WorldWideScience

Sample records for compressed sensing framework

  1. A Compressed Sensing Framework for Magnetic Resonance Fingerprinting

    OpenAIRE

    Davies, Mike; Puy, Gilles; Vandergheynst, Pierre; Wiaux, Yves

    2013-01-01

    Inspired by the recently proposed Magnetic Resonance Fingerprinting (MRF) technique, we develop a principled compressed sensing framework for quantitative MRI. The three key components are: a random pulse excitation sequence following the MRF technique; a random EPI subsampling strategy and an iterative projection algorithm that imposes consistency with the Bloch equations. We show that theoretically, as long as the excitation sequence possesses an appropriate form of persistent excitation, w...

  2. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  3. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  4. Integrating dynamic and distributed compressive sensing techniques to enhance image quality of the compressive line sensing system for unmanned aerial vehicles application

    Science.gov (United States)

    Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling

    2017-07-01

    The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.

  5. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  6. A compressive sensing based secure watermark detection and privacy preserving storage framework.

    Science.gov (United States)

    Qia Wang; Wenjun Zeng; Jun Tian

    2014-03-01

    Privacy is a critical issue when the data owners outsource data storage or processing to a third party computing service, such as the cloud. In this paper, we identify a cloud computing application scenario that requires simultaneously performing secure watermark detection and privacy preserving multimedia data storage. We then propose a compressive sensing (CS)-based framework using secure multiparty computation (MPC) protocols to address such a requirement. In our framework, the multimedia data and secret watermark pattern are presented to the cloud for secure watermark detection in a CS domain to protect the privacy. During CS transformation, the privacy of the CS matrix and the watermark pattern is protected by the MPC protocols under the semi-honest security model. We derive the expected watermark detection performance in the CS domain, given the target image, watermark pattern, and the size of the CS matrix (but without the CS matrix itself). The correctness of the derived performance has been validated by our experiments. Our theoretical analysis and experimental results show that secure watermark detection in the CS domain is feasible. Our framework can also be extended to other collaborative secure signal processing and data-mining applications in the cloud.

  7. Energy-efficient sensing in wireless sensor networks using compressed sensing.

    Science.gov (United States)

    Razzaque, Mohammad Abdur; Dobson, Simon

    2014-02-12

    Sensing of the application environment is the main purpose of a wireless sensor network. Most existing energy management strategies and compression techniques assume that the sensing operation consumes significantly less energy than radio transmission and reception. This assumption does not hold in a number of practical applications. Sensing energy consumption in these applications may be comparable to, or even greater than, that of the radio. In this work, we support this claim by a quantitative analysis of the main operational energy costs of popular sensors, radios and sensor motes. In light of the importance of sensing level energy costs, especially for power hungry sensors, we consider compressed sensing and distributed compressed sensing as potential approaches to provide energy efficient sensing in wireless sensor networks. Numerical experiments investigating the effectiveness of compressed sensing and distributed compressed sensing using real datasets show their potential for efficient utilization of sensing and overall energy costs in wireless sensor networks. It is shown that, for some applications, compressed sensing and distributed compressed sensing can provide greater energy efficiency than transform coding and model-based adaptive sensing in wireless sensor networks.

  8. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  9. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  10. Compressed Sensing and Low-Rank Matrix Decomposition in Multisource Images Fusion

    Directory of Open Access Journals (Sweden)

    Kan Ren

    2014-01-01

    Full Text Available We propose a novel super-resolution multisource images fusion scheme via compressive sensing and dictionary learning theory. Under the sparsity prior of images patches and the framework of the compressive sensing theory, the multisource images fusion is reduced to a signal recovery problem from the compressive measurements. Then, a set of multiscale dictionaries are learned from several groups of high-resolution sample image’s patches via a nonlinear optimization algorithm. Moreover, a new linear weights fusion rule is proposed to obtain the high-resolution image. Some experiments are taken to investigate the performance of our proposed method, and the results prove its superiority to its counterparts.

  11. Biomedical sensor design using analog compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    The main drawback of current healthcare systems is the location-specific nature of the system due to the use of fixed/wired biomedical sensors. Since biomedical sensors are usually driven by a battery, power consumption is the most important factor determining the life of a biomedical sensor. They are also restricted by size, cost, and transmission capacity. Therefore, it is important to reduce the load of sampling by merging the sampling and compression steps to reduce the storage usage, transmission times, and power consumption in order to expand the current healthcare systems to Wireless Healthcare Systems (WHSs). In this work, we present an implementation of a low-power biomedical sensor using analog Compressed Sensing (CS) framework for sparse biomedical signals that addresses both the energy and telemetry bandwidth constraints of wearable and wireless Body-Area Networks (BANs). This architecture enables continuous data acquisition and compression of biomedical signals that are suitable for a variety of diagnostic and treatment purposes. At the transmitter side, an analog-CS framework is applied at the sensing step before Analog to Digital Converter (ADC) in order to generate the compressed version of the input analog bio-signal. At the receiver side, a reconstruction algorithm based on Restricted Isometry Property (RIP) condition is applied in order to reconstruct the original bio-signals form the compressed bio-signals with high probability and enough accuracy. We examine the proposed algorithm with healthy and neuropathy surface Electromyography (sEMG) signals. The proposed algorithm achieves a good level for Average Recognition Rate (ARR) at 93% and reconstruction accuracy at 98.9%. In addition, The proposed architecture reduces total computation time from 32 to 11.5 seconds at sampling-rate=29 % of Nyquist rate, Percentage Residual Difference (PRD)=26 %, Root Mean Squared Error (RMSE)=3 %.

  12. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  13. Compressed Sensing with Rank Deficient Dictionaries

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn

    2012-01-01

    In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...

  14. Compressive sensing based ptychography image encryption

    Science.gov (United States)

    Rawat, Nitin

    2015-09-01

    A compressive sensing (CS) based ptychography combined with an optical image encryption is proposed. The diffraction pattern is recorded through ptychography technique further compressed by non-uniform sampling via CS framework. The system requires much less encrypted data and provides high security. The diffraction pattern as well as the lesser measurements of the encrypted samples serves as a secret key which make the intruder attacks more difficult. Furthermore, CS shows that the linearly projected few random samples have adequate information for decryption with a dramatic volume reduction. Experimental results validate the feasibility and effectiveness of our proposed technique compared with the existing techniques. The retrieved images do not reveal any information with the original information. In addition, the proposed system can be robust even with partial encryption and under brute-force attacks.

  15. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning.

    Science.gov (United States)

    Zhang, Zhilin; Jung, Tzyy-Ping; Makeig, Scott; Rao, Bhaskar D

    2013-02-01

    Fetal ECG (FECG) telemonitoring is an important branch in telemedicine. The design of a telemonitoring system via a wireless body area network with low energy consumption for ambulatory use is highly desirable. As an emerging technique, compressed sensing (CS) shows great promise in compressing/reconstructing data with low energy consumption. However, due to some specific characteristics of raw FECG recordings such as nonsparsity and strong noise contamination, current CS algorithms generally fail in this application. This paper proposes to use the block sparse Bayesian learning framework to compress/reconstruct nonsparse raw FECG recordings. Experimental results show that the framework can reconstruct the raw recordings with high quality. Especially, the reconstruction does not destroy the interdependence relation among the multichannel recordings. This ensures that the independent component analysis decomposition of the reconstructed recordings has high fidelity. Furthermore, the framework allows the use of a sparse binary sensing matrix with much fewer nonzero entries to compress recordings. Particularly, each column of the matrix can contain only two nonzero entries. This shows that the framework, compared to other algorithms such as current CS algorithms and wavelet algorithms, can greatly reduce code execution in CPU in the data compression stage.

  16. Accelerated whole-brain multi-parameter mapping using blind compressed sensing.

    Science.gov (United States)

    Bhave, Sampada; Lingala, Sajan Goud; Johnson, Casey P; Magnotta, Vincent A; Jacob, Mathews

    2016-03-01

    To introduce a blind compressed sensing (BCS) framework to accelerate multi-parameter MR mapping, and demonstrate its feasibility in high-resolution, whole-brain T1ρ and T2 mapping. BCS models the evolution of magnetization at every pixel as a sparse linear combination of bases in a dictionary. Unlike compressed sensing, the dictionary and the sparse coefficients are jointly estimated from undersampled data. Large number of non-orthogonal bases in BCS accounts for more complex signals than low rank representations. The low degree of freedom of BCS, attributed to sparse coefficients, translates to fewer artifacts at high acceleration factors (R). From 2D retrospective undersampling experiments, the mean square errors in T1ρ and T2 maps were observed to be within 0.1% up to R = 10. BCS was observed to be more robust to patient-specific motion as compared to other compressed sensing schemes and resulted in minimal degradation of parameter maps in the presence of motion. Our results suggested that BCS can provide an acceleration factor of 8 in prospective 3D imaging with reasonable reconstructions. BCS considerably reduces scan time for multiparameter mapping of the whole brain with minimal artifacts, and is more robust to motion-induced signal changes compared to current compressed sensing and principal component analysis-based techniques. © 2015 Wiley Periodicals, Inc.

  17. Smoothly Clipped Absolute Deviation (SCAD) regularization for compressed sensing MRI Using an augmented Lagrangian scheme

    NARCIS (Netherlands)

    Mehranian, Abolfazl; Rad, Hamidreza Saligheh; Rahmim, Arman; Ay, Mohammad Reza; Zaidi, Habib

    2013-01-01

    Purpose: Compressed sensing (CS) provides a promising framework for MR image reconstruction from highly undersampled data, thus reducing data acquisition time. In this context, sparsity-promoting regularization techniques exploit the prior knowledge that MR images are sparse or compressible in a

  18. Statistical mechanics approach to 1-bit compressed sensing

    International Nuclear Information System (INIS)

    Xu, Yingying; Kabashima, Yoshiyuki

    2013-01-01

    Compressed sensing is a framework that makes it possible to recover an N-dimensional sparse vector x∈R N from its linear transformation y∈R M of lower dimensionality M 1 -norm-based signal recovery scheme for 1-bit compressed sensing using statistical mechanics methods. We show that the signal recovery performance predicted by the replica method under the replica symmetric ansatz, which turns out to be locally unstable for modes breaking the replica symmetry, is in good consistency with experimental results of an approximate recovery algorithm developed earlier. This suggests that the l 1 -based recovery problem typically has many local optima of a similar recovery accuracy, which can be achieved by the approximate algorithm. We also develop another approximate recovery algorithm inspired by the cavity method. Numerical experiments show that when the density of nonzero entries in the original signal is relatively large the new algorithm offers better performance than the abovementioned scheme and does so with a lower computational cost. (paper)

  19. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices.

    Science.gov (United States)

    Zhao, Wenfeng; Sun, Biao; Wu, Tong; Yang, Zhi

    2018-02-01

    On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate. In this paper, we propose two CS encoder designs based on sparse measurement matrices that could lead to efficient hardware implementation. Specifically, two different approaches for the construction of sparse measurement matrices, i.e., the deterministic quasi-cyclic array code (QCAC) matrix and -sparse random binary matrix [-SRBM] are exploited. We demonstrate that the proposed CS encoders lead to comparable recovery performance. And efficient VLSI architecture designs are proposed for QCAC-CS and -SRBM encoders with reduced area and total power consumption.

  20. Discrete Wigner Function Reconstruction and Compressed Sensing

    OpenAIRE

    Zhang, Jia-Ning; Fang, Lei; Ge, Mo-Lin

    2011-01-01

    A new reconstruction method for Wigner function is reported for quantum tomography based on compressed sensing. By analogy with computed tomography, Wigner functions for some quantum states can be reconstructed with less measurements utilizing this compressed sensing based method.

  1. Bayesian signal reconstruction for 1-bit compressed sensing

    International Nuclear Information System (INIS)

    Xu, Yingying; Kabashima, Yoshiyuki; Zdeborová, Lenka

    2014-01-01

    The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly beneficial in practical applications. In this paper, we present a Bayesian approach to signal reconstruction for 1-bit compressed sensing and analyze its typical performance using statistical mechanics. As a basic setup, we consider the case that the measuring matrix Φ has i.i.d entries and the measurements y are noiseless. Utilizing the replica method, we show that the Bayesian approach enables better reconstruction than the l 1 -norm minimization approach, asymptotically saturating the performance obtained when the non-zero entry positions of the signal are known, for signals whose non-zero entries follow zero mean Gaussian distributions. We also test a message passing algorithm for signal reconstruction on the basis of belief propagation. The results of numerical experiments are consistent with those of the theoretical analysis. (paper)

  2. Curvelet-based compressive sensing for InSAR raw data

    Science.gov (United States)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications

  3. Performance of target detection algorithm in compressive sensing miniature ultraspectral imaging compressed sensing system

    Science.gov (United States)

    Gedalin, Daniel; Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Rotman, Stanley R.; Stern, Adrian

    2017-04-01

    Compressive sensing theory was proposed to deal with the high quantity of measurements demanded by traditional hyperspectral systems. Recently, a compressive spectral imaging technique dubbed compressive sensing miniature ultraspectral imaging (CS-MUSI) was presented. This system uses a voltage controlled liquid crystal device to create multiplexed hyperspectral cubes. We evaluate the utility of the data captured using the CS-MUSI system for the task of target detection. Specifically, we compare the performance of the matched filter target detection algorithm in traditional hyperspectral systems and in CS-MUSI multiplexed hyperspectral cubes. We found that the target detection algorithm performs similarly in both cases, despite the fact that the CS-MUSI data is up to an order of magnitude less than that in conventional hyperspectral cubes. Moreover, the target detection is approximately an order of magnitude faster in CS-MUSI data.

  4. Sparse representations and compressive sensing for imaging and vision

    CERN Document Server

    Patel, Vishal M

    2013-01-01

    Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal.  These measurements are usually much smaller than the number of samples that define the signal.  From these small numbers of measurements, the signal is then reconstructed by non-linear procedure.  Compressed sensing has recently emerged as a powerful tool for efficiently processing data in non-traditional ways.  In this book, we highlight some of the key mathematical insights underlying sparse representation and compressed sensing and illustrate the role of these theories in classical vision, imaging and biometrics problems.

  5. Multichannel compressive sensing MRI using noiselet encoding.

    Directory of Open Access Journals (Sweden)

    Kamlesh Pawar

    Full Text Available The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS. In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  6. Efficient two-dimensional compressive sensing in MIMO radar

    Science.gov (United States)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  7. Accelerated Air-coupled Ultrasound Imaging of Wood Using Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Yiming Fang

    2015-12-01

    Full Text Available Air-coupled ultrasound has shown excellent sensitivity and specificity for the nondestructive imaging of wood-based material. However, it is time-consuming, due to the high scanning density limited by the Nyquist law. This study investigated the feasibility of applying compressed sensing techniques to air-coupled ultrasound imaging, aiming to reduce the number of scanning lines and then accelerate the imaging. Firstly, an undersampled scanning strategy specified by a random binary matrix was proposed to address the limitation of the compressed sensing framework. The undersampled scanning can be easily implemented, while only minor modification was required for the existing imaging system. Then, discrete cosine transform was selected experimentally as the representation basis. Finally, orthogonal matching pursuit algorithm was utilized to reconstruct the wood images. Experiments on three real air-coupled ultrasound images indicated the potential of the present method to accelerate air-coupled ultrasound imaging of wood. The same quality of ACU images can be obtained with scanning time cut in half.

  8. Application of Compressive Sensing to Gravitational Microlensing Experiments

    Science.gov (United States)

    Korde-Patel, Asmita; Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is an emerging technology for data compression and simultaneous data acquisition. This is an enabling technique for significant reduction in data bandwidth, and transmission power and hence, can greatly benefit spaceflight instruments. We apply this process to detect exoplanets via gravitational microlensing. We experiment with various impact parameters that describe microlensing curves to determine the effectiveness and uncertainty caused by Compressive Sensing. Finally, we describe implications for spaceflight missions.

  9. Compressive sensing based algorithms for electronic defence

    CERN Document Server

    Mishra, Amit Kumar

    2017-01-01

    This book details some of the major developments in the implementation of compressive sensing in radio applications for electronic defense and warfare communication use. It provides a comprehensive background to the subject and at the same time describes some novel algorithms. It also investigates application value and performance-related parameters of compressive sensing in scenarios such as direction finding, spectrum monitoring, detection, and classification.

  10. The possibilities of compressed sensing based migration

    KAUST Repository

    Aldawood, Ali

    2013-09-22

    Linearized waveform inversion or Least-square migration helps reduce migration artifacts caused by limited acquisition aperture, coarse sampling of sources and receivers, and low subsurface illumination. However, leastsquare migration, based on L2-norm minimization of the misfit function, tends to produce a smeared (smoothed) depiction of the true subsurface reflectivity. Assuming that the subsurface reflectivity distribution is a sparse signal, we use a compressed-sensing (Basis Pursuit) algorithm to retrieve this sparse distribution from a small number of linear measurements. We applied a compressed-sensing algorithm to image a synthetic fault model using dense and sparse acquisition geometries. Tests on synthetic data demonstrate the ability of compressed-sensing to produce highly resolved migrated images. We, also, studied the robustness of the Basis Pursuit algorithm in the presence of Gaussian random noise.

  11. The possibilities of compressed sensing based migration

    KAUST Repository

    Aldawood, Ali; Hoteit, Ibrahim; Alkhalifah, Tariq Ali

    2013-01-01

    Linearized waveform inversion or Least-square migration helps reduce migration artifacts caused by limited acquisition aperture, coarse sampling of sources and receivers, and low subsurface illumination. However, leastsquare migration, based on L2-norm minimization of the misfit function, tends to produce a smeared (smoothed) depiction of the true subsurface reflectivity. Assuming that the subsurface reflectivity distribution is a sparse signal, we use a compressed-sensing (Basis Pursuit) algorithm to retrieve this sparse distribution from a small number of linear measurements. We applied a compressed-sensing algorithm to image a synthetic fault model using dense and sparse acquisition geometries. Tests on synthetic data demonstrate the ability of compressed-sensing to produce highly resolved migrated images. We, also, studied the robustness of the Basis Pursuit algorithm in the presence of Gaussian random noise.

  12. Spectral Compressive Sensing with Polar Interpolation

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Dadkhahi, Hamid; F. Duarte, Marco

    2013-01-01

    . In this paper, we introduce a greedy recovery algorithm that leverages a band-exclusion function and a polar interpolation function to address these two issues in spectral compressive sensing. Our algorithm is geared towards line spectral estimation from compressive measurements and outperforms most existing...

  13. Coding Strategies and Implementations of Compressive Sensing

    Science.gov (United States)

    Tsai, Tsung-Han

    This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others. This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system. Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity. Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or

  14. A Compressed Sensing Perspective of Hippocampal Function

    Directory of Open Access Journals (Sweden)

    Panagiotis ePetrantonakis

    2014-08-01

    Full Text Available Hippocampus is one of the most important information processing units in the brain. Input from the cortex passes through convergent axon pathways to the downstream hippocampal subregions and, after being appropriately processed, is fanned out back to the cortex. Here, we review evidence of the hypothesis that information flow and processing in the hippocampus complies with the principles of Compressed Sensing (CS. The CS theory comprises a mathematical framework that describes how and under which conditions, restricted sampling of information (data set can lead to condensed, yet concise, forms of the initial, subsampled information entity (i.e. of the original data set. In this work, hippocampus related regions and their respective circuitry are presented as a CS-based system whose different components collaborate to realize efficient memory encoding and decoding processes. This proposition introduces a unifying mathematical framework for hippocampal function and opens new avenues for exploring coding and decoding strategies in the brain.

  15. Compressed sensing electron tomography

    International Nuclear Information System (INIS)

    Leary, Rowan; Saghi, Zineb; Midgley, Paul A.; Holland, Daniel J.

    2013-01-01

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform

  16. Fast electron microscopy via compressive sensing

    Science.gov (United States)

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  17. Blind compressed sensing image reconstruction based on alternating direction method

    Science.gov (United States)

    Liu, Qinan; Guo, Shuxu

    2018-04-01

    In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.

  18. Harmonic analysis in integrated energy system based on compressed sensing

    International Nuclear Information System (INIS)

    Yang, Ting; Pen, Haibo; Wang, Dan; Wang, Zhaoxia

    2016-01-01

    Highlights: • We propose a harmonic/inter-harmonic analysis scheme with compressed sensing theory. • Property of sparseness of harmonic signal in electrical power system is proved. • The ratio formula of fundamental and harmonic components sparsity is presented. • Spectral Projected Gradient-Fundamental Filter reconstruction algorithm is proposed. • SPG-FF enhances the precision of harmonic detection and signal reconstruction. - Abstract: The advent of Integrated Energy Systems enabled various distributed energy to access the system through different power electronic devices. The development of this has made the harmonic environment more complex. It needs low complexity and high precision of harmonic detection and analysis methods to improve power quality. To solve the shortages of large data storage capacities and high complexity of compression in sampling under the Nyquist sampling framework, this research paper presents a harmonic analysis scheme based on compressed sensing theory. The proposed scheme enables the performance of the functions of compressive sampling, signal reconstruction and harmonic detection simultaneously. In the proposed scheme, the sparsity of the harmonic signals in the base of the Discrete Fourier Transform (DFT) is numerically calculated first. This is followed by providing a proof of the matching satisfaction of the necessary conditions for compressed sensing. The binary sparse measurement is then leveraged to reduce the storage space in the sampling unit in the proposed scheme. In the recovery process, the scheme proposed a novel reconstruction algorithm called the Spectral Projected Gradient with Fundamental Filter (SPG-FF) algorithm to enhance the reconstruction precision. One of the actual microgrid systems is used as simulation example. The results of the experiment shows that the proposed scheme effectively enhances the precision of harmonic and inter-harmonic detection with low computing complexity, and has good

  19. Compressed Sensing Methods in Radio Receivers Exposed to Noise and Interference

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek

    , there is a problem of interference, which makes digitization of radio receivers even more dicult. High-order low-pass lters are needed to remove interfering signals and secure a high-quality reception. In the mid-2000s a new method of signal acquisition, called compressed sensing, emerged. Compressed sensing...... the downconverted baseband signal and interference, may be replaced by low-order lters. Additional digital signal processing is a price to pay for this feature. Hence, the signal processing is moved from the analog to the digital domain. Filtering compressed sensing, which is a new application of compressed sensing...

  20. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.

    Science.gov (United States)

    Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng

    2017-01-01

    Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. WSNs Microseismic Signal Subsection Compression Algorithm Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Zhouzhou Liu

    2015-01-01

    Full Text Available For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic signals and the compression perception theory (CS used in the transmission process. The algorithm will be collected as a number of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring (Q-CSDR algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4 of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

  2. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  3. Opportunities and challenges in applying the compressive sensing framework to nuclear science and engineering

    International Nuclear Information System (INIS)

    Mille, Matthew; Su, Lin; Yazici, Birsen; Xu, X. George

    2011-01-01

    Compressive sensing is a 5-year old theory that has already resulted in an extremely large number of publications in the literature and that has the potential to impact every field of engineering and applied science that has to do with data acquisition and processing. This paper introduces the mathematics, presents a simple demonstration of radiation dose reduction in x-ray CT imaging, and discusses potential application in nuclear science and engineering. (author)

  4. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  5. Learning-based compressed sensing for infrared image super resolution

    Science.gov (United States)

    Zhao, Yao; Sui, Xiubao; Chen, Qian; Wu, Shaochi

    2016-05-01

    This paper presents an infrared image super-resolution method based on compressed sensing (CS). First, the reconstruction model under the CS framework is established and a Toeplitz matrix is selected as the sensing matrix. Compared with traditional learning-based methods, the proposed method uses a set of sub-dictionaries instead of two coupled dictionaries to recover high resolution (HR) images. And Toeplitz sensing matrix allows the proposed method time-efficient. Second, all training samples are divided into several feature spaces by using the proposed adaptive k-means classification method, which is more accurate than the standard k-means method. On the basis of this approach, a complex nonlinear mapping from the HR space to low resolution (LR) space can be converted into several compact linear mappings. Finally, the relationships between HR and LR image patches can be obtained by multi-sub-dictionaries and HR infrared images are reconstructed by the input LR images and multi-sub-dictionaries. The experimental results show that the proposed method is quantitatively and qualitatively more effective than other state-of-the-art methods.

  6. Leveraging EAP-Sparsity for Compressed Sensing of MS-HARDI in (k, q)-Space.

    Science.gov (United States)

    Sun, Jiaqi; Sakhaee, Elham; Entezari, Alireza; Vemuri, Baba C

    2015-01-01

    Compressed Sensing (CS) for the acceleration of MR scans has been widely investigated in the past decade. Lately, considerable progress has been made in achieving similar speed ups in acquiring multi-shell high angular resolution diffusion imaging (MS-HARDI) scans. Existing approaches in this context were primarily concerned with sparse reconstruction of the diffusion MR signal S(q) in the q-space. More recently, methods have been developed to apply the compressed sensing framework to the 6-dimensional joint (k, q)-space, thereby exploiting the redundancy in this 6D space. To guarantee accurate reconstruction from partial MS-HARDI data, the key ingredients of compressed sensing that need to be brought together are: (1) the function to be reconstructed needs to have a sparse representation, and (2) the data for reconstruction ought to be acquired in the dual domain (i.e., incoherent sensing) and (3) the reconstruction process involves a (convex) optimization. In this paper, we present a novel approach that uses partial Fourier sensing in the 6D space of (k, q) for the reconstruction of P(x, r). The distinct feature of our approach is a sparsity model that leverages surfacelets in conjunction with total variation for the joint sparse representation of P(x, r). Thus, our method stands to benefit from the practical guarantees for accurate reconstruction from partial (k, q)-space data. Further, we demonstrate significant savings in acquisition time over diffusion spectral imaging (DSI) which is commonly used as the benchmark for comparisons in reported literature. To demonstrate the benefits of this approach,.we present several synthetic and real data examples.

  7. Optical scanning holography based on compressive sensing using a digital micro-mirror device

    Science.gov (United States)

    A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou

    2017-02-01

    Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.

  8. 2nd International MATHEON Conference on Compressed Sensing and its Applications

    CERN Document Server

    Caire, Giuseppe; Calderbank, Robert; März, Maximilian; Kutyniok, Gitta; Mathar, Rudolf

    2017-01-01

    This contributed volume contains articles written by the plenary and invited speakers from the second international MATHEON Workshop 2015 that focus on applications of compressed sensing. Article authors address their techniques for solving the problems of compressed sensing, as well as connections to related areas like detecting community-like structures in graphs, curbatures on Grassmanians, and randomized tensor train singular value decompositions. Some of the novel applications covered include dimensionality reduction, information theory, random matrices, sparse approximation, and sparse recovery.  This book is aimed at both graduate students and researchers in the areas of applied mathematics, computer science, and engineering, as well as other applied scientists exploring the potential applications for the novel methodology of compressed sensing. An introduction to the subject of compressed sensing is also provided for researchers interested in the field who are not as familiar with it. .

  9. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    Science.gov (United States)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  10. Object specific reconstruction using compressively sensed data

    International Nuclear Information System (INIS)

    Mahalanobis, Abhijit

    2008-01-01

    Compressed sensing holds the promise for radically novel sensors that can perfectly reconstruct images using considerably less samples of data than required by the otherwise general Shannon sampling theorem. In surveillance systems however, it is also desirable to cue regions of the image where objects of interest may exist. Thus in this paper, we are interested in imaging interesting objects in a scene, without necessarily seeking perfect reconstruction of the whole image. We show that our goals are achieved by minimizing a modified L2-norm criterion with good results when the reconstruction of only specific objects is of interest. The method yields a simple closed form analytical solution that does not require iterative processing. Objects can be meaningfully sensed in considerable detail while heavily compressing the scene elsewhere. Essentially, this embeds the object detection and clutter discrimination function in the sensing and imaging process.

  11. Blind Compressed Sensing Parameter Estimation of Non-cooperative Frequency Hopping Signal

    Directory of Open Access Journals (Sweden)

    Chen Ying

    2016-10-01

    Full Text Available To overcome the disadvantages of a non-cooperative frequency hopping communication system, such as a high sampling rate and inadequate prior information, parameter estimation based on Blind Compressed Sensing (BCS is proposed. The signal is precisely reconstructed by the alternating iteration of sparse coding and basis updating, and the hopping frequencies are directly estimated based on the results. Compared with conventional compressive sensing, blind compressed sensing does not require prior information of the frequency hopping signals; hence, it offers an effective solution to the inadequate prior information problem. In the proposed method, the signal is first modeled and then reconstructed by Orthonormal Block Diagonal Blind Compressed Sensing (OBD-BCS, and the hopping frequencies and hop period are finally estimated. The simulation results suggest that the proposed method can reconstruct and estimate the parameters of noncooperative frequency hopping signals with a low signal-to-noise ratio.

  12. Compressive sensing scalp EEG signals: implementations and practical performance.

    Science.gov (United States)

    Abdulghani, Amir M; Casson, Alexander J; Rodriguez-Villegas, Esther

    2012-11-01

    Highly miniaturised, wearable computing and communication systems allow unobtrusive, convenient and long term monitoring of a range of physiological parameters. For long term operation from the physically smallest batteries, the average power consumption of a wearable device must be very low. It is well known that the overall power consumption of these devices can be reduced by the inclusion of low power consumption, real-time compression of the raw physiological data in the wearable device itself. Compressive sensing is a new paradigm for providing data compression: it has shown significant promise in fields such as MRI; and is potentially suitable for use in wearable computing systems as the compression process required in the wearable device has a low computational complexity. However, the practical performance very much depends on the characteristics of the signal being sensed. As such the utility of the technique cannot be extrapolated from one application to another. Long term electroencephalography (EEG) is a fundamental tool for the investigation of neurological disorders and is increasingly used in many non-medical applications, such as brain-computer interfaces. This article investigates in detail the practical performance of different implementations of the compressive sensing theory when applied to scalp EEG signals.

  13. Experimental scheme and restoration algorithm of block compression sensing

    Science.gov (United States)

    Zhang, Linxia; Zhou, Qun; Ke, Jun

    2018-01-01

    Compressed Sensing (CS) can use the sparseness of a target to obtain its image with much less data than that defined by the Nyquist sampling theorem. In this paper, we study the hardware implementation of a block compression sensing system and its reconstruction algorithms. Different block sizes are used. Two algorithms, the orthogonal matching algorithm (OMP) and the full variation minimum algorithm (TV) are used to obtain good reconstructions. The influence of block size on reconstruction is also discussed.

  14. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  15. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.

    Science.gov (United States)

    Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-11-08

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .

  16. Identification of Coupled Map Lattice Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xie

    2016-01-01

    Full Text Available A novel approach for the parameter identification of coupled map lattice (CML based on compressed sensing is presented in this paper. We establish a meaningful connection between these two seemingly unrelated study topics and identify the weighted parameters using the relevant recovery algorithms in compressed sensing. Specifically, we first transform the parameter identification problem of CML into the sparse recovery problem of underdetermined linear system. In fact, compressed sensing provides a feasible method to solve underdetermined linear system if the sensing matrix satisfies some suitable conditions, such as restricted isometry property (RIP and mutual coherence. Then we give a low bound on the mutual coherence of the coefficient matrix generated by the observed values of CML and also prove that it satisfies the RIP from a theoretical point of view. If the weighted vector of each element is sparse in the CML system, our proposed approach can recover all the weighted parameters using only about M samplings, which is far less than the number of the lattice elements N. Another important and significant advantage is that if the observed data are contaminated with some types of noises, our approach is still effective. In the simulations, we mainly show the effects of coupling parameter and noise on the recovery rate.

  17. Online sparse representation for remote sensing compressed-sensed video sampling

    Science.gov (United States)

    Wang, Jie; Liu, Kun; Li, Sheng-liang; Zhang, Li

    2014-11-01

    Most recently, an emerging Compressed Sensing (CS) theory has brought a major breakthrough for data acquisition and recovery. It asserts that a signal, which is highly compressible in a known basis, can be reconstructed with high probability through sampling frequency which is well below Nyquist Sampling Frequency. When applying CS to Remote Sensing (RS) Video imaging, it can directly and efficiently acquire compressed image data by randomly projecting original data to obtain linear and non-adaptive measurements. In this paper, with the help of distributed video coding scheme which is a low-complexity technique for resource limited sensors, the frames of a RS video sequence are divided into Key frames (K frames) and Non-Key frames (CS frames). In other words, the input video sequence consists of many groups of pictures (GOPs) and each GOP consists of one K frame followed by several CS frames. Both of them are measured based on block, but at different sampling rates. In this way, the major encoding computation burden will be shifted to the decoder. At the decoder, the Side Information (SI) is generated for the CS frames using traditional Motion-Compensated Interpolation (MCI) technique according to the reconstructed key frames. The over-complete dictionary is trained by dictionary learning methods based on SI. These learning methods include ICA-like, PCA, K-SVD, MOD, etc. Using these dictionaries, the CS frames could be reconstructed according to sparse-land model. In the numerical experiments, the reconstruction performance of ICA algorithm, which is often evaluated by Peak Signal-to-Noise Ratio (PSNR), has been made compared with other online sparse representation algorithms. The simulation results show its advantages in reducing reconstruction time and robustness in reconstruction performance when applying ICA algorithm to remote sensing video reconstruction.

  18. Feasibility study for application of the compressed-sensing framework to interior computed tomography (ICT) for low-dose, high-accurate dental x-ray imaging

    Science.gov (United States)

    Je, U. K.; Cho, H. M.; Cho, H. S.; Park, Y. O.; Park, C. K.; Lim, H. W.; Kim, K. S.; Kim, G. A.; Park, S. Y.; Woo, T. H.; Choi, S. I.

    2016-02-01

    In this paper, we propose a new/next-generation type of CT examinations, the so-called Interior Computed Tomography (ICT), which may presumably lead to dose reduction to the patient outside the target region-of-interest (ROI), in dental x-ray imaging. Here an x-ray beam from each projection position covers only a relatively small ROI containing a target of diagnosis from the examined structure, leading to imaging benefits such as decreasing scatters and system cost as well as reducing imaging dose. We considered the compressed-sensing (CS) framework, rather than common filtered-backprojection (FBP)-based algorithms, for more accurate ICT reconstruction. We implemented a CS-based ICT algorithm and performed a systematic simulation to investigate the imaging characteristics. Simulation conditions of two ROI ratios of 0.28 and 0.14 between the target and the whole phantom sizes and four projection numbers of 360, 180, 90, and 45 were tested. We successfully reconstructed ICT images of substantially high image quality by using the CS framework even with few-view projection data, still preserving sharp edges in the images.

  19. COxSwAIN: Compressive Sensing for Advanced Imaging and Navigation

    Science.gov (United States)

    Kurwitz, Richard; Pulley, Marina; LaFerney, Nathan; Munoz, Carlos

    2015-01-01

    The COxSwAIN project focuses on building an image and video compression scheme that can be implemented in a small or low-power satellite. To do this, we used Compressive Sensing, where the compression is performed by matrix multiplications on the satellite and reconstructed on the ground. Our paper explains our methodology and demonstrates the results of the scheme, being able to achieve high quality image compression that is robust to noise and corruption.

  20. On the Feedback Reduction of Relay Multiuser Networks using Compressive Sensing

    KAUST Repository

    Elkhalil, Khalil; Eltayeb, Mohammed; Kammoun, Abla; Al-Naffouri, Tareq Y.; Bahrami, Hamid Reza

    2016-01-01

    This paper presents a comprehensive performance analysis of full-duplex multiuser relay networks employing opportunistic scheduling with noisy and compressive feedback. Specifically, two feedback techniques based on compressive sensing (CS) theory

  1. Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.

    Science.gov (United States)

    She, Huajun; Chen, Rong-Rong; Liang, Dong; DiBella, Edward V R; Ying, Leslie

    2014-02-01

    To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods. Copyright © 2013 Wiley Periodicals, Inc.

  2. Compressed sensing approach for wrist vein biometrics.

    Science.gov (United States)

    Lantsov, Aleksey; Ryabko, Maxim; Shchekin, Aleksey

    2018-04-01

    The work describes features of the compressed sensing (CS) approach utilized for development of a wearable system for wrist vein recognition with single-pixel detection; we consider this system useful for biometrics authentication purposes. The CS approach implies use of a spatial light modulation (SLM) which, in our case, can be performed differently-with a liquid crystal display or diffusely scattering medium. We show that compressed sensing combined with above-mentioned means of SLM allows us to avoid using an optical system-a limiting factor for wearable devices. The trade-off between the 2 different SLM approaches regarding issues of practical implementation of CS approach for wrist vein recognition purposes is discussed. A possible solution of a misalignment problem-a typical issue for imaging systems based upon 2D arrays of photodiodes-is also proposed. Proposed design of the wearable device for wrist vein recognition is based upon single-pixel detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Compressive sensing with a microwave photonic filter

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2015-01-01

    In this letter, we present a novel approach to realizing photonics-assisted compressive sensing (CS) with the technique of microwave photonic fi ltering. In the proposed system, an input spectrally sparse signal to be captured and a random sequence are modulated on an optical carrier via two Mach...

  4. Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery

    Science.gov (United States)

    Vishnukumar, S.; Wilscy, M.

    2017-12-01

    In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.

  5. Photonic compressive sensing enabled data efficient time stretch optical coherence tomography

    Science.gov (United States)

    Mididoddi, Chaitanya K.; Wang, Chao

    2018-03-01

    Photonic time stretch (PTS) has enabled real time spectral domain optical coherence tomography (OCT). However, this method generates a torrent of massive data at GHz stream rate, which requires capturing as per Nyquist principle. If the OCT interferogram signal is sparse in Fourier domain, which is always true for samples with limited number of layers, it can be captured at lower (sub-Nyquist) acquisition rate as per compressive sensing method. In this work we report a data compressed PTS-OCT system based on photonic compressive sensing with 66% compression with low acquisition rate of 50MHz and measurement speed of 1.51MHz per depth profile. A new method has also been proposed to improve the system with all-optical random pattern generation, which completely avoids electronic bottleneck in traditional binary pseudorandom binary sequence (PRBS) generators.

  6. A Novel Object Tracking Algorithm Based on Compressed Sensing and Entropy of Information

    Directory of Open Access Journals (Sweden)

    Ding Ma

    2015-01-01

    Full Text Available Object tracking has always been a hot research topic in the field of computer vision; its purpose is to track objects with specific characteristics or representation and estimate the information of objects such as their locations, sizes, and rotation angles in the current frame. Object tracking in complex scenes will usually encounter various sorts of challenges, such as location change, dimension change, illumination change, perception change, and occlusion. This paper proposed a novel object tracking algorithm based on compressed sensing and information entropy to address these challenges. First, objects are characterized by the Haar (Haar-like and ORB features. Second, the dimensions of computation space of the Haar and ORB features are effectively reduced through compressed sensing. Then the above-mentioned features are fused based on information entropy. Finally, in the particle filter framework, an object location was obtained by selecting candidate object locations in the current frame from the local context neighboring the optimal locations in the last frame. Our extensive experimental results demonstrated that this method was able to effectively address the challenges of perception change, illumination change, and large area occlusion, which made it achieve better performance than existing approaches such as MIL and CT.

  7. A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map

    International Nuclear Information System (INIS)

    Xiao Di; Cai Hong-Kun; Zheng Hong-Ying

    2015-01-01

    In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc. (paper)

  8. Blind compressive sensing dynamic MRI

    Science.gov (United States)

    Lingala, Sajan Goud; Jacob, Mathews

    2013-01-01

    We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the non-orthogonal nature of the dictionary basis functions. Since the number of degrees of freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting ℓ1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler sub problems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the ℓ1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the ℓ0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding

  9. Compressed-sensing application - Pre-stack kirchhoff migration

    KAUST Repository

    Aldawood, Ali; Hoteit, Ibrahim; Alkhalifah, Tariq Ali

    2013-01-01

    Least-squares migration is a linearized form of waveform inversion that aims to enhance the spatial resolution of the subsurface reflectivity distribution and reduce the migration artifacts due to limited recording aperture, coarse sampling of sources and receivers, and low subsurface illumination. Least-squares migration, however, due to the nature of its minimization process, tends to produce smoothed and dispersed versions of the reflectivity of the subsurface. Assuming that the subsurface reflectivity distribution is sparse, we propose the addition of a non-quadratic L1-norm penalty term on the model space in the objective function. This aims to preserve the sparse nature of the subsurface reflectivity series and enhance resolution. We further use a compressed-sensing algorithm to solve the linear system, which utilizes the sparsity assumption to produce highly resolved migrated images. Thus, the Kirchhoff migration implementation is formulated as a Basis Pursuit denoise (BPDN) problem to obtain the sparse reflectivity model. Applications on synthetic data show that reflectivity models obtained using this compressed-sensing algorithm are highly accurate with optimal resolution.

  10. Design and analysis of compressed sensing radar detectors

    NARCIS (Netherlands)

    Anitori, L.; Maleki, A.; Otten, M.P.G.; Baraniuk, R.G.; Hoogeboom, P.

    2013-01-01

    We consider the problem of target detection from a set of Compressed Sensing (CS) radar measurements corrupted by additive white Gaussian noise. We propose two novel architectures and compare their performance by means of Receiver Operating Characteristic (ROC) curves. Using asymptotic arguments and

  11. SenSafe: A Smartphone-Based Traffic Safety Framework by Sensing Vehicle and Pedestrian Behaviors

    Directory of Open Access Journals (Sweden)

    Zhenyu Liu

    2016-01-01

    Full Text Available Traffic accident involving vehicles is one of the most serious problems in the transportation system nowadays. How to detect dangerous steering and then alarm drivers in real time is a problem. What is more, walking while using smartphones makes pedestrian more susceptible to various risks. Although dedicated short range communication (DSRC provides the way for safety communications, most of vehicles have not been deployed with DSRC components. Even worse, DSRC is not supported by the smartphones for vehicle-to-pedestrian (V2P communication. In this paper, a smartphone-based framework named SenSafe is developed to improve the traffic safety. SenSafe is a framework which only utilizes the smartphone to sense the surrounding events and provides alerts to drivers. Smartphone-based driving behaviors detection mechanism is developed inside the framework to discover various steering behaviors. Besides, the Wi-Fi association and authentication overhead is reduced to broadcast the compressed sensing data using the Wi-Fi beacon to inform the drivers of the surroundings. Furthermore, a collision estimation algorithm is designed to issue appropriate warnings. Finally, an Android-based implementation of SenSafe framework has been achieved to demonstrate the application reliability in real environments.

  12. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    Science.gov (United States)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  13. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Vargas Danilo

    2016-01-01

    Full Text Available A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1 and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  14. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  15. Effectiveness of compressed sensing and transmission in wireless sensor networks for structural health monitoring

    Science.gov (United States)

    Fujiwara, Takahiro; Uchiito, Haruki; Tokairin, Tomoya; Kawai, Hiroyuki

    2017-04-01

    Regarding Structural Health Monitoring (SHM) for seismic acceleration, Wireless Sensor Networks (WSN) is a promising tool for low-cost monitoring. Compressed sensing and transmission schemes have been drawing attention to achieve effective data collection in WSN. Especially, SHM systems installing massive nodes of WSN require efficient data transmission due to restricted communications capability. The dominant frequency band of seismic acceleration is occupied within 100 Hz or less. In addition, the response motions on upper floors of a structure are activated at a natural frequency, resulting in induced shaking at the specified narrow band. Focusing on the vibration characteristics of structures, we introduce data compression techniques for seismic acceleration monitoring in order to reduce the amount of transmission data. We carry out a compressed sensing and transmission scheme by band pass filtering for seismic acceleration data. The algorithm executes the discrete Fourier transform for the frequency domain and band path filtering for the compressed transmission. Assuming that the compressed data is transmitted through computer networks, restoration of the data is performed by the inverse Fourier transform in the receiving node. This paper discusses the evaluation of the compressed sensing for seismic acceleration by way of an average error. The results present the average error was 0.06 or less for the horizontal acceleration, in conditions where the acceleration was compressed into 1/32. Especially, the average error on the 4th floor achieved a small error of 0.02. Those results indicate that compressed sensing and transmission technique is effective to reduce the amount of data with maintaining the small average error.

  16. Dynamical Functional Theory for Compressed Sensing

    DEFF Research Database (Denmark)

    Cakmak, Burak; Opper, Manfred; Winther, Ole

    2017-01-01

    the Thouless Anderson-Palmer (TAP) equations corresponding to the ensemble. Using a dynamical functional approach we are able to derive an effective stochastic process for the marginal statistics of a single component of the dynamics. This allows us to design memory terms in the algorithm in such a way...... that the resulting fields become Gaussian random variables allowing for an explicit analysis. The asymptotic statistics of these fields are consistent with the replica ansatz of the compressed sensing problem....

  17. Compressive Sensing: Analysis of Signals in Radio Astronomy

    Directory of Open Access Journals (Sweden)

    Gaigals G.

    2013-12-01

    Full Text Available The compressive sensing (CS theory says that for some kind of signals there is no need to keep or transfer all the data acquired accordingly to the Nyquist criterion. In this work we investigate if the CS approach is applicable for recording and analysis of radio astronomy (RA signals. Since CS methods are applicable for the signals with sparse (and compressible representations, the compressibility of RA signals is verified. As a result, we identify which RA signals can be processed using CS, find the parameters which can improve or degrade CS application to RA results, describe the optimum way how to perform signal filtering in CS applications. Also, a range of virtual LabVIEW instruments are created for the signal analysis with the CS theory.

  18. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    Science.gov (United States)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  19. Sampling theory, a renaissance compressive sensing and other developments

    CERN Document Server

    2015-01-01

    Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.

  20. Information theoretic bounds for compressed sensing in SAR imaging

    International Nuclear Information System (INIS)

    Jingxiong, Zhang; Ke, Yang; Jianzhong, Guo

    2014-01-01

    Compressed sensing (CS) is a new framework for sampling and reconstructing sparse signals from measurements significantly fewer than those prescribed by Nyquist rate in the Shannon sampling theorem. This new strategy, applied in various application areas including synthetic aperture radar (SAR), relies on two principles: sparsity, which is related to the signals of interest, and incoherence, which refers to the sensing modality. An important question in CS-based SAR system design concerns sampling rate necessary and sufficient for exact or approximate recovery of sparse signals. In the literature, bounds of measurements (or sampling rate) in CS have been proposed from the perspective of information theory. However, these information-theoretic bounds need to be reviewed and, if necessary, validated for CS-based SAR imaging, as there are various assumptions made in the derivations of lower and upper bounds on sub-Nyquist sampling rates, which may not hold true in CS-based SAR imaging. In this paper, information-theoretic bounds of sampling rate will be analyzed. For this, the SAR measurement system is modeled as an information channel, with channel capacity and rate-distortion characteristics evaluated to enable the determination of sampling rates required for recovery of sparse scenes. Experiments based on simulated data will be undertaken to test the theoretic bounds against empirical results about sampling rates required to achieve certain detection error probabilities

  1. Compressed sensing techniques for receiver based post-compensation of transmitter's nonlinear distortions in OFDM systems

    KAUST Repository

    Owodunni, Damilola S.

    2014-04-01

    In this paper, compressed sensing techniques are proposed to linearize commercial power amplifiers driven by orthogonal frequency division multiplexing signals. The nonlinear distortion is considered as a sparse phenomenon in the time-domain, and three compressed sensing based algorithms are presented to estimate and compensate for these distortions at the receiver using a few and, at times, even no frequency-domain free carriers (i.e. pilot carriers). The first technique is a conventional compressed sensing approach, while the second incorporates a priori information about the distortions to enhance the estimation. Finally, the third technique involves an iterative data-aided algorithm that does not require any pilot carriers and hence allows the system to work at maximum bandwidth efficiency. The performances of all the proposed techniques are evaluated on a commercial power amplifier and compared. The error vector magnitude and symbol error rate results show the ability of compressed sensing to compensate for the amplifier\\'s nonlinear distortions. © 2013 Elsevier B.V.

  2. Compressive Sensing Based Bio-Inspired Shape Feature Detection CMOS Imager

    Science.gov (United States)

    Duong, Tuan A. (Inventor)

    2015-01-01

    A CMOS imager integrated circuit using compressive sensing and bio-inspired detection is presented which integrates novel functions and algorithms within a novel hardware architecture enabling efficient on-chip implementation.

  3. Large Negative Linear Compressibility in InH(BDC)₂ from Framework Hinging.

    Science.gov (United States)

    Zeng, Qingxin; Wang, Kai; Zou, Bo

    2017-11-08

    Materials with negative linear compressibility (NLC) counterintuitively expand along one specific direction coupled to the volume reduction when compressed uniformly. NLC with a large value is desired for compression and materials science. However, NLC is generally smaller than -20 TPa -1 . High-pressure X-ray diffraction experiments reveal that the β-quartz-like InH(BDC) 2 generates an extreme NLC (-62.4 TPa -1 ) by framework hinging. InH(BDC) 2 is much safer and lower-cost than Au + /Ag + and CN - -containing materials that dominated the fields of large NLC. This work reconfirms that a negative thermal expansion flexible framework could likely exhibit large NLC. Moreover, a large NLC could be anticipated to arise from β-quartz-like or related frameworks composed of rigid linear ligands and flexible framework angles.

  4. Compressive sensing in a photonic link with optical integration

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2014-01-01

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal......, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique....

  5. Sparse-View Ultrasound Diffraction Tomography Using Compressed Sensing with Nonuniform FFT

    Directory of Open Access Journals (Sweden)

    Shaoyan Hua

    2014-01-01

    Full Text Available Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography (UDT. In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed method can provide higher resolution and lower artifacts with the same view number. The robustness to noise and the computation complexity are also discussed.

  6. PRESS: A Novel Framework of Trajectory Compression in Road Networks

    OpenAIRE

    Song, Renchu; Sun, Weiwei; Zheng, Baihua; Zheng, Yu

    2014-01-01

    Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS (Paralleled Road-Network-Based Trajectory Compression), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm ...

  7. A Comparison of Compressed Sensing and Sparse Recovery Algorithms Applied to Simulation Data

    Directory of Open Access Journals (Sweden)

    Ya Ju Fan

    2016-08-01

    Full Text Available The move toward exascale computing for scientific simulations is placing new demands on compression techniques. It is expected that the I/O system will not be able to support the volume of data that is expected to be written out. To enable quantitative analysis and scientific discovery, we are interested in techniques that compress high-dimensional simulation data and can provide perfect or near-perfect reconstruction.  In this paper, we explore the use of compressed sensing (CS techniques to reduce the size of the data before they are written out. Using large-scale simulation data, we investigate how the sufficient sparsity condition and the contrast in the data affect the quality of reconstruction and the degree of compression.  We provide suggestions for the practical implementation of CS techniques and compare them with other sparse recovery methods. Our results show that despite longer times for reconstruction, compressed sensing techniques can provide near perfect reconstruction over a range of data with varying sparsity.

  8. Efficient Imaging and Real-Time Display of Scanning Ion Conductance Microscopy Based on Block Compressive Sensing

    Science.gov (United States)

    Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing

    2014-07-01

    Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.

  9. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

    Directory of Open Access Journals (Sweden)

    Vibha Tiwari

    2015-12-01

    Full Text Available Compressive sensing theory enables faithful reconstruction of signals, sparse in domain $ \\Psi $, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix $ \\Phi $ which satisfies restricted isometric property. The role played by sensing matrix $ \\Phi $ and sparsity matrix $ \\Psi $ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads to high computational cost. In this paper, effort is made to design sparse sensing matrix with least incurred computational cost while maintaining quality of reconstructed image. The design approach followed is based on sparse block circulant matrix (SBCM with few modifications. The other used sparse sensing matrix consists of 15 ones in each column. The medical images used are acquired from US, MRI and CT modalities. The image quality measurement parameters are used to compare the performance of reconstructed medical images using various sensing matrices. It is observed that, since Gram matrix of dictionary matrix ($ \\Phi \\Psi \\mathrm{} $ is closed to identity matrix in case of proposed modified SBCM, therefore, it helps to reconstruct the medical images of very good quality.

  10. Compressive Sensing for Spread Spectrum Receivers

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Jensen, Tobias Lindstrøm; Larsen, Torben

    2013-01-01

    With the advent of ubiquitous computing there are two design parameters of wireless communication devices that become very important: power efficiency and production cost. Compressive sensing enables the receiver in such devices to sample below the Shannon-Nyquist sampling rate, which may lead...... the bit error rate performance is degraded by the subsampling in the CS-enabled receivers, this may be remedied by including quantization in the receiver model.We also study the computational complexity of the proposed receiver design under different sparsity and measurement ratios. Our work shows...

  11. Compressed Sensing with Linear Correlation Between Signal and Measurement Noise

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Larsen, Torben

    2014-01-01

    reconstruction algorithms, but is not known in existing literature. The proposed technique reduces reconstruction error considerably in the case of linearly correlated measurements and noise. Numerical experiments confirm the efficacy of the technique. The technique is demonstrated with application to low......Existing convex relaxation-based approaches to reconstruction in compressed sensing assume that noise in the measurements is independent of the signal of interest. We consider the case of noise being linearly correlated with the signal and introduce a simple technique for improving compressed...... sensing reconstruction from such measurements. The technique is based on a linear model of the correlation of additive noise with the signal. The modification of the reconstruction algorithm based on this model is very simple and has negligible additional computational cost compared to standard...

  12. MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing

    DEFF Research Database (Denmark)

    2014-01-01

    MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing......MATLAB simulation software used for the PhD thesis "Acquisition of Multi-Band Signals via Compressed Sensing...

  13. A method of vehicle license plate recognition based on PCANet and compressive sensing

    Science.gov (United States)

    Ye, Xianyi; Min, Feng

    2018-03-01

    The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.

  14. An Adaptive Joint Sparsity Recovery for Compressive Sensing Based EEG System

    Directory of Open Access Journals (Sweden)

    Hamza Djelouat

    2017-01-01

    Full Text Available The last decade has witnessed tremendous efforts to shape the Internet of things (IoT platforms to be well suited for healthcare applications. These platforms are comprised of a network of wireless sensors to monitor several physical and physiological quantities. For instance, long-term monitoring of brain activities using wearable electroencephalogram (EEG sensors is widely exploited in the clinical diagnosis of epileptic seizures and sleeping disorders. However, the deployment of such platforms is challenged by the high power consumption and system complexity. Energy efficiency can be achieved by exploring efficient compression techniques such as compressive sensing (CS. CS is an emerging theory that enables a compressed acquisition using well-designed sensing matrices. Moreover, system complexity can be optimized by using hardware friendly structured sensing matrices. This paper quantifies the performance of a CS-based multichannel EEG monitoring. In addition, the paper exploits the joint sparsity of multichannel EEG using subspace pursuit (SP algorithm as well as a designed sparsifying basis in order to improve the reconstruction quality. Furthermore, the paper proposes a modification to the SP algorithm based on an adaptive selection approach to further improve the performance in terms of reconstruction quality, execution time, and the robustness of the recovery process.

  15. A motion sensing-based framework for robotic manipulation.

    Science.gov (United States)

    Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing

    2016-01-01

    To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.

  16. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.

    Science.gov (United States)

    Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao

    2018-04-05

    Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  17. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar

    Directory of Open Access Journals (Sweden)

    Kuei-Chi Tsao

    2018-04-01

    Full Text Available Complementary metal-oxide-semiconductor (CMOS radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA. The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  18. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators

    International Nuclear Information System (INIS)

    Flammia, Steven T; Gross, David; Liu, Yi-Kai; Eisert, Jens

    2012-01-01

    Intuitively, if a density operator has small rank, then it should be easier to estimate from experimental data, since in this case only a few eigenvectors need to be learned. We prove two complementary results that confirm this intuition. Firstly, we show that a low-rank density matrix can be estimated using fewer copies of the state, i.e. the sample complexity of tomography decreases with the rank. Secondly, we show that unknown low-rank states can be reconstructed from an incomplete set of measurements, using techniques from compressed sensing and matrix completion. These techniques use simple Pauli measurements, and their output can be certified without making any assumptions about the unknown state. In this paper, we present a new theoretical analysis of compressed tomography, based on the restricted isometry property for low-rank matrices. Using these tools, we obtain near-optimal error bounds for the realistic situation where the data contain noise due to finite statistics, and the density matrix is full-rank with decaying eigenvalues. We also obtain upper bounds on the sample complexity of compressed tomography, and almost-matching lower bounds on the sample complexity of any procedure using adaptive sequences of Pauli measurements. Using numerical simulations, we compare the performance of two compressed sensing estimators—the matrix Dantzig selector and the matrix Lasso—with standard maximum-likelihood estimation (MLE). We find that, given comparable experimental resources, the compressed sensing estimators consistently produce higher fidelity state reconstructions than MLE. In addition, the use of an incomplete set of measurements leads to faster classical processing with no loss of accuracy. Finally, we show how to certify the accuracy of a low-rank estimate using direct fidelity estimation, and describe a method for compressed quantum process tomography that works for processes with small Kraus rank and requires only Pauli eigenstate preparations

  19. Polarimetric and Indoor Imaging Fusion Based on Compressive Sensing

    Science.gov (United States)

    2013-04-01

    34 in Proc. IEEE Radar Conf, Rome, Italy , May 2008. [17] M. G. Amin, F. Ahmad, W. Zhang, "A compressive sensing approach to moving target... Ferrara , J. Jackson, and M. Stuff, "Three-dimensional sparse-aperture moving-target imaging," in Proc. SPIE, vol. 6970, 2008. [43] M. Skolnik (Ed

  20. Mobile Autonomous Sensing Unit (MASU: A Framework That Supports Distributed Pervasive Data Sensing

    Directory of Open Access Journals (Sweden)

    Esunly Medina

    2016-07-01

    Full Text Available Pervasive data sensing is a major issue that transverses various research areas and application domains. It allows identifying people’s behaviour and patterns without overwhelming the monitored persons. Although there are many pervasive data sensing applications, they are typically focused on addressing specific problems in a single application domain, making them difficult to generalize or reuse. On the other hand, the platforms for supporting pervasive data sensing impose restrictions to the devices and operational environments that make them unsuitable for monitoring loosely-coupled or fully distributed work. In order to help address this challenge this paper present a framework that supports distributed pervasive data sensing in a generic way. Developers can use this framework to facilitate the implementations of their applications, thus reducing complexity and effort in such an activity. The framework was evaluated using simulations and also through an empirical test, and the obtained results indicate that it is useful to support such a sensing activity in loosely-coupled or fully distributed work scenarios.

  1. Compressed Sensing-Based Direct Conversion Receiver

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek; Arildsen, Thomas; Larsen, Torben

    2012-01-01

    Due to the continuously increasing computational power of modern data receivers it is possible to move more and more processing from the analog to the digital domain. This paper presents a compressed sensing approach to relaxing the analog filtering requirements prior to the ADCs in a direct......-converted radio signals. As shown in an experiment presented in the article, when the proposed method is used, it is possible to relax the requirements for the quadrature down-converter filters. A random sampling device and an additional digital signal processing module is the price to pay for these relaxed...

  2. RMP: Reduced-set matching pursuit approach for efficient compressed sensing signal reconstruction

    Directory of Open Access Journals (Sweden)

    Michael M. Abdel-Sayed

    2016-11-01

    Full Text Available Compressed sensing enables the acquisition of sparse signals at a rate that is much lower than the Nyquist rate. Compressed sensing initially adopted ℓ1 minimization for signal reconstruction which is computationally expensive. Several greedy recovery algorithms have been recently proposed for signal reconstruction at a lower computational complexity compared to the optimal ℓ1 minimization, while maintaining a good reconstruction accuracy. In this paper, the Reduced-set Matching Pursuit (RMP greedy recovery algorithm is proposed for compressed sensing. Unlike existing approaches which either select too many or too few values per iteration, RMP aims at selecting the most sufficient number of correlation values per iteration, which improves both the reconstruction time and error. Furthermore, RMP prunes the estimated signal, and hence, excludes the incorrectly selected values. The RMP algorithm achieves a higher reconstruction accuracy at a significantly low computational complexity compared to existing greedy recovery algorithms. It is even superior to ℓ1 minimization in terms of the normalized time-error product, a new metric introduced to measure the trade-off between the reconstruction time and error. RMP superior performance is illustrated with both noiseless and noisy samples.

  3. RMP: Reduced-set matching pursuit approach for efficient compressed sensing signal reconstruction.

    Science.gov (United States)

    Abdel-Sayed, Michael M; Khattab, Ahmed; Abu-Elyazeed, Mohamed F

    2016-11-01

    Compressed sensing enables the acquisition of sparse signals at a rate that is much lower than the Nyquist rate. Compressed sensing initially adopted [Formula: see text] minimization for signal reconstruction which is computationally expensive. Several greedy recovery algorithms have been recently proposed for signal reconstruction at a lower computational complexity compared to the optimal [Formula: see text] minimization, while maintaining a good reconstruction accuracy. In this paper, the Reduced-set Matching Pursuit (RMP) greedy recovery algorithm is proposed for compressed sensing. Unlike existing approaches which either select too many or too few values per iteration, RMP aims at selecting the most sufficient number of correlation values per iteration, which improves both the reconstruction time and error. Furthermore, RMP prunes the estimated signal, and hence, excludes the incorrectly selected values. The RMP algorithm achieves a higher reconstruction accuracy at a significantly low computational complexity compared to existing greedy recovery algorithms. It is even superior to [Formula: see text] minimization in terms of the normalized time-error product, a new metric introduced to measure the trade-off between the reconstruction time and error. RMP superior performance is illustrated with both noiseless and noisy samples.

  4. Enhanced compressed sensing for visual target tracking in wireless visual sensor networks

    Science.gov (United States)

    Qiang, Guo

    2017-11-01

    Moving object tracking in wireless sensor networks (WSNs) has been widely applied in various fields. Designing low-power WSNs for the limited resources of the sensor, such as energy limitation, energy restriction, and bandwidth constraints, is of high priority. However, most existing works focus on only single conflicting optimization criteria. An efficient compressive sensing technique based on a customized memory gradient pursuit algorithm with early termination in WSNs is presented, which strikes compelling trade-offs among energy dissipation for wireless transmission, certain types of bandwidth, and minimum storage. Then, the proposed approach adopts an unscented particle filter to predict the location of the target. The experimental results with a theoretical analysis demonstrate the substantially superior effectiveness of the proposed model and framework in regard to the energy and speed under the resource limitation of a visual sensor node.

  5. A Novel 1D Hybrid Chaotic Map-Based Image Compression and Encryption Using Compressed Sensing and Fibonacci-Lucas Transform

    Directory of Open Access Journals (Sweden)

    Tongfeng Zhang

    2016-01-01

    Full Text Available A one-dimensional (1D hybrid chaotic system is constructed by three different 1D chaotic maps in parallel-then-cascade fashion. The proposed chaotic map has larger key space and exhibits better uniform distribution property in some parametric range compared with existing 1D chaotic map. Meanwhile, with the combination of compressive sensing (CS and Fibonacci-Lucas transform (FLT, a novel image compression and encryption scheme is proposed with the advantages of the 1D hybrid chaotic map. The whole encryption procedure includes compression by compressed sensing (CS, scrambling with FLT, and diffusion after linear scaling. Bernoulli measurement matrix in CS is generated by the proposed 1D hybrid chaotic map due to its excellent uniform distribution. To enhance the security and complexity, transform kernel of FLT varies in each permutation round according to the generated chaotic sequences. Further, the key streams used in the diffusion process depend on the chaotic map as well as plain image, which could resist chosen plaintext attack (CPA. Experimental results and security analyses demonstrate the validity of our scheme in terms of high security and robustness against noise attack and cropping attack.

  6. Statistical Prior Aided Separate Compressed Image Sensing for Green Internet of Multimedia Things

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-01-01

    Full Text Available In this paper, we aim to propose an image compression and reconstruction strategy under the compressed sensing (CS framework to enable the green computation and communication for the Internet of Multimedia Things (IoMT. The core idea is to explore the statistics of image representations in the wavelet domain to aid the reconstruction method design. Specifically, the energy distribution of natural images in the wavelet domain is well characterized by an exponential decay model and then used in the two-step separate image reconstruction method, by which the row-wise (or column-wise intermediates and column-wise (or row-wise final results are reconstructed sequentially. Both the intermediates and the final results are constrained to conform with the statistical prior by using a weight matrix. Two recovery strategies with different levels of complexity, namely, the direct recovery with fixed weight matrix (DR-FM and the iterative recovery with refined weight matrix (IR-RM, are designed to obtain different quality of recovery. Extensive simulations show that both DR-FM and IR-RM can achieve much better image reconstruction quality with much faster recovery speed than traditional methods.

  7. Efficient Sparse Signal Transmission over a Lossy Link Using Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Liantao Wu

    2015-08-01

    Full Text Available Reliable data transmission over lossy communication link is expensive due to overheads for error protection. For signals that have inherent sparse structures, compressive sensing (CS is applied to facilitate efficient sparse signal transmissions over lossy communication links without data compression or error protection. The natural packet loss in the lossy link is modeled as a random sampling process of the transmitted data, and the original signal will be reconstructed from the lossy transmission results using the CS-based reconstruction method at the receiving end. The impacts of packet lengths on transmission efficiency under different channel conditions have been discussed, and interleaving is incorporated to mitigate the impact of burst data loss. Extensive simulations and experiments have been conducted and compared to the traditional automatic repeat request (ARQ interpolation technique, and very favorable results have been observed in terms of both accuracy of the reconstructed signals and the transmission energy consumption. Furthermore, the packet length effect provides useful insights for using compressed sensing for efficient sparse signal transmission via lossy links.

  8. Research on compressive sensing reconstruction algorithm based on total variation model

    Science.gov (United States)

    Gao, Yu-xuan; Sun, Huayan; Zhang, Tinghua; Du, Lin

    2017-12-01

    Compressed sensing for breakthrough Nyquist sampling theorem provides a strong theoretical , making compressive sampling for image signals be carried out simultaneously. In traditional imaging procedures using compressed sensing theory, not only can it reduces the storage space, but also can reduce the demand for detector resolution greatly. Using the sparsity of image signal, by solving the mathematical model of inverse reconfiguration, realize the super-resolution imaging. Reconstruction algorithm is the most critical part of compression perception, to a large extent determine the accuracy of the reconstruction of the image.The reconstruction algorithm based on the total variation (TV) model is more suitable for the compression reconstruction of the two-dimensional image, and the better edge information can be obtained. In order to verify the performance of the algorithm, Simulation Analysis the reconstruction result in different coding mode of the reconstruction algorithm based on the TV reconstruction algorithm. The reconstruction effect of the reconfigurable algorithm based on TV based on the different coding methods is analyzed to verify the stability of the algorithm. This paper compares and analyzes the typical reconstruction algorithm in the same coding mode. On the basis of the minimum total variation algorithm, the Augmented Lagrangian function term is added and the optimal value is solved by the alternating direction method.Experimental results show that the reconstruction algorithm is compared with the traditional classical algorithm based on TV has great advantages, under the low measurement rate can be quickly and accurately recovers target image.

  9. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    Science.gov (United States)

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  10. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction

    Science.gov (United States)

    Hollingsworth, Kieren Grant

    2015-11-01

    MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.

  11. Compressive sensing for high resolution profiles with enhanced Doppler performance

    NARCIS (Netherlands)

    Anitori, L.; Hoogeboom, P.; Chevalier, F. Le; Otten, M.P.G.

    2012-01-01

    In this paper we demonstrate how Compressive Sensing (CS) can be used in pulse-Doppler radars to improve the Doppler performance while preserving range resolution. We investigate here two types of stepped frequency waveforms, the coherent frequency bursts and successive frequency ramps, which can be

  12. A knitted glove sensing system with compression strain for finger movements

    Science.gov (United States)

    Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun

    2018-05-01

    Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.

  13. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-01-01

    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  14. Pilotless recovery of clipped OFDM signals by compressive sensing over reliable data carriers

    KAUST Repository

    Al-Safadi, Ebrahim B.

    2012-06-01

    In this paper we propose a novel method of clipping mitigation in OFDM using compressive sensing that completely avoids using reserved tones or channel-estimation pilots. The method builds on selecting the most reliable perturbations from the constellation lattice upon decoding at the receiver (in the frequency domain), and performs compressive sensing over these observations in order to completely recover the sparse nonlinear distortion in the time domain. As such, the method provides a practical solution to the problem of initial erroneous decoding decisions in iterative ML methods, and the ability to recover the distorted signal in one shot. © 2012 IEEE.

  15. Pilotless recovery of clipped OFDM signals by compressive sensing over reliable data carriers

    KAUST Repository

    Al-Safadi, Ebrahim B.; Al-Naffouri, Tareq Y.

    2012-01-01

    In this paper we propose a novel method of clipping mitigation in OFDM using compressive sensing that completely avoids using reserved tones or channel-estimation pilots. The method builds on selecting the most reliable perturbations from the constellation lattice upon decoding at the receiver (in the frequency domain), and performs compressive sensing over these observations in order to completely recover the sparse nonlinear distortion in the time domain. As such, the method provides a practical solution to the problem of initial erroneous decoding decisions in iterative ML methods, and the ability to recover the distorted signal in one shot. © 2012 IEEE.

  16. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  17. Approximate equiangular tight frames for compressed sensing and CDMA applications

    Science.gov (United States)

    Tsiligianni, Evaggelia; Kondi, Lisimachos P.; Katsaggelos, Aggelos K.

    2017-12-01

    Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their construction has been proven extremely difficult. In this paper, we construct frames that are close to ETFs. According to results from frame and graph theory, the existence of an ETF depends on the existence of its signature matrix, that is, a symmetric matrix with certain structure and spectrum consisting of two distinct eigenvalues. We view the construction of a signature matrix as an inverse eigenvalue problem and propose a method that produces frames of any dimensions that are close to ETFs. Due to the achieved equiangularity property, the so obtained frames can be employed as spreading sequences in synchronous code-division multiple access (s-CDMA) systems, besides compressed sensing.

  18. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  19. Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain

    Science.gov (United States)

    Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua

    2018-02-01

    In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.

  20. Efficient High-Dimensional Entanglement Imaging with a Compressive-Sensing Double-Pixel Camera

    Directory of Open Access Journals (Sweden)

    Gregory A. Howland

    2013-02-01

    Full Text Available We implement a double-pixel compressive-sensing camera to efficiently characterize, at high resolution, the spatially entangled fields that are produced by spontaneous parametric down-conversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster scanning by a scaling factor up to n^{2}/log⁡(n for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the entangled photons’ classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates that compressive sensing can be especially effective for higher-order measurements on correlated systems.

  1. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.

    Science.gov (United States)

    Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo

    2016-02-01

    To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. © 2015 Wiley Periodicals, Inc.

  2. Compressed Sensing in Vibration Monitoring Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Osvaldo Casares-Quirós

    2014-12-01

    After an experimental test using Waspmotes the fixed-variable variant has a 56.58% reduction of power consumption by introducing a maximum error ± 0.00195g and compress in 52.44% the amount of samples. This algorithm increased the network energy autonomy from 17 hours to 26.5 hours. Through mathematical analysis, the variable-fixed technique reduces in 74.81% the power consumption in sensing nodes transmissions and decrease in 90% the number of samples.

  3. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Compressed sensing for high-resolution nonlipid suppressed 1 H FID MRSI of the human brain at 9.4T.

    Science.gov (United States)

    Nassirpour, Sahar; Chang, Paul; Avdievitch, Nikolai; Henning, Anke

    2018-04-29

    The aim of this study was to apply compressed sensing to accelerate the acquisition of high resolution metabolite maps of the human brain using a nonlipid suppressed ultra-short TR and TE 1 H FID MRSI sequence at 9.4T. X-t sparse compressed sensing reconstruction was optimized for nonlipid suppressed 1 H FID MRSI data. Coil-by-coil x-t sparse reconstruction was compared with SENSE x-t sparse and low rank reconstruction. The effect of matrix size and spatial resolution on the achievable acceleration factor was studied. Finally, in vivo metabolite maps with different acceleration factors of 2, 4, 5, and 10 were acquired and compared. Coil-by-coil x-t sparse compressed sensing reconstruction was not able to reliably recover the nonlipid suppressed data, rather a combination of parallel and sparse reconstruction was necessary (SENSE x-t sparse). For acceleration factors of up to 5, both the low-rank and the compressed sensing methods were able to reconstruct the data comparably well (root mean squared errors [RMSEs] ≤ 10.5% for Cre). However, the reconstruction time of the low rank algorithm was drastically longer than compressed sensing. Using the optimized compressed sensing reconstruction, acceleration factors of 4 or 5 could be reached for the MRSI data with a matrix size of 64 × 64. For lower spatial resolutions, an acceleration factor of up to R∼4 was successfully achieved. By tailoring the reconstruction scheme to the nonlipid suppressed data through parameter optimization and performance evaluation, we present high resolution (97 µL voxel size) accelerated in vivo metabolite maps of the human brain acquired at 9.4T within scan times of 3 to 3.75 min. © 2018 International Society for Magnetic Resonance in Medicine.

  5. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    Science.gov (United States)

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-10-09

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.

  6. Block Compressed Sensing of Images Using Adaptive Granular Reconstruction

    Directory of Open Access Journals (Sweden)

    Ran Li

    2016-01-01

    Full Text Available In the framework of block Compressed Sensing (CS, the reconstruction algorithm based on the Smoothed Projected Landweber (SPL iteration can achieve the better rate-distortion performance with a low computational complexity, especially for using the Principle Components Analysis (PCA to perform the adaptive hard-thresholding shrinkage. However, during learning the PCA matrix, it affects the reconstruction performance of Landweber iteration to neglect the stationary local structural characteristic of image. To solve the above problem, this paper firstly uses the Granular Computing (GrC to decompose an image into several granules depending on the structural features of patches. Then, we perform the PCA to learn the sparse representation basis corresponding to each granule. Finally, the hard-thresholding shrinkage is employed to remove the noises in patches. The patches in granule have the stationary local structural characteristic, so that our method can effectively improve the performance of hard-thresholding shrinkage. Experimental results indicate that the reconstructed image by the proposed algorithm has better objective quality when compared with several traditional ones. The edge and texture details in the reconstructed image are better preserved, which guarantees the better visual quality. Besides, our method has still a low computational complexity of reconstruction.

  7. A compressive sensing approach to the calculation of the inverse data space

    KAUST Repository

    Khan, Babar Hasan

    2012-01-01

    Seismic processing in the Inverse Data Space (IDS) has its advantages like the task of removing the multiples simply becomes muting the zero offset and zero time data in the inverse domain. Calculation of the Inverse Data Space by sparse inversion techniques has seen mitigation of some artifacts. We reformulate the problem by taking advantage of some of the developments from the field of Compressive Sensing. The seismic data is compressed at the sensor level by recording projections of the traces. We then process this compressed data directly to estimate the inverse data space. Due to the smaller number of data set we also gain in terms of computational complexity.

  8. The application of sparse linear prediction dictionary to compressive sensing in speech signals

    Directory of Open Access Journals (Sweden)

    YOU Hanxu

    2016-04-01

    Full Text Available Appling compressive sensing (CS,which theoretically guarantees that signal sampling and signal compression can be achieved simultaneously,into audio and speech signal processing is one of the most popular research topics in recent years.In this paper,K-SVD algorithm was employed to learn a sparse linear prediction dictionary regarding as the sparse basis of underlying speech signals.Compressed signals was obtained by applying random Gaussian matrix to sample original speech frames.Orthogonal matching pursuit (OMP and compressive sampling matching pursuit (CoSaMP were adopted to recovery original signals from compressed one.Numbers of experiments were carried out to investigate the impact of speech frames length,compression ratios,sparse basis and reconstruction algorithms on CS performance.Results show that sparse linear prediction dictionary can advance the performance of speech signals reconstruction compared with discrete cosine transform (DCT matrix.

  9. Compressed-sensing wavenumber-scanning interferometry

    Science.gov (United States)

    Bai, Yulei; Zhou, Yanzhou; He, Zhaoshui; Ye, Shuangli; Dong, Bo; Xie, Shengli

    2018-01-01

    The Fourier transform (FT), the nonlinear least-squares algorithm (NLSA), and eigenvalue decomposition algorithm (EDA) are used to evaluate the phase field in depth-resolved wavenumber-scanning interferometry (DRWSI). However, because the wavenumber series of the laser's output is usually accompanied by nonlinearity and mode-hop, FT, NLSA, and EDA, which are only suitable for equidistant interference data, often lead to non-negligible phase errors. In this work, a compressed-sensing method for DRWSI (CS-DRWSI) is proposed to resolve this problem. By using the randomly spaced inverse Fourier matrix and solving the underdetermined equation in the wavenumber domain, CS-DRWSI determines the nonuniform sampling and spectral leakage of the interference spectrum. Furthermore, it can evaluate interference data without prior knowledge of the object. The experimental results show that CS-DRWSI improves the depth resolution and suppresses sidelobes. It can replace the FT as a standard algorithm for DRWSI.

  10. A new DWT/MC/DPCM video compression framework based on EBCOT

    Science.gov (United States)

    Mei, L. M.; Wu, H. R.; Tan, D. M.

    2005-07-01

    A novel Discrete Wavelet Transform (DWT)/Motion Compensation (MC)/Differential Pulse Code Modulation (DPCM) video compression framework is proposed in this paper. Although the Discrete Cosine Transform (DCT)/MC/DPCM is the mainstream framework for video coders in industry and international standards, the idea of DWT/MC/DPCM has existed for more than one decade in the literature and the investigation is still undergoing. The contribution of this work is twofold. Firstly, the Embedded Block Coding with Optimal Truncation (EBCOT) is used here as the compression engine for both intra- and inter-frame coding, which provides good compression ratio and embedded rate-distortion (R-D) optimization mechanism. This is an extension of the EBCOT application from still images to videos. Secondly, this framework offers a good interface for the Perceptual Distortion Measure (PDM) based on the Human Visual System (HVS) where the Mean Squared Error (MSE) can be easily replaced with the PDM in the R-D optimization. Some of the preliminary results are reported here. They are also compared with benchmarks such as MPEG-2 and MPEG-4 version 2. The results demonstrate that under specified condition the proposed coder outperforms the benchmarks in terms of rate vs. distortion.

  11. Acquisition of STEM Images by Adaptive Compressive Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Weiyi; Feng, Qianli; Srinivasan, Ramprakash; Stevens, Andrew; Browning, Nigel D.

    2017-07-01

    Compressive Sensing (CS) allows a signal to be sparsely measured first and accurately recovered later in software [1]. In scanning transmission electron microscopy (STEM), it is possible to compress an image spatially by reducing the number of measured pixels, which decreases electron dose and increases sensing speed [2,3,4]. The two requirements for CS to work are: (1) sparsity of basis coefficients and (2) incoherence of the sensing system and the representation system. However, when pixels are missing from the image, it is difficult to have an incoherent sensing matrix. Nevertheless, dictionary learning techniques such as Beta-Process Factor Analysis (BPFA) [5] are able to simultaneously discover a basis and the sparse coefficients in the case of missing pixels. On top of CS, we would like to apply active learning [6,7] to further reduce the proportion of pixels being measured, while maintaining image reconstruction quality. Suppose we initially sample 10% of random pixels. We wish to select the next 1% of pixels that are most useful in recovering the image. Now, we have 11% of pixels, and we want to decide the next 1% of “most informative” pixels. Active learning methods are online and sequential in nature. Our goal is to adaptively discover the best sensing mask during acquisition using feedback about the structures in the image. In the end, we hope to recover a high quality reconstruction with a dose reduction relative to the non-adaptive (random) sensing scheme. In doing this, we try three metrics applied to the partial reconstructions for selecting the new set of pixels: (1) variance, (2) Kullback-Leibler (KL) divergence using a Radial Basis Function (RBF) kernel, and (3) entropy. Figs. 1 and 2 display the comparison of Peak Signal-to-Noise (PSNR) using these three different active learning methods at different percentages of sampled pixels. At 20% level, all the three active learning methods underperform the original CS without active learning. However

  12. Poster Abstract: Towards a Categorization Framework for Occupancy Sensing Systems

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Lazarova-Molnar, Sanja; Jradi, Muhyiddine

    2015-01-01

    on occupancy sensing systems goes beyond basic methods, there is an increasing need for better comparison of proposed occupancy sensing systems. Developers of occupancy sensing systems are also lacking good frameworks for understanding different options when building occupancy sensing systems. This poster...

  13. On Compressed Sensing and the Estimation of Continuous Parameters From Noisy Observations

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2012-01-01

    Compressed sensing (CS) has in recent years become a very popular way of sampling sparse signals. This sparsity is measured with respect to some known dictionary consisting of a finite number of atoms. Most models for real world signals, however, are parametrised by continuous parameters correspo......Compressed sensing (CS) has in recent years become a very popular way of sampling sparse signals. This sparsity is measured with respect to some known dictionary consisting of a finite number of atoms. Most models for real world signals, however, are parametrised by continuous parameters...... corresponding to a dictionary with an infinite number of atoms. Examples of such parameters are the temporal and spatial frequency. In this paper, we analyse how CS affects the estimation performance of any unbiased estimator when we assume such infinite dictionaries. We base our analysis on the Cramer...

  14. Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography

    Science.gov (United States)

    Ma, Lihong; Jin, Weimin

    2018-01-01

    A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.

  15. Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2015-08-01

    Full Text Available This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO. The system integrates a nanosensor that employs cerium oxide (ceria nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.

  16. Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen.

    Science.gov (United States)

    Shehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen

    2015-08-14

    This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.

  17. Quasi Gradient Projection Algorithm for Sparse Reconstruction in Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2014-02-01

    Full Text Available Compressed sensing is a novel signal sampling theory under the condition that the signal is sparse or compressible. The existing recovery algorithms based on the gradient projection can either need prior knowledge or recovery the signal poorly. In this paper, a new algorithm based on gradient projection is proposed, which is referred as Quasi Gradient Projection. The algorithm presented quasi gradient direction and two step sizes schemes along this direction. The algorithm doesn’t need any prior knowledge of the original signal. Simulation results demonstrate that the presented algorithm cans recovery the signal more correctly than GPSR which also don’t need prior knowledge. Meanwhile, the algorithm has a lower computation complexity.

  18. Determining building interior structures using compressive sensing

    Science.gov (United States)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-04-01

    We consider imaging of the building interior structures using compressive sensing (CS) with applications to through-the-wall imaging and urban sensing. We consider a monostatic synthetic aperture radar imaging system employing stepped frequency waveform. The proposed approach exploits prior information of building construction practices to form an appropriate sparse representation of the building interior layout. We devise a dictionary of possible wall locations, which is consistent with the fact that interior walls are typically parallel or perpendicular to the front wall. The dictionary accounts for the dominant normal angle reflections from exterior and interior walls for the monostatic imaging system. CS is applied to a reduced set of observations to recover the true positions of the walls. Additional information about interior walls can be obtained using a dictionary of possible corner reflectors, which is the response of the junction of two walls. Supporting results based on simulation and laboratory experiments are provided. It is shown that the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the wavelet sparsifying basis, and the block sparse model for building interior layout detection.

  19. Compressive sensing using optimized sensing matrix for face verification

    Science.gov (United States)

    Oey, Endra; Jeffry; Wongso, Kelvin; Tommy

    2017-12-01

    Biometric appears as one of the solutions which is capable in solving problems that occurred in the usage of password in terms of data access, for example there is possibility in forgetting password and hard to recall various different passwords. With biometrics, physical characteristics of a person can be captured and used in the identification process. In this research, facial biometric is used in the verification process to determine whether the user has the authority to access the data or not. Facial biometric is chosen as its low cost implementation and generate quite accurate result for user identification. Face verification system which is adopted in this research is Compressive Sensing (CS) technique, in which aims to reduce dimension size as well as encrypt data in form of facial test image where the image is represented in sparse signals. Encrypted data can be reconstructed using Sparse Coding algorithm. Two types of Sparse Coding namely Orthogonal Matching Pursuit (OMP) and Iteratively Reweighted Least Squares -ℓp (IRLS-ℓp) will be used for comparison face verification system research. Reconstruction results of sparse signals are then used to find Euclidean norm with the sparse signal of user that has been previously saved in system to determine the validity of the facial test image. Results of system accuracy obtained in this research are 99% in IRLS with time response of face verification for 4.917 seconds and 96.33% in OMP with time response of face verification for 0.4046 seconds with non-optimized sensing matrix, while 99% in IRLS with time response of face verification for 13.4791 seconds and 98.33% for OMP with time response of face verification for 3.1571 seconds with optimized sensing matrix.

  20. Evaluation of the image quality in digital breast tomosynthesis (DBT) employed with a compressed-sensing (CS)-based reconstruction algorithm by using the mammographic accreditation phantom

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Cho, Heemoon; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Park, Chulkyu; Lim, Hyunwoo; Kim, Kyuseok; Kim, Guna; Park, Soyoung; Woo, Taeho; Choi, Sungil

    2015-12-21

    In this work, we have developed a prototype digital breast tomosynthesis (DBT) system which mainly consists of an x-ray generator (28 kV{sub p}, 7 mA s), a CMOS-type flat-panel detector (70-μm pixel size, 230.5×339 mm{sup 2} active area), and a rotational arm to move the x-ray generator in an arc. We employed a compressed-sensing (CS)-based reconstruction algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate DBT reconstruction. Here the CS is a state-of-the-art mathematical theory for solving the inverse problems, which exploits the sparsity of the image with substantially high accuracy. We evaluated the reconstruction quality in terms of the detectability, the contrast-to-noise ratio (CNR), and the slice-sensitive profile (SSP) by using the mammographic accreditation phantom (Model 015, CIRS Inc.) and compared it to the FBP-based quality. The CS-based algorithm yielded much better image quality, preserving superior image homogeneity, edge sharpening, and cross-plane resolution, compared to the FBP-based one. - Highlights: • A prototype digital breast tomosynthesis (DBT) system is developed. • Compressed-sensing (CS) based reconstruction framework is employed. • We reconstructed high-quality DBT images by using the proposed reconstruction framework.

  1. Study of key technology of ghost imaging via compressive sensing for a phase object based on phase-shifting digital holography

    International Nuclear Information System (INIS)

    Leihong, Zhang; Dong, Liang; Bei, Li; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma

    2015-01-01

    In this article, the algorithm of compressing sensing is used to improve the imaging resolution and realize ghost imaging via compressive sensing for a phase object based on the theoretical analysis of the lensless Fourier imaging of the algorithm of ghost imaging based on phase-shifting digital holography. The algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography uses the bucket detector to measure the total light intensity of the interference and the four-step phase-shifting method is used to obtain the total light intensity of differential interference light. The experimental platform is built based on the software simulation, and the experimental results show that the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography can obtain the high-resolution phase distribution figure of the phase object. With the same sampling times, the phase clarity of the phase distribution figure obtained by the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography is higher than that obtained by the algorithm of ghost imaging based on phase-shift digital holography. In this article, this study further extends the application range of ghost imaging and obtains the phase distribution of the phase object. (letter)

  2. Impact of Sink Node Placement onto Wireless Sensor Networks Performance Regarding Clustering Routing and Compressive Sensing Theory

    Directory of Open Access Journals (Sweden)

    Shima Pakdaman Tirani

    2016-01-01

    Full Text Available Wireless Sensor Networks (WSNs consist of several sensor nodes with sensing, computation, and wireless communication capabilities. The energy constraint is one of the most important issues in these networks. Thus, the data-gathering process should be carefully designed to conserve the energy. In this situation, a load balancing strategy can enhance the resources utilization, and consequently, increase the network lifetime. Furthermore, recently, the sparse nature of data in WSNs has been motivated the use of the compressive sensing as an efficient data gathering technique. Using the compressive sensing theory significantly leads to decreasing the volume of the transmitted data. Taking the above challenges into account, the main goal of this paper is to jointly consider the compressive sensing method and the load-balancing in WSNs. In this regards, using the conventional network model, we analyze the network performance in several different states. These states challenge the sink location in term of the number of transmissions. Numerical results demonstrate the efficiency of the load-balancing in the network performance.

  3. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    Science.gov (United States)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  4. New trends in applied harmonic analysis sparse representations, compressed sensing, and multifractal analysis

    CERN Document Server

    Cabrelli, Carlos; Jaffard, Stephane; Molter, Ursula

    2016-01-01

    This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and covers both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.

  5. Correspondence normalized ghost imaging on compressive sensing

    International Nuclear Information System (INIS)

    Zhao Sheng-Mei; Zhuang Peng

    2014-01-01

    Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. It is an open problem in GI systems that a long acquisition time is be required for reconstructing images with good visibility and signal-to-noise ratios (SNRs). In this paper, we propose a new scheme to get good performance with a shorter construction time. We call it correspondence normalized ghost imaging based on compressive sensing (CCNGI). In the scheme, we enhance the signal-to-noise performance by normalizing the reference beam intensity to eliminate the noise caused by laser power fluctuations, and reduce the reconstruction time by using both compressive sensing (CS) and time-correspondence imaging (CI) techniques. It is shown that the qualities of the images have been improved and the reconstruction time has been reduced using CCNGI scheme. For the two-grayscale ''double-slit'' image, the mean square error (MSE) by GI and the normalized GI (NGI) schemes with the measurement number of 5000 are 0.237 and 0.164, respectively, and that is 0.021 by CCNGI scheme with 2500 measurements. For the eight-grayscale ''lena'' object, the peak signal-to-noise rates (PSNRs) are 10.506 and 13.098, respectively using GI and NGI schemes while the value turns to 16.198 using CCNGI scheme. The results also show that a high-fidelity GI reconstruction has been achieved using only 44% of the number of measurements corresponding to the Nyquist limit for the two-grayscale “double-slit'' object. The qualities of the reconstructed images using CCNGI are almost the same as those from GI via sparsity constraints (GISC) with a shorter reconstruction time. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Single exposure optically compressed imaging and visualization using random aperture coding

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A [Electro Optical Unit, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rivenson, Yair [Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Javidi, Bahrain [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269-1157 (United States)], E-mail: stern@bgu.ac.il

    2008-11-01

    The common approach in digital imaging follows the sample-then-compress framework. According to this approach, in the first step as many pixels as possible are captured and in the second step the captured image is compressed by digital means. The recently introduced theory of compressed sensing provides the mathematical foundation necessary to combine these two steps in a single one, that is, to compress the information optically before it is recorded. In this paper we overview and extend an optical implementation of compressed sensing theory that we have recently proposed. With this new imaging approach the compression is accomplished inherently in the optical acquisition step. The primary feature of this imaging approach is a randomly encoded aperture realized by means of a random phase screen. The randomly encoded aperture implements random projection of the object field in the image plane. Using a single exposure, a randomly encoded image is captured which can be decoded by proper decoding algorithm.

  7. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms

    International Nuclear Information System (INIS)

    Tang Jie; Nett, Brian E; Chen Guanghong

    2009-01-01

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  8. Implementation of a compressive sampling scheme for wireless sensors to achieve energy efficiency in a structural health monitoring system

    Science.gov (United States)

    O'Connor, Sean M.; Lynch, Jerome P.; Gilbert, Anna C.

    2013-04-01

    Wireless sensors have emerged to offer low-cost sensors with impressive functionality (e.g., data acquisition, computing, and communication) and modular installations. Such advantages enable higher nodal densities than tethered systems resulting in increased spatial resolution of the monitoring system. However, high nodal density comes at a cost as huge amounts of data are generated, weighing heavy on power sources, transmission bandwidth, and data management requirements, often making data compression necessary. The traditional compression paradigm consists of high rate (>Nyquist) uniform sampling and storage of the entire target signal followed by some desired compression scheme prior to transmission. The recently proposed compressed sensing (CS) framework combines the acquisition and compression stage together, thus removing the need for storage and operation of the full target signal prior to transmission. The effectiveness of the CS approach hinges on the presence of a sparse representation of the target signal in a known basis, similarly exploited by several traditional compressive sensing applications today (e.g., imaging, MRI). Field implementations of CS schemes in wireless SHM systems have been challenging due to the lack of commercially available sensing units capable of sampling methods (e.g., random) consistent with the compressed sensing framework, often moving evaluation of CS techniques to simulation and post-processing. The research presented here describes implementation of a CS sampling scheme to the Narada wireless sensing node and the energy efficiencies observed in the deployed sensors. Of interest in this study is the compressibility of acceleration response signals collected from a multi-girder steel-concrete composite bridge. The study shows the benefit of CS in reducing data requirements while ensuring data analysis on compressed data remain accurate.

  9. Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter

    DEFF Research Database (Denmark)

    Chen, Ying; Ding, Yunhong; Zhu, Zhijing

    2015-01-01

    A novel approach to realize photonic compressive sensing (CS) with a multi-tap microwave photonic filter is proposed and demonstrated. The system takes both advantages of CS and photonics to capture wideband sparse signals with sub-Nyquist sampling rate. The low-pass filtering function required...

  10. Secure biometric image sensor and authentication scheme based on compressed sensing.

    Science.gov (United States)

    Suzuki, Hiroyuki; Suzuki, Masamichi; Urabe, Takuya; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2013-11-20

    It is important to ensure the security of biometric authentication information, because its leakage causes serious risks, such as replay attacks using the stolen biometric data, and also because it is almost impossible to replace raw biometric information. In this paper, we propose a secure biometric authentication scheme that protects such information by employing an optical data ciphering technique based on compressed sensing. The proposed scheme is based on two-factor authentication, the biometric information being supplemented by secret information that is used as a random seed for a cipher key. In this scheme, a biometric image is optically encrypted at the time of image capture, and a pair of restored biometric images for enrollment and verification are verified in the authentication server. If any of the biometric information is exposed to risk, it can be reenrolled by changing the secret information. Through numerical experiments, we confirm that finger vein images can be restored from the compressed sensing measurement data. We also present results that verify the accuracy of the scheme.

  11. Data compressive paradigm for multispectral sensing using tunable DWELL mid-infrared detectors.

    Science.gov (United States)

    Jang, Woo-Yong; Hayat, Majeed M; Godoy, Sebastián E; Bender, Steven C; Zarkesh-Ha, Payman; Krishna, Sanjay

    2011-09-26

    While quantum dots-in-a-well (DWELL) infrared photodetectors have the feature that their spectral responses can be shifted continuously by varying the applied bias, the width of the spectral response at any applied bias is not sufficiently narrow for use in multispectral sensing without the aid of spectral filters. To achieve higher spectral resolutions without using physical spectral filters, algorithms have been developed for post-processing the DWELL's bias-dependent photocurrents resulting from probing an object of interest repeatedly over a wide range of applied biases. At the heart of these algorithms is the ability to approximate an arbitrary spectral filter, which we desire the DWELL-algorithm combination to mimic, by forming a weighted superposition of the DWELL's non-orthogonal spectral responses over a range of applied biases. However, these algorithms assume availability of abundant DWELL data over a large number of applied biases (>30), leading to large overall acquisition times in proportion with the number of biases. This paper reports a new multispectral sensing algorithm to substantially compress the number of necessary bias values subject to a prescribed performance level across multiple sensing applications. The algorithm identifies a minimal set of biases to be used in sensing only the relevant spectral information for remote-sensing applications of interest. Experimental results on target spectrometry and classification demonstrate a reduction in the number of required biases by a factor of 7 (e.g., from 30 to 4). The tradeoff between performance and bias compression is thoroughly investigated. © 2011 Optical Society of America

  12. Accurate reconstruction of hyperspectral images from compressive sensing measurements

    Science.gov (United States)

    Greer, John B.; Flake, J. C.

    2013-05-01

    The emerging field of Compressive Sensing (CS) provides a new way to capture data by shifting the heaviest burden of data collection from the sensor to the computer on the user-end. This new means of sensing requires fewer measurements for a given amount of information than traditional sensors. We investigate the efficacy of CS for capturing HyperSpectral Imagery (HSI) remotely. We also introduce a new family of algorithms for constructing HSI from CS measurements with Split Bregman Iteration [Goldstein and Osher,2009]. These algorithms combine spatial Total Variation (TV) with smoothing in the spectral dimension. We examine models for three different CS sensors: the Coded Aperture Snapshot Spectral Imager-Single Disperser (CASSI-SD) [Wagadarikar et al.,2008] and Dual Disperser (CASSI-DD) [Gehm et al.,2007] cameras, and a hypothetical random sensing model closer to CS theory, but not necessarily implementable with existing technology. We simulate the capture of remotely sensed images by applying the sensor forward models to well-known HSI scenes - an AVIRIS image of Cuprite, Nevada and the HYMAP Urban image. To measure accuracy of the CS models, we compare the scenes constructed with our new algorithm to the original AVIRIS and HYMAP cubes. The results demonstrate the possibility of accurately sensing HSI remotely with significantly fewer measurements than standard hyperspectral cameras.

  13. The Physics of Compressive Sensing and the Gradient-Based Recovery Algorithms

    OpenAIRE

    Dai, Qi; Sha, Wei

    2009-01-01

    The physics of compressive sensing (CS) and the gradient-based recovery algorithms are presented. First, the different forms for CS are summarized. Second, the physical meanings of coherence and measurement are given. Third, the gradient-based recovery algorithms and their geometry explanations are provided. Finally, we conclude the report and give some suggestion for future work.

  14. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging.

    Science.gov (United States)

    Li, Guobin; Hennig, Jürgen; Raithel, Esther; Büchert, Martin; Paul, Dominik; Korvink, Jan G; Zaitsev, Maxim

    2015-10-01

    In most half-Fourier imaging methods, explicit phase replacement is used. In combination with parallel imaging, or compressed sensing, half-Fourier reconstruction is usually performed in a separate step. The purpose of this paper is to report that integration of half-Fourier reconstruction into iterative reconstruction minimizes reconstruction errors. The L1-norm phase constraint for half-Fourier imaging proposed in this work is compared with the L2-norm variant of the same algorithm, with several typical half-Fourier reconstruction methods. Half-Fourier imaging with the proposed phase constraint can be seamlessly combined with parallel imaging and compressed sensing to achieve high acceleration factors. In simulations and in in-vivo experiments half-Fourier imaging with the proposed L1-norm phase constraint enables superior performance both reconstruction of image details and with regard to robustness against phase estimation errors. The performance and feasibility of half-Fourier imaging with the proposed L1-norm phase constraint is reported. Its seamless combination with parallel imaging and compressed sensing enables use of greater acceleration in 3D MR imaging.

  15. Compressive sensing of full wave field data for structural health monitoring applications

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; De Marchi, Luca; Perelli, Alessandro

    2015-01-01

    ; however, the acquisition process is generally time-consuming, posing a limit in the applicability of such approaches. To reduce the acquisition time, we use a random sampling scheme based on compressive sensing (CS) to minimize the number of points at which the field is measured. The CS reconstruction...

  16. Compressed RSS Measurement for Communication and Sensing in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Yanchao Zhao

    2017-01-01

    Full Text Available The receiving signal strength (RSS is crucial for the Internet of Things (IoT, as it is the key foundation for communication resource allocation, localization, interference management, sensing, and so on. Aside from its significance, the measurement process could be tedious, time consuming, inaccurate, and involving human operations. The state-of-the-art works usually applied the fashion of “measure a few, predict many,” which use measurement calibrated models to generate the RSS for the whole networks. However, this kind of methods still cannot provide accurate results in a short duration with low measurement cost. In addition, they also require careful scheduling of the measurement which is vulnerable to measurement conflict. In this paper, we propose a compressive sensing- (CS- based RSS measurement solution, which is conflict-tolerant, time-efficient, and accuracy-guaranteed without any model-calibrate operation. The CS-based solution takes advantage of compressive sensing theory to enable simultaneous measurement in the same channel, which reduces the time cost to the level of O(log⁡N (where N is the network size and works well for sparse networks. Extensive experiments based on real data trace are conducted to show the efficiency of the proposed solutions.

  17. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  18. Optimized Projection Matrix for Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Jianping Xu

    2010-01-01

    Full Text Available Compressive sensing (CS is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  19. Monitoring and diagnosis of Alzheimer's disease using noninvasive compressive sensing EEG

    Science.gov (United States)

    Morabito, F. C.; Labate, D.; Morabito, G.; Palamara, I.; Szu, H.

    2013-05-01

    The majority of elderly with Alzheimer's Disease (AD) receive care at home from caregivers. In contrast to standard tethered clinical settings, a wireless, real-time, body-area smartphone-based remote monitoring of electroencephalogram (EEG) can be extremely advantageous for home care of those patients. Such wearable tools pave the way to personalized medicine, for example giving the opportunity to control the progression of the disease and the effect of drugs. By applying Compressive Sensing (CS) techniques it is in principle possible to overcome the difficulty raised by smartphones spatial-temporal throughput rate bottleneck. Unfortunately, EEG and other physiological signals are often non-sparse. In this paper, it is instead shown that the EEG of AD patients becomes actually more compressible with the progression of the disease. EEG of Mild Cognitive Impaired (MCI) subjects is also showing clear tendency to enhanced compressibility. This feature favor the use of CS techniques and ultimately the use of telemonitoring with wearable sensors.

  20. Stainless steel component with compressed fiber Bragg grating for high temperature sensing applications

    Science.gov (United States)

    Jinesh, Mathew; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2016-05-01

    A smart metal component having the potential for high temperature strain sensing capability is reported. The stainless steel (SS316) structure is made by selective laser melting (SLM). A fiber Bragg grating (FBG) is embedded in to a 3D printed U-groove by high temperature brazing using a silver based alloy, achieving an axial FBG compression of 13 millistrain at room temperature. Initial results shows that the test component can be used for up to 700°C for sensing applications.

  1. Compressive Sensing for Feedback Reduction in Wireless Multiuser Networks

    KAUST Repository

    Elkhalil, Khalil

    2015-05-01

    User/relay selection is a simple technique that achieves spatial diversity in multiuser networks. However, for user/relay selection algorithms to make a selection decision, channel state information (CSI) from all cooperating users/relays is usually required at a central node. This requirement poses two important challenges. Firstly, CSI acquisition generates a great deal of feedback overhead (air-time) that could result in significant transmission delays. Secondly, the fed-back channel information is usually corrupted by additive noise. This could lead to transmission outages if the central node selects the set of cooperating relays based on inaccurate feedback information. Motivated by the aforementioned challenges, we propose a limited feedback user/relay selection scheme that is based on the theory of compressed sensing. Firstly, we introduce a limited feedback relay selection algorithm for a multicast relay network. The proposed algorithm exploits the theory of compressive sensing to first obtain the identity of the “strong” relays with limited feedback air-time. Following that, the CSI of the selected relays is estimated using minimum mean square error estimation without any additional feedback. To minimize the effect of noise on the fed-back CSI, we introduce a back-off strategy that optimally backs-off on the noisy received CSI. In the second part of the thesis, we propose a feedback reduction scheme for full-duplex relay-aided multiuser networks. The proposed scheme permits the base station (BS) to obtain channel state information (CSI) from a subset of strong users under substantially reduced feedback overhead. More specifically, we cast the problem of user identification and CSI estimation as a block sparse signal recovery problem in compressive sensing (CS). Using existing CS block recovery algorithms, we first obtain the identity of the strong users and then estimate their CSI using the best linear unbiased estimator (BLUE). Moreover, we derive the

  2. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng

    2017-06-20

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  3. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng; Xu, Weiyu; Yang, Yang

    2017-01-01

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  4. Vibration-based monitoring and diagnostics using compressive sensing

    Science.gov (United States)

    Ganesan, Vaahini; Das, Tuhin; Rahnavard, Nazanin; Kauffman, Jeffrey L.

    2017-04-01

    Vibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high volume data and rely on sensors being powered for prolonged durations. Furthermore, for spatial resolution, structures are instrumented with a large array of sensors. This paper shows that both volume of data and number of sensors can be reduced significantly by applying Compressive Sensing (CS) in vibration monitoring applications. The reduction is achieved by using random sampling and capitalizing on the sparsity of vibration signals in the frequency domain. Preliminary experimental results validating CS-based frequency recovery are also provided. By exploiting the sparsity of mode shapes, CS can also enable efficient spatial reconstruction using fewer spatially distributed sensors. CS can thereby reduce the cost and power requirement of sensing as well as streamline data storage and processing in monitoring applications. In well-instrumented structures, CS can enable continued monitoring in case of sensor or computational failures.

  5. Compressed Sensing mm-Wave SAR for Non-Destructive Testing Applications Using Multiple Weighted Side Information

    Directory of Open Access Journals (Sweden)

    Mathias Becquaert

    2018-05-01

    Full Text Available This work explores an innovative strategy for increasing the efficiency of compressed sensing applied on mm-wave SAR sensing using multiple weighted side information. The approach is tested on synthetic and on real non-destructive testing measurements performed on a 3D-printed object with defects while taking advantage of multiple previous SAR images of the object with different degrees of similarity. The tested algorithm attributes autonomously weights to the side information at two levels: (1 between the components inside the side information and (2 between the different side information. The reconstruction is thereby almost immune to poor quality side information while exploiting the relevant components hidden inside the added side information. The presented results prove that, in contrast to common compressed sensing, good SAR image reconstruction is achieved at subsampling rates far below the Nyquist rate. Moreover, the algorithm is shown to be much more robust for low quality side information compared to coherent background subtraction.

  6. A framework for developing remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Hayat, M.F.; Afzal, M.; Asif, H.M.S.; Asif, K.H.

    2014-01-01

    Remote Sensing Application (RSA) is important as one of the critical enabler of e-systems such as e- governments, e-commerce, and e-sciences. In this study, we argued that owning to the specialized needs of RSA such as volatility and interactive nature, a customized Software Engineering (SE) approach should be adapted for their development. Based on this argument we have also identified the shortcomings of the conventional SE approaches and the classical waterfall software development life cycle model. In this study, we have proposed a modification to the classical waterfall software development life cycle model for proposing a customized software development Framework for RSAs. We have identified four (4) different types of changes that can occur to an already developed RS application. The proposed framework was capable to incorporate all four types of changes. Remote Sensing, software engineering, functional requirements, types of changes. (author)

  7. Determination of nonlinear genetic architecture using compressed sensing.

    Science.gov (United States)

    Ho, Chiu Man; Hsu, Stephen D H

    2015-01-01

    One of the fundamental problems of modern genomics is to extract the genetic architecture of a complex trait from a data set of individual genotypes and trait values. Establishing this important connection between genotype and phenotype is complicated by the large number of candidate genes, the potentially large number of causal loci, and the likely presence of some nonlinear interactions between different genes. Compressed Sensing methods obtain solutions to under-constrained systems of linear equations. These methods can be applied to the problem of determining the best model relating genotype to phenotype, and generally deliver better performance than simply regressing the phenotype against each genetic variant, one at a time. We introduce a Compressed Sensing method that can reconstruct nonlinear genetic models (i.e., including epistasis, or gene-gene interactions) from phenotype-genotype (GWAS) data. Our method uses L1-penalized regression applied to nonlinear functions of the sensing matrix. The computational and data resource requirements for our method are similar to those necessary for reconstruction of linear genetic models (or identification of gene-trait associations), assuming a condition of generalized sparsity, which limits the total number of gene-gene interactions. An example of a sparse nonlinear model is one in which a typical locus interacts with several or even many others, but only a small subset of all possible interactions exist. It seems plausible that most genetic architectures fall in this category. We give theoretical arguments suggesting that the method is nearly optimal in performance, and demonstrate its effectiveness on broad classes of nonlinear genetic models using simulated human genomes and the small amount of currently available real data. A phase transition (i.e., dramatic and qualitative change) in the behavior of the algorithm indicates when sufficient data is available for its successful application. Our results indicate

  8. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.

    Science.gov (United States)

    Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao

    2014-10-15

    Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

  9. A compressed sensing based method with support refinement for impulse noise cancelation in DSL

    KAUST Repository

    Quadeer, Ahmed Abdul

    2013-06-01

    This paper presents a compressed sensing based method to suppress impulse noise in digital subscriber line (DSL). The proposed algorithm exploits the sparse nature of the impulse noise and utilizes the carriers, already available in all practical DSL systems, for its estimation and cancelation. Specifically, compressed sensing is used for a coarse estimate of the impulse position, an a priori information based maximum aposteriori probability (MAP) metric for its refinement, followed by least squares (LS) or minimum mean square error (MMSE) estimation for estimating the impulse amplitudes. Simulation results show that the proposed scheme achieves higher rate as compared to other known sparse estimation algorithms in literature. The paper also demonstrates the superior performance of the proposed scheme compared to the ITU-T G992.3 standard that utilizes RS-coding for impulse noise refinement in DSL signals. © 2013 IEEE.

  10. An Evaluation Framework for Lossy Compression of Genome Sequencing Quality Values

    OpenAIRE

    Alberti, Claudio; Daniels, Noah; Hernaez, Mikel; Voges, Jan; Goldfeder, Rachel L.; Hernandez-Lopez, Ana A.; Mattavelli, Marco; Berger, Bonnie

    2016-01-01

    This paper provides the specification and an initial validation of an evaluation framework for the comparison of lossy compressors of genome sequencing quality values. The goal is to define reference data, test sets, tools and metrics that shall be used to evaluate the impact of lossy compression of quality values on human genome variant calling. The functionality of the framework is validated referring to two state-of-the-art genomic compressors. This work has been spurred by the current act...

  11. A Web GIS Framework for Participatory Sensing Service: An Open Source-Based Implementation

    Directory of Open Access Journals (Sweden)

    Yu Nakayama

    2017-04-01

    Full Text Available Participatory sensing is the process in which individuals or communities collect and analyze systematic data using mobile phones and cloud services. To efficiently develop participatory sensing services, some server-side technologies have been proposed. Although they provide a good platform for participatory sensing, they are not optimized for spatial data management and processing. For the purpose of spatial data collection and management, many web GIS approaches have been studied. However, they still have not focused on the optimal framework for participatory sensing services. This paper presents a web GIS framework for participatory sensing service (FPSS. The proposed FPSS enables an integrated deployment of spatial data capture, storage, and data management functions. In various types of participatory sensing experiments, users can collect and manage spatial data in a unified manner. This feature is realized by the optimized system architecture and use case based on the general requirements for participatory sensing. We developed an open source GIS-based implementation of the proposed framework, which can overcome financial difficulties that are one of the major problems of deploying sensing experiments. We confirmed with the prototype that participatory sensing experiments can be performed efficiently with the proposed FPSS.

  12. Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Xun; Safta, Cosmin; Sargsyan, Khachik; Vane, Zachary Phillips; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.

    2017-07-01

    Compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quanti cation analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several com- pressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers of l1 ls, SpaRSA, CGIST, FPC AS, and ADMM, we develop techniques to mitigate over tting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendations on parameter settings for these tech- niques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-cross flow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy and computational tradeoffs between polynomial bases of different degrees, and practi- cability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.

  13. Dynamic mode decomposition for compressive system identification

    Science.gov (United States)

    Bai, Zhe; Kaiser, Eurika; Proctor, Joshua L.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Dynamic mode decomposition has emerged as a leading technique to identify spatiotemporal coherent structures from high-dimensional data. In this work, we integrate and unify two recent innovations that extend DMD to systems with actuation and systems with heavily subsampled measurements. When combined, these methods yield a novel framework for compressive system identification, where it is possible to identify a low-order model from limited input-output data and reconstruct the associated full-state dynamic modes with compressed sensing, providing interpretability of the state of the reduced-order model. When full-state data is available, it is possible to dramatically accelerate downstream computations by first compressing the data. We demonstrate this unified framework on simulated data of fluid flow past a pitching airfoil, investigating the effects of sensor noise, different types of measurements (e.g., point sensors, Gaussian random projections, etc.), compression ratios, and different choices of actuation (e.g., localized, broadband, etc.). This example provides a challenging and realistic test-case for the proposed method, and results indicate that the dominant coherent structures and dynamics are well characterized even with heavily subsampled data.

  14. Incorporation of local dependent reliability information into the Prior Image Constrained Compressed Sensing (PICCS) reconstruction algorithm

    International Nuclear Information System (INIS)

    Vaegler, Sven; Sauer, Otto; Stsepankou, Dzmitry; Hesser, Juergen

    2015-01-01

    The reduction of dose in cone beam computer tomography (CBCT) arises from the decrease of the tube current for each projection as well as from the reduction of the number of projections. In order to maintain good image quality, sophisticated image reconstruction techniques are required. The Prior Image Constrained Compressed Sensing (PICCS) incorporates prior images into the reconstruction algorithm and outperforms the widespread used Feldkamp-Davis-Kress-algorithm (FDK) when the number of projections is reduced. However, prior images that contain major variations are not appropriately considered so far in PICCS. We therefore propose the partial-PICCS (pPICCS) algorithm. This framework is a problem-specific extension of PICCS and enables the incorporation of the reliability of the prior images additionally. We assumed that the prior images are composed of areas with large and small deviations. Accordingly, a weighting matrix considered the assigned areas in the objective function. We applied our algorithm to the problem of image reconstruction from few views by simulations with a computer phantom as well as on clinical CBCT projections from a head-and-neck case. All prior images contained large local variations. The reconstructed images were compared to the reconstruction results by the FDK-algorithm, by Compressed Sensing (CS) and by PICCS. To show the gain of image quality we compared image details with the reference image and used quantitative metrics (root-mean-square error (RMSE), contrast-to-noise-ratio (CNR)). The pPICCS reconstruction framework yield images with substantially improved quality even when the number of projections was very small. The images contained less streaking, blurring and inaccurately reconstructed structures compared to the images reconstructed by FDK, CS and conventional PICCS. The increased image quality is also reflected in large RMSE differences. We proposed a modification of the original PICCS algorithm. The pPICCS algorithm

  15. Infrared and visible image fusion based on robust principal component analysis and compressed sensing

    Science.gov (United States)

    Li, Jun; Song, Minghui; Peng, Yuanxi

    2018-03-01

    Current infrared and visible image fusion methods do not achieve adequate information extraction, i.e., they cannot extract the target information from infrared images while retaining the background information from visible images. Moreover, most of them have high complexity and are time-consuming. This paper proposes an efficient image fusion framework for infrared and visible images on the basis of robust principal component analysis (RPCA) and compressed sensing (CS). The novel framework consists of three phases. First, RPCA decomposition is applied to the infrared and visible images to obtain their sparse and low-rank components, which represent the salient features and background information of the images, respectively. Second, the sparse and low-rank coefficients are fused by different strategies. On the one hand, the measurements of the sparse coefficients are obtained by the random Gaussian matrix, and they are then fused by the standard deviation (SD) based fusion rule. Next, the fused sparse component is obtained by reconstructing the result of the fused measurement using the fast continuous linearized augmented Lagrangian algorithm (FCLALM). On the other hand, the low-rank coefficients are fused using the max-absolute rule. Subsequently, the fused image is superposed by the fused sparse and low-rank components. For comparison, several popular fusion algorithms are tested experimentally. By comparing the fused results subjectively and objectively, we find that the proposed framework can extract the infrared targets while retaining the background information in the visible images. Thus, it exhibits state-of-the-art performance in terms of both fusion effects and timeliness.

  16. Compressed sensing based joint-compensation of power amplifier's distortions in OFDMA cognitive radio systems

    KAUST Repository

    Ali, Anum Z.

    2013-12-01

    Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.

  17. Compressed sensing based joint-compensation of power amplifier's distortions in OFDMA cognitive radio systems

    KAUST Repository

    Ali, Anum Z.; Hammi, Oualid; Al-Naffouri, Tareq Y.

    2013-01-01

    Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.

  18. Sparse Vector Distributions and Recovery from Compressed Sensing

    DEFF Research Database (Denmark)

    Sturm, Bob L.

    It is well known that the performance of sparse vector recovery algorithms from compressive measurements can depend on the distribution underlying the non-zero elements of a sparse vector. However, the extent of these effects has yet to be explored, and formally presented. In this paper, I...... empirically investigate this dependence for seven distributions and fifteen recovery algorithms. The two morals of this work are: 1) any judgement of the recovery performance of one algorithm over that of another must be prefaced by the conditions for which this is observed to be true, including sparse vector...... distributions, and the criterion for exact recovery; and 2) a recovery algorithm must be selected carefully based on what distribution one expects to underlie the sensed sparse signal....

  19. Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    AlAfeef, Ala, E-mail: a.al-afeef.1@research.gla.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); School of Computing Science, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bobynko, Joanna [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cockshott, W. Paul. [School of Computing Science, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Craven, Alan J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Zuazo, Ian; Barges, Patrick [ArcelorMittal Maizières Research, Maizières-lès-Metz 57283 (France); MacLaren, Ian, E-mail: ian.maclaren@glasgow.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2016-11-15

    We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionally, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS. - Highlights: • DualEELS is essential for chemically sensitive electron tomography using EELS. • A new compressed sensing based algorithm (DLET) gives high fidelity reconstruction. • This combination of DualEELS and DLET will give reliable results from few projections.

  20. Compressed sensing in imaging mass spectrometry

    International Nuclear Information System (INIS)

    Bartels, Andreas; Dülk, Patrick; Trede, Dennis; Alexandrov, Theodore; Maaß, Peter

    2013-01-01

    Imaging mass spectrometry (IMS) is a technique of analytical chemistry for spatially resolved, label-free and multipurpose analysis of biological samples that is able to detect the spatial distribution of hundreds of molecules in one experiment. The hyperspectral IMS data is typically generated by a mass spectrometer analyzing the surface of the sample. In this paper, we propose a compressed sensing approach to IMS which potentially allows for faster data acquisition by collecting only a part of the pixels in the hyperspectral image and reconstructing the full image from this data. We present an integrative approach to perform both peak-picking spectra and denoising m/z-images simultaneously, whereas the state of the art data analysis methods solve these problems separately. We provide a proof of the robustness of the recovery of both the spectra and individual channels of the hyperspectral image and propose an algorithm to solve our optimization problem which is based on proximal mappings. The paper concludes with the numerical reconstruction results for an IMS dataset of a rat brain coronal section. (paper)

  1. Compressed Sensing, Pseudodictionary-Based, Superresolution Reconstruction

    Directory of Open Access Journals (Sweden)

    Chun-mei Li

    2016-01-01

    Full Text Available The spatial resolution of digital images is the critical factor that affects photogrammetry precision. Single-frame, superresolution, image reconstruction is a typical underdetermined, inverse problem. To solve this type of problem, a compressive, sensing, pseudodictionary-based, superresolution reconstruction method is proposed in this study. The proposed method achieves pseudodictionary learning with an available low-resolution image and uses the K-SVD algorithm, which is based on the sparse characteristics of the digital image. Then, the sparse representation coefficient of the low-resolution image is obtained by solving the norm of l0 minimization problem, and the sparse coefficient and high-resolution pseudodictionary are used to reconstruct image tiles with high resolution. Finally, single-frame-image superresolution reconstruction is achieved. The proposed method is applied to photogrammetric images, and the experimental results indicate that the proposed method effectively increase image resolution, increase image information content, and achieve superresolution reconstruction. The reconstructed results are better than those obtained from traditional interpolation methods in aspect of visual effects and quantitative indicators.

  2. Compressed sensing method for human activity recognition using tri-axis accelerometer on mobile phone

    Institute of Scientific and Technical Information of China (English)

    Song Hui; Wang Zhongmin

    2017-01-01

    The diversity in the phone placements of different mobile users' dailylife increases the difficulty of recognizing human activities by using mobile phone accelerometer data.To solve this problem,a compressed sensing method to recognize human activities that is based on compressed sensing theory and utilizes both raw mobile phone accelerometer data and phone placement information is proposed.First,an over-complete dictionary matrix is constructed using sufficient raw tri-axis acceleration data labeled with phone placement information.Then,the sparse coefficient is evaluated for the samples that need to be tested by resolving L1 minimization.Finally,residual values are calculated and the minimum value is selected as the indicator to obtain the recognition results.Experimental results show that this method can achieve a recognition accuracy reaching 89.86%,which is higher than that of a recognition method that does not adopt the phone placement information for the recognition process.The recognition accuracy of the proposed method is effective and satisfactory.

  3. An optical color image watermarking scheme by using compressive sensing with human visual characteristics in gyrator domain

    Science.gov (United States)

    Liansheng, Sui; Bei, Zhou; Zhanmin, Wang; Ailing, Tian

    2017-05-01

    A novel optical color image watermarking scheme considering human visual characteristics is presented in gyrator transform domain. Initially, an appropriate reference image is constructed of significant blocks chosen from the grayscale host image by evaluating visual characteristics such as visual entropy and edge entropy. Three components of the color watermark image are compressed based on compressive sensing, and the corresponding results are combined to form the grayscale watermark. Then, the frequency coefficients of the watermark image are fused into the frequency data of the gyrator-transformed reference image. The fused result is inversely transformed and partitioned, and eventually the watermarked image is obtained by mapping the resultant blocks into their original positions. The scheme can reconstruct the watermark with high perceptual quality and has the enhanced security due to high sensitivity of the secret keys. Importantly, the scheme can be implemented easily under the framework of double random phase encoding with the 4f optical system. To the best of our knowledge, it is the first report on embedding the color watermark into the grayscale host image which will be out of attacker's expectation. Simulation results are given to verify the feasibility and its superior performance in terms of noise and occlusion robustness.

  4. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54

  5. Compressed sensing techniques for receiver based post-compensation of transmitter's nonlinear distortions in OFDM systems

    KAUST Repository

    Owodunni, Damilola S.; Ali, Anum Z.; Quadeer, Ahmed Abdul; Al-Safadi, Ebrahim B.; Hammi, Oualid; Al-Naffouri, Tareq Y.

    2014-01-01

    -domain, and three compressed sensing based algorithms are presented to estimate and compensate for these distortions at the receiver using a few and, at times, even no frequency-domain free carriers (i.e. pilot carriers). The first technique is a conventional

  6. Accelerated radial Fourier-velocity encoding using compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)

    2014-10-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  7. Accelerated radial Fourier-velocity encoding using compressed sensing

    International Nuclear Information System (INIS)

    Hilbert, Fabian; Han, Dietbert

    2014-01-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  8. Accelerated radial Fourier-velocity encoding using compressed sensing.

    Science.gov (United States)

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  9. Compressive sensing based wireless sensor for structural health monitoring

    Science.gov (United States)

    Bao, Yuequan; Zou, Zilong; Li, Hui

    2014-03-01

    Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.

  10. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  11. The use of compressive sensing and peak detection in the reconstruction of microtubules length time series in the process of dynamic instability.

    Science.gov (United States)

    Mahrooghy, Majid; Yarahmadian, Shantia; Menon, Vineetha; Rezania, Vahid; Tuszynski, Jack A

    2015-10-01

    Microtubules (MTs) are intra-cellular cylindrical protein filaments. They exhibit a unique phenomenon of stochastic growth and shrinkage, called dynamic instability. In this paper, we introduce a theoretical framework for applying Compressive Sensing (CS) to the sampled data of the microtubule length in the process of dynamic instability. To reduce data density and reconstruct the original signal with relatively low sampling rates, we have applied CS to experimental MT lament length time series modeled as a Dichotomous Markov Noise (DMN). The results show that using CS along with the wavelet transform significantly reduces the recovery errors comparing in the absence of wavelet transform, especially in the low and the medium sampling rates. In a sampling rate ranging from 0.2 to 0.5, the Root-Mean-Squared Error (RMSE) decreases by approximately 3 times and between 0.5 and 1, RMSE is small. We also apply a peak detection technique to the wavelet coefficients to detect and closely approximate the growth and shrinkage of MTs for computing the essential dynamic instability parameters, i.e., transition frequencies and specially growth and shrinkage rates. The results show that using compressed sensing along with the peak detection technique and wavelet transform in sampling rates reduces the recovery errors for the parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Micro-Doppler Ambiguity Resolution Based on Short-Time Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Jing-bo Zhuang

    2015-01-01

    Full Text Available When using a long range radar (LRR to track a target with micromotion, the micro-Doppler embodied in the radar echoes may suffer from ambiguity problem. In this paper, we propose a novel method based on compressed sensing (CS to solve micro-Doppler ambiguity. According to the RIP requirement, a sparse probing pulse train with its transmitting time random is designed. After matched filtering, the slow-time echo signals of the micromotion target can be viewed as randomly sparse sampling of Doppler spectrum. Select several successive pulses to form a short-time window and the CS sensing matrix can be built according to the time stamps of these pulses. Then performing Orthogonal Matching Pursuit (OMP, the unambiguous micro-Doppler spectrum can be obtained. The proposed algorithm is verified using the echo signals generated according to the theoretical model and the signals with micro-Doppler signature produced using the commercial electromagnetic simulation software FEKO.

  13. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    OpenAIRE

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan

    2012-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the ...

  14. Direction-of-Arrival Estimation for Coprime Array Using Compressive Sensing Based Array Interpolation

    Directory of Open Access Journals (Sweden)

    Aihua Liu

    2017-01-01

    Full Text Available A method of direction-of-arrival (DOA estimation using array interpolation is proposed in this paper to increase the number of resolvable sources and improve the DOA estimation performance for coprime array configuration with holes in its virtual array. The virtual symmetric nonuniform linear array (VSNLA of coprime array signal model is introduced, with the conventional MUSIC with spatial smoothing algorithm (SS-MUSIC applied on the continuous lags in the VSNLA; the degrees of freedom (DoFs for DOA estimation are obviously not fully exploited. To effectively utilize the extent of DoFs offered by the coarray configuration, a compressing sensing based array interpolation algorithm is proposed. The compressing sensing technique is used to obtain the coarse initial DOA estimation, and a modified iterative initial DOA estimation based interpolation algorithm (IMCA-AI is then utilized to obtain the final DOA estimation, which maps the sample covariance matrix of the VSNLA to the covariance matrix of a filled virtual symmetric uniform linear array (VSULA with the same aperture size. The proposed DOA estimation method can efficiently improve the DOA estimation performance. The numerical simulations are provided to demonstrate the effectiveness of the proposed method.

  15. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    Science.gov (United States)

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  16. Foot and ankle compression improves joint position sense but not bipedal stance in older people

    NARCIS (Netherlands)

    Hijmans, J.M.; Zijlstra, W.; Geertzen, J.H.; Hof, A.L.; Postema, K.

    This study investigates the effects of foot and ankle compression on joint position sense (JPS) and balance in older people and young adults. 12 independently living healthy older persons (77-93 years) were recruited from a senior accommodation facility. 15 young adults (19-24 years) also

  17. An Evaluation Framework for Lossy Compression of Genome Sequencing Quality Values.

    Science.gov (United States)

    Alberti, Claudio; Daniels, Noah; Hernaez, Mikel; Voges, Jan; Goldfeder, Rachel L; Hernandez-Lopez, Ana A; Mattavelli, Marco; Berger, Bonnie

    2016-01-01

    This paper provides the specification and an initial validation of an evaluation framework for the comparison of lossy compressors of genome sequencing quality values. The goal is to define reference data, test sets, tools and metrics that shall be used to evaluate the impact of lossy compression of quality values on human genome variant calling. The functionality of the framework is validated referring to two state-of-the-art genomic compressors. This work has been spurred by the current activity within the ISO/IEC SC29/WG11 technical committee (a.k.a. MPEG), which is investigating the possibility of starting a standardization activity for genomic information representation.

  18. Application of Compressive Sensing to Gravitational Microlensing Data and Implications for Miniaturized Space Observatories

    Science.gov (United States)

    Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.

  19. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.

    Science.gov (United States)

    Liu, Xilin; Zhang, Milin; Xiong, Tao; Richardson, Andrew G; Lucas, Timothy H; Chin, Peter S; Etienne-Cummings, Ralph; Tran, Trac D; Van der Spiegel, Jan

    2016-07-18

    Reliable, multi-channel neural recording is critical to the neuroscience research and clinical treatment. However, most hardware development of fully integrated, multi-channel wireless neural recorders to-date, is still in the proof-of-concept stage. To be ready for practical use, the trade-offs between performance, power consumption, device size, robustness, and compatibility need to be carefully taken into account. This paper presents an optimized wireless compressed sensing neural signal recording system. The system takes advantages of both custom integrated circuits and universal compatible wireless solutions. The proposed system includes an implantable wireless system-on-chip (SoC) and an external wireless relay. The SoC integrates 16-channel low-noise neural amplifiers, programmable filters and gain stages, a SAR ADC, a real-time compressed sensing module, and a near field wireless power and data transmission link. The external relay integrates a 32 bit low-power microcontroller with Bluetooth 4.0 wireless module, a programming interface, and an inductive charging unit. The SoC achieves high signal recording quality with minimized power consumption, while reducing the risk of infection from through-skin connectors. The external relay maximizes the compatibility and programmability. The proposed compressed sensing module is highly configurable, featuring a SNDR of 9.78 dB with a compression ratio of 8×. The SoC has been fabricated in a 180 nm standard CMOS technology, occupying 2.1 mm × 0.6 mm silicon area. A pre-implantable system has been assembled to demonstrate the proposed paradigm. The developed system has been successfully used for long-term wireless neural recording in freely behaving rhesus monkey.

  20. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    Directory of Open Access Journals (Sweden)

    Jiuqi Han

    2018-04-01

    Full Text Available Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods.

  1. A Constitutive Model for Unsaturated soils based on a Compressibility Framework dependent on Suction and Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Sitarenios Panagiotis

    2016-01-01

    Full Text Available The Modified Cam Clay model is extended to account for the behaviour of unsaturated soils using Bishop’s stress. To describe the Loading – Collapse behaviour, the model incorporates a compressibility framework with suction and degree of saturation dependent compression lines. For simplicity, the present paper describes the model in the triaxial stress space with characteristic simulations of constant suction compression and triaxial tests, as well as wetting tests. The model reproduces an evolving post yield compressibility under constant suction compression, and thus, can adequately describe a maximum of collapse.

  2. Compressive sensing for feedback reduction in MIMO broadcast channels

    KAUST Repository

    Eltayeb, Mohammed E.

    2014-09-01

    In multi-antenna broadcast networks, the base stations (BSs) rely on the channel state information (CSI) of the users to perform user scheduling and downlink transmission. However, in networks with large number of users, obtaining CSI from all users is arduous, if not impossible, in practice. This paper proposes channel feedback reduction techniques based on the theory of compressive sensing (CS), which permits the BS to obtain CSI with acceptable recovery guarantees under substantially reduced feedback overhead. Additionally, assuming noisy CS measurements at the BS, inexpensive ways for improving post-CS detection are explored. The proposed techniques are shown to reduce the feedback overhead, improve CS detection at the BS, and achieve a sum-rate close to that obtained by noiseless dedicated feedback channels.

  3. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  4. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  5. Two-Dimensional DOA Estimation in Compressed Sensing with Compressive-Reduced Dimension-lp-MUSIC

    Directory of Open Access Journals (Sweden)

    Weijian Si

    2015-01-01

    Full Text Available This paper presents a novel two-dimensional (2D direction of arrival (DOA estimation method in compressed sensing (CS to remove the estimation failure problem and achieve superior performance. The proposed method separates the steering vector into two parts to construct two corresponding noise subspaces by introducing electric angles. Then, electric angles are estimated based on the constructed noise subspaces. In order to estimate the azimuth and elevation angles in terms of estimates of electric angles, arc-tangent operations are exploited. The arc-tangent is a one-to-one function and allows the value of the argument to be larger than unity so that the proposed method never fails. The proposed method can avoid pair matching to reduce the computational complexity and extend the number of snapshots to improve performance. Simulation results show that the proposed method can avoid estimation failure occurrence and has superior performance as compared to existing methods.

  6. Energy Preserved Sampling for Compressed Sensing MRI

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2014-01-01

    Full Text Available The sampling patterns, cost functions, and reconstruction algorithms play important roles in optimizing compressed sensing magnetic resonance imaging (CS-MRI. Simple random sampling patterns did not take into account the energy distribution in k-space and resulted in suboptimal reconstruction of MR images. Therefore, a variety of variable density (VD based samplings patterns had been developed. To further improve it, we propose a novel energy preserving sampling (ePRESS method. Besides, we improve the cost function by introducing phase correction and region of support matrix, and we propose iterative thresholding algorithm (ITA to solve the improved cost function. We evaluate the proposed ePRESS sampling method, improved cost function, and ITA reconstruction algorithm by 2D digital phantom and 2D in vivo MR brains of healthy volunteers. These assessments demonstrate that the proposed ePRESS method performs better than VD, POWER, and BKO; the improved cost function can achieve better reconstruction quality than conventional cost function; and the ITA is faster than SISTA and is competitive with FISTA in terms of computation time.

  7. Energy Analysis of Decoders for Rakeness-Based Compressed Sensing of ECG Signals.

    Science.gov (United States)

    Pareschi, Fabio; Mangia, Mauro; Bortolotti, Daniele; Bartolini, Andrea; Benini, Luca; Rovatti, Riccardo; Setti, Gianluca

    2017-12-01

    In recent years, compressed sensing (CS) has proved to be effective in lowering the power consumption of sensing nodes in biomedical signal processing devices. This is due to the fact the CS is capable of reducing the amount of data to be transmitted to ensure correct reconstruction of the acquired waveforms. Rakeness-based CS has been introduced to further reduce the amount of transmitted data by exploiting the uneven distribution to the sensed signal energy. Yet, so far no thorough analysis exists on the impact of its adoption on CS decoder performance. The latter point is of great importance, since body-area sensor network architectures may include intermediate gateway nodes that receive and reconstruct signals to provide local services before relaying data to a remote server. In this paper, we fill this gap by showing that rakeness-based design also improves reconstruction performance. We quantify these findings in the case of ECG signals and when a variety of reconstruction algorithms are used either in a low-power microcontroller or a heterogeneous mobile computing platform.

  8. A Computational model for compressed sensing RNAi cellular screening

    Directory of Open Access Journals (Sweden)

    Tan Hua

    2012-12-01

    Full Text Available Abstract Background RNA interference (RNAi becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. Results In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi, which employs a unique combination of group of small interfering RNAs (siRNAs to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear, which is ill-posed in general. However, the recently developed compressed sensing (CS theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. Conclusions This csRNAi system is very promising in saving both time and cost for large-scale RNAi

  9. Efficient Bayesian Compressed Sensing-based Channel Estimation Techniques for Massive MIMO-OFDM Systems

    OpenAIRE

    Al-Salihi, Hayder Qahtan Kshash; Nakhai, Mohammad Reza

    2017-01-01

    Efficient and highly accurate channel state information (CSI) at the base station (BS) is essential to achieve the potential benefits of massive multiple input multiple output (MIMO) systems. However, the achievable accuracy that is attainable is limited in practice due to the problem of pilot contamination. It has recently been shown that compressed sensing (CS) techniques can address the pilot contamination problem. However, CS-based channel estimation requires prior knowledge of channel sp...

  10. Spectrum Sensing and Primary User Localization in Cognitive Radio Networks via Sparsity

    Directory of Open Access Journals (Sweden)

    Lanchao Liu

    2016-01-01

    Full Text Available The theory of compressive sensing (CS has been employed to detect available spectrum resource in cognitive radio (CR networks recently. Capitalizing on the spectrum resource underutilization and spatial sparsity of primary user (PU locations, CS enables the identification of the unused spectrum bands and PU locations at a low sampling rate. Although CS has been studied in the cooperative spectrum sensing mechanism in which CR nodes work collaboratively to accomplish the spectrum sensing and PU localization task, many important issues remain unsettled. Does the designed compressive spectrum sensing mechanism satisfy the Restricted Isometry Property, which guarantees a successful recovery of the original sparse signal? Can the spectrum sensing results help the localization of PUs? What are the characteristics of localization errors? To answer those questions, we try to justify the applicability of the CS theory to the compressive spectrum sensing framework in this paper, and propose a design of PU localization utilizing the spectrum usage information. The localization error is analyzed by the Cramér-Rao lower bound, which can be exploited to improve the localization performance. Detail analysis and simulations are presented to support the claims and demonstrate the efficacy and efficiency of the proposed mechanism.

  11. A Constitutive Model for Unsaturated soils based on a Compressibility Framework dependent on Suction and Degree of Saturation

    OpenAIRE

    Sitarenios Panagiotis; Kavvadas Michael

    2016-01-01

    The Modified Cam Clay model is extended to account for the behaviour of unsaturated soils using Bishop’s stress. To describe the Loading – Collapse behaviour, the model incorporates a compressibility framework with suction and degree of saturation dependent compression lines. For simplicity, the present paper describes the model in the triaxial stress space with characteristic simulations of constant suction compression and triaxial tests, as well as wetting tests. The model reproduces an evo...

  12. A Robust Parallel Algorithm for Combinatorial Compressed Sensing

    Science.gov (United States)

    Mendoza-Smith, Rodrigo; Tanner, Jared W.; Wechsung, Florian

    2018-04-01

    In previous work two of the authors have shown that a vector $x \\in \\mathbb{R}^n$ with at most $k Parallel-$\\ell_0$ decoding algorithm, where $\\mathrm{nnz}(A)$ denotes the number of nonzero entries in $A \\in \\mathbb{R}^{m \\times n}$. In this paper we present the Robust-$\\ell_0$ decoding algorithm, which robustifies Parallel-$\\ell_0$ when the sketch $Ax$ is corrupted by additive noise. This robustness is achieved by approximating the asymptotic posterior distribution of values in the sketch given its corrupted measurements. We provide analytic expressions that approximate these posteriors under the assumptions that the nonzero entries in the signal and the noise are drawn from continuous distributions. Numerical experiments presented show that Robust-$\\ell_0$ is superior to existing greedy and combinatorial compressed sensing algorithms in the presence of small to moderate signal-to-noise ratios in the setting of Gaussian signals and Gaussian additive noise.

  13. Towards 4D intervention guidance using compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, Jan; Bartling, Soenke [Deutsches Krebsforschungszentrum DKFZ, Heidelberg (Germany); Brehm, Marcus; Kachelriess, Marc [Erlangen-Nuernberg Univ., Erlangen (Germany). Inst. of Medical Physics (IMP)

    2011-07-01

    Interventional radiology is nowadays usually guided with projection radiography using mono- or biplane systems. Due to the projective nature of this guidance imaging certain intraprocedural situations remain unclear. Although helpful, the use of 3D CT is limited due to radiation dose. Using advanced reconstruction techniques incorporating prior knowledge, one could overcome these limitations without exceeding dose limitations. Intervention guidance is especially appealing to those algorithms, because certain constrains apply to useful images in intervention guidance that vary relevantly from other CT applications. These are: key relevance of high contrast structures, sparse temporal updates and little relevance of absolute CT values. In this paper the principal usability of reconstruction algorithms for intervention guidance is tested. Compressed sensing algorithms PICCS and ASD-POCS are compared to the McKinnon-Bates and Feldkamp-Davis-Kress algorithm. Animal experiments as well as simulations are performed. An outlook towards 4D intervention guidance is provided. (orig.)

  14. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node

    Directory of Open Access Journals (Sweden)

    Kan Luo

    2018-01-01

    Full Text Available Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS- based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node’s specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM, block sparse Bayesian learning (BSBL method, and discrete cosine transform (DCT basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  15. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node.

    Science.gov (United States)

    Luo, Kan; Cai, Zhipeng; Du, Keqin; Zou, Fumin; Zhang, Xiangyu; Li, Jianqing

    2018-01-01

    Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  16. Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing

    KAUST Repository

    Ali, Hussain; Ahmed, Sajid; Al-Naffouri, Tareq Y.; Sharawi, Mohammad S.; Alouini, Mohamed-Slim

    2017-01-01

    Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.

  17. Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing

    KAUST Repository

    Ali, Hussain

    2017-01-09

    Conventional algorithms used for parameter estimation in colocated multiple-input-multiple-output (MIMO) radars require the inversion of the covariance matrix of the received spatial samples. In these algorithms, the number of received snapshots should be at least equal to the size of the covariance matrix. For large size MIMO antenna arrays, the inversion of the covariance matrix becomes computationally very expensive. Compressive sensing (CS) algorithms which do not require the inversion of the complete covariance matrix can be used for parameter estimation with fewer number of received snapshots. In this work, it is shown that the spatial formulation is best suitable for large MIMO arrays when CS algorithms are used. A temporal formulation is proposed which fits the CS algorithms framework, especially for small size MIMO arrays. A recently proposed low-complexity CS algorithm named support agnostic Bayesian matching pursuit (SABMP) is used to estimate target parameters for both spatial and temporal formulations for the unknown number of targets. The simulation results show the advantage of SABMP algorithm utilizing low number of snapshots and better parameter estimation for both small and large number of antenna elements. Moreover, it is shown by simulations that SABMP is more effective than other existing algorithms at high signal-to-noise ratio.

  18. Reconstruction algorithm in compressed sensing based on maximum a posteriori estimation

    International Nuclear Information System (INIS)

    Takeda, Koujin; Kabashima, Yoshiyuki

    2013-01-01

    We propose a systematic method for constructing a sparse data reconstruction algorithm in compressed sensing at a relatively low computational cost for general observation matrix. It is known that the cost of ℓ 1 -norm minimization using a standard linear programming algorithm is O(N 3 ). We show that this cost can be reduced to O(N 2 ) by applying the approach of posterior maximization. Furthermore, in principle, the algorithm from our approach is expected to achieve the widest successful reconstruction region, which is evaluated from theoretical argument. We also discuss the relation between the belief propagation-based reconstruction algorithm introduced in preceding works and our approach

  19. Compressed sensing of ECG signal for wireless system with new fast iterative method.

    Science.gov (United States)

    Tawfic, Israa; Kayhan, Sema

    2015-12-01

    Recent experiments in wireless body area network (WBAN) show that compressive sensing (CS) is a promising tool to compress the Electrocardiogram signal ECG signal. The performance of CS is based on algorithms use to reconstruct exactly or approximately the original signal. In this paper, we present two methods work with absence and presence of noise, these methods are Least Support Orthogonal Matching Pursuit (LS-OMP) and Least Support Denoising-Orthogonal Matching Pursuit (LSD-OMP). The algorithms achieve correct support recovery without requiring sparsity knowledge. We derive an improved restricted isometry property (RIP) based conditions over the best known results. The basic procedures are done by observational and analytical of a different Electrocardiogram signal downloaded them from PhysioBankATM. Experimental results show that significant performance in term of reconstruction quality and compression rate can be obtained by these two new proposed algorithms, and help the specialist gathering the necessary information from the patient in less time if we use Magnetic Resonance Imaging (MRI) application, or reconstructed the patient data after sending it through the network. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise

    Science.gov (United States)

    Orović, Irena; Stanković, Srdjan; Amin, Moeness

    2013-05-01

    A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.

  1. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Huichen Yan

    2015-10-01

    Full Text Available Matched field processing (MFP is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method.

  2. Single-snapshot DOA estimation by using Compressed Sensing

    Science.gov (United States)

    Fortunati, Stefano; Grasso, Raffaele; Gini, Fulvio; Greco, Maria S.; LePage, Kevin

    2014-12-01

    This paper deals with the problem of estimating the directions of arrival (DOA) of multiple source signals from a single observation vector of an array data. In particular, four estimation algorithms based on the theory of compressed sensing (CS), i.e., the classical ℓ 1 minimization (or Least Absolute Shrinkage and Selection Operator, LASSO), the fast smooth ℓ 0 minimization, and the Sparse Iterative Covariance-Based Estimator, SPICE and the Iterative Adaptive Approach for Amplitude and Phase Estimation, IAA-APES algorithms, are analyzed, and their statistical properties are investigated and compared with the classical Fourier beamformer (FB) in different simulated scenarios. We show that unlike the classical FB, a CS-based beamformer (CSB) has some desirable properties typical of the adaptive algorithms (e.g., Capon and MUSIC) even in the single snapshot case. Particular attention is devoted to the super-resolution property. Theoretical arguments and simulation analysis provide evidence that a CS-based beamformer can achieve resolution beyond the classical Rayleigh limit. Finally, the theoretical findings are validated by processing a real sonar dataset.

  3. Backtracking-Based Iterative Regularization Method for Image Compressive Sensing Recovery

    Directory of Open Access Journals (Sweden)

    Lingjun Liu

    2017-01-01

    Full Text Available This paper presents a variant of the iterative shrinkage-thresholding (IST algorithm, called backtracking-based adaptive IST (BAIST, for image compressive sensing (CS reconstruction. For increasing iterations, IST usually yields a smoothing of the solution and runs into prematurity. To add back more details, the BAIST method backtracks to the previous noisy image using L2 norm minimization, i.e., minimizing the Euclidean distance between the current solution and the previous ones. Through this modification, the BAIST method achieves superior performance while maintaining the low complexity of IST-type methods. Also, BAIST takes a nonlocal regularization with an adaptive regularizor to automatically detect the sparsity level of an image. Experimental results show that our algorithm outperforms the original IST method and several excellent CS techniques.

  4. Study on the effects of sample selection on spectral reflectance reconstruction based on the algorithm of compressive sensing

    International Nuclear Information System (INIS)

    Zhang, Leihong; Liang, Dong

    2016-01-01

    In order to solve the problem that reconstruction efficiency and precision is not high, in this paper different samples are selected to reconstruct spectral reflectance, and a new kind of spectral reflectance reconstruction method based on the algorithm of compressive sensing is provided. Four different color numbers of matte color cards such as the ColorChecker Color Rendition Chart and Color Checker SG, the copperplate paper spot color card of Panton, and the Munsell colors card are chosen as training samples, the spectral image is reconstructed respectively by the algorithm of compressive sensing and pseudo-inverse and Wiener, and the results are compared. These methods of spectral reconstruction are evaluated by root mean square error and color difference accuracy. The experiments show that the cumulative contribution rate and color difference of the Munsell colors card are better than those of the other three numbers of color cards in the same conditions of reconstruction, and the accuracy of the spectral reconstruction will be affected by the training sample of different numbers of color cards. The key technology of reconstruction means that the uniformity and representation of the training sample selection has important significance upon reconstruction. In this paper, the influence of the sample selection on the spectral image reconstruction is studied. The precision of the spectral reconstruction based on the algorithm of compressive sensing is higher than that of the traditional algorithm of spectral reconstruction. By the MATLAB simulation results, it can be seen that the spectral reconstruction precision and efficiency are affected by the different color numbers of the training sample. (paper)

  5. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    Directory of Open Access Journals (Sweden)

    Yuri Álvarez López

    2017-01-01

    Full Text Available One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  6. TH-E-17A-06: Anatomical-Adaptive Compressed Sensing (AACS) Reconstruction for Thoracic 4-Dimensional Cone-Beam CT

    International Nuclear Information System (INIS)

    Shieh, C; Kipritidis, J; OBrien, R; Cooper, B; Kuncic, Z; Keall, P

    2014-01-01

    Purpose: The Feldkamp-Davis-Kress (FDK) algorithm currently used for clinical thoracic 4-dimensional (4D) cone-beam CT (CBCT) reconstruction suffers from noise and streaking artifacts due to projection under-sampling. Compressed sensing theory enables reconstruction of under-sampled datasets via total-variation (TV) minimization, but TV-minimization algorithms such as adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) often converge slowly and are prone to over-smoothing anatomical details. These disadvantages can be overcome by incorporating general anatomical knowledge via anatomy segmentation. Based on this concept, we have developed an anatomical-adaptive compressed sensing (AACS) algorithm for thoracic 4D-CBCT reconstruction. Methods: AACS is based on the ASD-POCS framework, where each iteration consists of a TV-minimization step and a data fidelity constraint step. Prior to every AACS iteration, four major thoracic anatomical structures - soft tissue, lungs, bony anatomy, and pulmonary details - were segmented from the updated solution image. Based on the segmentation, an anatomical-adaptive weighting was applied to the TV-minimization step, so that TV-minimization was enhanced at noisy/streaky regions and suppressed at anatomical structures of interest. The image quality and convergence speed of AACS was compared to conventional ASD-POCS using an XCAT digital phantom and a patient scan. Results: For the XCAT phantom, the AACS image represented the ground truth better than the ASD-POCS image, giving a higher structural similarity index (0.93 vs. 0.84) and lower absolute difference (1.1*10 4 vs. 1.4*10 4 ). For the patient case, while both algorithms resulted in much less noise and streaking than FDK, the AACS image showed considerably better contrast and sharpness of the vessels, tumor, and fiducial marker than the ASD-POCS image. In addition, AACS converged over 50% faster than ASD-POCS in both cases. Conclusions: The proposed AACS algorithm

  7. TH-E-17A-06: Anatomical-Adaptive Compressed Sensing (AACS) Reconstruction for Thoracic 4-Dimensional Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, C; Kipritidis, J; OBrien, R; Cooper, B; Kuncic, Z; Keall, P [The University of Sydney, Sydney, New South Wales (Australia)

    2014-06-15

    Purpose: The Feldkamp-Davis-Kress (FDK) algorithm currently used for clinical thoracic 4-dimensional (4D) cone-beam CT (CBCT) reconstruction suffers from noise and streaking artifacts due to projection under-sampling. Compressed sensing theory enables reconstruction of under-sampled datasets via total-variation (TV) minimization, but TV-minimization algorithms such as adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) often converge slowly and are prone to over-smoothing anatomical details. These disadvantages can be overcome by incorporating general anatomical knowledge via anatomy segmentation. Based on this concept, we have developed an anatomical-adaptive compressed sensing (AACS) algorithm for thoracic 4D-CBCT reconstruction. Methods: AACS is based on the ASD-POCS framework, where each iteration consists of a TV-minimization step and a data fidelity constraint step. Prior to every AACS iteration, four major thoracic anatomical structures - soft tissue, lungs, bony anatomy, and pulmonary details - were segmented from the updated solution image. Based on the segmentation, an anatomical-adaptive weighting was applied to the TV-minimization step, so that TV-minimization was enhanced at noisy/streaky regions and suppressed at anatomical structures of interest. The image quality and convergence speed of AACS was compared to conventional ASD-POCS using an XCAT digital phantom and a patient scan. Results: For the XCAT phantom, the AACS image represented the ground truth better than the ASD-POCS image, giving a higher structural similarity index (0.93 vs. 0.84) and lower absolute difference (1.1*10{sup 4} vs. 1.4*10{sup 4}). For the patient case, while both algorithms resulted in much less noise and streaking than FDK, the AACS image showed considerably better contrast and sharpness of the vessels, tumor, and fiducial marker than the ASD-POCS image. In addition, AACS converged over 50% faster than ASD-POCS in both cases. Conclusions: The proposed AACS

  8. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing

    Science.gov (United States)

    Shao, Haidong; Jiang, Hongkai; Zhang, Haizhou; Duan, Wenjing; Liang, Tianchen; Wu, Shuaipeng

    2018-02-01

    The vibration signals collected from rolling bearing are usually complex and non-stationary with heavy background noise. Therefore, it is a great challenge to efficiently learn the representative fault features of the collected vibration signals. In this paper, a novel method called improved convolutional deep belief network (CDBN) with compressed sensing (CS) is developed for feature learning and fault diagnosis of rolling bearing. Firstly, CS is adopted for reducing the vibration data amount to improve analysis efficiency. Secondly, a new CDBN model is constructed with Gaussian visible units to enhance the feature learning ability for the compressed data. Finally, exponential moving average (EMA) technique is employed to improve the generalization performance of the constructed deep model. The developed method is applied to analyze the experimental rolling bearing vibration signals. The results confirm that the developed method is more effective than the traditional methods.

  9. EgoSENSE: A Framework for Context-Aware Mobile Applications Development

    Directory of Open Access Journals (Sweden)

    E. M. Milic

    2017-08-01

    Full Text Available This paper presents a context-aware mobile framework (or middleware, intended to support the implementation of context-aware mobile services. The overview of basic concepts, architecture and components of context-aware mobile framework is given. The mobile framework provide acquisition and management of context, where raw data sensed from physical (hardware sensors and virtual (software sensors are combined, processed and analyzed to provide high-level context and situation of the user to the mobile context-aware applications in near real-time. Using demo mobile health application, its most important components and functions, such as these supposed to detect urgent or alarming health conditions of a mobile user and to initiate appropriate actions demonstrated.

  10. Multimode waveguide speckle patterns for compressive sensing.

    Science.gov (United States)

    Valley, George C; Sefler, George A; Justin Shaw, T

    2016-06-01

    Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.

  11. Accelerated Compressed Sensing Based CT Image Reconstruction.

    Science.gov (United States)

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  12. Accelerated Compressed Sensing Based CT Image Reconstruction

    Directory of Open Access Journals (Sweden)

    SayedMasoud Hashemi

    2015-01-01

    Full Text Available In X-ray computed tomography (CT an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  13. Compressive System Identification in the Linear Time-Invariant framework

    KAUST Repository

    Toth, Roland

    2011-12-01

    Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.

  14. Development of a compressive sampling hyperspectral imager prototype

    Science.gov (United States)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2013-10-01

    Compressive sensing (CS) is a new technology that investigates the chance to sample signals at a lower rate than the traditional sampling theory. The main advantage of CS is that compression takes place during the sampling phase, making possible significant savings in terms of the ADC, data storage memory, down-link bandwidth, and electrical power absorption. The CS technology could have primary importance for spaceborne missions and technology, paving the way to noteworthy reductions of payload mass, volume, and cost. On the contrary, the main CS disadvantage is made by the intensive off-line data processing necessary to obtain the desired source estimation. In this paper we summarize the CS architecture and its possible implementations for Earth observation, giving evidence of possible bottlenecks hindering this technology. CS necessarily employs a multiplexing scheme, which should produce some SNR disadvantage. Moreover, this approach would necessitate optical light modulators and 2-dim detector arrays of high frame rate. This paper describes the development of a sensor prototype at laboratory level that will be utilized for the experimental assessment of CS performance and the related reconstruction errors. The experimental test-bed adopts a push-broom imaging spectrometer, a liquid crystal plate, a standard CCD camera and a Silicon PhotoMultiplier (SiPM) matrix. The prototype is being developed within the framework of the ESA ITI-B Project titled "Hyperspectral Passive Satellite Imaging via Compressive Sensing".

  15. PROMISE: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information.

    Science.gov (United States)

    Gong, Enhao; Huang, Feng; Ying, Kui; Wu, Wenchuan; Wang, Shi; Yuan, Chun

    2015-02-01

    A typical clinical MR examination includes multiple scans to acquire images with different contrasts for complementary diagnostic information. The multicontrast scheme requires long scanning time. The combination of partially parallel imaging and compressed sensing (CS-PPI) has been used to reconstruct accelerated scans. However, there are several unsolved problems in existing methods. The target of this work is to improve existing CS-PPI methods for multicontrast imaging, especially for two-dimensional imaging. If the same field of view is scanned in multicontrast imaging, there is significant amount of sharable information. It is proposed in this study to use manifold sharable information among multicontrast images to enhance CS-PPI in a sequential way. Coil sensitivity information and structure based adaptive regularization, which were extracted from previously reconstructed images, were applied to enhance the following reconstructions. The proposed method is called Parallel-imaging and compressed-sensing Reconstruction Of Multicontrast Imaging using SharablE information (PROMISE). Using L1 -SPIRiT as a CS-PPI example, results on multicontrast brain and carotid scans demonstrated that lower error level and better detail preservation can be achieved by exploiting manifold sharable information. Besides, the privilege of PROMISE still exists while there is interscan motion. Using the sharable information among multicontrast images can enhance CS-PPI with tolerance to motions. © 2014 Wiley Periodicals, Inc.

  16. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    Science.gov (United States)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  17. Feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory.

    Science.gov (United States)

    Wang, Haoyu; Miao, Yanwei; Zhou, Kun; Yu, Yanming; Bao, Shanglian; He, Qiang; Dai, Yongming; Xuan, Stephanie Y; Tarabishy, Bisher; Ye, Yongquan; Hu, Jiani

    2010-09-01

    To investigate the feasibility of high temporal resolution breast DCE-MRI using compressed sensing theory. Two experiments were designed to investigate the feasibility of using reference image based compressed sensing (RICS) technique in DCE-MRI of the breast. The first experiment examined the capability of RICS to faithfully reconstruct uptake curves using undersampled data sets extracted from fully sampled clinical breast DCE-MRI data. An average approach and an approach using motion estimation and motion compensation (ME/MC) were implemented to obtain reference images and to evaluate their efficacy in reducing motion related effects. The second experiment, an in vitro phantom study, tested the feasibility of RICS for improving temporal resolution without degrading the spatial resolution. For the uptake-curve reconstruction experiment, there was a high correlation between uptake curves reconstructed from fully sampled data by Fourier transform and from undersampled data by RICS, indicating high similarity between them. The mean Pearson correlation coefficients for RICS with the ME/MC approach and RICS with the average approach were 0.977 +/- 0.023 and 0.953 +/- 0.031, respectively. The comparisons of final reconstruction results between RICS with the average approach and RICS with the ME/MC approach suggested that the latter was superior to the former in reducing motion related effects. For the in vitro experiment, compared to the fully sampled method, RICS improved the temporal resolution by an acceleration factor of 10 without degrading the spatial resolution. The preliminary study demonstrates the feasibility of RICS for faithfully reconstructing uptake curves and improving temporal resolution of breast DCE-MRI without degrading the spatial resolution.

  18. Zeolite-like Metal–Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing

    KAUST Repository

    Masih, Dilshad

    2018-03-26

    The selectivity and sensitivity of sensors are of great interest to the materials chemistry community, and a lot of effort is now devoted to improving these characteristics. More specifically, the selective sensing of anions is one of the largest challenges impeding the sensing-research area due to their similar physical and chemical behaviors. In this work, platinum–metalated porphyrin (Pt(II)TMPyP) was successfully encapsulated in a rho-type zeolite-like metal–organic framework (rho-ZMOF) and applied for anion-selective sensing. The sensing activity and selectivity of the MOF-encaged Pt(II)TMPyP for various anions in aqueous and methanolic media were compared to that of the free (nonencapsulated) Pt(II)TMPyP. While the photoinduced triplet-state electron transfer of Pt(II)TMPyP showed a very low detection limit for anions with no selectivity, the Pt(II)TMPyP encapsulated in the rho-ZMOF framework possessed a unique chemical structure to overcome such limitations. This new approach has the potential for use in other complex sensing applications, including biosensors, which require ion selectivity.

  19. High efficient optical remote sensing images acquisition for nano-satellite: reconstruction algorithms

    Science.gov (United States)

    Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming

    2017-10-01

    Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.

  20. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  1. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks.

    Science.gov (United States)

    Wang, Hao; Lustig, William P; Li, Jing

    2018-03-13

    Toxic and hazardous chemical species are ubiquitous, predominantly emitted by anthropogenic activities, and pose serious risks to human health and the environment. Thus, the sensing and subsequent capture of these chemicals, especially in the gas or vapor phase, are of extreme importance. To this end, metal-organic frameworks have attracted significant interest, as their high porosity and wide tunability make them ideal for both applications. These tailorable framework materials are particularly promising for the specific sensing and capture of targeted chemicals, as they can be designed to fit a diverse range of required conditions. This review will discuss the advantages of metal-organic frameworks in the sensing and capture of harmful gases and vapors, as well as principles and strategies guiding the design of these materials. Recent progress in the luminescent detection of aromatic and aliphatic volatile organic compounds, toxic gases, and chemical warfare agents will be summarized, and the adsorptive removal of fluorocarbons/chlorofluorocarbons, volatile radioactive species, toxic industrial gases and chemical warfare agents will be discussed.

  2. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    Science.gov (United States)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  3. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform.

    Science.gov (United States)

    Kempahanumakkagari, Sureshkumar; Kumar, Vanish; Samaddar, Pallabi; Kumar, Pawan; Ramakrishnappa, Thippeswamy; Kim, Ki-Hyun

    Technological advancements combined with materials research have led to the generation of enormous types of novel substrates and materials for use in various biological/medical, energy, and environmental applications. Lately, the embedding of biomolecules in novel and/or advanced materials (e.g., metal-organic frameworks (MOFs), nanoparticles, hydrogels, graphene, and their hybrid composites) has become a vital research area in the construction of an innovative platform for various applications including sensors (or biosensors), biofuel cells, and bioelectronic devices. Due to the intriguing properties of MOFs (e.g., framework architecture, topology, and optical properties), they have contributed considerably to recent progresses in enzymatic catalysis, antibody-antigen interactions, or many other related approaches. Here, we aim to describe the different strategies for the design and synthesis of diverse biomolecule-embedded MOFs for various sensing (e.g., optical, electrochemical, biological, and miscellaneous) techniques. Additionally, the benefits and future prospective of MOFs-based biomolecular immobilization as an innovative sensing platform are discussed along with the evaluation on their performance to seek for further development in this emerging research area. Copyright © 2018. Published by Elsevier Inc.

  4. An Uncertainty Quantification Framework for Remote Sensing Retrievals

    Science.gov (United States)

    Braverman, A. J.; Hobbs, J.

    2017-12-01

    Remote sensing data sets produced by NASA and other space agencies are the result of complex algorithms that infer geophysical state from observed radiances using retrieval algorithms. The processing must keep up with the downlinked data flow, and this necessitates computational compromises that affect the accuracies of retrieved estimates. The algorithms are also limited by imperfect knowledge of physics and of ancillary inputs that are required. All of this contributes to uncertainties that are generally not rigorously quantified by stepping outside the assumptions that underlie the retrieval methodology. In this talk we discuss a practical framework for uncertainty quantification that can be applied to a variety of remote sensing retrieval algorithms. Ours is a statistical approach that uses Monte Carlo simulation to approximate the sampling distribution of the retrieved estimates. We will discuss the strengths and weaknesses of this approach, and provide a case-study example from the Orbiting Carbon Observatory 2 mission.

  5. Toward a theoretical framework for trustworthy cyber sensing

    Science.gov (United States)

    Xu, Shouhuai

    2010-04-01

    Cyberspace is an indispensable part of the economy and society, but has been "polluted" with many compromised computers that can be abused to launch further attacks against the others. Since it is likely that there always are compromised computers, it is important to be aware of the (dynamic) cyber security-related situation, which is however challenging because cyberspace is an extremely large-scale complex system. Our project aims to investigate a theoretical framework for trustworthy cyber sensing. With the perspective of treating cyberspace as a large-scale complex system, the core question we aim to address is: What would be a competent theoretical (mathematical and algorithmic) framework for designing, analyzing, deploying, managing, and adapting cyber sensor systems so as to provide trustworthy information or input to the higher layer of cyber situation-awareness management, even in the presence of sophisticated malicious attacks against the cyber sensor systems?

  6. Bayesian nonparametric dictionary learning for compressed sensing MRI.

    Science.gov (United States)

    Huang, Yue; Paisley, John; Lin, Qin; Ding, Xinghao; Fu, Xueyang; Zhang, Xiao-Ping

    2014-12-01

    We develop a Bayesian nonparametric model for reconstructing magnetic resonance images (MRIs) from highly undersampled k -space data. We perform dictionary learning as part of the image reconstruction process. To this end, we use the beta process as a nonparametric dictionary learning prior for representing an image patch as a sparse combination of dictionary elements. The size of the dictionary and patch-specific sparsity pattern are inferred from the data, in addition to other dictionary learning variables. Dictionary learning is performed directly on the compressed image, and so is tailored to the MRI being considered. In addition, we investigate a total variation penalty term in combination with the dictionary learning model, and show how the denoising property of dictionary learning removes dependence on regularization parameters in the noisy setting. We derive a stochastic optimization algorithm based on Markov chain Monte Carlo for the Bayesian model, and use the alternating direction method of multipliers for efficiently performing total variation minimization. We present empirical results on several MRI, which show that the proposed regularization framework can improve reconstruction accuracy over other methods.

  7. Identifying Chaotic FitzHugh–Nagumo Neurons Using Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ri-Qi Su

    2014-07-01

    Full Text Available We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may thus be necessary and important, for example, applying appropriate controls to bring the network to a normal state. However, due to couplings among the nodes, the measured time series, even from non-chaotic neurons, would appear random, rendering inapplicable traditional nonlinear time-series analysis, such as the delay-coordinate embedding method, which yields information about the global dynamics of the entire network. Our method is based on compressive sensing. In particular, we demonstrate that identifying chaotic elements can be formulated as a general problem of reconstructing the nodal dynamical systems, network connections and all coupling functions, as well as their weights. The working and efficiency of the method are illustrated by using networks of non-identical FitzHugh–Nagumo neurons with randomly-distributed coupling weights.

  8. Compressive sensing of high betweenness centrality nodes in networks

    Science.gov (United States)

    Mahyar, Hamidreza; Hasheminezhad, Rouzbeh; Ghalebi K., Elahe; Nazemian, Ali; Grosu, Radu; Movaghar, Ali; Rabiee, Hamid R.

    2018-05-01

    Betweenness centrality is a prominent centrality measure expressing importance of a node within a network, in terms of the fraction of shortest paths passing through that node. Nodes with high betweenness centrality have significant impacts on the spread of influence and idea in social networks, the user activity in mobile phone networks, the contagion process in biological networks, and the bottlenecks in communication networks. Thus, identifying k-highest betweenness centrality nodes in networks will be of great interest in many applications. In this paper, we introduce CS-HiBet, a new method to efficiently detect top- k betweenness centrality nodes in networks, using compressive sensing. CS-HiBet can perform as a distributed algorithm by using only the local information at each node. Hence, it is applicable to large real-world and unknown networks in which the global approaches are usually unrealizable. The performance of the proposed method is evaluated by extensive simulations on several synthetic and real-world networks. The experimental results demonstrate that CS-HiBet outperforms the best existing methods with notable improvements.

  9. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Science.gov (United States)

    Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012

  10. Accelerated two-dimensional cine DENSE cardiovascular magnetic resonance using compressed sensing and parallel imaging.

    Science.gov (United States)

    Chen, Xiao; Yang, Yang; Cai, Xiaoying; Auger, Daniel A; Meyer, Craig H; Salerno, Michael; Epstein, Frederick H

    2016-06-14

    Cine Displacement Encoding with Stimulated Echoes (DENSE) provides accurate quantitative imaging of cardiac mechanics with rapid displacement and strain analysis; however, image acquisition times are relatively long. Compressed sensing (CS) with parallel imaging (PI) can generally provide high-quality images recovered from data sampled below the Nyquist rate. The purposes of the present study were to develop CS-PI-accelerated acquisition and reconstruction methods for cine DENSE, to assess their accuracy for cardiac imaging using retrospective undersampling, and to demonstrate their feasibility for prospectively-accelerated 2D cine DENSE imaging in a single breathhold. An accelerated cine DENSE sequence with variable-density spiral k-space sampling and golden angle rotations through time was implemented. A CS method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was combined with sensitivity encoding (SENSE) for the reconstruction of under-sampled multi-coil spiral data. Seven healthy volunteers and 7 patients underwent 2D cine DENSE imaging with fully-sampled acquisitions (14-26 heartbeats in duration) and with prospectively rate-2 and rate-4 accelerated acquisitions (14 and 8 heartbeats in duration). Retrospectively- and prospectively-accelerated data were reconstructed using BLOSM-SENSE and SENSE. Image quality of retrospectively-undersampled data was quantified using the relative root mean square error (rRMSE). Myocardial displacement and circumferential strain were computed for functional assessment, and linear correlation and Bland-Altman analyses were used to compare accelerated acquisitions to fully-sampled reference datasets. For retrospectively-undersampled data, BLOSM-SENSE provided similar or lower rRMSE at rate-2 and lower rRMSE at rate-4 acceleration compared to SENSE (p cine DENSE provided good image quality and expected values of displacement and strain. BLOSM-SENSE-accelerated spiral cine DENSE imaging with 2D displacement encoding can be

  11. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    International Nuclear Information System (INIS)

    Guthier, C; Aschenbrenner, K P; Buergy, D; Ehmann, M; Wenz, F; Hesser, J W

    2015-01-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced. (paper)

  12. A new optimization method using a compressed sensing inspired solver for real-time LDR-brachytherapy treatment planning

    Science.gov (United States)

    Guthier, C.; Aschenbrenner, K. P.; Buergy, D.; Ehmann, M.; Wenz, F.; Hesser, J. W.

    2015-03-01

    This work discusses a novel strategy for inverse planning in low dose rate brachytherapy. It applies the idea of compressed sensing to the problem of inverse treatment planning and a new solver for this formulation is developed. An inverse planning algorithm was developed incorporating brachytherapy dose calculation methods as recommended by AAPM TG-43. For optimization of the functional a new variant of a matching pursuit type solver is presented. The results are compared with current state-of-the-art inverse treatment planning algorithms by means of real prostate cancer patient data. The novel strategy outperforms the best state-of-the-art methods in speed, while achieving comparable quality. It is able to find solutions with comparable values for the objective function and it achieves these results within a few microseconds, being up to 542 times faster than competing state-of-the-art strategies, allowing real-time treatment planning. The sparse solution of inverse brachytherapy planning achieved with methods from compressed sensing is a new paradigm for optimization in medical physics. Through the sparsity of required needles and seeds identified by this method, the cost of intervention may be reduced.

  13. Compressed normalized block difference for object tracking

    Science.gov (United States)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  14. On the Feedback Reduction of Relay Multiuser Networks using Compressive Sensing

    KAUST Repository

    Elkhalil, Khalil

    2016-01-29

    This paper presents a comprehensive performance analysis of full-duplex multiuser relay networks employing opportunistic scheduling with noisy and compressive feedback. Specifically, two feedback techniques based on compressive sensing (CS) theory are introduced and their effect on the system performance is analyzed. The problem of joint user identity and signal-tonoise ratio (SNR) estimation at the base-station is casted as a block sparse signal recovery problem in CS. Using existing CS block recovery algorithms, the identity of the strong users is obtained and their corresponding SNRs are estimated using the best linear unbiased estimator (BLUE). To minimize the effect of feedback noise on the estimated SNRs, a back-off strategy that optimally backs-off on the noisy estimated SNRs is introduced, and the error covariance matrix of the noise after CS recovery is derived. Finally, closed-form expressions for the end-to-end SNRs of the system are derived. Numerical results show that the proposed techniques drastically reduce the feedback air-time and achieve a rate close to that obtained by scheduling techniques that require dedicated error-free feedback from all network users. Key findings of this paper suggest that the choice of half-duplex or full-duplex SNR feedback is dependent on the channel coherence interval, and on low coherence intervals, full-duplex feedback is superior to the interference-free half-duplex feedback.

  15. A new hyperspectral image compression paradigm based on fusion

    Science.gov (United States)

    Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto

    2016-10-01

    The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.

  16. An Adaptive Data Gathering Scheme for Multi-Hop Wireless Sensor Networks Based on Compressed Sensing and Network Coding.

    Science.gov (United States)

    Yin, Jun; Yang, Yuwang; Wang, Lei

    2016-04-01

    Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.

  17. A Compressed Sensing-Based Wearable Sensor Network for Quantitative Assessment of Stroke Patients

    Directory of Open Access Journals (Sweden)

    Lei Yu

    2016-02-01

    Full Text Available Clinical rehabilitation assessment is an important part of the therapy process because it is the premise for prescribing suitable rehabilitation interventions. However, the commonly used assessment scales have the following two drawbacks: (1 they are susceptible to subjective factors; (2 they only have several rating levels and are influenced by a ceiling effect, making it impossible to exactly detect any further improvement in the movement. Meanwhile, energy constraints are a primary design consideration in wearable sensor network systems since they are often battery-operated. Traditionally, for wearable sensor network systems that follow the Shannon/Nyquist sampling theorem, there are many data that need to be sampled and transmitted. This paper proposes a novel wearable sensor network system to monitor and quantitatively assess the upper limb motion function, based on compressed sensing technology. With the sparse representation model, less data is transmitted to the computer than with traditional systems. The experimental results show that the accelerometer signals of Bobath handshake and shoulder touch exercises can be compressed, and the length of the compressed signal is less than 1/3 of the raw signal length. More importantly, the reconstruction errors have no influence on the predictive accuracy of the Brunnstrom stage classification model. It also indicated that the proposed system can not only reduce the amount of data during the sampling and transmission processes, but also, the reconstructed accelerometer signals can be used for quantitative assessment without any loss of useful information.

  18. A Compressed Sensing-Based Wearable Sensor Network for Quantitative Assessment of Stroke Patients

    Science.gov (United States)

    Yu, Lei; Xiong, Daxi; Guo, Liquan; Wang, Jiping

    2016-01-01

    Clinical rehabilitation assessment is an important part of the therapy process because it is the premise for prescribing suitable rehabilitation interventions. However, the commonly used assessment scales have the following two drawbacks: (1) they are susceptible to subjective factors; (2) they only have several rating levels and are influenced by a ceiling effect, making it impossible to exactly detect any further improvement in the movement. Meanwhile, energy constraints are a primary design consideration in wearable sensor network systems since they are often battery-operated. Traditionally, for wearable sensor network systems that follow the Shannon/Nyquist sampling theorem, there are many data that need to be sampled and transmitted. This paper proposes a novel wearable sensor network system to monitor and quantitatively assess the upper limb motion function, based on compressed sensing technology. With the sparse representation model, less data is transmitted to the computer than with traditional systems. The experimental results show that the accelerometer signals of Bobath handshake and shoulder touch exercises can be compressed, and the length of the compressed signal is less than 1/3 of the raw signal length. More importantly, the reconstruction errors have no influence on the predictive accuracy of the Brunnstrom stage classification model. It also indicated that the proposed system can not only reduce the amount of data during the sampling and transmission processes, but also, the reconstructed accelerometer signals can be used for quantitative assessment without any loss of useful information. PMID:26861337

  19. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    Science.gov (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  20. A computationally efficient OMP-based compressed sensing reconstruction for dynamic MRI

    International Nuclear Information System (INIS)

    Usman, M; Prieto, C; Schaeffter, T; Batchelor, P G; Odille, F; Atkinson, D

    2011-01-01

    Compressed sensing (CS) methods in MRI are computationally intensive. Thus, designing novel CS algorithms that can perform faster reconstructions is crucial for everyday applications. We propose a computationally efficient orthogonal matching pursuit (OMP)-based reconstruction, specifically suited to cardiac MR data. According to the energy distribution of a y-f space obtained from a sliding window reconstruction, we label the y-f space as static or dynamic. For static y-f space images, a computationally efficient masked OMP reconstruction is performed, whereas for dynamic y-f space images, standard OMP reconstruction is used. The proposed method was tested on a dynamic numerical phantom and two cardiac MR datasets. Depending on the field of view composition of the imaging data, compared to the standard OMP method, reconstruction speedup factors ranging from 1.5 to 2.5 are achieved. (note)

  1. Informational analysis for compressive sampling in radar imaging.

    Science.gov (United States)

    Zhang, Jingxiong; Yang, Ke

    2015-03-24

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation.

  2. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  3. Identification of Sparse Audio Tampering Using Distributed Source Coding and Compressive Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Valenzise G

    2009-01-01

    Full Text Available In the past few years, a large amount of techniques have been proposed to identify whether a multimedia content has been illegally tampered or not. Nevertheless, very few efforts have been devoted to identifying which kind of attack has been carried out, especially due to the large data required for this task. We propose a novel hashing scheme which exploits the paradigms of compressive sensing and distributed source coding to generate a compact hash signature, and we apply it to the case of audio content protection. The audio content provider produces a small hash signature by computing a limited number of random projections of a perceptual, time-frequency representation of the original audio stream; the audio hash is given by the syndrome bits of an LDPC code applied to the projections. At the content user side, the hash is decoded using distributed source coding tools. If the tampering is sparsifiable or compressible in some orthonormal basis or redundant dictionary, it is possible to identify the time-frequency position of the attack, with a hash size as small as 200 bits/second; the bit saving obtained by introducing distributed source coding ranges between 20% to 70%.

  4. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  5. Performance characterization of compressed sensing positron emission tomography detectors and data acquisition system

    Science.gov (United States)

    Chang, Chen-Ming; Grant, Alexander M.; Lee, Brian J.; Kim, Ealgoo; Hong, KeyJo; Levin, Craig S.

    2015-08-01

    In the field of information theory, compressed sensing (CS) had been developed to recover signals at a lower sampling rate than suggested by the Nyquist-Shannon theorem, provided the signals have a sparse representation with respect to some base. CS has recently emerged as a method to multiplex PET detector readouts thanks to the sparse nature of 511 keV photon interactions in a typical PET study. We have shown in our previous numerical studies that, at the same multiplexing ratio, CS achieves higher signal-to-noise ratio (SNR) compared to Anger and cross-strip multiplexing. In addition, unlike Anger logic, multiplexing by CS preserves the capability to resolve multi-hit events, in which multiple pixels are triggered within the resolving time of the detector. In this work, we characterized the time, energy and intrinsic spatial resolution of two CS detectors and a data acquisition system we have developed for a PET insert system for simultaneous PET/MRI. The CS detector comprises a 2× 4 mosaic of 4× 4 arrays of 3.2× 3.2× 20 mm3 lutetium-yttrium orthosilicate crystals coupled one-to-one to eight 4× 4 silicon photomultiplier arrays. The total number of 128 pixels is multiplexed down to 16 readout channels by CS. The energy, coincidence time and intrinsic spatial resolution achieved by two CS detectors were 15.4+/- 0.1 % FWHM at 511 keV, 4.5 ns FWHM and 2.3 mm FWHM, respectively. A series of experiments were conducted to measure the sources of time jitter that limit the time resolution of the current system, which provides guidance for potential system design improvements. These findings demonstrate the feasibility of compressed sensing as a promising multiplexing method for PET detectors.

  6. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    Science.gov (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  7. Compressed sensing electron tomography of needle-shaped biological specimens – Potential for improved reconstruction fidelity with reduced dose

    Energy Technology Data Exchange (ETDEWEB)

    Saghi, Zineb, E-mail: saghizineb@gmail.com [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Divitini, Giorgio [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Winter, Benjamin [Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen (Germany); Leary, Rowan [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Spiecker, Erdmann [Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen (Germany); Ducati, Caterina [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Midgley, Paul A., E-mail: pam33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-01-15

    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques. - Highlights: • On-axis electron tomography of a needle-shaped biological sample is presented. • A reconstruction with isotropic resolution is achieved. • Compressed sensing methods are compared to conventional reconstruction algorithms. • High fidelity reconstructions are achieved with greatly undersampled datasets.

  8. Compressed sensing electron tomography of needle-shaped biological specimens – Potential for improved reconstruction fidelity with reduced dose

    International Nuclear Information System (INIS)

    Saghi, Zineb; Divitini, Giorgio; Winter, Benjamin; Leary, Rowan; Spiecker, Erdmann; Ducati, Caterina; Midgley, Paul A.

    2016-01-01

    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques. - Highlights: • On-axis electron tomography of a needle-shaped biological sample is presented. • A reconstruction with isotropic resolution is achieved. • Compressed sensing methods are compared to conventional reconstruction algorithms. • High fidelity reconstructions are achieved with greatly undersampled datasets.

  9. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  10. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    Science.gov (United States)

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.

  11. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, S.J.H.; Sabetghadam Esfahani, A.; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, F.; Sudholter, E.J.R.; Gascon Sabate, J.; de Smet, L.C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al)

  12. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials

    NARCIS (Netherlands)

    Sachdeva, Sumit; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, Dimitri; Gravesteijn, Dirk J.; Kapteijn, Freek; Sudhölter, Ernst J.R.; Gascon, Jorge; Smet, De Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  13. Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging.

    Science.gov (United States)

    Benkert, Thomas; Feng, Li; Sodickson, Daniel K; Chandarana, Hersh; Block, Kai Tobias

    2017-08-01

    Conventional fat/water separation techniques require that patients hold breath during abdominal acquisitions, which often fails and limits the achievable spatial resolution and anatomic coverage. This work presents a novel approach for free-breathing volumetric fat/water separation. Multiecho data are acquired using a motion-robust radial stack-of-stars three-dimensional GRE sequence with bipolar readout. To obtain fat/water maps, a model-based reconstruction is used that accounts for the off-resonant blurring of fat and integrates both compressed sensing and parallel imaging. The approach additionally enables generation of respiration-resolved fat/water maps by detecting motion from k-space data and reconstructing different respiration states. Furthermore, an extension is described for dynamic contrast-enhanced fat-water-separated measurements. Uniform and robust fat/water separation is demonstrated in several clinical applications, including free-breathing noncontrast abdominal examination of adults and a pediatric subject with both motion-averaged and motion-resolved reconstructions, as well as in a noncontrast breast exam. Furthermore, dynamic contrast-enhanced fat/water imaging with high temporal resolution is demonstrated in the abdomen and breast. The described framework provides a viable approach for motion-robust fat/water separation and promises particular value for clinical applications that are currently limited by the breath-holding capacity or cooperation of patients. Magn Reson Med 78:565-576, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Design of Compressed Sensing Algorithm for Coal Mine IoT Moving Measurement Data Based on a Multi-Hop Network and Total Variation

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2018-05-01

    Full Text Available As the application of a coal mine Internet of Things (IoT, mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.

  15. Design of Compressed Sensing Algorithm for Coal Mine IoT Moving Measurement Data Based on a Multi-Hop Network and Total Variation.

    Science.gov (United States)

    Wang, Gang; Zhao, Zhikai; Ning, Yongjie

    2018-05-28

    As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.

  16. A terbium(III)-organic framework for highly selective sensing of cytidine triphosphate.

    Science.gov (United States)

    Zhao, Xi Juan; He, Rong Xing; Li, Yuan Fang

    2012-11-21

    Highly selective sensing of cytidine triphosphate (CTP) against other triphosphate nucleosides including ATP, GTP and UTP is successfully achieved with a luminescent terbium(III)-organic framework (TbOF) of [Tb(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)](n) (2,3-pzdc(2-) = 2,3-pyrazinedicarboxylate, ox(2-) = oxalate).

  17. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    Directory of Open Access Journals (Sweden)

    Feilong Li

    2017-01-01

    Full Text Available The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU with sufficient protection to licensed primary user (PU. Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.

  18. Peeling Decoding of LDPC Codes with Applications in Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Weijun Zeng

    2016-01-01

    Full Text Available We present a new approach for the analysis of iterative peeling decoding recovery algorithms in the context of Low-Density Parity-Check (LDPC codes and compressed sensing. The iterative recovery algorithm is particularly interesting for its low measurement cost and low computational complexity. The asymptotic analysis can track the evolution of the fraction of unrecovered signal elements in each iteration, which is similar to the well-known density evolution analysis in the context of LDPC decoding algorithm. Our analysis shows that there exists a threshold on the density factor; if under this threshold, the recovery algorithm is successful; otherwise it will fail. Simulation results are also provided for verifying the agreement between the proposed asymptotic analysis and recovery algorithm. Compared with existing works of peeling decoding algorithm, focusing on the failure probability of the recovery algorithm, our proposed approach gives accurate evolution of performance with different parameters of measurement matrices and is easy to implement. We also show that the peeling decoding algorithm performs better than other schemes based on LDPC codes.

  19. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  20. A Web Service-Based Framework Model for People-Centric Sensing Applications Applied to Social Networking

    Directory of Open Access Journals (Sweden)

    Jorge Sá Silva

    2012-02-01

    Full Text Available As the Internet evolved, social networks (such as Facebook have bloomed and brought together an astonishing number of users. Mashing up mobile phones and sensors with these social environments enables the creation of people-centric sensing systems which have great potential for expanding our current social networking usage. However, such systems also have many associated technical challenges, such as privacy concerns, activity detection mechanisms or intermittent connectivity, as well as limitations due to the heterogeneity of sensor nodes and networks. Considering the openness of the Web 2.0, good technical solutions for these cases consist of frameworks that expose sensing data and functionalities as common Web-Services. This paper presents our RESTful Web Service-based model for people-centric sensing frameworks, which uses sensors and mobile phones to detect users’ activities and locations, sharing this information amongst the user’s friends within a social networking site. We also present some screenshot results of our experimental prototype.

  1. A Web Service-based framework model for people-centric sensing applications applied to social networking.

    Science.gov (United States)

    Nunes, David; Tran, Thanh-Dien; Raposo, Duarte; Pinto, André; Gomes, André; Silva, Jorge Sá

    2012-01-01

    As the Internet evolved, social networks (such as Facebook) have bloomed and brought together an astonishing number of users. Mashing up mobile phones and sensors with these social environments enables the creation of people-centric sensing systems which have great potential for expanding our current social networking usage. However, such systems also have many associated technical challenges, such as privacy concerns, activity detection mechanisms or intermittent connectivity, as well as limitations due to the heterogeneity of sensor nodes and networks. Considering the openness of the Web 2.0, good technical solutions for these cases consist of frameworks that expose sensing data and functionalities as common Web-Services. This paper presents our RESTful Web Service-based model for people-centric sensing frameworks, which uses sensors and mobile phones to detect users' activities and locations, sharing this information amongst the user's friends within a social networking site. We also present some screenshot results of our experimental prototype.

  2. Signal Recovery in Compressive Sensing via Multiple Sparsifying Bases

    DEFF Research Database (Denmark)

    Wijewardhana, U. L.; Belyaev, Evgeny; Codreanu, M.

    2017-01-01

    is sparse is the key assumption utilized by such algorithms. However, the basis in which the signal is the sparsest is unknown for many natural signals of interest. Instead there may exist multiple bases which lead to a compressible representation of the signal: e.g., an image is compressible in different...... wavelet transforms. We show that a significant performance improvement can be achieved by utilizing multiple estimates of the signal using sparsifying bases in the context of signal reconstruction from compressive samples. Further, we derive a customized interior-point method to jointly obtain multiple...... estimates of a 2-D signal (image) from compressive measurements utilizing multiple sparsifying bases as well as the fact that the images usually have a sparse gradient....

  3. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland FHNW, 5210 Windisch (Switzerland)

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  4. A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations

    Science.gov (United States)

    Felix, Simon; Bolzern, Roman; Battaglia, Marina

    2017-11-01

    One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.

  5. Visualization of Astronomical Nebulae via Distributed Multi-GPU Compressed Sensing Tomography.

    Science.gov (United States)

    Wenger, S; Ament, M; Guthe, S; Lorenz, D; Tillmann, A; Weiskopf, D; Magnor, M

    2012-12-01

    The 3D visualization of astronomical nebulae is a challenging problem since only a single 2D projection is observable from our fixed vantage point on Earth. We attempt to generate plausible and realistic looking volumetric visualizations via a tomographic approach that exploits the spherical or axial symmetry prevalent in some relevant types of nebulae. Different types of symmetry can be implemented by using different randomized distributions of virtual cameras. Our approach is based on an iterative compressed sensing reconstruction algorithm that we extend with support for position-dependent volumetric regularization and linear equality constraints. We present a distributed multi-GPU implementation that is capable of reconstructing high-resolution datasets from arbitrary projections. Its robustness and scalability are demonstrated for astronomical imagery from the Hubble Space Telescope. The resulting volumetric data is visualized using direct volume rendering. Compared to previous approaches, our method preserves a much higher amount of detail and visual variety in the 3D visualization, especially for objects with only approximate symmetry.

  6. Peak reduction and clipping mitigation in OFDM by augmented compressive sensing

    KAUST Repository

    Al-Safadi, Ebrahim B.

    2012-07-01

    This work establishes the design, analysis, and fine-tuning of a peak-to-average-power-ratio (PAPR) reducing system, based on compressed sensing (CS) at the receiver of a peak-reducing sparse clipper applied to an orthogonal frequency-division multiplexing (OFDM) signal at the transmitter. By exploiting the sparsity of clipping events in the time domain relative to a predefined clipping threshold, the method depends on partially observing the frequency content of the clipping distortion over reserved tones to estimate the remaining distortion. The approach has the advantage of eliminating the computational complexity at the transmitter and reducing the overall complexity of the system compared to previous methods which incorporate pilots to cancel nonlinear distortion. Data-based augmented CS methods are also proposed that draw upon available phase and support information from data tones for enhanced estimation and cancelation of clipping noise. This enables signal recovery under more severe clipping scenarios and hence lower PAPR can be achieved compared to conventional CS techniques. © 2012 IEEE.

  7. Peak reduction and clipping mitigation in OFDM by augmented compressive sensing

    KAUST Repository

    Al-Safadi, Ebrahim B.; Al-Naffouri, Tareq Y.

    2012-01-01

    This work establishes the design, analysis, and fine-tuning of a peak-to-average-power-ratio (PAPR) reducing system, based on compressed sensing (CS) at the receiver of a peak-reducing sparse clipper applied to an orthogonal frequency-division multiplexing (OFDM) signal at the transmitter. By exploiting the sparsity of clipping events in the time domain relative to a predefined clipping threshold, the method depends on partially observing the frequency content of the clipping distortion over reserved tones to estimate the remaining distortion. The approach has the advantage of eliminating the computational complexity at the transmitter and reducing the overall complexity of the system compared to previous methods which incorporate pilots to cancel nonlinear distortion. Data-based augmented CS methods are also proposed that draw upon available phase and support information from data tones for enhanced estimation and cancelation of clipping noise. This enables signal recovery under more severe clipping scenarios and hence lower PAPR can be achieved compared to conventional CS techniques. © 2012 IEEE.

  8. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing.

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-08-25

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  9. Low-Complexity Spatial-Temporal Filtering Method via Compressive Sensing for Interference Mitigation in a GNSS Receiver

    Directory of Open Access Journals (Sweden)

    Chung-Liang Chang

    2014-01-01

    Full Text Available A compressive sensing based array processing method is proposed to lower the complexity, and computation load of array system and to maintain the robust antijam performance in global navigation satellite system (GNSS receiver. Firstly, the spatial and temporal compressed matrices are multiplied with array signal, which results in a small size array system. Secondly, the 2-dimensional (2D minimum variance distortionless response (MVDR beamformer is employed in proposed system to mitigate the narrowband and wideband interference simultaneously. The iterative process is performed to find optimal spatial and temporal gain vector by MVDR approach, which enhances the steering gain of direction of arrival (DOA of interest. Meanwhile, the null gain is set at DOA of interference. Finally, the simulated navigation signal is generated offline by the graphic user interface tool and employed in the proposed algorithm. The theoretical analysis results using the proposed algorithm are verified based on simulated results.

  10. Feature constrained compressed sensing CT image reconstruction from incomplete data via robust principal component analysis of the database

    International Nuclear Information System (INIS)

    Wu, Dufan; Li, Liang; Zhang, Li

    2013-01-01

    In computed tomography (CT), incomplete data problems such as limited angle projections often cause artifacts in the reconstruction results. Additional prior knowledge of the image has shown the potential for better results, such as a prior image constrained compressed sensing algorithm. While a pre-full-scan of the same patient is not always available, massive well-reconstructed images of different patients can be easily obtained from clinical multi-slice helical CTs. In this paper, a feature constrained compressed sensing (FCCS) image reconstruction algorithm was proposed to improve the image quality by using the prior knowledge extracted from the clinical database. The database consists of instances which are similar to the target image but not necessarily the same. Robust principal component analysis is employed to retrieve features of the training images to sparsify the target image. The features form a low-dimensional linear space and a constraint on the distance between the image and the space is used. A bi-criterion convex program which combines the feature constraint and total variation constraint is proposed for the reconstruction procedure and a flexible method is adopted for a good solution. Numerical simulations on both the phantom and real clinical patient images were taken to validate our algorithm. Promising results are shown for limited angle problems. (paper)

  11. Data Collection Method for Mobile Control Sink Node in Wireless Sensor Network Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ling Yongfa

    2016-01-01

    Full Text Available The paper proposes a mobile control sink node data collection method in the wireless sensor network based on compressive sensing. This method, with regular track, selects the optimal data collection points in the monitoring area via the disc method, calcu-lates the shortest path by using the quantum genetic algorithm, and hence determines the data collection route. Simulation results show that this method has higher network throughput and better energy efficiency, capable of collecting a huge amount of data with balanced energy consumption in the network.

  12. The possibilities of compressed-sensing-based Kirchhoff prestack migration

    KAUST Repository

    Aldawood, Ali; Hoteit, Ibrahim; Alkhalifah, Tariq Ali

    2014-01-01

    An approximate subsurface reflectivity distribution of the earth is usually obtained through the migration process. However, conventional migration algorithms, including those based on the least-squares approach, yield structure descriptions that are slightly smeared and of low resolution caused by the common migration artifacts due to limited aperture, coarse sampling, band-limited source, and low subsurface illumination. To alleviate this problem, we use the fact that minimizing the L1-norm of a signal promotes its sparsity. Thus, we formulated the Kirchhoff migration problem as a compressed-sensing (CS) basis pursuit denoise problem to solve for highly focused migrated images compared with those obtained by standard and least-squares migration algorithms. The results of various subsurface reflectivity models revealed that solutions computed using the CS based migration provide a more accurate subsurface reflectivity location and amplitude. We applied the CS algorithm to image synthetic data from a fault model using dense and sparse acquisition geometries. Our results suggest that the proposed approach may still provide highly resolved images with a relatively small number of measurements. We also evaluated the robustness of the basis pursuit denoise algorithm in the presence of Gaussian random observational noise and in the case of imaging the recorded data with inaccurate migration velocities.

  13. The possibilities of compressed-sensing-based Kirchhoff prestack migration

    KAUST Repository

    Aldawood, Ali

    2014-05-08

    An approximate subsurface reflectivity distribution of the earth is usually obtained through the migration process. However, conventional migration algorithms, including those based on the least-squares approach, yield structure descriptions that are slightly smeared and of low resolution caused by the common migration artifacts due to limited aperture, coarse sampling, band-limited source, and low subsurface illumination. To alleviate this problem, we use the fact that minimizing the L1-norm of a signal promotes its sparsity. Thus, we formulated the Kirchhoff migration problem as a compressed-sensing (CS) basis pursuit denoise problem to solve for highly focused migrated images compared with those obtained by standard and least-squares migration algorithms. The results of various subsurface reflectivity models revealed that solutions computed using the CS based migration provide a more accurate subsurface reflectivity location and amplitude. We applied the CS algorithm to image synthetic data from a fault model using dense and sparse acquisition geometries. Our results suggest that the proposed approach may still provide highly resolved images with a relatively small number of measurements. We also evaluated the robustness of the basis pursuit denoise algorithm in the presence of Gaussian random observational noise and in the case of imaging the recorded data with inaccurate migration velocities.

  14. Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting

    Science.gov (United States)

    Tang, Xin; Chen, Zhongsheng; Li, Yue; Yang, Yongmin

    2018-05-01

    When faults happen at gas path components of gas turbines, some sparsely-distributed and charged debris will be generated and released into the exhaust gas. The debris is called abnormal debris. Electrostatic sensors can detect the debris online and further indicate the faults. It is generally considered that, under a specific working condition, a more serious fault generates more and larger debris, and a piece of larger debris carries more charge. Therefore, the amount and charge of the abnormal debris are important indicators of the fault severity. However, because an electrostatic sensor can only detect the superposed effect on the electrostatic field of all the debris, it can hardly identify the amount and position of the debris. Moreover, because signals of electrostatic sensors depend on not only charge but also position of debris, and the position information is difficult to acquire, measuring debris charge accurately using the electrostatic detecting method is still a technical difficulty. To solve these problems, a hemisphere-shaped electrostatic sensors' circular array (HSESCA) is used, and an array signal processing method based on compressive sensing (CS) is proposed in this paper. To research in a theoretical framework of CS, the measurement model of the HSESCA is discretized into a sparse representation form by meshing. In this way, the amount and charge of the abnormal debris are described as a sparse vector. It is further reconstructed by constraining l1-norm when solving an underdetermined equation. In addition, a pre-processing method based on singular value decomposition and a result calibration method based on weighted-centroid algorithm are applied to ensure the accuracy of the reconstruction. The proposed method is validated by both numerical simulations and experiments. Reconstruction errors, characteristics of the results and some related factors are discussed.

  15. Large Eddy Simulation for Compressible Flows

    CERN Document Server

    Garnier, E; Sagaut, P

    2009-01-01

    Large Eddy Simulation (LES) of compressible flows is still a widely unexplored area of research. The authors, whose books are considered the most relevant monographs in this field, provide the reader with a comprehensive state-of-the-art presentation of the available LES theory and application. This book is a sequel to "Large Eddy Simulation for Incompressible Flows", as most of the research on LES for compressible flows is based on variable density extensions of models, methods and paradigms that were developed within the incompressible flow framework. The book addresses both the fundamentals and the practical industrial applications of LES in order to point out gaps in the theoretical framework as well as to bridge the gap between LES research and the growing need to use it in engineering modeling. After introducing the fundamentals on compressible turbulence and the LES governing equations, the mathematical framework for the filtering paradigm of LES for compressible flow equations is established. Instead ...

  16. Gas phase sensing of alcohols by Metal Organic Framework – polymer composite materials

    NARCIS (Netherlands)

    Sachdeva, S.; Koper, Sander J.H.; Sabetghadam, Anahid; Soccol, D.; Gravesteijn, Dirk J; Kapteijn, Freek; Sudholter, Ernst J.R.; Gascon, Jorge; de Smet, Louis C.P.M.

    2017-01-01

    Affinity layers play a crucial role in chemical sensors for the selective and sensitive detection of analytes. Here, we report the use of composite affinity layers containing Metal Organic Frameworks (MOFs) in a polymeric matrix for sensing purposes. Nanoparticles of NH2-MIL-53(Al) were dispersed in

  17. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-01-01

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077

  18. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2016-08-01

    Full Text Available Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF, the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  19. A compressed sensing X-ray camera with a multilayer architecture

    Science.gov (United States)

    Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.

    2018-01-01

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  20. Phase Imaging: A Compressive Sensing Approach

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sebastian; Stevens, Andrew; Browning, Nigel D.; Pohl, Darius; Nielsch, Kornelius; Rellinghaus, Bernd

    2017-07-01

    Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a high stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn

  1. Numerical analysis for two-dimensional compressible and two-phase flow fields of air-water in Eulerian grid framework

    International Nuclear Information System (INIS)

    Park, Chan Wook; Lee, Sung Su

    2008-01-01

    Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated

  2. Evaluation of Digital Compressed Sensing for Real-Time Wireless ECG System with Bluetooth low Energy.

    Science.gov (United States)

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2016-07-01

    In this paper, a wearable and wireless ECG system is firstly designed with Bluetooth Low Energy (BLE). It can detect 3-lead ECG signals and is completely wireless. Secondly the digital Compressed Sensing (CS) is implemented to increase the energy efficiency of wireless ECG sensor. Different sparsifying basis, various compression ratio (CR) and several reconstruction algorithms are simulated and discussed. Finally the reconstruction is done by the android application (App) on smartphone to display the signal in real time. The power efficiency is measured and compared with the system without CS. The optimum satisfying basis built by 3-level decomposed db4 wavelet coefficients, 1-bit Bernoulli random matrix and the most suitable reconstruction algorithm are selected by the simulations and applied on the sensor node and App. The signal is successfully reconstructed and displayed on the App of smartphone. Battery life of sensor node is extended from 55 h to 67 h. The presented wireless ECG system with CS can significantly extend the battery life by 22 %. With the compact characteristic and long term working time, the system provides a feasible solution for the long term homecare utilization.

  3. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2016-02-01

    Full Text Available A multiple targets cognitive radar tracking method based on Compressed Sensing (CS is proposed. In this method, the theory of CS is introduced to the case of cognitive radar tracking process in multiple targets scenario. The echo signal is sparsely expressed. The designs of sparse matrix and measurement matrix are accomplished by expressing the echo signal sparsely, and subsequently, the restruction of measurement signal under the down-sampling condition is realized. On the receiving end, after considering that the problems that traditional particle filter suffers from degeneracy, and require a large number of particles, the particle swarm optimization particle filter is used to track the targets. On the transmitting end, the Posterior Cramér-Rao Bounds (PCRB of the tracking accuracy is deduced, and the radar waveform parameters are further cognitively designed using PCRB. Simulation results show that the proposed method can not only reduce the data quantity, but also provide a better tracking performance compared with traditional method.

  4. Cyclops: single-pixel imaging lidar system based on compressive sensing

    Science.gov (United States)

    Magalhães, F.; Correia, M. V.; Farahi, F.; Pereira do Carmo, J.; Araújo, F. M.

    2017-11-01

    Mars and the Moon are envisaged as major destinations of future space exploration missions in the upcoming decades. Imaging LIDARs are seen as a key enabling technology in the support of autonomous guidance, navigation and control operations, as they can provide very accurate, wide range, high-resolution distance measurements as required for the exploration missions. Imaging LIDARs can be used at critical stages of these exploration missions, such as descent and selection of safe landing sites, rendezvous and docking manoeuvres, or robotic surface navigation and exploration. Despite these devices have been commercially available and used for long in diverse metrology and ranging applications, their size, mass and power consumption are still far from being suitable and attractive for space exploratory missions. Here, we describe a compact Single-Pixel Imaging LIDAR System that is based on a compressive sensing technique. The application of the compressive codes to a DMD array enables compression of the spatial information, while the collection of timing histograms correlated to the pulsed laser source ensures image reconstruction at the ranged distances. Single-pixel cameras have been compared with raster scanning and array based counterparts in terms of noise performance, and proved to be superior. Since a single photodetector is used, a better SNR and higher reliability is expected in contrast with systems using large format photodetector arrays. Furthermore, the event of failure of one or more micromirror elements in the DMD does not prevent full reconstruction of the images. This brings additional robustness to the proposed 3D imaging LIDAR. The prototype that was implemented has three modes of operation. Range Finder: outputs the average distance between the system and the area of the target under illumination; Attitude Meter: provides the slope of the target surface based on distance measurements in three areas of the target; 3D Imager: produces 3D ranged

  5. The Linearized Bregman Method for Frugal Full-waveform Inversion with Compressive Sensing and Sparsity-promoting

    Science.gov (United States)

    Chai, Xintao; Tang, Genyang; Peng, Ronghua; Liu, Shaoyong

    2018-03-01

    Full-waveform inversion (FWI) reconstructs the subsurface properties from acquired seismic data via minimization of the misfit between observed and simulated data. However, FWI suffers from considerable computational costs resulting from the numerical solution of the wave equation for each source at each iteration. To reduce the computational burden, constructing supershots by combining several sources (aka source encoding) allows mitigation of the number of simulations at each iteration, but it gives rise to crosstalk artifacts because of interference between the individual sources of the supershot. A modified Gauss-Newton FWI (MGNFWI) approach showed that as long as the difference between the initial and true models permits a sparse representation, the ℓ _1-norm constrained model updates suppress subsampling-related artifacts. However, the spectral-projected gradient ℓ _1 (SPGℓ _1) algorithm employed by MGNFWI is rather complicated that makes its implementation difficult. To facilitate realistic applications, we adapt a linearized Bregman (LB) method to sparsity-promoting FWI (SPFWI) because of the efficiency and simplicity of LB in the framework of ℓ _1-norm constrained optimization problem and compressive sensing. Numerical experiments performed with the BP Salt model, the Marmousi model and the BG Compass model verify the following points. The FWI result with LB solving ℓ _1-norm sparsity-promoting problem for the model update outperforms that generated by solving ℓ _2-norm problem in terms of crosstalk elimination and high-fidelity results. The simpler LB method performs comparably and even superiorly to the complicated SPGℓ _1 method in terms of computational efficiency and model quality, making the LB method a viable alternative for realistic implementations of SPFWI.

  6. Rate-distortion optimization for compressive video sampling

    Science.gov (United States)

    Liu, Ying; Vijayanagar, Krishna R.; Kim, Joohee

    2014-05-01

    The recently introduced compressed sensing (CS) framework enables low complexity video acquisition via sub- Nyquist rate sampling. In practice, the resulting CS samples are quantized and indexed by finitely many bits (bit-depth) for transmission. In applications where the bit-budget for video transmission is constrained, rate- distortion optimization (RDO) is essential for quality video reconstruction. In this work, we develop a double-level RDO scheme for compressive video sampling, where frame-level RDO is performed by adaptively allocating the fixed bit-budget per frame to each video block based on block-sparsity, and block-level RDO is performed by modelling the block reconstruction peak-signal-to-noise ratio (PSNR) as a quadratic function of quantization bit-depth. The optimal bit-depth and the number of CS samples are then obtained by setting the first derivative of the function to zero. In the experimental studies the model parameters are initialized with a small set of training data, which are then updated with local information in the model testing stage. Simulation results presented herein show that the proposed double-level RDO significantly enhances the reconstruction quality for a bit-budget constrained CS video transmission system.

  7. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  8. Massive-MIMO Sparse Uplink Channel Estimation Using Implicit Training and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Babar Mansoor

    2017-01-01

    Full Text Available Massive multiple-input multiple-output (massive-MIMO is foreseen as a potential technology for future 5G cellular communication networks due to its substantial benefits in terms of increased spectral and energy efficiency. These advantages of massive-MIMO are a consequence of equipping the base station (BS with quite a large number of antenna elements, thus resulting in an aggressive spatial multiplexing. In order to effectively reap the benefits of massive-MIMO, an adequate estimate of the channel impulse response (CIR between each transmit–receive link is of utmost importance. It has been established in the literature that certain specific multipath propagation environments lead to a sparse structured CIR in spatial and/or delay domains. In this paper, implicit training and compressed sensing based CIR estimation techniques are proposed for the case of massive-MIMO sparse uplink channels. In the proposed superimposed training (SiT based techniques, a periodic and low power training sequence is superimposed (arithmetically added over the information sequence, thus avoiding any dedicated time/frequency slots for the training sequence. For the estimation of such massive-MIMO sparse uplink channels, two greedy pursuits based compressed sensing approaches are proposed, viz: SiT based stage-wise orthogonal matching pursuit (SiT-StOMP and gradient pursuit (SiT-GP. In order to demonstrate the validity of proposed techniques, a performance comparison in terms of normalized mean square error (NCMSE and bit error rate (BER is performed with a notable SiT based least squares (SiT-LS channel estimation technique. The effect of channels’ sparsity, training-to-information power ratio (TIR and signal-to-noise ratio (SNR on BER and NCMSE performance of proposed schemes is thoroughly studied. For a simulation scenario of: 4 × 64 massive-MIMO with a channel sparsity level of 80 % and signal-to-noise ratio (SNR of 10 dB , a performance gain of 18 dB and 13 d

  9. Overlapped block-based compressive sensing imaging on mobile handset devices

    Directory of Open Access Journals (Sweden)

    Irene Manotas Gutiérrez

    2014-01-01

    Full Text Available Compressive Sensing (CS es una nueva técnica que simultáneamente comprime y muestrea una imagen tomando un conjunto de proyecciones aleatorias de una escena. Un algoritmo de optimización es empleado para reconstruir la imagen utilizando las proyecciones aleatorias. Diferentes algoritmos de optimización se han diseñado para obtener de manera eficiente una correcta reconstrucción de la señal original. En la práctica estos algoritmos se han restringido a implementaciones de CS en arquitecturas de alto rendimiento computacional, como computadores de escritorio o unidades de procesamiento gráfico, debido a el gran número de operaciones requeridas por el proceso de reconstrucción. Este trabajo extiende la aplicación de CS para ser implementado en una arquitectura con memoria y capacidad de procesamiento limitados como un dispositivo móvil. Específicamente, se describe un algoritmo basado en bloques sobrepuestos que permite reconstruir la imagen en un dispositivo móvil y se presenta un análisis del consumo de energía de los algoritmos utilizados. Los resultados muestran el tiempo computacional y la calidad de reconstrucción para imágenes de 128x128 y 256x256 píxeles.

  10. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    Science.gov (United States)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  11. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    Science.gov (United States)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  12. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    Science.gov (United States)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  13. Accelerated echo-planar J-resolved spectroscopic imaging in the human brain using compressed sensing: a pilot validation in obstructive sleep apnea.

    Science.gov (United States)

    Sarma, M K; Nagarajan, R; Macey, P M; Kumar, R; Villablanca, J P; Furuyama, J; Thomas, M A

    2014-06-01

    Echo-planar J-resolved spectroscopic imaging is a fast spectroscopic technique to record the biochemical information in multiple regions of the brain, but for clinical applications, time is still a constraint. Investigations of neural injury in obstructive sleep apnea have revealed structural changes in the brain, but determining the neurochemical changes requires more detailed measurements across multiple brain regions, demonstrating a need for faster echo-planar J-resolved spectroscopic imaging. Hence, we have extended the compressed sensing reconstruction of prospectively undersampled 4D echo-planar J-resolved spectroscopic imaging to investigate metabolic changes in multiple brain locations of patients with obstructive sleep apnea and healthy controls. Nonuniform undersampling was imposed along 1 spatial and 1 spectral dimension of 4D echo-planar J-resolved spectroscopic imaging, and test-retest reliability of the compressed sensing reconstruction of the nonuniform undersampling data was tested by using a brain phantom. In addition, 9 patients with obstructive sleep apnea and 11 healthy controls were investigated by using a 3T MR imaging/MR spectroscopy scanner. Significantly reduced metabolite differences were observed between patients with obstructive sleep apnea and healthy controls in multiple brain regions: NAA/Cr in the left hippocampus; total Cho/Cr and Glx/Cr in the right hippocampus; total NAA/Cr, taurine/Cr, scyllo-Inositol/Cr, phosphocholine/Cr, and total Cho/Cr in the occipital gray matter; total NAA/Cr and NAA/Cr in the medial frontal white matter; and taurine/Cr and total Cho/Cr in the left frontal white matter regions. The 4D echo-planar J-resolved spectroscopic imaging technique using the nonuniform undersampling-based acquisition and compressed sensing reconstruction in patients with obstructive sleep apnea and healthy brain is feasible in a clinically suitable time. In addition to brain metabolite changes previously reported by 1D MR

  14. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2016-01-01

    Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black......, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block...

  15. Lossless Compression of Classification-Map Data

    Science.gov (United States)

    Hua, Xie; Klimesh, Matthew

    2009-01-01

    A lossless image-data-compression algorithm intended specifically for application to classification-map data is based on prediction, context modeling, and entropy coding. The algorithm was formulated, in consideration of the differences between classification maps and ordinary images of natural scenes, so as to be capable of compressing classification- map data more effectively than do general-purpose image-data-compression algorithms. Classification maps are typically generated from remote-sensing images acquired by instruments aboard aircraft (see figure) and spacecraft. A classification map is a synthetic image that summarizes information derived from one or more original remote-sensing image(s) of a scene. The value assigned to each pixel in such a map is the index of a class that represents some type of content deduced from the original image data for example, a type of vegetation, a mineral, or a body of water at the corresponding location in the scene. When classification maps are generated onboard the aircraft or spacecraft, it is desirable to compress the classification-map data in order to reduce the volume of data that must be transmitted to a ground station.

  16. Generalized massive optimal data compression

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin

    2018-05-01

    In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.

  17. Toward an enhanced Bayesian estimation framework for multiphase flow soft-sensing

    International Nuclear Information System (INIS)

    Luo, Xiaodong; Lorentzen, Rolf J; Stordal, Andreas S; Nævdal, Geir

    2014-01-01

    In this work the authors study the multiphase flow soft-sensing problem based on a previously established framework. There are three functional modules in this framework, namely, a transient well flow model that describes the response of certain physical variables in a well, for instance, temperature, velocity and pressure, to the flow rates entering and leaving the well zones; a Markov jump process that is designed to capture the potential abrupt changes in the flow rates; and an estimation method that is adopted to estimate the underlying flow rates based on the measurements from the physical sensors installed in the well. In the previous studies, the variances of the flow rates in the Markov jump process are chosen manually. To fill this gap, in the current work two automatic approaches are proposed in order to optimize the variance estimation. Through a numerical example, we show that, when the estimation framework is used in conjunction with these two proposed variance-estimation approaches, it can achieve reasonable performance in terms of matching both the measurements of the physical sensors and the true underlying flow rates. (paper)

  18. Effective Data Acquisition Protocol for Multi-Hop Heterogeneous Wireless Sensor Networks Using Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ahmed M. Khedr

    2015-10-01

    Full Text Available In designing wireless sensor networks (WSNs, it is important to reduce energy dissipation and prolong network lifetime. Clustering of nodes is one of the most effective approaches for conserving energy in WSNs. Cluster formation protocols generally consider the heterogeneity of sensor nodes in terms of energy difference of nodes but ignore the different transmission ranges of them. In this paper, we propose an effective data acquisition clustered protocol using compressive sensing (EDACP-CS for heterogeneous WSNs that aims to conserve the energy of sensor nodes in the presence of energy and transmission range heterogeneity. In EDACP-CS, cluster heads are selected based on the distance from the base station and sensor residual energy. Simulation results show that our protocol offers a much better performance than the existing protocols in terms of energy consumption, stability, network lifetime, and throughput.

  19. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering

    Science.gov (United States)

    Li, Guang; Xiao, Xiao; Tang, Jing-Tian; Li, Jin; Zhu, Hui-Jie; Zhou, Cong; Yan, Fa-Bao

    2017-12-01

    In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First, we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.

  20. Sparse Channel Estimation for MIMO-OFDM Two-Way Relay Network with Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Aihua Zhang

    2013-01-01

    Full Text Available Accurate channel impulse response (CIR is required for equalization and can help improve communication service quality in next-generation wireless communication systems. An example of an advanced system is amplify-and-forward multiple-input multiple-output two-way relay network, which is modulated by orthogonal frequency-division multiplexing. Linear channel estimation methods, for example, least squares and expectation conditional maximization, have been proposed previously for the system. However, these methods do not take advantage of channel sparsity, and they decrease estimation performance. We propose a sparse channel estimation scheme, which is different from linear methods, at end users under the relay channel to enable us to exploit sparsity. First, we formulate the sparse channel estimation problem as a compressed sensing problem by using sparse decomposition theory. Second, the CIR is reconstructed by CoSaMP and OMP algorithms. Finally, computer simulations are conducted to confirm the superiority of the proposed methods over traditional linear channel estimation methods.

  1. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  2. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.

    Science.gov (United States)

    Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin

    2011-08-21

    Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video)

    Science.gov (United States)

    Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.

    2008-12-01

    Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

  4. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  5. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  6. Surpassing the Theoretical 1-Norm Phase Transition in Compressive Sensing by Tuning the Smoothed L0 Algorithm

    DEFF Research Database (Denmark)

    Oxvig, Christian Schou; Pedersen, Patrick Steffen; Arildsen, Thomas

    2013-01-01

    Reconstruction of an undersampled signal is at the root of compressive sensing: when is an algorithm capable of reconstructing the signal? what quality is achievable? and how much time does reconstruction require? We have considered the worst-case performance of the smoothed ℓ0 norm reconstruction...... algorithm in a noiseless setup. Through an empirical tuning of its parameters, we have improved the phase transition (capabilities) of the algorithm for fixed quality and required time. In this paper, we present simulation results that show a phase transition surpassing that of the theoretical ℓ1 approach......: the proposed modified algorithm obtains 1-norm phase transition with greatly reduced required computation time....

  7. Bitshuffle: Filter for improving compression of typed binary data

    Science.gov (United States)

    Masui, Kiyoshi

    2017-12-01

    Bitshuffle rearranges typed, binary data for improving compression; the algorithm is implemented in a python/C package within the Numpy framework. The library can be used alongside HDF5 to compress and decompress datasets and is integrated through the dynamically loaded filters framework. Algorithmically, Bitshuffle is closely related to HDF5's Shuffle filter except it operates at the bit level instead of the byte level. Arranging a typed data array in to a matrix with the elements as the rows and the bits within the elements as the columns, Bitshuffle "transposes" the matrix, such that all the least-significant-bits are in a row, etc. This transposition is performed within blocks of data roughly 8kB long; this does not in itself compress data, but rearranges it for more efficient compression. A compression library is necessary to perform the actual compression. This scheme has been used for compression of radio data in high performance computing.

  8. Feasibility study for image reconstruction in circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Je, Uikyu; Cho, Hyosung, E-mail: hscho1@yonsei.ac.kr; Hong, Daeki; Park, Chulkyu; Cho, Heemoon; Choi, Sungil; Woo, Taeho

    2015-03-21

    In this work, we performed a feasibility study for image reconstruction in a circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing (CS) theory. Here, the X-ray source moves along an arc within a limited-scan angle (≤ 180°) on a circular path set perpendicularly to the axial direction during the image acquisition. This geometry, compared to full-angle (360°) scan geometry, allows imaging system to be designed more compactly and gives better tomographic quality than conventional linear digital tomosynthesis (DTS). We implemented an efficient CS-based reconstruction algorithm for the proposed geometry and performed systematic simulations to investigate the image characteristics. We successfully reconstructed CDTS images with incomplete projections acquired at several selected limited-scan angles of 45°, 90°, 135°, and 180° for a given tomographic angle of 80° and evaluated the reconstruction quality. Our simulation results indicate that the proposed method can provide superior tomographic quality for axial view and even for the other views (i.e., sagittal and coronal), as in computed tomography, to conventional DTS. - Highlights: • Image reconstruction is done in circular digital tomosynthesis (CDTS). • The designed geometry allows imaging system to be the better image. • An efficient compressed-sensing (CS)-based reconstruction algorithm is performed. • Proposed method can provide superior tomographic quality for the axial view.

  9. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  10. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  11. A biological compression model and its applications.

    Science.gov (United States)

    Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd

    2011-01-01

    A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.

  12. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges

    Science.gov (United States)

    Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel

    2016-01-01

    The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well. PMID:26861345

  13. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges.

    Science.gov (United States)

    Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel

    2016-02-06

    The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.

  14. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges

    Directory of Open Access Journals (Sweden)

    Yuanfang Chen

    2016-02-01

    Full Text Available The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases is an important research issue in the industrial applications of the Internet of Things (IoT. An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.

  15. Magni: A Python Package for Compressive Sampling and Reconstruction of Atomic Force Microscopy Images

    Directory of Open Access Journals (Sweden)

    Christian Schou Oxvig

    2014-10-01

    Full Text Available Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also provides researchers in compressed sensing with a selection of algorithms for reconstructing undersampled general images, and offers a consistent and rigorous way to efficiently evaluate the researchers own developed reconstruction algorithms in terms of phase transitions. The package also serves as a convenient platform for researchers in compressed sensing aiming at obtaining a high degree of reproducibility of their research.

  16. FPGA Implementation of Real-Time Compressive Sensing with Partial Fourier Dictionary

    Directory of Open Access Journals (Sweden)

    Yinghui Quan

    2016-01-01

    Full Text Available This paper presents a novel real-time compressive sensing (CS reconstruction which employs high density field-programmable gate array (FPGA for hardware acceleration. Traditionally, CS can be implemented using a high-level computer language in a personal computer (PC or multicore platforms, such as graphics processing units (GPUs and Digital Signal Processors (DSPs. However, reconstruction algorithms are computing demanding and software implementation of these algorithms is extremely slow and power consuming. In this paper, the orthogonal matching pursuit (OMP algorithm is refined to solve the sparse decomposition optimization for partial Fourier dictionary, which is always adopted in radar imaging and detection application. OMP reconstruction can be divided into two main stages: optimization which finds the closely correlated vectors and least square problem. For large scale dictionary, the implementation of correlation is time consuming since it often requires a large number of matrix multiplications. Also solving the least square problem always needs a scalable matrix decomposition operation. To solve these problems efficiently, the correlation optimization is implemented by fast Fourier transform (FFT and the large scale least square problem is implemented by Conjugate Gradient (CG technique, respectively. The proposed method is verified by FPGA (Xilinx Virtex-7 XC7VX690T realization, revealing its effectiveness in real-time applications.

  17. Fast Detection of Compressively Sensed IR Targets Using Stochastically Trained Least Squares and Compressed Quadratic Correlation Filters

    KAUST Repository

    Millikan, Brian; Dutta, Aritra; Sun, Qiyu; Foroosh, Hassan

    2017-01-01

    Target detection of potential threats at night can be deployed on a costly infrared focal plane array with high resolution. Due to the compressibility of infrared image patches, the high resolution requirement could be reduced with target detection capability preserved. For this reason, a compressive midwave infrared imager (MWIR) with a low-resolution focal plane array has been developed. As the most probable coefficient indices of the support set of the infrared image patches could be learned from the training data, we develop stochastically trained least squares (STLS) for MWIR image reconstruction. Quadratic correlation filters (QCF) have been shown to be effective for target detection and there are several methods for designing a filter. Using the same measurement matrix as in STLS, we construct a compressed quadratic correlation filter (CQCF) employing filter designs for compressed infrared target detection. We apply CQCF to the U.S. Army Night Vision and Electronic Sensors Directorate dataset. Numerical simulations show that the recognition performance of our algorithm matches that of the standard full reconstruction methods, but at a fraction of the execution time.

  18. Fast Detection of Compressively Sensed IR Targets Using Stochastically Trained Least Squares and Compressed Quadratic Correlation Filters

    KAUST Repository

    Millikan, Brian

    2017-05-02

    Target detection of potential threats at night can be deployed on a costly infrared focal plane array with high resolution. Due to the compressibility of infrared image patches, the high resolution requirement could be reduced with target detection capability preserved. For this reason, a compressive midwave infrared imager (MWIR) with a low-resolution focal plane array has been developed. As the most probable coefficient indices of the support set of the infrared image patches could be learned from the training data, we develop stochastically trained least squares (STLS) for MWIR image reconstruction. Quadratic correlation filters (QCF) have been shown to be effective for target detection and there are several methods for designing a filter. Using the same measurement matrix as in STLS, we construct a compressed quadratic correlation filter (CQCF) employing filter designs for compressed infrared target detection. We apply CQCF to the U.S. Army Night Vision and Electronic Sensors Directorate dataset. Numerical simulations show that the recognition performance of our algorithm matches that of the standard full reconstruction methods, but at a fraction of the execution time.

  19. MAP-MRF-Based Super-Resolution Reconstruction Approach for Coded Aperture Compressive Temporal Imaging

    Directory of Open Access Journals (Sweden)

    Tinghua Zhang

    2018-02-01

    Full Text Available Coded Aperture Compressive Temporal Imaging (CACTI can afford low-cost temporal super-resolution (SR, but limits are imposed by noise and compression ratio on reconstruction quality. To utilize inter-frame redundant information from multiple observations and sparsity in multi-transform domains, a robust reconstruction approach based on maximum a posteriori probability and Markov random field (MAP-MRF model for CACTI is proposed. The proposed approach adopts a weighted 3D neighbor system (WNS and the coordinate descent method to perform joint estimation of model parameters, to achieve the robust super-resolution reconstruction. The proposed multi-reconstruction algorithm considers both total variation (TV and ℓ 2 , 1 norm in wavelet domain to address the minimization problem for compressive sensing, and solves it using an accelerated generalized alternating projection algorithm. The weighting coefficient for different regularizations and frames is resolved by the motion characteristics of pixels. The proposed approach can provide high visual quality in the foreground and background of a scene simultaneously and enhance the fidelity of the reconstruction results. Simulation results have verified the efficacy of our new optimization framework and the proposed reconstruction approach.

  20. New Approach Based on Compressive Sampling for Sample Rate Enhancement in DASs for Low-Cost Sensing Nodes

    Directory of Open Access Journals (Sweden)

    Francesco Bonavolontà

    2014-10-01

    Full Text Available The paper deals with the problem of improving the maximum sample rate of analog-to-digital converters (ADCs included in low cost wireless sensing nodes. To this aim, the authors propose an efficient acquisition strategy based on the combined use of high-resolution time-basis and compressive sampling. In particular, the high-resolution time-basis is adopted to provide a proper sequence of random sampling instants, and a suitable software procedure, based on compressive sampling approach, is exploited to reconstruct the signal of interest from the acquired samples. Thanks to the proposed strategy, the effective sample rate of the reconstructed signal can be as high as the frequency of the considered time-basis, thus significantly improving the inherent ADC sample rate. Several tests are carried out in simulated and real conditions to assess the performance of the proposed acquisition strategy in terms of reconstruction error. In particular, the results obtained in experimental tests with ADC included in actual 8- and 32-bits microcontrollers highlight the possibility of achieving effective sample rate up to 50 times higher than that of the original ADC sample rate.

  1. Metal-Organic Framework Thin Film Coated Optical Fiber Sensors: A Novel Waveguide-Based Chemical Sensing Platform.

    Science.gov (United States)

    Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R

    2018-02-23

    Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (optical fiber platform which results in an amplification of inherent optical absorption present within the MOF-based sensing layer with increasing values of effective refractive index associated with adsorption of gases.

  2. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  3. Opportunistic Relay Selection in Multicast Relay Networks using Compressive Sensing

    KAUST Repository

    Elkhalil, Khalil

    2014-12-01

    Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. However, for relay selection algorithms to make a selection decision, channel state information (CSI) from all cooperating relays is usually required at a central node. This requirement poses two important challenges. Firstly, CSI acquisition generates a great deal of feedback overhead (air-time) that could result in significant transmission delays. Secondly, the fed back channel information is usually corrupted by additive noise. This could lead to transmission outages if the central node selects the set of cooperating relays based on inaccurate feedback information. In this paper, we introduce a limited feedback relay selection algorithm for a multicast relay network. The proposed algorithm exploits the theory of compressive sensing to first obtain the identity of the “strong” relays with limited feedback. Following that, the CSI of the selected relays is estimated using linear minimum mean square error estimation. To minimize the effect of noise on the fed back CSI, we introduce a back-off strategy that optimally backs-off on the noisy estimated CSI. For a fixed group size, we provide closed form expressions for the scaling law of the maximum equivalent SNR for both Decode and Forward (DF) and Amplify and Forward (AF) cases. Numerical results show that the proposed algorithm drastically reduces the feedback air-time and achieves a rate close to that obtained by selection algorithms with dedicated error-free feedback channels.

  4. Undersampling strategies for compressed sensing accelerated MR spectroscopic imaging

    Science.gov (United States)

    Vidya Shankar, Rohini; Hu, Houchun Harry; Bikkamane Jayadev, Nutandev; Chang, John C.; Kodibagkar, Vikram D.

    2017-03-01

    Compressed sensing (CS) can accelerate magnetic resonance spectroscopic imaging (MRSI), facilitating its widespread clinical integration. The objective of this study was to assess the effect of different undersampling strategy on CS-MRSI reconstruction quality. Phantom data were acquired on a Philips 3 T Ingenia scanner. Four types of undersampling masks, corresponding to each strategy, namely, low resolution, variable density, iterative design, and a priori were simulated in Matlab and retrospectively applied to the test 1X MRSI data to generate undersampled datasets corresponding to the 2X - 5X, and 7X accelerations for each type of mask. Reconstruction parameters were kept the same in each case(all masks and accelerations) to ensure that any resulting differences can be attributed to the type of mask being employed. The reconstructed datasets from each mask were statistically compared with the reference 1X, and assessed using metrics like the root mean square error and metabolite ratios. Simulation results indicate that both the a priori and variable density undersampling masks maintain high fidelity with the 1X up to five-fold acceleration. The low resolution mask based reconstructions showed statistically significant differences from the 1X with the reconstruction failing at 3X, while the iterative design reconstructions maintained fidelity with the 1X till 4X acceleration. In summary, a pilot study was conducted to identify an optimal sampling mask in CS-MRSI. Simulation results demonstrate that the a priori and variable density masks can provide statistically similar results to the fully sampled reference. Future work would involve implementing these two masks prospectively on a clinical scanner.

  5. Deconvolution of serum cortisol levels by using compressed sensing.

    Directory of Open Access Journals (Sweden)

    Rose T Faghih

    Full Text Available The pulsatile release of cortisol from the adrenal glands is controlled by a hierarchical system that involves corticotropin releasing hormone (CRH from the hypothalamus, adrenocorticotropin hormone (ACTH from the pituitary, and cortisol from the adrenal glands. Determining the number, timing, and amplitude of the cortisol secretory events and recovering the infusion and clearance rates from serial measurements of serum cortisol levels is a challenging problem. Despite many years of work on this problem, a complete satisfactory solution has been elusive. We formulate this question as a non-convex optimization problem, and solve it using a coordinate descent algorithm that has a principled combination of (i compressed sensing for recovering the amplitude and timing of the secretory events, and (ii generalized cross validation for choosing the regularization parameter. Using only the observed serum cortisol levels, we model cortisol secretion from the adrenal glands using a second-order linear differential equation with pulsatile inputs that represent cortisol pulses released in response to pulses of ACTH. Using our algorithm and the assumption that the number of pulses is between 15 to 22 pulses over 24 hours, we successfully deconvolve both simulated datasets and actual 24-hr serum cortisol datasets sampled every 10 minutes from 10 healthy women. Assuming a one-minute resolution for the secretory events, we obtain physiologically plausible timings and amplitudes of each cortisol secretory event with R (2 above 0.92. Identification of the amplitude and timing of pulsatile hormone release allows (i quantifying of normal and abnormal secretion patterns towards the goal of understanding pathological neuroendocrine states, and (ii potentially designing optimal approaches for treating hormonal disorders.

  6. Scout-view assisted interior digital tomosynthesis (iDTS) based on compressed-sensing theory

    Science.gov (United States)

    Park, S. Y.; Kim, G. A.; Cho, H. S.; Seo, C. W.; Je, U. K.; Park, C. K.; Lim, H. W.; Kim, K. S.; Lee, D. Y.; Lee, H. W.; Kang, S. Y.; Park, J. E.; Woo, T. H.; Lee, M. S.

    2017-12-01

    Conventional digital tomosynthesis (DTS) based on the filtered-backprojection (FBP) reconstruction requires full field-of-view scan and also relatively dense projections, which results in still high dose for medical imaging purposes. In this work, to overcome these difficulties, we propose a new type of DTS examinations, the so-called scout-view assisted interior DTS (iDTS), in which the x-ray beam span covers only a small region-of-interest (ROI) containing target diagnosis with the help of some scout views and they are used in the reconstruction to add additional information to interior ROI otherwise absent with conventional iDTS reconstruction methods. We considered an effective iterative algorithm based on compressed-sensing theory, rather than the FBP-based algorithm, for more accurate iDTS reconstruction. We implemented the proposed algorithm, performed a systematic simulation and experiment, and investigated the image characteristics. We successfully reconstructed iDTS images of substantially high accuracy and no truncation artifacts by using the proposed method, preserving superior image homogeneity, edge sharpening, and in-plane spatial resolution.

  7. Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shafqat Ullah Khan

    2016-01-01

    Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

  8. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh

    2015-07-26

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  9. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh; Katterbauer, Klemens; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2015-01-01

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  10. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation

    NARCIS (Netherlands)

    Barth, Ruud; Hemming, Jochen; Henten, van E.J.

    2016-01-01

    A modular software framework design that allows flexible implementation of eye-in-hand sensing and motion control for agricultural robotics in dense vegetation is reported. Harvesting robots in cultivars with dense vegetation require multiple viewpoints and on-line trajectory adjustments in order

  11. Optically compressed sensing by under sampling the polar Fourier plane

    International Nuclear Information System (INIS)

    Stern, A; Levi, O; Rivenson, Y

    2010-01-01

    In a previous work we presented a compressed imaging approach that uses a row of rotating sensors to capture indirectly polar strips of the Fourier transform of the image. Here we present further developments of this technique and present new results. The advantages of our technique, compared to other optically compressed imaging techniques, is that its optical implementation is relatively easy, it does not require complicate calibrations and that it can be implemented in near-real time.

  12. Adaptive compressive ghost imaging based on wavelet trees and sparse representation.

    Science.gov (United States)

    Yu, Wen-Kai; Li, Ming-Fei; Yao, Xu-Ri; Liu, Xue-Feng; Wu, Ling-An; Zhai, Guang-Jie

    2014-03-24

    Compressed sensing is a theory which can reconstruct an image almost perfectly with only a few measurements by finding its sparsest representation. However, the computation time consumed for large images may be a few hours or more. In this work, we both theoretically and experimentally demonstrate a method that combines the advantages of both adaptive computational ghost imaging and compressed sensing, which we call adaptive compressive ghost imaging, whereby both the reconstruction time and measurements required for any image size can be significantly reduced. The technique can be used to improve the performance of all computational ghost imaging protocols, especially when measuring ultra-weak or noisy signals, and can be extended to imaging applications at any wavelength.

  13. Less is More: Bigger Data from Compressive Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Andrew; Browning, Nigel D.

    2017-07-01

    Compressive sensing approaches are beginning to take hold in (scanning) transmission electron microscopy (S/TEM) [1,2,3]. Compressive sensing is a mathematical theory about acquiring signals in a compressed form (measurements) and the probability of recovering the original signal by solving an inverse problem [4]. The inverse problem is underdetermined (more unknowns than measurements), so it is not obvious that recovery is possible. Compression is achieved by taking inner products of the signal with measurement weight vectors. Both Gaussian random weights and Bernoulli (0,1) random weights form a large class of measurement vectors for which recovery is possible. The measurements can also be designed through an optimization process. The key insight for electron microscopists is that compressive sensing can be used to increase acquisition speed and reduce dose. Building on work initially developed for optical cameras, this new paradigm will allow electron microscopists to solve more problems in the engineering and life sciences. We will be collecting orders of magnitude more data than previously possible. The reason that we will have more data is because we will have increased temporal/spatial/spectral sampling rates, and we will be able ability to interrogate larger classes of samples that were previously too beam sensitive to survive the experiment. For example consider an in-situ experiment that takes 1 minute. With traditional sensing, we might collect 5 images per second for a total of 300 images. With compressive sensing, each of those 300 images can be expanded into 10 more images, making the collection rate 50 images per second, and the decompressed data a total of 3000 images [3]. But, what are the implications, in terms of data, for this new methodology? Acquisition of compressed data will require downstream reconstruction to be useful. The reconstructed data will be much larger than traditional data, we will need space to store the reconstructions during

  14. Compressed sensing and the reconstruction of ultrafast 2D NMR data: Principles and biomolecular applications.

    Science.gov (United States)

    Shrot, Yoav; Frydman, Lucio

    2011-04-01

    A topic of active investigation in 2D NMR relates to the minimum number of scans required for acquiring this kind of spectra, particularly when these are dictated by sampling rather than by sensitivity considerations. Reductions in this minimum number of scans have been achieved by departing from the regular sampling used to monitor the indirect domain, and relying instead on non-uniform sampling and iterative reconstruction algorithms. Alternatively, so-called "ultrafast" methods can compress the minimum number of scans involved in 2D NMR all the way to a minimum number of one, by spatially encoding the indirect domain information and subsequently recovering it via oscillating field gradients. Given ultrafast NMR's simultaneous recording of the indirect- and direct-domain data, this experiment couples the spectral constraints of these orthogonal domains - often calling for the use of strong acquisition gradients and large filter widths to fulfill the desired bandwidth and resolution demands along all spectral dimensions. This study discusses a way to alleviate these demands, and thereby enhance the method's performance and applicability, by combining spatial encoding with iterative reconstruction approaches. Examples of these new principles are given based on the compressed-sensed reconstruction of biomolecular 2D HSQC ultrafast NMR data, an approach that we show enables a decrease of the gradient strengths demanded in this type of experiments by up to 80%. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Magni: A Python Package for Compressive Sampling and Reconstruction of Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Oxvig, Christian Schou; Pedersen, Patrick Steffen; Arildsen, Thomas

    2014-01-01

    Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM) imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also pr...... as a convenient platform for researchers in compressed sensing aiming at obtaining a high degree of reproducibility of their research....

  16. Fast and low-dose computed laminography using compressive sensing based technique

    Science.gov (United States)

    Abbas, Sajid; Park, Miran; Cho, Seungryong

    2015-03-01

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  17. Fast and low-dose computed laminography using compressive sensing based technique

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Sajid, E-mail: scho@kaist.ac.kr; Park, Miran, E-mail: scho@kaist.ac.kr; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of)

    2015-03-31

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  18. Fast and low-dose computed laminography using compressive sensing based technique

    International Nuclear Information System (INIS)

    Abbas, Sajid; Park, Miran; Cho, Seungryong

    2015-01-01

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT

  19. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence

    Science.gov (United States)

    Chen, Ling; Ye, Jia-Wen; Wang, Hai-Ping; Pan, Mei; Yin, Shao-Yun; Wei, Zhang-Wen; Zhang, Lu-Yin; Wu, Kai; Fan, Ya-Nan; Su, Cheng-Yong

    2017-06-01

    A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal-organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.

  20. Effects of Compression by Means of Sports Socks on the Ankle Kinesthesia

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayami

    2011-10-01

    Full Text Available The purpose of this study was to clarify the effects of compression by means of sports socks (CG socks on the ankle knesthesia. Thirteen subjects were participated. In order to accomplish the purpose, we assessed a position sense, movement sense, force sense, and sensorymotor function during under three different conditions: subjects wore the normal socks that are distributed generally (normal socks condition, wore the CG socks (CG socks condition, and did not wear any socks (barefoot condition. The position sense and force sense were assessed in a reproduction task of ankle joint angle and force output during plantar/dorsiflexion, respectively. The movement sense was assessed by the threshold of detection for passive movement. The sensory motor function was assessed during our original Kinetic–Equilibrating task. The results showed that the movement sense, force sense, and sensorymotor function significantly improved in the CG socks condition compared to the other two conditions. These results suggested that the compression by means of the CG socks might improve the perception of the changes of joint angle and the extent of force output. Therefore, improvement of these senses enhanced the sensorymotor function based on these senses.

  1. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process.

    Science.gov (United States)

    Du, Yaran; Li, Xiqian; Lv, Xueju; Jia, Qiong

    2017-09-13

    Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH 2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.

  2. Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms

    Science.gov (United States)

    Shahtahmassebi, Amir Reza; Song, Jie; Zheng, Qing; Blackburn, George Alan; Wang, Ke; Huang, Ling Yan; Pan, Yi; Moore, Nathan; Shahtahmassebi, Golnaz; Sadrabadi Haghighi, Reza; Deng, Jing Song

    2016-04-01

    A substantial body of literature has accumulated on the topic of using remotely sensed data to map impervious surfaces which are widely recognized as an important indicator of urbanization. However, the remote sensing of impervious surface growth has not been successfully addressed. This study proposes a new framework for deriving and summarizing urban expansion and re-densification using time series of impervious surface fractions (ISFs) derived from remotely sensed imagery. This approach integrates multiple endmember spectral mixture analysis (MESMA), analysis of regression residuals, spatial statistics (Getis_Ord) and urban growth theories; hence, the framework is abbreviated as MRGU. The performance of MRGU was compared with commonly used change detection techniques in order to evaluate the effectiveness of the approach. The results suggested that the ISF regression residuals were optimal for detecting impervious surface changes while Getis_Ord was effective for mapping hotspot regions in the regression residuals image. Moreover, the MRGU outputs agreed with the mechanisms proposed in several existing urban growth theories, but importantly the outputs enable the refinement of such models by explicitly accounting for the spatial distribution of both expansion and re-densification mechanisms. Based on Landsat data, the MRGU is somewhat restricted in its ability to measure re-densification in the urban core but this may be improved through the use of higher spatial resolution satellite imagery. The paper ends with an assessment of the present gaps in remote sensing of impervious surface growth and suggests some solutions. The application of impervious surface fractions in urban change detection is a stimulating new research idea which is driving future research with new models and algorithms.

  3. Correlation between k-space sampling pattern and MTF in compressed sensing MRSI.

    Science.gov (United States)

    Heikal, A A; Wachowicz, K; Fallone, B G

    2016-10-01

    To investigate the relationship between the k-space sampling patterns used for compressed sensing MR spectroscopic imaging (CS-MRSI) and the modulation transfer function (MTF) of the metabolite maps. This relationship may allow the desired frequency content of the metabolite maps to be quantitatively tailored when designing an undersampling pattern. Simulations of a phantom were used to calculate the MTF of Nyquist sampled (NS) 32 × 32 MRSI, and four-times undersampled CS-MRSI reconstructions. The dependence of the CS-MTF on the k-space sampling pattern was evaluated for three sets of k-space sampling patterns generated using different probability distribution functions (PDFs). CS-MTFs were also evaluated for three more sets of patterns generated using a modified algorithm where the sampling ratios are constrained to adhere to PDFs. Strong visual correlation as well as high R 2 was found between the MTF of CS-MRSI and the product of the frequency-dependant sampling ratio and the NS 32 × 32 MTF. Also, PDF-constrained sampling patterns led to higher reproducibility of the CS-MTF, and stronger correlations to the above-mentioned product. The relationship established in this work provides the user with a theoretical solution for the MTF of CS MRSI that is both predictable and customizable to the user's needs.

  4. Image Quality Assessment for Different Wavelet Compression Techniques in a Visual Communication Framework

    Directory of Open Access Journals (Sweden)

    Nuha A. S. Alwan

    2013-01-01

    Full Text Available Images with subband coding and threshold wavelet compression are transmitted over a Rayleigh communication channel with additive white Gaussian noise (AWGN, after quantization and 16-QAM modulation. A comparison is made between these two types of compression using both mean square error (MSE and structural similarity (SSIM image quality assessment (IQA criteria applied to the reconstructed image at the receiver. The two methods yielded comparable SSIM but different MSE measures. In this work, we justify our results which support previous findings in the literature that the MSE between two images is not indicative of structural similarity or the visibility of errors. It is found that it is difficult to reduce the pointwise errors in subband-compressed images (higher MSE. However, the compressed images provide comparable SSIM or perceived quality for both types of compression provided that the retained energy after compression is the same.

  5. A Framework for Sharing and Integrating Remote Sensing and GIS Models Based on Web Service

    Science.gov (United States)

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a “black box” and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users. PMID:24901016

  6. A framework for sharing and integrating remote sensing and GIS models based on Web service.

    Science.gov (United States)

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a "black box" and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users.

  7. CMOS Compressed Imaging by Random Convolution

    OpenAIRE

    Jacques, Laurent; Vandergheynst, Pierre; Bibet, Alexandre; Majidzadeh, Vahid; Schmid, Alexandre; Leblebici, Yusuf

    2009-01-01

    We present a CMOS imager with built-in capability to perform Compressed Sensing. The adopted sensing strategy is the random Convolution due to J. Romberg. It is achieved by a shift register set in a pseudo-random configuration. It acts as a convolutive filter on the imager focal plane, the current issued from each CMOS pixel undergoing a pseudo-random redirection controlled by each component of the filter sequence. A pseudo-random triggering of the ADC reading is finally applied to comp...

  8. Compressing Sensing Based Source Localization for Controlled Acoustic Signals Using Distributed Microphone Arrays

    Directory of Open Access Journals (Sweden)

    Wei Ke

    2017-01-01

    Full Text Available In order to enhance the accuracy of sound source localization in noisy and reverberant environments, this paper proposes an adaptive sound source localization method based on distributed microphone arrays. Since sound sources lie at a few points in the discrete spatial domain, our method can exploit this inherent sparsity to convert the localization problem into a sparse recovery problem based on the compressive sensing (CS theory. In this method, a two-step discrete cosine transform- (DCT- based feature extraction approach is utilized to cover both short-time and long-time properties of acoustic signals and reduce the dimensions of the sparse model. In addition, an online dictionary learning (DL method is used to adjust the dictionary for matching the changes of audio signals, and then the sparse solution could better represent location estimations. Moreover, we propose an improved block-sparse reconstruction algorithm using approximate l0 norm minimization to enhance reconstruction performance for sparse signals in low signal-noise ratio (SNR conditions. The effectiveness of the proposed scheme is demonstrated by simulation results and experimental results where substantial improvement for localization performance can be obtained in the noisy and reverberant conditions.

  9. Experimental study of a DMD based compressive line sensing imaging system in the turbulence environment

    Science.gov (United States)

    Ouyang, Bing; Hou, Weilin; Gong, Cuiling; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.

    2016-05-01

    The Compressive Line Sensing (CLS) active imaging system has been demonstrated to be effective in scattering mediums, such as turbid coastal water through simulations and test tank experiments. Since turbulence is encountered in many atmospheric and underwater surveillance applications, a new CLS imaging prototype was developed to investigate the effectiveness of the CLS concept in a turbulence environment. Compared with earlier optical bench top prototype, the new system is significantly more robust and compact. A series of experiments were conducted at the Naval Research Lab's optical turbulence test facility with the imaging path subjected to various turbulence intensities. In addition to validating the system design, we obtained some unexpected exciting results - in the strong turbulence environment, the time-averaged measurements using the new CLS imaging prototype improved both SNR and resolution of the reconstructed images. We will discuss the implications of the new findings, the challenges of acquiring data through strong turbulence environment, and future enhancements.

  10. An effective approach to attenuate random noise based on compressive sensing and curvelet transform

    International Nuclear Information System (INIS)

    Liu, Wei; Cao, Siyuan; Zu, Shaohuan; Chen, Yangkang

    2016-01-01

    Random noise attenuation is an important step in seismic data processing. In this paper, we propose a novel denoising approach based on compressive sensing and the curvelet transform. We formulate the random noise attenuation problem as an L _1 norm regularized optimization problem. We propose to use the curvelet transform as the sparse transform in the optimization problem to regularize the sparse coefficients in order to separate signal and noise and to use the gradient projection for sparse reconstruction (GPSR) algorithm to solve the formulated optimization problem with an easy implementation and a fast convergence. We tested the performance of our proposed approach on both synthetic and field seismic data. Numerical results show that the proposed approach can effectively suppress the distortion near the edge of seismic events during the noise attenuation process and has high computational efficiency compared with the traditional curvelet thresholding and iterative soft thresholding based denoising methods. Besides, compared with f-x deconvolution, the proposed denoising method is capable of eliminating the random noise more effectively while preserving more useful signals. (paper)

  11. A three-dimensional metal–organic framework for selective sensing of nitroaromatic compounds

    Directory of Open Access Journals (Sweden)

    Dan Tian

    2014-12-01

    Full Text Available A 3D metal–organic framework [NH2(CH32][Cd6(L4(DMF6(HCOO](DMF = N,N-dimethylformamide (1 has been synthesized using a tripodal ligand H3L (2,4,6-tris[1-(3-carboxylphenoxyylmethyl]mesitylene. The obtained complex exhibits a 3D framework containing hexanuclear {Cd6} building units formed by two trinuclear {Cd3} clusters that are connected via HCOO− anions. For complex 1, the participation of the fluorescent ligand H3L not only gives rise to a strong photoluminescence emission as expected, but more interestingly, that ligand originated characteristic band could be quenched selectively by nitrobenzene with a low detection limit, showing its potential as a highly sensitive and selective sensor for nitrobenzene. Based on an electron transfer quenching mechanism, the fluorescence sensing ability of 1 is also applicable for other electron-deficient nitroaromatic compounds with high selectivity and sensitivity, i.e., 1,4-dinitrobenzene, 1,3-dinitrobenzene, 2,4-dinitrotoluene, and 4-nitrotoluene, suggesting 1 a promising fluorescence sensor for detecting and recognizing the same kind of chemicals.

  12. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  13. Joint Group Sparse PCA for Compressed Hyperspectral Imaging.

    Science.gov (United States)

    Khan, Zohaib; Shafait, Faisal; Mian, Ajmal

    2015-12-01

    A sparse principal component analysis (PCA) seeks a sparse linear combination of input features (variables), so that the derived features still explain most of the variations in the data. A group sparse PCA introduces structural constraints on the features in seeking such a linear combination. Collectively, the derived principal components may still require measuring all the input features. We present a joint group sparse PCA (JGSPCA) algorithm, which forces the basic coefficients corresponding to a group of features to be jointly sparse. Joint sparsity ensures that the complete basis involves only a sparse set of input features, whereas the group sparsity ensures that the structural integrity of the features is maximally preserved. We evaluate the JGSPCA algorithm on the problems of compressed hyperspectral imaging and face recognition. Compressed sensing results show that the proposed method consistently outperforms sparse PCA and group sparse PCA in reconstructing the hyperspectral scenes of natural and man-made objects. The efficacy of the proposed compressed sensing method is further demonstrated in band selection for face recognition.

  14. Compressive sensing-based wideband capacitance measurement with a fixed sampling rate lower than the highest exciting frequency

    International Nuclear Information System (INIS)

    Xu, Lijun; Ren, Ying; Sun, Shijie; Cao, Zhang

    2016-01-01

    In this paper, an under-sampling method for wideband capacitance measurement was proposed by using the compressive sensing strategy. As the excitation signal is sparse in the frequency domain, the compressed sampling method that uses a random demodulator was adopted, which could greatly decrease the sampling rate. Besides, four switches were used to replace the multiplier in the random demodulator. As a result, not only the sampling rate can be much smaller than the signal excitation frequency, but also the circuit’s structure is simpler and its power consumption is lower. A hardware prototype was constructed to validate the method. In the prototype, an excitation voltage with a frequency up to 200 kHz was applied to a capacitance-to-voltage converter. The output signal of the converter was randomly modulated by a pseudo-random sequence through four switches. After a low-pass filter, the signal was sampled by an analog-to-digital converter at a sampling rate of 50 kHz, which was three times lower than the highest exciting frequency. The frequency and amplitude of the signal were then reconstructed to obtain the measured capacitance. Both theoretical analysis and experiments were carried out to show the feasibility of the proposed method and to evaluate the performance of the prototype, including its linearity, sensitivity, repeatability, accuracy and stability within a given measurement range. (paper)

  15. Layered compression for high-precision depth data.

    Science.gov (United States)

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.

  16. Free-beam soliton self-compression in air

    Science.gov (United States)

    Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.

    2018-02-01

    We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.

  17. A Generalized Cauchy Distribution Framework for Problems Requiring Robust Behavior

    Directory of Open Access Journals (Sweden)

    Carrillo RafaelE

    2010-01-01

    Full Text Available Statistical modeling is at the heart of many engineering problems. The importance of statistical modeling emanates not only from the desire to accurately characterize stochastic events, but also from the fact that distributions are the central models utilized to derive sample processing theories and methods. The generalized Cauchy distribution (GCD family has a closed-form pdf expression across the whole family as well as algebraic tails, which makes it suitable for modeling many real-life impulsive processes. This paper develops a GCD theory-based approach that allows challenging problems to be formulated in a robust fashion. Notably, the proposed framework subsumes generalized Gaussian distribution (GGD family-based developments, thereby guaranteeing performance improvements over traditional GCD-based problem formulation techniques. This robust framework can be adapted to a variety of applications in signal processing. As examples, we formulate four practical applications under this framework: (1 filtering for power line communications, (2 estimation in sensor networks with noisy channels, (3 reconstruction methods for compressed sensing, and (4 fuzzy clustering.

  18. An Enhanced Text-Mining Framework for Extracting Disaster Relevant Data through Social Media and Remote Sensing Data Fusion

    Science.gov (United States)

    Scheele, C. J.; Huang, Q.

    2016-12-01

    In the past decade, the rise in social media has led to the development of a vast number of social media services and applications. Disaster management represents one of such applications leveraging massive data generated for event detection, response, and recovery. In order to find disaster relevant social media data, current approaches utilize natural language processing (NLP) methods based on keywords, or machine learning algorithms relying on text only. However, these approaches cannot be perfectly accurate due to the variability and uncertainty in language used on social media. To improve current methods, the enhanced text-mining framework is proposed to incorporate location information from social media and authoritative remote sensing datasets for detecting disaster relevant social media posts, which are determined by assessing the textual content using common text mining methods and how the post relates spatiotemporally to the disaster event. To assess the framework, geo-tagged Tweets were collected for three different spatial and temporal disaster events: hurricane, flood, and tornado. Remote sensing data and products for each event were then collected using RealEarthTM. Both Naive Bayes and Logistic Regression classifiers were used to compare the accuracy within the enhanced text-mining framework. Finally, the accuracies from the enhanced text-mining framework were compared to the current text-only methods for each of the case study disaster events. The results from this study address the need for more authoritative data when using social media in disaster management applications.

  19. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.

    Science.gov (United States)

    Yoon, Jeong Hee; Yu, Mi Hye; Chang, Won; Park, Jin-Young; Nickel, Marcel Dominik; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The purpose of the study was to investigate the clinical feasibility of free-breathing dynamic T1-weighted imaging (T1WI) using Cartesian sampling, compressed sensing, and iterative reconstruction in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived. A total of 51 patients at high risk of breath-holding failure underwent dynamic T1WI in a free-breathing manner using volumetric interpolated breath-hold (BH) examination with compressed sensing reconstruction (CS-VIBE) and hard gating. Timing, motion artifacts, and image quality were evaluated by 4 radiologists on a 4-point scale. For patients with low image quality scores (XD]) reconstruction was additionally performed and reviewed in the same manner. In addition, in 68.6% (35/51) patients who had previously undergone liver MRI, image quality and motion artifacts on dynamic phases using CS-VIBE were compared with previous BH-T1WIs. In all patients, adequate arterial-phase timing was obtained at least once. Overall image quality of free-breathing T1WI was 3.30 ± 0.59 on precontrast and 2.68 ± 0.70, 2.93 ± 0.65, and 3.30 ± 0.49 on early arterial, late arterial, and portal venous phases, respectively. In 13 patients with lower than average image quality (XD-reconstructed CS-VIBE) significantly reduced motion artifacts (P XD reconstruction showed less motion artifacts and better image quality on precontrast, arterial, and portal venous phases (P < 0.0001-0.013). Volumetric interpolated breath-hold examination with compressed sensing has the potential to provide consistent, motion-corrected free-breathing dynamic T1WI for liver MRI in patients at high risk of breath-holding failure.

  20. Compressed sensing reconstruction of cardiac cine MRI using golden angle spiral trajectories.

    Science.gov (United States)

    Tolouee, Azar; Alirezaie, Javad; Babyn, Paul

    2015-11-01

    In dynamic cardiac cine Magnetic Resonance Imaging (MRI), the spatiotemporal resolution is limited by the low imaging speed. Compressed sensing (CS) theory has been applied to improve the imaging speed and thus the spatiotemporal resolution. The purpose of this paper is to improve CS reconstruction of under sampled data by exploiting spatiotemporal sparsity and efficient spiral trajectories. We extend k-t sparse algorithm to spiral trajectories to achieve high spatio temporal resolutions in cardiac cine imaging. We have exploited spatiotemporal sparsity of cardiac cine MRI by applying a 2D+time wavelet-Fourier transform. For efficient coverage of k-space, we have used a modified version of multi shot (interleaved) spirals trajectories. In order to reduce incoherent aliasing artifact, we use different random undersampling pattern for each temporal frame. Finally, we have used nonuniform fast Fourier transform (NUFFT) algorithm to reconstruct the image from the non-uniformly acquired samples. The proposed approach was tested in simulated and cardiac cine MRI data. Results show that higher acceleration factors with improved image quality can be obtained with the proposed approach in comparison to the existing state-of-the-art method. The flexibility of the introduced method should allow it to be used not only for the challenging case of cardiac imaging, but also for other patient motion where the patient moves or breathes during acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Worst configurations (instantons) for compressed sensing over reals: a channel coding approach

    International Nuclear Information System (INIS)

    Chertkov, Michael; Chilappagari, Shashi K.; Vasic, Bane

    2010-01-01

    We consider Linear Programming (LP) solution of a Compressed Sensing (CS) problem over reals, also known as the Basis Pursuit (BasP) algorithm. The BasP allows interpretation as a channel-coding problem, and it guarantees the error-free reconstruction over reals for properly chosen measurement matrix and sufficiently sparse error vectors. In this manuscript, we examine how the BasP performs on a given measurement matrix and develop a technique to discover sparse vectors for which the BasP fails. The resulting algorithm is a generalization of our previous results on finding the most probable error-patterns, so called instantons, degrading performance of a finite size Low-Density Parity-Check (LDPC) code in the error-floor regime. The BasP fails when its output is different from the actual error-pattern. We design CS-Instanton Search Algorithm (ISA) generating a sparse vector, called CS-instanton, such that the BasP fails on the instanton, while its action on any modification of the CS-instanton decreasing a properly defined norm is successful. We also prove that, given a sufficiently dense random input for the error-vector, the CS-ISA converges to an instanton in a small finite number of steps. Performance of the CS-ISA is tested on example of a randomly generated 512 * 120 matrix, that outputs the shortest instanton (error vector) pattern of length 11.

  2. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  3. Compressed sensing embedded in an operational wireless sensor network to achieve energy efficiency in long-term monitoring applications

    International Nuclear Information System (INIS)

    O’Connor, S M; Lynch, J P; Gilbert, A C

    2014-01-01

    Compressed sensing (CS) is a powerful new data acquisition paradigm that seeks to accurately reconstruct unknown sparse signals from very few (relative to the target signal dimension) random projections. The specific objective of this study is to save wireless sensor energy by using CS to simultaneously reduce data sampling rates, on-board storage requirements, and communication data payloads. For field-deployed low power wireless sensors that are often operated with limited energy sources, reduced communication translates directly into reduced power consumption and improved operational reliability. In this study, acceleration data from a multi-girder steel-concrete deck composite bridge are processed for the extraction of mode shapes. A wireless sensor node previously designed to perform traditional uniform, Nyquist rate sampling is modified to perform asynchronous, effectively sub-Nyquist rate sampling. The sub-Nyquist data are transmitted off-site to a computational server for reconstruction using the CoSaMP matching pursuit recovery algorithm and further processed for extraction of the structure’s mode shapes. The mode shape metric used for reconstruction quality is the modal assurance criterion (MAC), an indicator of the consistency between CS and traditional Nyquist acquired mode shapes. A comprehensive investigation of modal accuracy from a dense set of acceleration response data reveals that MAC values above 0.90 are obtained for the first four modes of a bridge structure when at least 20% of the original signal is sampled using the CS framework. Reduced data collection, storage and communication requirements are found to lead to substantial reductions in the energy requirements of wireless sensor networks at the expense of modal accuracy. Specifically, total energy reductions of 10–60% can be obtained for a sensor network with 10–100 sensor nodes, respectively. The reduced energy requirements of the CS sensor nodes are shown to directly result in

  4. Robust Initial Wetness Condition Framework of an Event-Based Rainfall–Runoff Model Using Remotely Sensed Soil Moisture

    Directory of Open Access Journals (Sweden)

    Wooyeon Sunwoo

    2017-01-01

    Full Text Available Runoff prediction in limited-data areas is vital for hydrological applications, such as the design of infrastructure and flood defenses, runoff forecasting, and water management. Rainfall–runoff models may be useful for simulation of runoff generation, particularly event-based models, which offer a practical modeling scheme because of their simplicity. However, there is a need to reduce the uncertainties related to the estimation of the initial wetness condition (IWC prior to a rainfall event. Soil moisture is one of the most important variables in rainfall–runoff modeling, and remotely sensed soil moisture is recognized as an effective way to improve the accuracy of runoff prediction. In this study, the IWC was evaluated based on remotely sensed soil moisture by using the Soil Conservation Service-Curve Number (SCS-CN method, which is one of the representative event-based models used for reducing the uncertainty of runoff prediction. Four proxy variables for the IWC were determined from the measurements of total rainfall depth (API5, ground-based soil moisture (SSMinsitu, remotely sensed surface soil moisture (SSM, and soil water index (SWI provided by the advanced scatterometer (ASCAT. To obtain a robust IWC framework, this study consists of two main parts: the validation of remotely sensed soil moisture, and the evaluation of runoff prediction using four proxy variables with a set of rainfall–runoff events in the East Asian monsoon region. The results showed an acceptable agreement between remotely sensed soil moisture (SSM and SWI and ground based soil moisture data (SSMinsitu. In the proxy variable analysis, the SWI indicated the optimal value among the proposed proxy variables. In the runoff prediction analysis considering various infiltration conditions, the SSM and SWI proxy variables significantly reduced the runoff prediction error as compared with API5 by 60% and 66%, respectively. Moreover, the proposed IWC framework with

  5. Using the Five Senses of Success framework to understand the experiences of midwifery students enroled in an undergraduate degree program.

    Science.gov (United States)

    Sidebotham, M; Fenwick, J; Carter, A; Gamble, J

    2015-01-01

    developing a student's sense of capability, purpose, resourcefulness, identity and connectedness (five-senses of success) are key factors that may be important in predicting student satisfaction and progression within their university program. the study aimed to examine the expectations and experiences of second and third year midwifery students enroled in a Bachelor of Midwifery program and identify barriers and enablers to success. a descriptive exploratory qualitative design was used. Fifty-six students enroled in either year 2 or 3 of the Bachelor of Midwifery program in SE Queensland participated in an anonymous survey using open-ended questions. In addition, 16 students participated in two year-level focus groups. Template analysis, using the Five Senses Framework, was used to analyse the data set. early exposure to 'hands on' clinical midwifery practice as well as continuity of care experiences provided students with an opportunity to link theory to practice and increased their perception of capability as they transitioned through the program. Students' sense of identity, purpose, resourcefulness, and capability was strongly influenced by the programs embedded meta-values, including a 'woman centred' approach. In addition, a student's ability to form strong positive relationships with women, peers, lecturers and supportive clinicians was central to developing connections and ultimately a sense of success. A sense of connection not only fostered an ongoing belief that challenges could be overcome but that students themselves could initiate or influence change. the five senses framework provided a useful lens through which to analyse the student experience. Key factors to student satisfaction and retention within a Bachelor of Midwifery program include: a clearly articulated midwifery philosophy, strategies to promote student connectedness including the use of social media, and further development of clinicians' skills in preceptorship, clinical teaching and

  6. Higher resolution cine imaging with compressed sensing for accelerated clinical left ventricular evaluation.

    Science.gov (United States)

    Lin, Aaron C W; Strugnell, Wendy; Riley, Robyn; Schmitt, Benjamin; Zenge, Michael; Schmidt, Michaela; Morris, Norman R; Hamilton-Craig, Christian

    2017-06-01

    To assess the clinical feasibility of a compressed sensing cine magnetic resonance imaging (MRI) sequence of both high temporal and spatial resolution (CS_bSSFP) in comparison to a balanced steady-state free precession cine (bSSFP) sequence for reliable quantification of left ventricular (LV) volumes and mass. Segmented MRI cine images were acquired on a 1.5T scanner in 50 patients in the LV short-axis stack orientation using a retrospectively gated conventional bSSFP sequence (generalized autocalibrating partially parallel acquisition [GRAPPA] acceleration factor 2), followed by a prospectively triggered CS_bSSFP sequence with net acceleration factor of 8. Image quality was assessed by published criteria. Comparison of sequences was made in LV volumes and mass, image quality score, quantitative regional myocardial wall motion, and imaging time using Pearson's correlation, Bland-Altman and paired 2-tailed Student's t-test. Differences (bSSFP minus CS_bSSFP, mean ± SD) and Pearson's correlations were 14.8 ± 16.3 (P = 0.31) and r = 0.98 (P cine CS_bSSFP accurately and reliably quantitates LV volumes and mass, shortens acquisition times, and is clinically feasible. 1 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;45:1693-1699. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI.

    Science.gov (United States)

    Merlet, Sylvain L; Deriche, Rachid

    2013-07-01

    In this paper, we exploit the ability of Compressed Sensing (CS) to recover the whole 3D Diffusion MRI (dMRI) signal from a limited number of samples while efficiently recovering important diffusion features such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF). Some attempts to use CS in estimating diffusion signals have been done recently. However, this was mainly an experimental insight of CS capabilities in dMRI and the CS theory has not been fully exploited. In this work, we also propose to study the impact of the sparsity, the incoherence and the RIP property on the reconstruction of diffusion signals. We show that an efficient use of the CS theory enables to drastically reduce the number of measurements commonly used in dMRI acquisitions. Only 20-30 measurements, optimally spread on several b-value shells, are shown to be necessary, which is less than previous attempts to recover the diffusion signal using CS. This opens an attractive perspective to measure the diffusion signals in white matter within a reduced acquisition time and shows that CS holds great promise and opens new and exciting perspectives in diffusion MRI (dMRI). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. On music genre classification via compressive sampling

    DEFF Research Database (Denmark)

    Sturm, Bob L.

    2013-01-01

    Recent work \\cite{Chang2010} combines low-level acoustic features and random projection (referred to as ``compressed sensing'' in \\cite{Chang2010}) to create a music genre classification system showing an accuracy among the highest reported for a benchmark dataset. This not only contradicts previ...

  9. Quantitative mapping of chemical compositions with MRI using compressed sensing.

    Science.gov (United States)

    von Harbou, Erik; Fabich, Hilary T; Benning, Martin; Tayler, Alexander B; Sederman, Andrew J; Gladden, Lynn F; Holland, Daniel J

    2015-12-01

    In this work, a magnetic resonance (MR) imaging method for accelerating the acquisition time of two dimensional concentration maps of different chemical species in mixtures by the use of compressed sensing (CS) is presented. Whilst 2D-concentration maps with a high spatial resolution are prohibitively time-consuming to acquire using full k-space sampling techniques, CS enables the reconstruction of quantitative concentration maps from sub-sampled k-space data. First, the method was tested by reconstructing simulated data. Then, the CS algorithm was used to reconstruct concentration maps of binary mixtures of 1,4-dioxane and cyclooctane in different samples with a field-of-view of 22mm and a spatial resolution of 344μm×344μm. Spiral based trajectories were used as sampling schemes. For the data acquisition, eight scans with slightly different trajectories were applied resulting in a total acquisition time of about 8min. In contrast, a conventional chemical shift imaging experiment at the same resolution would require about 17h. To get quantitative results, a careful weighting of the regularisation parameter (via the L-curve approach) or contrast-enhancing Bregman iterations are applied for the reconstruction of the concentration maps. Both approaches yield relative errors of the concentration map of less than 2mol-% without any calibration prior to the measurement. The accuracy of the reconstructed concentration maps deteriorates when the reconstruction model is biased by systematic errors such as large inhomogeneities in the static magnetic field. The presented method is a powerful tool for the fast acquisition of concentration maps that can provide valuable information for the investigation of many phenomena in chemical engineering applications. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Combating Impairments in Multi-carrier Systems: A Compressed Sensing Approach

    KAUST Repository

    Al-Shuhail, Shamael

    2015-05-01

    Multi-carrier systems suffer from several impairments, and communication system engineers use powerful signal processing tools to combat these impairments and keep up with the capacity/rate demands. Compressed sensing (CS) is one such tool that allows recovering any sparse signal, requiring only a few measurements in a domain that is incoherent with the domain of sparsity. Almost all signals of interest have some degree of sparsity, and in this work we utilize the sparsity of impairments in orthogonal frequency division multiplexing (OFDM) and its variants (i.e., orthogonal frequency division multiplexing access (OFDMA) and single-carrier frequency-division multiple access (SC-FDMA)) to combat them using CS. We start with the problem of peak-to-average power ratio (PAPR) reduction in OFDM. OFDM signals suffer from high PAPR and clipping is the simplest PAPR reduction scheme. However, clipping introduces inband distortions that result in compromised performance and hence needs to be mitigated at the receiver. Due to the high PAPR nature of the OFDM signal, only a few instances are clipped, these clipping distortions can be recovered at the receiver by employing CS. We then extend the proposed clipping recovery scheme to an interleaved OFDMA system. Interleaved OFDMA presents a special structure that result in only self-inflicted clipping distortions. In this work, we prove that distortions do not spread over multiple users (while utilizing interleaved carrier assignment in OFDMA) and construct a CS system that recovers the clipping distortions on each user. Finally, we address the problem of narrowband interference (NBI) in SC-FDMA. Unlike OFDM and OFDMA systems, SC-FDMA does not suffer from high PAPR, but (as the data is encoded in time domain) is seriously vulnerable to information loss owing to NBI. Utilizing the sparse nature of NBI (in frequency domain) we combat its effect on SC-FDMA system by CS recovery.

  11. Compressive sampling by artificial neural networks for video

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Jenkins, Jeffrey; Reinhardt, Kitt

    2011-06-01

    We describe a smart surveillance strategy for handling novelty changes. Current sensors seem to keep all, redundant or not. The Human Visual System's Hubel-Wiesel (wavelet) edge detection mechanism pays attention to changes in movement, which naturally produce organized sparseness because a stagnant edge is not reported to the brain's visual cortex by retinal neurons. Sparseness is defined as an ordered set of ones (movement or not) relative to zeros that could be pseudo-orthogonal among themselves; then suited for fault tolerant storage and retrieval by means of Associative Memory (AM). The firing is sparse at the change locations. Unlike purely random sparse masks adopted in medical Compressive Sensing, these organized ones have an additional benefit of using the image changes to make retrievable graphical indexes. We coined this organized sparseness as Compressive Sampling; sensing but skipping over redundancy without altering the original image. Thus, we turn illustrate with video the survival tactics which animals that roam the Earth use daily. They acquire nothing but the space-time changes that are important to satisfy specific prey-predator relationships. We have noticed a similarity between the mathematical Compressive Sensing and this biological mechanism used for survival. We have designed a hardware implementation of the Human Visual System's Compressive Sampling scheme. To speed up further, our mixedsignal circuit design of frame differencing is built in on-chip processing hardware. A CMOS trans-conductance amplifier is designed here to generate a linear current output using a pair of differential input voltages from 2 photon detectors for change detection---one for the previous value and the other the subsequent value, ("write" synaptic weight by Hebbian outer products; "read" by inner product & pt. NL threshold) to localize and track the threat targets.

  12. Joint synthetic aperture radar plus ground moving target indicator from single-channel radar using compressive sensing

    Science.gov (United States)

    Thompson, Douglas; Hallquist, Aaron; Anderson, Hyrum

    2017-10-17

    The various embodiments presented herein relate to utilizing an operational single-channel radar to collect and process synthetic aperture radar (SAR) and ground moving target indicator (GMTI) imagery from a same set of radar returns. In an embodiment, data is collected by randomly staggering a slow-time pulse repetition interval (PRI) over a SAR aperture such that a number of transmitted pulses in the SAR aperture is preserved with respect to standard SAR, but many of the pulses are spaced very closely enabling movers (e.g., targets) to be resolved, wherein a relative velocity of the movers places them outside of the SAR ground patch. The various embodiments of image reconstruction can be based on compressed sensing inversion from undersampled data, which can be solved efficiently using such techniques as Bregman iteration. The various embodiments enable high-quality SAR reconstruction, and high-quality GMTI reconstruction from the same set of radar returns.

  13. Combined Sparsifying Transforms for Compressive Image Fusion

    Directory of Open Access Journals (Sweden)

    ZHAO, L.

    2013-11-01

    Full Text Available In this paper, we present a new compressive image fusion method based on combined sparsifying transforms. First, the framework of compressive image fusion is introduced briefly. Then, combined sparsifying transforms are presented to enhance the sparsity of images. Finally, a reconstruction algorithm based on the nonlinear conjugate gradient is presented to get the fused image. The simulations demonstrate that by using the combined sparsifying transforms better results can be achieved in terms of both the subjective visual effect and the objective evaluation indexes than using only a single sparsifying transform for compressive image fusion.

  14. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.

    Science.gov (United States)

    Chattoraj, Sayantan; Sun, Changquan Calvin

    2018-04-01

    Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. A three-dimensional metal–organic framework for selective sensing of nitroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Dan; Chen, Rong-Ying; Xu, Jian; Bu, Xian-He, E-mail: buxh@nankai.edu.cn [Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 (China); Li, Yun-Wu [Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, and Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071 (China); School of Chemistry and Chemical Engineering and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000 (China)

    2014-12-01

    A 3D metal–organic framework [NH{sub 2}(CH{sub 3}){sub 2}][Cd{sub 6}(L){sub 4}(DMF){sub 6}(HCOO)](DMF = N,N-dimethylformamide) (1) has been synthesized using a tripodal ligand H{sub 3}L (2,4,6-tris[1-(3-carboxylphenoxy)ylmethyl]mesitylene). The obtained complex exhibits a 3D framework containing hexanuclear (Cd{sub 6}) building units formed by two trinuclear (Cd{sub 3}) clusters that are connected via HCOO{sup −} anions. For complex 1, the participation of the fluorescent ligand H{sub 3}L not only gives rise to a strong photoluminescence emission as expected, but more interestingly, that ligand originated characteristic band could be quenched selectively by nitrobenzene with a low detection limit, showing its potential as a highly sensitive and selective sensor for nitrobenzene. Based on an electron transfer quenching mechanism, the fluorescence sensing ability of 1 is also applicable for other electron-deficient nitroaromatic compounds with high selectivity and sensitivity, i.e., 1,4-dinitrobenzene, 1,3-dinitrobenzene, 2,4-dinitrotoluene, and 4-nitrotoluene, suggesting 1 a promising fluorescence sensor for detecting and recognizing the same kind of chemicals.

  16. Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Barni Mauro

    2007-01-01

    Full Text Available This paper deals with the application of distributed source coding (DSC theory to remote sensing image compression. Although DSC exhibits a significant potential in many application fields, up till now the results obtained on real signals fall short of the theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of DSC for lossless image compression carried out onboard a remote platform. We first provide a brief overview of DSC of correlated information sources. We then focus on onboard lossless image compression, and apply DSC techniques in order to reduce the complexity of the onboard encoder, at the expense of the decoder's, by exploiting the correlation of different bands of a hyperspectral dataset. Specifically, we propose two different compression schemes, one based on powerful binary error-correcting codes employed as source codes, and one based on simpler multilevel coset codes. The performance of both schemes is evaluated on a few AVIRIS scenes, and is compared with other state-of-the-art 2D and 3D coders. Both schemes turn out to achieve competitive compression performance, and one of them also has reduced complexity. Based on these results, we highlight the main issues that are still to be solved to further improve the performance of DSC-based remote sensing systems.

  17. Rupture process of the 2013 Okhotsk deep mega earthquake from iterative backprojection and compress sensing methods

    Science.gov (United States)

    Qin, W.; Yin, J.; Yao, H.

    2013-12-01

    On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for

  18. Characterization of statistical prior image constrained compressed sensing (PICCS): II. Application to dose reduction

    International Nuclear Information System (INIS)

    Lauzier, Pascal Thériault; Chen Guanghong

    2013-01-01

    Purpose: The ionizing radiation imparted to patients during computed tomography exams is raising concerns. This paper studies the performance of a scheme called dose reduction using prior image constrained compressed sensing (DR-PICCS). The purpose of this study is to characterize the effects of a statistical model of x-ray detection in the DR-PICCS framework and its impact on spatial resolution. Methods: Both numerical simulations with known ground truth and in vivo animal dataset were used in this study. In numerical simulations, a phantom was simulated with Poisson noise and with varying levels of eccentricity. Both the conventional filtered backprojection (FBP) and the PICCS algorithms were used to reconstruct images. In PICCS reconstructions, the prior image was generated using two different denoising methods: a simple Gaussian blur and a more advanced diffusion filter. Due to the lack of shift-invariance in nonlinear image reconstruction such as the one studied in this paper, the concept of local spatial resolution was used to study the sharpness of a reconstructed image. Specifically, a directional metric of image sharpness, the so-called pseudopoint spread function (pseudo-PSF), was employed to investigate local spatial resolution. Results: In the numerical studies, the pseudo-PSF was reduced from twice the voxel width in the prior image down to less than 1.1 times the voxel width in DR-PICCS reconstructions when the statistical model was not included. At the same noise level, when statistical weighting was used, the pseudo-PSF width in DR-PICCS reconstructed images varied between 1.5 and 0.75 times the voxel width depending on the direction along which it was measured. However, this anisotropy was largely eliminated when the prior image was generated using diffusion filtering; the pseudo-PSF width was reduced to below one voxel width in that case. In the in vivo study, a fourfold improvement in CNR was achieved while qualitatively maintaining sharpness

  19. Reference Information Based Remote Sensing Image Reconstruction with Generalized Nonconvex Low-Rank Approximation

    Directory of Open Access Journals (Sweden)

    Hongyang Lu

    2016-06-01

    Full Text Available Because of the contradiction between the spatial and temporal resolution of remote sensing images (RSI and quality loss in the process of acquisition, it is of great significance to reconstruct RSI in remote sensing applications. Recent studies have demonstrated that reference image-based reconstruction methods have great potential for higher reconstruction performance, while lacking accuracy and quality of reconstruction. For this application, a new compressed sensing objective function incorporating a reference image as prior information is developed. We resort to the reference prior information inherent in interior and exterior data simultaneously to build a new generalized nonconvex low-rank approximation framework for RSI reconstruction. Specifically, the innovation of this paper consists of the following three respects: (1 we propose a nonconvex low-rank approximation for reconstructing RSI; (2 we inject reference prior information to overcome over smoothed edges and texture detail losses; (3 on this basis, we combine conjugate gradient algorithms and a single-value threshold (SVT simultaneously to solve the proposed algorithm. The performance of the algorithm is evaluated both qualitatively and quantitatively. Experimental results demonstrate that the proposed algorithm improves several dBs in terms of peak signal to noise ratio (PSNR and preserves image details significantly compared to most of the current approaches without reference images as priors. In addition, the generalized nonconvex low-rank approximation of our approach is naturally robust to noise, and therefore, the proposed algorithm can handle low resolution with noisy inputs in a more unified framework.

  20. Lossless compression of hyperspectral images with pre-byte processing and intra-bands correlation

    OpenAIRE

    Sarinova, Assiya; Zamyatin, Alexander; Cabral, Pedro

    2015-01-01

    This paper considers an approach to the compression of hyperspectral remote sensing data by an original multistage algorithm to increase the compression ratio using auxiliary data processing with its byte representation as well as with its intra-bands correlation. A set of the experimental results for the proposed approach of effectiveness estimation and its comparison with the well-known universal and specialized compression algorithms is presented. Este documento se refiere a la compresi...

  1. Feedback Reduction in Broadcast and two Hop Multiuser Networks: A Compressed Sensing Approach

    KAUST Repository

    Shibli, Hussain J.

    2013-05-21

    In multiuser wireless networks, the base stations (BSs) rely on the channel state information (CSI) of the users to in order to perform user scheduling and downlink transmission. While the downlink channels can be easily estimated at all user terminals via a single broadcast, several key challenges are faced during uplink (feedback) transmission. Firstly, the noisy and fading feedback channels are usually unknown at the base station, and therefore, channel training is usually required from all users. Secondly, the amount of air-time required for feedback transmission grows linearly with the number of users. This domination of the network resources by feedback information leads to increased scheduling delay and outdated CSI at the BS. In this thesis, we tackle the above challenges and propose feedback reduction algorithms based on the theory of compressive sensing (CS). The proposed algorithms encompass both single and dual hop wireless networks, and; i) permit the BS to obtain CSI with acceptable recovery guarantees under substantially reduced feedback overhead, ii) are agnostic to the statistics of the feedback channels, and iii) utilize the apriori statistics of the additive noise to identify strong users. Numerical results show that the proposed algorithms are able to reduce the feedback overhead, improve detection at the BS, and achieve a sum-rate close to that obtained by noiseless dedicated feedback algorithms.

  2. Assembly of ZIF-67 Metal-Organic Framework over Tin Oxide Nanoparticles for Synergistic Chemiresistive CO2 Gas Sensing.

    Science.gov (United States)

    DMello, Marilyn Esclance; Sundaram, Nalini G; Kalidindi, Suresh Babu

    2018-05-03

    Metal-organic frameworks (MOFs) are widely known for their record storage capacities of small gas molecules (H 2 , CO 2 , and CH 4 ). Assembly of such porous materials onto well-known chemiresistive gas sensing elements such as SnO 2 could be an attractive prospect to achieve novel sensing properties as this affects the surface chemistry of SnO 2 . Cobalt-imidazole based ZIF-67 MOF was grown onto preformed SnO 2 nanoparticles to realize core-shell like architecture and explored for greenhouse gas CO 2 sensing. CO 2 sensing over SnO 2 is a challenge because its interaction with SnO 2 surface is minimal. The ZIF-67 coating over SnO 2 improved the response of SnO 2 up to 12-fold (for 50 % CO 2 ). The SnO 2 @ZIF-67 also showed a response of 16.5±2.1 % for 5000 ppm CO 2 (threshold limit value (TLV)) at 205 °C, one of the best values reported for a SnO 2 -based sensor. The observed novel CO 2 sensing characteristics are assigned to electronic structure changes at the interface of ZIF-67 and SnO 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lossless Compression of Broadcast Video

    DEFF Research Database (Denmark)

    Martins, Bo; Eriksen, N.; Faber, E.

    1998-01-01

    We investigate several techniques for lossless and near-lossless compression of broadcast video.The emphasis is placed on the emerging international standard for compression of continous-tone still images, JPEG-LS, due to its excellent compression performance and moderatecomplexity. Except for one...... cannot be expected to code losslessly at a rate of 125 Mbit/s. We investigate the rate and quality effects of quantization using standard JPEG-LS quantization and two new techniques: visual quantization and trellis quantization. Visual quantization is not part of baseline JPEG-LS, but is applicable...... in the framework of JPEG-LS. Visual tests show that this quantization technique gives much better quality than standard JPEG-LS quantization. Trellis quantization is a process by which the original image is altered in such a way as to make lossless JPEG-LS encoding more effective. For JPEG-LS and visual...

  4. On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium

    Science.gov (United States)

    Kovtanyuk, L. V.; Panchenko, G. L.

    2017-11-01

    The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.

  5. Frequency-Selective Signal Sensing with Sub-Nyquist Uniform Sampling Scheme

    DEFF Research Database (Denmark)

    Pierzchlewski, Jacek; Arildsen, Thomas

    2015-01-01

    In this paper the authors discuss a problem of acquisition and reconstruction of a signal polluted by adjacent- channel interference. The authors propose a method to find a sub-Nyquist uniform sampling pattern which allows for correct reconstruction of selected frequencies. The method is inspired...... by the Restricted Isometry Property, which is known from the field of compressed sensing. Then, compressed sensing is used to successfully reconstruct a wanted signal even if some of the uniform samples were randomly lost, e. g. due to ADC saturation. An experiment which tests the proposed method in practice...

  6. Compressive Sampling based Image Coding for Resource-deficient Visual Communication.

    Science.gov (United States)

    Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Zhang, Xinfeng; Zhao, Debin; Gao, Wen

    2016-04-14

    In this paper, a new compressive sampling based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering; 2) remain a conventional image and can therefore be coded by any standardized codec to remove statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates.

  7. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks.

    Science.gov (United States)

    Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing

    2018-02-28

    Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

  8. Lossless quantum data compression and variable-length coding

    International Nuclear Information System (INIS)

    Bostroem, Kim; Felbinger, Timo

    2002-01-01

    In order to compress quantum messages without loss of information it is necessary to allow the length of the encoded messages to vary. We develop a general framework for variable-length quantum messages in close analogy to the classical case and show that lossless compression is only possible if the message to be compressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a quantum channel even below the von Neumann entropy by adding a classical side channel. We give an explicit communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a simple example. This protocol can be used for both online quantum communication and storage of quantum data

  9. Towards a framework for agent-based image analysis of remote-sensing data.

    Science.gov (United States)

    Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera

    2015-04-03

    Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).

  10. Compressed sensing of roller bearing fault based on multiple down-sampling strategy

    Science.gov (United States)

    Wang, Huaqing; Ke, Yanliang; Luo, Ganggang; Tang, Gang

    2016-02-01

    Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, it is a major challenge to maintain a balance between detection efficiency and big data acquisition given the limitations of sampling theory. To overcome these limitations, we try to preserve the information pertaining to roller bearing failures using a sampling rate far below the Nyquist sampling rate, which can ease the pressure generated by the large-scale data. The big data of a faulty roller bearing’s vibration signals is firstly reduced by a down-sample strategy while preserving the fault features by selecting peaks to represent the data segments in time domain. However, a problem arises in that the fault features may be weaker than before, since the noise may be mistaken for the peaks when the noise is stronger than the vibration signals, which makes the fault features unable to be extracted by commonly-used envelope analysis. Here we employ compressive sensing theory to overcome this problem, which can make a signal enhancement and reduce the sample sizes further. Moreover, it is capable of detecting fault features from a small number of samples based on orthogonal matching pursuit approach, which can overcome the shortcomings of the multiple down-sample algorithm. Experimental results validate the effectiveness of the proposed technique in detecting roller bearing faults.

  11. A compressed sensing based 3D resistivity inversion algorithm for hydrogeological applications

    Science.gov (United States)

    Ranjan, Shashi; Kambhammettu, B. V. N. P.; Peddinti, Srinivasa Rao; Adinarayana, J.

    2018-04-01

    Image reconstruction from discrete electrical responses pose a number of computational and mathematical challenges. Application of smoothness constrained regularized inversion from limited measurements may fail to detect resistivity anomalies and sharp interfaces separated by hydro stratigraphic units. Under favourable conditions, compressed sensing (CS) can be thought of an alternative to reconstruct the image features by finding sparse solutions to highly underdetermined linear systems. This paper deals with the development of a CS assisted, 3-D resistivity inversion algorithm for use with hydrogeologists and groundwater scientists. CS based l1-regularized least square algorithm was applied to solve the resistivity inversion problem. Sparseness in the model update vector is introduced through block oriented discrete cosine transformation, with recovery of the signal achieved through convex optimization. The equivalent quadratic program was solved using primal-dual interior point method. Applicability of the proposed algorithm was demonstrated using synthetic and field examples drawn from hydrogeology. The proposed algorithm has outperformed the conventional (smoothness constrained) least square method in recovering the model parameters with much fewer data, yet preserving the sharp resistivity fronts separated by geologic layers. Resistivity anomalies represented by discrete homogeneous blocks embedded in contrasting geologic layers were better imaged using the proposed algorithm. In comparison to conventional algorithm, CS has resulted in an efficient (an increase in R2 from 0.62 to 0.78; a decrease in RMSE from 125.14 Ω-m to 72.46 Ω-m), reliable, and fast converging (run time decreased by about 25%) solution.

  12. Compressed sensing of roller bearing fault based on multiple down-sampling strategy

    International Nuclear Information System (INIS)

    Wang, Huaqing; Ke, Yanliang; Luo, Ganggang; Tang, Gang

    2016-01-01

    Roller bearings are essential components of rotating machinery and are often exposed to complex operating conditions, which can easily lead to their failures. Thus, to ensure normal production and the safety of machine operators, it is essential to detect the failures as soon as possible. However, it is a major challenge to maintain a balance between detection efficiency and big data acquisition given the limitations of sampling theory. To overcome these limitations, we try to preserve the information pertaining to roller bearing failures using a sampling rate far below the Nyquist sampling rate, which can ease the pressure generated by the large-scale data. The big data of a faulty roller bearing’s vibration signals is firstly reduced by a down-sample strategy while preserving the fault features by selecting peaks to represent the data segments in time domain. However, a problem arises in that the fault features may be weaker than before, since the noise may be mistaken for the peaks when the noise is stronger than the vibration signals, which makes the fault features unable to be extracted by commonly-used envelope analysis. Here we employ compressive sensing theory to overcome this problem, which can make a signal enhancement and reduce the sample sizes further. Moreover, it is capable of detecting fault features from a small number of samples based on orthogonal matching pursuit approach, which can overcome the shortcomings of the multiple down-sample algorithm. Experimental results validate the effectiveness of the proposed technique in detecting roller bearing faults. (paper)

  13. A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy

    Science.gov (United States)

    Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.

    2018-02-01

    Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.

  14. Cosmological Particle Data Compression in Practice

    Science.gov (United States)

    Zeyen, M.; Ahrens, J.; Hagen, H.; Heitmann, K.; Habib, S.

    2017-12-01

    In cosmological simulations trillions of particles are handled and several terabytes of unstructured particle data are generated in each time step. Transferring this data directly from memory to disk in an uncompressed way results in a massive load on I/O and storage systems. Hence, one goal of domain scientists is to compress the data before storing it to disk while minimizing the loss of information. To prevent reading back uncompressed data from disk, this can be done in an in-situ process. Since the simulation continuously generates data, the available time for the compression of one time step is limited. Therefore, the evaluation of compression techniques has shifted from only focusing on compression rates to include run-times and scalability.In recent years several compression techniques for cosmological data have become available. These techniques can be either lossy or lossless, depending on the technique. For both cases, this study aims to evaluate and compare the state of the art compression techniques for unstructured particle data. This study focuses on the techniques available in the Blosc framework with its multi-threading support, the XZ Utils toolkit with the LZMA algorithm that achieves high compression rates, and the widespread FPZIP and ZFP methods for lossy compressions.For the investigated compression techniques, quantitative performance indicators such as compression rates, run-time/throughput, and reconstruction errors are measured. Based on these factors, this study offers a comprehensive analysis of the individual techniques and discusses their applicability for in-situ compression. In addition, domain specific measures are evaluated on the reconstructed data sets, and the relative error rates and statistical properties are analyzed and compared. Based on this study future challenges and directions in the compression of unstructured cosmological particle data were identified.

  15. A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2016-01-01

    Full Text Available Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS. It is composed of three successful components: (i exponential wavelet transform, (ii iterative shrinkage-thresholding algorithm, and (iii random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches.

  16. A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift

    Science.gov (United States)

    Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping

    2016-01-01

    Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068

  17. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  18. Tactile Sensor Array with Fiber Bragg Gratings in Quasi-Distributed Sensing

    Directory of Open Access Journals (Sweden)

    Marcelo A. Pedroso

    2018-01-01

    Full Text Available This work describes the development of a quasi-distributed real-time tactile sensing system with a reduced number of fiber Bragg grating-based sensors and reports its use with a reconstruction method based on differential evolution. The sensing system is comprised of six fiber Bragg gratings encapsulated in silicone elastomer to form a tactile sensor array with total dimensions of 60 × 80 mm, divided into eight sensing cells with dimensions of 20 × 30 mm. Forces applied at the central position of the sensor array resulted in linear response curves for the gratings, highlighting their coupled responses and allowing the application of compressive sensing. The reduced number of sensors regarding the number of sensing cells results in an undetermined inverse problem, solved with a compressive sensing algorithm with the aid of differential evolution method. The system is capable of identifying and quantifying up to four different loads at four different cells with relative errors lower than 10.5% and signal-to-noise ratio better than 12 dB.

  19. Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure

    International Nuclear Information System (INIS)

    Hardy, Lucien

    2007-01-01

    General relativity is a deterministic theory with non-fixed causal structure. Quantum theory is a probabilistic theory with fixed causal structure. In this paper, we build a framework for probabilistic theories with non-fixed causal structure. This combines the radical elements of general relativity and quantum theory. We adopt an operational methodology for the purposes of theory construction (though without committing to operationalism as a fundamental philosophy). The key idea in the construction is physical compression. A physical theory relates quantities. Thus, if we specify a sufficiently large set of quantities (this is the compressed set), we can calculate all the others. We apply three levels of physical compression. First, we apply it locally to quantities (actually probabilities) that might be measured in a particular region of spacetime. Then we consider composite regions. We find that there is a second level of physical compression for a composite region over and above the first level physical compression for the component regions. Each application of first and second level physical compression is quantified by a matrix. We find that these matrices themselves are related by the physical theory and can therefore be subject to compression. This is the third level of physical compression. The third level of physical compression gives rise to a new mathematical object which we call the causaloid. From the causaloid for a particular physical theory we can calculate everything the physical theory can calculate. This approach allows us to set up a framework for calculating probabilistic correlations in data without imposing a fixed causal structure (such as a background time). We show how to put quantum theory in this framework (thus providing a new formulation of this theory). We indicate how general relativity might be put into this framework and how the framework might be used to construct a theory of quantum gravity

  20. Block compressed sensing for feedback reduction in relay-aided multiuser full duplex networks

    KAUST Repository

    Elkhalil, Khalil

    2016-08-11

    Opportunistic user selection is a simple technique that exploits the spatial diversity in multiuser relay-aided networks. Nonetheless, channel state information (CSI) from all users (and cooperating relays) is generally required at a central node in order to make selection decisions. Practically, CSI acquisition generates a great deal of feedback overhead that could result in significant transmission delays. In addition to this, the presence of a full-duplex cooperating relay corrupts the fed back CSI by additive noise and the relay\\'s loop (or self) interference. This could lead to transmission outages if user selection is based on inaccurate feedback information. In this paper, we propose an opportunistic full-duplex feedback algorithm that tackles the above challenges. We cast the problem of joint user signal-to-noise ratio (SNR) and the relay loop interference estimation at the base-station as a block sparse signal recovery problem in compressive sensing (CS). Using existing CS block recovery algorithms, the identity of the strong users is obtained and their corresponding SNRs are estimated. Numerical results show that the proposed technique drastically reduces the feedback overhead and achieves a rate close to that obtained by techniques that require dedicated error-free feedback from all users. Numerical results also show that there is a trade-off between the feedback interference and load, and for short coherence intervals, full-duplex feedback achieves higher throughput when compared to interference-free (half-duplex) feedback. © 2016 IEEE.

  1. Block compressed sensing for feedback reduction in relay-aided multiuser full duplex networks

    KAUST Repository

    Elkhalil, Khalil; Eltayeb, Mohammed; Kammoun, Abla; Al-Naffouri, Tareq Y.; Bahrami, Hamid Reza

    2016-01-01

    Opportunistic user selection is a simple technique that exploits the spatial diversity in multiuser relay-aided networks. Nonetheless, channel state information (CSI) from all users (and cooperating relays) is generally required at a central node in order to make selection decisions. Practically, CSI acquisition generates a great deal of feedback overhead that could result in significant transmission delays. In addition to this, the presence of a full-duplex cooperating relay corrupts the fed back CSI by additive noise and the relay's loop (or self) interference. This could lead to transmission outages if user selection is based on inaccurate feedback information. In this paper, we propose an opportunistic full-duplex feedback algorithm that tackles the above challenges. We cast the problem of joint user signal-to-noise ratio (SNR) and the relay loop interference estimation at the base-station as a block sparse signal recovery problem in compressive sensing (CS). Using existing CS block recovery algorithms, the identity of the strong users is obtained and their corresponding SNRs are estimated. Numerical results show that the proposed technique drastically reduces the feedback overhead and achieves a rate close to that obtained by techniques that require dedicated error-free feedback from all users. Numerical results also show that there is a trade-off between the feedback interference and load, and for short coherence intervals, full-duplex feedback achieves higher throughput when compared to interference-free (half-duplex) feedback. © 2016 IEEE.

  2. Study on the influence of supplying compressed air channels and evicting channels on pneumatical oscillation systems for vibromooshing

    Science.gov (United States)

    Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.

    2018-01-01

    The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).

  3. Compressed multi-block local binary pattern for object tracking

    Science.gov (United States)

    Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao

    2018-04-01

    Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.

  4. Single-photon compressive imaging with some performance benefits over raster scanning

    International Nuclear Information System (INIS)

    Yu, Wen-Kai; Liu, Xue-Feng; Yao, Xu-Ri; Wang, Chao; Zhai, Guang-Jie; Zhao, Qing

    2014-01-01

    A single-photon imaging system based on compressed sensing has been developed to image objects under ultra-low illumination. With this system, we have successfully realized imaging at the single-photon level with a single-pixel avalanche photodiode without point-by-point raster scanning. From analysis of the signal-to-noise ratio in the measurement we find that our system has much higher sensitivity than conventional ones based on point-by-point raster scanning, while the measurement time is also reduced. - Highlights: • We design a single photon imaging system with compressed sensing. • A single point avalanche photodiode is used without raster scanning. • The Poisson shot noise in the measurement is analyzed. • The sensitivity of our system is proved to be higher than that of raster scanning

  5. Image Segmentation, Registration, Compression, and Matching

    Science.gov (United States)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  6. Scalable RDF data compression with MapReduce

    NARCIS (Netherlands)

    Urbani, J.; Maassen, J.; Drost, N.; Seinstra, F.J.; Bal, H.E.

    2013-01-01

    The Semantic Web contains many billions of statements, which are released using the resource description framework (RDF) data model. To better handle these large amounts of data, high performance RDF applications must apply a compression technique. Unfortunately, because of the large input size,

  7. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks.

    Science.gov (United States)

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-09-22

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.

  8. An approach to modeling tensile–compressive asymmetry for martensitic shape memory alloys

    International Nuclear Information System (INIS)

    Zaki, Wael

    2010-01-01

    In this paper, the asymmetric tensile–compressive behavior of shape memory alloys is modeled based on the mathematical framework of Raniecki and Mróz (2008 Acta Mech. 195 81–102). The framework allows the definition of smooth, non-symmetric, pressure-insensitive yield functions that are used here to incorporate tensile–compressive modeling capabilities into the Zaki–Moumni (ZM) model for shape memory materials. It is found that, despite some increased complexity, the generalized model is capable of producing satisfactory results that agree with uniaxial experimental data taken from the literature

  9. On the effects of quantization on mismatched pulse compression filters designed using L-p norm minimization techniques

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2007-10-01

    Full Text Available In [1] the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in a p L –norm sense. It was shown that extremely...

  10. Sample size reduction in groundwater surveys via sparse data assimilation

    KAUST Repository

    Hussain, Z.; Muhammad, A.

    2013-01-01

    In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.

  11. Sample size reduction in groundwater surveys via sparse data assimilation

    KAUST Repository

    Hussain, Z.

    2013-04-01

    In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.

  12. Training Small Networks for Scene Classification of Remote Sensing Images via Knowledge Distillation

    Directory of Open Access Journals (Sweden)

    Guanzhou Chen

    2018-05-01

    Full Text Available Scene classification, aiming to identify the land-cover categories of remotely sensed image patches, is now a fundamental task in the remote sensing image analysis field. Deep-learning-model-based algorithms are widely applied in scene classification and achieve remarkable performance, but these high-level methods are computationally expensive and time-consuming. Consequently in this paper, we introduce a knowledge distillation framework, currently a mainstream model compression method, into remote sensing scene classification to improve the performance of smaller and shallower network models. Our knowledge distillation training method makes the high-temperature softmax output of a small and shallow student model match the large and deep teacher model. In our experiments, we evaluate knowledge distillation training method for remote sensing scene classification on four public datasets: AID dataset, UCMerced dataset, NWPU-RESISC dataset, and EuroSAT dataset. Results show that our proposed training method was effective and increased overall accuracy (3% in AID experiments, 5% in UCMerced experiments, 1% in NWPU-RESISC and EuroSAT experiments for small and shallow models. We further explored the performance of the student model on small and unbalanced datasets. Our findings indicate that knowledge distillation can improve the performance of small network models on datasets with lower spatial resolution images, numerous categories, as well as fewer training samples.

  13. About a method for compressing x-ray computed microtomography data

    Science.gov (United States)

    Mancini, Lucia; Kourousias, George; Billè, Fulvio; De Carlo, Francesco; Fidler, Aleš

    2018-04-01

    The management of scientific data is of high importance especially for experimental techniques that produce big data volumes. Such a technique is x-ray computed tomography (CT) and its community has introduced advanced data formats which allow for better management of experimental data. Rather than the organization of the data and the associated meta-data, the main topic on this work is data compression and its applicability to experimental data collected from a synchrotron-based CT beamline at the Elettra-Sincrotrone Trieste facility (Italy) and studies images acquired from various types of samples. This study covers parallel beam geometry, but it could be easily extended to a cone-beam one. The reconstruction workflow used is the one currently in operation at the beamline. Contrary to standard image compression studies, this manuscript proposes a systematic framework and workflow for the critical examination of different compression techniques and does so by applying it to experimental data. Beyond the methodology framework, this study presents and examines the use of JPEG-XR in combination with HDF5 and TIFF formats providing insights and strategies on data compression and image quality issues that can be used and implemented at other synchrotron facilities and laboratory systems. In conclusion, projection data compression using JPEG-XR appears as a promising, efficient method to reduce data file size and thus to facilitate data handling and image reconstruction.

  14. Pressure mapping with textile sensors for compression therapy monitoring.

    Science.gov (United States)

    Baldoli, Ilaria; Mazzocchi, Tommaso; Paoletti, Clara; Ricotti, Leonardo; Salvo, Pietro; Dini, Valentina; Laschi, Cecilia; Francesco, Fabio Di; Menciassi, Arianna

    2016-08-01

    Compression therapy is the cornerstone of treatment in the case of venous leg ulcers. The therapy outcome is strictly dependent on the pressure distribution produced by bandages along the lower limb length. To date, pressure monitoring has been carried out using sensors that present considerable drawbacks, such as single point instead of distributed sensing, no shape conformability, bulkiness and constraints on patient's movements. In this work, matrix textile sensing technologies were explored in terms of their ability to measure the sub-bandage pressure with a suitable temporal and spatial resolution. A multilayered textile matrix based on a piezoresistive sensing principle was developed, calibrated and tested with human subjects, with the aim of assessing real-time distributed pressure sensing at the skin/bandage interface. Experimental tests were carried out on three healthy volunteers, using two different bandage types, from among those most commonly used. Such tests allowed the trends of pressure distribution to be evaluated over time, both at rest and during daily life activities. Results revealed that the proposed device enables the dynamic assessment of compression mapping, with a suitable spatial and temporal resolution (20 mm and 10 Hz, respectively). In addition, the sensor is flexible and conformable, thus well accepted by the patient. Overall, this study demonstrates the adequacy of the proposed piezoresistive textile sensor for the real-time monitoring of bandage-based therapeutic treatments. © IMechE 2016.

  15. A New Approach for Fingerprint Image Compression

    Energy Technology Data Exchange (ETDEWEB)

    Mazieres, Bertrand

    1997-12-01

    The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefacts which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.

  16. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Donghao Wang

    2016-09-01

    Full Text Available To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It’s theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.

  17. A reweighted ℓ1-minimization based compressed sensing for the spectral estimation of heart rate variability using the unevenly sampled data.

    Directory of Open Access Journals (Sweden)

    Szi-Wen Chen

    Full Text Available In this paper, a reweighted ℓ1-minimization based Compressed Sensing (CS algorithm incorporating the Integral Pulse Frequency Modulation (IPFM model for spectral estimation of HRV is introduced. Knowing as a novel sensing/sampling paradigm, the theory of CS asserts certain signals that are considered sparse or compressible can be possibly reconstructed from substantially fewer measurements than those required by traditional methods. Our study aims to employ a novel reweighted ℓ1-minimization CS method for deriving the spectrum of the modulating signal of IPFM model from incomplete RR measurements for HRV assessments. To evaluate the performance of HRV spectral estimation, a quantitative measure, referred to as the Percent Error Power (PEP that measures the percentage of difference between the true spectrum and the spectrum derived from the incomplete RR dataset, was used. We studied the performance of spectral reconstruction from incomplete simulated and real HRV signals by experimentally truncating a number of RR data accordingly in the top portion, in the bottom portion, and in a random order from the original RR column vector. As a result, for up to 20% data truncation/loss the proposed reweighted ℓ1-minimization CS method produced, on average, 2.34%, 2.27%, and 4.55% PEP in the top, bottom, and random data-truncation cases, respectively, on Autoregressive (AR model derived simulated HRV signals. Similarly, for up to 20% data loss the proposed method produced 5.15%, 4.33%, and 0.39% PEP in the top, bottom, and random data-truncation cases, respectively, on a real HRV database drawn from PhysioNet. Moreover, results generated by a number of intensive numerical experiments all indicated that the reweighted ℓ1-minimization CS method always achieved the most accurate and high-fidelity HRV spectral estimates in every aspect, compared with the ℓ1-minimization based method and Lomb's method used for estimating the spectrum of HRV from

  18. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.

    Science.gov (United States)

    Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael

    2018-02-01

    Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher

  19. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    International Nuclear Information System (INIS)

    Fritz, Jan; Thawait, Gaurav K.; Fritz, Benjamin; Raithel, Esther; Nittka, Mathias; Gilson, Wesley D.; Mont, Michael A.

    2016-01-01

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  20. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Jan; Thawait, Gaurav K. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States); Fritz, Benjamin [University of Freiburg, Department of Radiology, Freiburg im Breisgau (Germany); Raithel, Esther; Nittka, Mathias [Siemens Healthcare GmbH, Erlangen (Germany); Gilson, Wesley D. [Siemens Healthcare USA, Inc., Baltimore, MD (United States); Mont, Michael A. [Cleveland Clinic Foundation, Department of Orthopedic Surgery, Cleveland, OH (United States)

    2016-10-15

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  1. Compressed optimization of device architectures

    Energy Technology Data Exchange (ETDEWEB)

    Frees, Adam [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Gamble, John King [Microsoft Research, Redmond, WA (United States). Quantum Architectures and Computation Group; Ward, Daniel Robert [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Blume-Kohout, Robin J [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Eriksson, M. A. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Friesen, Mark [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Coppersmith, Susan N. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    2014-09-01

    Recent advances in nanotechnology have enabled researchers to control individual quantum mechanical objects with unprecedented accuracy, opening the door for both quantum and extreme- scale conventional computation applications. As these devices become more complex, designing for facility of control becomes a daunting and computationally infeasible task. Here, motivated by ideas from compressed sensing, we introduce a protocol for the Compressed Optimization of Device Architectures (CODA). It leads naturally to a metric for benchmarking and optimizing device designs, as well as an automatic device control protocol that reduces the operational complexity required to achieve a particular output. Because this protocol is both experimentally and computationally efficient, it is readily extensible to large systems. For this paper, we demonstrate both the bench- marking and device control protocol components of CODA through examples of realistic simulations of electrostatic quantum dot devices, which are currently being developed experimentally for quantum computation.

  2. Pattern-based compression of multi-band image data for landscape analysis

    CERN Document Server

    Myers, Wayne L; Patil, Ganapati P

    2006-01-01

    This book describes an integrated approach to using remotely sensed data in conjunction with geographic information systems for landscape analysis. Remotely sensed data are compressed into an analytical image-map that is compatible with the most popular geographic information systems as well as freeware viewers. The approach is most effective for landscapes that exhibit a pronounced mosaic pattern of land cover. The image maps are much more compact than the original remotely sensed data, which enhances utility on the internet. As value-added products, distribution of image-maps is not affected by copyrights on original multi-band image data.

  3. Competing hydrostatic compression mechanisms in nickel cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, J. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Lucas, T.C. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Cairns, A.B.; Funnell, N.P. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Tucker, M.G. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diamond Light Source, Chilton, Oxfordshire OX11 0DE (United Kingdom); Kleppe, A.K. [Diamond Light Source, Chilton, Oxfordshire OX11 0DE (United Kingdom); Hriljac, J.A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Goodwin, A.L. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2015-12-15

    We use variable-pressure neutron and X-ray diffraction measurements to determine the uniaxial and bulk compressibilities of nickel(II) cyanide, Ni(CN){sub 2}. Whereas other layered molecular framework materials are known to exhibit negative area compressibility, we find that Ni(CN){sub 2} does not. We attribute this difference to the existence of low-energy in-plane tilt modes that provide a pressure-activated mechanism for layer contraction. The experimental bulk modulus we measure is about four times lower than that reported elsewhere on the basis of density functional theory methods [Phys. Rev. B 83 (2011) 024301].

  4. Dislocations and point defects in hydrostatically compressed crystal

    International Nuclear Information System (INIS)

    Kosevich, A.M.; Tokij, V.V.; Strel'tsov, V.A.

    1978-01-01

    Within the framework of the theory of finite deformations, the elastic fields are considered, which are induced by the sources of internal stresses in a crystal compressed under a high pressure. In the case of a hydrostatically compressed crystal with defects, the use of a variation principle is discussed. Using the smallness of distorsions, the linear theory of elastic fields of defects in the crystal compressed under a high pressure, is developed. An analysis of the main relationships of the theory results in the following conclusion: in a course of the linear approximation the taking into account of the hydrostatic pressure brings to the renorming of the elasticity moduli and to the replacing of the hydrostatic parameters of defects by their values in the compressed crystal. That conclusion allows the results of the elasticity linear theory of the crystal with defects to be used to the full extent

  5. Accelerated barrier optimization compressed sensing (ABOCS) for CT reconstruction with improved convergence

    International Nuclear Information System (INIS)

    Niu, Tianye; Fruhauf, Quentin; Petrongolo, Michael; Zhu, Lei; Ye, Xiaojing

    2014-01-01

    Recently, we proposed a new algorithm of accelerated barrier optimization compressed sensing (ABOCS) for iterative CT reconstruction. The previous implementation of ABOCS uses gradient projection (GP) with a Barzilai–Borwein (BB) step-size selection scheme (GP-BB) to search for the optimal solution. The algorithm does not converge stably due to its non-monotonic behavior. In this paper, we further improve the convergence of ABOCS using the unknown-parameter Nesterov (UPN) method and investigate the ABOCS reconstruction performance on clinical patient data. Comparison studies are carried out on reconstructions of computer simulation, a physical phantom and a head-and-neck patient. In all of these studies, the ABOCS results using UPN show more stable and faster convergence than those of the GP-BB method and a state-of-the-art Bregman-type method. As shown in the simulation study of the Shepp–Logan phantom, UPN achieves the same image quality as those of GP-BB and the Bregman-type methods, but reduces the iteration numbers by up to 50% and 90%, respectively. In the Catphan©600 phantom study, a high-quality image with relative reconstruction error (RRE) less than 3% compared to the full-view result is obtained using UPN with 17% projections (60 views). In the conventional filtered-backprojection reconstruction, the corresponding RRE is more than 15% on the same projection data. The superior performance of ABOCS with the UPN implementation is further demonstrated on the head-and-neck patient. Using 25% projections (91 views), the proposed method reduces the RRE from 21% as in the filtered backprojection (FBP) results to 7.3%. In conclusion, we propose UPN for ABOCS implementation. As compared to GP-BB and the Bregman-type methods, the new method significantly improves the convergence with higher stability and fewer iterations. (paper)

  6. The edge-preservation multi-classifier relearning framework for the classification of high-resolution remotely sensed imagery

    Science.gov (United States)

    Han, Xiaopeng; Huang, Xin; Li, Jiayi; Li, Yansheng; Yang, Michael Ying; Gong, Jianya

    2018-04-01

    In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.

  7. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC combined with image data compression (IDC approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE. Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS-based algorithm has better compression performance than the traditional compression approaches.

  8. Multispectral image compression based on DSC combined with CCSDS-IDC.

    Science.gov (United States)

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  9. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  10. ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing.

  11. The surface compression of nuclei in relativistic mean-field approach

    International Nuclear Information System (INIS)

    Sharma, M.M.

    1991-01-01

    The surface compression properties of nuclei have been studied in the framework of the relativistic non-linear σ-ω model. Using the Thomas-Fermi approximation for semi-infinite nuclear matter, it is shown that by varying the σ-meson mass one can change the surface compression as relative to the bulk compression. This fact is in contrast with the known properties of the phenomenological Skyrme interactions, where the ratio of the surface to the bulk incompressibility (-K S /K V ) is nearly 1 in the scaling mode of compression. The results suggest that the relativistic mean-field model may provide an interaction with the essential ingredients different from those of the Skyrme interactions. (author) 23 refs., 2 figs., 1 tab

  12. Learning Frameworks for Cooperative Spectrum Sensing and Energy-Efficient Data Protection in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Vinh Quang Do

    2018-05-01

    Full Text Available This paper studies learning frameworks for energy-efficient data communications in an energy-harvesting cognitive radio network in which secondary users (SUs harvest energy from solar power while opportunistically accessing a licensed channel for data transmission. The SUs perform spectrum sensing individually, and send local decisions about the presence of the primary user (PU on the channel to a fusion center (FC. We first design a new cooperative spectrum-sensing technique based on a convolutional neural network in which the FC uses historical sensing data to train the network for classification problem. The system is assumed to operate in a time-slotted manner. At the beginning of each time slot, the FC uses the current local decisions as input for the trained network to decide whether the PU is active or not in that time slot. In addition, legitimate transmissions can be vulnerable to a hidden eavesdropper, which always passively listens to the communication. Therefore, we further propose a transfer learning actor–critic algorithm for an SU to decide its operation mode to increase the security level under the constraint of limited energy. In this approach, the SU directly interacts with the environment to learn its dynamics (i.e., an arrival of harvested energy; then, the SU can either stay idle to save energy or transmit to the FC secured data that are encrypted using a suitable private-key encryption method to maximize the long-term effective security level of the network. We finally present numerical simulation results under various configurations to evaluate our proposed schemes.

  13. Application of the compress sensing theory for improvement of the TOF resolution in a novel J-PET instrument

    Directory of Open Access Journals (Sweden)

    Raczyński Lech

    2016-03-01

    Full Text Available Nowadays, in positron emission tomography (PET systems, a time of flight (TOF information is used to improve the image reconstruction process. In TOF-PET, fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to compressive sensing (CS theory, information about the shape and amplitude of the signals is recovered. In this paper, we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50-ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta.

  14. Quantitative Evaluation of Temporal Regularizers in Compressed Sensing Dynamic Contrast Enhanced MRI of the Breast

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2017-01-01

    Full Text Available Purpose. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI is used in cancer imaging to probe tumor vascular properties. Compressed sensing (CS theory makes it possible to recover MR images from randomly undersampled k-space data using nonlinear recovery schemes. The purpose of this paper is to quantitatively evaluate common temporal sparsity-promoting regularizers for CS DCE-MRI of the breast. Methods. We considered five ubiquitous temporal regularizers on 4.5x retrospectively undersampled Cartesian in vivo breast DCE-MRI data: Fourier transform (FT, Haar wavelet transform (WT, total variation (TV, second-order total generalized variation (TGVα2, and nuclear norm (NN. We measured the signal-to-error ratio (SER of the reconstructed images, the error in tumor mean, and concordance correlation coefficients (CCCs of the derived pharmacokinetic parameters Ktrans (volume transfer constant and ve (extravascular-extracellular volume fraction across a population of random sampling schemes. Results. NN produced the lowest image error (SER: 29.1, while TV/TGVα2 produced the most accurate Ktrans (CCC: 0.974/0.974 and ve (CCC: 0.916/0.917. WT produced the highest image error (SER: 21.8, while FT produced the least accurate Ktrans (CCC: 0.842 and ve (CCC: 0.799. Conclusion. TV/TGVα2 should be used as temporal constraints for CS DCE-MRI of the breast.

  15. Common and Innovative Visuals: A sparsity modeling framework for video.

    Science.gov (United States)

    Abdolhosseini Moghadam, Abdolreza; Kumar, Mrityunjay; Radha, Hayder

    2014-05-02

    Efficient video representation models are critical for many video analysis and processing tasks. In this paper, we present a framework based on the concept of finding the sparsest solution to model video frames. To model the spatio-temporal information, frames from one scene are decomposed into two components: (i) a common frame, which describes the visual information common to all the frames in the scene/segment, and (ii) a set of innovative frames, which depicts the dynamic behaviour of the scene. The proposed approach exploits and builds on recent results in the field of compressed sensing to jointly estimate the common frame and the innovative frames for each video segment. We refer to the proposed modeling framework by CIV (Common and Innovative Visuals). We show how the proposed model can be utilized to find scene change boundaries and extend CIV to videos from multiple scenes. Furthermore, the proposed model is robust to noise and can be used for various video processing applications without relying on motion estimation and detection or image segmentation. Results for object tracking, video editing (object removal, inpainting) and scene change detection are presented to demonstrate the efficiency and the performance of the proposed model.

  16. Comparison of conventional DCE-MRI and a novel golden-angle radial multicoil compressed sensing method for the evaluation of breast lesion conspicuity.

    Science.gov (United States)

    Heacock, Laura; Gao, Yiming; Heller, Samantha L; Melsaether, Amy N; Babb, James S; Block, Tobias K; Otazo, Ricardo; Kim, Sungheon G; Moy, Linda

    2017-06-01

    To compare a novel multicoil compressed sensing technique with flexible temporal resolution, golden-angle radial sparse parallel (GRASP), to conventional fat-suppressed spoiled three-dimensional (3D) gradient-echo (volumetric interpolated breath-hold examination, VIBE) MRI in evaluating the conspicuity of benign and malignant breast lesions. Between March and August 2015, 121 women (24-84 years; mean, 49.7 years) with 180 biopsy-proven benign and malignant lesions were imaged consecutively at 3.0 Tesla in a dynamic contrast-enhanced (DCE) MRI exam using sagittal T1-weighted fat-suppressed 3D VIBE in this Health Insurance Portability and Accountability Act-compliant, retrospective study. Subjects underwent MRI-guided breast biopsy (mean, 13 days [1-95 days]) using GRASP DCE-MRI, a fat-suppressed radial "stack-of-stars" 3D FLASH sequence with golden-angle ordering. Three readers independently evaluated breast lesions on both sequences. Statistical analysis included mixed models with generalized estimating equations, kappa-weighted coefficients and Fisher's exact test. All lesions demonstrated good conspicuity on VIBE and GRASP sequences (4.28 ± 0.81 versus 3.65 ± 1.22), with no significant difference in lesion detection (P = 0.248). VIBE had slightly higher lesion conspicuity than GRASP for all lesions, with VIBE 12.6% (0.63/5.0) more conspicuous (P < 0.001). Masses and nonmass enhancement (NME) were more conspicuous on VIBE (P < 0.001), with a larger difference for NME (14.2% versus 9.4% more conspicuous). Malignant lesions were more conspicuous than benign lesions (P < 0.001) on both sequences. GRASP DCE-MRI, a multicoil compressed sensing technique with high spatial resolution and flexible temporal resolution, has near-comparable performance to conventional VIBE imaging for breast lesion evaluation. 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;45:1746-1752. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Assessment of Left Ventricular Function and Mass on Free-Breathing Compressed Sensing Real-Time Cine Imaging.

    Science.gov (United States)

    Kido, Tomoyuki; Kido, Teruhito; Nakamura, Masashi; Watanabe, Kouki; Schmidt, Michaela; Forman, Christoph; Mochizuki, Teruhito

    2017-09-25

    Compressed sensing (CS) cine magnetic resonance imaging (MRI) has the advantage of being inherently insensitive to respiratory motion. This study compared the accuracy of free-breathing (FB) CS and breath-hold (BH) standard cine MRI for left ventricular (LV) volume assessment.Methods and Results:Sixty-three patients underwent cine MRI with both techniques. Both types of images were acquired in stacks of 8 short-axis slices (temporal/spatial resolution, 41 ms/1.7×1.7×6 mm 3 ) and compared for ejection fraction, end-diastolic and systolic volumes, stroke volume, and LV mass. Both BH standard and FB CS cine MRI provided acceptable image quality for LV volumetric analysis (score ≥3) in all patients (4.7±0.5 and 3.7±0.5, respectively; Pcine MRI (median, IQR: BH standard, 83.8 mL, 64.7-102.7 mL; FB CS, 79.0 mL, 66.0-101.0 mL; P=0.0006). The total acquisition times for BH standard and FB CS cine MRI were 113±7 s and 24±4 s, respectively (Pcine MRI is a clinically useful alternative to BH standard cine MRI in patients with impaired BH capacity.

  18. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  19. Luminescent microporous metal–organic framework with functional Lewis basic sites on the pore surface: Quantifiable evaluation of luminescent sensing mechanisms towards Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun-Cheng [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012 (China); Guo, Rui-Li; Zhang, Wen-Yan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Jiang, Chen [Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012 (China); Wang, Yao-Yu, E-mail: wyaoyu@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China)

    2016-11-15

    A systematic study has been conducted on a novel luminescent metal-organic framework, ([Zn(bpyp)(L-OH)]·DMF·2H{sub 2}O){sub n} (1), to explore its sensing mechanisms to Fe{sup 3+}. Structure analyses show that compound 1 exist pyridine N atoms and -OH groups on the pore surface for specific sensing of metal ions via Lewis acid-base interactions. On this consideration, the quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. This work not only achieves the quantitative evaluation of the luminescence quenching but also provides certain insights into the quenching process, and the possible mechanisms explored in this work may inspire future research and design of target luminescent metal-organic frameworks (LMOFs) with specific functions. - Graphical abstract: A systematic study has been conducted on a novel luminescent metal-organic framework to explore its sensing mechanisms to Fe{sup 3+}. The quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. - Highlights: • A novel porous luminescent MOF containing uncoordinated groups in interlayer channels was successfully synthesized. • The compound 1 can exhibit significant luminescent sensitivity to Fe{sup 3+}, which make its good candidate as luminescent sensor. • The corresponding dynamic and static quenching constants are calculated, achieving the quantification evaluation of the quenching process.

  20. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework

    International Nuclear Information System (INIS)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.; Han, Dong

    2016-01-01

    This paper describes the first part of a series of investigations to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from a newly developed hyperspectral instrument, the GEOstationary Trace gas and Aerosol Sensor Optimization (GEO-TASO), by taking full advantage of available hyperspectral measurement information in the visible bands. We describe the theoretical framework of an inversion algorithm for the hyperspectral remote sensing of the aerosol optical properties, in which major principal components (PCs) for surface reflectance is assumed known, and the spectrally dependent aerosol refractive indices are assumed to follow a power-law approximation with four unknown parameters (two for real and two for imaginary part of refractive index). New capabilities for computing the Jacobians of four Stokes parameters of reflected solar radiation at the top of the atmosphere with respect to these unknown aerosol parameters and the weighting coefficients for each PC of surface reflectance are added into the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), which in turn facilitates the optimization in the inversion process. Theoretical derivations of the formulas for these new capabilities are provided, and the analytical solutions of Jacobians are validated against the finite-difference calculations with relative error less than 0.2%. Finally, self-consistency check of the inversion algorithm is conducted for the idealized green-vegetation and rangeland surfaces that were spectrally characterized by the U.S. Geological Survey digital spectral library. It shows that the first six PCs can yield the reconstruction of spectral surface reflectance with errors less than 1%. Assuming that aerosol properties can be accurately characterized, the inversion yields a retrieval of hyperspectral surface reflectance with an uncertainty of 2% (and root-mean-square error of less than 0.003), which suggests self-consistency in the

  1. Accelerated three-dimensional cine phase contrast imaging using randomly undersampled echo planar imaging with compressed sensing reconstruction.

    Science.gov (United States)

    Basha, Tamer A; Akçakaya, Mehmet; Goddu, Beth; Berg, Sophie; Nezafat, Reza

    2015-01-01

    The aim of this study was to implement and evaluate an accelerated three-dimensional (3D) cine phase contrast MRI sequence by combining a randomly sampled 3D k-space acquisition sequence with an echo planar imaging (EPI) readout. An accelerated 3D cine phase contrast MRI sequence was implemented by combining EPI readout with randomly undersampled 3D k-space data suitable for compressed sensing (CS) reconstruction. The undersampled data were then reconstructed using low-dimensional structural self-learning and thresholding (LOST). 3D phase contrast MRI was acquired in 11 healthy adults using an overall acceleration of 7 (EPI factor of 3 and CS rate of 3). For comparison, a single two-dimensional (2D) cine phase contrast scan was also performed with sensitivity encoding (SENSE) rate 2 and approximately at the level of the pulmonary artery bifurcation. The stroke volume and mean velocity in both the ascending and descending aorta were measured and compared between two sequences using Bland-Altman plots. An average scan time of 3 min and 30 s, corresponding to an acceleration rate of 7, was achieved for 3D cine phase contrast scan with one direction flow encoding, voxel size of 2 × 2 × 3 mm(3) , foot-head coverage of 6 cm and temporal resolution of 30 ms. The mean velocity and stroke volume in both the ascending and descending aorta were statistically equivalent between the proposed 3D sequence and the standard 2D cine phase contrast sequence. The combination of EPI with a randomly undersampled 3D k-space sampling sequence using LOST reconstruction allows a seven-fold reduction in scan time of 3D cine phase contrast MRI without compromising blood flow quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Making sense of project management

    DEFF Research Database (Denmark)

    Kjærgaard, Annemette; Kautz, Karl; Nielsen, Peter Axel

    2007-01-01

    How can a software company make sense of project management when it becomes involved in software process improvement? In software development most research has an instrumental view of knowledge management thus neglecting what is probably the most important part of knowledge management namely making...... sense of practice by developers and project managers. Through an action case, we study the knowledge management processes in a Danish software company. We analyse the case through the lens of a theoretical framework. The theoretical framework focuses in particular on sensemaking, collective construed...... substantial insight which could not have been achieved through an instrumental perspective on knowledge management....

  3. Sensing, Measuring and Modelling the Mechanical Properties of Sandstone

    Science.gov (United States)

    Antony, S. J.; Olugbenga, A.; Ozerkan, N. G.

    2018-02-01

    We present a hybrid framework for simulating the strength and dilation characteristics of sandstone. Where possible, the grain-scale properties of sandstone are evaluated experimentally in detail. Also, using photo-stress analysis, we sense the deviator stress (/strain) distribution at the micro-scale and its components along the orthogonal directions on the surface of a V-notch sandstone sample under mechanical loading. Based on this measurement and applying a grain-scale model, the optical anisotropy index K 0 is inferred at the grain scale. This correlated well with the grain contact stiffness ratio K evaluated using ultrasound sensors independently. Thereafter, in addition to other experimentally characterised structural and grain-scale properties of sandstone, K is fed as an input into the discrete element modelling of fracture strength and dilation of the sandstone samples. Physical bulk-scale experiments are also conducted to evaluate the load-displacement relation, dilation and bulk fracture strength characteristics of sandstone samples under compression and shear. A good level of agreement is obtained between the results of the simulations and experiments. The current generic framework could be applied to understand the internal and bulk mechanical properties of such complex opaque and heterogeneous materials more realistically in future.

  4. Multiband CCD Image Compression for Space Camera with Large Field of View

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available Space multiband CCD camera compression encoder requires low-complexity, high-robustness, and high-performance because of its captured images information being very precious and also because it is usually working on the satellite where the resources, such as power, memory, and processing capacity, are limited. However, the traditional compression approaches, such as JPEG2000, 3D transforms, and PCA, have the high-complexity. The Consultative Committee for Space Data Systems-Image Data Compression (CCSDS-IDC algorithm decreases the average PSNR by 2 dB compared with JPEG2000. In this paper, we proposed a low-complexity compression algorithm based on deep coupling algorithm among posttransform in wavelet domain, compressive sensing, and distributed source coding. In our algorithm, we integrate three low-complexity and high-performance approaches in a deeply coupled manner to remove the spatial redundant, spectral redundant, and bit information redundancy. Experimental results on multiband CCD images show that the proposed algorithm significantly outperforms the traditional approaches.

  5. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    Science.gov (United States)

    Hamid, A. H. A.; Rozan, M. Z. A.; Deris, S.; Ibrahim, R.; Abdullah, W. S. W.; Rahman, A. A.; Yunus, M. N. M.

    2016-01-01

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder's tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the "sense making theory" and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  6. Metal-organic framework thin films on a surface of optical fibre long period grating for chemical sensing

    Science.gov (United States)

    Hromadka, J.; Tokay, B.; James, S.; Korposh, S.

    2017-04-01

    An optical fibre long period grating (LPG) modified with a thin film of HKUST-1, a material from metal organic framework (MOF) family, was employed for the detection of carbon dioxide. The sensing mechanism is based on the measurement of the change of the refractive index (RI) of the coating that is induced by the penetration of CO2 molecules into the HKUST-1 pores. The responses of the resonance bands in the transmission spectrum of an LPG modified with 40 layers of HKUST-1 upon exposure to carbon dioxide in mixture with nitrogen were investigated.

  7. The MUSIC algorithm for sparse objects: a compressed sensing analysis

    International Nuclear Information System (INIS)

    Fannjiang, Albert C

    2011-01-01

    The multiple signal classification (MUSIC) algorithm, and its extension for imaging sparse extended objects, with noisy data is analyzed by compressed sensing (CS) techniques. A thresholding rule is developed to augment the standard MUSIC algorithm. The notion of restricted isometry property (RIP) and an upper bound on the restricted isometry constant (RIC) are employed to establish sufficient conditions for the exact localization by MUSIC with or without noise. In the noiseless case, the sufficient condition gives an upper bound on the numbers of random sampling and incident directions necessary for exact localization. In the noisy case, the sufficient condition assumes additionally an upper bound for the noise-to-object ratio in terms of the RIC and the dynamic range of objects. This bound points to the super-resolution capability of the MUSIC algorithm. Rigorous comparison of performance between MUSIC and the CS minimization principle, basis pursuit denoising (BPDN), is given. In general, the MUSIC algorithm guarantees to recover, with high probability, s scatterers with n=O(s 2 ) random sampling and incident directions and sufficiently high frequency. For the favorable imaging geometry where the scatterers are distributed on a transverse plane MUSIC guarantees to recover, with high probability, s scatterers with a median frequency and n=O(s) random sampling/incident directions. Moreover, for the problems of spectral estimation and source localizations both BPDN and MUSIC guarantee, with high probability, to identify exactly the frequencies of random signals with the number n=O(s) of sampling times. However, in the absence of abundant realizations of signals, BPDN is the preferred method for spectral estimation. Indeed, BPDN can identify the frequencies approximately with just one realization of signals with the recovery error at worst linearly proportional to the noise level. Numerical results confirm that BPDN outperforms MUSIC in the well-resolved case while

  8. Generalized eigenvalue based spectrum sensing

    KAUST Repository

    Shakir, Muhammad

    2012-01-01

    Spectrum sensing is one of the fundamental components in cognitive radio networks. In this chapter, a generalized spectrum sensing framework which is referred to as Generalized Mean Detector (GMD) has been introduced. In this context, we generalize the detectors based on the eigenvalues of the received signal covariance matrix and transform the eigenvalue based spectrum sensing detectors namely: (i) the Eigenvalue Ratio Detector (ERD) and two newly proposed detectors which are referred to as (ii) the GEometric Mean Detector (GEMD) and (iii) the ARithmetic Mean Detector (ARMD) into an unified framework of generalize spectrum sensing. The foundation of the proposed framework is based on the calculation of exact analytical moments of the random variables of the decision threshold of the respective detectors. The decision threshold has been calculated in a closed form which is based on the approximation of Cumulative Distribution Functions (CDFs) of the respective test statistics. In this context, we exchange the analytical moments of the two random variables of the respective test statistics with the moments of the Gaussian (or Gamma) distribution function. The performance of the eigenvalue based detectors is compared with the several traditional detectors including the energy detector (ED) to validate the importance of the eigenvalue based detectors and the performance of the GEMD and the ARMD particularly in realistic wireless cognitive radio network. Analytical and simulation results show that the newly proposed detectors yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, the presented results based on proposed approximation approaches are in perfect agreement with the empirical results. © 2012 Springer Science+Business Media Dordrecht.

  9. Respiratory Motion Correction for Compressively Sampled Free Breathing Cardiac MRI Using Smooth l1-Norm Approximation

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal

    2018-01-01

    Full Text Available Transformed domain sparsity of Magnetic Resonance Imaging (MRI has recently been used to reduce the acquisition time in conjunction with compressed sensing (CS theory. Respiratory motion during MR scan results in strong blurring and ghosting artifacts in recovered MR images. To improve the quality of the recovered images, motion needs to be estimated and corrected. In this article, a two-step approach is proposed for the recovery of cardiac MR images in the presence of free breathing motion. In the first step, compressively sampled MR images are recovered by solving an optimization problem using gradient descent algorithm. The L1-norm based regularizer, used in optimization problem, is approximated by a hyperbolic tangent function. In the second step, a block matching algorithm, known as Adaptive Rood Pattern Search (ARPS, is exploited to estimate and correct respiratory motion among the recovered images. The framework is tested for free breathing simulated and in vivo 2D cardiac cine MRI data. Simulation results show improved structural similarity index (SSIM, peak signal-to-noise ratio (PSNR, and mean square error (MSE with different acceleration factors for the proposed method. Experimental results also provide a comparison between k-t FOCUSS with MEMC and the proposed method.

  10. Materials and Techniques for Implantable Nutrient Sensing Using Flexible Sensors Integrated with Metal-Organic Frameworks.

    Science.gov (United States)

    Ling, Wei; Liew, Guoguang; Li, Ya; Hao, Yafeng; Pan, Huizhuo; Wang, Hanjie; Ning, Baoan; Xu, Hang; Huang, Xian

    2018-06-01

    The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single- or multichannel implantable flexible sensors that are surface modified with conductive metal-organic frameworks (MOFs) such as copper-MOF and cobalt-MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l-tryptophan (l-Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10 -6 m, respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF-modified sensors are biologically safe to cells, and can detect l-Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microfluidic pressure sensing using trapped air compression.

    Science.gov (United States)

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  12. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    Science.gov (United States)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  13. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ilhwan You

    2017-10-01

    Full Text Available This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC with and without carbon nanotubes (CNTs. For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.

  14. Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes.

    Science.gov (United States)

    You, Ilhwan; Yoo, Doo-Yeol; Kim, Sooho; Kim, Min-Jae; Zi, Goangseup

    2017-10-29

    This study examined the electrical and self-sensing capacities of ultra-high-performance fiber-reinforced concrete (UHPFRC) with and without carbon nanotubes (CNTs). For this, the effects of steel fiber content, orientation, and pore water content on the electrical and piezoresistive properties of UHPFRC without CNTs were first evaluated. Then, the effect of CNT content on the self-sensing capacities of UHPFRC under compression and flexure was investigated. Test results indicated that higher steel fiber content, better fiber orientation, and higher amount of pore water led to higher electrical conductivity of UHPFRC. The effects of fiber orientation and drying condition on the electrical conductivity became minor as sufficiently high amount of steel fibers, 3% by volume, was added. Including only steel fibers did not impart UHPFRC with piezoresistive properties. Addition of CNTs substantially improved the electrical conductivity of UHPFRC. Under compression, UHPFRC with a CNT content of 0.3% or greater had a self-sensing ability that was activated by the formation of cracks, and better sensing capacity was achieved by including greater amount of CNTs. Furthermore, the pre-peak flexural behavior of UHPFRC was precisely simulated with a fractional change in resistivity when 0.3% CNTs were incorporated. The pre-cracking self-sensing capacity of UHPFRC with CNTs was more effective under tensile stress state than under compressive stress state.

  15. Compressed sensing along physically plausible sampling trajectories in MRI

    International Nuclear Information System (INIS)

    Chauffert, Nicolas

    2015-01-01

    Magnetic Resonance Imaging (MRI) is a non-invasive and non-ionizing imaging technique that provides images of body tissues, using the contrast sensitivity coming from the magnetic parameters (T_1, T_2 and proton density). Data are acquired in the κ-space, corresponding to spatial Fourier frequencies. Because of physical constraints, the displacement in the κ-space is subject to kinematic constraints. Indeed, magnetic field gradients and their temporal derivative are upper bounded. Hence, the scanning time increases with the image resolution. Decreasing scanning time is crucial to improve patient comfort, decrease exam costs, limit the image distortions (eg, created by the patient movement), or decrease temporal resolution in functional MRI. Reducing scanning time can be addressed by Compressed Sensing (CS) theory. The latter is a technique that guarantees the perfect recovery of an image from under sampled data in κ-space, by assuming that the image is sparse in a wavelet basis. Unfortunately, CS theory cannot be directly cast to the MRI setting. The reasons are: i) acquisition (Fourier) and representation (wavelets) bases are coherent and ii) sampling schemes obtained using CS theorems are composed of isolated measurements and cannot be realistically implemented by magnetic field gradients: the sampling is usually performed along continuous or more regular curves. However, heuristic application of CS in MRI has provided promising results. In this thesis, we aim to develop theoretical tools to apply CS to MRI and other modalities. On the one hand, we propose a variable density sampling theory to answer the first impediment. The more the sample contains information, the more it is likely to be drawn. On the other hand, we propose sampling schemes and design sampling trajectories that fulfill acquisition constraints, while traversing the κ-space with the sampling density advocated by the theory. The second point is complex and is thus addressed step by step

  16. A self-sensing carbon nanotube/cement composite for traffic monitoring

    International Nuclear Information System (INIS)

    Han Baoguo; Yu Xun; Kwon, Eil

    2009-01-01

    In this paper, a self-sensing carbon nanotube (CNT)/cement composite is investigated for traffic monitoring. The cement composite is filled with multi-walled carbon nanotubes whose piezoresistive properties enable the detection of mechanical stresses induced by traffic flow. The sensing capability of the self-sensing CNT/cement composite is explored in laboratory tests and road tests. Experimental results show that the fabricated self-sensing CNT/cement composite presents sensitive and stable responses to repeated compressive loadings and impulsive loadings, and has remarkable responses to vehicular loadings. These findings indicate that the self-sensing CNT/cement composite has great potential for traffic monitoring use, such as in traffic flow detection, weigh-in-motion measurement and vehicle speed detection.

  17. Real-time video compressing under DSP/BIOS

    Science.gov (United States)

    Chen, Qiu-ping; Li, Gui-ju

    2009-10-01

    This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.

  18. Potential benefits of remote sensing: Theoretical framework and empirical estimate

    Science.gov (United States)

    Eisgruber, L. M.

    1972-01-01

    A theoretical framwork is outlined for estimating social returns from research and application of remote sensing. The approximate dollar magnitude is given of a particular application of remote sensing, namely estimates of corn production, soybeans, and wheat. Finally, some comments are made on the limitations of this procedure and on the implications of results.

  19. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods

    International Nuclear Information System (INIS)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-01-01

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate O(1/k 2 ). In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques. (paper)

  20. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    Science.gov (United States)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  1. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain

    International Nuclear Information System (INIS)

    Yang, Bingxin; Yuan, Min; Ma, Yide; Zhang, Jiuwen; Zhan, Kun

    2015-01-01

    Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images. In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l 1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm. Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods. The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented

  2. ISTA-Net: Iterative Shrinkage-Thresholding Algorithm Inspired Deep Network for Image Compressive Sensing

    KAUST Repository

    Zhang, Jian

    2017-06-24

    Traditional methods for image compressive sensing (CS) reconstruction solve a well-defined inverse problem that is based on a predefined CS model, which defines the underlying structure of the problem and is generally solved by employing convergent iterative solvers. These optimization-based CS methods face the challenge of choosing optimal transforms and tuning parameters in their solvers, while also suffering from high computational complexity in most cases. Recently, some deep network based CS algorithms have been proposed to improve CS reconstruction performance, while dramatically reducing time complexity as compared to optimization-based methods. Despite their impressive results, the proposed networks (either with fully-connected or repetitive convolutional layers) lack any structural diversity and they are trained as a black box, void of any insights from the CS domain. In this paper, we combine the merits of both types of CS methods: the structure insights of optimization-based method and the performance/speed of network-based ones. We propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general $l_1$ norm CS reconstruction model. ISTA-Net essentially implements a truncated form of ISTA, where all ISTA-Net parameters are learned end-to-end to minimize a reconstruction error in training. Borrowing more insights from the optimization realm, we propose an accelerated version of ISTA-Net, dubbed FISTA-Net, which is inspired by the fast iterative shrinkage-thresholding algorithm (FISTA). Interestingly, this acceleration naturally leads to skip connections in the underlying network design. Extensive CS experiments demonstrate that the proposed ISTA-Net and FISTA-Net outperform existing optimization-based and network-based CS methods by large margins, while maintaining a fast runtime.

  3. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Coolen, Bram F.; Abdurrachim, Desiree; Castro, Rui M.; Prompers, Jeanine J.; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2013-01-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensi ng reconstruction. Key to our

  4. Support for Implications of Compressive Sensing Concepts to Imaging Systems

    Science.gov (United States)

    2015-08-02

    Justin Romberg Georgia Tech jrom@ece.gatech.edu Emil Sidky University of Chicago sidky@uchicago.edu Michael Stenner MITRE mstenner@mitre.org Lei Tian...assessment of image quality. Michael Stenner Michael has broad interests in optical imaging, sensing, and communications, and is published in such

  5. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    Science.gov (United States)

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).

    Science.gov (United States)

    Li, Ran; Duan, Xiaomeng; Li, Xu; He, Wei; Li, Yanling

    2018-04-17

    Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.

  7. An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT

    Directory of Open Access Journals (Sweden)

    Ran Li

    2018-04-01

    Full Text Available Aimed at a low-energy consumption of Green Internet of Things (IoT, this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.

  8. Optimization of compressive 4D-spatio-spectral snapshot imaging

    Science.gov (United States)

    Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing

    2017-10-01

    In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.

  9. Sub-bandage sensing system for remote monitoring of chronic wounds in healthcare

    Science.gov (United States)

    Hariz, Alex; Mehmood, Nasir; Voelcker, Nico

    2015-12-01

    Chronic wounds, such as venous leg ulcers, can be monitored non-invasively by using modern sensing devices and wireless technologies. The development of such wireless diagnostic tools may improve chronic wound management by providing evidence on efficacy of treatments being provided. In this paper we present a low-power portable telemetric system for wound condition sensing and monitoring. The system aims at measuring and transmitting real-time information of wound-site temperature, sub-bandage pressure and moisture level from within the wound dressing. The system comprises commercially available non-invasive temperature, moisture, and pressure sensors, which are interfaced with a telemetry device on a flexible 0.15 mm thick printed circuit material, making up a lightweight biocompatible sensing device. The real-time data obtained is transmitted wirelessly to a portable receiver which displays the measured values. The performance of the whole telemetric sensing system is validated on a mannequin leg using commercial compression bandages and dressings. A number of trials on a healthy human volunteer are performed where treatment conditions were emulated using various compression bandage configurations. A reliable and repeatable performance of the system is achieved under compression bandage and with minimal discomfort to the volunteer. The system is capable of reporting instantaneous changes in bandage pressure, moisture level and local temperature at wound site with average measurement resolutions of 0.5 mmHg, 3.0 %RH, and 0.2 °C respectively. Effective range of data transmission is 4-5 m in an open environment.

  10. A New Algorithm for the On-Board Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Raúl Guerra

    2018-03-01

    Full Text Available Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and need to be transferred to the earth’s surface. In this situation, an efficient compression of the hyperspectral images is mandatory in order to save bandwidth and storage space. Lossless compression algorithms have been traditionally preferred, in order to preserve all the information present in the hyperspectral cube for scientific purposes, despite their limited compression ratio. Nevertheless, the increment in the data-rate of the new-generation sensors is making more critical the necessity of obtaining higher compression ratios, making it necessary to use lossy compression techniques. A new transform-based lossy compression algorithm, namely Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA, is proposed in this manuscript. This compressor has been developed for achieving high compression ratios with a good compression performance at a reasonable computational burden. An extensive amount of experiments have been performed in order to evaluate the goodness of the proposed HyperLCA compressor using different calibrated and uncalibrated hyperspectral images from the AVIRIS and Hyperion sensors. The results provided by the proposed HyperLCA compressor have been evaluated and compared against those produced by the most relevant state-of-the-art compression solutions. The theoretical and experimental evidence indicates that the proposed algorithm represents an excellent option for lossy compressing hyperspectral images, especially for applications where the available computational resources are limited, such as on-board scenarios.

  11. Managment oriented analysis of sediment yield time compression

    Science.gov (United States)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    particular months, even in catchment with low or no inter-annual time compression. The analysis of seasonality of time compression showed that in most of the catchments large sediment yields were more likely to occur between October and January, while in two catchments it was in summer (June and July). The appropriate sediment yield management measure: enhancement of soil properties, (dis)connectivity measures or vegetation cover, should therefore be selected with regard to the type of inter-annual time compression, to the properties of the individual catchments, and to the magnitudes of sediment yield. To increase the effectivity and lower the costs of the applied measures, the management in the months or periods when large sediment yields are most likely to occur should be prioritized. The analysis of the monthly time compression might be used for their identification in areas where no event datasets are available. The R-OSMed network of Mediterranean erosion research catchments was funded by "SicMed-Mistrals" grants from 2011 to 2014. Anna Smetanová has received the support of the European Union, in the framework of the Marie-Curie FP7 COFUND People Programme, through the award of an AgreenSkills' fellowship (under grant agreement n° 267196). João Pedro Nunes has received support from the European Union (in the framework of the European Social Fund) and the Portuguese Government under a post-doctoral fellowship (SFRH/BPD/87571/2012).

  12. A Novel Image Authentication with Tamper Localization and Self-Recovery in Encrypted Domain Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2018-01-01

    Full Text Available This paper proposes a novel tamper detection, localization, and recovery scheme for encrypted images with Discrete Wavelet Transformation (DWT and Compressive Sensing (CS. The original image is first transformed into DWT domain and divided into important part, that is, low-frequency part, and unimportant part, that is, high-frequency part. For low-frequency part contains the main information of image, traditional chaotic encryption is employed. Then, high-frequency part is encrypted with CS to vacate space for watermark. The scheme takes the processed original image content as watermark, from which the characteristic digest values are generated. Comparing with the existing image authentication algorithms, the proposed scheme can realize not only tamper detection and localization but also tamper recovery. Moreover, tamper recovery is based on block division and the recovery accuracy varies with the contents that are possibly tampered. If either the watermark or low-frequency part is tampered, the recovery accuracy is 100%. The experimental results show that the scheme can not only distinguish the type of tamper and find the tampered blocks but also recover the main information of the original image. With great robustness and security, the scheme can adequately meet the need of secure image transmission under unreliable conditions.

  13. AN INTERACTIVE WEB-BASED ANALYSIS FRAMEWORK FOR REMOTE SENSING CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    X. Z. Wang

    2015-07-01

    Full Text Available Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users’ private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook

  14. An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing

    Science.gov (United States)

    Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.

    2015-07-01

    Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write

  15. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    International Nuclear Information System (INIS)

    Hamid, A. H. A.; Rozan, M. Z. A.; Ibrahim, R.; Deris, S.; Abdullah, W. S. W.; Yunus, M. N. M.; Rahman, A. A.

    2016-01-01

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder’s tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the “sense making theory” and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation

  16. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, A. H. A., E-mail: amyhamijah@gmail.com, E-mail: amyhamijah@nm.gov.my [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, 16100 Kota Bharu, Kelantan (Malaysia); Rozan, M. Z. A., E-mail: drmohdzaidi@gmail.com; Ibrahim, R. [Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Johor (Malaysia); Deris, S. [Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, 16100 Kota Bharu, Kelantan (Malaysia); Abdullah, W. S. W.; Yunus, M. N. M. [Malaysian Nuclear Agency (NM), Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, A. A. [Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor (Malaysia)

    2016-01-22

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder’s tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the “sense making theory” and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  17. Using compression calorimetry to characterize powder compaction behavior of pharmaceutical materials.

    Science.gov (United States)

    Buckner, Ira S; Friedman, Ross A; Wurster, Dale Eric

    2010-02-01

    The process by which pharmaceutical powders are compressed into cohesive compacts or tablets has been studied using a compression calorimeter. Relating the various thermodynamic results to relevant physical processes has been emphasized. Work, heat, and internal energy change values have been determined with the compression calorimeter for common pharmaceutical materials. A framework of equations has been proposed relating the physical processes of friction, reversible deformation, irreversible deformation, and inter-particle bonding to the compression calorimetry values. The results indicate that irreversible deformation dominated many of the thermodynamic values, especially the net internal energy change following the compression-decompression cycle. The relationships between the net work and the net heat from the complete cycle were very clear indicators of predominating deformation mechanisms. Likewise, the ratio of energy stored as internal energy to the initial work input distinguished the materials according to their brittle or plastic deformation tendencies. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  18. Compressive Sound Speed Profile Inversion Using Beamforming Results

    OpenAIRE

    Youngmin Choo; Woojae Seong

    2018-01-01

    Sound speed profile (SSP) significantly affects acoustic propagation in the ocean. In this work, the SSP is inverted using compressive sensing (CS) combined with beamforming to indicate the direction of arrivals (DOAs). The travel times and the positions of the arrivals can be approximately linearized using their Taylor expansion with the shape function coefficients that parameterize the SSP. The linear relation between the travel times/positions and the shape function coefficients enables CS...

  19. High bit depth infrared image compression via low bit depth codecs

    Science.gov (United States)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  20. Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal-Organic Framework.

    Science.gov (United States)

    Razavi, Sayed Ali Akbar; Masoomi, Mohammad Yaser; Morsali, Ali

    2017-08-21

    To design a robust, π-conjugated, low-cost, and easy to synthesize metal-organic framework (MOF) for cation sensing by the photoluminescence (PL) method, 4,4'-oxybis(benzoic acid) (H 2 OBA) has been used in combination with 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine (DPT) as a tetrazine-functionalized spacer to construct [Zn(OBA)(DPT) 0.5 ]·DMF (TMU-34(-2H)). The tetrazine motif is a π-conjugated, water-soluble/stable fluorophore with relatively weak σ-donating Lewis basic sites. These characteristics of tetrazine make TMU-34(-2H) a good candidate for cation sensing. Because of hydrogen bonding between tetrazine moieties and water molecules, TMU-34(-2H) shows different PL emissions in water and acetonitrile. Cation sensing in these two solvents revealed that TMU-34(-2H) can selectively detect Hg 2+ in water (by 243% enhancement) and in acetonitrile (by 90% quenching). The contribution of electron-donating/accepting characteristics along with solvation effects on secondary interactions of the tetrazine motifs inside the TMU-34(-2H) framework results in different signal transductions. Improved sensitivity and accuracy of detection were obtained using the double solvent sensing method (DSSM), in which different signal transductions of TMU-34(-2H) in water and acetonitrile were combined simultaneously to construct a double solvent sensing curve and formulate a sensitivity factor. Calculation of sensitivity factors for all of the tested cations demonstrated that it is possible to detect Hg 2+ by DSSM with ultrahigh sensitivity. Such a tremendous distinction in the Hg 2+ sensitivity factor is visualizable in the double solvent sensing curve. Thus, by application of DSSM instead of one-dimensional sensing, the interfering effects of other cations are completely eliminated and the sensitivity toward Hg(II) is highly improved. Strong interactions between Hg 2+ and the nitrogen atoms of the tetrazine groups along with easy accessibility of Hg 2+ to the tetrazine groups lead