WorldWideScience

Sample records for comprehensive microbial resource

  1. New microbial resource: microbial diversity, function and dynamics in Chinese liquor starter.

    Science.gov (United States)

    Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Zhao, Yonggui; He, Kaize; Liu, Dayu; Zhao, Dong; He, Hui; Luo, Huibo; Zhang, Wenxue; Fang, Yang; Zhao, Hai

    2017-11-06

    Traditional Chinese liquor (Baijiu) solid state fermentation technology has lasted for several thousand years. The microbial communities that enrich in liquor starter are important for fermentation. However, the microbial communities are still under-characterized. In this study, 454 pyrosequencing technology was applied to comprehensively analyze the microbial diversity, function and dynamics of two most-consumed liquor starters (Jiang- and Nong-flavor) during production. In total, 315 and 83 bacterial genera and 72 and 47 fungal genera were identified in Jiang- and Nong-flavor liquor starter, respectively. The relatively high diversity was observed when the temperature increased to 70 and 62 °C for Jiang- and Nong-flavor liquor starter, respectively. Some thermophilic fungi have already been isolated. Microbial communities that might contribute to ethanol fermentation, saccharification and flavor development were identified and shown to be core communities in correlation-based network analysis. The predictively functional profile of bacterial communities showed significant difference in energy, carbohydrate and amino acid metabolism and the degradation of aromatic compounds between the two kinds of liquor starters. Here we report these liquor starters as a new functionally microbial resource, which can be used for discovering thermophilic and aerobic enzymes and for food and feed preservation.

  2. The Integrated Microbial Genomes (IMG) System: An Expanding Comparative Analysis Resource

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Anderson, Iain; Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2009-09-13

    The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at .

  3. KACC: An identification and characterization for microbial resources ...

    African Journals Online (AJOL)

    Korean Agricultural Culture Collection (KACC) is an authorized organizer and the official depository for microbial resources in Korea. The KACC has developed a web-based database system to provide integrated information about microbial resources. It includes not only simple text information on individual microbe but ...

  4. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency

    Science.gov (United States)

    Kleiblinger, K.M.; Hall, E.K.; Wanek, W.; Szukics, U.; Hämmerle, I.; Ellersdorfer, G.; Böck, S.; Strauss, J.; Sterflinger, K.; Richter, A.; Zechmeister-Boltenstern, S.

    2010-01-01

    The carbon-use-efficiency (CUE) of microorganisms is an important parameter in determining ecosystem-level carbon (C) cycling; however, little is known about how variance in resources affects microbial CUE. To elucidate how resource quantity and resource stoichiometry affect microbial CUE, we cultured four microorganisms - two fungi (Aspergillus nidulans and Trichoderma harzianum) and two bacteria (Pectobacterium carotovorum and Verrucomicrobium spinosum) - under 12 unique C, nitrogen (N) and phosphorus (P) ratios. Whereas the CUE of A. nidulans was strongly affected by C, bacterial CUE was more strongly affected by mineral nutrients (N and P). Specifically, CUE in P. carotovorum was positively correlated with P, while CUE of V. spinosum primarily depended on N. This resulted in a positive relationship between fungal CUE and resource C : nutrient stoichiometry and a negative relationship between bacterial CUE and resource C : nutrient stoichiometry. The difference in the direction of the relationship between CUE and C : nutrient for fungi vs. bacteria was consistent with differences in biomass stoichiometry and suggested that fungi have a higher C demand than bacteria. These results suggest that the links between biomass stoichiometry, resource demand and CUE may provide a mechanism for commonly observed temporal and spatial patterns in microbial community structure and function in natural habitats.

  5. The Microbial Resource Research Infrastructure MIRRI: Strength through Coordination

    Directory of Open Access Journals (Sweden)

    Erko Stackebrandt

    2015-11-01

    Full Text Available Microbial resources have been recognized as essential raw materials for the advancement of health and later for biotechnology, agriculture, food technology and for research in the life sciences, as their enormous abundance and diversity offer an unparalleled source of unexplored solutions. Microbial domain biological resource centres (mBRC provide live cultures and associated data to foster and support the development of basic and applied science in countries worldwide and especially in Europe, where the density of highly advanced mBRCs is high. The not-for-profit and distributed project MIRRI (Microbial Resource Research Infrastructure aims to coordinate access to hitherto individually managed resources by developing a pan-European platform which takes the interoperability and accessibility of resources and data to a higher level. Providing a wealth of additional information and linking to datasets such as literature, environmental data, sequences and chemistry will enable researchers to select organisms suitable for their research and enable innovative solutions to be developed. The current independent policies and managed processes will be adapted by partner mBRCs to harmonize holdings, services, training, and accession policy and to share expertise. The infrastructure will improve access to enhanced quality microorganisms in an appropriate legal framework and to resource-associated data in a more interoperable way.

  6. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources

    Directory of Open Access Journals (Sweden)

    Maria eMooshammer

    2014-02-01

    Full Text Available Terrestrial microbial decomposer communities thrive on a wide range of organic matter types that rarely ever meet their elemental demands. In this review we synthesize the current state-of-the-art of microbial adaptations to resource stoichiometry, in order to gain a deeper understanding of the interactions between heterotrophic microbial communities and their chemical environment. The stoichiometric imbalance between microbial communities and their organic substrates generally decreases from wood to leaf litter and further to topsoil and subsoil organic matter. Microbial communities can respond to these imbalances in four ways: first, they adapt their biomass composition towards their resource in a non-homeostatic behaviour. Such changes are, however, only moderate, and occur mainly because of changes in microbial community structure and less so due to cellular storage of elements in excess. Second, microbial communities can mobilize resources that meet their elemental demand by producing specific extracellular enzymes, which, in turn, is restricted by the C and N requirement for enzyme production itself. Third, microbes can regulate their element use efficiencies (ratio of element invested in growth over total element uptake, such that they release elements in excess depending on their demand (e.g., respiration and N mineralization. Fourth, diazotrophic bacteria and saprotrophic fungi may trigger the input of external N and P to decomposer communities. Theoretical considerations show that adjustments in element use efficiencies may be the most important mechanism by which microbes regulate their biomass stoichiometry. This review summarizes different views on how microbes cope with imbalanced supply of C, N and P, thereby providing a framework for integrating and linking microbial adaptation to resource imbalances to ecosystem scale fluxes across scales and ecosystems.

  7. Comprehensive benefit analysis of regional water resources based on multi-objective evaluation

    Science.gov (United States)

    Chi, Yixia; Xue, Lianqing; Zhang, Hui

    2018-01-01

    The purpose of the water resources comprehensive benefits analysis is to maximize the comprehensive benefits on the aspects of social, economic and ecological environment. Aiming at the defects of the traditional analytic hierarchy process in the evaluation of water resources, it proposed a comprehensive benefit evaluation of social, economic and environmental benefits index from the perspective of water resources comprehensive benefit in the social system, economic system and environmental system; determined the index weight by the improved fuzzy analytic hierarchy process (AHP), calculated the relative index of water resources comprehensive benefit and analyzed the comprehensive benefit of water resources in Xiangshui County by the multi-objective evaluation model. Based on the water resources data in Xiangshui County, 20 main comprehensive benefit assessment factors of 5 districts belonged to Xiangshui County were evaluated. The results showed that the comprehensive benefit of Xiangshui County was 0.7317, meanwhile the social economy has a further development space in the current situation of water resources.

  8. Microbial Resources and Enological Significance: Opportunities and Benefits

    Directory of Open Access Journals (Sweden)

    Leonardo Petruzzi

    2017-06-01

    Full Text Available Among the innovative trends in the wine sector, the continuous exploration of enological properties associated with wine microbial resources represents a cornerstone driver of quality improvement. Since the advent of starter cultures technology, the attention has been focused on intraspecific biodiversity within the primary species responsible for alcoholic fermentation (Saccharomyces cerevisiae and, subsequently, for the so-called ‘malolactic fermentation’ (Oenococcus oeni. However, in the last decade, a relevant number of studies proposed the enological exploitation of an increasing number of species (e.g., non-Saccharomyces yeasts associated with spontaneous fermentation in wine. These new species/strains may provide technological solutions to specific problems and/or improve sensory characteristics, such as complexity, mouth-feel and flavors. This review offers an overview of the available information on the enological/protechnological significance of microbial resources associated with winemaking, summarizing the opportunities and the benefits associated with the enological exploitation of this microbial potential. We discuss proposed solutions to improve quality and safety of wines (e.g., alternative starter cultures, multistrains starter cultures and future perspectives.

  9. Microbial Resources and Enological Significance: Opportunities and Benefits

    Science.gov (United States)

    Petruzzi, Leonardo; Capozzi, Vittorio; Berbegal, Carmen; Corbo, Maria R.; Bevilacqua, Antonio; Spano, Giuseppe; Sinigaglia, Milena

    2017-01-01

    Among the innovative trends in the wine sector, the continuous exploration of enological properties associated with wine microbial resources represents a cornerstone driver of quality improvement. Since the advent of starter cultures technology, the attention has been focused on intraspecific biodiversity within the primary species responsible for alcoholic fermentation (Saccharomyces cerevisiae) and, subsequently, for the so-called ‘malolactic fermentation’ (Oenococcus oeni). However, in the last decade, a relevant number of studies proposed the enological exploitation of an increasing number of species (e.g., non-Saccharomyces yeasts) associated with spontaneous fermentation in wine. These new species/strains may provide technological solutions to specific problems and/or improve sensory characteristics, such as complexity, mouth-feel and flavors. This review offers an overview of the available information on the enological/protechnological significance of microbial resources associated with winemaking, summarizing the opportunities and the benefits associated with the enological exploitation of this microbial potential. We discuss proposed solutions to improve quality and safety of wines (e.g., alternative starter cultures, multistrains starter cultures) and future perspectives. PMID:28642742

  10. Microbial biotechnology and circular economy in wastewater treatment.

    Science.gov (United States)

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Governing the management and use of pooled microbial genetic resources: Lessons from the global crop commons

    Directory of Open Access Journals (Sweden)

    Michael Halewood

    2010-01-01

    Full Text Available The paper highlights lessons learned over the last thirty years establishing a governance structure for the global crop commons that are of relevance to current champions of the microbial commons. It argues that the political, legal and biophysical situation in which microbial genetic resources (and their users are located today are similar to the situation of plant genetic resources in the mid-1990s, before the International Treaty on Plant Genetic Resources was negotiated. Consequently, the paper suggests that it may be useful to look to the model of global network of ex situ plant genetic resources collections as a precedent to follow – even if only loosely – in developing an intergovernmentally endorsed legal substructure and governance framework for the microbial commons.

  12. Swabs to genomes: a comprehensive workflow

    Directory of Open Access Journals (Sweden)

    Madison I. Dunitz

    2015-05-01

    Full Text Available The sequencing, assembly, and basic analysis of microbial genomes, once a painstaking and expensive undertaking, has become much easier for research labs with access to standard molecular biology and computational tools. However, there are a confusing variety of options available for DNA library preparation and sequencing, and inexperience with bioinformatics can pose a significant barrier to entry for many who may be interested in microbial genomics. The objective of the present study was to design, test, troubleshoot, and publish a simple, comprehensive workflow from the collection of an environmental sample (a swab to a published microbial genome; empowering even a lab or classroom with limited resources and bioinformatics experience to perform it.

  13. GenoBase: comprehensive resource database of Escherichia coli K-12.

    Science.gov (United States)

    Otsuka, Yuta; Muto, Ai; Takeuchi, Rikiya; Okada, Chihiro; Ishikawa, Motokazu; Nakamura, Koichiro; Yamamoto, Natsuko; Dose, Hitomi; Nakahigashi, Kenji; Tanishima, Shigeki; Suharnan, Sivasundaram; Nomura, Wataru; Nakayashiki, Toru; Aref, Walid G; Bochner, Barry R; Conway, Tyrrell; Gribskov, Michael; Kihara, Daisuke; Rudd, Kenneth E; Tohsato, Yukako; Wanner, Barry L; Mori, Hirotada

    2015-01-01

    Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Research of radiation-resistant microbial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-15

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA{sub 0}279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project.

  15. Research of radiation-resistant microbial organisms

    International Nuclear Information System (INIS)

    Kim, Dongho; Lim, Sangyong; Joe, Minho; Park, Haejoon; Song, Hyunpa; Im, Seunghun; Kim, Haram; Kim, Whajung; Choi, Jinsu; Park, Jongchun

    2012-01-01

    Many extremophiles including radiation-resistant bacteria Deinococcus radiodurans have special characteristics such as novel enzymes and physiological active substances different from known biological materials and are being in the spotlight of biotechnology science. In this research, basic technologies for the production of new genetic resources and microbial strains by a series of studies in radiation-resistant microbial organisms were investigated and developed. Mechanisms required for radiation-resistant in Deinococcus radiodurans were partly defined by analyzing the function of dinB, pprI, recG, DRA 0 279, pprM, and two-component signal transduction systems. To apply genetic resource and functional materials from Deinococcus species, omics analysis in response to cadmium, construction of macroscopic biosensor, and characterization of carotenoids and chaperon protein were performed. Additionally, potential use of D. geothermalis in monosaccharide production from non-biodegradable plant materials was evaluated. Novel radiation resistant yeasts and bacteria were isolated and identified from environmental samples to obtain microbial and genomic resources. An optimal radiation mutant breeding method was set up for efficient and rapid isolation of target microbial mutants. Furthermore, an efficient ethanol producing mutant strain with high production yield and productivity was constructed using the breeding method in collaboration with Korea Research Institute of Bioscience and Biotechnology. Three Deinococcal bioindicators for radiation dosage confirmation after radiation sterilization process were developed. These results provide a comprehensive information for novel functional genetic elements, enzymes, and physiological active substances production or application. Eventually, industrial microbial cell factories based on radiation resistant microbial genomes can be developed and the technologies can be diffused to bioindustry continuously by this project

  16. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Science.gov (United States)

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. [Evaluation of comprehensive capacity of resources and environments in Poyang Lake Eco-economic Zone].

    Science.gov (United States)

    Song, Yan-Chun; Yu, Dan

    2014-10-01

    With the development of the society and economy, the contradictions among population, resources and environment are increasingly worse. As a result, the capacity of resources and environment becomes one of the focal issues for many countries and regions. Through investigating and analyzing the present situation and the existing problems of resources and environment in Poyang Lake Eco-economic Zone, seven factors were chosen as the evaluation criterion layer, namely, land resources, water resources, biological resources, mineral resources, ecological-geological environment, water environment and atmospheric environment. Based on the single factor evaluation results and with the county as the evaluation unit, the comprehensive capacity of resources and environment was evaluated by using the state space method in Poyang Lake Eco-economic Zone. The results showed that it boasted abundant biological resources, quality atmosphere and water environment, and relatively stable geological environment, while restricted by land resource, water resource and mineral resource. Currently, although the comprehensive capacity of the resources and environments in Poyang Lake Eco-economic Zone was not overloaded as a whole, it has been the case in some counties/districts. State space model, with clear indication and high accuracy, could serve as another approach to evaluating comprehensive capacity of regional resources and environment.

  18. Comprehensive Epidemiologic Data Resource. Revision 1

    International Nuclear Information System (INIS)

    1995-05-01

    The Department of Energy has established the Comprehensive Epidemiologic Data Resource (CEDR) as a public-use data base with the goal of broadening independent access to data collected during studies of the health effects of exposure to radiation and other physical or chemical agents associated with the production of nuclear materials. This catalog is intended for use by any individual interested in obtaining information about, or access to, CEDR data. This catalog provides information that will help users identify and request data file sets of interest

  19. Comprehensive Epidemiologic Data Resource. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Department of Energy has established the Comprehensive Epidemiologic Data Resource (CEDR) as a public-use data base with the goal of broadening independent access to data collected during studies of the health effects of exposure to radiation and other physical or chemical agents associated with the production of nuclear materials. This catalog is intended for use by any individual interested in obtaining information about, or access to, CEDR data. This catalog provides information that will help users identify and request data file sets of interest.

  20. Musical Tale as a Reading Comprehension Resource in the Classroom

    Directory of Open Access Journals (Sweden)

    Lucía Martínez Vázquez

    2017-11-01

    Full Text Available Reading comprehension is a complex process, whose teaching involves multiple factors, as highlighted by Psychology, Didactics of languages, and others disciplines. Nevertheless, theoretical frameworks need to be applied by means of innovative practices and resources. The aim of this work is to present an innovation implemented in 2016-2017 in the third year of primary school, in the frame of an action-research, with the objective of reinforcing the learning of reading. In order to cope whit the comprehension difficulties involved in attention and concentration abilities, a didactic intervention was designed with the musical tale as a resource. Different approaches to this sort of text, integrated in diverse activities, facilitated the learning of active listening of tales, expressing reading, and guided the attention of readers to metacognitive strategies. The experience allows better identify some difficulties in the reading process, and prove the usefulness of the musical tale, as a meaningful resource to support the teaching and learning of reading.

  1. Microbial biotechnology and circular economy in wastewater treatment

    OpenAIRE

    Nielsen, Per Halkjær

    2017-01-01

    Summary Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process‐critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs an...

  2. Childhood microbial keratitis

    Directory of Open Access Journals (Sweden)

    Abdullah G Al Otaibi

    2012-01-01

    Conclusion: Children with suspected microbial keratitis require comprehensive evaluation and management. Early recognition, identifying the predisposing factors and etiological microbial organisms, and instituting appropriate treatment measures have a crucial role in outcome. Ocular trauma was the leading cause of childhood microbial keratitis in our study.

  3. Improving Microbial Genome Annotations in an Integrated Database Context

    Science.gov (United States)

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2013-01-01

    Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620

  4. Improving microbial genome annotations in an integrated database context.

    Directory of Open Access Journals (Sweden)

    I-Min A Chen

    Full Text Available Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/.

  5. Evaluation of Water Resources Carrying Capacity in Shandong Province Based on Fuzzy Comprehensive Evaluation

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2018-01-01

    Full Text Available Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.

  6. Using the Delphi questionnaire technique to create a reading comprehension resource guide for middle school science teachers

    Science.gov (United States)

    Wegner, Molly F.

    As students begin middle school, they are expected to possess and apply a wide array of nonfiction reading strategies if they are to comprehend new concepts from nonfiction texts. Although strategies and resource guides for fiction reading are available, an effective nonfiction reading comprehension resource guide tailored to middle school science teachers is lacking. The conceptual framework guiding this study is based on schema theory that supports the use of prior knowledge as a foundation for learning. The purpose of this project study was to address this local problem by providing middle school science teachers with a user-friendly resource for nonfiction reading comprehension strategies in a science context. The research question examined nonfiction reading comprehension strategies that could supplement middle school science teachers' instructional practices to increase student comprehension in science, as reflected on the results of state standardized tests. This project study consulted science and language arts teachers using a Delphi questionnaire technique to achieve a consensus through multiple iterations of questionnaires. Science teachers identified 7 areas of concern as students read nonfiction texts, and language arts teachers suggested effective reading comprehension strategies to address these areas. Based on the consensus of reading comprehension strategies and review of literature, a resource guide for middle school science teachers was created. By improving reading comprehension in content areas, teachers may not only increase student learning, but also underscore the importance of literacy relating to life-long learning through future occupations, academic endeavors, and society as well.

  7. Resource Limitations on Soil Microbial Activity in an Antarctic Dry Valley

    DEFF Research Database (Denmark)

    Sparrow, Asley; Gregorich, Ed; Hopkins, David

    2011-01-01

    Although Antarctic dry valley soils function under some of the harshest environmental conditions on the planet, there is significant biological activity concentrated in small areas in the landscape. These productive areas serve as a source of C and N in organic matter redistributed...... to the surrounding biologically impoverished soils. We conducted a 3-yr replicated field experiment involving soil amendment with C and N in simple (glucose and NH4Cl) and complex (glycine and lacustrine detritus) forms to evaluate the resource limitations on soil microbial activity in an Antarctic dry valley....... The respiratory response for all substrates was slow, with a significant but weak response to NH4Cl, followed by a more widespread response to all substrates after 2 yr and in laboratory incubations conducted 3 yr after substrate addition. This response suggests that the soil microbial community is N limited and...

  8. IMG: the integrated microbial genomes database and comparative analysis system

    Science.gov (United States)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2012-01-01

    The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp). PMID:22194640

  9. Pesticide residues and microbial contamination of water resources in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Cheah Uan Boh; Lum Keng Yeang

    2002-01-01

    Studies on the water resources of the Muda rice growing areas revealed evidence of pesticide residues in the agroecosystem. While the cyclodiene endosulfan was found as a ubiquitous contaminant, the occurrence of other organochlorine insecticides was sporadic. The presence of 2,4-D, paraquat and molinate residues was also evident but the occurrence of these herbicides was seasonal. Residue levels of molinate were generally higher than those from the other herbicides. The problem of thiobencarb and carbofuran residues was not encountered. Analyses for microbial contamination revealed that the water resources were unfit for drinking; coliform counts were higher during certain periods of the year than others. (Author)

  10. GIDEON: a comprehensive Web-based resource for geographic medicine

    Directory of Open Access Journals (Sweden)

    Berger Stephen A

    2005-04-01

    Full Text Available Abstract GIDEON (Global Infectious Diseases and Epidemiology Network is a web-based computer program designed for decision support and informatics in the field of Geographic Medicine. The first of four interactive modules generates a ranked differential diagnosis based on patient signs, symptoms, exposure history and country of disease acquisition. Additional options include syndromic disease surveillance capability and simulation of bioterrorism scenarios. The second module accesses detailed and current information regarding the status of 338 individual diseases in each of 220 countries. Over 50,000 disease images, maps and user-designed graphs may be downloaded for use in teaching and preparation of written materials. The third module is a comprehensive source on the use of 328 anti-infective drugs and vaccines, including a listing of over 9,500 international trade names. The fourth module can be used to characterize or identify any bacterium or yeast, based on laboratory phenotype. GIDEON is an up-to-date and comprehensive resource for Geographic Medicine.

  11. New on-line separation workflow of microbial metabolites via hyphenation of analytical and preparative comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun

    2016-10-15

    Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Musical Tale as a Reading Comprehension Resource in the Classroom

    OpenAIRE

    Lucía Martínez Vázquez; Eva María Iñesta Mena

    2017-01-01

    Reading comprehension is a complex process, whose teaching involves multiple factors, as highlighted by Psychology, Didactics of languages, and others disciplines. Nevertheless, theoretical frameworks need to be applied by means of innovative practices and resources. The aim of this work is to present an innovation implemented in 2016-2017 in the third year of primary school, in the frame of an action-research, with the objective of reinforcing the learning of reading. In order to cope whit t...

  13. Microbial conversion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lau, P. [National Research Council of Canada, Ottawa, ON (Canada). Bioconversion and Sustainable Development

    2006-07-01

    Microbes are a biomass and an valuable resource. This presentation discussed microbial conversion technologies along with background information on microbial cells, their characteristics and microbial diversity. Untapped opportunities for microbial conversion were identified. Metagenomic and genome mining approaches were also discussed, as they can provide access to uncultivated or unculturable microorganisms in communal populations and are an unlimited resource for biocatalysts, novel genes and metabolites. Genome mining was seen as an economical approach. The presentation also emphasized that the development of microbial biorefineries would require significant insights into the relevant microorganisms and that biocatalysts were the ultimate in sustainability. In addition, the presentation discussed the natural fibres initiative for biochemicals and biomaterials. Anticipated outputs were identified and work in progress of a new enzyme-retting cocktail to provide diversity and/or consistency in fibre characteristics for various applications were also presented. It was concluded that it is necessary to leverage understanding of biological processes to produce bioproducts in a clean and sustainable manner. tabs., figs.

  14. MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes.

    Science.gov (United States)

    Vallenet, David; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Lajus, Aurélie; Josso, Adrien; Mercier, Jonathan; Renaux, Alexandre; Rollin, Johan; Rouy, Zoe; Roche, David; Scarpelli, Claude; Médigue, Claudine

    2017-01-04

    The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    Science.gov (United States)

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Science.gov (United States)

    Larsen, Peter; Gilbert, Jack

    2013-01-01

    In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm.) from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  17. CEDR: Comprehensive Epidemiologic Data Resource

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Department of Energy (DOE) and its predecessor agencies have a long history of epidemiologic research programs. The main focus of these programs has been the Health and Mortality Study of the DOE work force. This epidemiologic study began in 1964 with a feasibility study of workers at the Hanford facility. Studies of other populations exposed to radiation have also been supported, including the classic epidemiologic study of radium dial painters and studies of atomic bomb survivors. From a scientific perspective, these epidemiologic research program have been productive, highly credible, and formed the bases for many radiological protection standards. Recently, there has been concern that, although research results were available, the data on which these results were based were not easily obtained by interested investigators outside DOE. Therefore, as part of an effort to integrate and broaden access to its epidemiologic information, the DOE has developed the Comprehensive Epidemiologic Data Resource (CEDR) Program. Included in this effort is the development of a computer information system for accessing the collection of CEDR data and its related descriptive information. The epidemiologic data currently available through the CEDAR Program consist of analytic data sets, working data sets, and their associated documentation files. In general, data sets are the result of epidemiologic studies that have been conducted on various groups of workers at different DOE facilities during the past 30 years.

  18. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    Science.gov (United States)

    Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba Alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B

    2013-01-01

    The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.

  19. Microbial bebop: creating music from complex dynamics in microbial ecology.

    Directory of Open Access Journals (Sweden)

    Peter Larsen

    Full Text Available In order for society to make effective policy decisions on complex and far-reaching subjects, such as appropriate responses to global climate change, scientists must effectively communicate complex results to the non-scientifically specialized public. However, there are few ways however to transform highly complicated scientific data into formats that are engaging to the general community. Taking inspiration from patterns observed in nature and from some of the principles of jazz bebop improvisation, we have generated Microbial Bebop, a method by which microbial environmental data are transformed into music. Microbial Bebop uses meter, pitch, duration, and harmony to highlight the relationships between multiple data types in complex biological datasets. We use a comprehensive microbial ecology, time course dataset collected at the L4 marine monitoring station in the Western English Channel as an example of microbial ecological data that can be transformed into music. Four compositions were generated (www.bio.anl.gov/MicrobialBebop.htm. from L4 Station data using Microbial Bebop. Each composition, though deriving from the same dataset, is created to highlight different relationships between environmental conditions and microbial community structure. The approach presented here can be applied to a wide variety of complex biological datasets.

  20. The integrated microbial genome resource of analysis.

    Science.gov (United States)

    Checcucci, Alice; Mengoni, Alessio

    2015-01-01

    Integrated Microbial Genomes and Metagenomes (IMG) is a biocomputational system that allows to provide information and support for annotation and comparative analysis of microbial genomes and metagenomes. IMG has been developed by the US Department of Energy (DOE)-Joint Genome Institute (JGI). IMG platform contains both draft and complete genomes, sequenced by Joint Genome Institute and other public and available genomes. Genomes of strains belonging to Archaea, Bacteria, and Eukarya domains are present as well as those of viruses and plasmids. Here, we provide some essential features of IMG system and case study for pangenome analysis.

  1. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data

    Science.gov (United States)

    Vallenet, David; Belda, Eugeni; Calteau, Alexandra; Cruveiller, Stéphane; Engelen, Stefan; Lajus, Aurélie; Le Fèvre, François; Longin, Cyrille; Mornico, Damien; Roche, David; Rouy, Zoé; Salvignol, Gregory; Scarpelli, Claude; Thil Smith, Adam Alexander; Weiman, Marion; Médigue, Claudine

    2013-01-01

    MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest. PMID:23193269

  2. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    Directory of Open Access Journals (Sweden)

    Intikhab Alam

    Full Text Available The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes.We developed a data warehouse system (INDIGO that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments.We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.

  3. COMAN: a web server for comprehensive metatranscriptomics analysis.

    Science.gov (United States)

    Ni, Yueqiong; Li, Jun; Panagiotou, Gianni

    2016-08-11

    Microbiota-oriented studies based on metagenomic or metatranscriptomic sequencing have revolutionised our understanding on microbial ecology and the roles of both clinical and environmental microbes. The analysis of massive metatranscriptomic data requires extensive computational resources, a collection of bioinformatics tools and expertise in programming. We developed COMAN (Comprehensive Metatranscriptomics Analysis), a web-based tool dedicated to automatically and comprehensively analysing metatranscriptomic data. COMAN pipeline includes quality control of raw reads, removal of reads derived from non-coding RNA, followed by functional annotation, comparative statistical analysis, pathway enrichment analysis, co-expression network analysis and high-quality visualisation. The essential data generated by COMAN are also provided in tabular format for additional analysis and integration with other software. The web server has an easy-to-use interface and detailed instructions, and is freely available at http://sbb.hku.hk/COMAN/ CONCLUSIONS: COMAN is an integrated web server dedicated to comprehensive functional analysis of metatranscriptomic data, translating massive amount of reads to data tables and high-standard figures. It is expected to facilitate the researchers with less expertise in bioinformatics in answering microbiota-related biological questions and to increase the accessibility and interpretation of microbiota RNA-Seq data.

  4. Toward Understanding, Managing, and Protecting Microbial Ecosystems

    Science.gov (United States)

    Bodelier, Paul L. E.

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797

  5. Towards understanding, managing and protecting microbial ecosystems

    Directory of Open Access Journals (Sweden)

    Paul eBodelier

    2011-04-01

    Full Text Available Microbial communities are at the very basis of life on earth, catalysing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper indentifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  6. Toward understanding, managing, and protecting microbial ecosystems.

    Science.gov (United States)

    Bodelier, Paul L E

    2011-01-01

    Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity-conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  7. Microscale Insight into Microbial Seed Banks.

    Science.gov (United States)

    Locey, Kenneth J; Fisk, Melany C; Lennon, J T

    2016-01-01

    Microbial dormancy leads to the emergence of seed banks in environmental, engineered, and host-associated ecosystems. These seed banks act as reservoirs of diversity that allow microbes to persist under adverse conditions, including extreme limitation of resources. While microbial seed banks may be influenced by macroscale factors, such as the supply of resources, the importance of microscale encounters between organisms and resource particles is often overlooked. We hypothesized that dimensions of spatial, trophic, and resource complexity determine rates of encounter, which in turn, drive the abundance, productivity, and size of seed banks. We tested this using >10,000 stochastic individual based models (IBMs) that simulated energetic, physiological, and ecological processes across combinations of resource, spatial, and trophic complexity. These IBMs allowed realistic dynamics and the emergence of seed banks from ecological selection on random variation in species traits. Macroscale factors like the supply and concentration of resources had little effect on resource encounter rates. In contrast, encounter rates were strongly influenced by interactions between dispersal mode and spatial structure, and also by the recalcitrance of resources. In turn, encounter rates drove abundance, productivity, and seed bank dynamics. Time series revealed that energetically costly traits can lead to large seed banks and that recalcitrant resources can lead to greater stability through the formation of seed banks and the slow consumption of resources. Our findings suggest that microbial seed banks emerge from microscale dimensions of ecological complexity and their influence on resource limitation and energetic costs.

  8. Shenzhen Comprehensive Transport System Planning:An Exploration of Sustainable Urban Transport Development on Condition of Limited Resources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With "integration" as the direction,Shenzhen Comprehensive Transport Planning integrates the plan,construction and management of all kinds of transport mode in the transport system,and integrates the transport with the social,economic and environment development.The planning specifies the strategic targets,key indicators,development strategies as well as major policies of the comprehensive transport system,which explores an alternative way for the sustainable urban transport development under the condition of limited resources in Shenzhen.

  9. INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles

    Science.gov (United States)

    Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.

    2013-01-01

    Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID

  10. A program to assess microbial impacts on nuclear waste containment

    International Nuclear Information System (INIS)

    Horn, J.; Meike, A.

    1996-01-01

    In this paper we discuss aspects of a comprehensive program to identify and bound potential effects of microorganisms on long-term nuclear waste containment, using as examples, studies conducted within the Yucca Mountain Project. A comprehensive program has been formulated which cuts across standard disciplinary lines to address the specific concerns of microbial activity in a radioactive waste repository. Collectively, this program provides bounding parameters of microbial activities that modify the ambient geochemistry and hydrology, modify corrosion rates, and transport and transform radionuclides under conditions expected to be encountered after geological waste emplacement. This program is intended to provide microbial reaction rates and bounding conditions in a form that can be integrated into existing chemical and hydrological models. The inclusion of microbial effects will allow those models to more accurately assess long term repository integrity

  11. The FaceBase Consortium: a comprehensive resource for craniofacial researchers

    Science.gov (United States)

    Brinkley, James F.; Fisher, Shannon; Harris, Matthew P.; Holmes, Greg; Hooper, Joan E.; Wang Jabs, Ethylin; Jones, Kenneth L.; Kesselman, Carl; Klein, Ophir D.; Maas, Richard L.; Marazita, Mary L.; Selleri, Licia; Spritz, Richard A.; van Bakel, Harm; Visel, Axel; Williams, Trevor J.; Wysocka, Joanna

    2016-01-01

    The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research. PMID:27287806

  12. A comprehensive curated resource for follicle stimulating hormone signaling

    Directory of Open Access Journals (Sweden)

    Sharma Jyoti

    2011-10-01

    Full Text Available Abstract Background Follicle stimulating hormone (FSH is an important hormone responsible for growth, maturation and function of the human reproductive system. FSH regulates the synthesis of steroid hormones such as estrogen and progesterone, proliferation and maturation of follicles in the ovary and spermatogenesis in the testes. FSH is a glycoprotein heterodimer that binds and acts through the FSH receptor, a G-protein coupled receptor. Although online pathway repositories provide information about G-protein coupled receptor mediated signal transduction, the signaling events initiated specifically by FSH are not cataloged in any public database in a detailed fashion. Findings We performed comprehensive curation of the published literature to identify the components of FSH signaling pathway and the molecular interactions that occur upon FSH receptor activation. Our effort yielded 64 reactions comprising 35 enzyme-substrate reactions, 11 molecular association events, 11 activation events and 7 protein translocation events that occur in response to FSH receptor activation. We also cataloged 265 genes, which were differentially expressed upon FSH stimulation in normal human reproductive tissues. Conclusions We anticipate that the information provided in this resource will provide better insights into the physiological role of FSH in reproductive biology, its signaling mediators and aid in further research in this area. The curated FSH pathway data is freely available through NetPath (http://www.netpath.org, a pathway resource developed previously by our group.

  13. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community.

    Science.gov (United States)

    Connor, Thomas R; Loman, Nicholas J; Thompson, Simon; Smith, Andy; Southgate, Joel; Poplawski, Radoslaw; Bull, Matthew J; Richardson, Emily; Ismail, Matthew; Thompson, Simon Elwood-; Kitchen, Christine; Guest, Martyn; Bakke, Marius; Sheppard, Samuel K; Pallen, Mark J

    2016-09-01

    The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.

  14. Investment into the future of microbial resources: culture collection funding models and BRC business plans for biological resource centres.

    Science.gov (United States)

    Smith, David; McCluskey, Kevin; Stackebrandt, Erko

    2014-01-01

    Through their long history of public service, diverse microbial Biological Resource Centres (mBRCs) have made myriad contributions to society and science. They have enabled the maintenance of specimens isolated before antibiotics, made available strains showing the development and change of pathogenicity toward animals, humans and plants, and have maintained and provided reference strains to ensure quality and reproducibility of science. However, this has not been achieved without considerable financial commitment. Different collections have unique histories and their support is often tied to their origins. However many collections have grown to serve large constituencies and need to develop novel funding mechanisms. Moreover, several international initiatives have described mBRCs as a factor in economic development and have led to the increased professionalism among mBRCs.

  15. Radiation application for the utilization of microbial resources

    International Nuclear Information System (INIS)

    Lee, Young Keun; Kim, Jae Sung; Lee, Sang Jae

    2007-07-01

    Domestic microbes which had the antifungal, pesticide residue degradable, and heavy metal adsorbent activities were isolated individually. Mutants of their improved functions were induced by radiation. And finally microbial formulae of biocontroller were manufactured and respected to be industrialized promisingly. The effectiveness of the developed microbial formulae were confirmed in pepper, radish, and Chinese cabbage by field experiments for 5 kinds of fungal diseases. This technology is respected to be transferred to the agricultural companies. And a novel venture company could be established by the involved researchers using this technology. As a result, the productivity in environmentally-friendly farm could be improved gradually in the near future

  16. Radiation application for the utilization of microbial resources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Kim, Jae Sung; Lee, Sang Jae [and others

    2007-07-15

    Domestic microbes which had the antifungal, pesticide residue degradable, and heavy metal adsorbent activities were isolated individually. Mutants of their improved functions were induced by radiation. And finally microbial formulae of biocontroller were manufactured and respected to be industrialized promisingly. The effectiveness of the developed microbial formulae were confirmed in pepper, radish, and Chinese cabbage by field experiments for 5 kinds of fungal diseases. This technology is respected to be transferred to the agricultural companies. And a novel venture company could be established by the involved researchers using this technology. As a result, the productivity in environmentally-friendly farm could be improved gradually in the near future.

  17. Energy, ecology and the distribution of microbial life.

    Science.gov (United States)

    Macalady, Jennifer L; Hamilton, Trinity L; Grettenberger, Christen L; Jones, Daniel S; Tsao, Leah E; Burgos, William D

    2013-07-19

    Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time.

  18. A comprehensive measure of the energy resource: Wind power potential (WPP)

    International Nuclear Information System (INIS)

    Zhang, Jie; Chowdhury, Souma; Messac, Achille

    2014-01-01

    Highlights: • A more comprehensive metric is developed to accurately assess the quality of wind resources at a site. • WPP exploits the joint distribution of wind speed and direction, and yields more credible estimates. • WPP investigates the effect of wind distribution on the optimal net power generation of a farm. • The results show that WPD and WPP follow different trends. - Abstract: Currently, the quality of available wind energy at a site is assessed using wind power density (WPD). This paper proposes to use a more comprehensive metric: the wind power potential (WPP). While the former accounts for only wind speed information, the latter exploits the joint distribution of wind speed and wind direction and yields more credible estimates. The WPP investigates the effect of wind velocity distribution on the optimal net power generation of a farm. A joint distribution of wind speed and direction is used to characterize the stochastic variation of wind conditions. Two joint distribution methods are adopted in this paper: bivariate normal distribution and anisotropic lognormal method. The net power generation for a particular farmland size and installed capacity is maximized for different distributions of wind speed and wind direction, using the Unrestricted Wind Farm Layout Optimization (UWFLO) framework. A response surface is constructed to represent the computed maximum wind farm capacity factor as a function of the parameters of the wind distribution. Two different response surface methods are adopted in this paper: (i) the adaptive hybrid functions (AHF), and (ii) the quadratic response surface method (QRSM). Toward this end, for any farm site, we can (i) estimate the parameters of the joint distribution using recorded wind data (for bivariate normal or anisotropic lognormal distributions) and (ii) predict the maximum capacity factor for a specified farm size and capacity using this response surface. The WPP metric is illustrated using recorded wind

  19. The effect of resource history on the functioning of soil microbial communities is maintained across time

    Science.gov (United States)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-06-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global

  20. Trade-offs between microbial growth phases lead to frequency-dependent and non-transitive selection.

    Science.gov (United States)

    Manhart, Michael; Adkar, Bharat V; Shakhnovich, Eugene I

    2018-02-14

    Mutations in a microbial population can increase the frequency of a genotype not only by increasing its exponential growth rate, but also by decreasing its lag time or adjusting the yield (resource efficiency). The contribution of multiple life-history traits to selection is a critical question for evolutionary biology as we seek to predict the evolutionary fates of mutations. Here we use a model of microbial growth to show that there are two distinct components of selection corresponding to the growth and lag phases, while the yield modulates their relative importance. The model predicts rich population dynamics when there are trade-offs between phases: multiple strains can coexist or exhibit bistability due to frequency-dependent selection, and strains can engage in rock-paper-scissors interactions due to non-transitive selection. We characterize the environmental conditions and patterns of traits necessary to realize these phenomena, which we show to be readily accessible to experiments. Our results provide a theoretical framework for analysing high-throughput measurements of microbial growth traits, especially interpreting the pleiotropy and correlations between traits across mutants. This work also highlights the need for more comprehensive measurements of selection in simple microbial systems, where the concept of an ordinary fitness landscape breaks down. © 2018 The Author(s).

  1. 18 CFR 801.5 - Comprehensive plan.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comprehensive plan. 801... POLICIES § 801.5 Comprehensive plan. (a) The Compact requires that the Commission formulate and adopt a comprehensive plan for the immediate and long-range development and use of the water resources of the basin. (1...

  2. Determinants of urban resource use and resilience: a comprehensive framework

    Science.gov (United States)

    Romero-Lankao, P.; Bourgeron, P.; Gochis, D. J.; Rothman, D. S.; Wilhelmi, O.

    2015-12-01

    During the past decades urbanization has proceeded at unprecedented - yet varied - rates across urban areas globally. The social and environmental transformations implied by urban development have put many regions at risk of transforming the very characteristics that make them attractive and healthy. Meanwhile, climate change is adding new sources of risk and an array of uncertainties to the mix. These changes create risks that vary according to the characteristics of the demographic, economic, ecological, built-environment (technological) and governance dimensions of urbanization and urban areas as socioecological systems. However, few studies have explored the variation in these dimensions across urban areas. I will present a comprehensive analytical framework that explores, in urban areas, patterns of interplay, synergy and tradeoff between socio-demographic, economic, technological, ecological, and governance (SETEG) factors as they shape two issues, traditionally analyzed by separate disciplinary domains: resource use and resilience to climate hazards. Three questions guide this effort: 1) What indicators can be used to socio-demographic, economic, technological, ecological, and governance (SETEG) determinants of urban populations' resource use and resilience to climate hazards? 2) What indicators are important? 3) What combinations (i.e., tradeoffs, synergies) of causal factors better explain urban populations' resource use and resilience to hazards? The interplay between these factors as they shape a population's resource use and resilience is not exempted from synergies and tradeoffs that require careful analysis. Consider population density, a key indicator of urban form. Scholars have found that while more compact cities are more energy efficient and emit less GHG, heat stress is much worse in more compact cities. This begs the question of which combination of urban form factors need to be considered by urban planners when designing effective urban

  3. Comprehensive assessment of regional selenium resources in soils based on the analytic hierarchy process: Assessment system construction and case demonstration.

    Science.gov (United States)

    Liang, Ruoyu; Song, Shuai; Shi, Yajing; Shi, Yajuan; Lu, Yonglong; Zheng, Xiaoqi; Xu, Xiangbo; Wang, Yurong; Han, Xuesong

    2017-12-15

    The redundancy or deficiency of selenium in soils can cause adverse effects on crops and even threaten human health. It was necessary to assess selenium resources with a rigorous scientific appraisal. Previous studies of selenium resource assessment were usually carried out using a single index evaluation. A multi-index evaluation method (analytic hierarchy process) was used in this study to establish a comprehensive assessment system based on consideration of selenium content, soil nutrients and soil environmental quality. The criteria for the comprehensive assessment system were classified by summing critical values in the standards with weights and a Geographical Information System was used to reflect the regional distribution of the assessment results. Boshan, a representative region for developing selenium-rich agriculture, was taken as a case area and classified into Zone I-V, which suggested priority areas for developing selenium-rich agriculture. Most parts of the North and Midlands of Boshan were relatively suitable for development of selenium-rich agriculture. Soils in south fractions were contaminated by Cd, PAHs, HCHs and DDTs, in which it was forbidden to farm. This study was expected to provide the basis for developing selenium-rich agriculture and an example for comprehensive evaluation of relevant resources in a region. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genome-Based Microbial Taxonomy Coming of Age.

    Science.gov (United States)

    Hugenholtz, Philip; Skarshewski, Adam; Parks, Donovan H

    2016-06-01

    Reconstructing the complete evolutionary history of extant life on our planet will be one of the most fundamental accomplishments of scientific endeavor, akin to the completion of the periodic table, which revolutionized chemistry. The road to this goal is via comparative genomics because genomes are our most comprehensive and objective evolutionary documents. The genomes of plant and animal species have been systematically targeted over the past decade to provide coverage of the tree of life. However, multicellular organisms only emerged in the last 550 million years of more than three billion years of biological evolution and thus comprise a small fraction of total biological diversity. The bulk of biodiversity, both past and present, is microbial. We have only scratched the surface in our understanding of the microbial world, as most microorganisms cannot be readily grown in the laboratory and remain unknown to science. Ground-breaking, culture-independent molecular techniques developed over the past 30 years have opened the door to this so-called microbial dark matter with an accelerating momentum driven by exponential increases in sequencing capacity. We are on the verge of obtaining representative genomes across all life for the first time. However, historical use of morphology, biochemical properties, behavioral traits, and single-marker genes to infer organismal relationships mean that the existing highly incomplete tree is riddled with taxonomic errors. Concerted efforts are now needed to synthesize and integrate the burgeoning genomic data resources into a coherent universal tree of life and genome-based taxonomy. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. RAID: a comprehensive resource for human RNA-associated (RNA–RNA/RNA–protein) interaction

    Science.gov (United States)

    Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

    2014-01-01

    Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA–RNA/RNA–protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA–RNA interactions and 1619 RNA–protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA–RNA/RNA–protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA–RNA/RNA–protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

  6. Genome-scale biological models for industrial microbial systems.

    Science.gov (United States)

    Xu, Nan; Ye, Chao; Liu, Liming

    2018-04-01

    The primary aims and challenges associated with microbial fermentation include achieving faster cell growth, higher productivity, and more robust production processes. Genome-scale biological models, predicting the formation of an interaction among genetic materials, enzymes, and metabolites, constitute a systematic and comprehensive platform to analyze and optimize the microbial growth and production of biological products. Genome-scale biological models can help optimize microbial growth-associated traits by simulating biomass formation, predicting growth rates, and identifying the requirements for cell growth. With regard to microbial product biosynthesis, genome-scale biological models can be used to design product biosynthetic pathways, accelerate production efficiency, and reduce metabolic side effects, leading to improved production performance. The present review discusses the development of microbial genome-scale biological models since their emergence and emphasizes their pertinent application in improving industrial microbial fermentation of biological products.

  7. GapMap: Enabling Comprehensive Autism Resource Epidemiology.

    Science.gov (United States)

    Albert, Nikhila; Daniels, Jena; Schwartz, Jessey; Du, Michael; Wall, Dennis P

    2017-05-04

    For individuals with autism spectrum disorder (ASD), finding resources can be a lengthy and difficult process. The difficulty in obtaining global, fine-grained autism epidemiological data hinders researchers from quickly and efficiently studying large-scale correlations among ASD, environmental factors, and geographical and cultural factors. The objective of this study was to define resource load and resource availability for families affected by autism and subsequently create a platform to enable a more accurate representation of prevalence rates and resource epidemiology. We created a mobile application, GapMap, to collect locational, diagnostic, and resource use information from individuals with autism to compute accurate prevalence rates and better understand autism resource epidemiology. GapMap is hosted on AWS S3, running on a React and Redux front-end framework. The backend framework is comprised of an AWS API Gateway and Lambda Function setup, with secure and scalable end points for retrieving prevalence and resource data, and for submitting participant data. Measures of autism resource scarcity, including resource load, resource availability, and resource gaps were defined and preliminarily computed using simulated or scraped data. The average distance from an individual in the United States to the nearest diagnostic center is approximately 182 km (50 miles), with a standard deviation of 235 km (146 miles). The average distance from an individual with ASD to the nearest diagnostic center, however, is only 32 km (20 miles), suggesting that individuals who live closer to diagnostic services are more likely to be diagnosed. This study confirmed that individuals closer to diagnostic services are more likely to be diagnosed and proposes GapMap, a means to measure and enable the alleviation of increasingly overburdened diagnostic centers and resource-poor areas where parents are unable to diagnose their children as quickly and easily as needed. GapMap will

  8. Microbial Murders Crime Scene Investigation: An Active Team-Based Learning Project that Enhances Student Enthusiasm and Comprehension of Clinical Microbial Pathogens.

    Science.gov (United States)

    Steel, J Jordan

    2017-01-01

    Microbial disease knowledge is a critical component of microbiology courses and is beneficial for many students' future careers. Microbiology courses traditionally cover core concepts through lectures and labs, but specific instruction on microbial diseases varies greatly depending on the instructor and course. A common project involves students researching and presenting a disease to the class. This method alone is not very effective, and course evaluations have consistently indicated that students felt they lacked adequate disease knowledge; therefore, a more hands-on and interactive disease project was developed called Microbial Murders. For this team-based project, a group of students chooses a pathogen, researches the disease, creates a "mugshot" of the pathogen, and develops a corresponding "crime scene," where a hypothetical patient has died from the microbe. Each group gives a presentation introducing the microbial pathogen, signs/symptoms, treatments, and overall characteristics. The students then visit each other's crime scenes to match the pathogen with the correct crime scene by critically thinking through the clues. This project has shown remarkable success. Surveys indicate that 73% of students thought the project helped them understand the material and 84% said it was worth their time. Student participation, excitement, understanding, and application of microbial disease knowledge have increased and are evident through an increase in course evaluations and in student assessment scores. This project is easy to implement and can be used in a wide variety of biology, microbiology, or health classes for any level (middle school through college).

  9. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna; Kalathil, Shafeer; Ragab, Ala'a; Bian, Bin; AlQahtani, Manal Faisal; Pant, Deepak; Saikaly, Pascal

    2018-01-01

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  10. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna

    2018-04-30

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  11. How comprehensive are research studies investigating the efficacy of technology-enhanced learning resources in anatomy education? A systematic review.

    Science.gov (United States)

    Clunie, Lauren; Morris, Neil P; Joynes, Viktoria C T; Pickering, James D

    2018-05-06

    Anatomy education is at the forefront of integrating innovative technologies into its curricula. However, despite this rise in technology numerous authors have commented on the shortfall in efficacy studies to assess the impact such technology-enhanced learning (TEL) resources have on learning. To assess the range of evaluation approaches to TEL across anatomy education, a systematic review was conducted using MEDLINE, the Educational Resources Information Centre (ERIC), Scopus, and Google Scholar, with a total of 3,345 articles retrieved. Following the PRISMA method for reporting items, 153 articles were identified and reviewed against a published framework-the technology-enhanced learning evaluation model (TELEM). The model allowed published reports to be categorized according to evaluations at the level of (1) learner satisfaction, (2) learning gain, (3) learner impact, and (4) institutional impact. The results of this systematic review reveal that most evaluation studies into TEL within anatomy curricula were based on learner satisfaction, followed by module or course learning outcomes. Randomized controlled studies assessing learning gain with a specific TEL resource were in a minority, with no studies reporting a comprehensive assessment on the overall impact of introducing a specific TEL resource (e.g., return on investment). This systematic review has provided clear evidence that anatomy education is engaged in evaluating the impact of TEL resources on student education, although it remains at a level that fails to provide comprehensive causative evidence. Anat Sci Educ 11: 303-319. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  12. Astrobiology and Microbial Diversity Websites at MBL

    Science.gov (United States)

    Bahr, M.; Bordenstein, S. R.

    2006-12-01

    The NASA Astrobiology Institute (NAI) mission is to study the origin, evolution and future of life in the Universe. The MBL Astrobiology team explores the evolution and interaction of genomes of diverse organisms that play significant roles in environmental biology over evolutionary time scales. Communication about our research includes the personal contact of teacher workshops, and the development of web-based resources. Microbial Life Educational Resources (MLER) provides an expanding internet resource about the ecology, diversity and evolution for students, K-12 teachers, university faculty, and the general public. MLER includes websites, PowerPoint presentations, teaching activities, data sets, and other useful materials for creating or enhancing courses related to astrobiology. Our second site, micro*scope (http://microscope.mbl.edu), has images of microbes, classification schemes, descriptions of organisms, talks and other educational resources to improve awareness of the biodiversity of our microbial partners.

  13. An identification procedure for foodborne microbial hazards.

    NARCIS (Netherlands)

    Gerwen, van S.J.C.; Wit, de J.C.; Notermans, S.; Zwietering, M.H.

    1997-01-01

    A stepwise and interactive identification procedure for foodborne microbial hazards has been developed in which use is made of several levels of detail ranging from rough hazard identification to comprehensive hazard identification. This approach allows one to tackle the most obvious hazards first,

  14. What is microbial community ecology?

    Science.gov (United States)

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  15. Microbial Interactions With Dissolved Organic Matter Drive Carbon Dynamics and Community Succession

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wu

    2018-06-01

    Full Text Available Knowledge of dynamic interactions between natural organic matter (NOM and microbial communities is critical not only to delineate the routes of NOM degradation/transformation and carbon (C fluxes, but also to understand microbial community evolution and succession in ecosystems. Yet, these processes in subsurface environments are usually studied independently, and a comprehensive view has been elusive thus far. In this study, we fed sediment-derived dissolved organic matter (DOM to groundwater microbes and continually analyzed microbial transformation of DOM over a 50-day incubation. To document fine-scale changes in DOM chemistry, we applied high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS and soft X-ray absorption spectroscopy (sXAS. We also monitored the trajectory of microbial biomass, community structure and activity over this time period. Together, these analyses provided an unprecedented comprehensive view of interactions between sediment-derived DOM and indigenous subsurface groundwater microbes. Microbial decomposition of labile C in DOM was immediately evident from biomass increase and total organic carbon (TOC decrease. The change of microbial composition was closely related to DOM turnover: microbial community in early stages of incubation was influenced by relatively labile tannin- and protein-like compounds; while in later stages the community composition evolved to be most correlated with less labile lipid- and lignin-like compounds. These changes in microbial community structure and function, coupled with the contribution of microbial products to DOM pool affected the further transformation of DOM, culminating in stark changes to DOM composition over time. Our study demonstrates a distinct response of microbial communities to biotransformation of DOM, which improves our understanding of coupled interactions between sediment-derived DOM, microbial processes, and community structure in

  16. Activities and experience of the Federal Resource Center for Organizing Comprehensive Support for Children with ASD

    Directory of Open Access Journals (Sweden)

    Khaustov A.V.

    2016-12-01

    Full Text Available This article presents basic activities and experience of the Federal Resource Center for Organizing Comprehensive Sup¬port for Children with ASD of Moscow state university of psychology & education, amassed during 22 years of practice. Some statistic data on the center’s activity are displayed. Emphasis is done on multidirectional work and developing ways of interdepartmental and networking interaction for the sake of founding a system of complex support for autistic children in Russian Federation.

  17. MicroScope-an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data.

    Science.gov (United States)

    Médigue, Claudine; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Gautreau, Guillaume; Josso, Adrien; Lajus, Aurélie; Langlois, Jordan; Pereira, Hugo; Planel, Rémi; Roche, David; Rollin, Johan; Rouy, Zoe; Vallenet, David

    2017-09-12

    The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources. © The Author 2017. Published by Oxford University Press.

  18. A Web GIS Enabled Comprehensive Hydrologic Information System for Indian Water Resources Systems

    Science.gov (United States)

    Goyal, A.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Hydrological systems across the globe are getting increasingly water stressed with each passing season due to climate variability & snowballing water demand. Hence, to safeguard food, livelihood & economic security, it becomes imperative to employ scientific studies for holistic management of indispensable resource like water. However, hydrological study of any scale & purpose is heavily reliant on various spatio-temporal datasets which are not only difficult to discover/access but are also tough to use & manage. Besides, owing to diversity of water sector agencies & dearth of standard operating procedures, seamless information exchange is challenging for collaborators. Extensive research is being done worldwide to address these issues but regrettably not much has been done in developing countries like India. Therefore, the current study endeavours to develop a Hydrological Information System framework in a Web-GIS environment for empowering Indian water resources systems. The study attempts to harmonize the standards for metadata, terminology, symbology, versioning & archiving for effective generation, processing, dissemination & mining of data required for hydrological studies. Furthermore, modelers with humble computing resources at their disposal, can consume this standardized data in high performance simulation modelling using cloud computing within the developed Web-GIS framework. They can also integrate the inputs-outputs of different numerical models available on the platform and integrate their results for comprehensive analysis of the chosen hydrological system. Thus, the developed portal is an all-in-one framework that can facilitate decision makers, industry professionals & researchers in efficient water management.

  19. Modeling adaptation of carbon use efficiency in microbial communities

    Directory of Open Access Journals (Sweden)

    Steven D Allison

    2014-10-01

    Full Text Available In new microbial-biogeochemical models, microbial carbon use efficiency (CUE is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e. become less sensitive to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.

  20. DelPhi: a comprehensive suite for DelPhi software and associated resources

    Directory of Open Access Journals (Sweden)

    Li Lin

    2012-05-01

    Full Text Available Abstract Background Accurate modeling of electrostatic potential and corresponding energies becomes increasingly important for understanding properties of biological macromolecules and their complexes. However, this is not an easy task due to the irregular shape of biological entities and the presence of water and mobile ions. Results Here we report a comprehensive suite for the well-known Poisson-Boltzmann solver, DelPhi, enriched with additional features to facilitate DelPhi usage. The suite allows for easy download of both DelPhi executable files and source code along with a makefile for local installations. The users can obtain the DelPhi manual and parameter files required for the corresponding investigation. Non-experienced researchers can download examples containing all necessary data to carry out DelPhi runs on a set of selected examples illustrating various DelPhi features and demonstrating DelPhi’s accuracy against analytical solutions. Conclusions DelPhi suite offers not only the DelPhi executable and sources files, examples and parameter files, but also provides links to third party developed resources either utilizing DelPhi or providing plugins for DelPhi. In addition, the users and developers are offered a forum to share ideas, resolve issues, report bugs and seek help with respect to the DelPhi package. The resource is available free of charge for academic users from URL: http://compbio.clemson.edu/DelPhi.php.

  1. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  2. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  3. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  4. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    Science.gov (United States)

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as

  5. Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures

    NARCIS (Netherlands)

    Tamis, J.; Sorokin, D.Y.; Jiang, Y.; Van Loosdrecht, M.C.M.; Kleerebezem, R.

    2015-01-01

    Background Many waste streams have a relatively high vegetable oil content, which is a potential resource that should be recovered. Microbial storage compound production for the recovery of lipids from lipid-water emulsions with open (unsterilized) microbial cultures was investigated in a sequencing

  6. Crosslinking of milk proteins by microbial transglutaminase: Utilization in functional yogurt products

    DEFF Research Database (Denmark)

    Gharibzahedi, Seyed Mohammad Taghi; Chronakis, Ioannis S.

    2018-01-01

    Key modifying roles of microbial transglutaminase (MTGase) in the development of innovative probiotic and non-probiotic yogurts with improved functional and quality characteristics have been comprehensively reviewed. MTGase crosslinking reactions with milk proteins stabilize the three-dimensional......Key modifying roles of microbial transglutaminase (MTGase) in the development of innovative probiotic and non-probiotic yogurts with improved functional and quality characteristics have been comprehensively reviewed. MTGase crosslinking reactions with milk proteins stabilize the three......-dimensional structure of yogurt. Yogurts treated with MTGase showed decreased syneresis, increased water-holding capacity and viscosity, homogeneous structure, desired texture, and physicochemical high stability during storage time. The utilization of MTGase does not affect negatively the sensory attributes of yogurt...

  7. VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Monga, Isha; Thakur, Anamika; Kumar, Manoj

    2014-01-01

    Viral microRNAs (miRNAs) regulate gene expression of viral and/or host genes to benefit the virus. Hence, miRNAs play a key role in host-virus interactions and pathogenesis of viral diseases. Lately, miRNAs have also shown potential as important targets for the development of novel antiviral therapeutics. Although several miRNA and their target repositories are available for human and other organisms in literature, but a dedicated resource on viral miRNAs and their targets are lacking. Therefore, we have developed a comprehensive viral miRNA resource harboring information of 9133 entries in three subdatabases. This includes 1308 experimentally validated miRNA sequences with their isomiRs encoded by 44 viruses in viral miRNA ' VIRMIRNA: ' and 7283 of their target genes in ' VIRMIRTAR': . Additionally, there is information of 542 antiviral miRNAs encoded by the host against 24 viruses in antiviral miRNA ' AVIRMIR': . The web interface was developed using Linux-Apache-MySQL-PHP (LAMP) software bundle. User-friendly browse, search, advanced search and useful analysis tools are also provided on the web interface. VIRmiRNA is the first specialized resource of experimentally proven virus-encoded miRNAs and their associated targets. This database would enhance the understanding of viral/host gene regulation and may also prove beneficial in the development of antiviral therapeutics. Database URL: http://crdd.osdd.net/servers/virmirna. © The Author(s) 2014. Published by Oxford University Press.

  8. Microbial Food-Web Drivers in Tropical Reservoirs.

    Science.gov (United States)

    Domingues, Carolina Davila; da Silva, Lucia Helena Sampaio; Rangel, Luciana Machado; de Magalhães, Leonardo; de Melo Rocha, Adriana; Lobão, Lúcia Meirelles; Paiva, Rafael; Roland, Fábio; Sarmento, Hugo

    2017-04-01

    Element cycling in aquatic systems is driven chiefly by planktonic processes, and the structure of the planktonic food web determines the efficiency of carbon transfer through trophic levels. However, few studies have comprehensively evaluated all planktonic food-web components in tropical regions. The aim of this study was to unravel the top-down controls (metazooplankton community structure), bottom-up controls (resource availability), and hydrologic (water residence time) and physical (temperature) variables that affect different components of the microbial food web (MFW) carbon stock in tropical reservoirs, through structural equation models (SEM). We conducted a field study in four deep Brazilian reservoirs (Balbina, Tucuruí, Três Marias, and Funil) with different trophic states (oligo-, meso-, and eutrophic). We found evidence of a high contribution of the MFW (up to 50% of total planktonic carbon), especially in the less-eutrophic reservoirs (Balbina and Tucuruí). Bottom-up and top-down effects assessed through SEM indicated negative interactions between soluble reactive phosphorus and phototrophic picoplankton (PPP), dissolved inorganic nitrogen, and heterotrophic nanoflagellates (HNF). Copepods positively affected ciliates, and cladocerans positively affected heterotrophic bacteria (HB) and PPP. Higher copepod/cladoceran ratios and an indirect positive effect of copepods on HB might strengthen HB-HNF coupling. We also found low values for the degree of uncoupling (D) and a low HNF/HB ratio compared with literature data (mostly from temperate regions). This study demonstrates the importance of evaluating the whole size spectrum (including microbial compartments) of the different planktonic compartments, in order to capture the complex carbon dynamics of tropical aquatic ecosystems.

  9. Management of microbial food safety in Arab countries.

    Science.gov (United States)

    Kamleh, Rabih; Jurdi, Mey; Annous, Bassam A

    2012-11-01

    Microbial food safety remains a major economic and public health concern in Arab countries. Over the past several years, many of these countries have attempted to revise and upgrade food quality control and surveillance programs; however, these systems vary in scope and effectiveness. This review addresses the major reported foodborne outbreaks and multidrug resistance of pathogenic microorganisms isolated from food products. Major foodborne pathogens of concern included Brucella spp., Clostridium botulinum, fecal coliforms, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella, and Staphylococcus aureus. Measures for managing microbial food hazards based on a comprehensive risk analysis also are proposed.

  10. Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond.

    Science.gov (United States)

    Hiraoka, Satoshi; Yang, Ching-Chia; Iwasaki, Wataru

    2016-09-29

    Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.

  11. Agricultural management legacy affects microbial energetics, resource utilization and active bacterial community membership during 13C-glucose consumption

    Science.gov (United States)

    Helgason, B. L.; Levy-Booth, D.; Arcand, M. M.

    2017-12-01

    Over the long-term, differences in soil management can result in fundamental changes in biogeochemical cycling. The Alternative Cropping Systems (ACS) Study at Scott, SK, Canada (est. 1994) compares organic (ORG) vs. conventionally (CON) managed crop rotations in a loamy Typic Borall. Nitrogen (N) and phosphorus (P) deficiency in the ORG systems have limited crop growth and thus plant carbon (C) inputs for over two decades, ultimately resulting in a C deficiency which has further altered biogeochemical cycling. We conducted a short-term microcosm experiment using 13C-glucose stable isotope probing (SIP) of DNA to test whether ORG soils have greater microbial C use efficiency due to long term resource limitation. Glucose-utilizing populations were dominated by Proteobacteria and Actinobacteria, with differing species-level identities and physiological capacities between CON and ORG systems. Of the 13C-utilizing taxa, relative abundance of Proteobacteria was greater in CON while Actinobacteria (and notably Firmicutes) were more dominant in ORG soils. Using isothermal calorimetry, we measured a thermodynamic efficiency (ηeff) of 0.68, which was not significantly different between soils indicating that the metabolic cost of glucose utilization was similar in CON and ORG soils. In spite of this, differential abundance analysis of 13C-labelled OTUs revealed that ORG soils had distinct active bacterial populations that were positively correlated with ηeff, ηsoil (glucose energy retained in soil) and primed soil organic matter (pSOM). In contrast, differentially abundant OTUs in the CON soils were negatively correlated with measures of thermodynamic efficiency but positively correlated with glucose-derived heat and CO2 production as well as NO3- and PO4- availability. ORG bacterial communities may co-metabolize other resources (N and P) from SOM to meet their metabolic requirements during glucose utilization, while the active bacteria in the CON soils could access these

  12. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  13. Invasion in microbial communities: Role of community composition and assembly processes

    DEFF Research Database (Denmark)

    Kinnunen, Marta

    of microbial community assembly. Biotic factors include interactions between different microbial groups as well as the community response to alien species – invaders. Microbial invasions can have significant effects on the composition and functioning of resident communities. There is, however, lack......Microbes contribute to all biogeochemical cycles on earth and are responsible for key biological processes that support the survival of plants and animals. There is increased interest in controlling and managing microbial communities in different ecosystems in order to make targeted microbiological...... processes more effective. In order to manage microbial communities, it is essential to understand the factors that shape and influence microbial community composition. In addition to abiotic factors, such as environmental conditions and resource availability, biotic factors also shape the dynamics...

  14. Effects of resource chemistry on the composition and function of stream hyporheic biofilms.

    Science.gov (United States)

    Hall, E.K.; Besemer, K.; Kohl, L.; Preiler, C.; Reidel, K.; Schneider, T.; Wanek, W.; Battin, T.J.

    2012-01-01

    Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.

  15. Effects of resource chemistry on the composition and function of hyporheic stream biofilms

    Directory of Open Access Journals (Sweden)

    Edward eHall

    2012-02-01

    Full Text Available Stream ecosystems process large quantities of dissolved organic matter as it moves from the headwaters to the sea. Interstitial sediments in the hyporheic zone are centers of high biogeochemical reactivity due to their high levels of microbial biomass and activity. However, the interaction between organic matter and microbial dynamics of these systems remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown interstitial biofilms. Specifically, we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of beta-proteobacter origin. We use this model system to link microbial form, (community composition and proteome, with function, (enzyme activity, in an attempt to develop a better understanding of the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.

  16. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A [Sanford-Burnham Medical Research Institute; Novichkov, Pavel S [Lawrence Berkeley National Laboratory

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  17. Comprehensive entropy weight observability-controllability risk ...

    African Journals Online (AJOL)

    Decision making for water resource planning is often related to social, economic and environmental factors. There are various methods for making decisions about water resource planning alternatives and measures with various shortcomings. A comprehensive entropy weight observability-controllability risk analysis ...

  18. Effect of microbial enzyme allocation strategies on stoichiometry of soil organic matter (SOM) decomposition

    Science.gov (United States)

    Wutzler, Thomas

    2014-05-01

    We explored different strategies of soil microbial community to invest resources into extracellular enzymes by conceptual modelling. Similar to the EEZY model by Moorhead et al. (2012), microbial community can invest into two separate pools of enzymes that depolymerize two different SOM pools. We show that with assuming that a fixed fraction of substrate uptake is allocated to enzymes, the microbial dynamics decouples from decomposition dynamics. We propose an alternative formulation where investment into enzymes is proportional to microbial biomass. Next, we show that the strategy of optimizing stoichiometry of decomposition flux according to microbial biomass stoichiometry yield less microbial growth than the strategy of optimizing revenue of the currently limiting element. However, both strategies result in better usage of the resources, i.e. less C overflow or N mineralization, than the strategy of equal allocation to both enzymes. Further, we discuss effects of those strategies on decomposition of SOM and priming at different time scales and discuss several abstractions from the detailed model dynamics for usage in larger scale models.

  19. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  20. Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice.

    Science.gov (United States)

    Saleem, Muhammad; Moe, Luke A

    2014-10-01

    Multitrophic level microbial loop interactions mediated by protist predators, bacteria, and viruses drive eco- and agro-biotechnological processes such as bioremediation, wastewater treatment, plant growth promotion, and ecosystem functioning. To what extent these microbial interactions are context-dependent in performing biotechnological and ecosystem processes remains largely unstudied. Theory-driven research may advance the understanding of eco-evolutionary processes underlying the patterns and functioning of microbial interactions for successful development of microbe-based biotechnologies for real world applications. This could also be a great avenue to test the validity or limitations of ecology theory for managing diverse microbial resources in an era of altering microbial niches, multitrophic interactions, and microbial diversity loss caused by climate and land use changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Connecting the dots: could microbial translocation explain commonly reported symptoms in HIV disease?

    Science.gov (United States)

    Wilson, Natalie L; Vance, David E; Moneyham, Linda D; Raper, James L; Mugavero, Michael J; Heath, Sonya L; Kempf, Mirjam-Colette

    2014-01-01

    Microbial translocation within the context of HIV disease has been described as one of the contributing causes of inflammation and disease progression in HIV infection. HIV-associated symptoms have been related to inflammatory markers and sCD14, a surrogate marker for microbial translocation, suggesting a plausible link between microbial translocation and symptom burden in HIV disease. Similar pathophysiological responses and symptoms have been reported in inflammatory bowel disease. We provide a comprehensive review of microbial translocation, HIV-associated symptoms, and symptoms connected with inflammation. We identify studies showing a relationship among inflammatory markers, sCD14, and symptoms reported in HIV disease. A conceptual framework and rationale to investigate the link between microbial translocation and symptoms is presented. The impact of inflammation on symptoms supports recommendations to reduce inflammation as part of HIV symptom management. Research in reducing microbial translocation-induced inflammation is limited, but needed, to further promote positive health outcomes among HIV-infected patients. Published by Elsevier Inc.

  3. Microbial Synthesis of the Forskolin Precursor Manoyl Oxide in an Enantiomerically Pure Form

    DEFF Research Database (Denmark)

    Nielsen, Morten Thrane; Ranberg, Johan Andersen; Christensen, Ulla

    2014-01-01

    to cultivate. This may result in insufficient and unreliable supply leading to fluctuating and high sales prices. Hence, substantial efforts and resources have been invested in developing sustainable and reliable supply routes based on microbial cell factories. Here, we report microbial synthesis of (13R...

  4. Exploring ancient microbial community assemblages by creating complex lipid biomarker profiles for stromatolites and microbial mats in Hamelin Pool, Shark Bay, Australia

    Science.gov (United States)

    Myers, E.; Summons, R. E.; Schubotz, F.; Matys, E. D.

    2015-12-01

    Stromatolites that are biogenic in origin, a characteristic that can be determined by the coexistence of microbial mats (active microbial communities) and stromatolites (lithified structures) like in Hamelin Pool, comprise one of the best modern analogs to ancient microbial community assemblages. Comprehensive lipid biomarker profiles that include lipids of varying persistence in the rock record can help determine how previously living microbial communities are represented in lithified stromatolites. To create these profiles, the samples analyzed included non-lithified smooth, pustular, and colloform microbial mats, as well as smooth and colloform stromatolites. Select samples were separated into upper and lower layers of 5cm depth each. Intact polar lipids, glycerol dialkyl glycerol tetraethers, and bacteriohopanepolyols were analyzed via liquid chromatography-mass spectrometry (LC-MS) coupled to a Quadropole Time-of-Flight (QTOF) mass spectrometer; additionally, fatty acids from each sample were analyzed using gas chromatography-mass spectrometry (GC-MS) to prove consistent signatures with those determined by Allen et al. in 2010 for similar microbial mat samples. In accordance with those findings, 2-methylhopanoids were detected, as well as limited signals from higher (vascular) plants, the latter of which suggests terrestrial inputs, potentially from runoff. The rarely detected presence of 3-methylhopanoids appears in a significant portion of the samples, though further isolations of the molecule are needed to confirm. While all lipid profiles were relatively similar, certain differences in relative composition are likely attributable to morphological differences of the mats, some of which allow deeper oxygen and/or sunlight penetration, which influence the microbial community. However, overall similarities of transient and persistent lipids suggest that the microbial communities of both the non-lithified microbial mats and stromatolites are similar.

  5. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    Science.gov (United States)

    Boundy-Mills, Kyria; Hess, Matthias; Bennett, A. Rick; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A.; Inderbitzin, Patrik; Sitepu, Irnayuli R.; Torok, Tamas; Brown, Daniel R.; Cho, Juliana; Wertz, John E.; Mukherjee, Supratim; Cady, Sherry L.

    2015-01-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is “to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind.” Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections. PMID:26092453

  6. Pyrosequencing analysis yields comprehensive assessment of microbial communities in pilot-scale two-stage membrane biofilm reactors.

    Science.gov (United States)

    Ontiveros-Valencia, Aura; Tang, Youneng; Zhao, He-Ping; Friese, David; Overstreet, Ryan; Smith, Jennifer; Evans, Patrick; Rittmann, Bruce E; Krajmalnik-Brown, Rosa

    2014-07-01

    We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO3(-)) and perchlorate (ClO4(-)) in contaminated groundwater. The groundwater also contained oxygen (O2) and sulfate (SO4(2-)), which became important electron sinks that affected the NO3(-) and ClO4(-) removal rates. Using pyrosequencing, we elucidated how important phylotypes of each "primary" microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO4(2-) reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the "primary" groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.

  7. Ranking Medical Terms to Support Expansion of Lay Language Resources for Patient Comprehension of Electronic Health Record Notes: Adapted Distant Supervision Approach.

    Science.gov (United States)

    Chen, Jinying; Jagannatha, Abhyuday N; Fodeh, Samah J; Yu, Hong

    2017-10-31

    Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first. We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation-that is, creating lay definitions for these terms. Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms (ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038 candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including standard supervised learning, on the evaluation data. The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best average precision, 0.819, on the evaluation set when using only 100 target

  8. Experimental demonstration of an Allee effect in microbial populations.

    Science.gov (United States)

    Kaul, RajReni B; Kramer, Andrew M; Dobbs, Fred C; Drake, John M

    2016-04-01

    Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: 'Everything is everywhere, but the environment selects'. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml(-1)under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. © 2016 The Author(s).

  9. Microbial electricity generation enhances decabromodiphenyl ether (BDE-209 degradation.

    Directory of Open Access Journals (Sweden)

    Yonggang Yang

    Full Text Available Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs, it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e.g., BDE-209 would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC and open-circuit microbial fuel cell (o-MFC systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes.

  10. Enterprise Resource Planning Software in the Human Resource Classroom

    Science.gov (United States)

    Bedell, Michael D.; Floyd, Barry D.; Nicols, Kay McGlashan; Ellis, Rebecca

    2007-01-01

    The relatively recent development of comprehensive human resource information systems (HRIS) software has led to a large demand for technologically literate human resource (HR) professionals. For the college student who is about to begin the search for that first postcollege job, the need to develop technology literacy is even more necessary. To…

  11. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation.

    Directory of Open Access Journals (Sweden)

    Stéphane Uroz

    Full Text Available In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France. The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource

  12. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    Science.gov (United States)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  13. Drivers of phosphorus uptake by barley following secondary resource application

    Directory of Open Access Journals (Sweden)

    Eva eBrod

    2016-05-01

    Full Text Available Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake are still poorly understood. Using radioactive labelling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP and an unfertilized control (NoP in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil and pH 6.2 (limed soil. In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥ fish sludge ≥ wood ash ≥ meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare. The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilisation and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers, or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers.

  14. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    Science.gov (United States)

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  15. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  16. 50 CFR 81.14 - Comprehensive plan alternative.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Comprehensive plan alternative. 81.14 Section 81.14 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... alternative. In the event that the State elects to operate under a comprehensive fish and wildlife resource...

  17. Feedbacks Between Soil Structure and Microbial Activities in Soil

    Science.gov (United States)

    Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.

    2017-12-01

    Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate

  18. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Blin, Kai; Medema, Marnix H.; Kottmann, Renzo

    2017-01-01

    Secondary metabolites produced by microorganisms are the main source of bioactive compounds that are in use as antimicrobial and anticancer drugs, fungicides, herbicides and pesticides. In the last decade, the increasing availability of microbial genomes has established genome mining as a very...

  19. Novel Microbial Electrochemical Technologies and Microorganisms for Power Generation and Desalination

    KAUST Repository

    Chehab, Noura A.

    2014-12-01

    Global increases in water demand and decreases in both the quantity and quality of fresh water resources have served as the major driving forces to develop sustainable use of water resources. One viable alternative is to explore non-traditional (impaired quality) water sources such as wastewater and seawater. The current paradigm for wastewater treatment is based on technologies that are energy intensive and fail to recover the potential resources (water and energy) in wastewater. Also, conventional desalination technologies like reverse osmosis (RO) are energy intensive. Therefore, there is a need for the development of sustainable wastewater treatment and desalination technologies for practical applications. Processes based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs) hold promise for the treatment of wastewater with recovery of the inherent energy, and MDCs could be used for both desalination of seawater and energy recovery. METs use anaerobic bacteria, referred to as exoelectrogens, that are capable of transferring electrons exogenously to convert soluble organic matter present in the wastewater directly into an electrical current to produce electrical power (MFC and MDC) or biogas (MEC). In my dissertation, I investigated the three types of METs mentioned above to: 1) have a better insight on the effect of 4 oxygen intrusion on the microbial community structure and performance of air-cathode MFCs; 2) improve the desalination efficiency of air-cathode MDCs using ion exchange resins (IXRs); and 3) enrich for extremophilic exoelectrogens from the Red Sea brine pool using MECs. The findings from these studies can shape further research aimed at developing more efficient air-cathode MFCs for practical applications, a more efficient integrated IXRMDC configuration that can be used as a pre-treatment to RO, and exploring extreme environments as a

  20. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    Science.gov (United States)

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  1. MICROBIAL CONSORTIA ENGINEERING FOR CELLULAR FACTORIES: IN VITRO TO IN SILICO SYSTEMS

    Directory of Open Access Journals (Sweden)

    Hans C Bernstein

    2012-10-01

    Full Text Available This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery.

  2. Down Under – Aspects of Microbial Fuel Cell’s sewer implementation

    OpenAIRE

    Andrich, Jonas Maximilian Sven

    2017-01-01

    Increasing energy demand and simultaneous depletion of raw materials requires us to use existing resources more wisely. Microbial Fuel Cells (MFCs) recover energy from waste water while clearing it. The sewage system with its million-kilometer-length is a highly interesting field for its application. The present work is therefore dedicated to aspects of Microbial Fuel Cells’ sewer implementation. Firstly, the wastewater infrastructure was evaluated with respect to suitable implementation s...

  3. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    production. Research should focus on the actions of enzymes and enzyme complexes within the context of the whole cell, how they’re regulated, where they’re placed, and what they interact with. Better modeling tools are needed to facilitate progress in microbial energy transformations. Models of metabolic dynamics, including levels of reductants and regulation of electron flow need to be improved. Global techno-economic models of microbial energy conversion systems, which seek to simultaneously describe the resource flows into and out of a system as well as its economics, are needed and should be made publicly available on the internet. Finally, more emphasis needs to be placed on multidisciplinary education and training and on cooperation between disciplines in order to make the most of microbial energy conversion technologies and to meet the research needs of the future.

  4. 42 CFR 441.106 - Comprehensive mental health program.

    Science.gov (United States)

    2010-10-01

    ... health and public welfare resources; including— (i) Community mental health centers; (ii) Nursing homes... 42 Public Health 4 2010-10-01 2010-10-01 false Comprehensive mental health program. 441.106... Comprehensive mental health program. (a) If the plan includes services in public institutions for mental...

  5. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role

  6. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    OpenAIRE

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, a...

  7. QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment.

    Science.gov (United States)

    Schijven, Jack; Derx, Julia; de Roda Husman, Ana Maria; Blaschke, Alfred Paul; Farnleitner, Andreas H

    2015-09-01

    Given the complex hydrologic dynamics of water catchments and conflicts between nature protection and public water supply, models may help to understand catchment dynamics and evaluate contamination scenarios and may support best environmental practices and water safety management. A catchment model can be an educative tool for investigating water quality and for communication between parties with different interests in the catchment. This article introduces an interactive computational tool, QMRAcatch, that was developed to simulate concentrations in water resources of , a human-associated microbial source tracking (MST) marker, enterovirus, norovirus, , and as target microorganisms and viruses (TMVs). The model domain encompasses a main river with wastewater discharges and a floodplain with a floodplain river. Diffuse agricultural sources of TMVs that discharge into the main river are not included in this stage of development. The floodplain river is fed by the main river and may flood the plain. Discharged TMVs in the river are subject to dilution and temperature-dependent degradation. River travel times are calculated using the Manning-Gauckler-Strickler formula. Fecal deposits from wildlife, birds, and visitors in the floodplain are resuspended in flood water, runoff to the floodplain river, or infiltrate groundwater. Fecal indicator and MST marker data facilitate calibration. Infection risks from exposure to the pathogenic TMVs by swimming or drinking water consumption are calculated, and the required pathogen removal by treatment to meet a health-based quality target can be determined. Applicability of QMRAcatch is demonstrated by calibrating the tool for a study site at the River Danube near Vienna, Austria, using field TMV data, including a sensitivity analysis and evaluation of the model outcomes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Perspectives of microbial oils for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang; Du Wei; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-10-15

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed. (orig.)

  9. Key Concepts in Microbial Oceanography

    Science.gov (United States)

    Bruno, B. C.; Achilles, K.; Walker, G.; Weersing, K.; Team, A

    2008-12-01

    The Center for Microbial Oceanography: Research and Education (C-MORE) is a multi-institution Science and Technology Center, established by the National Science Foundation in 2006. C-MORE's research mission is to facilitate a more comprehensive understanding of the diverse assemblages of microorganisms in the sea, ranging from the genetic basis of marine microbial biogeochemistry including the metabolic regulation and environmental controls of gene expression, to the processes that underpin the fluxes of carbon, related bioelements, and energy in the marine environment. The C-MORE education and outreach program is focused on increasing scientific literacy in microbial oceanography among students, educators, and the general public. A first step toward this goal is defining the key concepts that constitute microbial oceanography. After lengthy discussions with scientists and educators, both within and outside C-MORE, we have arrived at six key concepts: 1) Marine microbes are very small and have been around for a long time; 2) Life on Earth could not exist without microbes; 3) Most marine microbes are beneficial; 4) Microbes are everywhere: they are extremely abundant and diverse; 5) Microbes significantly impact our global climate; and 6) There are new discoveries every day in the field of microbial oceanography. A C-MORE-produced brochure on these six key concepts will be distributed at the meeting. Advanced copies may be requested by email or downloaded from the C-MORE web site(http://cmore.soest.hawaii.edu/downloads/MO_key_concepts_hi-res.pdf). This brochure also includes information on career pathways in microbial oceanography, with the aim of broadening participation in the field. C-MORE is eager to work in partnership to incorporate these key concepts into other science literacy publications, particularly those involving ocean and climate literacy. We thank the following contributors and reviewers: P Chisholm, A Dolberry, and A Thompson (MIT); N Lawrence

  10. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng; Bougouffa, Salim; Wang, Yong; Lee, On On; Yang, Jiangke; Chan, Colin; Song, Xingyu; Qian, Pei-Yuan

    2014-01-01

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  11. Toward understanding the dynamics of microbial communities in an estuarine system.

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    Full Text Available Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE. The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  12. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng

    2014-04-14

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  13. Key Technology Research on the Efficient Exploitation and Comprehensive Utilization of Resources in the Deep Jinchuan Nickel Deposit

    Directory of Open Access Journals (Sweden)

    Zhiqiang Yang

    2017-08-01

    Full Text Available To understand the resource features and geology in the deep Jinchuan nickel deposit, difficult geological conditions were systematically analyzed, including high stress, fragmentized ore rock, prevalent deformation, difficult tunnel support, complicated rock mechanics, and low mining recovery. An integrated technology package was built for safe, efficient, and continuous mining in a deep, massive, and complex nickel and cobalt mine. This was done by the invention of a large-area continuous mining method with honeycomb drives; the establishment of ground control theory and a technology package for high-stress and fragmented ore rock; and the development of a new type of backfilling cement material, along with a deep backfilling technology that comprises the pipeline transport of high-density slurry with coarse aggregates. In this way, good solutions to existing problems were found to permit the efficient exploitation and comprehensive utilization of the resources in the deep Jinchuan nickel mine. In addition, a technological demonstration in an underground mine was performed using the cemented undercut-and-fill mining method for stressful, fragmented, and rheological rock.

  14. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    Science.gov (United States)

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p urban soils influenced the nature and activities of the microbial communities.

  15. Leveraging long read sequencing from a single individual to provide a comprehensive resource for benchmarking variant calling methods.

    Science.gov (United States)

    Mu, John C; Tootoonchi Afshar, Pegah; Mohiyuddin, Marghoob; Chen, Xi; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B; Wong, Wing H; Lam, Hugo Y K

    2015-09-28

    A high-confidence, comprehensive human variant set is critical in assessing accuracy of sequencing algorithms, which are crucial in precision medicine based on high-throughput sequencing. Although recent works have attempted to provide such a resource, they still do not encompass all major types of variants including structural variants (SVs). Thus, we leveraged the massive high-quality Sanger sequences from the HuRef genome to construct by far the most comprehensive gold set of a single individual, which was cross validated with deep Illumina sequencing, population datasets, and well-established algorithms. It was a necessary effort to completely reanalyze the HuRef genome as its previously published variants were mostly reported five years ago, suffering from compatibility, organization, and accuracy issues that prevent their direct use in benchmarking. Our extensive analysis and validation resulted in a gold set with high specificity and sensitivity. In contrast to the current gold sets of the NA12878 or HS1011 genomes, our gold set is the first that includes small variants, deletion SVs and insertion SVs up to a hundred thousand base-pairs. We demonstrate the utility of our HuRef gold set to benchmark several published SV detection tools.

  16. Fundamental Reform of Payment for Adult Primary Care: Comprehensive Payment for Comprehensive Care

    Science.gov (United States)

    Berenson, Robert A.; Schoenbaum, Stephen C.; Gardner, Laurence B.

    2007-01-01

    Primary care is essential to the effective and efficient functioning of health care delivery systems, yet there is an impending crisis in the field due in part to a dysfunctional payment system. We present a fundamentally new model of payment for primary care, replacing encounter-based imbursement with comprehensive payment for comprehensive care. Unlike former iterations of primary care capitation (which simply bundled inadequate fee-for-service payments), our comprehensive payment model represents new investment in adult primary care, with substantial increases in payment over current levels. The comprehensive payment is directed to practices to include support for the modern systems and teams essential to the delivery of comprehensive, coordinated care. Income to primary physicians is increased commensurate with the high level of responsibility expected. To ensure optimal allocation of resources and the rewarding of desired outcomes, the comprehensive payment is needs/risk-adjusted and performance-based. Our model establishes a new social contract with the primary care community, substantially increasing payment in return for achieving important societal health system goals, including improved accessibility, quality, safety, and efficiency. Attainment of these goals should help offset and justify the costs of the investment. Field tests of this and other new models of payment for primary care are urgently needed. PMID:17356977

  17. Metagenomes from two microbial consortia associated with Santa Barbara seep oil.

    Science.gov (United States)

    Hawley, Erik R; Malfatti, Stephanie A; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Foster, Brian; Copeland, Alexander; del Rio, Tijana Glavina; Pati, Amrita; Jansson, Janet R; Gilbert, Jack A; Tringe, Susannah Green; Lorenson, Thomas D; Hess, Matthias

    2014-12-01

    The metagenomes from two microbial consortia associated with natural oils seeping into the Pacific Ocean offshore the coast of Santa Barbara (California, USA) were determined to complement already existing metagenomes generated from microbial communities associated with hydrocarbons that pollute the marine ecosystem. This genomics resource article is the first of two publications reporting a total of four new metagenomes from oils that seep into the Santa Barbara Channel. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities.

    Science.gov (United States)

    Ravindran, Rajeev; Jaiswal, Amit Kumar

    2016-01-01

    Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3 billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fungal degradation of pesticides - construction of microbial consortia for bioremediation

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea

    in groundwater contamination. New technologies are therefore needed for cleaning up contaminated soil and water resources. This PhD was part of the project entitled Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) where the overall aim is to develop new technologies for bioremediation...... of pesticide contaminated soil and water. The objectives of this PhD were to investigate fungal degradation of pesticides and following to construct microbial consortia for bioremediation. In Manuscript I the fungal degradation of the phenylurea herbicide diuron was studied. Isolates of soil fungi of the genus...... slightly enhanced BAM distribution. From this work it is evident that the fungal-bacterial consortium is capable of enhancing BAM-degradation in unsaturated systems, and may therefore be a promising application for soil bioremediation. In Manuscript III two- and three-member consortia were constructed...

  20. Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling

    Science.gov (United States)

    Corman, J. R.; Poret-Peterson, A. T.; Elser, J. J.

    2014-12-01

    Lithifying microbial communities ("microbialites") have left their signature on Earth's rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (Pbacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.

  1. Microbial profiling of dental plaque from mechanically ventilated patients.

    Science.gov (United States)

    Sands, Kirsty M; Twigg, Joshua A; Lewis, Michael A O; Wise, Matt P; Marchesi, Julian R; Smith, Ann; Wilson, Melanie J; Williams, David W

    2016-02-01

    Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97% gene similarity cut-off for bacterial species level identifications. A significant 'microbial shift' occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection.

  2. Unequal distribution of health human resource in mainland China: what are the determinants from a comprehensive perspective?

    Science.gov (United States)

    Li, Dan; Zhou, Zhongliang; Si, Yafei; Xu, Yongjian; Shen, Chi; Wang, Yiyang; Wang, Xiao

    2018-02-27

    of health human resource. The tough issue of HHR inequality should be addressed by comprehensive measures from a multidisciplinary perspective.

  3. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Science.gov (United States)

    Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.

    2018-01-01

    ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661

  4. The Universal Protein Resource (UniProt)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data. The UniProt databases are the UniProt Knowledgebase...

  5. Microbial syntrophy: interaction for the common good.

    Science.gov (United States)

    Morris, Brandon E L; Henneberger, Ruth; Huber, Harald; Moissl-Eichinger, Christine

    2013-05-01

    Classical definitions of syntrophy focus on a process, performed through metabolic interaction between dependent microbial partners, such as the degradation of complex organic compounds under anoxic conditions. However, examples from past and current scientific discoveries suggest that a new, simple but wider definition is necessary to cover all aspects of microbial syntrophy. We suggest the term 'obligately mutualistic metabolism', which still focuses on microbial metabolic cooperation but also includes an ecological aspect: the benefit for both partners. By the combined metabolic activity of microorganisms, endergonic reactions can become exergonic through the efficient removal of products and therefore enable a microbial community to survive with minimal energy resources. Here, we explain the principles of classical and non-classical syntrophy and illustrate the concepts with various examples. We present biochemical fundamentals that allow microorganism to survive under a range of environmental conditions and to drive important biogeochemical processes. Novel technologies have contributed to the understanding of syntrophic relationships in cultured and uncultured systems. Recent research highlights that obligately mutualistic metabolism is not limited to certain metabolic pathways nor to certain environments or microorganisms. This beneficial microbial interaction is not restricted to the transfer of reducing agents such as hydrogen or formate, but can also involve the exchange of organic, sulfurous- and nitrogenous compounds or the removal of toxic compounds. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Differential sensitivity of total and active soil microbial communities to drought and forest management.

    Science.gov (United States)

    Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico

    2017-10-01

    Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial

  7. The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology.

    Science.gov (United States)

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.

  8. Methods in gut microbial ecology for ruminants

    International Nuclear Information System (INIS)

    Makkar, H.P.S.; McSweeney, C.S.

    2005-01-01

    This book presents a comprehensive up-to-date account of the methodologies and protocols for conventional and modern molecular techniques that are currently in use for studying the gut microbial ecology of ruminants. Each chapter has been contributed by experts in the field and methods have been presented in a recipe-like format designed for direct practical use in the laboratory and also to provide insight into the most appropriate techniques, their applications and the type of information that could be expected. The techniques and procedures described are also relevant and adaptable to other gastrointestinal ecosystems and the microbiology of anaerobic environments in general. This manual will 'demystify' the methods in molecular microbial ecology for readers who are novice in the field but are excited by the prospects of this technology. It would also be invaluable for the experienced workers striving for giving new dimension to their research - expanding the work in other fields and initiating cross-cutting activities

  9. Emerging infectious diseases: a guide to diseases, causative agents, and surveillance

    National Research Council Canada - National Science Library

    Beltz, Lisa A

    2011-01-01

    "This important resource offers a comprehensive introduction to emerging and reemerging infectious disease, including the underlying mechanisms of microbial emergence, the technology used to detect...

  10. Reducing assembly complexity of microbial genomes with single-molecule sequencing

    Science.gov (United States)

    Genome assembly algorithms cannot fully reconstruct microbial chromosomes from the DNA reads output by first or second-generation sequencing instruments. Therefore, most genomes are left unfinished due to the significant resources required to manually close gaps left in the draft assemblies. Single-...

  11. Global resource sharing

    CERN Document Server

    Frederiksen, Linda; Nance, Heidi

    2011-01-01

    Written from a global perspective, this book reviews sharing of library resources on a global scale. With expanded discovery tools and massive digitization projects, the rich and extensive holdings of the world's libraries are more visible now than at any time in the past. Advanced communication and transmission technologies, along with improved international standards, present a means for the sharing of library resources around the globe. Despite these significant improvements, a number of challenges remain. Global Resource Sharing provides librarians and library managers with a comprehensive

  12. Microbial flora analysis for the degradation of beta-cypermethrin.

    Science.gov (United States)

    Qi, Zhang; Wei, Zhang

    2017-03-01

    In the Xinjiang region of Eurasia, sustained long-term and continuous cropping of cotton over a wide expanse of land is practiced, which requires application of high levels of pyrethroid and other classes of pesticides-resulting in high levels of pesticide residues in the soil. In this study, soil samples were collected from areas of long-term continuous cotton crops with the aim of obtaining microbial resources applicable for remediation of pyrethroid pesticide contamination suitable for the soil type and climate of that area. Soil samples were first used to culture microbial flora capable of degrading beta-cypermethrin using an enrichment culture method. Structural changes and ultimate microbial floral composition during enrichment were analyzed by high-throughput sequencing. Four strains capable of degrading beta-cypermethrin were isolated and preliminarily classified. Finally, comparative rates and speeds of degradation of beta-cypermethrin between relevant microbial flora and single strains were determined. After continuous subculture for 3 weeks, soil sample microbial flora formed a new type of microbial flora by rapid succession, which showed stable growth by utilizing beta-cypermethrin as the sole carbon source (GXzq). This microbial flora mainly consisted of Pseudomonas, Hyphomicrobium, Dokdonella, and Methyloversatilis. Analysis of the microbial flora also permitted separation of four additional strains; i.e., GXZQ4, GXZQ6, GXZQ7, and GXZQ13 that, respectively, belonged to Streptomyces, Enterobacter, Streptomyces, and Pseudomonas. Under culture conditions of 37 °C and 180 rpm, the degradation rate of beta-cypermethrin by GXzq was as high as 89.84% within 96 h, which exceeded that achieved by the single strains GXZQ4, GXZQ6, GXZQ7, and GXZQ13 and their derived microbial flora GXh.

  13. Water resources assessment and prediction in China

    Directory of Open Access Journals (Sweden)

    W. Guangsheng

    2016-10-01

    Full Text Available Water resources assessment in China, can be classified into three groups: (i comprehensive water resources assessment, (ii annual water resources assessment, and (iii industrial project water resources assessment. Comprehensive water resources assessment is the conventional assessment where the frequency distribution of water resources in basins or provincial regions are analyzed. For the annual water resources assessment, water resources of the last year in basins or provincial regions are usually assessed. For the industrial project water resources assessment, the water resources situation before the construction of industrial project has to be assessed. To address the climate and environmental changes, hydrological and statistical models are widely applied for studies on assessing water resources changes. For the water resources prediction in China usually the monthly runoff prediction is used. In most low flow seasons, the flow recession curve is commonly used as prediction method. In the humid regions, the rainfall-runoff ensemble prediction (ESP has been widely applied for the monthly runoff prediction. The conditional probability method for the monthly runoff prediction was also applied to assess next month runoff probability under a fixed initial condition.

  14. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  15. MetaMetaDB: a database and analytic system for investigating microbial habitability.

    Directory of Open Access Journals (Sweden)

    Ching-chia Yang

    Full Text Available MetaMetaDB (http://mmdb.aori.u-tokyo.ac.jp/ is a database and analytic system for investigating microbial habitability, i.e., how a prokaryotic group can inhabit different environments. The interaction between prokaryotes and the environment is a key issue in microbiology because distinct prokaryotic communities maintain distinct ecosystems. Because 16S ribosomal RNA (rRNA sequences play pivotal roles in identifying prokaryotic species, a system that comprehensively links diverse environments to 16S rRNA sequences of the inhabitant prokaryotes is necessary for the systematic understanding of the microbial habitability. However, existing databases are biased to culturable prokaryotes and exhibit limitations in the comprehensiveness of the data because most prokaryotes are unculturable. Recently, metagenomic and 16S rRNA amplicon sequencing approaches have generated abundant 16S rRNA sequence data that encompass unculturable prokaryotes across diverse environments; however, these data are usually buried in large databases and are difficult to access. In this study, we developed MetaMetaDB (Meta-Metagenomic DataBase, which comprehensively and compactly covers 16S rRNA sequences retrieved from public datasets. Using MetaMetaDB, users can quickly generate hypotheses regarding the types of environments a prokaryotic group may be adapted to. We anticipate that MetaMetaDB will improve our understanding of the diversity and evolution of prokaryotes.

  16. MetaMetaDB: a database and analytic system for investigating microbial habitability.

    Science.gov (United States)

    Yang, Ching-chia; Iwasaki, Wataru

    2014-01-01

    MetaMetaDB (http://mmdb.aori.u-tokyo.ac.jp/) is a database and analytic system for investigating microbial habitability, i.e., how a prokaryotic group can inhabit different environments. The interaction between prokaryotes and the environment is a key issue in microbiology because distinct prokaryotic communities maintain distinct ecosystems. Because 16S ribosomal RNA (rRNA) sequences play pivotal roles in identifying prokaryotic species, a system that comprehensively links diverse environments to 16S rRNA sequences of the inhabitant prokaryotes is necessary for the systematic understanding of the microbial habitability. However, existing databases are biased to culturable prokaryotes and exhibit limitations in the comprehensiveness of the data because most prokaryotes are unculturable. Recently, metagenomic and 16S rRNA amplicon sequencing approaches have generated abundant 16S rRNA sequence data that encompass unculturable prokaryotes across diverse environments; however, these data are usually buried in large databases and are difficult to access. In this study, we developed MetaMetaDB (Meta-Metagenomic DataBase), which comprehensively and compactly covers 16S rRNA sequences retrieved from public datasets. Using MetaMetaDB, users can quickly generate hypotheses regarding the types of environments a prokaryotic group may be adapted to. We anticipate that MetaMetaDB will improve our understanding of the diversity and evolution of prokaryotes.

  17. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing.

    Science.gov (United States)

    Hou, Weiguo; Wang, Shang; Dong, Hailiang; Jiang, Hongchen; Briggs, Brandon R; Peacock, Joseph P; Huang, Qiuyuan; Huang, Liuqin; Wu, Geng; Zhi, Xiaoyang; Li, Wenjun; Dodsworth, Jeremy A; Hedlund, Brian P; Zhang, Chuanlun; Hartnett, Hilairy E; Dijkstra, Paul; Hungate, Bruce A

    2013-01-01

    The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21-123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5-2.6), high temperature (85.1-89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6-4.8) and cooler temperature (55.1-64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2-9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii", and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of

  18. Microbial links and element flows in nested detrital food-webs.

    NARCIS (Netherlands)

    Pokarzhevskii, A.D.; van Straalen, N.M.; Zaboev, D.P.; Zaitsev, A.S.

    2003-01-01

    Microbial links are obligate in any food chain in soil, because detritivorous animals derive essential amino acids and other resources from microorganisms. To degrade recalcitrant substrates such as cellulose, soil animals do not produce their own cellulase, but they use cellulases derived from gut

  19. Microbial ecology of the Agaricus bisporus mushroom cropping process.

    Science.gov (United States)

    McGee, Conor F

    2018-02-01

    Agaricus bisporus is the most widely cultivated mushroom species in the world. Cultivation is commenced by inoculating beds of semi-pasteurised composted organic substrate with a pure spawn of A. bisporus. The A. bisporus mycelium subsequently colonises the composted substrate by degrading the organic material to release nutrients. A layer of peat, often called "casing soil", is laid upon the surface of the composted substrate to induce the development of the mushroom crop and maintain compost environmental conditions. Extensive research has been conducted investigating the biochemistry and genetics of A. bisporus throughout the cultivation process; however, little is currently known about the wider microbial ecology that co-inhabits the composted substrate and casing layers. The compost and casing microbial communities are known to play important roles in the mushroom production process. Microbial species present in the compost and casing are known for (1) being an important source of nitrogen for the A. bisporus mycelium, (2) releasing sugar residues through the degradation of the wheat straw in the composted substrate, (3) playing a critical role in inducing development of the A. bisporus fruiting bodies and (4) acting as pathogens by parasitising the mushroom mycelium/crop. Despite a long history of research into the mushroom cropping process, an extensive review of the microbial communities present in the compost and casing has not as of yet been undertaken. The aim of this review is to provide a comprehensive summary of the literature investigating the compost and casing microbial communities throughout cultivation of the A. bisporus mushroom crop.

  20. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    Directory of Open Access Journals (Sweden)

    Kevin W. Hager

    2017-08-01

    Full Text Available The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity.

  1. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    International Nuclear Information System (INIS)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert

    2015-01-01

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  2. Advances in microbial leaching processes for nickel extraction from lateritic minerals - A review

    Energy Technology Data Exchange (ETDEWEB)

    Behra, Sunil Kumar; Mulaba-Bafubiandi, Antoine Floribert [Faculty of Engineering and the Built Environment, University of Johannesburg, (South Africa)

    2015-08-15

    Lateritic nickel minerals constitute about 80% of nickel reserves in the world, but their contribution for nickel production is about 40%. The obstacles in extraction of nickel from lateritic minerals are attributed to their very complex mineralogy and low nickel content. Hence, the existing metallurgical techniques are not techno-economically feasible and environmentally sustainable for processing of such complex deposits. At this juncture, microbial mineral processing could be a benevolent approach for processing of lateritic minerals in favor of nickel extraction. The microbial mineral processing route offers many advantages over conventional metallurgical methods as the process is operated under ambient conditions and requires low energy input; thus these processes are relatively simple and environment friendly. Microbial processing of the lateritic deposits still needs improvement to make it industrially viable. Microorganisms play the pivotal role in mineral bio-processing as they catalyze the extraction of metals from minerals. So it is inevitable to explore the physiological and bio-molecular mechanisms involved in this microbe-mineral interaction. The present article offers comprehensive information about the advances in microbial processes for extraction of nickel from laterites.

  3. The Toxin and Virulence Database: A Resource for Signature Development and Analysis of Virulence

    National Research Council Canada - National Science Library

    Wolinsky, Murray A

    2004-01-01

    In this joint effort with the University of Alabama at Birmingham, Walter Reed, MITRE and USAMRIID, we are developing a comprehensive database for microbial toxins and virulence factors (www.tvfac.lanl.gov...

  4. Microbial community functional structures in wastewater treatment plants as characterized by GeoChip.

    Science.gov (United States)

    Wang, Xiaohui; Xia, Yu; Wen, Xianghua; Yang, Yunfeng; Zhou, Jizhong

    2014-01-01

    Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and to understand the effects of environmental factors on their structure. 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA) showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO), ammonia concentrations and loading rate of chemical oxygen demand (COD). Based on the variance partitioning analyses (VPA), a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.

  5. Microbial community functional structures in wastewater treatment plants as characterized by GeoChip.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. AIMS: To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs and to understand the effects of environmental factors on their structure. METHODS: 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. RESULTS: High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO, ammonia concentrations and loading rate of chemical oxygen demand (COD. Based on the variance partitioning analyses (VPA, a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25% and operational parameters (23%, respectively. CONCLUSIONS: This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.

  6. Manipulating soil microbial communities in extensive green roof substrates.

    Science.gov (United States)

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Directory of Open Access Journals (Sweden)

    Zhili He

    2018-02-01

    Full Text Available Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN, representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5 increased significantly (P < 0.05 as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.

  8. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    Full Text Available As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function.

  9. A conceptual framework for invasion in microbial communities

    KAUST Repository

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stylianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-01-01

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  10. A conceptual framework for invasion in microbial communities

    Science.gov (United States)

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-01-01

    There is a growing interest in controlling—promoting or avoiding—the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process. PMID:27137125

  11. A conceptual framework for invasion in microbial communities

    KAUST Repository

    Kinnunen, Marta

    2016-05-03

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  12. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    Science.gov (United States)

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  13. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia.

    Science.gov (United States)

    Ben Said, Sami; Or, Dani

    2017-01-01

    The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of "microbial ecological power" observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to "discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems," we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their

  14. The effect of disfluency on mind wandering during text comprehension.

    Science.gov (United States)

    Faber, Myrthe; Mills, Caitlin; Kopp, Kristopher; D'Mello, Sidney

    2017-06-01

    When reading, we frequently find ourselves thinking about something other than the text. These attentional lapses, known as mind wandering (MW), are negatively correlated with text comprehension. Previous studies have shown that more syntactically and semantically difficult texts elicit more MW, because textual difficulty impedes the construction of a mental model of the text, which makes it more difficult to suppress off-task thoughts. But is it possible to reduce MW without altering the content of the text itself? We hypothesized that reading a perceptually disfluent text might require more attentional resources, even if the content remained the same, leaving fewer resources available for MW. To test this idea, we manipulated the typefaces (fluent [Arial] or disfluent [ ]) of two instructional texts on scientific research methods (each about 1,490 words long), and found that MW was less frequent when participants read the disfluent text. There were no comprehension differences between the fluent and disfluent groups. However, we did find an indirect effect of disfluency on comprehension through MW, suggesting that disfluency influences comprehension by enhancing attention. These findings provide insights into how processing difficulty and attention interact during reading comprehension.

  15. Technology and resources use by university teachers

    OpenAIRE

    Gueudet , Ghislaine

    2014-01-01

    International audience; In this paper we introduce the study of the use of resources by mathematics teachers at university. The available resources evolve, in particular concerning Open Educational Resources offered on the Internet. Studying the consequences of these evolutions for the teaching and learning practices requires to introduce a comprehensive concept of resource. A resource for the teacher is defined here as anything likely to resource the teacher's practice: technologies, but als...

  16. Comprehensive Evaluation of Car-Body Light-Weighting Scheme Based on LCC Theory

    Directory of Open Access Journals (Sweden)

    Han Qing-lan

    2016-01-01

    Full Text Available In this paper, a comprehensive evaluation model of light-weighting scheme is established, which is based on three dimensions, including the life cycle costs of the resource consumed by the designed objects (LCC, willingness to pay for the environmental effect of resource consumption (WTP and performance (P. Firstly, cost of each stage is determined. Then, based on the resource classification, which is based on cost elements, determine the material list needed, and apply WTP weight coefficient to monetize life cycle environmental impact and obtain the life cycle comprehensive cost of designed scheme (TCC. In the next step Performance (P index is calculated to measure the value of the life cycle costs by applying AHP and SAW method, integrated (TCC and (P to achieve comprehensive evaluation of light-weighting scheme. Finally, the effectiveness of the evaluation model is verified by the example of car engine hood.

  17. Technologies for the Comprehensive Exploitation of the Geothermal Resources of the North Caucasus Region

    Science.gov (United States)

    Alkhasov, A. B.

    2018-03-01

    Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium

  18. Synthetic microbial ecology and the dynamic interplay between microbial genotypes.

    Science.gov (United States)

    Dolinšek, Jan; Goldschmidt, Felix; Johnson, David R

    2016-11-01

    Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.

  19. Comprehensive Diabetes and Non-Communicable Disease Educator in the Low-Resource Settings.

    Science.gov (United States)

    Bhattarai, M D

    2016-01-01

    The role of self-management education in diabetes and other major non-communicable diseases is clearly evident. To take care of and educate people with diabetes and other major NCD under the supervision of medical professionals and for education of other health care professionals, Comprehensive Diabetes and NCD Educators are needed in the routine service in peripheral health clinics and hospitals. The areas of training of CDNCD educator should match with the cost-effective interventions for diabetes and other major NCD that are feasible and planned for implementation in primary care in the low resource settings. Most of such interventions are part of diabetes education as required for Diabetes Self-Management Education programmes and traditional Diabetes Educator. The addition of use of inhaled steroids and bronchodilator in chronic respiratory disease and identification of presenting features of cancer, also required for many people with diabetes with various such common co-morbidities, will complete the areas of training of traditional Diabetes Educator as that of CDNCD Educator. Staff nurse and health assistants, who are as such already providing routine clinical service to all patients including with diabetes and major NCD in peripheral health clinics and hospitals, are most appropriate for CDNCD Educator training. The training of CDNCD Educator, like that of traditional Diabetes Educator, requires fulfilment of sufficient hours of practical work experience under supervision and achievement of the essential competencies entailing at least 6 month or more of intensive training schedules to be eligible to appear in its final certifying examination.

  20. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    Science.gov (United States)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  1. Bioactive natural products from novel microbial sources.

    Science.gov (United States)

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. © 2015 New York Academy of Sciences.

  2. QMRAcatch - faecal microbial quality of water resources in a river-floodplain area affected by urban sources and recreational visitors

    Science.gov (United States)

    Derx, Julia; Schijven, Jack; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas H.; Blaschke, Alfred Paul

    2016-04-01

    QMRAcatch, a tool to simulate microbial water quality including infection risk assessment, was previously developed and successfully tested at a Danube river site (Schijven et al. 2015). In the tool concentrations of target faecal microorganisms and viruses (TMVs) are computed at a point of interest (PI) along the main river and the floodplain river at daily intervals for a one year period. Even though faecal microbial pathogen concentrations in water resources are usually below the sample limit of detection, this does not ensure, that the water quality complies with a certain required health based target. The aim of this study was therefore to improve the predictability of relevant human pathogenic viruses, i.e. enterovirus and norovirus, in the studied river/floodplain area. This was done by following an innovative calibration strategy based on human-associated microbial source tracking (MST) marker data which were determined following the HF183 TaqMan assay (Green et al. 2011). The MST marker is strongly associated with human faeces and communal sewage, occurring there in numbers by several magnitudes higher than for human enteric pathogens (Mayer et al 2015). The calibrated tool was then evaluated with measured enterovirus concentrations at the PI and in the floodplain river. In the simulation tool the discharges of 5 wastewater treatment plants (WWTPs) were considered with point discharges along a 200 km reach of the Danube river. The MST marker and target virus concentrations at the PI at a certain day were computed based on the concentrations of the previous day, plus the wastewater concentrations times the WWTP discharge divided by the river discharge. A ratio of the river width was also considered, over which the MST marker and virus particles have fully mixed with river water. In the tool, the excrements from recreational visitors frequenting the floodplain area every day were assumed to be homogeneously distributed in the area. A binomial distributed

  3. Comprehensive hard materials

    CERN Document Server

    2014-01-01

    Comprehensive Hard Materials deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued res...

  4. TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling

    Science.gov (United States)

    Nelson, J.; Jones, N.; Ames, D. P.

    2015-12-01

    Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.

  5. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    Science.gov (United States)

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Predicting taxonomic and functional structure of microbial communities in acid mine drainage.

    Science.gov (United States)

    Kuang, Jialiang; Huang, Linan; He, Zhili; Chen, Linxing; Hua, Zhengshuang; Jia, Pu; Li, Shengjin; Liu, Jun; Li, Jintian; Zhou, Jizhong; Shu, Wensheng

    2016-06-01

    Predicting the dynamics of community composition and functional attributes responding to environmental changes is an essential goal in community ecology but remains a major challenge, particularly in microbial ecology. Here, by targeting a model system with low species richness, we explore the spatial distribution of taxonomic and functional structure of 40 acid mine drainage (AMD) microbial communities across Southeast China profiled by 16S ribosomal RNA pyrosequencing and a comprehensive microarray (GeoChip). Similar environmentally dependent patterns of dominant microbial lineages and key functional genes were observed regardless of the large-scale geographical isolation. Functional and phylogenetic β-diversities were significantly correlated, whereas functional metabolic potentials were strongly influenced by environmental conditions and community taxonomic structure. Using advanced modeling approaches based on artificial neural networks, we successfully predicted the taxonomic and functional dynamics with significantly higher prediction accuracies of metabolic potentials (average Bray-Curtis similarity 87.8) as compared with relative microbial abundances (similarity 66.8), implying that natural AMD microbial assemblages may be better predicted at the functional genes level rather than at taxonomic level. Furthermore, relative metabolic potentials of genes involved in many key ecological functions (for example, nitrogen and phosphate utilization, metals resistance and stress response) were extrapolated to increase under more acidic and metal-rich conditions, indicating a critical strategy of stress adaptation in these extraordinary communities. Collectively, our findings indicate that natural selection rather than geographic distance has a more crucial role in shaping the taxonomic and functional patterns of AMD microbial community that readily predicted by modeling methods and suggest that the model-based approach is essential to better understand natural

  7. Resource Availability Modulates the Cooperative and Competitive Nature of a Microbial Cross-Feeding Mutualism.

    Directory of Open Access Journals (Sweden)

    Tim A Hoek

    2016-08-01

    Full Text Available Mutualisms between species play an important role in ecosystem function and stability. However, in some environments, the competitive aspects of an interaction may dominate the mutualistic aspects. Although these transitions could have far-reaching implications, it has been difficult to study the causes and consequences of this mutualistic-competitive transition in experimentally tractable systems. Here, we study a microbial cross-feeding mutualism in which each yeast strain supplies an essential amino acid for its partner strain. We find that, depending upon the amount of freely available amino acid in the environment, this pair of strains can exhibit an obligatory mutualism, facultative mutualism, competition, parasitism, competitive exclusion, or failed mutualism leading to extinction of the population. A simple model capturing the essential features of this interaction explains how resource availability modulates the interaction and predicts that changes in the dynamics of the mutualism in deteriorating environments can provide advance warning that collapse of the mutualism is imminent. We confirm this prediction experimentally by showing that, in the high nutrient competitive regime, the strains rapidly reach a common carrying capacity before slowly reaching the equilibrium ratio between the strains. However, in the low nutrient regime, before collapse of the obligate mutualism, we find that the ratio rapidly reaches its equilibrium and it is the total abundance that is slow to reach equilibrium. Our results provide a general framework for how mutualisms may transition between qualitatively different regimes of interaction in response to changes in nutrient availability in the environment.

  8. Contamination of water resources by pathogenic bacteria

    Science.gov (United States)

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  9. Accounting for microbial habitats in modeling soil organic matter dynamics

    Science.gov (United States)

    Chenu, Claire; Garnier, Patricia; Nunan, Naoise; Pot, Valérie; Raynaud, Xavier; Vieublé, Laure; Otten, Wilfred; Falconer, Ruth; Monga, Olivier

    2017-04-01

    The extreme heterogeneity of soils constituents, architecture and inhabitants at the microscopic scale is increasingly recognized. Microbial communities exist and are active in a complex 3-D physical framework of mineral and organic particles defining pores of various sizes, more or less inter-connected. This results in a frequent spatial disconnection between soil carbon, energy sources and the decomposer organisms and a variety of microhabitats that are more or less suitable for microbial growth and activity. However, current biogeochemical models account for C dynamics at the macroscale (cm, m) and consider time- and spatially averaged relationships between microbial activity and soil characteristics. Different modelling approaches have intended to account for this microscale heterogeneity, based either on considering aggregates as surrogates for microbial habitats, or pores. Innovative modelling approaches are based on an explicit representation of soil structure at the fine scale, i.e. at µm to mm scales: pore architecture and their saturation with water, localization of organic resources and of microorganisms. Three recent models are presented here, that describe the heterotrophic activity of either bacteria or fungi and are based upon different strategies to represent the complex soil pore system (Mosaic, LBios and µFun). These models allow to hierarchize factors of microbial activity in soil's heterogeneous architecture. Present limits of these approaches and challenges are presented, regarding the extensive information required on soils at the microscale and to up-scale microbial functioning from the pore to the core scale.

  10. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    Science.gov (United States)

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  11. RASOnD - A comprehensive resource and search tool for RAS superfamily oncogenes from various species

    Directory of Open Access Journals (Sweden)

    Singh Tej P

    2011-07-01

    Full Text Available Abstract Background The Ras superfamily plays an important role in the control of cell signalling and division. Mutations in the Ras genes convert them into active oncogenes. The Ras oncogenes form a major thrust of global cancer research as they are involved in the development and progression of tumors. This has resulted in the exponential growth of data on Ras superfamily across different public databases and in literature. However, no dedicated public resource is currently available for data mining and analysis on this family. The present database was developed to facilitate straightforward accession, retrieval and analysis of information available on Ras oncogenes from one particular site. Description We have developed the RAS Oncogene Database (RASOnD as a comprehensive knowledgebase that provides integrated and curated information on a single platform for oncogenes of Ras superfamily. RASOnD encompasses exhaustive genomics and proteomics data existing across diverse publicly accessible databases. This resource presently includes overall 199,046 entries from 101 different species. It provides a search tool to generate information about their nucleotide and amino acid sequences, single nucleotide polymorphisms, chromosome positions, orthologies, motifs, structures, related pathways and associated diseases. We have implemented a number of user-friendly search interfaces and sequence analysis tools. At present the user can (i browse the data (ii search any field through a simple or advance search interface and (iii perform a BLAST search and subsequently CLUSTALW multiple sequence alignment by selecting sequences of Ras oncogenes. The Generic gene browser, GBrowse, JMOL for structural visualization and TREEVIEW for phylograms have been integrated for clear perception of retrieved data. External links to related databases have been included in RASOnD. Conclusions This database is a resource and search tool dedicated to Ras oncogenes. It has

  12. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  13. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource.

    Science.gov (United States)

    Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E; Ellisman, Mark; Grethe, Jeffrey; Wooley, John

    2011-01-01

    The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data.

  14. The resource curse: Analysis of the applicability to the large-scale export of electricity from renewable resources

    International Nuclear Information System (INIS)

    Eisgruber, Lasse

    2013-01-01

    The “resource curse” has been analyzed extensively in the context of non-renewable resources such as oil and gas. More recently commentators have expressed concerns that also renewable electricity exports can have adverse economic impacts on exporting countries. My paper analyzes to what extent the resource curse applies in the case of large-scale renewable electricity exports. I develop a “comprehensive model” that integrates previous works and provides a consolidated view of how non-renewable resource abundance impacts economic growth. Deploying this model I analyze through case studies on Laos, Mongolia, and the MENA region to what extent exporters of renewable electricity run into the danger of the resource curse. I find that renewable electricity exports avoid some disadvantages of non-renewable resource exports including (i) shocks after resource depletion; (ii) macroeconomic fluctuations; and (iii) competition for a fixed amount of resources. Nevertheless, renewable electricity exports bear some of the same risks as conventional resource exports including (i) crowding-out of the manufacturing sector; (ii) incentives for corruption; and (iii) reduced government accountability. I conclude with recommendations for managing such risks. - Highlights: ► Study analyzes whether the resource curse applies to renewable electricity export. ► I develop a “comprehensive model of the resource curse” and use cases for the analysis. ► Renewable electricity export avoids some disadvantages compared to other resources. ► Renewable electricity bears some of the same risks as conventional resources. ► Study concludes with recommendations for managing such risks

  15. Importance measures and resource allocation

    International Nuclear Information System (INIS)

    Guey, C.N.; Morgan, T.; Hughes, E.A.

    1987-01-01

    This paper discusses various importance measures and their practical relevance to allocating resources. The characteristics of importance measures are illustrated through simple examples. Important factors associated with effectively allocating resources to improve plant system performance or to prevent system degradation are discussed. It is concluded that importance measures are only indicative of and not equal to the risk significance of a component, system, or event. A decision framework is suggested to provide a comprehensive basis for resource allocation

  16. Comprehensive Study on Ceramic Membranes for Low‐Cost Microbial Fuel Cells

    Science.gov (United States)

    Pasternak, Grzegorz; Greenman, John

    2016-01-01

    Abstract Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low‐cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m−3, respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m−3, respectively. The results indicate the dependence of bio‐film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X‐ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m−2, respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries. PMID:26692569

  17. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    OpenAIRE

    Brod, Eva; Øgaard, Anne K. Falk; Krogstad, Tore; Haraldsen, Trond; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with...

  18. Drivers of phosphorus uptake by barley following secondary resource application

    OpenAIRE

    Eva eBrod; Eva eBrod; Anne Falk Øgaard; Tore eKrogstad; Trond Knapp Haraldsen; Emmanuel eFrossard; Astrid eOberson

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake are still poorly understood. Using radioactive labelling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal and wood ash were studied as P uptake by barley after 44 days and compared wit...

  19. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    OpenAIRE

    Brod, Eva; Øgaard, Anne K. Falk; Krogstad, Tore; Haraldsen, Trond; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with...

  20. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Weiguo Hou

    Full Text Available The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21-123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5-2.6, high temperature (85.1-89.1°C, and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6-4.8 and cooler temperature (55.1-64.5°C favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2-9.4 and high temperature (>80°C with high concentrations of silica and salt ions (Na, K, and Cl favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii", and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current

  1. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time

    Science.gov (United States)

    Hall, Edward K.; Singer, Gabriel A.; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J.

    2011-01-01

    Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.

  2. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    Science.gov (United States)

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effect of Pulp mill sludge on soil characteristics, microbial diversity and vegetal production of Lollium perene

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, F.; Cea, M.; Diez, M. C.

    2009-07-01

    The Chemical properties of the sludge (High organic matter content, pH, buffer capacity, nitrogen and phosphorous level, and low concentration of trace heavy metals and organic pollutants) suggest that this material may represent a valuable resource as soil amendment, improving soil characteristics, microbial diversity and vegetal production of mill sludge addition to volcanic soil (Andisol) on soil characteristics, microbial diversity and vegetal production of Lollium perenne, in field assays. (Author)

  4. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

    Science.gov (United States)

    Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong

    2012-01-01

    The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.

  5. Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH.

    Science.gov (United States)

    Twing, Katrina I; Brazelton, William J; Kubo, Michael D Y; Hyer, Alex J; Cardace, Dawn; Hoehler, Tori M; McCollom, Tom M; Schrenk, Matthew O

    2017-01-01

    Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H 2 and CH 4 ) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.

  6. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California.

    Science.gov (United States)

    Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D

    2018-06-01

    Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.

  7. Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination.

    Science.gov (United States)

    Jie, Shiqi; Li, Mingming; Gan, Min; Zhu, Jianyu; Yin, Huaqun; Liu, Xueduan

    2016-08-08

    Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. A total of 25595 functional genes involved in different biogeochemical processes have been detected in three sites, and different diversities and structures of microbial functional genes were observed. The analysis of gene overlapping, unique genes, and various diversity indices indicated a significant correlation between the level of heavy metal contamination and the functional diversity. Plentiful resistant genes related to various metal were detected, such as copper, arsenic, chromium and mercury. The results indicated a significantly higher abundance of genes involved in metal resistance including sulfate reduction genes (dsr) in studied site with most serious heavy metal contamination, such as cueo, mer, metc, merb, tehb and terc gene. With regard to the relationship between the environmental variables and microbial functional structure, S, Cu, Cd, Hg and Cr were the dominating factor shaping the microbial distribution pattern in three sites. This study suggests that high level of heavy metal contamination resulted in higher functional diversity and the abundance of metal resistant genes. These variation therefore significantly contribute to the resistance, resilience and stability of the microbial community subjected to the gradient of heavy metals contaminant in Xiangjiang River.

  8. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

    Science.gov (United States)

    Fierer, Noah; Leff, Jonathan W; Adams, Byron J; Nielsen, Uffe N; Bates, Scott Thomas; Lauber, Christian L; Owens, Sarah; Gilbert, Jack A; Wall, Diana H; Caporaso, J Gregory

    2012-12-26

    For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.

  9. Genome-wide association study of Arabidopsis thaliana leaf microbial community.

    Science.gov (United States)

    Horton, Matthew W; Bodenhausen, Natacha; Beilsmith, Kathleen; Meng, Dazhe; Muegge, Brian D; Subramanian, Sathish; Vetter, M Madlen; Vilhjálmsson, Bjarni J; Nordborg, Magnus; Gordon, Jeffrey I; Bergelson, Joy

    2014-11-10

    Identifying the factors that influence the outcome of host-microbial interactions is critical to protecting biodiversity, minimizing agricultural losses and improving human health. A few genes that determine symbiosis or resistance to infectious disease have been identified in model species, but a comprehensive examination of how a host genotype influences the structure of its microbial community is lacking. Here we report the results of a field experiment with the model plant Arabidopsis thaliana to identify the fungi and bacteria that colonize its leaves and the host loci that influence the microbe numbers. The composition of this community differs among accessions of A. thaliana. Genome-wide association studies (GWAS) suggest that plant loci responsible for defense and cell wall integrity affect variation in this community. Furthermore, species richness in the bacterial community is shaped by host genetic variation, notably at loci that also influence the reproduction of viruses, trichome branching and morphogenesis.

  10. Performance of Microbial Fuel Cell for Wastewater Treatment and Electricity Generation

    Directory of Open Access Journals (Sweden)

    Z Yavari

    2013-06-01

    Full Text Available Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC is a promising method to obtain electricity from organic matter andwastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was aneffective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE affected by organic loading rate (OLR and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment

  11. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process

    DEFF Research Database (Denmark)

    Baserba, Manel Garrido; Angelidaki, Irini; Karakashev, Dimitar Borisov

    2012-01-01

    bacterial consortium related to functional specialization of the species towards oleate degradation. For the archaeal domain, the sequences were affiliated within Euryarchaeota phylum with three major groups (Methanosarcina, Methanosaeta and Methanobacterium genera). Results obtained in this study deliver...... a comprehensive picture on oleate degrading microbial communities in high organic strength wastewater. The findings might be utilized for development of strategies for biogas production from lipid-riched wastes....

  12. Grammatical workspace sharing during language production and language comprehension: Evidence from grammatical multitasking

    NARCIS (Netherlands)

    van Kempen, G.; Olsthoorn, N.; Sprenger, S.

    2012-01-01

    Grammatical encoding and grammatical decoding (in sentence production and comprehension, respectively) are often portrayed as independent modalities of grammatical performance that only share declarative resources: lexicon and grammar. The processing resources subserving these modalities are

  13. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  14. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.; Wu, W.-M.; Wu, L.; He, Z.; Van Nostrand, J.D.; Deng, Y.; Luo, J.; Carley, J.; Ginder-Vogel, M.; Gentry, T.J.; Gu, B.; Watson, D.; Jardine, P.M.; Marsh, T.L.; Tiedje, J.M.; Hazen, T.C.; Criddle, C.S.; Zhou, J.

    2010-02-15

    A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene array (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.

  15. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain

    Directory of Open Access Journals (Sweden)

    Congcong Shen

    2016-07-01

    Full Text Available The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500 to 2200 m on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0, we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC. This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  16. Mongolia wind resource assessment project

    International Nuclear Information System (INIS)

    Elliott, D.; Chadraa, B.; Natsagdorj, L.

    1998-01-01

    The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia

  17. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into

  18. 75 FR 6220 - Notice of Lodging of Consent Decree Under the Comprehensive Environmental Response, Compensation...

    Science.gov (United States)

    2010-02-08

    ... settles claims for natural resource damages under the Comprehensive Environmental Response, Compensation... natural resource trustees for any unreimbursed assessment costs incurred by the State and Federal natural... Assistant Attorney General, Environment and Natural Resources Division, and either e-mailed to pubcomment...

  19. Microbial enhancement of crop resource use efficiency.

    Science.gov (United States)

    Dodd, Ian C; Ruiz-Lozano, Juan Manuel

    2012-04-01

    Naturally occurring soil microbes may be used as inoculants to maintain crop yields despite decreased resource (water and nutrient) inputs. Plant symbiotic relationships with mycorrhizal fungi alter root aquaporin gene expression and greatly increase the surface area over which plant root systems take up water and nutrients. Soil bacteria on the root surface alter root phytohormone status thereby increasing growth, and can make nutrients more available to the plant. Combining different classes of soil organism within one inoculant can potentially take advantage of multiple plant growth-promoting mechanisms, but biological interactions between inoculant constituents and the plant are difficult to predict. Whether the yield benefits of such inocula allow modified nutrient and water management continues to challenge crop biotechnologists. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function.

    Science.gov (United States)

    Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric

    2017-03-01

    One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Fiscal Year 1988 program report: Rhode Island Water Resources Center

    International Nuclear Information System (INIS)

    Poon, C.P.C.

    1989-07-01

    The State of Rhode Island is active in water resources planning, development, and management activities which include legislation, upgrading of wastewater treatment facilities, upgrading and implementing pretreatment programs, protecting watersheds and aquifers throughout the state. Current and anticipated state water problems are contamination and clean up of aquifers to protect the valuable groundwater resources; protection of watersheds by controlling non-point source pollution; development of pretreatment technologies; and deterioring groundwater quality from landfill leachate or drainage from septic tank leaching field. Seven projects were included covering the following subjects: (1) Radon and its nuclei parents in bedrocks; (2) Model for natural flushing of aquifer; (3) Microbial treatment of heavy metals; (4) Vegetative uptake of nitrate; (5) Microbial process in vegetative buffer strips; (6) Leachate characterization in landfills; and (7) Electrochemical treatment of heavy metals and cyanide

  2. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  3. 78 FR 73559 - Moose-Wilson Corridor Comprehensive Management Plan, Environmental Impact Statement, Grand Teton...

    Science.gov (United States)

    2013-12-06

    ...-Wilson Corridor Comprehensive Management Plan, Environmental Impact Statement, Grand Teton National Park... is preparing a Comprehensive Management Plan and Environmental Impact Statement (EIS) for the Moose...; (2) distinguish the corridor's fundamental and other important resources and values; (3) clearly...

  4. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process

    Czech Academy of Sciences Publication Activity Database

    Lin, Qiang; De Vrieze, J.; Li, Ch.; Li, J.; Li, J.; Yao, M.; Heděnec, Petr; Li, H.; Li, T.; Rui, J.; Frouz, Jan; Li, X.

    2017-01-01

    Roč. 123, October (2017), s. 134-143 ISSN 0043-1354 Institutional support: RVO:60077344 Keywords : anaerobic digestion * deterministic process * microbial interactions * modularity * temperature gradient Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Water resources Impact factor: 6.942, year: 2016

  5. Visualizing Microbial Biogeochemistry: NanoSIMS and Stable Isotope Probing (Invited)

    Science.gov (United States)

    Pett-Ridge, J.; Weber, P. K.

    2009-12-01

    Linking phylogenetic information to function in microbial communities is a key challenge for microbial ecology. Isotope-labeling experiments provide a useful means to investigate the ecophysiology of microbial populations and cells in the environment and allow measurement of nutrient transfers between cell types, symbionts and consortia. The combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis, in situ labeling and high resolution microscopy allows isotopic analysis to be linked to phylogeny and morphology and holds great promise for fine-scale studies of microbial systems. In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio ‘map’ can then be generated for the analyzed area. NanoSIMS images of 13C, 15N and Mo (a nitrogenase co-factor) localization in diazotrophic cyanobacteria show how cells differentially allocate resources within filaments and allow calculation of nutrient uptake rates on a cell by cell basis. Images of AM fungal hyphae-root and cyanobacteria-rhizobia associations indicate the mobilization and sharing (stealing?) of newly fixed C and N. In a related technique, “El-FISH”, stable isotope labeled biomass is probed with oligonucleotide-elemental labels and then imaged by NanoSIMS. In microbial consortia and cyanobacterial mats, this technique helps link microbial structure and function simultaneously even in systems with unknown and uncultivated microbes. Finally, the combination of re-engineered universal 16S oligonucleotide microarrays with NanoSIMS analyses may allow microbial identity to be linked to functional roles in complex systems such as mats and cellulose degrading hindgut communities. These newly developed methods provide correlated

  6. Microbial Rechargeable Battery

    NARCIS (Netherlands)

    Molenaar, Sam D.; Mol, Annemerel R.; Sleutels, Tom H.J.A.; Heijne, Ter Annemiek; Buisman, Cees J.N.

    2016-01-01

    Bioelectrochemical systems hold potential for both conversion of electricity into chemicals through microbial electrosynthesis (MES) and the provision of electrical power by oxidation of organics using microbial fuel cells (MFCs). This study provides a proof of concept for a microbial

  7. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    Science.gov (United States)

    Mooshammer, Maria; Hofhansl, Florian; Frank, Alexander H.; Wanek, Wolfgang; Hämmerle, Ieda; Leitner, Sonja; Schnecker, Jörg; Wild, Birgit; Watzka, Margarete; Keiblinger, Katharina M.; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2017-01-01

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which was not accompanied by significant changes in community composition. The functional and structural responses to the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was dependent on the nutrient content of the resource through its effect on microbial physiology and community composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of microbial C-N-P interactions into climate extremes research. PMID:28508070

  8. The potential of whey in driving microbial fuel cells: A dual prospect ...

    African Journals Online (AJOL)

    Renewable and green energy resources are paramount to environmental sustainability. Microbial fuel cells (MFCs) are potential candidates for these alternatives but there is need to search for cheaper fuels to drive the MFCs for realistic large scale applications. A high strength effluent such as whey, which poses a serious ...

  9. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau.

    Science.gov (United States)

    Chen, Yong-Liang; Deng, Ye; Ding, Jin-Zhi; Hu, Hang-Wei; Xu, Tian-Le; Li, Fei; Yang, Gui-Biao; Yang, Yuan-He

    2017-12-01

    Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high-throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon-Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer. © 2017 John Wiley & Sons Ltd.

  10. Ten years of maintaining and expanding a microbial genome and metagenome analysis system.

    Science.gov (United States)

    Markowitz, Victor M; Chen, I-Min A; Chu, Ken; Pati, Amrita; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-11-01

    Launched in March 2005, the Integrated Microbial Genomes (IMG) system is a comprehensive data management system that supports multidimensional comparative analysis of genomic data. At the core of the IMG system is a data warehouse that contains genome and metagenome datasets sequenced at the Joint Genome Institute or provided by scientific users, as well as public genome datasets available at the National Center for Biotechnology Information Genbank sequence data archive. Genomes and metagenome datasets are processed using IMG's microbial genome and metagenome sequence data processing pipelines and are integrated into the data warehouse using IMG's data integration toolkits. Microbial genome and metagenome application specific data marts and user interfaces provide access to different subsets of IMG's data and analysis toolkits. This review article revisits IMG's original aims, highlights key milestones reached by the system during the past 10 years, and discusses the main challenges faced by a rapidly expanding system, in particular the complexity of maintaining such a system in an academic setting with limited budgets and computing and data management infrastructure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Microbial proteomics: a mass spectrometry primer for biologists

    Directory of Open Access Journals (Sweden)

    Graham Ciaren

    2007-08-01

    Full Text Available Abstract It is now more than 10 years since the publication of the first microbial genome sequence and science is now moving towards a post genomic era with transcriptomics and proteomics offering insights into cellular processes and function. The ability to assess the entire protein network of a cell at a given spatial or temporal point will have a profound effect upon microbial science as the function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond current technologies rapid advances in mass spectrometry, bioinformatics and protein separation technologies have produced a step change in our current proteomic capabilities. Subsequently a small, but steadily growing, number of groups are taking advantage of this cutting edge technology to discover more about the physiology and metabolism of microorganisms. From this research it will be possible to move towards a systems biology understanding of a microorganism. Where upon researchers can build a comprehensive cellular map for each microorganism that links an accurately annotated genome sequence to gene expression data, at a transcriptomic and proteomic level. In order for microbiologists to embrace the potential that proteomics offers, an understanding of a variety of analytical tools is required. The aim of this review is to provide a basic overview of mass spectrometry (MS and its application to protein identification. In addition we will describe how the protein complexity of microbial samples can be reduced by gel-based and gel-free methodologies prior to analysis by MS. Finally in order to illustrate the power of microbial proteomics a case study of its current application within the Bacilliaceae is given together with a description of the emerging discipline of metaproteomics.

  12. Optimal resource allocation for distributed video communication

    CERN Document Server

    He, Yifeng

    2013-01-01

    While most books on the subject focus on resource allocation in just one type of network, this book is the first to examine the common characteristics of multiple distributed video communication systems. Comprehensive and systematic, Optimal Resource Allocation for Distributed Video Communication presents a unified optimization framework for resource allocation across these systems. The book examines the techniques required for optimal resource allocation over Internet, wireless cellular networks, wireless ad hoc networks, and wireless sensor networks. It provides you with the required foundat

  13. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  14. Revisiting life strategy concepts in environmental microbial ecology.

    Science.gov (United States)

    Ho, Adrian; Di Lonardo, D Paolo; Bodelier, Paul L E

    2017-03-01

    Microorganisms are physiologically diverse, possessing disparate genomic features and mechanisms for adaptation (functional traits), which reflect on their associated life strategies and determine at least to some extent their prevalence and distribution in the environment. Unlike animals and plants, there is an unprecedented diversity and intractable metabolic versatility among bacteria, making classification or grouping these microorganisms based on their functional traits as has been done in animal and plant ecology challenging. Nevertheless, based on representative pure cultures, microbial traits distinguishing different life strategies had been proposed, and had been the focus of previous reviews. In the environment, however, the vast majority of naturally occurring microorganisms have yet to be isolated, restricting the association of life strategies to broad phylogenetic groups and/or physiological characteristics. Here, we reviewed the literature to determine how microbial life strategy concepts (i.e. copio- and oligotrophic strategists, and competitor-stress tolerator-ruderals framework) are applied in complex microbial communities. Because of the scarcity of direct empirical evidence elucidating the associated life strategies in complex communities, we rely heavily on observational studies determining the response of microorganisms to (a)biotic cues (e.g. resource availability) to infer microbial life strategies. Although our focus is on the life strategies of bacteria, parallels were drawn from the fungal community. Our literature search showed inconsistency in the community response of proposed copiotrophic- and oligotrophic-associated microorganisms (phyla level) to changing environmental conditions. This suggests that tracking microorganisms at finer phylogenetic and taxonomic resolution (e.g. family level or lower) may be more effective to capture changes in community response and/or that edaphic factors exert a stronger effect in community response

  15. Microbial co-occurrence relationships in the human microbiome.

    Directory of Open Access Journals (Sweden)

    Karoline Faust

    Full Text Available The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs to taxonomic marker (16S rRNA gene profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut often compete, while potential pathogens (e.g. Treponema and

  16. Microbial Co-occurrence Relationships in the Human Microbiome

    Science.gov (United States)

    Izard, Jacques; Segata, Nicola; Gevers, Dirk

    2012-01-01

    The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the

  17. Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change

    Directory of Open Access Journals (Sweden)

    Aude-Valérie Jung

    2014-04-01

    Full Text Available Microbial pollution in aquatic environments is one of the crucial issues with regard to the sanitary state of water bodies used for drinking water supply, recreational activities and harvesting seafood due to a potential contamination by pathogenic bacteria, protozoa or viruses. To address this risk, microbial contamination monitoring is usually assessed by turbidity measurements performed at drinking water plants. Some recent studies have shown significant correlations of microbial contamination with the risk of endemic gastroenteresis. However the relevance of turbidimetry may be limited since the presence of colloids in water creates interferences with the nephelometric response. Thus there is a need for a more relevant, simple and fast indicator for microbial contamination detection in water, especially in the perspective of climate change with the increase of heavy rainfall events. This review focuses on the one hand on sources, fate and behavior of microorganisms in water and factors influencing pathogens’ presence, transportation and mobilization, and on the second hand, on the existing optical methods used for monitoring microbiological risks. Finally, this paper proposes new ways of research.

  18. From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems.

    Science.gov (United States)

    Garza, Daniel R; Dutilh, Bas E

    2015-11-01

    Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.

  19. Neural basis for generalized quantifier comprehension.

    Science.gov (United States)

    McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray

    2005-01-01

    Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.

  20. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses.

    Science.gov (United States)

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-12-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  1. Microbial Diagnostic Array Workstation (MDAW: a web server for diagnostic array data storage, sharing and analysis

    Directory of Open Access Journals (Sweden)

    Chang Yung-Fu

    2008-09-01

    Full Text Available Abstract Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.

  2. Cognitive radio networks dynamic resource allocation schemes

    CERN Document Server

    Wang, Shaowei

    2014-01-01

    This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off

  3. Windows 7 resource kit

    CERN Document Server

    Northrup, Tony; Honeycutt, Jerry; Wilson, Ed

    2009-01-01

    In-depth and comprehensive, this RESOURCE KIT delivers the information you need to administer your Windows 7 system. You get authoritative technical guidance from those who know the technology best-Microsoft Most Valuable Professionals (MVPs) and the Windows 7 product team-along with essential scripts and resources. In addition, "Direct from the Source" sidebars offer deep insights and troubleshooting tips from the Windows 7 team. Get expert guidance on how to: Use Microsoft Deployment Toolkit best practices and tools. Plan user-state migration and test application compatibility.

  4. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard)

    Science.gov (United States)

    Kotas, Petr; Šantrůčková, Hana; Elster, Josef; Kaštovská, Eva

    2018-03-01

    The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS), and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level) were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs). We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects), mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  5. Soil microbial biomass, activity and community composition along altitudinal gradients in the High Arctic (Billefjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    P. Kotas

    2018-03-01

    Full Text Available The unique and fragile High Arctic ecosystems are vulnerable to global climate warming. The elucidation of factors driving microbial distribution and activity in arctic soils is essential for a comprehensive understanding of ecosystem functioning and its response to environmental change. The goals of this study were to investigate microbial biomass and activity, microbial community structure (MCS, and their environmental controls in soils along three elevational transects in the coastal mountains of Billefjorden, central Svalbard. Soils from four different altitudes (25, 275, 525 and 765 m above sea level were analyzed for a suite of characteristics including temperature regimes, organic matter content, base cation availability, moisture, pH, potential respiration, and microbial biomass and community structure using phospholipid fatty acids (PLFAs. We observed significant spatial heterogeneity of edaphic properties among transects, resulting in transect-specific effects of altitude on most soil parameters. We did not observe any clear elevation pattern in microbial biomass, and microbial activity revealed contrasting elevational patterns between transects. We found relatively large horizontal variability in MCS (i.e., between sites of corresponding elevation in different transects, mainly due to differences in the composition of bacterial PLFAs, but also a systematic altitudinal shift in MCS related to different habitat preferences of fungi and bacteria, which resulted in high fungi-to-bacteria ratios at the most elevated sites. The biological soil crusts on these most elevated, unvegetated sites can host microbial assemblages of a size and activity comparable to those of the arctic tundra ecosystem. The key environmental factors determining horizontal and vertical changes in soil microbial properties were soil pH, organic carbon content, soil moisture and Mg2+ availability.

  6. Shift in the microbial community composition of surface water and sediment along an urban river.

    Science.gov (United States)

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment

  8. Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use and serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.

  9. Understanding Structural Features of Microbial Lipases–-An Overview

    Directory of Open Access Journals (Sweden)

    John Geraldine Sandana Mala

    2008-01-01

    Full Text Available The structural elucidations of microbial lipases have been of prime interest since the 1980s. Knowledge of structural features plays an important role in designing and engineering lipases for specific purposes. Significant structural data have been presented for few microbial lipases, while, there is still a structure-deficit, that is, most lipase structures are yet to be resolved. A search for ‘lipase structure’ in the RCSB Protein Data Bank ( http://www.rcsb.org/pdb/ returns only 93 hits (as of September 2007 and, the NCBI database ( http://www.ncbi.nlm.nih.gov reports 89 lipase structures as compared to 14719 core nucleotide records. It is therefore worthwhile to consider investigations on the structural analysis of microbial lipases. This review is intended to provide a collection of resources on the instrumental, chemical and bioinformatics approaches for structure analyses. X-ray crystallography is a versatile tool for the structural biochemists and is been exploited till today. The chemical methods of recent interests include molecular modeling and combinatorial designs. Bioinformatics has surged striking interests in protein structural analysis with the advent of innumerable tools. Furthermore, a literature platform of the structural elucidations so far investigated has been presented with detailed descriptions as applicable to microbial lipases. A case study of Candida rugosa lipase (CRL has also been discussed which highlights important structural features also common to most lipases. A general profile of lipase has been vividly described with an overview of lipase research reviewed in the past.

  10. Designing the Microbial Research Commons

    Energy Technology Data Exchange (ETDEWEB)

    Uhlir, Paul F. [Board on Research Data and Information Policy and Global Affairs, Washington, DC (United States)

    2011-10-01

    Recent decades have witnessed an ever-increasing range and volume of digital data. All elements of the pillars of science--whether observation, experiment, or theory and modeling--are being transformed by the continuous cycle of generation, dissemination, and use of factual information. This is even more so in terms of the re-using and re-purposing of digital scientific data beyond the original intent of the data collectors, often with dramatic results. We all know about the potential benefits and impacts of digital data, but we are also aware of the barriers, the challenges in maximizing the access, and use of such data. There is thus a need to think about how a data infrastructure can enhance capabilities for finding, using, and integrating information to accelerate discovery and innovation. How can we best implement an accessible, interoperable digital environment so that the data can be repeatedly used by a wide variety of users in different settings and with different applications? With this objective: to use the microbial communities and microbial data, literature, and the research materials themselves as a test case, the Board on Research Data and Information held an International Symposium on Designing the Microbial Research Commons at the National Academy of Sciences in Washington, DC on 8-9 October 2009. The symposium addressed topics such as models to lower the transaction costs and support access to and use of microbiological materials and digital resources from the perspective of publicly funded research, public-private interactions, and developing country concerns. The overall goal of the symposium was to stimulate more research and implementation of improved legal and institutional models for publicly funded research in microbiology.

  11. 2007 Survey of Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This WEC study is a unique comprehensive compilation of global energy resources. Complementing the BP Statistical Review and the World Energy Outlook, it details 16 key energy resources with the latest data provided by 96 WEC Member Committees worldwide. This highly regarded publication is an essential tool for governments, NGOs, industry, academia and the finance community. This 21st edition is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy.

  12. 2007 Survey of Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This WEC study is a unique comprehensive compilation of global energy resources. Complementing the BP Statistical Review and the World Energy Outlook, it details 16 key energy resources with the latest data provided by 96 WEC Member Committees worldwide. This highly regarded publication is an essential tool for governments, NGOs, industry, academia and the finance community. This 21st edition is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy.

  13. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    Science.gov (United States)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms

  14. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases.

    Science.gov (United States)

    Periwal, Vinita

    2017-07-01

    Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation.

    Science.gov (United States)

    Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong

    2015-10-01

    Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.

  16. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  17. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  18. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    OpenAIRE

    Timmers, Ruud A.; Rothballer, Michael; Strik, David P. B. T. B.; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode–rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) w...

  19. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Fred Brokman; John Selker; Mark Rockhold

    2004-01-26

    While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination.

  20. Integrated Field, Laboratory, and Modeling Studies to Determine the Effects of Linked Microbial and Physical Spatial Heterogeneity on Engineered Vadose Zone Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Brockman, Fred J.; Selker, John S.; Rockhold, Mark L.

    2004-10-31

    Executive Summary - While numerous techniques exist for remediation of contaminant plumes in groundwater or near the soil surface, remediation methods in the deep vadose zone are less established due to complex transport dynamics and sparse microbial populations. There is a lack of knowledge on how physical and hydrologic features of the vadose zone control microbial growth and colonization in response to nutrient delivery during bioremediation. Yet pollution in the vadose zone poses a serious threat to the groundwater resources lying deeper in the sediment. While the contaminants may be slowly degraded by native microbial communities, microbial degradation rates rarely keep pace with the spread of the pollutant. It is crucial to increase indigenous microbial degradation in the vadose zone to combat groundwater contamination...

  1. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    Science.gov (United States)

    Moutsopoulos, Niki M; Chalmers, Natalia I; Barb, Jennifer J; Abusleme, Loreto; Greenwell-Wild, Teresa; Dutzan, Nicolas; Paster, Bruce J; Munson, Peter J; Fine, Daniel H; Uzel, Gulbu; Holland, Steven M

    2015-03-01

    Leukocyte Adhesion Deficiency I (LAD-I) is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis). Microbial communities in the local environment (subgingival plaque) are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  2. Subgingival microbial communities in Leukocyte Adhesion Deficiency and their relationship with local immunopathology.

    Directory of Open Access Journals (Sweden)

    Niki M Moutsopoulos

    2015-03-01

    Full Text Available Leukocyte Adhesion Deficiency I (LAD-I is a primary immunodeficiency caused by single gene mutations in the CD18 subunit of β2 integrins which result in defective transmigration of neutrophils into the tissues. Affected patients suffer from recurrent life threatening infections and severe oral disease (periodontitis. Microbial communities in the local environment (subgingival plaque are thought to be the triggers for inflammatory periodontitis, yet little is known regarding the microbial communities associated with LAD-I periodontitis. Here we present the first comprehensive characterization of the subgingival communities in LAD-I, using a 16S rRNA gene-based microarray, and investigate the relationship of this tooth adherent microbiome to the local immunopathology of periodontitis. We show that the LAD subgingival microbiome is distinct from that of health and Localized Aggressive Periodontitits. Select periodontitis-associated species in the LAD microbiome included Parvimonas micra, Porphyromonas endodontalis, Eubacterium brachy and Treponema species. Pseudomonas aeruginosa, a bacterium not typically found in subgingival plaque is detected in LAD-I. We suggest that microbial products from LAD-associated communities may have a role in stimulating the local inflammatory response. We demonstrate that bacterial LPS translocates into the lesions of LAD-periodontitis potentially triggering immunopathology. We also show in in vitro assays with human macrophages and in vivo in animal models that microbial products from LAD-associated subgingival plaque trigger IL-23-related immune responses, which have been shown to dominate in patient lesions. In conclusion, our current study characterizes the subgingival microbial communities in LAD-periodontitis and supports their role as triggers of disease pathogenesis.

  3. Comprehensive Evaluation of Large Infrastructure Project Plan with ANP

    Institute of Scientific and Technical Information of China (English)

    HAN Chuan-feng; CHEN Jian-ye

    2005-01-01

    Analytic Network Process(ANP) was used in comprehensive evaluation of large infrastructure project plan. A model including social economy, ecological environment, and resources was established with ANP method. The evaluation pattern of hierarchy structure and comprehensive evaluation method for quantity and quality of large infrastructure project were put forward, which provides an effective way to evaluate the large infrastructure project plan. Quantitative analysis indicated that the internal dependence relation of hierarchy structure has influence on ranking results of plan. It is suggested that considering the internal relation can helps managers make effective decisions.

  4. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    Science.gov (United States)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  5. National hydroelectric power resources study. Preliminary inventory of hydropower resources. Volume 3. Mid-Continent region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-01

    The US Corps of Engineers' assessment of the nation's hydroelectric resources provides a current and comprehensive estimate of the potential for incremental or new generation at existing dams and other water resource projects, as well as for undeveloped sites in the US. The demand for hydroelectric power is addressed and various related policy and technical considerations are investigated to determine the incentives, constraints, and impacts of developing hydropower to meet a portion of the future energy demands. The comprehensive data represent the effort of the Corps of Engineers based on site-specific analysis and evaluation. Summary tables include estimates of the potential capacity and energy at each site in the inventory. The number of sites and potential capacity in each state are identified, but specific detailed information is included for sites in Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming.

  6. Draft 1992 Resource Program : Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-01-01

    The 1992 Resource Program will propose actions to meet future loads placed on the Bonneville Power Administration (BPA). It will also discuss and attempt to resolve resource-related policy issues. The Resource Program assesses resource availability and costs, and analyzes resource requirements and alternative ways of meeting those requirements through both conservation and generation resources. These general resource conclusions are then translated to actions for both conservation and generation. The Resource Program recommends budgets for the Office of Energy Resources for Fiscal Years (FY) 1994 and 1995. BPA's Resource Program bears directly on an important BPA responsibility: the obligation under the Northwest Power Act{sup 3} to meet the power requirements of public and private utility and direct service industrial (DSI) customers according to their contractual agreements. BPA's Draft 1992 Resource Program is contained in four documents: (1) 1992 Resource Program Summary; (2) Technical Report; (3) Technical Assumptions Appendix; and, (4) Conservation Implementation Plan. This volume is the Draft 1992 Resource Program Technical Report, a comprehensive document that provides supporting data and analyses for Resource Program recommendations.

  7. Draft 1992 Resource Program : Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-01-01

    The 1992 Resource Program will propose actions to meet future loads placed on the Bonneville Power Administration (BPA). It will also discuss and attempt to resolve resource-related policy issues. The Resource Program assesses resource availability and costs, and analyzes resource requirements and alternative ways of meeting those requirements through both conservation and generation resources. These general resource conclusions are then translated to actions for both conservation and generation. The Resource Program recommends budgets for the Office of Energy Resources for Fiscal Years (FY) 1994 and 1995. BPA`s Resource Program bears directly on an important BPA responsibility: the obligation under the Northwest Power Act{sup 3} to meet the power requirements of public and private utility and direct service industrial (DSI) customers according to their contractual agreements. BPA`s Draft 1992 Resource Program is contained in four documents: (1) 1992 Resource Program Summary; (2) Technical Report; (3) Technical Assumptions Appendix; and, (4) Conservation Implementation Plan. This volume is the Draft 1992 Resource Program Technical Report, a comprehensive document that provides supporting data and analyses for Resource Program recommendations.

  8. Proceedings of the 8. International Symposium on Microbial Ecology : microbial biosystems : new frontiers

    International Nuclear Information System (INIS)

    Bell, C.R.; Brylinsky, M.; Johnson-Green, P.

    2000-01-01

    A wide range of disciplines were presented at this conference which reflected the importance of microbial ecology and provided an understanding of the factors that determine the growth and activities of microorganisms. The conference attracted 1444 delegates from 54 countries. The research emerging from the rapidly expanding frontier of microbial ecosystems was presented in 62 oral presentation and 817 poster presentations. The two volumes of these proceedings presented a total of 27 areas in microbial ecology, some of which included terrestrial biosystems, aquatic, estuarine, surface and subsurface microbial ecology. Other topics included bioremediation, microbial ecology in industry and microbial ecology of oil fields. Some of the papers highlighted the research that is underway to determine the feasibility of using microorganisms for enhanced oil recovery (EOR). Research has shown that microbial EOR can increase production at lower costs than conventional oil recovery. The use of bacteria has also proven to be a feasible treatment method in the biodegradation of hydrocarbons associated with oil spills. refs., tabs., figs

  9. [Characterization and microbial community shifts of rice strawdegrading microbial consortia].

    Science.gov (United States)

    Wang, Chunfang; Ma, Shichun; Huang, Yan; Liu, Laiyan; Fan, Hui; Deng, Yu

    2016-12-04

    To study the relationship between microbial community and degradation rate of rice straw, we compared and analyzed cellulose-decomposing ability, microbial community structures and shifts of microbial consortia F1 and F2. We determined exoglucanase activity by 3, 5-dinitrosalicylic acid colorimetry. We determined content of cellulose, hemicellulose and lignin in rice straw by Van Soest method, and calculated degradation rates of rice straw by the weight changes before and after a 10-day incubation. We analyzed and compared the microbial communities and functional microbiology shifts by clone libraries, Miseq analysis and real time-PCR based on the 16S rRNA gene and cel48 genes. Total degradation rate, cellulose, and hemicellulose degradation rate of microbial consortia F1 were significantly higher than that of F2. The variation trend of exoglucanase activity in both microbial consortia F1 and F2 was consistent with that of cel48 gene copies. Microbial diversity of F1 was complex with aerobic bacteria as dominant species, whereas that of F2 was simple with a high proportion of anaerobic cellulose decomposing bacteria in the later stage of incubation. In the first 4 days, unclassified Bacillales and Bacillus were dominant in both F1 and F2. The dominant species and abundance became different after 4-day incubation, Bacteroidetes and Firmicutes were dominant phyla of F1 and F2, respectively. Although Petrimonas and Pusillimonas were common dominant species in F1 and F2, abundance of Petrimonas in F2 (38.30%) was significantly higher than that in F1 (9.47%), and the abundance of Clostridiales OPB54 in F2 increased to 14.85% after 8-day incubation. The abundance of cel48 gene related with cellulose degradation rate and exoglucanase activity, and cel48 gene has the potential as a molecular marker to monitor the process of cellulose degradation. Microbial community structure has a remarkable impact on the degradation efficiency of straw cellulose, and Petrimonas

  10. Genetic Resources for Advanced Biofuel Production Described with the Gene Ontology

    Directory of Open Access Journals (Sweden)

    Trudy eTorto-Alalibo

    2014-10-01

    Full Text Available Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial Energy Gene Ontology (MENGO: http://www.mengo.biochem.vt.edu project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat, can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  11. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient

    Directory of Open Access Journals (Sweden)

    Jenna L Shelton

    2016-09-01

    Full Text Available Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow up-dip wells was different than the 17 deeper, down-dip wells, and that

  12. Microbial Genome Analysis and Comparisons: Web-based Protocols and Resources

    Science.gov (United States)

    Fully annotated genome sequences of many microorganisms are publicly available as a resource. However, in-depth analysis of these genomes using specialized tools is required to derive meaningful information. We describe here the utility of three powerful publicly available genome databases and ana...

  13. Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables From Hainan, China

    Science.gov (United States)

    Peng, Qiannan; Jiang, Shuaiming; Chen, Jieling; Ma, Chenchen; Huo, Dongxue; Shao, Yuyu; Zhang, Jiachao

    2018-01-01

    Fermented vegetables are typically traditional foods made of fresh vegetables and their juices, which are fermented by beneficial microorganisms. Herein, we applied high-throughput sequencing and culture-dependent technology to describe the diversities of microbiota and identify core microbiota in fermented vegetables from different areas of Hainan Province, and abundant metabolic pathways in the fermented vegetables were simultaneously predicted. At the genus level, Lactobacillus bacteria were the most abundant. Lactobacillus plantarum was the most abundant species, followed by Lactobacillus fermentum, Lactobacillus pentosaceus, and Weissella cibaria. These species were present in each sample with average absolute content values greater than 1% and were thus defined as core microbiota. Analysis results based on the alpha and beta diversities of the microbial communities showed that the microbial profiles of the fermented vegetables differed significantly based on the regions and raw materials used, and the species of the vegetables had a greater effect on the microbial community structure than the region from where they were harvested. Regarding microbial functional metabolism, we observed an enrichment of metabolic pathways, including membrane transport, replication and repair and translation, which implied that the microbial metabolism in the fermented vegetables tended to be vigorous. In addition, Lactobacillus plantarum and Lactobacillus fermentum were calculated to be major metabolic pathway contributors. Finally, we constructed a network to better explain correlations among the core microbiota and metabolic pathways. This study facilitates an understanding of the differences in microbial profiles and fermentation pathways involved in the production of fermented vegetables, establishes a basis for optimally selecting microorganisms to manufacture high-quality fermented vegetable products, and lays the foundation for better utilizing tropical microbial

  14. Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables From Hainan, China

    Directory of Open Access Journals (Sweden)

    Qiannan Peng

    2018-03-01

    tropical microbial resources.

  15. Changes in the Microbial Composition of Microbrewed Beer during the Process in the Actual Manufacturing Line.

    Science.gov (United States)

    Kim, S A; Jeon, S H; Kim, N H; Kim, H W; Lee, N Y; Cho, T J; Jung, Y M; Lee, S H; Hwang, I G; Rhee, M S

    2015-12-01

    This study investigated changes in the microbial composition of microbrewed beer during the manufacturing processes and identified potential microbial hazards, effective critical quality control points, and potential contamination routes. Comprehensive quantitative (aerobic plate count, lactic acid bacteria, fungi, acetic acid bacteria, coliforms, and Bacillus cereus) and qualitative (Escherichia coli and eight foodborne pathogens) microbiological analyses were performed using samples of raw materials (malt and manufacturing water), semiprocessed products (saccharified wort, boiled wort, and samples taken during the fermentation and maturation process), and the final product obtained from three plants. The initial aerobic plate count and lactic acid bacteria counts in malt were 5.2 and 4.3 log CFU/g, respectively. These counts were reduced to undetectable levels by boiling but were present at 2.9 and 0.9 log CFU/ml in the final product. Fungi were initially present at 3.6 log CFU/g, although again, the microbes were eliminated by boiling; however, the level in the final product was 4.6 log CFU/ml. No E. coli or foodborne pathogens (except B. cereus) were detected. B. cereus was detected at all stages, although it was not present in the water or boiled wort (total detection rate ¼ 16.4%). Results suggest that boiling of the wort is an effective microbial control measure, but careful management of raw materials and implementation of effective control measures after boiling are needed to prevent contamination of the product after the boiling step. The results of this study may constitute useful and comprehensive information regarding the microbiological quality of microbrewed beer.

  16. Creation and Long-term Preservation of Digital Multimedia Resources:Some Preliminary Practices

    Institute of Scientific and Technical Information of China (English)

    ZHAO BAOYING; LUO YUNCHUAN

    2008-01-01

    This paper gives a comprehensive introduction of National Cultural Information Resources Sharing Project.It discusses the best practices in creation and long-term preservation of multimedia digital resources,and recommends solutions to the key issues in resource selection,standards & specifications and copyright.

  17. Ecological and soil hydraulic implications of microbial responses to stress - A modeling analysis

    Science.gov (United States)

    Brangarí, Albert C.; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier; Manzoni, Stefano

    2018-06-01

    A better understanding of microbial dynamics in porous media may lead to improvements in the design and management of a number of technological applications, ranging from the degradation of contaminants to the optimization of agricultural systems. To this aim, there is a recognized need for predicting the proliferation of soil microbial biomass (often organized in biofilms) under different environments and stresses. We present a general multi-compartment model to account for physiological responses that have been extensively reported in the literature. The model is used as an explorative tool to elucidate the ecological and soil hydraulic consequences of microbial responses, including the production of extracellular polymeric substances (EPS), the induction of cells into dormancy, and the allocation and reuse of resources between biofilm compartments. The mechanistic model is equipped with indicators allowing the microorganisms to monitor environmental and biological factors and react according to the current stress pressures. The feedbacks of biofilm accumulation on the soil water retention are also described. Model runs simulating different degrees of substrate and water shortage show that adaptive responses to the intensity and type of stress provide a clear benefit to microbial colonies. Results also demonstrate that the model may effectively predict qualitative patterns in microbial dynamics supported by empirical evidence, thereby improving our understanding of the effects of pore-scale physiological mechanisms on the soil macroscale phenomena.

  18. Comprehensive Sediment Management to Improve Wetland Sustainability in Coastal Louisiana

    Science.gov (United States)

    Khalil, S.; Freeman, A. M.; Raynie, R.

    2016-02-01

    Human intervention has impaired the Mississippi River's ability to deliver sediment to its deltaic wetlands, and as a consequence acute land loss in coastal Louisiana has resulted in an unprecedented ecocatastrophe. Since the 1930s, Louisiana has lost approximately 5,000 square kilometers of coastal land, and is continuing to lose land at the rate of approximately 43 square kilometers/year. This extreme rate of land loss threatens a range of key national assets and important communities. Coastal communities across the world as well as in Louisiana have realized the importance of sediment for the continuation of their very existence in these productive but vulnerable regions. Ecological restoration can only be undertaken on a stable coastline, for which sedimentological restoration is needed. A large-scale effort to restore coastal Louisiana is underway, guided by Louisiana's Comprehensive Master Plan for a Sustainable Coast. This 50-year, $50-billion plan prescribes 109 protection and restoration projects to reduce land loss, maintain and restore coastal environments and sustain communities. Nowhere else has a restoration and protection program of this scale been developed or implemented, and critical to its success is the optimized usage of limited fluvial and offshore sediment resources, and a keen understanding of the complex interactions of various geological/geophysical processes in ecosystem restoration. A comprehensive sediment management plan has been developed to identify and delineate potential sediment sources for restoration, and to provide a framework for managing sediment resources wisely, cost effectively, and in a systematic manner. The Louisiana Sediment Management Plan provides regional strategies for improved comprehensive management of Louisiana's limited sediment resources. Adaptive management via a robust system-wide monitoring plays an important role along with a regional approach for the efficient management of sediment resources.

  19. Ensembl variation resources

    Directory of Open Access Journals (Sweden)

    Marin-Garcia Pablo

    2010-05-01

    Full Text Available Abstract Background The maturing field of genomics is rapidly increasing the number of sequenced genomes and producing more information from those previously sequenced. Much of this additional information is variation data derived from sampling multiple individuals of a given species with the goal of discovering new variants and characterising the population frequencies of the variants that are already known. These data have immense value for many studies, including those designed to understand evolution and connect genotype to phenotype. Maximising the utility of the data requires that it be stored in an accessible manner that facilitates the integration of variation data with other genome resources such as gene annotation and comparative genomics. Description The Ensembl project provides comprehensive and integrated variation resources for a wide variety of chordate genomes. This paper provides a detailed description of the sources of data and the methods for creating the Ensembl variation databases. It also explores the utility of the information by explaining the range of query options available, from using interactive web displays, to online data mining tools and connecting directly to the data servers programmatically. It gives a good overview of the variation resources and future plans for expanding the variation data within Ensembl. Conclusions Variation data is an important key to understanding the functional and phenotypic differences between individuals. The development of new sequencing and genotyping technologies is greatly increasing the amount of variation data known for almost all genomes. The Ensembl variation resources are integrated into the Ensembl genome browser and provide a comprehensive way to access this data in the context of a widely used genome bioinformatics system. All Ensembl data is freely available at http://www.ensembl.org and from the public MySQL database server at ensembldb.ensembl.org.

  20. Fundamental Insights into Propionate Oxidation in Microbial Electrolysis Cells Using a Combination of Electrochemical, Molecular biology and Electron Balance Approaches

    KAUST Repository

    Rao, Hari Ananda

    2016-11-01

    Increasing demand for freshwater and energy is pushing towards the development of alternative technologies that are sustainable. One of the realistic solutions to address this is utilization of the renewable resources like wastewater. Conventional wastewater treatment processes can be highly energy demanding and can fails to recover the full potential of useful resources such as energy in the wastewater. As a consequence, there is an urgent necessity for sustainable wastewater treatment technologies that could harness such resources present in wastewaters. Advanced treatment process based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have a great potential for the resources recovery through a sustainable wastewater treatment process. METs rely on the abilities of microorganisms that are capable of transferring electrons extracellularly by oxidizing the organic matter in the wastewater and producing electrical current for electricity generation (MFC) or H2 and CH4 production (MEC). Propionate is an important volatile fatty acid (VFA) (24-70%) in some wastewaters and accumulation of this VFA can cause a process failure in a conventional anaerobic digestion (AD) system. To address this issue, MECs were explored as a novel, alternative wastewater treatment technology, with a focus on a better understanding of propionate oxidation in the anode of MECs. Having such knowledge could help in the development of more robust and efficient wastewater treatment systems to recover energy and produce high quality effluents. Several studies were conducted to: 1) determine the paths of electron flow in the anode of propionate fed MECs low (4.5 mM) and high (36 mM) propionate concentrations; 2) examine the effect of different set anode potentials on the electrochemical performance, propionate degradation, electron fluxes, and microbial community structure in MECs fed propionate; and 3) examine the temporal

  1. Methane Metabolizing Microbial Communities in the Cold Seep Areas in the Northern Continental Shelf of South China Sea

    Science.gov (United States)

    Wang, F.; Liang, Q.

    2016-12-01

    Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the

  2. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions.

    Science.gov (United States)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Casella, Patrizia; Patrolecco, Luisa; Polesello, Stefano

    2014-06-15

    Flood and drought events of higher intensity and frequency are expected to increase in arid and semi-arid regions, in which temporary rivers represent both a water resource and an aquatic ecosystem to be preserved. In this study, we explored the variation of two classes of hazardous substances (Polycyclic Aromatic Hydrocarbons and Nonylphenols) and the functioning of the microbial community in river sediments subject to hydrological fluctuations (Candelaro river basin, Italy). Overall, the concentration of pollutants (∑PAHs range 8-275ngg(-1); ∑NPs range 299-4858ngg(-1)) suggests a moderate degree of contamination. The conditions in which the sediments were tested, flow (high/low) and no flow (wet/dry/arid), were associated to significant differences in the chemical and microbial properties. The total organic carbon contribution decreased together with the stream flow reduction, while the contribution of C-PAHs and C-NPs tended to increase. NPs were relatively more concentrated in sediments under high flow, while the more hydrophobic PAHs accumulated under low and no flow conditions. Passing from high to no flow conditions, a gradual reduction of microbial processes was observed, to reach the lowest specific bacterial carbon production rates (0.06fmolCh(-1)cell(-1)), extracellular enzyme activities, and the highest doubling time (40h) in arid sediments. In conclusion, different scenarios for the mobilization of pollutants and microbial processes can be identified under contrasting hydrological conditions: (i) the mobilization of pollutants under high flow and a relatively higher probability for biodegradation; (ii) the accumulation of pollutants during low flow and lower probability for biodegradation; (iii) the drastic reduction of pollutant concentrations under dry and arid conditions, probably independently from the microbial activity (abiotic processes). Our findings let us infer that a multiple approach has to be considered for an appropriate water

  3. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle.

    Science.gov (United States)

    Karl, David M

    2014-01-01

    Phosphorus (P) is a required element for life. Its various chemical forms are found throughout the lithosphere and hydrosphere, where they are acted on by numerous abiotic and biotic processes collectively referred to as the P cycle. In the sea, microorganisms are primarily responsible for P assimilation and remineralization, including recently discovered P reduction-oxidation bioenergetic processes that add new complexity to the marine microbial P cycle. Human-induced enhancement of the global P cycle via mining of phosphate-bearing rock will likely influence the pace of P-cycle dynamics, especially in coastal marine habitats. The inextricable link between the P cycle and cycles of other bioelements predicts future impacts on, for example, nitrogen fixation and carbon dioxide sequestration. Additional laboratory and field research is required to build a comprehensive understanding of the marine microbial P cycle.

  4. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    Directory of Open Access Journals (Sweden)

    Darine Trabelsi

    2013-01-01

    Full Text Available The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  5. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production.

    Science.gov (United States)

    Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng

    2017-07-19

    Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.

  6. Molecular microbial ecology manual

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Bruijn, de F.J.; Head, I.M.; Akkermans, A.D.L.

    2004-01-01

    The field of microbial ecology has been revolutionized in the past two decades by the introduction of molecular methods into the toolbox of the microbial ecologist. This molecular arsenal has helped to unveil the enormity of microbial diversity across the breadth of the earth's ecosystems, and has

  7. Microbial electrosynthetic cells

    Energy Technology Data Exchange (ETDEWEB)

    May, Harold D.; Marshall, Christopher W.; Labelle, Edward V.

    2018-01-30

    Methods are provided for microbial electrosynthesis of H.sub.2 and organic compounds such as methane and acetate. Method of producing mature electrosynthetic microbial populations by continuous culture is also provided. Microbial populations produced in accordance with the embodiments as shown to efficiently synthesize H.sub.2, methane and acetate in the presence of CO.sub.2 and a voltage potential. The production of biodegradable and renewable plastics from electricity and carbon dioxide is also disclosed.

  8. Release of Waste Tire Comprehensive Utilization Industry Access Conditions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On July 31, 2012, the Ministry of Industry and Information Technology released the Tire Retread- ing lndustry Access Conditions and Waste Tire Comprehensive Utilization Industry Access Condi- tions with the No. 32 announcement of 2012. The state will lay a foundation for realizing the green, safe, efficient, eco-friendly and energy saving tar- gets in the "12th Five-year Plan" of the industry by raising access conditions, regulating industrial development order, strengthening environmental protection, promoting corporate optimizing and up- grading, improving resources comprehensive utiliza- tion technology and management level and guiding the "harmless recycling and eco-friendly utiliza- tion" of the industry.

  9. Tales from the tomb: the microbial ecology of exposed rock surfaces.

    Science.gov (United States)

    Brewer, Tess E; Fierer, Noah

    2018-03-01

    Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.

    Science.gov (United States)

    Robinson, Serina L; Badalamenti, Jonathan P; Dodge, Anthony G; Tassoulas, Lambros J; Wackett, Lawrence P

    2018-03-12

    Biuret is a minor component of urea fertilizer and an intermediate in s-triazine herbicide biodegradation. The microbial metabolism of biuret has never been comprehensively studied. Here, we enriched and isolated bacteria from a potato field that grew on biuret as a sole nitrogen source. We sequenced the genome of the fastest-growing isolate, Herbaspirillum sp. BH-1 and identified genes encoding putative biuret hydrolases (BHs). We purified and characterized a functional BH enzyme from Herbaspirillum sp. BH-1 and two other bacteria from divergent phyla. The BH enzymes reacted exclusively with biuret in the range of 2-11 µmol min -1 mg -1 protein. We then constructed a global protein superfamily network to map structure-function relationships in the BH subfamily and used this to mine > 7000 genomes. High-confidence BH sequences were detected in Actinobacteria, Alpha- and Beta-proteobacteria, and some fungi, archaea and green algae, but not animals or land plants. Unexpectedly, no cyanuric acid hydrolase homologs were detected in > 90% of genomes with BH homologs, suggesting BHs may have arisen independently of s-triazine ring metabolism. This work links genotype to phenotype by enabling accurate genome-mining to predict microbial utilization of biuret. Importantly, it advances understanding of the microbial capacity for biuret biodegradation in agricultural systems. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. How to access and exploit natural resources sustainably: petroleum biotechnology.

    Science.gov (United States)

    Sherry, Angela; Andrade, Luiza; Velenturf, Anne; Christgen, Beate; Gray, Neil D; Head, Ian M

    2017-09-01

    As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially-mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Microbial conversion of food wastes for biofertilizer production with thermophilic lipolytic microbes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shu-Hsien; Yang, Shang-Shyng [Institute of Microbiology and Biochemistry, National Taiwan University, Taipei 10617, (Taiwan); Liu, Ching-Piao [Department of Biological Science and Technology, Meiho Institute of Technology, Pingtung 91201, (Taiwan)

    2007-05-15

    Food waste is approximately one quarter of the total garbage in Taiwan. To investigate the feasibility of microbial conversion of food waste to multiple functional biofertilizer, food waste was mixed with bulking materials, inoculated with thermophilic and lipolytic microbes and incubated at 50{sup o}C in a mechanical composter. Microbial inoculation enhanced the degradation of food wastes, increased the total nitrogen and the germination rate of alfalfa seed, shortened the maturity period and improved the quality of biofertilizer. In food waste inoculated with thermophilic and lipolytic Brevibacillus borstelensis SH168 for 28 days, total nitrogen increased from 2.01% to 2.10%, ash increased from 24.94% to 29.21%, crude fat decreased from 4.88% to 1.34% and the C/N ratio decreased from 18.02 to 17.65. Each gram of final product had a higher population of thermophilic microbes than mesophilic microbes. Microbial conversion of food waste to biofertilizer is a feasible and potential technology in the future to maintain the natural resources and to reduce the impact on environmental quality. (author)

  13. Natural Resources, Oil and Economic Growth in Sub-Saharan Africa

    OpenAIRE

    Janda, Karel; Quarshie, Gregory

    2017-01-01

    This paper takes a critical look at the natural resource curse in countries in sub-Saharan Africa and it highlights the role of institutionalised authority. The paper first provides a comprehensive literature review of natural resource curse, Dutch disease and the role of oil resources in resource curse. This is follow by the description of the relevant economic factors in sub-Saharan Africa, which is taken as prime example of the region with both important oil and other natural resources and...

  14. Microbial bioinformatics 2020.

    Science.gov (United States)

    Pallen, Mark J

    2016-09-01

    Microbial bioinformatics in 2020 will remain a vibrant, creative discipline, adding value to the ever-growing flood of new sequence data, while embracing novel technologies and fresh approaches. Databases and search strategies will struggle to cope and manual curation will not be sustainable during the scale-up to the million-microbial-genome era. Microbial taxonomy will have to adapt to a situation in which most microorganisms are discovered and characterised through the analysis of sequences. Genome sequencing will become a routine approach in clinical and research laboratories, with fresh demands for interpretable user-friendly outputs. The "internet of things" will penetrate healthcare systems, so that even a piece of hospital plumbing might have its own IP address that can be integrated with pathogen genome sequences. Microbiome mania will continue, but the tide will turn from molecular barcoding towards metagenomics. Crowd-sourced analyses will collide with cloud computing, but eternal vigilance will be the price of preventing the misinterpretation and overselling of microbial sequence data. Output from hand-held sequencers will be analysed on mobile devices. Open-source training materials will address the need for the development of a skilled labour force. As we boldly go into the third decade of the twenty-first century, microbial sequence space will remain the final frontier! © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. [Engineering issues of microbial ecology in space agriculture].

    Science.gov (United States)

    Yamashita, Masamichi; Ishikawa, Yoji; Oshima, Tairo

    2005-03-01

    how to conduct preventive maintenance for keeping cultivating soil healthy and productive. 3) Does microbial ecology contribute to building sustainable and expandable human habitation by utilizing the on site extraterrestrial resources? We are assessing technical feasibility of converting regolith to farming soil and structural materials for space agriculture. In the case of Mars habitation, carbon dioxide and a trace amount of nitrogen in atmosphere, and potassium and phosphor in minerals are the sources we consider. Excess oxygen can be accumulated by woods cultivation and their use for lumber. 4) Is the operation of space agriculture robust and safe, if it adopts hyper-thermophilic aerobic microbial ecology? Any ecological system is complex and non-linear, and shows latency and memory effects in its response. It is highly important to understand those features to design and operate space agriculture without falling into the fatal failure. Assessment should be made on the microbial safety and preparation of the preventive measures to eliminate negative elements that would either retard agricultural production or harm the healthy environment. It is worth to mention that such space agriculture would be an effective engineering testbed to solve the global problem on energy and environment. Mars and Moon exploration itself is a good advocate of healthy curiosity expressed by the sustainable civilization of our humankind. We propose to work together towards Mars and Moon with microbial ecology to assure pleasant habitation there.

  16. ALTERNATIVE MICROBIAL INDICATORS OF FAECAL POLLUTION: CURRENT PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    V. K. Tyagi, A. K. Chopra, A. A. Kazmi, Arvind Kumar

    2006-07-01

    Full Text Available Worldwide coliform bacteria are used as indicators of fecal contamination and hence, the possible presence of disease causing organisms. Therefore, it is important to understand the potential and limitations of these indicator organisms before realistically implementing guidelines and regulations to safeguard our water resources and public health. This review addresses the limitations of current faecal indicator microorganisms and proposed significant alternative microbial indicators of water and wastewater quality. The relevant literature brings out four such significant microbial water pollution indicators and the study of these indicators will reveal the total spectrum of water borne pathogens. As E.coli and enterococci indicates the presence of bacterial pathogens, Coliphages indicate the presence of enteric viruses, and Clostridium perfringens, an obligate anaerobe, indicates presence of parasitic protozoan and enteric viruses. Therefore, monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens in order to protect public health, as no single indicator is most highly predictive of membership in the presence or absence category for pathogens.

  17. To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a Sphagnum peatland?

    Science.gov (United States)

    Jassey, Vincent E J; Meyer, Caroline; Dupuy, Christine; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Metian, Marc; Chatelain, Auriel P; Gilbert, Daniel

    2013-10-01

    Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (δ(13)C and δ(15)N) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.

  18. Comprehensive Solutions for Integration of Solar Resources into Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, Kenneth [AWS Truepower, LLC, Albany, NY (United States); Makarov, Yuri V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rajagopal, Sankaran [Siemens Energy, Erlangen (Germany); Loutan, Clyde [California Independent System Operator; Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Laurie E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lu, Bo [Siemens Energy, Erlangen (Germany); Mansingh, Ashmin [Siemens Energy, Erlangen (Germany); Zack, John [MESO, Inc., Raleigh, NC (United States); Sherick, Robert [Southern California Edison, Rosemead, CA (United States); Romo, Abraham [Southern California Edison; Habibi-Ashrafi, Farrokh [Southern California Edison; Johnson, Raymond [Southern California Edison

    2016-01-14

    The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of such a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included

  19. Understanding Comprehensive School Reforms: Insights from Comparative-Historical Sociology and Power Resources Theory

    Science.gov (United States)

    Sass, Katharina

    2015-01-01

    The historical origins and development of comprehensive schooling have seldom been analyzed systematically and comparatively. However, there is a rich comparative and historically grounded literature on the development of welfare states, which focuses on many relevant policies, but ignores the education system. In particular, the power resources…

  20. Analysis of Comprehensive Utilization of Coconut Waste

    OpenAIRE

    Zheng, Kan; Liang, Dong; Zhang, Xirui

    2013-01-01

    This paper describes and analyzes the coconut cultivation in China, and the current comprehensive utilization of waste resources generated during cultivation and processing of coconut. The wastes generated in the process of cultivation include old coconut tree trunk, roots, withered coconut leaves, coconut flower and fallen cracking coconut, mainly used for biogas extraction, direct combustion and power generation, brewing, pharmacy, and processing of building materials; the wastes generated ...

  1. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  2. MBGD update 2013: the microbial genome database for exploring the diversity of microbial world.

    Science.gov (United States)

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2013-01-01

    The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity.

  3. Microbial ecology of terrestrial Antarctica: Are microbial systems at risk from human activities?

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.

    1996-08-01

    Many of the ecological systems found in continental Antarctica are comprised entirely of microbial species. Concerns have arisen that these microbial systems might be at risk either directly through the actions of humans or indirectly through increased competition from introduced species. Although protection of native biota is covered by the Protocol on Environmental Protection to the Antarctic Treaty, strict measures for preventing the introduction on non-native species or for protecting microbial habitats may be impractical. This report summarizes the research conducted to date on microbial ecosystems in continental Antarctica and discusses the need for protecting these ecosystems. The focus is on communities inhabiting soil and rock surfaces in non-coastal areas of continental Antarctica. Although current polices regarding waste management and other operations in Antarctic research stations serve to reduce the introduction on non- native microbial species, importation cannot be eliminated entirely. Increased awareness of microbial habitats by field personnel and protection of certain unique habitats from physical destruction by humans may be necessary. At present, small-scale impacts from human activities are occurring in certain areas both in terms of introduced species and destruction of habitat. On a large scale, however, it is questionable whether the introduction of non-native microbial species to terrestrial Antarctica merits concern.

  4. Resources scarcity: Cause of potential conflicts

    Directory of Open Access Journals (Sweden)

    Beriša Hatidža A.

    2016-01-01

    Full Text Available Natural resources are a common good and the common wealth of each country. Their use, commercial applications and economic evaluation should be planned focused and targeted controlled. In a group of natural resources include: energy resources, water, food, land, mineral resources, biological resources and others. Given that the conditions of resource exploitation variable categories, it can be said that the volume of resources also variable. Abstracting growing problem of resources scarcity of vital importance to the existence in the world, this paper aims to try to shed light on the wider and comprehensive aspects of contemporary global problems in the scarcity of natural resources with a focus on the deficit of food, water and energenata. Search for answers to questions related to the scarcity of the basic needs of some of the world's population, civilizational confrontation about the energy pie, is a research and empirical contribution to the work, which is reflected in the effort to look at global challenges that mankind faces in the second decade of the 21st century.

  5. Comprehensive efficiency analysis of supercomputer resource usage based on system monitoring data

    Science.gov (United States)

    Mamaeva, A. A.; Shaykhislamov, D. I.; Voevodin, Vad V.; Zhumatiy, S. A.

    2018-03-01

    One of the main problems of modern supercomputers is the low efficiency of their usage, which leads to the significant idle time of computational resources, and, in turn, to the decrease in speed of scientific research. This paper presents three approaches to study the efficiency of supercomputer resource usage based on monitoring data analysis. The first approach performs an analysis of computing resource utilization statistics, which allows to identify different typical classes of programs, to explore the structure of the supercomputer job flow and to track overall trends in the supercomputer behavior. The second approach is aimed specifically at analyzing off-the-shelf software packages and libraries installed on the supercomputer, since efficiency of their usage is becoming an increasingly important factor for the efficient functioning of the entire supercomputer. Within the third approach, abnormal jobs – jobs with abnormally inefficient behavior that differs significantly from the standard behavior of the overall supercomputer job flow – are being detected. For each approach, the results obtained in practice in the Supercomputer Center of Moscow State University are demonstrated.

  6. Microbial production strategies and applications of lycopene and other terpenoids.

    Science.gov (United States)

    Ma, Tian; Deng, Zixin; Liu, Tiangang

    2016-01-01

    Terpenoids are a large class of compounds that have far-reaching applications and economic value, particularly those most commonly found in plants; however, the extraction and synthesis of these compounds is often expensive and technically challenging. Recent advances in microbial metabolic engineering comprise a breakthrough that may enable the efficient, cost-effective production of these limited natural resources. Via the engineering of safe, industrial microorganisms that encode product-specific enzymes, and even entire metabolic pathways of interest, microbial-derived semisynthetic terpenoids may soon replace plant-derived terpenoids as the primary source of these valuable compounds. Indeed, the recent metabolic engineering of an Escherichia coli strain that produces the precursor to lycopene, a commercially and medically important compound, with higher yields than those in tomato plants serves as a successful example. Here, we review the recent developments in the metabolic engineering of microbes for the production of certain terpenoid compounds, particularly lycopene, which has been increasingly used in pharmaceuticals, nutritional supplements, and cosmetics. Furthermore, we summarize the metabolic engineering strategies used to achieve successful microbial production of some similar compounds. Based on this overview, there is a reason to believe that metabolic engineering comprises an optimal approach for increasing the production of lycopene and other terpenoids.

  7. Towards a Job Demands-Resources Health Model: Empirical Testing with Generalizable Indicators of Job Demands, Job Resources, and Comprehensive Health Outcomes

    OpenAIRE

    Brauchli, Rebecca; Jenny, Gregor J.; Füllemann, Désirée; Bauer, Georg F.

    2015-01-01

    Studies using the Job Demands-Resources (JD-R) model commonly have a heterogeneous focus concerning the variables they investigate?selective job demands and resources as well as burnout and work engagement. The present study applies the rationale of the JD-R model to expand the relevant outcomes of job demands and job resources by linking the JD-R model to the logic of a generic health development framework predicting more broadly positive and negative health. The resulting JD-R health model ...

  8. Microbial diversity in European alpine permafrost and active layers.

    Science.gov (United States)

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Ecological patterns, diversity and core taxa of microbial communities in groundwater-fed rapid gravity filters

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    2016-01-01

    the second most and most abundant fraction in PFs (27±23%) and AFs (45.2±23%), respectively, and were far more abundant than typical proteobacterial ammonium-oxidizing bacteria, suggesting a physiology beyond nitrite oxidation for Nitrospira. Within the core taxa, sequences closely related to types...... with ability to oxidize ammonium, nitrite, iron, manganese and methane as primary growth substrate were identified and dominated in both PFs (73.6±6%) and AFs (61.4±21%), suggesting their functional importance. Surprisingly, operational taxonomic unit richness correlated strongly and positively with sampling...... location in the drinking water treatment plant (from PFs to AFs), and a weaker negative correlation held for evenness. Significant spatial heterogeneity in microbial community composition was detected in both PFs and AFs, and was higher in the AFs. This is the first comprehensive documentation of microbial...

  10. Analysis of stability to cheaters in models of antibiotic degrading microbial communities.

    Science.gov (United States)

    Szilágyi, András; Boza, Gergely; Scheuring, István

    2017-06-21

    Antibiotic resistance carried out by antibiotic degradation has been suggested recently as a new mechanism to maintain coexistence of microbial species competing on a single limiting resource, even in well-mixed homogeneous environments. Species diversity and community stability, however, critically depend on resistance against social cheaters, mutants that do not invest in production, but still enjoy the benefits provided by others. Here we investigate how different mutant cheaters affect the stability of antibiotic producing and degrading microbial communities. We consider two cheater types, production and degradation cheaters. We generalize the mixed inhibition-zone and chemostat models introduced previously [Kelsic, E. D., Zhao, J., Vetsigian, K., Kishony, R., 2015. Counteraction of an tibiotic production and degradation stabilizes microbial communities. Nature521, 516-519.] to study the population dynamics of microbial communities in well-mixed environment, and analyze the invasion of different cheaters in these models. We show that production cheaters, mutants that cease producing antibiotics, always destroy coexistence whenever there is a cost of producing these antibiotics. Degradation cheaters, mutants that loose their function of producing extracellular antibiotic degrading molecules, induce community collapse only if the cost of producing the degradation factors is above a critical level. Our analytical studies, supported by numerical simulations, highlight the sensitivity of antibiotic producing and degrading communities to loss-of-function mutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Detection of Metabolism Function of Microbial Community of Corpses by Biolog-Eco Method.

    Science.gov (United States)

    Jiang, X Y; Wang, J F; Zhu, G H; Ma, M Y; Lai, Y; Zhou, H

    2016-06-01

    To detect the changes of microbial community functional diversity of corpses with different postmortem interval (PMI) and to evaluate forensic application value for estimating PMI. The cultivation of microbial community from the anal swabs of a Sus scrofa and a human corpse placed in field environment from 0 to 240 h after death was performed using the Biolog-Eco Microplate and the variations of the absorbance values were also monitored. Combined with the technology of forensic pathology and flies succession, the metabolic characteristics and changes of microbial community on the decomposed corpse under natural environment were also observed. The diversity of microbial metabolism function was found to be negatively correlated with the number of maggots in the corpses. The freezing processing had the greatest impact on average well color development value at 0 h and the impact almost disappeared after 48 h. The diversity of microbial metabolism of the samples became relatively unstable after 192 h. The principal component analysis showed that 31 carbon sources could be consolidated for 5 principal components (accumulative contribution ratio >90%).The carbon source tsquare-analysis showed that N -acetyl- D -glucosamine and L -serine were the dominant carbon sources for estimating the PMI (0=240 h) of the Sus scrofa and human corpse. The Biolog-Eco method can be used to reveal the metabolic differences of the carbon resources utilization of the microbial community on the corpses during 0-240 h after death, which could provide a new basis for estimating the PMI. Copyright© by the Editorial Department of Journal of Forensic Medicine

  12. Methods of Comprehensive Assessment for China’s Energy Sustainability

    Science.gov (United States)

    Xu, Zhijin; Song, Yankui

    2018-02-01

    In order to assess the sustainable development of China’s energy objectively and accurately, we need to establish a reasonable indicator system for energy sustainability and make a targeted comprehensive assessment with the scientific methods. This paper constructs a comprehensive indicator system for energy sustainability from five aspects of economy, society, environment, energy resources and energy technology based on the theory of sustainable development and the theory of symbiosis. On this basis, it establishes and discusses the assessment models and the general assessment methods for energy sustainability with the help of fuzzy mathematics. It is of some reference for promoting the sustainable development of China’s energy, economy and society.

  13. Study on comprehensive evaluation methods for nuclear fuel cycle

    International Nuclear Information System (INIS)

    Arie, Kazuo

    1999-03-01

    This investigation on comprehensive-evaluation-methods for nuclear fuel cycle has been performed through open-literature search. As the results, no proper comprehensive-evaluation-method has been found which integrate several factors to be considered into only one factor. In the evaluation of future advanced nuclear energy systems, it is required to evaluate from both view points of natural resources and natural environment, in addition to the other factors such as safety, economy, and proliferation resistance. It is recommended that clarification of specific items or targets to be evaluated is most important as the first thing to be done. Second, methodology for the evaluation should be discussed. (author)

  14. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  15. The Danish Resources c. 1000-1550

    DEFF Research Database (Denmark)

    Poulsen, Bjørn; Hybel, Nils

    The first comprehensive economic history of Denmark. Arguing that the development of the Danish resources from the eleventh to the midle of the fourteenth century cannot be viewed simply as a period of prosperity, and conversely that the Late Middle Ages were characterized as much by growth...

  16. The utilization of microbial inoculants based on irradiated compost in dryland remediation to increase the growth of king grass and maize

    International Nuclear Information System (INIS)

    TRD Larasati; N Mulyana; D Sudradjat

    2016-01-01

    This research was conducted to evaluate the capability of functional microbial inoculants to remediate drylands. The microbial inoculants used consist of hydrocarbon-degrading microbial inoculants and plant-growth-promoting microbial inoculants. Compost-based carrier was sterilized by a gamma irradiation dose of 25 kGy to prepare seed inoculants. The irradiated-compost-based hydrocarbon-degrading microbial inoculants and king grass (Pennisetum purpureum Schumach.) were used to remediate oil-sludge-contaminated soil using in-situ composting for 60 days. The results showed that they could reduce THP (total petroleum hydrocarbons) by up to 82.23%. Plant-growth-promoting microbial inoculants were able to increase the dry weight of king grass from 47.39 to 100.66 g/plant, N uptake from 415.53 to 913.67 mg/plant, and P uptake from 76.52 to 178.33 mg/plant. Cow dung and irradiated-compost-based plant-growth-promoting microbial inoculants were able to increase the dry weight of maize (Zea mays L.) from 5.75 to 6.63 ton/ha (12.54%) and dry weight of grain potential from 5.30 to 7.15 ton/ha (35.03%). The results indicate that irradiated-compost-based microbial inoculants are suitable for remediating a dryland and therefore increase potential resources and improve the quality of the environment. (author)

  17. A comprehensive review of biomass resources and biofuels potential in Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Duku, Moses Hensley [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana); Gu, Sai [School of Engineering Sciences, University of Southampton, Southampton, S017 1BJ (United Kingdom); Hagan, Essel Ben [Institute of Industrial Research, Council for Scientific and Industrial Research, P. Box LG 576, Legon (Ghana)

    2011-01-15

    Biomass is the major energy source in Ghana contributing about 64% of Ghana's primary energy supply. In this paper, an assessment of biomass resources and biofuels production potential in Ghana is given. The broad areas of energy crops, agricultural crop residues, forest products residues, urban wastes and animal wastes are included. Animal wastes are limited to those produced by domesticated livestock. Agricultural residues included those generated from sugarcane, maize, rice, cocoa, oil palm, coconut, sorghum and millet processing. The urban category is subdivided into municipal solid waste, food waste, sewage sludge or bio-solids and waste grease. The availability of these types of biomass, together with a brief description of possible biomass conversion routes, sustainability measures, and current research and development activities in Ghana is given. It is concluded that a large availability of biomass in Ghana gives a great potential for biofuels production from these biomass resources. (author)

  18. Resource List--Using Evidence-Based Programs as the Foundation of Comprehensive Sex Education

    Science.gov (United States)

    Advocates for Youth, 2015

    2015-01-01

    Decades of research have identified dozens of programs that are effective in helping young people reduce their risk for pregnancy, HIV, and STDs. These evidence-based programs utilize strategies that include the provision of accurate, honest information about abstinence as well as contraception and can serve as the foundation for comprehensive sex…

  19. MIPS: curated databases and comprehensive secondary data resources in 2010.

    Science.gov (United States)

    Mewes, H Werner; Ruepp, Andreas; Theis, Fabian; Rattei, Thomas; Walter, Mathias; Frishman, Dmitrij; Suhre, Karsten; Spannagl, Manuel; Mayer, Klaus F X; Stümpflen, Volker; Antonov, Alexey

    2011-01-01

    The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38,000,000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de).

  20. Microbial Community Structure in a Serpentine-Hosted Abiotic Gas Seepage at the Chimaera Ophiolite, Turkey.

    Science.gov (United States)

    Neubeck, Anna; Sun, Li; Müller, Bettina; Ivarsson, Magnus; Hosgörmez, Hakan; Özcan, Dogacan; Broman, Curt; Schnürer, Anna

    2017-06-15

    The surface waters at the ultramafic ophiolitic outcrop in Chimaera, Turkey, are characterized by high pH values and high metal levels due to the percolation of fluids through areas of active serpentinization. We describe the influence of the liquid chemistry, mineralogy, and H 2 and CH 4 levels on the bacterial community structure in a semidry, exposed, ultramafic environment. The bacterial and archaeal community structures were monitored using Illumina sequencing targeting the 16S rRNA gene. At all sampling points, four phyla, Proteobacteria , Actinobacteria , Chloroflexi , and Acidobacteria , accounted for the majority of taxa. Members of the Chloroflexi phylum dominated low-diversity sites, whereas Proteobacteria dominated high-diversity sites. Methane, nitrogen, iron, and hydrogen oxidizers were detected as well as archaea and metal-resistant bacteria. IMPORTANCE Our study is a comprehensive microbial investigation of the Chimaera ophiolite. DNA has been extracted from 16 sites in the area and has been studied from microbial and geochemical points of view. We describe a microbial community structure that is dependent on terrestrial, serpentinization-driven abiotic H 2 , which is poorly studied due to the rarity of these environments on Earth. Copyright © 2017 Neubeck et al.

  1. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    Science.gov (United States)

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graded Lexicons: New Resources for Educational Purposes and Much More

    Science.gov (United States)

    Gala, Núria; Billami, Mokhtar B.; François, Thomas; Bernhard, Delphine

    2015-01-01

    Computational tools and resources play an important role for vocabulary acquisition. Although a large variety of dictionaries and learning games are available, few resources provide information about the complexity of a word, either for learning or for comprehension. The idea here is to use frequency counts combined with intralexical variables to…

  3. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  4. Potential sources of hydrocarbons and their microbial degradation in sediments from the deep geothermal Lusi site, Indonesia

    Science.gov (United States)

    Krueger, Martin; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin

    2017-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems, which started in 2006 following an earthquake on Java Island. Since then it has been continuously producing hot and hydrocarbon rich mud from a central crater with peaks reaching 180.000 m3 per day. Numerous investigations focused on the study of microbial communities which thrive at offshore methane and oil seeps and mud volcanoes, however very little has been done on onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 as well as of liquid hydrocarbons originating from one or more km below the surface. While the source of the methane at Lusi is unambiuous, the origin of the seeping oil is still discussed. Both, source and maturity estimates from biomarkers, are in favor of a type II/III organic matter source. Likely the oils were formed from the studied black shales (deeper Ngimbang Fm.) which contained a Type III component in the Type II predominated organic matter. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade different hydrocarbons. The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms. First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.

  5. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR

    KAUST Repository

    Bayer, Kristina

    2014-07-09

    In spite of considerable insights into the microbial diversity of marine sponges, quantitative information on microbial abundances and community composition remains scarce. Here, we established qPCR assays for the specific quantification of four bacterial phyla of representative sponge symbionts as well as the kingdoms Eubacteria and Archaea. We could show that the 16S rRNA gene numbers of Archaea, Chloroflexi, and the candidate phylum Poribacteria were 4-6 orders of magnitude higher in high microbial abundance (HMA) than in low microbial abundance (LMA) sponges and that actinobacterial 16S rRNA gene numbers were 1-2 orders higher in HMA over LMA sponges, while those for Cyanobacteria were stable between HMA and LMA sponges. Fluorescence in situ hybridization of Aplysina aerophoba tissue sections confirmed the numerical dominance of Chloroflexi, which was followed by Poribacteria. Archaeal and actinobacterial cells were detected in much lower numbers. By use of fluorescence-activated cell sorting as a primer- and probe-independent approach, the dominance of Chloroflexi, Proteobacteria, and Poribacteria in A. aerophoba was confirmed. Our study provides new quantitative insights into the microbiology of sponges and contributes to a better understanding of the HMA/LMA dichotomy. The authors quantified sponge symbionts in eight sponge species from three different locations by real time PCR targetting 16S rRNA genes. Additionally, FISH was performed and diversity and abundance of singularized microbial symbionts from Aplysina aerophoba was determined for a comprehensive quantification work. © 2014 Federation of European Microbiological Societies.

  6. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh

    Directory of Open Access Journals (Sweden)

    Edwin T. Gnanaprakasam

    2017-11-01

    Full Text Available Long-term exposure to trace levels of arsenic (As in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III and As(V reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V and Fe(III in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.

  7. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors.

    Science.gov (United States)

    Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P

    2015-05-01

    The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the 'paradox of enrichment' which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  9. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.

    Science.gov (United States)

    Wang, Gangsheng; Post, Wilfred M

    2012-09-01

    We attempted to reconcile three microbial maintenance models (Herbert, Pirt, and Compromise) through a theoretical reassessment. We provided a rigorous proof that the true growth yield coefficient (Y(G)) is the ratio of the specific maintenance rate (a in Herbert) to the maintenance coefficient (m in Pirt). Other findings from this study include: (1) the Compromise model is identical to the Herbert for computing microbial growth and substrate consumption, but it expresses the dependence of maintenance on both microbial biomass and substrate; (2) the maximum specific growth rate in the Herbert (μ(max,H)) is higher than those in the other two models (μ(max,P) and μ(max,C)), and the difference is the physiological maintenance factor (m(q) = a); and (3) the overall maintenance coefficient (m(T)) is more sensitive to m(q) than to the specific growth rate (μ(G)) and Y(G). Our critical reassessment of microbial maintenance provides a new approach for quantifying some important components in soil microbial ecology models. © This article is a US government work and is in the public domain in the USA.

  10. Research Progress of Hydrogen Production fromOrganic Wastes in Microbial Electrolysis Cell(MEC

    Directory of Open Access Journals (Sweden)

    YU Yin-sheng

    2015-08-01

    Full Text Available Microbial electrolysis cell(MECtechnology as an emerging technology, has achieved the target of hydrogen production from different substrates such as waste water, forestry wastes, activated sludge by simultaneous enzymolysis and fermentation, which can effectively improve the efficiency of resource utilization. This paper described the working principle of MEC and analyzed these factors influencing the process of hydrogen production from organic waste in MEC.

  11. The Microbial DNA Index System (MiDIS): A tool for microbial pathogen source identification

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-08-09

    The microbial DNA Index System (MiDIS) is a concept for a microbial forensic database and investigative decision support system that can be used to help investigators identify the sources of microbial agents that have been used in a criminal or terrorist incident. The heart of the proposed system is a rigorous method for calculating source probabilities by using certain fundamental sampling distributions associated with the propagation and mutation of microbes on disease transmission networks. This formalism has a close relationship to mitochondrial and Y-chromosomal human DNA forensics, and the proposed decision support system is somewhat analogous to the CODIS and SWGDAM mtDNA databases. The MiDIS concept does not involve the use of opportunistic collections of microbial isolates and phylogenetic tree building as a basis for inference. A staged approach can be used to build MiDIS as an enduring capability, beginning with a pilot demonstration program that must meet user expectations for performance and validation before evolving into a continuing effort. Because MiDIS requires input from a a broad array of expertise including outbreak surveillance, field microbial isolate collection, microbial genome sequencing, disease transmission networks, and laboratory mutation rate studies, it will be necessary to assemble a national multi-laboratory team to develop such a system. The MiDIS effort would lend direction and focus to the national microbial genetics research program for microbial forensics, and would provide an appropriate forensic framework for interfacing to future national and international disease surveillance efforts.

  12. Effects of Elevated Carbon Dioxide and Salinity on the Microbial Diversity in Lithifying Microbial Mats

    Directory of Open Access Journals (Sweden)

    Steven R. Ahrendt

    2014-03-01

    Full Text Available Atmospheric levels of carbon dioxide (CO2 are rising at an accelerated rate resulting in changes in the pH and carbonate chemistry of the world’s oceans. However, there is uncertainty regarding the impact these changing environmental conditions have on carbonate-depositing microbial communities. Here, we examine the effects of elevated CO2, three times that of current atmospheric levels, on the microbial diversity associated with lithifying microbial mats. Lithifying microbial mats are complex ecosystems that facilitate the trapping and binding of sediments, and/or the precipitation of calcium carbonate into organosedimentary structures known as microbialites. To examine the impact of rising CO2 and resulting shifts in pH on lithifying microbial mats, we constructed growth chambers that could continually manipulate and monitor the mat environment. The microbial diversity of the various treatments was compared using 16S rRNA gene pyrosequencing. The results indicated that elevated CO2 levels during the six month exposure did not profoundly alter the microbial diversity, community structure, or carbonate precipitation in the microbial mats; however some key taxa, such as the sulfate-reducing bacteria Deltasulfobacterales, were enriched. These results suggest that some carbonate depositing ecosystems, such as the microbialites, may be more resilient to anthropogenic-induced environmental change than previously thought.

  13. Resources on Academic Bargaining and Governance.

    Science.gov (United States)

    Tice, Terrence N.

    In recent years several bibliographies have been compiled on the subject of collective bargaining in higher education. This publication is an attempt to provide laymen with an up-to-date and comprehensive bibliography. Citations are presented in three categories: (1) agencies, bibliographies, periodicals, and other basic resources; (2) public…

  14. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  15. DW3 Classical Music Resources: Managing Mozart on the Web.

    Science.gov (United States)

    Fineman, Yale

    2001-01-01

    Discusses the development of DW3 (Duke World Wide Web) Classical Music Resources, a vertical portal that comprises the most comprehensive collection of classical music resources on the Web with links to more than 2800 non-commercial pages/sites in over a dozen languages. Describes the hierarchical organization of subject headings and considers…

  16. Molecular ecology of microbial mats

    NARCIS (Netherlands)

    Bolhuis, H.; Cretoiu, M.S.; Stal, L.J.

    2014-01-01

    Phototrophic microbial mats are ideal model systems for ecological and evolutionary analysis of highly diverse microbial communities. Microbial mats are small-scale, nearly closed, and self-sustaining benthic ecosystems that comprise the major element cycles, trophic levels, and food webs. The steep

  17. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies.

    Science.gov (United States)

    Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika

    2017-10-01

    Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs.

    Science.gov (United States)

    Varjani, Sunita J; Gnansounou, Edgard

    2017-12-01

    Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Role of Working Memory in Typically Developing Children's Complex Sentence Comprehension

    Science.gov (United States)

    Montgomery, James W.; Magimairaj, Beula M.; O'Malley, Michelle H.

    2008-01-01

    The influence of three mechanisms of working memory (phonological short-term memory (PSTM capacity), attentional resource control/allocation, and processing speed) on children's complex (and simple) sentence comprehension was investigated. Fifty two children (6-12 years) completed a nonword repetition task (indexing PSTM), concurrent verbal…

  20. Evaluating urban eco-tourism resources and environment: a case study in Shanghai Chenshan Botanical Garden, China

    Science.gov (United States)

    Yu, Qi; Yin, Jie

    2018-02-01

    In this paper, Shanghai Chenshan Botanical Garden, China has been selected as the study area. The overall status and the development conditions of resources and environment have been analyzed for the park. The eco-tourism resources and environment of Chenshan Botanical Garden were further evaluated synthetically by using expert analysis and questionnaire. A comprehensive evaluation system including 16 indices has been initially established from three aspects of tourism resource element value, resource development condition and eco-environment condition. The characteristics of eco-tourism resources and the score of each indicator for Chenshan Botanical Garden have subsequently been generated. The results show that the comprehensive evaluation score of eco-tourism resources and environment for Shanghai Chenshan Botanical Garden is 72.06, which belongs to third level of excellent tourism resources and environment. Finally, five suggestions are proposed for future development of its eco-tourism resources and environment.

  1. eLearning resources to supplement postgraduate neurosurgery training.

    OpenAIRE

    Stienen, MN; Schaller, K; Cock, H; Lisnic, V; Regli, L; Thomson, S

    2017-01-01

    BACKGROUND: In an increasingly complex and competitive professional environment, improving methods to educate neurosurgical residents is key to ensure high-quality patient care. Electronic (e)Learning resources promise interactive knowledge acquisition. We set out to give a comprehensive overview on available eLearning resources that aim to improve postgraduate neurosurgical training and review the available literature. MATERIAL AND METHODS: A MEDLINE query was performed, using the search ter...

  2. The Earth Microbiome Project and modeling the planets microbial potential (Invited)

    Science.gov (United States)

    Gilbert, J. A.

    2013-12-01

    The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires

  3. Microbial production of natural gas from coal and organic-rich shale

    Science.gov (United States)

    Orem, William

    2013-01-01

    Natural gas is an important component of the energy mix in the United States, producing greater energy yield per unit weight and less pollution compared to coal and oil. Most of the world’s natural gas resource is thermogenic, produced in the geologic environment over time by high temperature and pressure within deposits of oil, coal, and shale. About 20 percent of the natural gas resource, however, is produced by microorganisms (microbes). Microbes potentially could be used to generate economic quantities of natural gas from otherwise unexploitable coal and shale deposits, from coal and shale from which natural gas has already been recovered, and from waste material such as coal slurry. Little is known, however, about the microbial production of natural gas from coal and shale.

  4. Microbial biosensors for environmental monitoring

    Directory of Open Access Journals (Sweden)

    David VOGRINC

    2015-12-01

    Full Text Available Microbial biosensors are analytical devices capable of sensing substances in the environment due to the specific biological reaction of the microorganism or its parts. Construction of a microbial biosensor requires knowledge of microbial response to the specific analyte. Linking this response with the quantitative data, using a transducer, is the crucial step in the construction of a biosensor. Regarding the transducer type, biosensors are divided into electrochemical, optical biosensors and microbial fuel cells. The use of the proper configuration depends on the selection of the biosensing element. With the use of transgenic E. coli strains, bioluminescence or fluorescence based biosensors were developed. Microbial fuel cells enable the use of the heterogeneous microbial populations, isolated from wastewater. Different microorganisms are used for different pollutants – pesticides, heavy metals, phenolic compounds, organic waste, etc. Biosensing enables measurement of their concentration and their toxic or genotoxic effects on the microbes. Increasing environmental awareness has contributed to the increase of interest for biomonitoring. Although technologies, such as bioinformatics and genetic engineering, allow us to design complex and efficient microbial biosensors for environmental pollutants, the transfer of the laboratory work to the field still remains a problem to solve.

  5. Long-term application of winery wastewater - Effect on soil microbial populations and soil chemistry

    Science.gov (United States)

    Mosse, Kim; Patti, Antonio; Smernik, Ron; Cavagnaro, Timothy

    2010-05-01

    The ability to reuse winery wastewater (WWW) has potential benefits both with respect to treatment of a waste stream, as well as providing a beneficial water resource in water limited regions such as south-eastern Australia, California and South Africa. Over an extended time period, this practice leads to changes in soil chemistry, and potentially, also to soil microbial populations. In this study, we compared the short term effects of WWW (both treated and untreated) application on soil biology and chemistry in two adjacent paired sites with the same soil type, one of which had received WWW for approximately 30 years, and the other which had not. The paired sites were treated with an industrially relevant quantity of WWW, and the soil microbial activity (measured as soil CO2 efflux) and common soil physicochemical properties were monitored over a 16-day period. In addition, Solid State 13C NMR was employed on whole soil samples from the two sites, to measure and compare the chemical nature of the soil organic matter at the paired sites. The acclimatised soil showed a high level of organic matter and a greater spike in microbial activity following WWW addition, in comparison with the non-acclimatised soil, suggesting differences in soil chemistry and soil microbial communities between the two sites. Soil nitrate and phosphorus levels showed significant differences between WWW treatments; these differences likely to be microbially mediated.

  6. Natural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Green, T. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Schwager, K. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-10-01

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265-acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 15 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan works toward sound ecological management that not only benefits BNL’s ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text.

  7. Microbial Diversity in Hydrothermal Surface to Sub-surface Environment of Suiyo Seamount

    Science.gov (United States)

    Higashi, Y.; Sunamura, M.; Kitamura, K.; Kurusu, Y.; Nakamura, K.; Maruyama, A.

    2002-12-01

    After excavation trials to a hydrothermal subsurface biosphere of the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined using samples collected from drilled boreholes and natural vents with an catheter-type in situ microbial entrapment/incubator. This instrument consisted of a heat-tolerant cylindrical pipe with entrapment of a titanium-mesh capsule, containing sterilized inorganic porous grains, on the tip. After 3-10 day deployment in venting fluids with the maximum temperatures from 156 to 305degC, Microbial DNA was extracted from the grains and a 16S rDNA region was amplified and sequenced. Through the phylogenetic analysis of total 72 Bacteria and 30 Archaea clones, we found three novel phylogenetic groups in this hydrothermal surface to subsurface biosphere. Some new clades within the epsilon-Proteobacteria, which seemed to be microaerophilic, moderate thermophilic, and/or sulfur oxidizing, were detected. Clones related to moderate thermophilic and photosynthetic microbes were found in grain-attached samples at collapsed borehole and natural vent sites. We also detected a new clade closely related to a hyperthermophilic Archaea, Methanococcus jannashii, which has the capability of growing autotrophically on hydrogen and producing methane. However, the later two phylogroups were estimated as below a detection limit in microscopic cell counting, i.e., fluorescence in situ hybridization and direct counting. Most of microbes in venting fluids were assigned to be Bacteria, but difficult in specifying them using any known probes. The environment must be notable in microbial and genetic resources, while the ecosystem seems to be mainly supported by chemosynthetic products through the microbial sulfur oxidation, as in most deep-sea hydrothermal systems.

  8. Uncharted Microbial World: Microbes and Their Activities in the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline; Buckley, Merry

    2007-12-31

    Microbes are the foundation for all of life. From the air we breathe to the soil we rely on for farming to the water we drink, everything humans need to survive is intimately coupled with the activities of microbes. Major advances have been made in the understanding of disease and the use of microorganisms in the industrial production of drugs, food products and wastewater treatment. However, our understanding of many complicated microbial environments (the gut and teeth), soil fertility, and biogeochemical cycles of the elements is lagging behind due to their enormous complexity. Inadequate technology and limited resources have stymied many lines of investigation. Today, most environmental microorganisms have yet to be isolated and identified, let alone rigorously studied. The American Academy of Microbiology convened a colloquium in Seattle, Washington, in February 2007, to deliberate the way forward in the study of microorganisms and microbial activities in the environment. Researchers in microbiology, marine science, pathobiology, evolutionary biology, medicine, engineering, and other fields discussed ways to build on and extend recent successes in microbiology. The participants made specific recommendations for targeting future research, improving methodologies and techniques, and enhancing training and collaboration in the field. Microbiology has made a great deal of progress in the past 100 years, and the useful applications for these new discoveries are numerous. Microorganisms and microbial products are now used in industrial capacities ranging from bioremediation of toxic chemicals to probiotic therapies for humans and livestock. On the medical front, studies of microbial communities have revealed, among other things, new ways for controlling human pathogens. The immediate future for research in this field is extremely promising. In order to optimize the effectiveness of community research efforts in the future, scientists should include manageable

  9. Common Hydraulic Fracturing Fluid Additives Alter the Structure and Function of Anaerobic Microbial Communities.

    Science.gov (United States)

    Mumford, Adam C; Akob, Denise M; Klinges, J Grace; Cozzarelli, Isabelle M

    2018-04-15

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C 3 H 6 BrNO 4 ). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills. IMPORTANCE Organic components of UOG wastewater can alter microbial communities and biogeochemical processes, which could alter the rates of

  10. The Danish Resources c. 1000-1550

    DEFF Research Database (Denmark)

    Hybel, Nils

    This work presents the first comprehensive economic history of medieval Denmark. It puts data produced by more than a century of historical research into a new context and includes a multitude of information based on primary research. The book abounds in knowledge of natural and human resources......, rural life, urban industries, tax, and commodity trade. Arguing that the development of the Danish resources from the eleventh to the fourteenth century cannot be viewed simply as a period of prosperity, and conversely that the Late Middle Ages were characcterized as much by growth as by recession...

  11. Assessing Resource Intensity and Renewability of Cellulosic Ethanol Technologies using Eco-LCA

    Science.gov (United States)

    Recognizing the contributions of natural resources and the lack of their comprehensive accounting in life cycle assessment (LCA) of cellulosic ethanol, an in-depth analysis of the contribution of natural resources in the life cycle of cellulosic ethanol derived from five differen...

  12. Enhanced microbial coalbed methane generation: A review of research, commercial activity, and remaining challenges

    Science.gov (United States)

    Ritter, Daniel J.; Vinson, David S.; Barnhart, Elliott P.; Akob, Denise M.; Fields, Matthew W.; Cunningham, Al B.; Orem, William H.; McIntosh, Jennifer C.

    2015-01-01

    Coalbed methane (CBM) makes up a significant portion of the world’s natural gas resources. The discovery that approximately 20% of natural gas is microbial in origin has led to interest in microbially enhanced CBM (MECoM), which involves stimulating microorganisms to produce additional CBM from existing production wells. This paper reviews current laboratory and field research on understanding processes and reservoir conditions which are essential for microbial CBM generation, the progress of efforts to stimulate microbial methane generation in coal beds, and key remaining knowledge gaps. Research has been primarily focused on identifying microbial communities present in areas of CBM generation and attempting to determine their function, in-situ reservoir conditions that are most favorable for microbial CBM generation, and geochemical indicators of metabolic pathways of methanogenesis (i.e., acetoclastic or hydrogenotrophic methanogenesis). Meanwhile, researchers at universities, government agencies, and companies have focused on four primary MECoM strategies: 1) microbial stimulation (i.e., addition of nutrients to stimulate native microbes); 2) microbial augmentation (i.e., addition of microbes not native to or abundant in the reservoir of interest); 3) physically increasing microbial access to coal and distribution of amendments; and 4) chemically increasing the bioavailability of coal organics. Most companies interested in MECoM have pursued microbial stimulation: Luca Technologies, Inc., successfully completed a pilot scale field test of their stimulation strategy, while two others, Ciris Energy and Next Fuel, Inc., have undertaken smaller scale field tests. Several key knowledge gaps remain that need to be addressed before MECoM strategies can be implemented commercially. Little is known about the bacterial community responsible for coal biodegradation and how these microorganisms may be stimulated to enhance microbial methanogenesis. In addition, research

  13. Comprehensive Care

    Science.gov (United States)

    ... Comprehensive Care Share this page Facebook Twitter Email Comprehensive Care Understand the importance of comprehensive MS care ... In this article A complex disease requires a comprehensive approach Today multiple sclerosis (MS) is not a ...

  14. Common hydraulic fracturing fluid additives alter the structure and function of anaerobic microbial communities

    Science.gov (United States)

    Mumford, Adam C.; Akob, Denise M.; Klinges, J. Grace; Cozzarelli, Isabelle M.

    2018-01-01

    The development of unconventional oil and gas (UOG) resources results in the production of large volumes of wastewater containing a complex mixture of hydraulic fracturing chemical additives and components from the formation. The release of these wastewaters into the environment poses potential risks that are poorly understood. Microbial communities in stream sediments form the base of the food chain and may serve as sentinels for changes in stream health. Iron-reducing organisms have been shown to play a role in the biodegradation of a wide range of organic compounds, and so to evaluate their response to UOG wastewater, we enriched anaerobic microbial communities from sediments collected upstream (background) and downstream (impacted) of an UOG wastewater injection disposal facility in the presence of hydraulic fracturing fluid (HFF) additives: guar gum, ethylene glycol, and two biocides, 2,2-dibromo-3-nitrilopropionamide (DBNPA) and bronopol (C3H6BrNO4). Iron reduction was significantly inhibited early in the incubations with the addition of biocides, whereas amendment with guar gum and ethylene glycol stimulated iron reduction relative to levels in the unamended controls. Changes in the microbial community structure were observed across all treatments, indicating the potential for even small amounts of UOG wastewater components to influence natural microbial processes. The microbial community structure differed between enrichments with background and impacted sediments, suggesting that impacted sediments may have been preconditioned by exposure to wastewater. These experiments demonstrated the potential for biocides to significantly decrease iron reduction rates immediately following a spill and demonstrated how microbial communities previously exposed to UOG wastewater may be more resilient to additional spills.

  15. Microbial transformations of nitrogen, sulfur and iron dictate vegetation composition in wetlands: a review

    Directory of Open Access Journals (Sweden)

    Leon P.M. Lamers

    2012-04-01

    Full Text Available The majority of studies on rhizospheric interactions between microbial communities and vegetation focus on pathogens, mycorrhizal symbiosis, and/or carbon transformations. Although the biogeochemical transformations of nitrogen (N, sulfur (S and iron (Fe have profound effects on plants, these effects have received far less attention. Firstly, all three elements are plant nutrients, and microbial activity significantly changes their mobility and availability. Secondly, microbial oxidation with oxygen supplied by radial oxygen loss (ROL from roots in wetlands causes acidification, while reduction using alternative electron acceptors leads to generation of alkalinity, affecting pH in the rhizosphere and hence plant composition. Thirdly, reduced species of all three elements may become phytotoxic. In addition, Fe cycling is tightly linked to that of S and phosphorus (P. As water level fluctuations are very common in wetlands, rapid changes in the availability of oxygen and alternative terminal electron acceptors will result in strong changes in the prevalent microbial redox reactions, with significant effects on plant growth. Depending on geological and hydrological settings, these interacting microbial transformations change the conditions and resource availability for plants, which are strong drivers of vegetation development and composition by changing relative competitive strengths. Conversely, microbial composition is strongly driven by vegetation composition. Therefore, the combination of micro- and macroecological knowledge is essential to understand the biogeochemical and biological key factors driving heterogeneity and total (i.e., micro-macro community composition at different spatial and temporal scales. As N and S inputs have drastically increased due to anthropogenic forcing and Fe inputs have decreased at a global scale, this combined approach has become even more urgent.

  16. Hydrodynamics of microbial filter feeding

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia

    2017-01-01

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate......-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude......; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet...

  17. Exogenous and Endogenous Learning Resources in the Actiotope Model of Giftedness and Its Significance for Gifted Education

    Science.gov (United States)

    Ziegler, Albert; Chandler, Kimberley L.; Vialle, Wilma; Stoeger, Heidrun

    2017-01-01

    Based on the Actiotope Model of Giftedness, this article introduces a learning-resource-oriented approach for gifted education. It provides a comprehensive categorization of learning resources, including five exogenous learning resources termed "educational capital" and five endogenous learning resources termed "learning…

  18. Comprehension instruction research-based best practices

    CERN Document Server

    Parris, Sheri R; Morrow, Lesley Mandel

    2015-01-01

    All key issues of research and practice in comprehension instruction are addressed in this highly regarded professional resource and course text. Leading scholars examine the processes that enable students to make meaning from what they read--and how this knowledge can be applied to improve teaching at all grade levels. Best practices for meeting the needs of diverse elementary and secondary students are identified. Essential topics include strategies for comprehending different types of texts, the impact of the Common Core State Standards (CCSS), cutting-edge assessment approaches, and the gr

  19. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata.

    Science.gov (United States)

    Kamutando, Casper N; Vikram, Surendra; Kamgan-Nkuekam, Gilbert; Makhalanyane, Thulani P; Greve, Michelle; Roux, Johannes J Le; Richardson, David M; Cowan, Don; Valverde, Angel

    2017-07-26

    Invasiveness and the impacts of introduced plants are known to be mediated by plant-microbe interactions. Yet, the microbial communities associated with invasive plants are generally poorly understood. Here we report on the first comprehensive investigation of the bacterial and fungal communities inhabiting the rhizosphere and the surrounding bulk soil of a widespread invasive tree, Acacia dealbata. Amplicon sequencing data indicated that rhizospheric microbial communities differed significantly in structure and composition from those of the bulk soil. Two bacterial (Alphaproteobacteria and Gammaproteobacteria) and two fungal (Pezizomycetes and Agaricomycetes) classes were enriched in the rhizosphere compared with bulk soils. Changes in nutritional status, possibly induced by A. dealbata, primarily shaped rhizosphere soil communities. Despite a high degree of geographic variability in the diversity and composition of microbial communities, invasive A. dealbata populations shared a core of bacterial and fungal taxa, some of which are known to be involved in N and P cycling, while others are regarded as plant pathogens. Shotgun metagenomic analysis also showed that several functional genes related to plant growth promotion were overrepresented in the rhizospheres of A. dealbata. Overall, results suggest that rhizosphere microbes may contribute to the widespread success of this invader in novel environments.

  20. Productive extension of semantic memory in school-aged children: Relations with reading comprehension and deployment of cognitive resources.

    Science.gov (United States)

    Bauer, Patricia J; Blue, Shala N; Xu, Aoxiang; Esposito, Alena G

    2016-07-01

    We investigated 7- to 10-year-old children's productive extension of semantic memory through self-generation of new factual knowledge derived through integration of separate yet related facts learned through instruction or through reading. In Experiment 1, an experimenter read the to-be-integrated facts. Children successfully learned and integrated the information and used it to further extend their semantic knowledge, as evidenced by high levels of correct responses in open-ended and forced-choice testing. In Experiment 2, on half of the trials, the to-be-integrated facts were read by an experimenter (as in Experiment 1) and on half of the trials, children read the facts themselves. Self-generation performance was high in both conditions (experimenter- and self-read); in both conditions, self-generation of new semantic knowledge was related to an independent measure of children's reading comprehension. In Experiment 3, the way children deployed cognitive resources during reading was predictive of their subsequent recall of newly learned information derived through integration. These findings indicate self-generation of new semantic knowledge through integration in school-age children as well as relations between this productive means of extension of semantic memory and cognitive processes engaged during reading. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. New and traditional energy resources from microbial activities in the agroindustrial system

    Directory of Open Access Journals (Sweden)

    Massimo i Vincenzin

    2011-02-01

    Full Text Available Microbial processes leading to the production of energy from vegetable biomasses and from residues of the agroindustry make possible the exploitation of widely available and renewable energy sources which can be considered at zero balance with regard to CO2 fixation and emission. These processes show a different level of technological maturity: some of them, like the production of bioethanol or biogas, are well established and diffused processes, while others, like hydrogen production, are in the phase of advanced research. Considering the future prospects, the latter process is the most promising owing to the high calorific value of hydrogen and the absence of polluting emissions when H2 is used for combustions or for the production of electricity with fuel cells. In this review, the research activities carried out, in the field of biogas and hydrogen production, by research groups belonging to the Italian Society for Agricultural, Environmental and Food Microbiology (SIMTREA are presented.

  2. New and traditional energy resources from microbial activities in the agroindustrial system

    Directory of Open Access Journals (Sweden)

    Roberto De Philippis

    Full Text Available Microbial processes leading to the production of energy from vegetable biomasses and from residues of the agroindustry make possible the exploitation of widely available and renewable energy sources which can be considered at zero balance with regard to CO2 fixation and emission. These processes show a different level of technological maturity: some of them, like the production of bioethanol or biogas, are well established and diffused processes, while others, like hydrogen production, are in the phase of advanced research. Considering the future prospects, the latter process is the most promising owing to the high calorific value of hydrogen and the absence of polluting emissions when H2 is used for combustions or for the production of electricity with fuel cells. In this review, the research activities carried out, in the field of biogas and hydrogen production, by research groups belonging to the Italian Society for Agricultural, Environmental and Food Microbiology (SIMTREA are presented.

  3. Microbial Monitoring of Surface Water in South Africa: An Overview

    Directory of Open Access Journals (Sweden)

    Brendan S. Wilhelmi

    2012-07-01

    Full Text Available Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H2S strip test might be used as a surrogate for the Colilert®18.

  4. The Protein Model Portal--a comprehensive resource for protein structure and model information.

    Science.gov (United States)

    Haas, Juergen; Roth, Steven; Arnold, Konstantin; Kiefer, Florian; Schmidt, Tobias; Bordoli, Lorenza; Schwede, Torsten

    2013-01-01

    The Protein Model Portal (PMP) has been developed to foster effective use of 3D molecular models in biomedical research by providing convenient and comprehensive access to structural information for proteins. Both experimental structures and theoretical models for a given protein can be searched simultaneously and analyzed for structural variability. By providing a comprehensive view on structural information, PMP offers the opportunity to apply consistent assessment and validation criteria to the complete set of structural models available for proteins. PMP is an open project so that new methods developed by the community can contribute to PMP, for example, new modeling servers for creating homology models and model quality estimation servers for model validation. The accuracy of participating modeling servers is continuously evaluated by the Continuous Automated Model EvaluatiOn (CAMEO) project. The PMP offers a unique interface to visualize structural coverage of a protein combining both theoretical models and experimental structures, allowing straightforward assessment of the model quality and hence their utility. The portal is updated regularly and actively developed to include latest methods in the field of computational structural biology. Database URL: http://www.proteinmodelportal.org.

  5. The Protein Model Portal—a comprehensive resource for protein structure and model information

    Science.gov (United States)

    Haas, Juergen; Roth, Steven; Arnold, Konstantin; Kiefer, Florian; Schmidt, Tobias; Bordoli, Lorenza; Schwede, Torsten

    2013-01-01

    The Protein Model Portal (PMP) has been developed to foster effective use of 3D molecular models in biomedical research by providing convenient and comprehensive access to structural information for proteins. Both experimental structures and theoretical models for a given protein can be searched simultaneously and analyzed for structural variability. By providing a comprehensive view on structural information, PMP offers the opportunity to apply consistent assessment and validation criteria to the complete set of structural models available for proteins. PMP is an open project so that new methods developed by the community can contribute to PMP, for example, new modeling servers for creating homology models and model quality estimation servers for model validation. The accuracy of participating modeling servers is continuously evaluated by the Continuous Automated Model EvaluatiOn (CAMEO) project. The PMP offers a unique interface to visualize structural coverage of a protein combining both theoretical models and experimental structures, allowing straightforward assessment of the model quality and hence their utility. The portal is updated regularly and actively developed to include latest methods in the field of computational structural biology. Database URL: http://www.proteinmodelportal.org PMID:23624946

  6. Big Hat, No Cattle: Managing Human Resources, Part 1.

    Science.gov (United States)

    Skinner, Wickham

    1982-01-01

    Presents an in-depth analysis of problems and a suggested approach to developing human resources which goes beyond identifying symptoms and provides a comprehensive perspective for building an effective work force. (JOW)

  7. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock

    Directory of Open Access Journals (Sweden)

    Dhiraj ePaul

    2016-01-01

    Full Text Available Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world created in the basalt rocks. Although culture-dependent studies have been reported, the comprehensive understanding of microbial community composition and structure of Lonar Lake remain obscure. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet near consistent community composition. The predominance of bacterial phyla Proteobacteria (30% followed by Actinobacteria (24%, Firmicutes (11% and Cyanobacteria (5% was observed. Bacterial phylum Bacteroidetes (1.12%, BD1-5 (0.5%, Nitrospirae (0.41% and Verrucomicrobia (0.28% were detected as relatively minor populations in Lonar Lake ecosystem. Within Proteobacteria, Gammaproteobacteria represented the most abundant population (21-47% among all the sediments and as a minor population in water samples. Bacterial members Proteobacteria and Firmicutes were present significantly higher (p≥0.05 in sediment samples, whereas members of Actinobacteria, Candidate_division_TM7 and Cyanobacteria (p≥0.05 were significantly abundant in water samples. It was noted that compared to other hypersaline soda lakes, Lonar Lake samples formed one distinct cluster, suggesting a different microbial community composition and structure. The present study reports for the first time the different composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. Having better insight of community structure of this Lake ecosystem could be useful in understanding the microbial role in the geochemical cycle for future functional exploration of the unique hypersaline Lonar Lake.

  8. Microbial stratification and microbially catalyzed processes along a hypersaline chemocline

    Science.gov (United States)

    Hyde, A.; Joye, S. B.; Teske, A.

    2017-12-01

    Orca Basin is the largest deep hypersaline anoxic basin in the world, covering over 400 km2. Located at the bottom of the Gulf of Mexico, this body of water reaches depths of 200 meters and is 8 times denser (and more saline) than the overlying seawater. The sharp pycnocline prevents any significant vertical mixing and serves as a particle trap for sinking organic matter. These rapid changes in salinity, oxygen, organic matter, and other geochemical parameters present unique conditions for the microbial communities present. We collected samples in 10m intervals throughout the chemocline. After filtering the water, we used high-throughput bacterial and archaeal 16S rRNA gene sequencing to characterize the changing microbial community along the Orca Basin chemocline. The results reveal a dominance of microbial taxa whose biogeochemical function is entirely unknown. We then used metagenomic sequencing and reconstructed genomes for select samples, revealing the potential dominant metabolic processes in the Orca Basin chemocline. Understanding how these unique geochemical conditions shape microbial communities and metabolic capabilities will have implications for the ocean's biogeochemical cycles and the consequences of expanding oxygen minimum zones.

  9. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  10. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  11. Microbial ecology of methanogenic crude oil biodegradation; from microbial consortia to heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Head, Ian M.; Maguire, Michael J.; Sherry, Angela; Grant, Russell; Gray, Neil D.; Aitken, Carolyn M.; Martin Jones, D.; Oldenburg, Thomas B.P.; Larter, Stephen R. [Petroleum Research Group, Geosciences, University of Calgary (Canada)

    2011-07-01

    This paper presents the microbial ecology of methanogenic crude oil biodegradation. Biodegraded petroleum reservoirs are one of the most dramatic indications of the deep biosphere. It is estimated that heavy oil and oil sands will account for a considerable amount of energy production in the future. Carbon, a major resource for deep subsurface microorganisms, and energy are contained in large quantities in petroleum reservoirs. The aerobic to anaerobic paradigm shift is explained. A key process for in-situ oil biodegradation in petroleum reservoirs is methanogenesis. New paradigms for in-reservoir crude oil biodegradation are discussed. Variations in anaerobic degradation of crude oil hydrocarbons are also discussed. A graph shows the different patterns of crude oil biodegradation under sulfate-reducing and methanogenic conditions. Alternative anaerobic alkane activation mechanisms are also shown. From the study, it can be concluded that methanogenic crude oil degradation is of global importance and led to the establishment of the world's enormous heavy oil deposits.

  12. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  13. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota.

    Directory of Open Access Journals (Sweden)

    Esther Meersman

    Full Text Available The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts, and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts. Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.

  14. Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota.

    Science.gov (United States)

    Meersman, Esther; Steensels, Jan; Mathawan, Melissa; Wittocx, Pieter-Jan; Saels, Veerle; Struyf, Nore; Bernaert, Herwig; Vrancken, Gino; Verstrepen, Kevin J

    2013-01-01

    The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.

  15. Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils

    Directory of Open Access Journals (Sweden)

    Ching-Yu Huang

    2016-11-01

    Full Text Available Resource utilization by earthworms affects soil C and N dynamics and further colonization of invasive earthworms. By applying 13C-labeled Tabebuia heterophylla leaves and 15N-labeled Andropogon glomeratus grass, we investigated resource utilization by three earthworm species (invasive endogeic Pontoscolex corethrurus, native anecic Estherella sp, and native endogeic Onychochaeta borincana and their effects on soil C and N dynamics in Puerto Rican soils in a 22-day laboratory experiment. Changes of 13C/C and 15N/N in soils, earthworms, and microbial populations were analyzed to evaluate resource utilization by earthworms and their influences on C and N dynamics. Estherella spp. utilized the 13C-labeled litter; however, its utilization on the 13C-labeled litter reduced when cultivated with P. corethrurus and O. borincana. Both P. corethrurus and O. borincana utilized the 13C-labeled litter and 15C-labeled grass roots and root exudates. Pontoscolex corethrurus facilitated soil respiration by stimulating 13C-labeled microbial activity; however, this effect was suppressed possibly due to the changes in the microbial activities or community when coexisting with O. borincana. Increased soil N mineralization by individual Estherella spp. and O. borincana was reduced in the mixed-species treatments. The rapid population growth of P. corethrurus may increase competition pressure on food resources on the local earthworm community. The relevance of resource availability to the population growth of P. corethrurus and its significance as an invasive species is a topic in need of future research.

  16. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  17. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina; Moitinho-Silva, Lucas; Brü mmer, Franz; Cannistraci, Carlo V.; Ravasi, Timothy; Hentschel, Ute

    2015-01-01

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  18. Stockpiling and Comprehensive Utilization of Red Mud Research Progress

    Science.gov (United States)

    Liu, Dong-Yan; Wu, Chuan-Sheng

    2012-01-01

    With increasing production of red mud, the environmental problems caused by it are increasingly serious, and thus the integrated treatment of red mud is imminent. This article provides an overview of the composition and the basic characteristics of red mud. The research progress of safe stockpiling and comprehensive utilization of red mud is summarized. The safe stockpiling of red mud can be divided into two aspects: the design and safe operation of the stocking yard. The comprehensive utilization of red mud can be further divided into three aspects: the effective recycling of components, resource utilization and application in the field of environmental protection. This paper points out that the main focus of previous studies on red mud stockpiling is cost reproduction and land tenure. The recovery of resources from red mud has a high value-added, but low level industrialization. The use of red mud as a building material and filler material is the most effective way to reduce the stockpiling of red mud. Red mud used for environmental remediation materials is a new hotspot and worth promoting for its simple processing and low cost.

  19. Evaluation of Biogas Production Performance and Archaeal Microbial Dynamics of Corn Straw during Anaerobic Co-Digestion with Cattle Manure Liquid.

    Science.gov (United States)

    Zhang, Benyue; Zhao, Hongyan; Yu, Hairu; Chen, Di; Li, Xue; Wang, Weidong; Piao, Renzhe; Cui, Zongjun

    2016-04-28

    The rational utilization of crop straw as a raw material for natural gas production is of economic significance. In order to increase the efficiency of biogas production from agricultural straw, seasonal restrictions must be overcome. Therefore, the potential for biogas production via anaerobic straw digestion was assessed by exposing fresh, silage, and dry yellow corn straw to cow dung liquid extract as a nitrogen source. The characteristics of anaerobic corn straw digestion were comprehensively evaluated by measuring the pH, gas production, chemical oxygen demand, methane production, and volatile fatty acid content, as well as applying a modified Gompertz model and high-throughput sequencing technology to the resident microbial community. The efficiency of biogas production from fresh straw (433.8 ml/g) was higher than that of production from straw silage and dry yellow straw (46.55 ml/g and 68.75 ml/g, respectively). The cumulative biogas production from fresh straw, silage straw, and dry yellow straw was 365 l(-1) g(-1) VS, 322 l(-1) g-1 VS, and 304 l(-1) g(-1) VS, respectively, whereas cumulative methane production was 1,426.33%, 1,351.35%, and 1,286.14%, respectively, and potential biogas production was 470.06 ml(-1) g(-1) VS, 461.73 ml(-1) g(-1) VS, and 451.76 ml(-1) g(-1) VS, respectively. Microbial community analysis showed that the corn straw was mainly metabolized by acetate-utilizing methanogens, with Methanosaeta as the dominant archaeal community. These findings provide important guidance to the biogas industry and farmers with respect to rational and efficient utilization of crop straw resources as material for biogas production.

  20. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study

    DEFF Research Database (Denmark)

    Wakeham, Stuart G.; Amann, Rudi; Freemann, Katherine H.

    2007-01-01

    The stratified water column of the Black Sea is partitioned into oxic, suboxic, and euxinic zones, each characterized by different biogeochemical processes and by distinct microbial communities. In 2003, we collected particulate matter by large volume in situ filtration at the highest resolution...... reduction, and sulfide oxidation at the chemocline, and bacterial sulfate reduction and anaerobic oxidation of methane by archaea in the anoxic zone. Cell densities for archaea and sulfate reducing bacteria are estimated based on water column biomarker concentrations and compared with CARD-FISH results....

  1. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  2. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  3. Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chaowei; Harrold, Duff R.; Claypool, Joshua T.; Simmons, Blake A.; Singer, Steven W.; Simmons, Christopher W.; VanderGheynst, Jean S.

    2017-01-01

    Microorganisms involved in biomass deconstruction are an important resource for organic waste recycling and enzymes for lignocellulose bioconversion. The goals of this paper were to examine the impact of nitrogen amendment on microbial community restructuring, secretion of xylanases and endoglucanases, and potential for biomass deconstruction. Communities were cultivated aerobically at 55 °C on green waste (GW) amended with varying levels of NH4Cl. Bacterial and fungal communities were determined using 16S rRNA and ITS region gene sequencing and PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was applied to predict relative abundance of genes involved in lignocellulose hydrolysis. Nitrogen amendment significantly increased secretion of xylanases and endoglucanases, and microbial activity; enzyme activities and cumulative respiration were greatest when nitrogen level in GW was between 4.13–4.56 wt% (g/g), but decreased with higher nitrogen levels. The microbial community shifted to one with increasing potential to decompose complex polymers as nitrogen increased with peak potential occurring between 3.79–4.45 wt% (g/g) nitrogen amendment. Finally, the results will aid in informing the management of nitrogen level to foster microbial communities capable of secreting enzymes that hydrolyze recalcitrant polymers in lignocellulose and yield rapid decomposition of green waste.

  4. The maturing of microbial ecology.

    Science.gov (United States)

    Schmidt, Thomas M

    2006-09-01

    A.J. Kluyver and C.B. van Niel introduced many scientists to the exceptional metabolic capacity of microbes and their remarkable ability to adapt to changing environments in The Microbe's Contribution to Biology. Beyond providing an overview of the physiology and adaptability of microbes, the book outlined many of the basic principles for the emerging discipline of microbial ecology. While the study of pure cultures was highlighted, provided a unifying framework for understanding the vast metabolic potential of microbes and their roles in the global cycling of elements, extrapolation from pure cultures to natural environments has often been overshadowed by microbiologists inability to culture many of the microbes seen in natural environments. A combination of genomic approaches is now providing a culture-independent view of the microbial world, revealing a more diverse and dynamic community of microbes than originally anticipated. As methods for determining the diversity of microbial communities become increasingly accessible, a major challenge to microbial ecologists is to link the structure of natural microbial communities with their functions. This article presents several examples from studies of aquatic and terrestrial microbial communities in which culture and culture-independent methods are providing an enhanced appreciation for the microbe's contribution to the evolution and maintenance of life on Earth, and offers some thoughts about the graduate-level educational programs needed to enhance the maturing field of microbial ecology.

  5. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.

    Science.gov (United States)

    Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens

    2018-03-14

    Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.

  6. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  7. In-Drift Microbial Communities

    International Nuclear Information System (INIS)

    Jolley, D.

    2000-01-01

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses

  8. Gene Ontology Terms and Automated Annotation for Energy-Related Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Biswarup [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Tyler, Brett M. [Oregon State Univ., Corvallis, OR (United States); Setubal, Joao [Univ. of Sao Paulo (Brazil); Murali, T. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-11-03

    Gene Ontology (GO) is one of the more widely used functional ontologies for describing gene functions at various levels. The project developed 660 GO terms for describing energy-related microbial processes and filled the known gaps in this area of the GO system, and then used these terms to describe functions of 179 genes to showcase the utilities of the new resources. It hosted a series of workshops and made presentations at key meetings to inform and train scientific community members on these terms and to receive inputs from them for the GO term generation efforts. The project has developed a website for storing and displaying the resources (http://www.mengo.biochem.vt.edu/). The outcome of the project was further disseminated through peer-reviewed publications and poster and seminar presentations.

  9. School Climate: An Essential Component of a Comprehensive School Safety Plan

    Science.gov (United States)

    Stark, Heidi

    2017-01-01

    The intentional assessment and management of school climate is an essential component of a comprehensive school safety plan. The value of this preventive aspect of school safety is often diminished as schools invest resources in physical security measures as a narrowly focused effort to increase school safety (Addington, 2009). This dissertation…

  10. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...

  11. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.

    Science.gov (United States)

    Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-04-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.

  12. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, Ruud A.; Strik, David P.B.T.B.; Hamelers, Bert; Buisman, Cees [Wageningen Univ. (Netherlands). Sub-dept. of Environmental Technology; Rothballer, Michael; Hartmann, Anton [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Microbe-Plant Interactions; Engel, Marion; Schulz, Stephan; Schloter, Michael [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Terrestrial Ecogenetics

    2012-04-15

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors. (orig.)

  13. Effects of hydraulic frac fluids and formation waters on groundwater microbial communities

    Science.gov (United States)

    Krueger, Martin; Jimenez, Nuria

    2017-04-01

    Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperature, high pressure) were conducted using groundwater samples from three different locations. Series of microcosms containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides or frac fluids. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride were used as substrates, while others like triethanolamine or light oil distillate hydrogenated prevented microbial growth in

  14. VirSorter: mining viral signal from microbial genomic data

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2015-05-01

    available through the iPlant Cyberinfrastructure that provides a web-based user interface interconnected with the required computing resources. VirSorter thus complements existing prophage prediction softwares to better leverage fragmented, SAG and metagenomic datasets in a way that will scale to modern sequencing. Given these features, VirSorter should enable the discovery of new viruses in microbial datasets, and further our understanding of uncultivated viral communities across diverse ecosystems.

  15. VirSorter: mining viral signal from microbial genomic data

    Science.gov (United States)

    Roux, Simon; Enault, Francois; Hurwitz, Bonnie L.

    2015-01-01

    Plant Cyberinfrastructure that provides a web-based user interface interconnected with the required computing resources. VirSorter thus complements existing prophage prediction softwares to better leverage fragmented, SAG and metagenomic datasets in a way that will scale to modern sequencing. Given these features, VirSorter should enable the discovery of new viruses in microbial datasets, and further our understanding of uncultivated viral communities across diverse ecosystems. PMID:26038737

  16. Use of and microbial resistance to antibiotics in China: a path to reducing antimicrobial resistance.

    Science.gov (United States)

    Cui, Dan; Liu, Xinliang; Hawkey, Peter; Li, Hao; Wang, Quan; Mao, Zongfu; Sun, Jing

    2017-12-01

    We analyzed China's current use of and microbial resistance to antibiotics, and possible means of reducing antimicrobial resistance. Interventions like executive orders within clinical settings and educational approach with vertical approaches rather than an integrated strategy to curb the use of antimicrobials remain limited. An underlying problem is the system of incentives that has resulted in the intensification of inappropriate use by health professionals and patients. There is an urgent need to explore the relationship between financial and non-financial incentives for providers and patients, to eliminate inappropriate incentives. China's national health reforms have created an opportunity to contain inappropriate use of antibiotics through more comprehensive and integrated strategies. Containment of microbial resistance may be achieved by strengthening surveillance at national, regional and hospital levels; eliminating detrimental incentives within the health system; and changing prescribing behaviors to a wider health systems approach, to achieve long-term, equitable and sustainable results and coordinate stakeholders' actions through transparent sharing of information.

  17. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-03-01

    Conventional activated sludge-based wastewater treatment is an energy and resource-intensive process. Historically it has been successful at producing safely treated wastewater effluents in the developed world, specifically in places that have the infrastructure and space to support its operation. However, with a growing need for safe and efficient wastewater treatment across the world in both urban and rural settings, a paradigm shift in waste treatment is proving to be necessary. The sustainability of the future of wastewater treatment, in a significant way, hinges on moving towards energy neutrality and wastewater effluent reuse. This potential for reuse is threatened by the recent emergence and study of contaminants that have not been previously taken into consideration, such as antibiotics and other organic micropollutants (OMPs), antibiotic resistance genes, and persistent pathogenic bacteria. This dissertation focuses on investigating the use of anaerobic membrane bioreactor (AnMBR) technology for the sustainable treatment of municipal-type wastewaters. Specifically, a microbial approach to understanding biofouling and methane recovery potential in anaerobic MBR systems has been employed to assess different reactor systems’ efficiency. This dissertation further compares AnMBRs to their more widely used aerobic counterparts. This comparison specifically focuses on the removal and biodegradation of OMPs and antibiotics in both anaerobic and aerobic MBRs, while also investigating their effect on the proliferation of antibiotic resistance genes. Due to rising interest in wastewater effluent reuse and the lack of a comprehensive understanding of MBR systems’ effects on pathogen proliferation, this dissertation also investigates the presence of pathogens in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant

  18. Microbial electro-catalysis in fuel cell

    International Nuclear Information System (INIS)

    Dumas, Claire

    2007-01-01

    Microbial fuel cells (MFC) are devices that ensure the direct conversion of organic matter into electricity using bacterial bio-films as the catalysts of the electrochemical reactions. This study aims at improving the comprehension of the mechanisms involved in electron transfer pathways between the adhered bacteria and the electrodes. This optimization of the MFC power output could be done, for example, in exploring and characterizing various electrode materials. The electrolysis experiments carried out on Geobacter sulfurreducens deal with the microbial catalysis of the acetate oxidation, on the one hand, and the catalysis of the fumarate reduction on the other hand. On the anodic side, differences in current densities appeared on graphite, DSA R and stainless steel (8 A/m 2 , 5 A/m 2 and 0.7 A/m 2 respectively). These variations were explained more by materials roughness differences rather than their nature. Impedance spectroscopy study shows that the electro-active bio-film developed on stainless steel does not seem to modify the evolution of the stainless steel oxide layer, only the imposed potential remains determining. On the cathodic side, stainless steel sustained current densities more than twenty times higher than those obtained with graphite electrodes. The adhesion study of G. sulfurreducens on various materials in a flow cell, suggests that the bio-films resist to the hydrodynamic constraints and are not detached under a shear stress threshold value. The installation of two MFC prototypes, one in a sea station and the other directly in Genoa harbour (Italy) confirms some results obtained in laboratory and were promising for a MFC scale-up. (author) [fr

  19. Reading Comprehension: A Computerized Intervention with Primary-age Poor Readers.

    Science.gov (United States)

    Horne, Joanna Kathryn

    2017-05-01

    The current study investigates the effectiveness of a computerized reading comprehension programme on the reading accuracy, reading comprehension and reading rate of primary-age poor readers. There is little published literature relating to computerized reading interventions in UK primary schools, and no previous studies have investigated the Comprehension Booster programme. Thirty-eight children (26 boys and 12 girls; aged 6:7 to 11:0) from two schools in East Yorkshire, UK, took part. Half of the participants (the intervention group) undertook the Comprehension Booster programme for a 6-week period, whilst the other half (the control group) continued with their usual teaching. Significant effects of the intervention were found, with increases in reading accuracy and reading comprehension for the intervention group. It is concluded that computerized reading programmes can be effective in improving reading skills, and these are particularly useful for pupils with reading difficulties in disadvantaged areas, where resources are limited and family support in reading is lower. However, such programmes are not a replacement for good teaching, and regular monitoring of children with reading difficulties is required. Further research is necessary to compare the programme used here to other conventional and computerized intervention programmes, using a larger sample. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Challenges and contradictions in Nigeria's water resources policy ...

    African Journals Online (AJOL)

    But considering the underdeveloped status of Nigeria, there are three critical sectors whose effective functionalities are synergistic for accomplishing the RBDAs ... Work should continue on the comprehensive Water Resources Bill through the process of consultation that promote inclusion, accountability, transparency, and ...

  1. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface.

    Science.gov (United States)

    Mouser, Paula J; Borton, Mikayla; Darrah, Thomas H; Hartsock, Angela; Wrighton, Kelly C

    2016-11-01

    Horizontal drilling and hydraulic fracturing are increasingly used for recovering energy resources in black shales across the globe. Although newly drilled wells are providing access to rocks and fluids from kilometer depths to study the deep biosphere, we have much to learn about microbial ecology of shales before and after 'fracking'. Recent studies provide a framework for considering how engineering activities alter this rock-hosted ecosystem. We first provide data on the geochemical environment and microbial habitability in pristine shales. Next, we summarize data showing the same pattern across fractured shales: diverse assemblages of microbes are introduced into the subsurface, eventually converging to a low diversity, halotolerant, bacterial and archaeal community. Data we synthesized show that the shale microbial community predictably shifts in response to temporal changes in geochemistry, favoring conservation of key microorganisms regardless of inputs, shale location or operators. We identified factors that constrain diversity in the shale and inhibit biodegradation at the surface, including salinity, biocides, substrates and redox. Continued research in this engineered ecosystem is required to assess additive biodegradability, quantify infrastructure biocorrosion, treat wastewaters that return to the surface and potentially enhance energy production through in situ methanogenesis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  3. Comprehension and Generation of Metaphoric Language in Children, Adolescents, and Adults with Dyslexia.

    Science.gov (United States)

    Kasirer, Anat; Mashal, Nira

    2017-05-01

    Difficulties with figurative language comprehension were documented in adult dyslexia (DYS). In the present research, we investigated the comprehension and generation of metaphors in 37 children, 35 adolescents, and 34 adults with and without DYS. We also tested the contribution of executive function to metaphor processing. A multiple-choice questionnaire with conventional and novel metaphors was used to assess comprehension; a concept-explanation task was used to test conventional and novel metaphor generation (verbal creativity). The findings indicated differences between the dyslexic children and the control group in conventional metaphor comprehension. However, both groups performed similarly in the novel metaphor comprehension test. Furthermore, although children and adolescents with DYS showed similar performance in metaphor generation as their typically developing peers, adults with DYS generated more metaphors than controls. While scores on tests of verbal knowledge and mental flexibility contributed to the prediction of conventional metaphor comprehension, scores on non-verbal tests and mental flexibility contributed to the prediction of novel metaphor generation. Our findings suggest that individuals with DYS are not impaired in novel metaphor comprehension and metaphor generation and that metaphor comprehension and generation utilize different cognitive resources. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. NRC comprehensive records disposition schedule

    International Nuclear Information System (INIS)

    1992-03-01

    Title 44 United States Code, ''Public Printing and Documents,'' regulations cited in the General Services Administration's (GSA) ''Federal Information Resources Management Regulations'' (FIRMR), Part 201-9, ''Creation, Maintenance, and Use of Records,'' and regulation issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter XII, Subchapter B, ''Records Management,'' require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA's General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 2, contains ''NRC's Comprehensive Records Disposition Schedule,'' and the original authorized approved citation numbers issued by NARA. Rev. 2 totally reorganizes the records schedules from a functional arrangement to an arrangement by the host office. A subject index and a conversion table have also been developed for the NRC schedules to allow staff to identify the new schedule numbers easily and to improve their ability to locate applicable schedules

  5. Microbial Fingerprints of Community Structure Correlate with Changes in Ecosystem Function Induced by Perturbing the Redox Environment

    Science.gov (United States)

    Mills, A. L.; Ford, R. M.; Vallino, J. J.; Herman, J. S.; Hornberger, G. M.

    2001-12-01

    Restoration of high-quality groundwater has been an elusive engineering goal. Consequently, natural microbially-mediated reactions are increasingly relied upon to degrade organic contaminants, including hydrocarbons and many synthetic compounds. Of concern is how the introduction of an organic chemical contaminant affects the indigenous microbial communities, the geochemistry of the aquifer, and the function of the ecosystem. The presence of functional redundancy in microbial communities suggests that recovery of the community after a disturbance such as a contamination event could easily result in a community that is similar in function to that which existed prior to the contamination, but which is compositionally quite different. To investigate the relationship between community structure and function we observed the response of a diverse microbial community obtained from raw sewage to a dynamic redox environment using an aerobic/anaerobic/aerobic cycle. To evaluate changes in community function CO2, pH, ammonium and nitrate levels were monitored. A phylogenetically-based DNA technique (tRFLP) was used to assess changes in microbial community structure. Principal component analysis of the tRFLP data revealed significant changes in the composition of the microbial community that correlated well with changes in community function. Results from our experiments will be discussed in the context of a metabolic model based the biogeochemistry of the system. The governing philosophy of this thermodynamically constrained metabolic model is that living systems synthesize and allocate cellular machinery in such a way as to "optimally" utilize available resources in the environment. The robustness of this optimization-based approach provides a powerful tool for studying relationships between microbial diversity and ecosystem function.

  6. Application of biocathode in microbial fuel cells: cell performance and microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Guo-Wei, Chen [Pusan National Univ. (Korea). Dept. of Environmental Engineering; Hefei Univ. of Technology (China). School of Civil Engineering; Choi, Soo-Jung; Lee, Tae-Ho; Lee, Gil-Young; Cha, Jae-Hwan; Kim, Chang-Won [Pusan National Univ. (Korea). Dept. of Environmental Engineering

    2008-06-15

    Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m{sup 3}, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 {omega}, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 {omega}, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria. (orig.)

  7. Resource Planning for Massive Number of Process Instances

    Science.gov (United States)

    Xu, Jiajie; Liu, Chengfei; Zhao, Xiaohui

    Resource allocation has been recognised as an important topic for business process execution. In this paper, we focus on planning resources for a massive number of process instances to meet the process requirements and cater for rational utilisation of resources before execution. After a motivating example, we present a model for planning resources for process instances. Then we design a set of heuristic rules that take both optimised planning at build time and instance dependencies at run time into account. Based on these rules we propose two strategies, one is called holistic and the other is called batched, for resource planning. Both strategies target a lower cost, however, the holistic strategy can achieve an earlier deadline while the batched strategy aims at rational use of resources. We discuss how to find balance between them in the paper with a comprehensive experimental study on these two approaches.

  8. Constraining Biomarkers of Dissolved Organic Matter Sourcing Using Microbial Incubations of Vascular Plant Leachates of the California landscape

    Science.gov (United States)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.; Kaiser, K.; Spencer, R. G.; Guillemette, F.

    2017-12-01

    Source origin of dissolved organic matter (DOM) is crucial in determining reactivity, driving chemical and biological processing of carbon. DOM source biomarkers such as lignin (a vascular plant marker) and D-amino acids (bacterial markers) are well-established tools in tracing DOM origin and fate. The development of high-resolution mass spectrometry and optical studies has expanded our toolkit; yet despite these advances, our understanding of DOM sources and fate remains largely qualitative. Quantitative data on DOM pools and fluxes become increasingly necessary as we refine our comprehension of its composition. In this study, we aim to calibrate and quantify DOM source endmembers by performing microbial incubations of multiple vascular plant leachates, where total DOM is constrained by initial vascular plant input and microbial production. Derived endmembers may be applied to endmember mixing models to quantify DOM source contributions in aquatic systems.

  9. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  10. Success tree method of resources evaluation

    International Nuclear Information System (INIS)

    Chen Qinglan; Sun Wenpeng

    1994-01-01

    By applying the reliability theory in system engineering, the success tree method is used to transfer the expert's recognition on metallogenetic regularities into the form of the success tree. The aim of resources evaluation is achieved by means of calculating the metallogenetic probability or favorability of the top event of the success tree. This article introduces in detail, the source, principle of the success tree method and three kinds of calculation methods, expounds concretely how to establish the success tree of comprehensive uranium metallogenesis as well as the procedure from which the resources evaluation is performed. Because this method has not restrictions on the number of known deposits and calculated area, it is applicable to resources evaluation for different mineral species, types and scales and possesses good prospects of development

  11. Sustainability assessment of regional water resources under the DPSIR framework

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  12. Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions

    Directory of Open Access Journals (Sweden)

    Navdeep K. Dhami

    2018-02-01

    Full Text Available Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD and Tescan Integrated Mineral Analyzer (TIMA demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS. Scanning Electron Microscopy (SEM analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content

  13. Microbial control of pollution

    Energy Technology Data Exchange (ETDEWEB)

    Fry, J C; Gadd, G M; Herbert, R A; Jones, C W; Watson-Craik, I A [eds.

    1992-01-01

    12 papers are presented on the microbial control of pollution. Topics covered include: bioremediation of oil spills; microbial control of heavy metal pollution; pollution control using microorganisms and magnetic separation; degradation of cyanide and nitriles; nitrogen removal from water and waste; and land reclamation and restoration.

  14. Comprehensive Performance Nutrition for Special Operations Forces.

    Science.gov (United States)

    Daigle, Karen A; Logan, Christi M; Kotwal, Russ S

    2015-01-01

    Special Operations Forces (SOF) training, combat, and contingency operations are unique and demanding. Performance nutrition within the Department of Defense has emphasized that nutrition is relative to factors related to the desired outcome, which includes successful performance of mentally and physically demanding operations and missions of tactical and strategic importance, as well as nonoperational assignments. Discussed are operational, nonoperational, and patient categories that require different nutrition strategies to facilitate category-specific performance outcomes. Also presented are 10 major guidelines for a SOF comprehensive performance nutrition program, practical nutrition recommendations for Special Operators and medical providers, as well as resources for dietary supplement evaluation. Foundational health concepts, medical treatment, and task-specific performance factors should be considered when developing and systematically implementing a comprehensive SOF performance nutrition program. When tailored to organizational requirements, SOF unit- and culture-specific nutrition education and services can optimize individual Special Operator performance, overall unit readiness, and ultimately, mission success. 2015.

  15. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  16. Complex Sentence Comprehension and Working Memory in Children with Specific Language Impairment

    Science.gov (United States)

    Montgomery, James W.; Evans, Julia L.

    2009-01-01

    Purpose: This study investigated the association of 2 mechanisms of working memory (phonological short-term memory [PSTM], attentional resource capacity/allocation) with the sentence comprehension of school-age children with specific language impairment (SLI) and 2 groups of control children. Method: Twenty-four children with SLI, 18 age-matched…

  17. Copper removal and microbial community analysis in single-chamber microbial fuel cell.

    Science.gov (United States)

    Wu, Yining; Zhao, Xin; Jin, Min; Li, Yan; Li, Shuai; Kong, Fanying; Nan, Jun; Wang, Aijie

    2018-04-01

    In this study, copper removal and electricity generation were investigated in a single-chamber microbial fuel cell (MFC). Result showed that copper was efficiently removed in the membrane-less MFC with removal efficiency of 98.3% at the tolerable Cu 2+ concentration of 12.5 mg L -1 , the corresponding open circuit voltage and maximum power density were 0.78 V and 10.2 W m -3 , respectively. The mechanism analysis demonstrated that microbial electrochemical reduction contributed to the copper removal with the products of Cu and Cu 2 O deposited at biocathode. Moreover, the microbial community analysis indicated that microbial communities changed with different copper concentrations. The dominant phyla were Proteobacteria and Bacteroidetes which could play key roles in electricity generation, while Actinobacteria and Acidobacteria were also observed which were responsible for Cu-resistant and copper removal. It will be of important guiding significance for the recovery of copper from low concentration wastewater through single-chamber MFC with simultaneous energy recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  19. Towards the understanding of microbial metabolism in relation to microbial enhanced oil recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Nielsen, Kristian Fog

    2017-01-01

    In this study, Bacillus licheniformis 421 was used as a model organism to understand the effects of microbial cell growth and metabolite production under anaerobic conditions in relation to microbial enhanced oil recovery. The bacterium was able to grow anaerobically on different carbon compounds...

  20. Microbial respiration per unit microbial biomass increases with carbon-to-nutrient ratios in soils

    Science.gov (United States)

    Spohn, Marie; Chodak, Marcin

    2015-04-01

    The ratio of carbon-to-nutrient in forest floors is usually much higher than the ratio of carbon-to-nutrient that soil microorganisms require for their nutrition. In order to understand how this mismatch affects carbon cycling, the respiration rate per unit soil microbial biomass carbon - the metabolic quotient (qCO2) - was studied. This was done in a field study (Spohn and Chodak, 2015) and in a meta-analysis of published data (Spohn, 2014). Cores of beech, spruce, and mixed spruce-beech forest soils were cut into slices of 1 cm from the top of the litter layer down to 5 cm in the mineral soil, and the relationship between the qCO2 and the soil carbon-to-nitrogen (C:N) and the soil carbon-to-phosphorus (C:P) ratio was analyzed. We found that the qCO2 was positively correlated with soil C:N ratio in spruce soils (R = 0.72), and with the soil C:P ratio in beech (R = 0.93), spruce (R = 0.80) and mixed forest soils (R = 0.96). We also observed a close correlation between the qCO2 and the soil C concentration in all three forest types. Yet, the qCO2 decreased less with depth than the C concentration in all three forest types, suggesting that the change in qCO2 is not only controlled by the soil C concentration. We conclude that microorganisms increase their respiration rate per unit biomass with increasing soil C:P ratio and C concentration, which adjusts the substrate to their nutritional demands in terms of stoichiometry. In an analysis of literature data, I tested the effect of the C:N ratio of soil litter layers on microbial respiration in absolute terms and per unit microbial biomass C. For this purpose, a global dataset on the microbial respiration rate per unit microbial biomass C - termed the metabolic quotient (qCO2) - was compiled form literature data. It was found that the qCO2 in the soil litter layers was positively correlated with the litter C:N ratio and negatively related with the litter nitrogen (N) concentration. The positive relation between the qCO2

  1. A Microbial Assessment Scheme to measure microbial performance of Food Safety Management Systems.

    Science.gov (United States)

    Jacxsens, L; Kussaga, J; Luning, P A; Van der Spiegel, M; Devlieghere, F; Uyttendaele, M

    2009-08-31

    A Food Safety Management System (FSMS) implemented in a food processing industry is based on Good Hygienic Practices (GHP), Hazard Analysis Critical Control Point (HACCP) principles and should address both food safety control and assurance activities in order to guarantee food safety. One of the most emerging challenges is to assess the performance of a present FSMS. The objective of this work is to explain the development of a Microbial Assessment Scheme (MAS) as a tool for a systematic analysis of microbial counts in order to assess the current microbial performance of an implemented FSMS. It is assumed that low numbers of microorganisms and small variations in microbial counts indicate an effective FSMS. The MAS is a procedure that defines the identification of critical sampling locations, the selection of microbiological parameters, the assessment of sampling frequency, the selection of sampling method and method of analysis, and finally data processing and interpretation. Based on the MAS assessment, microbial safety level profiles can be derived, indicating which microorganisms and to what extent they contribute to food safety for a specific food processing company. The MAS concept is illustrated with a case study in the pork processing industry, where ready-to-eat meat products are produced (cured, cooked ham and cured, dried bacon).

  2. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, T.A.; Holmes, S.; Alekseyenko, A.V.; Shenoy, M.; DeSantis, T.; Wu, C.H.; Andersen, G.L.; Winston, J.; Sonnenburg, J.; Pasricha, P.J.; Spormann, A.

    2010-12-01

    Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Our results revealed a significantly increased compositional difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS.

  3. Comprehensive research concerning the development of effective utilizing techniques of biological resources (large scale research out of the framework). Seibutsu shigen no koritsuteki riyo gijutsu no kaihatsu ni kansuru sogo kenkyu (ogata betsuwaku kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-25

    This paper is a research report in which the cultivated production of forest resources, the development to useful substances and the systematization to take the root in a region were studied. The distribution maps of biological resources on respective woodland systems: that is, the nationwide distribution maps of the amount of resources in Japan as to the broadleaf trees in private forests and national forests, the available amount and kinds of tree were prepared. As for the establishment of cultivation technique of the super-short deforestation forest, that is, pursue of wooden growth to the maximum limit, the superior clone 26 system was selected from the willow group through the research of wooden cultivation and the clone which showed the maximum yield reached 24t/ha every year. As for the material preparation technique due to microbial enzymes, that is, the creation and breeding of fungi which have the high lignin decomposition power, a stock of fungi which has the high lignin decomposition power and the decomposition selectivity was created by the cell fusion and the UV (ultraviolet ray) radiation treatment. As for the use of effective components in wooden resources, many useful characteristics could be detected by applying the boiling, bursting and ozone treatment. As for the mushroom cultivation through the application of unused tree kinds, a new kind of mushroom for food service was selected to clarify the possibility of fruit body formation. The development of a new material from conifers is promising. 1 tab.

  4. Hydrodynamics of microbial filter feeding.

    Science.gov (United States)

    Nielsen, Lasse Tor; Asadzadeh, Seyed Saeed; Dölger, Julia; Walther, Jens H; Kiørboe, Thomas; Andersen, Anders

    2017-08-29

    Microbial filter feeders are an important group of grazers, significant to the microbial loop, aquatic food webs, and biogeochemical cycling. Our understanding of microbial filter feeding is poor, and, importantly, it is unknown what force microbial filter feeders must generate to process adequate amounts of water. Also, the trade-off in the filter spacing remains unexplored, despite its simple formulation: A filter too coarse will allow suitably sized prey to pass unintercepted, whereas a filter too fine will cause strong flow resistance. We quantify the feeding flow of the filter-feeding choanoflagellate Diaphanoeca grandis using particle tracking, and demonstrate that the current understanding of microbial filter feeding is inconsistent with computational fluid dynamics (CFD) and analytical estimates. Both approaches underestimate observed filtration rates by more than an order of magnitude; the beating flagellum is simply unable to draw enough water through the fine filter. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. Our observations motivate us to suggest a radically different filtration mechanism that requires a flagellar vane (sheet), something notoriously difficult to visualize but sporadically observed in the related choanocytes (sponges). A CFD model with a flagellar vane correctly predicts the filtration rate of D. grandis , and using a simple model we can account for the filtration rates of other microbial filter feeders. We finally predict how optimum filter mesh size increases with cell size in microbial filter feeders, a prediction that accords very well with observations. We expect our results to be of significance for small-scale biophysics and trait-based ecological modeling.

  5. Engineering Robustness of Microbial Cell Factories.

    Science.gov (United States)

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Psychological career resources and coping resources of the young unemployed African graduate: An exploratory study

    Directory of Open Access Journals (Sweden)

    Melinde Coetzee

    2010-05-01

    Research purpose: This study explored the relationship between the psychological career resources(as measured by the Psychological Career Resources Inventory and coping resources (as measured by the Coping Resources Inventory of a sample of 196 young unemployed African graduates. Motivation for study: There is an increasing need for career counsellors and practitioners to explore the psychological attributes and career-related resources that young people employ or require to help them deal with the challenges posed by unemployment during the school-to-work transition phase of their lives. Research design, approach and method: A survey design and quantitative statistical procedures were used to achieve the research objective. Convenience sampling was used on a population of 500 unemployed graduate black people who attended a 12-week Work Readiness Programme (39% response rate. Main findings: Multiple regression analyses indicated that dimensions of psychological career resources contribute signifcantly to explaining the proportion of variance in the participants’coping resources scores. Practical implications: The insights derived from the findings can be employed by career counsellors and practitioners to construct a more comprehensive career framework for the individual in the school-to-work transition phase. Contribution/value-add: The findings add valuable new knowledge that can be used to inform career services concerned with guiding and counselling young graduates in the school-to-work transition phase.

  7. EVA Suit Microbial Leakage Investigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during...

  8. MULTIFACETED APPROACH TO NATURAL RESOURCE MANAGEMENT: ETHNOLOGY, GEOGRAPHY, CULTURE

    Directory of Open Access Journals (Sweden)

    Mikhail Slipenchuk

    2016-12-01

    Full Text Available Nowadays, the issue of interaction between man and nature is one of the most pressing challenges. One of the aspects of this interaction, as well as one of the prior scientific directions and use of natural resources, is natural resource management. A limited amount of many resources and the limits of environmental capacity of nature raise questions of equity to the interests of different generations, which implies the need to decide on the optimal use of natural resource potential of territories currently and in the future. The complex nature of the relationships that form the structure of resources management as a complex system, dictates the need for a comprehensive approach to its study. System analysis is this type of approach. It allows holding studies of the functions of resources management and identifying problems to its development.

  9. Microbial processes and communities in sediment samples along a transect across the Lusi mud volcano, Indonesia

    Science.gov (United States)

    Krueger, Martin; Straaten, Nontje; Mazzini, Adriano

    2015-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems. This eruption started in 2006 following to a 6.3 M earthquake that stroke Java Island. Since then it has been spewing boiling mud from a central crater with peaks reaching 180.000 m3 per day. Today an area of about 8 km2 is covered by locally dried mud breccia where a network of hundreds of satellite seeping pools is active. Numerous investigations focused on the study of offshore microbial colonies that commonly thrive at offshore methane seeps and mud volcanoes, however very little has been done for onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 and CO2 as well as of heavier liquid hydrocarbons originating from several km below the surface. We conducted a sampling campaign at the Lusi site collecting samples of fresh mud close to the erupting crater using a remote controlled drone. In addition we completed a transect towards outer parts of the crater to collect older, weathered samples for comparison. In all samples active microorganisms were present. The highest activities for CO2 and CH4 production as well as for CH4 oxidation and hydrocarbon degradation were observed in medium-age mud samples collected roughly in the middle of the transect. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade hydrocarbons (oils, alkanes, BTEX tested). The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Currently, the microbial communities in the different sediment samples are analyzed using quantitative PCR and T-RFLP combined with MiSeq sequencing. This study represents an initial step to better understand onshore seepage

  10. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  11. EPA Linked Open Data: Resource Conservation and Recovery Act Handlers (RCRA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste...

  12. The Alaskan mineral resource assessment program; background information to accompany folio of geologic and mineral resource maps of the Ambler River Quadrangle, Alaska

    Science.gov (United States)

    Mayfield, Charles F.; Tailleur, I.L.; Albert, N.R.; Ellersieck, Inyo; Grybeck, Donald; Hackett, S.W.

    1983-01-01

    The Ambler River quadrangle, consisting of 14,290 km2 (5,520 mi2) in northwest Alaska, was investigated by an interdisciplinary research team for the purpose of assessing the mineral resource potential of the quadrangle. This report provides background information for a folio of maps on the geology, reconnaissance geochemistry, aeromagnetics, Landsat imagery, and mineral resource evaluation of the quadrangle. A summary of the geologic history, radiometric dates, and fossil localities and a comprehensive bibliography are also included. The quadrangle contains jade reserves, now being mined, and potentially significant resources of copper, zinc, lead, and silver.

  13. Engineering a Synthetic Microbial Consortium for Comprehensive Conversion of Algae Biomass into Terpenes for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weihua [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wu, Benjamin Chiau-Pin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Recent strategies for algae-based biofuels have primarily focused on biodiesel production by exploiting high algal lipid yields under nutrient stress conditions. However, under conditions supporting robust algal biomass accumulation, carbohydrate and proteins typically comprise up to ~80% of the ash-free dry weight of algae biomass. Therefore, comprehensive utilization of algal biomass for production of multipurpose intermediate- to high-value bio-based products will promote scale-up of algae production and processing to commodity volumes. Terpenes are hydrocarbon and hydrocarbon-like (C:O>10:1) compounds with high energy density, and are therefore potentially promising candidates for the next generation of value added bio-based chemicals and “drop-in” replacements for petroleum-based fuels. In this study, we demonstrated the feasibility of bioconversion of proteins into sesquiterpene compounds as well as comprehensive bioconversion of algal carbohydrates and proteins into biofuels. To achieve this, the mevalonate pathway was reconstructed into an E. coli chassis with six different terpene synthases (TSs). Strains containing the various TSs produced a spectrum of sesquiterpene compounds in minimal medium containing amino acids as the sole carbon source. The sesquiterpene production was optimized through three different regulation strategies using chamigrene synthase as an example. The highest total terpene titer reached 166 mg/L, and was achieved by applying a strategy to minimize mevalonate accumulation in vivo. The highest yields of total terpene were produced under reduced IPTG induction levels (0.25 mM), reduced induction temperature (25°C), and elevated substrate concentration (20 g/L amino acid mixture). A synthetic bioconversion consortium consisting of two engineering E. coli strains (DH1-TS and YH40-TS) with reconstructed terpene biosynthetic pathways was designed for comprehensive single-pot conversion of algal carbohydrates and proteins to

  14. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    Science.gov (United States)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  15. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  16. The anterior temporal lobes support residual comprehension in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Zahn, Roland; Keidel, James L; Binney, Richard J; Sage, Karen; Lambon Ralph, Matthew A

    2014-03-01

    Wernicke's aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke's aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke's aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke's aphasia and 12 control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke's aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke's aphasia group displayed an 'over-activation' in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke's aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.

  17. The neuro-endocrinological role of microbial glutamate and GABA signaling

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2016-11-01

    Full Text Available Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation and defense against pathogenic strains and interacts with the host organism through both direct contact (e.g., through surface antigens and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut-brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system also supports a communication pathway between the gut microbiota and neural circuits of the host, including the central nervous system. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut-brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune and humoral. In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin and trace amines, will be considered, with special focus on Glu and GABA circuits, receptors and signaling. From the basic science viewpoint, microbial endocrinology deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate, are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of

  18. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling.

    Science.gov (United States)

    Mazzoli, Roberto; Pessione, Enrica

    2016-01-01

    Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut-brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut-brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, "microbial endocrinology" deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and

  19. Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa.

    Science.gov (United States)

    Palamuleni, Lobina; Akoth, Mercy

    2015-07-23

    Groundwater is generally considered a "safe source" of drinking water because it is abstracted with low microbial load with little need for treatment before drinking. However, groundwater resources are commonly vulnerable to pollution, which may degrade their quality. An assessment of microbial and physicochemical qualities of borehole water in the rural environs of Mahikeng town, South Africa, was carried out. The study aimed at determining levels of physicochemical (temperature, pH, turbidity and nitrate) and bacteriological (both faecal and total coliform bacteria) contaminants in drinking water using standard microbiology methods. Furthermore, identities of isolates were determined using the API 20E assay. Results were compared with World Health Organisation (WHO) and Department of Water Affairs (DWAF-SA) water quality drinking standards. All analyses for physicochemical parameters were within acceptable limits except for turbidity while microbial loads during spring were higher than the WHO and DWAF thresholds. The detection of Escherichia coli, Salmonella and Klebsiella species in borehole water that was intended for human consumption suggests that water from these sources may pose severe health risks to consumers and is unsuitable for direct human consumption without treatment. The study recommends mobilisation of onsite treatment interventions to protect the households from further possible consequences of using the water.

  20. Physico-Chemical and Microbial Analysis of Selected Borehole Water in Mahikeng, South Africa

    Directory of Open Access Journals (Sweden)

    Lobina Palamuleni

    2015-07-01

    Full Text Available Groundwater is generally considered a “safe source” of drinking water because it is abstracted with low microbial load with little need for treatment before drinking. However, groundwater resources are commonly vulnerable to pollution, which may degrade their quality. An assessment of microbial and physicochemical qualities of borehole water in the rural environs of Mahikeng town, South Africa, was carried out. The study aimed at determining levels of physicochemical (temperature, pH, turbidity and nitrate and bacteriological (both faecal and total coliform bacteria contaminants in drinking water using standard microbiology methods. Furthermore, identities of isolates were determined using the API 20E assay. Results were compared with World Health Organisation (WHO and Department of Water Affairs (DWAF-SA water quality drinking standards. All analyses for physicochemical parameters were within acceptable limits except for turbidity while microbial loads during spring were higher than the WHO and DWAF thresholds. The detection of Escherichia coli, Salmonella and Klebsiella species in borehole water that was intended for human consumption suggests that water from these sources may pose severe health risks to consumers and is unsuitable for direct human consumption without treatment. The study recommends mobilisation of onsite treatment interventions to protect the households from further possible consequences of using the water.

  1. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA).

    Science.gov (United States)

    Mateos, I; Ranilla, M J; Saro, C; Carro, M D

    2017-11-01

    Rusitec fermenters are in vitro systems widely used to study ruminal fermentation, but little is known about the microbial populations establishing in them. This study was designed to assess the time evolution of microbial populations in fermenters fed medium- (MC; 50% alfalfa hay : concentrate) and high-concentrate diets (HC; 15 : 85 barley straw : concentrate). Samples from solid (SOL) and liquid (LIQ) content of fermenters were taken immediately before feeding on days 3, 8 and 14 of incubation for quantitative polymerase chain reaction and automated ribosomal intergenic spacer analysis analyses. In SOL, total bacterial DNA concentration and relative abundance of Ruminococcus flavefaciens remained unchanged over the incubation period, but protozoal DNA concentration and abundance of Fibrobacter succinogenes, Ruminococcus albus and fungi decreased and abundance of methanogenic archaea increased. In LIQ, total bacterial DNA concentration increased with time, whereas concentration of protozoal DNA and abundance of methanogens and fungi decreased. Diet×time interactions were observed for bacterial and protozoal DNA and relative abundance of F. succinogenes and R. albus in SOL, as well as for protozoal DNA in LIQ. Bacterial diversity in SOL increased with time, but no changes were observed in LIQ. The incubated diet influenced all microbial populations, with the exception of total bacteria and fungi abundance in LIQ. Bacterial diversity was higher in MC-fed than in HC-fed fermenters in SOL, but no differences were detected in LIQ. Values of pH, daily production of volatile fatty acids and CH4 and isobutyrate proportions remained stable over the incubation period, but other fermentation parameters varied with time. The relationships among microbial populations and fermentation parameters were in well agreement with those previously reported in in vivo studies. Using 15N as a microbial marker or quantifying total microbial DNA for estimating microbial protein synthesis

  2. The microbial ecology of permafrost

    DEFF Research Database (Denmark)

    Jansson, Janet; Tas, Neslihan

    2014-01-01

    Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost......-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles....

  3. Human Resource Management in Australian Registered Training Organisations

    Science.gov (United States)

    Smith, Andrew; Hawke Geof

    2008-01-01

    This report forms part of a comprehensive research program that has examined issues related to building the organisational capability of vocational education and training providers. In particular, this report focuses on the current state of human resource management practice in both technical and further education and private registered training…

  4. The process-related dynamics of microbial community during a simulated fermentation of Chinese strong-flavored liquor.

    Science.gov (United States)

    Zhang, Yanyan; Zhu, Xiaoyu; Li, Xiangzhen; Tao, Yong; Jia, Jia; He, Xiaohong

    2017-09-15

    Famous Chinese strong-flavored liquor (CSFL) is brewed by microbial consortia in a special fermentation pit (FT). However, the fermentation process was not fully understood owing to the complicate community structure and metabolism. In this study, the process-related dynamics of microbial communities and main flavor compounds during the 70-day fermentation process were investigated in a simulated fermentation system. A three-phase model was proposed to characterize the process of the CSFL fermentation. (i) In the early fermentation period (1-23 days), glucose was produced from macromolecular carbohydrates (e.g., starch). The prokaryotic diversity decreased significantly. The Lactobacillaceae gradually predominated in the prokaryotic community. In contrast, the eukaryotic diversity rose remarkably in this stage. Thermoascus, Aspergillus, Rhizopus and unidentified Saccharomycetales were dominant eukaryotic members. (ii) In the middle fermentation period (23-48 days), glucose concentration decreased while lactate acid and ethanol increased significantly. Prokaryotic community was almost dominated by the Lactobacillus, while eukaryotic community was mainly comprised of Thermoascus, Emericella and Aspergillus. (iii) In the later fermentation period (48-70 days), the concentrations of ethyl esters, especially ethyl caproate, increased remarkably. The CSFL fermentation could undergo three stages: saccharification, glycolysis and esterification. Saccharomycetales, Monascus, and Rhizopus were positively correlated to glucose concentration (P fermentation, were observed firstly. This study observed comprehensive dynamics of microbial communities during the CSFL fermentation, and it further revealed the correlations between some crucial microorganisms and flavoring chemicals (FCs). The results from this study help to design effective strategies to manipulate microbial consortia for fermentation process optimization in the CSFL brew practice.

  5. MetaComp: comprehensive analysis software for comparative meta-omics including comparative metagenomics.

    Science.gov (United States)

    Zhai, Peng; Yang, Longshu; Guo, Xiao; Wang, Zhe; Guo, Jiangtao; Wang, Xiaoqi; Zhu, Huaiqiu

    2017-10-02

    During the past decade, the development of high throughput nucleic sequencing and mass spectrometry analysis techniques have enabled the characterization of microbial communities through metagenomics, metatranscriptomics, metaproteomics and metabolomics data. To reveal the diversity of microbial communities and interactions between living conditions and microbes, it is necessary to introduce comparative analysis based upon integration of all four types of data mentioned above. Comparative meta-omics, especially comparative metageomics, has been established as a routine process to highlight the significant differences in taxon composition and functional gene abundance among microbiota samples. Meanwhile, biologists are increasingly concerning about the correlations between meta-omics features and environmental factors, which may further decipher the adaptation strategy of a microbial community. We developed a graphical comprehensive analysis software named MetaComp comprising a series of statistical analysis approaches with visualized results for metagenomics and other meta-omics data comparison. This software is capable to read files generated by a variety of upstream programs. After data loading, analyses such as multivariate statistics, hypothesis testing of two-sample, multi-sample as well as two-group sample and a novel function-regression analysis of environmental factors are offered. Here, regression analysis regards meta-omic features as independent variable and environmental factors as dependent variables. Moreover, MetaComp is capable to automatically choose an appropriate two-group sample test based upon the traits of input abundance profiles. We further evaluate the performance of its choice, and exhibit applications for metagenomics, metaproteomics and metabolomics samples. MetaComp, an integrative software capable for applying to all meta-omics data, originally distills the influence of living environment on microbial community by regression analysis

  6. Comprehensive human resources development program for nuclear power at NuTEC/JAEA

    International Nuclear Information System (INIS)

    Ishimura, T.

    2010-03-01

    Nuclear Technology and Education Center (NuTEC) of the Japan Atomic Energy Agency (JAEA) aims at comprehensive nuclear education and training activities, which cover 1) education and training for national nuclear engineers, 2) cooperation with universities and 3) international contribution and cooperation. The main feature of NuTEC's training programs is that the curricula place emphasis on the laboratory exercises with well-equipped training facilities, including research reacotrs, and expertise of lecturers mostly from JAEA. The wide spectrum of cooperative activities have been pursued with universities and also with international organizations, such as IAEA, ENEN, CEA/INSTN and FNCA countries. The present paper descrives the overall HRD activities of NuTEC, especially in nuclear power field. (author)

  7. Comprehensive Human Resources Development Program for Nuclear Power at NuTEC/JAEA

    International Nuclear Information System (INIS)

    Ishimura, T.

    2012-01-01

    Nuclear Technology and Education Center (NuTEC) of the Japan Atomic Energy Agency (JAEA) aims at comprehensive nuclear education and training activities, which cover 1) education and training for national nuclear engineers, 2) cooperation with universities and 3) international contribution and cooperation. The main feature of NuTEC's training programs is that the curricula place emphasis on the laboratory exercises with well-equipped training facilities, including research reacotrs, and expertise of lecturers mostly from JAEA. The wide spectrum of cooperative activities have been pursued with universities and also with international organizations, such as IAEA, ENEN, CEA/INSTN and FNCA countries. The present paper descrives the overall HRD activities of NuTEC, especially in nuclear power field. (author)

  8. Evaluation of Resources Carrying Capacity in China Based on Remote Sensing and GIS

    Science.gov (United States)

    Liu, K.; Gan, Y. H.; Zhang, T.; Luo, Z. Y.; Wang, J. J.; Lin, F. N.

    2018-04-01

    This paper accurately extracted the information of arable land, grassland (wetland), forest land, water area and construction land, based on 1 : 250000 basic geographic information data. It made model modification of comprehensive CCRR to achieve carrying capacity calculation taking resource quality into consideration. Ultimately it achieved a comprehensive assessment of CCRR status in China. The top ten cities where the status of carrying capacity of resources was overloaded were Wenzhou, Shanghai, Chengdu, Baoding, Shantou, Jieyang, Dongguan, Fuyang, Zhoukou and Handan. The cities were basically distributed in the central and southern areas with convenient transportation and more economically developed areas. Among the cities in surplus status, resources carrying capacity in Hulun Buir was the most abundant, followed by Heihe, Bayingolin Mongol Autonomous Prefecture, Qiqihar, Chifeng and Jiamusi, all of which were located in northeastern China with a small population and plentiful cultivated land.

  9. An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; Cullinan, Valerie I.

    2005-09-21

    This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. This study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.

  10. The relation between working memory and language comprehension in signers and speakers.

    Science.gov (United States)

    Emmorey, Karen; Giezen, Marcel R; Petrich, Jennifer A F; Spurgeon, Erin; O'Grady Farnady, Lucinda

    2017-06-01

    This study investigated the relation between linguistic and spatial working memory (WM) resources and language comprehension for signed compared to spoken language. Sign languages are both linguistic and visual-spatial, and therefore provide a unique window on modality-specific versus modality-independent contributions of WM resources to language processing. Deaf users of American Sign Language (ASL), hearing monolingual English speakers, and hearing ASL-English bilinguals completed several spatial and linguistic serial recall tasks. Additionally, their comprehension of spatial and non-spatial information in ASL and spoken English narratives was assessed. Results from the linguistic serial recall tasks revealed that the often reported advantage for speakers on linguistic short-term memory tasks does not extend to complex WM tasks with a serial recall component. For English, linguistic WM predicted retention of non-spatial information, and both linguistic and spatial WM predicted retention of spatial information. For ASL, spatial WM predicted retention of spatial (but not non-spatial) information, and linguistic WM did not predict retention of either spatial or non-spatial information. Overall, our findings argue against strong assumptions of independent domain-specific subsystems for the storage and processing of linguistic and spatial information and furthermore suggest a less important role for serial encoding in signed than spoken language comprehension. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. National uranium resource evaluation, NURE 1979: annual activity report

    International Nuclear Information System (INIS)

    1980-03-01

    NURE is a DOE-directed program with the major goal of establishing reliable and timely comprehensive estimates of the uranium resources of the nation. To develop and compile geologic, geophysical, and other information which will contribute to assessing the distribution and magnitude of uranium resources and to determine areas favorable for the occurrence of uranium in the United States, NURE has been organized into the following elements: (1) quadrangle evaluation; (2) aerial radiometric reconnaissance; (3) subsurface investigations; (4) hydrogeochemical and stream-sediment reconnaissance; (5) geologic studies; (6) technology applications; and (7) information dissemination. The extensive effort now under way on each of these NURE program elements will result in a systematic collection and compilation of data which will be culminating in a comprehensive report covering certain priority areas of the United States. This report summarizes the technical activities undertaken during 1979 to support this program

  12. mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking.

    Science.gov (United States)

    Bokulich, Nicholas A; Rideout, Jai Ram; Mercurio, William G; Shiffer, Arron; Wolfe, Benjamin; Maurice, Corinne F; Dutton, Rachel J; Turnbaugh, Peter J; Knight, Rob; Caporaso, J Gregory

    2016-01-01

    Mock communities are an important tool for validating, optimizing, and comparing bioinformatics methods for microbial community analysis. We present mockrobiota, a public resource for sharing, validating, and documenting mock community data resources, available at http://caporaso-lab.github.io/mockrobiota/. The materials contained in mockrobiota include data set and sample metadata, expected composition data (taxonomy or gene annotations or reference sequences for mock community members), and links to raw data (e.g., raw sequence data) for each mock community data set. mockrobiota does not supply physical sample materials directly, but the data set metadata included for each mock community indicate whether physical sample materials are available. At the time of this writing, mockrobiota contains 11 mock community data sets with known species compositions, including bacterial, archaeal, and eukaryotic mock communities, analyzed by high-throughput marker gene sequencing. IMPORTANCE The availability of standard and public mock community data will facilitate ongoing method optimizations, comparisons across studies that share source data, and greater transparency and access and eliminate redundancy. These are also valuable resources for bioinformatics teaching and training. This dynamic resource is intended to expand and evolve to meet the changing needs of the omics community.

  13. The timber resources of Rhode Island

    Science.gov (United States)

    Roland H. Ferguson; John R. McGuire; John R. McGuire

    1957-01-01

    This is a report on the first comprehensive survey ever made of the timber resources of Rhode Island. It shows, for the years 1952 and 1953, the area and condition of the forest land, the volume and quality of standing timber, the rates of timber growth and mortality, and the extent of timber cutting for forest products. The survey was made by the Forest Service as...

  14. Water Resources Development in Minnesota 1991

    Science.gov (United States)

    1991-01-01

    Mississippi River Comprehensive Elk River, Mississippi River ..................... 43 Master Plan .............................. 20 Epr Roau, Mississippi...Mississippi River has in- water resource projects, and receiving more than 600 million creased steadily since the advent of the 9-foot channel in 1935 ...and increased from about Minneapolis, Completed Project - 11 0,(XX) tons in 1935 to a peak of 3,177,355 tons in 1975. Traffic Commercial Navigation

  15. Western states uranium resource survey

    International Nuclear Information System (INIS)

    Tinney, J.F.

    1977-01-01

    ERDA's National Uranium Resource Evaluation (NURE) program was established to provide a comprehensive description of uranium resources in the United States. To carry out this task, ERDA has contracted with various facilities, including universities, private companies, and state agencies, to undertake projects such as airborne radiometric surveys, geological and geochemical studies, and the development of advanced geophysical technology. LLL is one of four ERDA laboratories systematically studying uranium distribution in surface water, groundwater, and lake and stream sediments. We are specifically responsible for surveying seven western states. This past year we have designed and installed facilities for delayed-neutron counting and neutron-activation analysis, completed seven orientation surveys, and analyzed several thousand field samples. Full-scale reconnaissance surveys began last fall

  16. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health

    Science.gov (United States)

    Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J

    2014-01-01

    Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018

  17. Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Gholamreza Salehi Jouzani

    2015-03-01

    Full Text Available Recently, lignocellulosic biomass as the most abundant renewable resource has been widely considered for bioalcohols production. However, the complex structure of lignocelluloses requires a multi-step process which is costly and time consuming. Although, several bioprocessing approaches have been developed for pretreatment, saccharification and fermentation, bioalcohols production from lignocelluloses is still limited because of the economic infeasibility of these technologies. This cost constraint could be overcome by designing and constructing robust cellulolytic and bioalcohols producing microbes and by using them in a consolidated bioprocessing (CBP system. This paper comprehensively reviews potentials, recent advances and challenges faced in CBP systems for efficient bioalcohols (ethanol and butanol production from lignocellulosic and starchy biomass. The CBP strategies include using native single strains with cellulytic and alcohol production activities, microbial co-cultures containing both cellulytic and ethanologenic microorganisms, and genetic engineering of cellulytic microorganisms to be alcohol-producing or alcohol producing microorganisms to be cellulytic. Moreover, high-throughput techniques, such as metagenomics, metatranscriptomics, next generation sequencing and synthetic biology developed to explore novel microorganisms and powerful enzymes with high activity, thermostability and pH stability are also discussed. Currently, the CBP technology is in its infant stage, and ideal microorganisms and/or conditions at industrial scale are yet to be introduced. So, it is essential to bring into attention all barriers faced and take advantage of all the experiences gained to achieve a high-yield and low-cost CBP process.

  18. A Systems Model for Teaching Human Resource Management

    Directory of Open Access Journals (Sweden)

    George R. Greene

    2013-07-01

    Full Text Available Efficient and effective human resource management is a complex, involved, and interactive process. This article presents and discusses a unique systems approach model for teaching human resource (people management processes, and the important inter-relationships within that process. The model contains two unique components related to key sub-processes: incentives management and performance evaluation. We have not observed a model applying a systems thinking paradigm presented in any textbook, journal article, business publication, or other literature addressing the topic. For nearly three decades, the model has been used in teaching a comprehensive, meaningful understanding of the human resource management process that can be effectively implemented in both corporate and academic learning venues.

  19. Soil microbial community structure and function responses to successive planting of Eucalyptus.

    Science.gov (United States)

    Chen, Falin; Zheng, Hua; Zhang, Kai; Ouyang, Zhiyun; Li, Huailin; Wu, Bing; Shi, Qian

    2013-10-01

    Many studies have shown soil degradation after the conversion of native forests to exotic Eucalyptus plantations. However, few studies have investigated the long-term impacts of short-rotation forestry practices on soil microorganisms. The impacts of Eucalyptus successive rotations on soil microbial communities were evaluated by comparing phospholipid fatty acid (PLFA) abundances, compositions, and enzyme activities of native Pinus massoniana plantations and adjacent 1st, 2nd, 3rd, 4th generation Eucalyptus plantations. The conversion from P. massoniana to Eucalyptus plantations significantly decreased soil microbial community size and enzyme activities, and increased microbial physiological stress. However, the PLFA abundances formed "u" shaped quadratic functions with Eucalyptus plantation age. Alternatively, physiological stress biomarkers, the ratios of monounsaturated to saturated fatty acid and Gram+ to Gram- bacteria, formed "n"' shaped quadratic functions, and the ratio of cy17:0 to 16:1omega7c decreased with plantation age. The activities of phenol oxidase, peroxidase, and acid phosphatase increased with Eucalyptus plantation age, while the cellobiohydrolase activity formed "u" shaped quadratic functions. Soil N:P, alkaline hydrolytic nitrogen, soil organic carbon, and understory cover largely explained the variation in PLFA profiles while soil N:P, alkaline hydrolytic nitrogen, and understory cover explained most of the variability in enzyme activity. In conclusion, soil microbial structure and function under Eucalyptus plantations were strongly impacted by plantation age. Most of the changes could be explained by altered soil resource availability and understory cover associated with successive planting of Eucalyptus. Our results highlight the importance of plantation age for assessing the impacts of plantation conversion as well as the importance of reducing disturbance for plantation management.

  20. Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Meike, A.; Stroes-Gascoyne, S.

    2000-01-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behavior into performance assessment models. One effort was to expand an existing modeling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories: (1) abiotic factors, (2) community dynamics and in-situ considerations, (3) nutrient considerations and (4) transport of radionuclides. The complete bibliography represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain

  1. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap.

    Science.gov (United States)

    Zhang, Xian; Niu, Jiaojiao; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-01-19

    Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.

  2. Effects of Hurricane-Felled Tree Trunks on Soil Carbon, Nitrogen, Microbial Biomass, and Root Length in a Wet Tropical Forest

    Directory of Open Access Journals (Sweden)

    D. Jean Lodge

    2016-11-01

    Full Text Available Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20–50 cm away from large trunks of two species felled by Hugo (1989 and Georges (1998 three times during wet and dry seasons over the two years following the study conducted by Georges. Soil microbial biomass, % C and % N were significantly higher under than away from logs felled by both hurricanes (i.e., 1989 and 1998, at all sampling times and at both depths (0–10 and 10–20 cm. Frass from wood boring beetles may contribute to early effects. Root length was greater away from logs during the dry season, and under logs in the wet season. Root length was correlated with microbial biomass C, soil N and soil moisture (R = 0.36, 0.18, and 0.27, respectively; all p values < 0.05. Microbial biomass C varied significantly among seasons but differences between positions (under vs. away were only suggestive. Microbial C was correlated with soil N (R = 0.35. Surface soil on the upslope side of the logs had significantly more N and microbial biomass, likely from accumulation of leaf litter above the logs on steep slopes. We conclude that decaying wood can provide ephemeral resources that are exploited by tree roots during some seasons.

  3. Microbial biosurfactants: challenges and opportunities for future exploitation.

    Science.gov (United States)

    Marchant, Roger; Banat, Ibrahim M

    2012-11-01

    The drive for industrial sustainability has pushed biosurfactants to the top of the agenda of many companies. Biosurfactants offer the possibility of replacing chemical surfactants, produced from nonrenewable resources, with alternatives produced from cheap renewable feedstocks. Biosurfactants are also attractive because they are less damaging to the environment yet are robust enough for industrial use. The most promising biosurfactants at the present time are the glycolipids, sophorolipids produced by Candida yeasts, mannosylerythritol lipids (MELs) produced by Pseudozyma yeasts, and rhamnolipids produced by Pseudomonas. Despite the current enthusiasm for these compounds several residual problems remain. This review highlights remaining problems and indicates the prospects for imminent commercial exploitation of a new generation of microbial biosurfactants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Summary of the mineral- and energy-resource endowment, BLM roswell resource area, east-central New Mexico

    Science.gov (United States)

    Bartsch-Winkler, S.; Sutphin, D.M.; Ball, M.M.; Korzeb, S.L.; Kness, R.F.; Dutchover, J.T.

    1993-01-01

    In this summary of two comprehensive resource reports produced by the U.S. Bureau of Mines and the U.S. Geological Survey for the U.S. Bureau of Land Management, we discuss the mineral- and energyresource endowment of the 14-millon-acre Roswell Resource Area, New Mexico, managed by the Bureau of Land Management. The Bureau and Survey reports result from separate studies that are compilations of published and unpublished data and integrate new findings on the geology, geochemistry, geophysics, mineral, industrial, and energy commodities, and resources for the seven-county area. The reports have been used by the Bureau of Land Management in preparation of the Roswell Resource Area Resource Management Plan, and will have future use in nationwide mineral- and energy-resource inventories and assessments, as reference and training documents, and as public-information tools. In the Roswell Resource Area, many metals, industrial mineral commodities, and energy resources are being, or have been, produced or prospected. These include metals and high-technology materials, such as copper, gold, silver, thorium, uranium and/or vanadium, rare-earth element minerals, iron, manganese, tungsten, lead, zinc, and molybdenum; industrial mineral resources, including barite, limestone/dolomite, caliche, clay, fluorspar, gypsum, scoria, aggregate, and sand and gravel; and fuels and associated resources, such as oil, gas, tar sand and heavy oil, coal, and gases associated with hydrocarbons. Other commodities that have yet to be identified in economic concentrations include potash, halite, polyhalite, anhydrite, sulfur, feldspar, building stone and decorative rock, brines, various gases associated with oil and gas exploration, and carbon dioxide. ?? 1993 Oxford University Press.

  5. Investigating the legacy effect of drought on microbial responses to drying and rewetting along a Texan precipitation gradient

    Science.gov (United States)

    Hicks, Lettice; Leizeaga, Ainara; Hawkes, Christine; Rousk, Johannes

    2017-04-01

    Hydrological regimes will intensify due to climate change, thus increasing the duration and intensity of drought and rainfall events. Rewetting of dry soil is known to stimulate dramatic CO2 releases. A clear understanding of the mechanisms that determine the dynamics of CO2 loss upon rewetting is therefore required to characterise ecosystem C-budgets and predict responses to climate change. Laboratory studies have identified two distinct responses upon rewetting; bacterial growth either increases linearly immediately, with maximal respiration also occurring immediately and decreasing exponentially with time ("Type 1"), or bacterial growth increases exponentially after a period of near-zero growth, with a sustained period of elevated respiration, sometimes followed by a secondary increase in respiration coinciding with the onset of bacterial growth ("Type 2"). A shift from a Type 1 to a Type 2 response has been observed with increasing duration and intensity of drying prior to rewetting. The size of the surviving microbial community after drying, relative to resources available after rewetting, is suggested to dictate whether a Type 1 or 2 response occurs, with more 'harsh' (i.e. longer or more severe) drying reducing microbial biomass such that carbon available upon rewetting is sufficient to support exponential growth (leading to Type 2 response). However, this is yet to be tested in intact ecosystems. We investigated the legacy of drought on microbial responses to drying and rewetting using grassland soils from a natural precipitation gradient in Texas. Mean annual precipitation spanned a 500 mm range (400-900 mm year-1) across the 400 km gradient, while mean annual temperature was constant. Soil properties (pH, SOM) did not vary systematically across the gradient, with differences reflecting land-use history rather than rainfall. Air dried soils from 18 sites were rewetted to 50 % water holding capacity with bacterial growth, fungal growth and respiration

  6. Designing and conducting survey research a comprehensive guide

    CERN Document Server

    Rea, Louis M

    2014-01-01

    The industry standard guide, updated with new ideas and SPSS analysis techniques Designing and Conducting Survey Research: A Comprehensive Guide Fourth Edition is the industry standard resource that covers all major components of the survey process, updated to include new data analysis techniques and SPSS procedures with sample data sets online. The book offers practical, actionable guidance on constructing the instrument, administrating the process, and analyzing and reporting the results, providing extensive examples and worksheets that demonstrate the appropriate use of survey and data tech

  7. Optimizing MPBSM Resource Allocation Based on Revenue Management: A China Mobile Sichuan Case

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The key to determining the network service level of telecom operators is resource allocation for mobile phone base station maintenance (MPBSM. Given intense market competition and higher consumer requirements for network service levels, an increasing proportion of resources have been allocated to MPBSM. Maintenance costs account for the rising fraction of direct costs, and the management of MPBSM resource allocation presents special challenges to telecom operators. China Mobile is the largest telecom operator in the world. Its subsidiary, China Mobile Sichuan, is the first in China to use revenue management in improving MPBSM resource allocation. On the basis of comprehensive revenue (including both economic revenue and social revenue, the subsidiary established a classification model of its base stations. The model scientifically classifies more than 25,000 base stations according to comprehensive revenue. China Mobile Sichuan also conducted differentiation allocation of MPBSM resources on the basis of the classification results. Furthermore, it optimized the assessment system of the telecom base stations to establish an assurance system for the use of MPBSM resources. After half-year implementation, the cell availability of both VIP base stations and total base stations significantly improved. The optimization also reduced economic losses to RMB 10.134 million, and enhanced customer satisfaction with network service by 3.2%.

  8. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  9. Seasonality in ocean microbial communities.

    Science.gov (United States)

    Giovannoni, Stephen J; Vergin, Kevin L

    2012-02-10

    Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.

  10. Automated DNA extraction platforms offer solutions to challenges of assessing microbial biofouling in oil production facilities.

    Science.gov (United States)

    Oldham, Athenia L; Drilling, Heather S; Stamps, Blake W; Stevenson, Bradley S; Duncan, Kathleen E

    2012-11-20

    The analysis of microbial assemblages in industrial, marine, and medical systems can inform decisions regarding quality control or mitigation. Modern molecular approaches to detect, characterize, and quantify microorganisms provide rapid and thorough measures unbiased by the need for cultivation. The requirement of timely extraction of high quality nucleic acids for molecular analysis is faced with specific challenges when used to study the influence of microorganisms on oil production. Production facilities are often ill equipped for nucleic acid extraction techniques, making the preservation and transportation of samples off-site a priority. As a potential solution, the possibility of extracting nucleic acids on-site using automated platforms was tested. The performance of two such platforms, the Fujifilm QuickGene-Mini80™ and Promega Maxwell®16 was compared to a widely used manual extraction kit, MOBIO PowerBiofilm™ DNA Isolation Kit, in terms of ease of operation, DNA quality, and microbial community composition. Three pipeline biofilm samples were chosen for these comparisons; two contained crude oil and corrosion products and the third transported seawater. Overall, the two more automated extraction platforms produced higher DNA yields than the manual approach. DNA quality was evaluated for amplification by quantitative PCR (qPCR) and end-point PCR to generate 454 pyrosequencing libraries for 16S rRNA microbial community analysis. Microbial community structure, as assessed by DGGE analysis and pyrosequencing, was comparable among the three extraction methods. Therefore, the use of automated extraction platforms should enhance the feasibility of rapidly evaluating microbial biofouling at remote locations or those with limited resources.

  11. Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery

    Science.gov (United States)

    Bernard, Guillaume; Pathmanathan, Jananan S; Lannes, Romain; Lopez, Philippe; Bapteste, Eric

    2018-01-01

    Abstract Microbes are the oldest and most widespread, phylogenetically and metabolically diverse life forms on Earth. However, they have been discovered only 334 years ago, and their diversity started to become seriously investigated even later. For these reasons, microbial studies that unveil novel microbial lineages and processes affecting or involving microbes deeply (and repeatedly) transform knowledge in biology. Considering the quantitative prevalence of taxonomically and functionally unassigned sequences in environmental genomics data sets, and that of uncultured microbes on the planet, we propose that unraveling the microbial dark matter should be identified as a central priority for biologists. Based on former empirical findings of microbial studies, we sketch a logic of discovery with the potential to further highlight the microbial unknowns. PMID:29420719

  12. Microbial biofilms: biosurfactants as antibiofilm agents.

    Science.gov (United States)

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  13. OPTIMAS-DW: A comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize

    Directory of Open Access Journals (Sweden)

    Colmsee Christian

    2012-12-01

    Full Text Available Abstract Background Maize is a major crop plant, grown for human and animal nutrition, as well as a renewable resource for bioenergy. When looking at the problems of limited fossil fuels, the growth of the world’s population or the world’s climate change, it is important to find ways to increase the yield and biomass of maize and to study how it reacts to specific abiotic and biotic stress situations. Within the OPTIMAS systems biology project maize plants were grown under a large set of controlled stress conditions, phenotypically characterised and plant material was harvested to analyse the effect of specific environmental conditions or developmental stages. Transcriptomic, metabolomic, ionomic and proteomic parameters were measured from the same plant material allowing the comparison of results across different omics domains. A data warehouse was developed to store experimental data as well as analysis results of the performed experiments. Description The OPTIMAS Data Warehouse (OPTIMAS-DW is a comprehensive data collection for maize and integrates data from different data domains such as transcriptomics, metabolomics, ionomics, proteomics and phenomics. Within the OPTIMAS project, a 44K oligo chip was designed and annotated to describe the functions of the selected unigenes. Several treatment- and plant growth stage experiments were performed and measured data were filled into data templates and imported into the data warehouse by a Java based import tool. A web interface allows users to browse through all stored experiment data in OPTIMAS-DW including all data domains. Furthermore, the user can filter the data to extract information of particular interest. All data can be exported into different file formats for further data analysis and visualisation. The data analysis integrates data from different data domains and enables the user to find answers to different systems biology questions. Finally, maize specific pathway information is

  14. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul

    2015-05-29

    Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.

  15. Characterization of microbial community and the alkylscccinate synthase genes in petroleum reservoir fluids of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lei; Mu, Bo-Zhong [University of Science and Technology (China)], email: bzmu@ecust.edu.cn; Gu, Ji-Dong [The University of Hong Kong (China)], email: jdgu@hkucc.hku.hk

    2011-07-01

    Petroleum reservoirs represent a special ecosystem consisting of specific temperature, pressure, salt concentration, oil, gas, water, microorganisms and, enzymes among others. This paper presents the characterization of microbial community and the alkyl succinate synthase genes in petroleum reservoir fluids in China. A few samples were analyzed and the physical and chemical characteristics are given in a tabular form. A flow chart shows the methods and procedures for microbial activities. Six petroleum reservoirs were studied using an archaeal 16S rRNA gene-based approach to establish the presence of archaea and the results are given. The correlation of archaeal and bacterial communities with reservoir conditions and diversity of the arachaeal community in water-flooding petroleum reservoirs at different temperatures is also shown. From the study, it can be summarized that, among methane producers, CO2-reducing methanogens are mostly found in oil reservoir ecosystems and as more assA sequences are revealed, more comprehensive molecular probes can be designed to track the activity of anaerobic alkane-degrading organisms in the environment.

  16. Microbial Fuel Cell Possibilities on American Indian Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Kimberlynn [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2016-10-01

    The purpose of this paper is to present a brief background of tribal reservations, the process of how Microbial Fuel Cells (MFCs) work, and the potential benefits of using MFCs on tribal reservations to convert waste water to energy as a means to sustainably generate electricity. There have been no known studies conducted on tribal lands that would be able to add to the estimated percentage of all renewable energy resources identified. Not only does MFC technology provide a compelling, innovative solution, it could also address better management of wastewater, using it as a form of energy generation. Using wastewater for clean energy generation could provide a viable addition to community infrastructure systems improvements.

  17. Microbial ecology of phototrophic biofilms

    NARCIS (Netherlands)

    Roeselers, G.

    2007-01-01

    Biofilms are layered structures of microbial cells and an extracellular matrix of polymeric substances, associated with surfaces and interfaces. Biofilms trap nutrients for growth of the enclosed microbial community and help prevent detachment of cells from surfaces in flowing systems. Phototrophic

  18. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System.

    Science.gov (United States)

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H 2 S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H 2 S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH 3 -N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H 2 S, CH 4 , and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.

  19. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    Science.gov (United States)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated

  20. The Effect of Noise on the Relationship Between Auditory Working Memory and Comprehension in School-Age Children.

    Science.gov (United States)

    Sullivan, Jessica R; Osman, Homira; Schafer, Erin C

    2015-06-01

    The objectives of the current study were to examine the effect of noise (-5 dB SNR) on auditory comprehension and to examine its relationship with working memory. It was hypothesized that noise has a negative impact on information processing, auditory working memory, and comprehension. Children with normal hearing between the ages of 8 and 10 years were administered working memory and comprehension tasks in quiet and noise. The comprehension measure comprised 5 domains: main idea, details, reasoning, vocabulary, and understanding messages. Performance on auditory working memory and comprehension tasks were significantly poorer in noise than in quiet. The reasoning, details, understanding, and vocabulary subtests were particularly affected in noise (p comprehension was stronger in noise than in quiet, suggesting an increased contribution of working memory. These data suggest that school-age children's auditory working memory and comprehension are negatively affected by noise. Performance on comprehension tasks in noise is strongly related to demands placed on working memory, supporting the theory that degrading listening conditions draws resources away from the primary task.

  1. Review of Ghana's water resources: the quality and management with particular focus on freshwater resources

    Science.gov (United States)

    Yeleliere, E.; Cobbina, S. J.; Duwiejuah, A. B.

    2018-06-01

    Freshwater resources are continually decreasing in quality and quantity. Approximately, 1% of this freshwater is accessible in lakes, river channels and underground for domestic use. The study reviewed literature on water resources with focus on freshwater, the quality of our freshwater in terms of physical, chemical and biological variables, the main mechanisms of management, and the challenges associated with these mechanisms as well as blending integrated water management with the indigenous or traditional management of water resources for sustainable development and peaceful co-existence. Also the review offered potent recommendations for policy makers to consider sustainable management of freshwater resources. A total of 95 articles were downloaded from Google scholar in water-related issues. The search took place from June to September 2017, and research articles from 1998 to 2018 were reviewed. Basically Ghana is made up of three discharge or outlet systems, namely the Coastal River Systems which is the least and Volta constituting the largest and with the South-Western been the intermediate. Also, freshwater resources usage can be put into two main categories, namely ex situ (withdrawal use) and in situ or in-stream use, and could also be referred to as the consumptive and non-consumptive use, respectively. With the exception of localised pollution engineered by illegal mining and other nuisance perpetuated by indigenes, the quality of water (surface and groundwater) in Ghana is generally better. The review outlined high microbial contamination of water as almost all surface waters are contaminated with either E. coli, faecal coliforms or total coliforms or all. However, these contaminations were more prevalent in surface water than groundwater.

  2. Sustainability Investigation of Resource-Based Cities in Northeastern China

    Directory of Open Access Journals (Sweden)

    Chengpeng Lu

    2016-10-01

    Full Text Available Improving the sustainability of traditional resource-based cities in China has been a core issue and policy-priority for Chinese government to establish long-term ecological civilization, particularly for northeastern China which is recognized as a typical agglomeration area of resources cities. In this study, we establish a three-layer index system consisting of a comprehensive layer, systemic layer, and variable layer, and including 22 indicators which are grouped into economic, social and environmental subsystems. After that, the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution method was applied to measure and rank the sustainability of the selected 15 typical resource-based cities in northeast China, and then a GIS (Geographical Information System technique based on the software of SuperMap was applied to map the sustainability in terms of the spatial effects among these cities. The results reveal that a unilateral improvement of a subsystem did not mean an improvement or contribution to whole system. In detail, during the past 15 years from 2000 to 2015, the comprehensive sustainability of resource-based cities in Northeastern China shows a declining trend in the mass, and the sustainability of the economic subsystem shows increase; the sustainability of the social system remains stable, while the environmental subsystem shows decrease. These situations might result from policy interventions during the past 15 years, therefore, promoting the sustainability of resource-based cities needs a historical approach, which should focus on the coordinated development of its economic, social, and environmental subsystems.

  3. Removal Efficiency of Microbial Contaminants from Hospital Wastewaters

    KAUST Repository

    Timraz, Kenda

    2016-02-01

    This study aims to evaluate the removal efficiency of microbial contaminants from two hospitals on-site Wastewater Treatment Plants (WWTPs) in Saudi Arabia. Hospital wastewaters often go untreated in Saudi Arabia as in many devolving countries, where no specific regulations are imposed regarding hospital wastewater treatment. The current guidelines are placed to ensure a safe treated wastewater quality, however, they do not regulate for pathogenic bacteria and emerging contaminants. Results from this study have detected pathogenic bacterial genera and antibiotic resistant bacteria in the sampled hospitals wastewater. And although the treatment process of one of the hospitals was able to meet current quality guidelines, the other hospital treatment process failed to meet these guidelines and disgorge of its wastewater might be cause for concern. In order to estimate the risk to the public health and the impact of discharging the treated effluent to the public sewage, a comprehensive investigation is needed that will facilitate and guide suggestions for more detailed guidelines and monitoring.

  4. Report on comprehensive surveys of nationwide geothermal resources in fiscal 1979. Conceptual design of a database system; 1979 nendo zenkoku chinetsu shigen sogo chosa hokokusho. Database system gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-31

    Conceptual design was made on a database system as part of the comprehensive surveys of nationwide geothermal resources. Underground hot water in depths of several kilometers close to the ground surface is a utilizable geothermal energy. Exploration using the ground surface survey is much less expensive than the test drilling survey, but has greater error in estimation because of being an indirect method. However, integrating data by freely using a number of exploration methods can improve the accuracy of estimation on the whole. In performing the conceptual design of a geothermal resource information system, the functions of this large scale database were used as the framework. Further data collection, distribution and interactive type man-machine communication, modeling, and environment surveillance functions were incorporated. Considerations were also given on further diversified utilization patterns and on support to users in remote areas and end users. What is important in designing the system is that constituting elements of hardware and software should function while being combined organically as one system, rather than the elements work independently. In addition, sufficient expandability and flexibility are indispensable. (NEDO)

  5. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.

    Science.gov (United States)

    Xin, Xiaodong; Ma, Yingqun; Liu, Yu

    2018-05-01

    A food waste resourceful process was developed by integrating the ultra-fast hydrolysis and microbial fuel cells (MFCs) for energy and resource recovery. Food waste was first ultra-fast hydrolyzed by fungal mash rich in hydrolytic enzymes in-situ produced from food waste. After which, the separated solids were readily converted to biofertilizer, while the liquid was fed to MFCs for direct electricity generation with a conversion efficiency of 0.245 kWh/kg food waste. It was estimated that about 192.5 million kWh of electricity could be produced from the food waste annually generated in Singapore, together with 74,390 tonnes of dry biofertilizer. Compared to anaerobic digestion, the proposed approach was more environmentally friendly and economically viable in terms of both electricity conversion and process cost. It is expected that this study may lead to the paradigm shift in food waste management towards ultra-fast concurrent recovery of resource and electricity with zero-solid discharge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Construction of an evaluation index system of water resources bearing capacity: An empirical study in Xi’an, China

    Science.gov (United States)

    Qu, X. E.; Zhang, L. L.

    2017-08-01

    In this paper, a comprehensive evaluation of the water resources bearing capacity of Xi’an is performed. By constructing a comprehensive evaluation index system of the water resources bearing capacity that included water resources, economy, society, and ecological environment, we empirically studied the dynamic change and regional differences of the water resources bearing capacities of Xi’an districts through the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution). Results show that the water resources bearing capacity of Xi’an significantly increased over time, and the contributions of the subsystems from high to low are as follows: water resources subsystem, social subsystem, ecological subsystem, and economic subsystem. Furthermore, there are large differences between the water resources bearing capacities of the different districts in Xi’an. The water resources bearing capacities from high to low are urban areas, Huxian, Zhouzhi, Gaoling, and Lantian. Overall, the water resources bearing capacity of Xi’an is still at a the lower level, which is highly related to the scarcity of water resources, population pressure, insufficient water saving consciousness, irrational industrial structure, low water-use efficiency, and so on.

  7. Response of soil microbial activities and microbial community structure to vanadium stress.

    Science.gov (United States)

    Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng

    2017-08-01

    High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Microbially produced phytotoxins and plant disease management ...

    African Journals Online (AJOL)

    Nowadays, these evaluation techniques are becoming an important complement to classical breeding methods. The knowledge of the inactivation of microbial toxins has led to the use of microbial enzymes to inactivate phytotoxins thereby reducing incidence and severity of disease induced by microbial toxins. Considering ...

  9. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.; Cusick, Roland; Call, Douglas F.; Selembo, Priscilla A.; Regan, John M.; Logan, Bruce E.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  10. Radiochemically-Supported Microbial Communities: A Potential Mechanism for Biocolloid Production of Importance to Actinide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P. [Desert Research Inst., Nevada University, Reno, NV (United States); Hamilton-Brehm, Scott D. [Desert Research Inst., Nevada University, Reno, NV (United States); Fisher, Jenny C. [Desert Research Inst., Nevada University, Reno, NV (United States); Bruckner, James C. [Desert Research Inst., Nevada University, Reno, NV (United States); Kruger, Brittany [Desert Research Inst., Nevada University, Reno, NV (United States); Sackett, Joshua [Desert Research Inst., Nevada University, Reno, NV (United States); Russell, Charles E. [Desert Research Inst., Nevada University, Reno, NV (United States); Onstott, Tullis C. [Princeton Univ., NJ (United States); Czerwinski, Ken [Univ. of Nevada, Las Vegas, NV (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Campbell, James H. [Northwest Missouri State Univ., Maryville, MO (United States)

    2014-06-01

    Due to the legacy of Cold War nuclear weapons testing, the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project, cooperative actions between the Desert Research Institute (DRI), the Nevada Field Office of the National Nuclear Security Administration (NNSA), the Underground Test Area Activity (UGTA), and contractors such as Navarro-Interra (NI), were required. Ultimately, fluids from 17 boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS, the adjacent Nevada Test and Training Range (NTTR), and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge, intermediate, and discharge zones of a 100,000-km2 internally-draining province, known as the Death Valley Regional Flow System (DVRFS), which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone), Yucca and Frenchman Flats (transitional zone), and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters, aqueous geochemistry, and microbial communities using both DNA- and

  11. Statistical Physics Approaches to Microbial Ecology

    Science.gov (United States)

    Mehta, Pankaj

    The unprecedented ability to quantitatively measure and probe complex microbial communities has renewed interest in identifying the fundamental ecological principles governing community ecology in microbial ecosystems. Here, we present work from our group and others showing how ideas from statistical physics can help us uncover these ecological principles. Two major lessons emerge from this work. First, large, ecosystems with many species often display new, emergent ecological behaviors that are absent in small ecosystems with just a few species. To paraphrase Nobel laureate Phil Anderson, ''More is Different'', especially in community ecology. Second, the lack of trophic layer separation in microbial ecology fundamentally distinguishes microbial ecology from classical paradigms of community ecology and leads to qualitative different rules for community assembly in microbes. I illustrate these ideas using both theoretical modeling and novel new experiments on large microbial ecosystems performed by our collaborators (Joshua Goldford and Alvaro Sanchez). Work supported by Simons Investigator in MMLS and NIH R35 R35 GM119461.

  12. Final Report Low-temperature Resource Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J. [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR (US); Ross, H. [Earth Sciences and Resources Institute, University of Utah

    1996-02-01

    The U.S. Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation's low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20 degrees Celsius to 150 degrees Celsius has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50 degrees Celsius located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy costevaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  13. Microbial degradation and impact of Bracken toxin ptaquiloside on microbial communities in soil

    DEFF Research Database (Denmark)

    Engel, Pernille; Brandt, Kristian Koefoed; Rasmussen, Lars Holm

    2007-01-01

    ), but not in the NZ soil (weak acid loamy Entisol). In the DK soil PTA turnover was predominantly due to microbial degradation (biodegradation); chemical hydrolysis was occurring mainly in the uppermost A horizon where pH was very low (3.4). Microbial activity (basal respiration) and growth ([3H]leucine incorporation...... assay) increased after PTA exposure, indicating that the Bracken toxin served as a C substrate for the organotrophic microorganisms. On the other hand, there was no apparent impact of PTA on community size as measured by substrate-induced respiration or composition as indicated by community......-level physiological profiles. Our results demonstrate that PTA stimulates microbial activity and that microorganisms play a predominant role for rapid PTA degradation in Bracken-impacted soils....

  14. Microbial Endocrinology: An Ongoing Personal Journey.

    Science.gov (United States)

    Lyte, Mark

    2016-01-01

    The development of microbial endocrinology is covered from a decidedly personal perspective. Specific focus is given to the role of microbial endocrinology in the evolutionary symbiosis between man and microbe as it relates to both health and disease. Since the first edition of this book series 5 years ago, the role of microbial endocrinology in the microbiota-gut-brain axis is additionally discussed. Future avenues of research are suggested.

  15. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas

    OpenAIRE

    Yeh, Kenneth B.; Adams, Martin; Stamper, Paul D.; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D.; Richards, Allen L.; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and r...

  16. 77 FR 25499 - Notice of Lodging of Proposed Natural Resource Damages Consent Decree Under the Comprehensive...

    Science.gov (United States)

    2012-04-30

    ... above. Ronald Gluck, Assistant Section Chief, Environmental Enforcement Section Environment and Natural... Department of the Interior's Natural Resource Damage Assessment and Restoration Fund, which can be used to.... Comments should be addressed to the Assistant Attorney General, Environment and Natural Resources Division...

  17. Utilization of bio-resources by low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2003-01-01

    Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  18. Synthetic Electric Microbial Biosensors

    Science.gov (United States)

    2017-06-10

    domains and DNA-binding domains into a single protein for deregulation of down stream genes of have been favored [10]. Initially experiments with... Germany DISTRIBUTION A. Approved for public release: distribution unlimited.   Talk title: “Synthetic biology based microbial biosensors for the...toolbox” in Heidelberg, Germany Poster title: “Anaerobic whole cell microbial biosensors” Link: http://phdsymposium.embl.org/#home   September, 2014

  19. Microbial-meiofaunal interrelationships in coastal sediments of the Red Sea.

    Science.gov (United States)

    El-Serehy, Hamed A; Al-Rasheid, Khaled A; Al-Misned, Fahad A; Al-Talasat, Abdul Allah R; Gewik, Mohamed M

    2016-05-01

    Population density and biomass of bacteria and meiofauna were investigated seasonally in the sediments of the north-western bank of Red Sea. Samples of sediments were collected seasonally from three different stations to determine microphytobenthic biomass (chlorophyll a), protein, lipid, carbohydrate, and total organic matter concentrations. These investigations revealed that microbial components tended to increase their dominancy, whereas sensitive meiofauna were extremely reduced during the entire study period. Thus a very low density of the total meiofauna (with an annual average of 109 ± 26 ind./10 cm(2)) was recorded whilst the benthic microbial population densities exhibited higher values (ranging from 0.31 ± 0.02 × 10(8) to 43.67 ± 18.62 × 10(8)/g dry sediment). These changes in the relative importance analysis of benthic microbial components versus meiofaunal ones seem to be based on the impact of organic matter accumulation on the function and structure of these benthic communities. Proteins, lipids and carbohydrates showed very low concentration values, and the organic matter mostly consisted of carbohydrates, reflecting lower nutritional values for benthic fauna in general and meiofauna in particular. The distribution of microbial and meiofaunal communities seems to be dependent on the quality of the organic matter rather than on its quantity. Total organic matter concentrations varied between 5.8 and 7.6 mg/g, with organic carbon accounting for only 32% of the total organic matter. Chlorophyll a attained very low values, fluctuating between 0.11 and 0.56 μg/g, indicating the oligotrophy of the studied area. The very low concentration of chlorophyll a in the Red Sea sediment suggests that the sedimentary organic matter, heterotrophic bacteria and/or protozoa constitute an alternative resource that is consumed by meiofauna when algae are less abundant. Protozoa, therefore, represent the "missing link in bacteria-meiofauna interaction

  20. Stay connected: Electrical conductivity of microbial aggregates.

    Science.gov (United States)

    Li, Cheng; Lesnik, Keaton Larson; Liu, Hong

    2017-11-01

    The discovery of direct extracellular electron transfer offers an alternative to the traditional understanding of diffusional electron exchange via small molecules. The establishment of electronic connections between electron donors and acceptors in microbial communities is critical to electron transfer via electrical currents. These connections are facilitated through conductivity associated with various microbial aggregates. However, examination of conductivity in microbial samples is still in its relative infancy and conceptual models in terms of conductive mechanisms are still being developed and debated. The present review summarizes the fundamental understanding of electrical conductivity in microbial aggregates (e.g. biofilms, granules, consortia, and multicellular filaments) highlighting recent findings and key discoveries. A greater understanding of electrical conductivity in microbial aggregates could facilitate the survey for additional microbial communities that rely on direct extracellular electron transfer for survival, inform rational design towards the aggregates-based production of bioenergy/bioproducts, and inspire the construction of new synthetic conductive polymers. Copyright © 2017 Elsevier Inc. All rights reserved.