There are PXML-specific techniques to reduce the size, such as a push down mechanism, that produces equivalent but more compact PXML documents. It can only be applied, however, where possibilities are dependent. For normal XML documents there also exist several techniques for compressing a document. Since Probabilistic XML is (a special form of) normal XML, it might benefit from these methods even more. In this paper, we show that existing compression mechanisms can be combined with PXML-specific compression techniques. We also show that best compression rates are obtained with a combination of PXML-specific technique with a rather simple generic DAG-compression technique.

  8. Plasma heating by adiabatic compression

    International Nuclear Information System (INIS)

    Ellis, R.A. Jr.

    1972-01-01

    These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)

  9. Concurrent data compression and protection

    International Nuclear Information System (INIS)

    Saeed, M.

    2009-01-01

    Data compression techniques involve transforming data of a given format, called source message, to data of a smaller sized format, called codeword. The primary objective of data encryption is to ensure security of data if it is intercepted by an eavesdropper. It transforms data of a given format, called plaintext, to another format, called ciphertext, using an encryption key or keys. Thus, combining the processes of compression and encryption together must be done in this order, that is, compression followed by encryption because all compression techniques heavily rely on the redundancies which are inherently a part of a regular text or speech. The aim of this research is to combine two processes of compression (using an existing scheme) with a new encryption scheme which should be compatible with encoding scheme embedded in encoder. The novel technique proposed by the authors is new, unique and is highly secured. The deployment of sentinel marker' enhances the security of the proposed TR-One algorithm from 2/sup 44/ ciphertexts to 2/sup 44/ +2/sub 20/ ciphertexts thus imposing extra challenges to the intruders. (author)

  10. Radiologic image compression -- A review

    International Nuclear Information System (INIS)

    Wong, S.; Huang, H.K.; Zaremba, L.; Gooden, D.

    1995-01-01

    The objective of radiologic image compression is to reduce the data volume of and to achieve a lot bit rate in the digital representation of radiologic images without perceived loss of image quality. However, the demand for transmission bandwidth and storage space in the digital radiology environment, especially picture archiving and communication systems (PACS) and teleradiology, and the proliferating use of various imaging modalities, such as magnetic resonance imaging, computed tomography, ultrasonography, nuclear medicine, computed radiography, and digital subtraction angiography, continue to outstrip the capabilities of existing technologies. The availability of lossy coding techniques for clinical diagnoses further implicates many complex legal and regulatory issues. This paper reviews the recent progress of lossless and lossy radiologic image compression and presents the legal challenges of using lossy compression of medical records. To do so, the authors first describe the fundamental concepts of radiologic imaging and digitization. Then, the authors examine current compression technology in the field of medical imaging and discuss important regulatory policies and legal questions facing the use of compression in this field. The authors conclude with a summary of future challenges and research directions. 170 refs

  11. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  12. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  13. A Compressed Sensing Perspective of Hippocampal Function

    Directory of Open Access Journals (Sweden)

    Panagiotis ePetrantonakis

    2014-08-01

    Full Text Available Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS. The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e. of the original data set. In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.

  14. Three-dimensional calculation of pollutant migration via compressible two-phase flow, for analysis of the methods of in situ air sparging and soil vapor extraction; Raeumliche Berechnung des Schadstofftransportes mit einer kompressiblen Zweiphasenstroemung zur Untersuchung der Drucklufteinblasung und Bodenluftabsaugung

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, S.

    1997-12-01

    In this study an analysis method is presented which allows numerical simulation of in situ air sparging coupled with soil vapor extraction. The improved FE-program takes the following phenomena into account: - Two-phase flow of compressible air and incompressible water - convective-dispersive contamination migration with air and water - transfer of volatile components from liquid phase to gas and water phase - sorption of contaminants onto soil - transfer of contaminants between air and water phase - biological processes. By means of back calculations of the results of laboratory experiments made by Eisele (1989) it was shown that with the developed program GWLCOND some of the necessary parameters for the numerical simulation of remedial systems can be determined. (orig./SR) [Deutsch] In dieser Arbeit wird ein Verfahren vorgestellt, mit dem eine numerische Simulation der Drucklufteinblasung und Bodenluftabsaugung durchgefuehrt werden kann. Das weiterentwickelte FE-Programmsystem beinhaltet folgende Ablaeufe: - Zweiphasenstroemung der kompressiblen Luft- und der inkompressiblen Wasserphase - Konvektiv-dispersiver Schadstofftransport mit der Gas- und der Wasserphase - Uebergang fluessiger Schadstoffe in die Gas- und in die Wasserphase - Sorption der Schadstoffe an der Feststoffphase - Uebergang der Schadstoffe zwischen der Gas- und der Wasserphase - Biologischer Abbau. Anhand der Nachrechnung eines Laborversuches von Eisele (1989) wird gezeigt, wie mit dem entwickelten Transportprogramm GWLCOND ein Teil der fuer die numerische Simulation des Sanierungsverfahrens benoetigten Kennwerte ermittelt werden kann. (orig./SR)

  15. Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...

    Indian Academy of Sciences (India)

    The flow of fluids through porous media has become ... convection-radiation interaction with heat transfer in boundary layer flow over a flat plate sub- ... Unsteady MHD free convection flow of a compressible fluid past a moving vertical plate in.

  16. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    Science.gov (United States)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  17. Rectal perforation by compressed air.

    Science.gov (United States)

    Park, Young Jin

    2017-07-01

    As the use of compressed air in industrial work has increased, so has the risk of associated pneumatic injury from its improper use. However, damage of large intestine caused by compressed air is uncommon. Herein a case of pneumatic rupture of the rectum is described. The patient was admitted to the Emergency Room complaining of abdominal pain and distension. His colleague triggered a compressed air nozzle over his buttock. On arrival, vital signs were stable but physical examination revealed peritoneal irritation and marked distension of the abdomen. Computed tomography showed a large volume of air in the peritoneal cavity and subcutaneous emphysema at the perineum. A rectal perforation was found at laparotomy and the Hartmann procedure was performed.

  18. Compact torus compression of microwaves

    International Nuclear Information System (INIS)

    Hewett, D.W.; Langdon, A.B.

    1985-01-01

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code

  19. Lossless Compression of Broadcast Video

    DEFF Research Database (Denmark)

    Martins, Bo; Eriksen, N.; Faber, E.

    1998-01-01

    We investigate several techniques for lossless and near-lossless compression of broadcast video.The emphasis is placed on the emerging international standard for compression of continous-tone still images, JPEG-LS, due to its excellent compression performance and moderatecomplexity. Except for one...... cannot be expected to code losslessly at a rate of 125 Mbit/s. We investigate the rate and quality effects of quantization using standard JPEG-LS quantization and two new techniques: visual quantization and trellis quantization. Visual quantization is not part of baseline JPEG-LS, but is applicable...... in the framework of JPEG-LS. Visual tests show that this quantization technique gives much better quality than standard JPEG-LS quantization. Trellis quantization is a process by which the original image is altered in such a way as to make lossless JPEG-LS encoding more effective. For JPEG-LS and visual...

  20. Efficient access of compressed data

    International Nuclear Information System (INIS)

    Eggers, S.J.; Shoshani, A.

    1980-06-01

    A compression technique is presented that allows a high degree of compression but requires only logarithmic access time. The technique is a constant suppression scheme, and is most applicable to stable databases whose distribution of constants is fairly clustered. Furthermore, the repeated use of the technique permits the suppression of a multiple number of different constants. Of particular interest is the application of the constant suppression technique to databases the composite key of which is made up of an incomplete cross product of several attribute domains. The scheme for compressing the full cross product composite key is well known. This paper, however, also handles the general, incomplete case by applying the constant suppression technique in conjunction with a composite key suppression scheme