WorldWideScience

Sample records for comprehensive earthquake management

  1. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky. The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume I, provides an introduction, summary and recommendations, and the emergency operations center direction and control

  2. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan with emphasis on the catas trophic earthquake; (2) an Emergency Operations Center Duty Roster Manual; (3) an Integrated Automated Emergency Management Information System (IAEMIS); and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6; Volume III -- Chapter 7; and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is this document numbered as Volume III

  3. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc. initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP -- Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: an emergency management plan, with emphasis on the catastrophic earthquake; an Emergency Operations Center Duty Roster Manual; an Integrated Automated Emergency Management Information System (IAEMIS); and a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I -- Chapters 1--3; Volume II -- Chapters 4--6, Volume III -- Chapter 7, and Volume IV -- 23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume II, discusses methodology, engineering and environmental analyses, and operational procedures

  4. Martin Marietta Paducah Gaseous Diffusion Plant comprehensive earthquake emergency management program

    International Nuclear Information System (INIS)

    1990-01-01

    Recognizing the value of a proactive, integrated approach to earthquake preparedness planning, Martin Marietta Energy Systems, Inc, initiated a contract in June 1989 with Murray State University, Murray, Kentucky, to develop a comprehensive earthquake management program for their Gaseous Diffusion Plant in Paducah, Kentucky (PGDP--Subcontract No. 19P-JV649V). The overall purpose of the program is to mitigate the loss of life and property in the event of a major destructive earthquake. The program includes four distinct (yet integrated) components: (1) an emergency management plan, with emphasis on the catas trophic earthquake, (2) an Emergency Operations Center Duty Roster Manual, (3) an Integrated Automated Emergency Management Information System (IAEMIS), and (4) a series of five training program modules. The PLAN itself is comprised of four separate volumes: Volume I--Chapters 1--3; Volume II--Chapters 4--6, Volume III--Chapter 7, and Volume IV--23 Appendices. The EOC Manual (which includes 15 mutual aid agreements) is designated as Chapter 7 in the PLAN and is a ''stand alone'' document numbered as Volume III. This document, Volume IV contains the appendices to this report

  5. Toward a comprehensive areal model of earthquake-induced landslides

    Science.gov (United States)

    Miles, S.B.; Keefer, D.K.

    2009-01-01

    This paper provides a review of regional-scale modeling of earthquake-induced landslide hazard with respect to the needs for disaster risk reduction and sustainable development. Based on this review, it sets out important research themes and suggests computing with words (CW), a methodology that includes fuzzy logic systems, as a fruitful modeling methodology for addressing many of these research themes. A range of research, reviewed here, has been conducted applying CW to various aspects of earthquake-induced landslide hazard zonation, but none facilitate comprehensive modeling of all types of earthquake-induced landslides. A new comprehensive areal model of earthquake-induced landslides (CAMEL) is introduced here that was developed using fuzzy logic systems. CAMEL provides an integrated framework for modeling all types of earthquake-induced landslides using geographic information systems. CAMEL is designed to facilitate quantitative and qualitative representation of terrain conditions and knowledge about these conditions on the likely areal concentration of each landslide type. CAMEL is highly modifiable and adaptable; new knowledge can be easily added, while existing knowledge can be changed to better match local knowledge and conditions. As such, CAMEL should not be viewed as a complete alternative to other earthquake-induced landslide models. CAMEL provides an open framework for incorporating other models, such as Newmark's displacement method, together with previously incompatible empirical and local knowledge. ?? 2009 ASCE.

  6. Crisis management aspects of bam catastrophic earthquake: review article.

    Science.gov (United States)

    Sadeghi-Bazargani, Homayoun; Azami-Aghdash, Saber; Kazemi, Abdolhassan; Ziapour, Behrad

    2015-01-01

    Bam earthquake was the most catastrophic natural disasters in recent years. The aim of this study was to review different aspects of crisis management during and after the catastrophic earthquake in Bam City, Iran. Data needed for this systematic review were collected through searching PubMed, EMBASE and SID databases, for the period from 2003 to 2011. Keywords included earthquake, Iran and Bam earthquake. The data were summarized and were analyzed using Content Analysis. Out of 422 articles, 25 articles were included in the study. Crisis Management aspects and existing pitfalls were classified into seven categories including planning and organization, human resource management, management of logistics, international humanitarian aids, field performance of the military and security forces, health and medical service provision, and information management. Positive aspects and major pitfalls of crisis management have been introduced in all the mentioned categories. The available evidence indicated poor crisis management during Bam earthquake that resulted in aggravating the losses as well as diminishing the effect of interventions. Thus, concerning the importance of different aspects of the crisis management and the high prevalence of disasters in Iran, the observed vulnerability in disaster management process should be addressed.

  7. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  8. A Case Study of the Bam Earthquake to Establish a Pattern for Earthquake Management in Iran

    Directory of Open Access Journals (Sweden)

    Keramatollah Ziari

    2015-03-01

    Full Text Available The field of crisis management knowledge and expertise is associated with a wide range of fields. Knowledge-based crisis management is a combination of science, art and practice. Iran is an earthquake-prone country. Through years several earthquakes have happened in the country resulting in many human and financial losses. According to scientific standards, the first 24 hours following an earthquake is the most valuable time for saving victims. Yet in the case of Bam only 5% of the victims were rescued within the first 48 hours. The success of disaster management is evaluated in terms of programming, raising public participation, organizing and hiring manpower, and supervising the management process. In this study disaster management is divided into three stages in which different actions are required. The stages and actions are explained in detail. Moreover, features, effects, and losses of the earthquake are described.

  9. POST Earthquake Debris Management — AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  10. GIS Based System for Post-Earthquake Crisis Managment Using Cellular Network

    Science.gov (United States)

    Raeesi, M.; Sadeghi-Niaraki, A.

    2013-09-01

    Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS) can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post-earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post-earthquake crisis.

  11. GIS BASED SYSTEM FOR POST-EARTHQUAKE CRISIS MANAGMENT USING CELLULAR NETWORK

    Directory of Open Access Journals (Sweden)

    M. Raeesi

    2013-09-01

    Full Text Available Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post–earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post–earthquake crisis.

  12. Overview of the critical disaster management challenges faced during Van 2011 earthquakes.

    Science.gov (United States)

    Tolon, Mert; Yazgan, Ufuk; Ural, Derin N; Goss, Kay C

    2014-01-01

    On October 23, 2011, a M7.2 earthquake caused damage in a widespread area in the Van province located in eastern Turkey. This strong earthquake was followed by a M5.7 earthquake on November 9, 2011. This sequence of damaging earthquakes led to 644 fatalities. The management during and after these earthquake disaster imposed many critical challenges. In this article, an overview of these challenges is presented based on the observations by the authors in the aftermath of this disaster. This article presents the characteristics of 2011 Van earthquakes. Afterward, the key information related to the four main phases (ie, preparedness, mitigation, response, and recovery) of the disaster in Van is presented. The potential strategies that can be taken to improve the disaster management practice are identified, and a set of recommendations are proposed to improve the existing situation.

  13. Crisis management of tohoku; Japan earthquake and tsunami, 11 march 2011.

    Science.gov (United States)

    Zaré, M; Afrouz, S Ghaychi

    2012-01-01

    The huge earthquake in 11 March 2012 which followed by a destructive tsunami in Japan was largest recorded earthquake in the history. Japan is pioneer in disaster management, especially earthquakes. How this developed country faced this disaster, which had significant worldwide effects? The humanitarian behavior of the Japanese people amazingly wondered the word's media, meanwhile the management of government and authorities showed some deficiencies. The impact of the disaster is followed up after the event and the different impacts are tried to be analyzed in different sectors. The situation one year after Japan 2011 earthquake and Tsunami is overviewed. The reason of Japanese plans failure was the scale of tsunami, having higher waves than what was assumed, especially in the design of the Nuclear Power Plant. Japanese authorities considered economic benefits more than safety and moral factors exacerbate the situation. Major lessons to be learnt are 1) the effectiveness of disaster management should be restudied in all hazardous countries; 2) the importance of the high-Tech early-warning systems in reducing risk; 3) Reconsidering of extreme values expected/possible hazard and risk levels is necessary; 4) Morality and might be taken as an important factor in disaster management; 5) Sustainable development should be taken as the basis for reconstruction after disaster.

  14. Engineering aspects of earthquake risk mitigation: Lessons from management of recent earthquakes, and consequential mudflows and landslides

    International Nuclear Information System (INIS)

    1992-01-01

    The Proceedings contain 30 selected presentations given at the Second and Third UNDRO/USSR Training Seminars: Engineering Aspects of Earthquake Risk Assessment and Mitigation of Losses, held in Dushanbe, October 1988; and Lessons from Management of Recent Earthquakes, and Consequential Mudflows and Landslides, held in Moscow, October 1989. The annexes to the document provide information on the participants, the work programme and the resolution adopted at each of the seminars. Refs, figs and tabs

  15. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    International Nuclear Information System (INIS)

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-01-01

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile

  16. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Jenna, E-mail: jmmartin@ucdavis.edu; Ustin, Susan; Sandoval-Solis, Samuel; O' Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile.

  17. Study of Earthquake Disaster Prediction System of Langfang city Based on GIS

    Science.gov (United States)

    Huang, Meng; Zhang, Dian; Li, Pan; Zhang, YunHui; Zhang, RuoFei

    2017-07-01

    In this paper, according to the status of China’s need to improve the ability of earthquake disaster prevention, this paper puts forward the implementation plan of earthquake disaster prediction system of Langfang city based on GIS. Based on the GIS spatial database, coordinate transformation technology, GIS spatial analysis technology and PHP development technology, the seismic damage factor algorithm is used to predict the damage of the city under different intensity earthquake disaster conditions. The earthquake disaster prediction system of Langfang city is based on the B / S system architecture. Degree and spatial distribution and two-dimensional visualization display, comprehensive query analysis and efficient auxiliary decision-making function to determine the weak earthquake in the city and rapid warning. The system has realized the transformation of the city’s earthquake disaster reduction work from static planning to dynamic management, and improved the city’s earthquake and disaster prevention capability.

  18. Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios

    Directory of Open Access Journals (Sweden)

    A. Muhammad

    2017-12-01

    Full Text Available This study develops tsunami evacuation plans in Padang, Indonesia, using a stochastic tsunami simulation method. The stochastic results are based on multiple earthquake scenarios for different magnitudes (Mw 8.5, 8.75, and 9.0 that reflect asperity characteristics of the 1797 historical event in the same region. The generation of the earthquake scenarios involves probabilistic models of earthquake source parameters and stochastic synthesis of earthquake slip distributions. In total, 300 source models are generated to produce comprehensive tsunami evacuation plans in Padang. The tsunami hazard assessment results show that Padang may face significant tsunamis causing the maximum tsunami inundation height and depth of 15 and 10 m, respectively. A comprehensive tsunami evacuation plan – including horizontal evacuation area maps, assessment of temporary shelters considering the impact due to ground shaking and tsunami, and integrated horizontal–vertical evacuation time maps – has been developed based on the stochastic tsunami simulation results. The developed evacuation plans highlight that comprehensive mitigation policies can be produced from the stochastic tsunami simulation for future tsunamigenic events.

  19. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  20. Comprehensive energy management eco routing & velocity profiles

    CERN Document Server

    Brandstätter, Bernhard

    2017-01-01

    The book discusses the emerging topic of comprehensive energy management in electric vehicles from the viewpoint of academia and from the industrial perspective. It provides a seamless coverage of all relevant systems and control algorithms for comprehensive energy management, their integration on a multi-core system and their reliability assurance (validation and test). Relevant European projects contributing to the evolvement of comprehensive energy management in fully electric vehicles are also included.

  1. Bayesian probabilistic network approach for managing earthquake risks of cities

    DEFF Research Database (Denmark)

    Bayraktarli, Yahya; Faber, Michael

    2011-01-01

    This paper considers the application of Bayesian probabilistic networks (BPNs) to large-scale risk based decision making in regard to earthquake risks. A recently developed risk management framework is outlined which utilises Bayesian probabilistic modelling, generic indicator based risk models...... and a fourth module on the consequences of an earthquake. Each of these modules is integrated into a BPN. Special attention is given to aggregated risk, i.e. the risk contribution from assets at multiple locations in a city subjected to the same earthquake. The application of the methodology is illustrated...... on an example considering a portfolio of reinforced concrete structures in a city located close to the western part of the North Anatolian Fault in Turkey....

  2. Web-Based Real Time Earthquake Forecasting and Personal Risk Management

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2012-12-01

    Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and

  3. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  4. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  5. Probabilistic earthquake risk assessment as a tool to improve safety and explanatory adequacy

    International Nuclear Information System (INIS)

    Itoi, Tatsuya

    2015-01-01

    This paper explains the concept of probabilistic earthquake risk assessment, mainly from the viewpoint as a tool to improve safety and explanatory adequacy. The definition of risk is the expected value of undesirable effect in an engineering meaning that is likely to occur in the future, and it is defined in risk management as the triplet of scenario (what can happen), frequency, and impact. As for the earthquake risk assessment of a nuclear power plant, the fragility of structure / system / component (SSC) against earthquake (so-called earthquake fragility) is assessed, and by combining with the earthquake hazard that has been separately obtained, the occurrence frequency and impact of the accident are obtained. From the view of the authors, earthquake risk assessment is for the purpose of decision-making, and is not intended to calculate the probability in a scientifically rigorous manner. For ensuring the quality of risk assessment, the table of 'Expert utilization standards for the evaluation of epistemological uncertainty' is used. Sole quantitative risk assessment is not necessarily sufficient for risk management. It would be important to find how to build the 'framework for comprehensive decision-making.' (A.O.)

  6. Investigation of obstacles against effective crisis management in earthquake

    Directory of Open Access Journals (Sweden)

    Mahmood Nekoei-Moghadam

    2016-03-01

    Full Text Available Floods, hurricanes, landslides, hurricanes, tornadoes, earthquakes are events that a large group of people on earth are affected. In December 2003, the residents of Bam, Iran experienced an earthquake that measured 6.6 on the Richter scale and destroyed more than 90% of the city. The purpose of this study was to investigate obstacles against effective crisis management with considering service received by individuals in the Bam earthquake. In this study, domestic journals, foreign dissertations in Persian bases such as Google scholar, Magiran, IranMedex, SID and in English bases such as PubMed, Web of Science, Google scholar were used. The results of this study showed that there were many problems in various aspects of planning including: lack of coherent programs, lack of attention to the needs of health care, poor coordination between agencies and organizations and lack of appropriate training of volunteers and people.

  7. Lessons Learned from Data Management Activities after the Great East Japan Earthquake in March 2011

    Directory of Open Access Journals (Sweden)

    A Kitamoto

    2013-02-01

    Full Text Available This paper summarizes our effort towards managing the multi-disciplinary disaster-related data from the Great East Japan Earthquake, which happened on March 11, 2011 off the coast of Northeast Japan. This earthquake caused the largest tsunami in the recorded history of Japan, killed many people along the coast, and caused a nuclear disaster in Fukushima, which continues to affect a large area of Japan. Just after the earthquake, we started crisis response data management activities to provide useful information for supporting disaster response and recovery. This paper introduces the various types of datasets we made from the viewpoint of data management processing and draws lessons from our post-disaster activities.

  8. Necessity of management for minor earthquake to improve public acceptance of nuclear energy in South Korea

    Directory of Open Access Journals (Sweden)

    Hyun-Tae Choi

    2018-04-01

    Full Text Available As public acceptance of nuclear energy in Korea worsens due to the Fukushima accident and the earthquakes that occurred in the Gyeongju area near the Wolsong nuclear power plant (NPP, estimating the effects of earthquakes has become more essential for the nuclear industry. Currently, most countermeasures against earthquakes are limited to large-scale disasters. Minor-scale earthquakes used to be ignored. Even though people do not feel the shaking due to minor earthquakes and minor earthquakes incur little damage to NPPs, they can change the environmental conditions, for instance, underground water level and the conductivity of the groundwater. This study conducted a questionnaire survey of residents living in the vicinity of an NPP to determine their perception and acceptance of plant safety against minor earthquakes. The results show that the residents feel earthquakes at levels that can be felt by people, but incur little damage to NPPs, as minor earthquakes (magnitude of 2.0–3.9 and set this level as a standard for countermeasures. Even if a minor earthquake has little impact on the safety of an NPP, there is still a possibility that public opinion will get worse. This study provides analysis results about problems of earthquake measures of Korean NPPs and specific things that can bring about an effect of deterioration of public acceptance. Based on these data, this article suggests that active management of minor earthquakes is necessary for the sustainability of nuclear energy. Keywords: Earthquake Measures, Management, Minor Earthquake, Nuclear Energy, Public Acceptance

  9. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  10. Creating a Global Building Inventory for Earthquake Loss Assessment and Risk Management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.

    2008-01-01

    Earthquakes have claimed approximately 8 million lives over the last 2,000 years (Dunbar, Lockridge and others, 1992) and fatality rates are likely to continue to rise with increased population and urbanizations of global settlements especially in developing countries. More than 75% of earthquake-related human casualties are caused by the collapse of buildings or structures (Coburn and Spence, 2002). It is disheartening to note that large fractions of the world's population still reside in informal, poorly-constructed & non-engineered dwellings which have high susceptibility to collapse during earthquakes. Moreover, with increasing urbanization half of world's population now lives in urban areas (United Nations, 2001), and half of these urban centers are located in earthquake-prone regions (Bilham, 2004). The poor performance of most building stocks during earthquakes remains a primary societal concern. However, despite this dark history and bleaker future trends, there are no comprehensive global building inventories of sufficient quality and coverage to adequately address and characterize future earthquake losses. Such an inventory is vital both for earthquake loss mitigation and for earthquake disaster response purposes. While the latter purpose is the motivation of this work, we hope that the global building inventory database described herein will find widespread use for other mitigation efforts as well. For a real-time earthquake impact alert system, such as U.S. Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER), (Wald, Earle and others, 2006), we seek to rapidly evaluate potential casualties associated with earthquake ground shaking for any region of the world. The casualty estimation is based primarily on (1) rapid estimation of the ground shaking hazard, (2) aggregating the population exposure within different building types, and (3) estimating the casualties from the collapse of vulnerable buildings. Thus, the

  11. Simulation and monitoring tools to protect disaster management facilities against earthquakes

    Science.gov (United States)

    Saito, Taiki

    2017-10-01

    The earthquakes that hit Kumamoto Prefecture in Japan on April 14 and 16, 2016 severely damaged over 180,000 houses, including over 8,000 that were completely destroyed and others that were partially damaged according to the Cabinet Office's report as of November 14, 2016 [1]. Following these earthquakes, other parts of the world have been struck by earthquakes including Italy and New Zealand as well as the central part of Tottori Prefecture in October, where the earthquake-induced collapse of buildings has led to severe damage and casualties. The earthquakes in Kumamoto Prefecture, in fact, damaged various disaster management facilities including Uto City Hall, which significantly hindered the city's evacuation and recovery operations. One of the most crucial issues in times of disaster is securing the functions of disaster management facilities such as city halls, hospitals and fire stations. To address this issue, seismic simulations are conducted on the East and the West buildings of Toyohashi City Hall using the analysis tool developed by the author, STERA_3D, with the data of the ground motion waveform prediction for the Nankai Trough earthquake provided by the Ministry of Land, Infrastructure, Transport and Tourism. As the result, it was found that the buildings have sufficient earthquake resistance. It turned out, however, that the west building is at risk for wall cracks or ceiling panel's collapse while in the east building, people would not be able to stand through the strong quakes of 7 on the seismic intensity scale and cabinets not secured to the floors or walls would fall over. Additionally, three IT strong-motion seismometers were installed in the city hall to continuously monitor vibrations. Every five minutes, the vibration data obtained by the seismometers are sent to the computers in Toyohashi University of Technology via the Internet for the analysis tools to run simulations in the cloud. If an earthquake strikes, it is able to use the results

  12. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  13. Baseline geophysical data for hazard management in coastal areas in relation to earthquakes and tsunamis

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    is another factor for some of the intraplate earthquakes in the South Indian Shield, which includes the Eastern and Western Continental Margins of India. Baseline geophysical data for hazard management in coastal areas in relation to earthquakes... surge. Keywords Hazard management, marine geophysical data, geomorphology and tsunami surge, coastal seismicity Date received: 7 August 2015; accepted: 15 October 2015 CSIR – National Institute of Oceanography, Visakhapatnam, India Corresponding author...

  14. Effective strategies for comprehensive corridor management

    Science.gov (United States)

    2004-10-01

    Despite the increasing importance of comprehensive corridor management at the state and local government level, questions remain regarding effective methods for developing and implementing corridor management plans. Further insight is also needed int...

  15. Burden and Management of Noncommunicable Diseases After Earthquakes and Tsunamis.

    Science.gov (United States)

    Suneja, Amit; Gakh, Maxim; Rutkow, Lainie

    This integrative review examines extant literature assessing the burden and management of noncommunicable diseases 6 months or more after earthquakes and tsunamis. We conducted an integrative review to identify and characterize the strength of published studies about noncommunicable disease-specific outcomes and interventions at least 6 months after an earthquake and/or tsunami. We included disasters that occurred from 2004 to 2016. We focused primarily on the World Health Organization noncommunicable disease designations to define chronic disease, but we also included chronic renal disease, risk factors for noncommunicable diseases, and other chronic diseases or symptoms. After removing duplicates, our search yielded 6,188 articles. Twenty-five articles met our inclusion criteria, some discussing multiple noncommunicable diseases. Results demonstrate that existing medical conditions may worsen and subsequently improve, new diseases may develop, and risk factors, such as weight and cholesterol levels, may increase for several years after an earthquake and/or tsunami. We make 3 recommendations for practitioners and researchers: (1) plan for noncommunicable disease management further into the recovery period of disaster; (2) increase research on the burden of noncommunicable diseases, the treatment modalities employed, resulting population-level outcomes in the postdisaster setting, and existing models to improve stakeholder coordination and action regarding noncommunicable diseases after disasters; and (3) coordinate with preexisting provision networks, especially primary care.

  16. Comprehensive analysis of earthquake source spectra in southern California

    OpenAIRE

    Shearer, Peter M.; Prieto, Germán A.; Hauksson, Egill

    2006-01-01

    We compute and analyze P wave spectra from earthquakes in southern California between 1989 and 2001 using a method that isolates source-, receiver-, and path-dependent terms. We correct observed source spectra for attenuation using both fixed and spatially varying empirical Green's function methods. Estimated Brune-type stress drops for over 60,000 M_L = 1.5 to 3.1 earthquakes range from 0.2 to 20 MPa with no dependence on moment or local b value. Median computed stress drop increases with de...

  17. Earthquake engineering for nuclear facilities

    CERN Document Server

    Kuno, Michiya

    2017-01-01

    This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground...

  18. Comprehensive Environmental Management Process

    International Nuclear Information System (INIS)

    Hjeresen, D.L.; Roybal, S.L.

    1994-01-01

    This report contains information about Los Alamos National Laboratory's Comprehensive Environmental Management Plan. The topics covered include: waste minimization, waste generation, environmental concerns, public relations of the laboratory, and how this plan will help to answer to the demands of the laboratory as their mission changes

  19. Menstrual hygiene management among women and adolescent girls in the aftermath of the earthquake in Nepal.

    Science.gov (United States)

    Budhathoki, Shyam Sundar; Bhattachan, Meika; Castro-Sánchez, Enrique; Sagtani, Reshu Agrawal; Rayamajhi, Rajan Bikram; Rai, Pramila; Sharma, Gaurav

    2018-02-02

    Menstrual hygiene management (MHM) is an essential aspect of hygiene for women and adolescent girls between menarche and menopause. Despite being an important issue concerning women and girls in the menstruating age group MHM is often overlooked in post-disaster responses. Further, there is limited evidence of menstrual hygiene management in humanitarian settings. This study aims to describe the experiences and perceptions of women and adolescent girls on menstrual hygiene management in post-earthquake Nepal. A mixed methods study was carried out among the earthquake affected women and adolescent girls in three villages of Sindhupalchowk district of Nepal. Data was collected using a semi-structured questionnaire that captured experiences and perceptions of respondents on menstrual hygiene management in the aftermath of the Nepal earthquake. Quantitative data were triangulated with in-depth interview regarding respondent's personal experiences of menstrual hygiene management. Menstrual hygiene was rated as the sixth highest overall need and perceived as an immediate need by 18.8% of the respondents. There were 42.8% women & girls who menstruated within first week of the earthquake. Reusable sanitary cloth were used by about 66.7% of the respondents before the earthquake and remained a popular method (76.1%) post-earthquake. None of the respondents reported receiving menstrual adsorbents as relief materials in the first month following the earthquake. Disposable pads (77.8%) were preferred by respondents as they were perceived to be clean and convenient to use. Most respondents (73.5%) felt that reusable sanitary pads were a sustainable choice. Women who were in the age group of 15-34 years (OR = 3.14; CI = (1.07-9.20), did not go to school (OR = 9.68; CI = 2.16-43.33), married (OR = 2.99; CI = 1.22-7.31) and previously used reusable sanitary cloth (OR = 5.82; CI = 2.33-14.55) were more likely to use the reusable sanitary cloth. In

  20. Comprehensive management of project changes

    Directory of Open Access Journals (Sweden)

    Aljaž Stare

    2010-06-01

    Full Text Available The goal of this research was to examine how project changes can be prevented, and how to reduce their negative impact. Theoretical research examined risk management, project control and change management. Based on the study a “Comprehensive Change Management Model” was developed and verified after conducting empirical research in Slovenian enterprises. The research confirmed that risk management identifies possible changes and reduces their impact; project control ensures the timely detection of changes and an efficient response, while formal change management ensures the effective implementation of changes. The combined functioning of all three areas ensures effective project execution.

  1. Comprehensive Environmental Management Plan

    International Nuclear Information System (INIS)

    Hjeresen, D.L.

    1994-01-01

    The Environmental Management Program at Los Alamos National Laboratory is in the process of initiating and then implementing a Comprehensive Environmental Management Plan (CEMP). There are several environmental impact and compliance drivers for this initiative. The Los Alamos CEMP is intended to be a flexible, long-range process that predicts, minimizes, treats, and disposes of any waste generated in execution of the Los Alamos mission - even if that mission changes. The CEMP is also intended to improve stakeholder and private sector involvement and access to environmental information. The total quality environmental management (TQEM) process will benchmark Los Alamos to private sector and DOE operations, identify opportunities for improvement, prioritize among opportunities, implement projects, measure progress, and spur continuous improvement in Environmental Management operations

  2. Earthquake Education in Prime Time

    Science.gov (United States)

    de Groot, R.; Abbott, P.; Benthien, M.

    2004-12-01

    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  3. Facilitators and obstacles in pre-hospital medical response to earthquakes: a qualitative study

    Science.gov (United States)

    2011-01-01

    Background Earthquakes are renowned as being amongst the most dangerous and destructive types of natural disasters. Iran, a developing country in Asia, is prone to earthquakes and is ranked as one of the most vulnerable countries in the world in this respect. The medical response in disasters is accompanied by managerial, logistic, technical, and medical challenges being also the case in the Bam earthquake in Iran. Our objective was to explore the medical response to the Bam earthquake with specific emphasis on pre-hospital medical management during the first days. Methods The study was performed in 2008; an interview based qualitative study using content analysis. We conducted nineteen interviews with experts and managers responsible for responding to the Bam earthquake, including pre-hospital emergency medical services, the Red Crescent, and Universities of Medical Sciences. The selection of participants was determined by using a purposeful sampling method. Sample size was given by data saturation. Results The pre-hospital medical service was divided into three categories; triage, emergency medical care and transportation, each category in turn was identified into facilitators and obstacles. The obstacles identified were absence of a structured disaster plan, absence of standardized medical teams, and shortage of resources. The army and skilled medical volunteers were identified as facilitators. Conclusions The most compelling, and at the same time amenable obstacle, was the lack of a disaster management plan. It was evident that implementing a comprehensive plan would not only save lives but decrease suffering and enable an effective praxis of the available resources at pre-hospital and hospital levels. PMID:21575233

  4. Facilitators and obstacles in pre-hospital medical response to earthquakes: a qualitative study.

    Science.gov (United States)

    Djalali, Ahmadreza; Khankeh, Hamidreza; Öhlén, Gunnar; Castrén, Maaret; Kurland, Lisa

    2011-05-16

    Earthquakes are renowned as being amongst the most dangerous and destructive types of natural disasters. Iran, a developing country in Asia, is prone to earthquakes and is ranked as one of the most vulnerable countries in the world in this respect. The medical response in disasters is accompanied by managerial, logistic, technical, and medical challenges being also the case in the Bam earthquake in Iran. Our objective was to explore the medical response to the Bam earthquake with specific emphasis on pre-hospital medical management during the first days. The study was performed in 2008; an interview based qualitative study using content analysis. We conducted nineteen interviews with experts and managers responsible for responding to the Bam earthquake, including pre-hospital emergency medical services, the Red Crescent, and Universities of Medical Sciences. The selection of participants was determined by using a purposeful sampling method. Sample size was given by data saturation. The pre-hospital medical service was divided into three categories; triage, emergency medical care and transportation, each category in turn was identified into facilitators and obstacles. The obstacles identified were absence of a structured disaster plan, absence of standardized medical teams, and shortage of resources. The army and skilled medical volunteers were identified as facilitators. The most compelling, and at the same time amenable obstacle, was the lack of a disaster management plan. It was evident that implementing a comprehensive plan would not only save lives but decrease suffering and enable an effective praxis of the available resources at pre-hospital and hospital levels.

  5. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  6. Investigating landslides caused by earthquakes - A historical review

    Science.gov (United States)

    Keefer, D.K.

    2002-01-01

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides. This paper traces the historical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquake are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession of post-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing "retrospective" analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, synthesis of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  7. Comprehensive treatment for gas gangrene of the limbs in earthquakes.

    Science.gov (United States)

    Wang, Yue; Lu, Bo; Hao, Peng; Yan, Meng-ning; Dai, Ke-rong

    2013-10-01

    Mortality rates for patients with gas gangrene from trauma or surgery are as high as 25%, but they increase to 50%-80% for patients injured in natural hazards. Early diagnosis and treatment are essential for these patients. We retrospectively analyzed the clinical characteristics and therapeutic results of 19 patients with gas gangrene of the limbs, who were injured in the May 2008 earthquake in the Wenchuan district of China's Sichuan province and treated in our hospital, to seek how to best diagnose and treat earthquake-induced gas gangrene. Of 226 patients with limbs open injuries sustained during the earthquake, 53 patients underwent smear analysis of wound exudates and gas gangrene was diagnosed in 19 patients. The average elapsed time from injury to arrival at the hospital was 72 hours, from injury to definitive diagnosis was 4.3 days, and from diagnosis to conversion of negative findings on wound smear analysis to positive findings was 12.7 days. Anaerobic cultures were also obtained before wound closure. The average elapsed time from completion of surgery to recovery of normal vital signs was 6.3 days. Of the 19 patients, 16 were treated with open amputation, two with closed amputation, and 1 with successful limb salvage; 18 patients were successfully treated and one died. In earthquakes, rapid, accurate screening and isolation are essential to successful treatment of gas gangrene and helpful in preventing nosocomial diffusion. Early and thorough debridement, open amputation, and active supportive treatment can produce satisfactory therapeutic results.

  8. Earthquake Early Warning Management based on Client-Server using Primary Wave data from Vibrating Sensor

    Science.gov (United States)

    Laumal, F. E.; Nope, K. B. N.; Peli, Y. S.

    2018-01-01

    Early warning is a warning mechanism before an actual incident occurs, can be implemented on natural events such as tsunamis or earthquakes. Earthquakes are classified in tectonic and volcanic types depend on the source and nature. The tremor in the form of energy propagates in all directions as Primary and Secondary waves. Primary wave as initial earthquake vibrations propagates longitudinally, while the secondary wave propagates like as a sinusoidal wave after Primary, destructive and as a real earthquake. To process the primary vibration data captured by the earthquake sensor, a network management required client computer to receives primary data from sensors, authenticate and forward to a server computer to set up an early warning system. With the water propagation concept, a method of early warning system has been determined in which some sensors are located on the same line, sending initial vibrations as primary data on the same scale and the server recommended to the alarm sound as an early warning.

  9. Alarm management a comprehensive guide

    CERN Document Server

    Hollifield, Bill R

    2011-01-01

    In this second edition, Alarm Management: A Comprehensive Guide, various problems of alarm systems are covered with precise guidance on how they come about and how to effectively correct them. It is written by individuals with vast experience in the different plants, processes, and environments requiring effective alarm management. The second edition is filled with good examples and explanations of procedures, with practical lists and tips on how one should proceed. It is based on hundreds of successful projects.

  10. Investigating Landslides Caused by Earthquakes A Historical Review

    Science.gov (United States)

    Keefer, David K.

    Post-earthquake field investigations of landslide occurrence have provided a basis for understanding, evaluating, and mapping the hazard and risk associated withearthquake-induced landslides. This paper traces thehistorical development of knowledge derived from these investigations. Before 1783, historical accounts of the occurrence of landslides in earthquakes are typically so incomplete and vague that conclusions based on these accounts are of limited usefulness. For example, the number of landslides triggered by a given event is almost always greatly underestimated. The first formal, scientific post-earthquake investigation that included systematic documentation of the landslides was undertaken in the Calabria region of Italy after the 1783 earthquake swarm. From then until the mid-twentieth century, the best information on earthquake-induced landslides came from a succession ofpost-earthquake investigations largely carried out by formal commissions that undertook extensive ground-based field studies. Beginning in the mid-twentieth century, when the use of aerial photography became widespread, comprehensive inventories of landslide occurrence have been made for several earthquakes in the United States, Peru, Guatemala, Italy, El Salvador, Japan, and Taiwan. Techniques have also been developed for performing ``retrospective'' analyses years or decades after an earthquake that attempt to reconstruct the distribution of landslides triggered by the event. The additional use of Geographic Information System (GIS) processing and digital mapping since about 1989 has greatly facilitated the level of analysis that can applied to mapped distributions of landslides. Beginning in 1984, syntheses of worldwide and national data on earthquake-induced landslides have defined their general characteristics and relations between their occurrence and various geologic and seismic parameters. However, the number of comprehensive post-earthquake studies of landslides is still

  11. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  12. Seeking Information after the 2010 Haiti Earthquake: A Case Study in Mass-Fatality Management

    Science.gov (United States)

    Gupta, Kailash

    2013-01-01

    The 2010 earthquake in Haiti, which killed an estimated 316,000 people, offered many lessons in mass-fatality management (MFM). The dissertation defined MFM in seeking information and in recovery, preservation, identification, and disposition of human remains. Specifically, it examined how mass fatalities were managed in Haiti, how affected…

  13. Major earthquakes of the past decade (2000-2010): a comparative review of various aspects of management.

    Science.gov (United States)

    Kalantar Motamedi, Mohammad Hosein; Sagafinia, Masoud; Ebrahimi, Ali; Shams, Ehsan; Kalantar Motamedi, Mostafa

    2012-01-01

    This article sought to review and compare data of major earthquakes of the past decade and their aftermath in order to compare the magnitude, death toll, type of injuries, management procedures, extent of destruction and effectiveness of relief efforts. A retrospective study of the various aspects of management and aftermath of 5 major earthquakes of the past decade (2000-2010) was undertaken. This included earthquakes occurring in Bam Iran, Sichuan China, Port-au-Prince Haiti, Kashmir Pakistan and Ica Peru. A literature search was done via computer of published articles (indexed in Pubmed). The issues assessed included: 1)Local magnitude,2)Type of building structure 3)Time of the earthquake (day/time/season), 4)Time to rescue, 5)Triage, Transfer, and Treatment 6) Distribution of casualties (dead/ injured), 7)Degree of city damage, 8)Degree of damage to health facilities, 9)Field hospital availability, 10)International aid, 11)Air transfer, 12) Telecommunication systems availability, 13) PTSD prevalence, 14) Most common injury and 15) Most common disease outbreak. The Bam earthquake had the lowest (6.6 Richter's) and the Sichuan earthquake had the greatest magnitude (8.0 Richter's). Mortality in Haiti was 212,000 and it was the deadliest earthquake of the past decade. Collapse of heavy clay roofing structures was a major cause of death in Iran and Pakistan. Earthquakes occurring at night and nonworking days carried a high death toll. The time to rescue and treat was the lengthiest in Haiti (possibly contributing to the death to injured ratio). However, the worst dead to injured ratios were in Bam (51%) and in Pakistan (47%); the best ratio was in China (15%). Iran and Pakistan suffered the highest percentage of damage to the health facilities (90%). Field hospital availability, international aid and air transfer were important issues. Telecommunication systems were best in China and worst in Pakistan. PTSD prevalence was highest in Iran. Respiratory infection was

  14. Standards for Documenting Finite‐Fault Earthquake Rupture Models

    KAUST Repository

    Mai, Paul Martin

    2016-04-06

    In this article, we propose standards for documenting and disseminating finite‐fault earthquake rupture models, and related data and metadata. A comprehensive documentation of the rupture models, a detailed description of the data processing steps, and facilitating the access to the actual data that went into the earthquake source inversion are required to promote follow‐up research and to ensure interoperability, transparency, and reproducibility of the published slip‐inversion solutions. We suggest a formatting scheme that describes the kinematic rupture process in an unambiguous way to support subsequent research. We also provide guidelines on how to document the data, metadata, and data processing. The proposed standards and formats represent a first step to establishing best practices for comprehensively documenting input and output of finite‐fault earthquake source studies.

  15. Standards for Documenting Finite‐Fault Earthquake Rupture Models

    KAUST Repository

    Mai, Paul Martin; Shearer, Peter; Ampuero, Jean‐Paul; Lay, Thorne

    2016-01-01

    In this article, we propose standards for documenting and disseminating finite‐fault earthquake rupture models, and related data and metadata. A comprehensive documentation of the rupture models, a detailed description of the data processing steps, and facilitating the access to the actual data that went into the earthquake source inversion are required to promote follow‐up research and to ensure interoperability, transparency, and reproducibility of the published slip‐inversion solutions. We suggest a formatting scheme that describes the kinematic rupture process in an unambiguous way to support subsequent research. We also provide guidelines on how to document the data, metadata, and data processing. The proposed standards and formats represent a first step to establishing best practices for comprehensively documenting input and output of finite‐fault earthquake source studies.

  16. The Alaska earthquake, March 27, 1964: effects on communities

    Science.gov (United States)

    Hansen, Wallace R.; Kachadoorian, Reuben; Coulter, Henry W.; Migliaccio, Ralph R.; Waller, Roger M.; Stanley, Kirk W.; Lemke, Richard W.; Plafker, George; Eckel, Edwin B.; Mayo, Lawrence R.

    1969-01-01

    This is the second in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 542, in 7 parts, describes the effects of the earthquake on Alaskan communities.

  17. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  18. Comprehensive Health Risk Management after the Fukushima Nuclear Power Plant Accident.

    Science.gov (United States)

    Yamashita, S

    2016-04-01

    Five years have passed since the Great East Japan Earthquake and the subsequent Fukushima Daiichi Nuclear Power Plant accident on 11 March 2011. Countermeasures aimed at human protection during the emergency period, including evacuation, sheltering and control of the food chain were implemented in a timely manner by the Japanese Government. However, there is an apparent need for improvement, especially in the areas of nuclear safety and protection, and also in the management of radiation health risk during and even after the accident. Continuous monitoring and characterisation of the levels of radioactivity in the environment and foods in Fukushima are now essential for obtaining informed consent to the decisions on living in the radio-contaminated areas and also on returning back to the evacuated areas once re-entry is allowed; it is also important to carry out a realistic assessment of the radiation doses on the basis of measurements. Until now, various types of radiation health risk management projects and research have been implemented in Fukushima, among which the Fukushima Health Management Survey is the largest health monitoring project. It includes the Basic Survey for the estimation of external radiation doses received during the first 4 months after the accident and four detailed surveys: thyroid ultrasound examination, comprehensive health check-up, mental health and lifestyle survey, and survey on pregnant women and nursing mothers, with the aim to prospectively take care of the health of all the residents of Fukushima Prefecture for a long time. In particular, among evacuees of the Fukushima Nuclear Power Plant accident, concern about radiation risk is associated with psychological stresses. Here, ongoing health risk management will be reviewed, focusing on the difficult challenge of post-disaster recovery and resilience in Fukushima. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Earthquake Risk Management of Underground Lifelines in the Urban Area of Catania

    International Nuclear Information System (INIS)

    Grasso, S.; Maugeri, M.

    2008-01-01

    Lifelines typically include the following five utility networks: potable water, sewage natural gas, electric power, telecommunication and transportation system. The response of lifeline systems, like gas and water networks, during a strong earthquake, can be conveniently evaluated with the estimated average number of ruptures per km of pipe. These ruptures may be caused either by fault ruptures crossing, or by permanent deformations of the soil mass (landslides, liquefaction), or by transient soil deformations caused by seismic wave propagation. The possible consequences of damaging earthquakes on transportation systems may be the reduction or the interruption of traffic flow, as well as the impact on the emergency response and on the recovery assistance. A critical element in the emergency management is the closure of roads due to fallen obstacles and debris of collapsed buildings.The earthquake-induced damage to buried pipes is expressed in terms of repair rate (RR), defined as the number of repairs divided by the pipe length (km) exposed to a particular level of seismic demand; this number is a function of the pipe material (and joint type), of the pipe diameter and of the ground shaking level, measured in terms of peak horizontal ground velocity (PGV) or permanent ground displacement (PGD). The development of damage algorithms for buried pipelines is primarily based on empirical evidence, tempered with engineering judgment and sometimes by analytical formulations.For the city of Catania, in the present work use has been made of the correlation between RR and peak horizontal ground velocity by American Lifelines Alliance (ALA, 2001), for the verifications of main buried pipelines. The performance of the main buried distribution networks has been evaluated for the Level I earthquake scenario (January 11, 1693 event I = XI, M 7.3) and for the Level II earthquake scenario (February 20, 1818 event I = IX, M 6.2).Seismic damage scenario of main gas pipelines and

  20. GIS BASED SYSTEM FOR POST-EARTHQUAKE CRISIS MANAGMENT USING CELLULAR NETWORK

    OpenAIRE

    Raeesi, M.; Sadeghi-Niaraki, A.

    2013-01-01

    Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the d...

  1. Risk Management in Earthquakes, Financial Markets, and the Game of 21: The role of Forecasting, Nowcasting, and Timecasting

    Science.gov (United States)

    Rundle, J. B.

    2017-12-01

    Earthquakes and financial markets share surprising similarities [1]. For example, the well-known VIX index, which by definition is the implied volatility of the Standard and Poors 500 index, behaves in very similar quantitative fashion to time series for earthquake rates. Both display sudden increases at the time of an earthquake or an announcement of the US Federal Reserve Open Market Committee [2], and both decay as an inverse power of time. Both can be regarded as examples of first order phase transitions [1], and display fractal and scaling behavior associated with critical transitions, such as power-law magnitude-frequency relations in the tails of the distributions. Early quantitative investors such as Edward Thorpe and John Kelly invented novel methods to mitigate or manage risk in games of chance such as blackjack, and in markets using hedging techniques that are still in widespread use today. The basic idea is the concept of proportional betting, where the gambler/investor bets a fraction of the bankroll whose size is determined by the "edge" or inside knowledge of the real (and changing) odds. For earthquake systems, the "edge" over nature can only exist in the form of a forecast (probability of a future earthquake); a nowcast (knowledge of the current state of an earthquake fault system); or a timecast (statistical estimate of the waiting time until the next major earthquake). In our terminology, a forecast is a model, while the nowcast and timecast are analysis methods using observed data only (no model). We also focus on defined geographic areas rather than on faults, thereby eliminating the need to consider specific fault data or fault interactions. Data used are online earthquake catalogs, generally since 1980. Forecasts are based on the Weibull (1952) probability law, and only a handful of parameters are needed. These methods allow the development of real time hazard and risk estimation using cloud-based technologies, and permit the application of

  2. Physics of Earthquake Rupture Propagation

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh

    2018-05-01

    A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.

  3. GEM - The Global Earthquake Model

    Science.gov (United States)

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  4. Earthquake cycles and physical modeling of the process leading up to a large earthquake

    Science.gov (United States)

    Ohnaka, Mitiyasu

    2004-08-01

    A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

  5. The Alaska earthquake, March 27, 1964: effects on hydrologic regimen

    Science.gov (United States)

    Waller, Roger M.; Coble, R.W.; Post, Austin; McGarr, Arthur; Vorhis, Robert C.

    1966-01-01

    This is the fourth in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 544, in 5 parts, describes the effects on hydrologic regimen.

  6. Sedimentary Signatures of Submarine Earthquakes: Deciphering the Extent of Sediment Remobilization from the 2011 Tohoku Earthquake and Tsunami and 2010 Haiti Earthquake

    Science.gov (United States)

    McHugh, C. M.; Seeber, L.; Moernaut, J.; Strasser, M.; Kanamatsu, T.; Ikehara, K.; Bopp, R.; Mustaque, S.; Usami, K.; Schwestermann, T.; Kioka, A.; Moore, L. M.

    2017-12-01

    deepest, offering a comprehensive characterization of sediment remobilization by a transform earthquake. These and other modern case studies will improve our ability to recognize earthquake-related sedimentation events, to differentiate them from other causes, and to decipher in them important characteristics of the earthquakes.

  7. Comprehensive Understanding of the Zipingpu Reservoir to the Ms8.0 Wenchuan Earthquake

    Science.gov (United States)

    Cheng, H.; Pang, Y. J.; Zhang, H.; Shi, Y.

    2014-12-01

    After the Wenchuan earthquake occurred, whether the big earthquake triggered by the storage of the Zipingpu Reservoir has attracted wide attention in international academic community. In addition to the qualitative discussion, many scholars also adopted the quantitative analysis methods to calculate the stress changes, but due to the different results, they draw very different conclusions. Here, we take the dispute of different teams in the quantitative calculation of Zipingpu reservoir as a starting point. In order to find out the key influence factors of quantitative calculation and know about the existing uncertainty elements during the numerical simulation, we analyze factors which may cause the differences. The preliminary results show that the calculation methods (analytical method or numerical method), dimension of models (2-D or 3-D), diffusion model, diffusion coefficient and focal mechanism are the main factors resulted in the differences, especially the diffusion coefficient of the fractured rock mass. The change of coulomb failure stress of the epicenter of Wenchuan earthquake attained from 2-D model is about 3 times of that of 3-D model. And it is not reasonable that only considering the fault permeability (assuming the permeability of rock mass as infinity) or only considering homogeneous isotropic rock mass permeability (ignoring the fault permeability). The different focal mechanisms also could dramatically affect the change of coulomb failure stress of the epicenter of Wenchuan earthquake, and the differences can research 2-7 times. And the differences the change of coulomb failure stress can reach several hundreds times, when selecting different diffusion coefficients. According to existing research that the magnitude of coulomb failure stress change is about several kPa, we could not rule out the possibility that the Zipingpu Reservoir may trigger the 2008 Wenchuan earthquake. However, for the background stress is not clear and coulomb failure

  8. Kirtland's Warbler Wildlife Management Area Comprehensive Conservation Plan

    Data.gov (United States)

    Department of the Interior — The Comprehensive Conservation Plan (CCP) for Kirtland’s Warbler Wildlife Management Area (WMA) was signed on September 10, 2009, completing a planning process that...

  9. Audit Trail Management System in Community Health Care Information Network.

    Science.gov (United States)

    Nakamura, Naoki; Nakayama, Masaharu; Nakaya, Jun; Tominaga, Teiji; Suganuma, Takuo; Shiratori, Norio

    2015-01-01

    After the Great East Japan Earthquake we constructed a community health care information network system. Focusing on the authentication server and portal server capable of SAML&ID-WSF, we proposed an audit trail management system to look over audit events in a comprehensive manner. Through implementation and experimentation, we verified the effectiveness of our proposed audit trail management system.

  10. Earthquake prediction the ory and its relation to precursors

    International Nuclear Information System (INIS)

    Negarestani, A.; Setayeshi, S.; Ghannadi-Maragheh, M.; Akasheh, B.

    2001-01-01

    Since we don't have enough knowledge about the Physics of earthquakes. therefore. the study of seismic precursors plays an important role in earthquake prediction. Earthquake prediction is a science which discusses about precursory phenomena during seismogenic process, and then investigates the correlation and association among them and the intrinsic relation between precursors and the seismogenic process. ar the end judges comprehensively the seismic status and finally makes earthquake prediction. There are two ways for predicting earthquake prediction. The first is to study the physics of seismogenic process and to determine the parameters in the process based on the source theories and the second way is to use seismic precursors. In this paper the theory of earthquake is reviewed. We also study theory of earthquake using models of earthquake origin, the relation between seismogenic process and various accompanying precursory phenomena. The earthquake prediction is divided into three categories: long-term, medium-term and short-term. We study seismic anomalous behavior. electric field, crustal deformation, gravity. magnetism of earth. change of groundwater variation. groundwater geochemistry and change of Radon gas emission. Finally, it is concluded the there is a correlation between Radon gas emission and earthquake phenomena. Meanwhile, there are some samples from actual processing in this area

  11. Legal analysis of citizen lawsuit toward management of the 2006 Yogyakarta earthquake

    Science.gov (United States)

    Suprihadi, Bambang

    2017-07-01

    The Asian Disaster Reduction Center informed that on 27 May 2006 at 5:54 AM Local time or 26 May 2006 at 10:54:00 PM UTC, an M6.3 earthquake has struck the very highly populated region of Yogyakarta. The death estimated between 5,775 and 6,234 and the number of injured was between 46,000 and 53,000. Invitation letters were sent to Indonesia Agency for Meteorology Climatology and Geophysics (BMKG) and to 18 government institutions for attending the session at the Yogyakarta Court on 4 December 2006. Such case was a lawsuit proposed by 46 citizens and registered as number 73/PDT.G/ 2006/PN-Yk and the researcher attended court-session on behalf of the BMKG. Research is conducted to provide legal analysis of citizen lawsuit toward management of the 2006 Yogyakarta earthquake. Data was collected by examining the process of court sessions and mediation between Parties involved which then analysed using the relevant articles of Indonesian Civil Procedural Law. Legal analysis proposed by the researcher indicates that State Court (Pengadilan Negeri) held an `absolute competence' because such case shall not be settled by State Administrative Court (Pengadilan Tata Usaha Negara), however Yogyakarta District Court didn't hold a `relative competence' because such case shall be settled by the Central Jakarta District Court. Such case was not continued due to successful mediation between the two Parties. The 2006 Yogyakarta earthquake alerts BMKG as the earthquake information provider to work properly in accordance with the standard operating procedure to avoid citizen lawsuit that might be proposed in the near future.

  12. Safety (management and technology). Reality of anti-earthquake measures in chemical plants; Anzen (manejimento to tekunoroji). Kagaku kojo no jishin taisaku no jissai

    Energy Technology Data Exchange (ETDEWEB)

    Wataya, I. [Asahi Chemical Industry Co. Ltd., Osaka (Japan)

    1994-08-05

    In Japan where there have been occurring many earthquakes, anti-earthquake measures is one of important things that corporations should take as risk management. In particular, in the chemical industry where a large amount of combustible materials, toxic materials and high-pressure gases are used which has high potential hazard, it is its social responsibility to prevent leakage, fires and explosions of those materials due to earthquakes, and to take in advance measures for minimizing damages if they happen. This paper introduces, as actual anti-earthquake measures, mainly the anti-earthquake measures for facilities and equipment and the plans of prevention of disasters by earthquake of the Kawasaki Plant of Asahi Kasei Co., Ltd. The points in anti-earthquake design are to determine design idea and anti-earthquake design standards based on the investigations into the locational conditions of plants, the evaluation of plant safety and estimation of damage at the time of earthquake; and to adopt a fail safe mechanism for operating a plant on the safe side in the event of earthquake in its design. 2 refs., 1 fig.

  13. [Earthquakes in El Salvador].

    Science.gov (United States)

    de Ville de Goyet, C

    2001-02-01

    The Pan American Health Organization (PAHO) has 25 years of experience dealing with major natural disasters. This piece provides a preliminary review of the events taking place in the weeks following the major earthquakes in El Salvador on 13 January and 13 February 2001. It also describes the lessons that have been learned over the last 25 years and the impact that the El Salvador earthquakes and other disasters have had on the health of the affected populations. Topics covered include mass-casualties management, communicable diseases, water supply, managing donations and international assistance, damages to the health-facilities infrastructure, mental health, and PAHO's role in disasters.

  14. The need for a comprehensive energy management information system for industries

    Directory of Open Access Journals (Sweden)

    Goosen, P

    2016-11-01

    Full Text Available Electricity costs in South Africa are increasing rapidly, and the funding hurdle rates for energy conservation incentives are decreasing. Therefore, with rising international competition and increasing operational costs, marginal industries need to focus on energy management strategies where larger savings can be achieved with lower capital expenditure. This paper sketches the need for a comprehensive energy management information system (EMIS. Common industrial energy management pitfalls are identified and energy conservation incentives are outlined. New focus points that improve client awareness and in turn improve the sustainability of energy management interventions are also highlighted. However, benefitting from energy incentives is becoming more complex. Therefore, many clients do not benefit from these incentives unless specialised Energy Service Companies (ESCos are employed. ESCos, however, require large amounts of data to manage clients’ energy effectively. Herein lies the need for a comprehensive EMIS that aids ESCos and their clients with the energy management process. An EMIS was developed and implemented for several industries in South Africa. Data is automatically collected, processed, analysed, and presented on a daily basis. A case study investigates the exorbitant amounts of data and reports that are managed automatically, which further highlights the need for a comprehensive EMIS.

  15. Incorporating human-triggered earthquake risks into energy and water policies

    Science.gov (United States)

    Klose, C. D.; Seeber, L.; Jacob, K. H.

    2010-12-01

    A comprehensive understanding of earthquake risks in urbanized regions requires an accurate assessment of both urban vulnerabilities and hazards from earthquakes, including ones whose timing might be affected by human activities. Socioeconomic risks associated with human-triggered earthquakes are often misconstrued and receive little scientific, legal, and public attention. Worldwide, more than 200 damaging earthquakes, associated with industrialization and urbanization, were documented since the 20th century. Geomechanical pollution due to large-scale geoengineering activities can advance the clock of earthquakes, trigger new seismic events or even shot down natural background seismicity. Activities include mining, hydrocarbon production, fluid injections, water reservoir impoundments and deep-well geothermal energy production. This type of geohazard has impacts on human security on a regional and national level. Some planned or considered future engineering projects raise particularly strong concerns about triggered earthquakes, such as for instance, sequestration of carbon dioxide by injecting it deep underground and large-scale natural gas production in the Marcellus shale in the Appalacian basin. Worldwide examples of earthquakes are discussed, including their associated losses of human life and monetary losses (e.g., 1989 Newcastle and Volkershausen earthquakes, 2001 Killari earthquake, 2006 Basel earthquake, 2010 Wenchuan earthquake). An overview is given on global statistics of human-triggered earthquakes, including depths and time delay of triggering. Lastly, strategies are described, including risk mitigation measures such as urban planning adaptations and seismic hazard mapping.

  16. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  17. Overview on Environmental Comprehensive Management System Established in Imitation of Biome

    Institute of Scientific and Technical Information of China (English)

    李如燕; 孙可伟

    2004-01-01

    Environmental comprehensive management system, called "the bionic community", can be established in imitation of biome, which can transform the wastes generated in a certain field into the raw materials of other field. The establishment of the bionic community includes two aspects, i.e. , the matching technique and the management system. The main matching technique is the preparation of composite materials made of various wastes.This new kind of material can be divided into four types: polymer matrix, silicate matrix, metal matrix and carbon matrix (or ceramic matrix). The environmental comprehensive management system is formed by organizing a transtrades joint-management business entity with the products of composite material made of wastes at the core.

  18. A Study on improvement of comprehensive environmental management system - activation of liberalized environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hweu Sung; Kang, Chul Goo [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    As a part of improvement on a comprehensive environmental management system, this study was attempted to find an activating policy for a liberalized environmental management. This study provided an activation plan of reasonable environmental regulation reform and liberalized environmental management through the analysis of foreign examples and domestic situation. Furthermore, it analyzed an institutional mechanism for a smooth operation of liberalized environmental management. 68 refs., 5 figs., 51 tabs.

  19. Geoethics and decision science issues in Japan's disaster management system: case study in the 2011 Tohoku earthquake and tsunami

    Science.gov (United States)

    Sugimoto, Megumi

    2015-04-01

    The March 11, 2011 Tohoku earthquake and its tsunami killed 18,508 people, including the missing (National Police Agency report as of April 2014) and raise the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station in Japan. The problems revealed can be viewed as due to a combination of risk-management, risk-communication, and geoethics issues. Japan's preparations for earthquakes and tsunamis are based on the magnitude of the anticipated earthquake for each region. The government organization coordinating the estimation of anticipated earthquakes is the "Headquarters for Earthquake Research Promotion" (HERP), which is under the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Japan's disaster mitigation system is depicted schematically as consisting of three layers: seismology, civil engineering, and disaster mitigation planning. This research explains students in geoscience should study geoethics as part of their education related Tohoku earthquake and the Level 7 accident at TEPCO's Fukushima Dai-ichi nuclear power station. Only when they become practicing professionals, they will be faced with real geoethical dilemmas. A crisis such as the 2011 earthquake, tsunami, and Fukushima Dai-ichi nuclear accident, will force many geoscientists to suddenly confront previously unanticipated geoethics and risk-communication issues. One hopes that previous training will help them to make appropriate decisions under stress. We name it "decision science".

  20. Post-Earthquake Reconstruction — in Context of Housing

    Science.gov (United States)

    Sarkar, Raju

    Comprehensive rescue and relief operations are always launched with no loss of time with active participation of the Army, Governmental agencies, Donor agencies, NGOs, and other Voluntary organizations after each Natural Disaster. There are several natural disasters occurring throughout the world round the year and one of them is Earthquake. More than any other natural catastrophe, an earthquake represents the undoing of our most basic pre-conceptions of the earth as the source of stability or the first distressing factor due to earthquake is the collapse of our dwelling units. Earthquake has affected buildings since people began constructing them. So after each earthquake a reconstruction of housing program is very much essential since housing is referred to as shelter satisfying one of the so-called basic needs next to food and clothing. It is a well-known fact that resettlement (after an earthquake) is often accompanied by the creation of ghettos and ensuing problems in the provision of infrastructure and employment. In fact a housing project after Bhuj earthquake in Gujarat, India, illustrates all the negative aspects of resettlement in the context of reconstruction. The main theme of this paper is to consider few issues associated with post-earthquake reconstruction in context of housing, all of which are significant to communities that have had to rebuild after catastrophe or that will face such a need in the future. Few of them are as follows: (1) Why rebuilding opportunities are time consuming? (2) What are the causes of failure in post-earthquake resettlement? (3) How can holistic planning after an earthquake be planned? (4) What are the criteria to be checked for sustainable building materials? (5) What are the criteria for success in post-earthquake resettlement? (6) How mitigation in post-earthquake housing can be made using appropriate repair, restoration, and strengthening concepts?

  1. Measuring the effectiveness of earthquake forecasting in insurance strategies

    Science.gov (United States)

    Mignan, A.; Muir-Wood, R.

    2009-04-01

    Given the difficulty of judging whether the skill of a particular methodology of earthquake forecasts is offset by the inevitable false alarms and missed predictions, it is important to find a means to weigh the successes and failures according to a common currency. Rather than judge subjectively the relative costs and benefits of predictions, we develop a simple method to determine if the use of earthquake forecasts can increase the profitability of active financial risk management strategies employed in standard insurance procedures. Three types of risk management transactions are employed: (1) insurance underwriting, (2) reinsurance purchasing and (3) investment in CAT bonds. For each case premiums are collected based on modelled technical risk costs and losses are modelled for the portfolio in force at the time of the earthquake. A set of predetermined actions follow from the announcement of any change in earthquake hazard, so that, for each earthquake forecaster, the financial performance of an active risk management strategy can be compared with the equivalent passive strategy in which no notice is taken of earthquake forecasts. Overall performance can be tracked through time to determine which strategy gives the best long term financial performance. This will be determined by whether the skill in forecasting the location and timing of a significant earthquake (where loss is avoided) is outweighed by false predictions (when no premium is collected). This methodology is to be tested in California, where catastrophe modeling is reasonably mature and where a number of researchers issue earthquake forecasts.

  2. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  3. U.S. Geological Survey (USGS) Earthquake Web Applications

    Science.gov (United States)

    Fee, J.; Martinez, E.

    2015-12-01

    USGS Earthquake web applications provide access to earthquake information from USGS and other Advanced National Seismic System (ANSS) contributors. One of the primary goals of these applications is to provide a consistent experience for accessing both near-real time information as soon as it is available and historic information after it is thoroughly reviewed. Millions of people use these applications every month including people who feel an earthquake, emergency responders looking for the latest information about a recent event, and scientists researching historic earthquakes and their effects. Information from multiple catalogs and contributors is combined by the ANSS Comprehensive Catalog into one composite catalog, identifying the most preferred information from any source for each event. A web service and near-real time feeds provide access to all contributed data, and are used by a number of users and software packages. The Latest Earthquakes application displays summaries of many events, either near-real time feeds or custom searches, and the Event Page application shows detailed information for each event. Because all data is accessed through the web service, it can also be downloaded by users. The applications are maintained as open source projects on github, and use mobile-first and responsive-web-design approaches to work well on both mobile devices and desktop computers. http://earthquake.usgs.gov/earthquakes/map/

  4. 78 FR 73559 - Moose-Wilson Corridor Comprehensive Management Plan, Environmental Impact Statement, Grand Teton...

    Science.gov (United States)

    2013-12-06

    ...-Wilson Corridor Comprehensive Management Plan, Environmental Impact Statement, Grand Teton National Park... is preparing a Comprehensive Management Plan and Environmental Impact Statement (EIS) for the Moose...; (2) distinguish the corridor's fundamental and other important resources and values; (3) clearly...

  5. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  6. FEMA's Earthquake Incident Journal: A Web-Based Data Integration and Decision Support Tool for Emergency Management

    Science.gov (United States)

    Jones, M.; Pitts, R.

    2017-12-01

    For emergency managers, government officials, and others who must respond to rapidly changing natural disasters, timely access to detailed information related to affected terrain, population and infrastructure is critical for planning, response and recovery operations. Accessing, analyzing and disseminating such disparate information in near real-time are critical decision support components. However, finding a way to handle a variety of informative yet complex datasets poses a challenge when preparing for and responding to disasters. Here, we discuss the implementation of a web-based data integration and decision support tool for earthquakes developed by the Federal Emergency Management Agency (FEMA) as a solution to some of these challenges. While earthquakes are among the most well- monitored and measured of natural hazards, the spatially broad impacts of shaking, ground deformation, landslides, liquefaction, and even tsunamis, are extremely difficult to quantify without accelerated access to data, modeling, and analytics. This web-based application, deemed the "Earthquake Incident Journal", provides real-time access to authoritative and event-specific data from external (e.g. US Geological Survey, NASA, state and local governments, etc.) and internal (FEMA) data sources. The journal includes a GIS-based model for exposure analytics, allowing FEMA to assess the severity of an event, estimate impacts to structures and population in near real-time, and then apply planning factors to exposure estimates to answer questions such as: What geographic areas are impacted? Will federal support be needed? What resources are needed to support survivors? And which infrastructure elements or essential facilities are threatened? This presentation reviews the development of the Earthquake Incident Journal, detailing the data integration solutions, the methodology behind the GIS-based automated exposure model, and the planning factors as well as other analytical advances that

  7. Evaluation of Earthquake-Induced Effects on Neighbouring Faults and Volcanoes: Application to the 2016 Pedernales Earthquake

    Science.gov (United States)

    Bejar, M.; Alvarez Gomez, J. A.; Staller, A.; Luna, M. P.; Perez Lopez, R.; Monserrat, O.; Chunga, K.; Herrera, G.; Jordá, L.; Lima, A.; Martínez-Díaz, J. J.

    2017-12-01

    It has long been recognized that earthquakes change the stress in the upper crust around the fault rupture and can influence the short-term behaviour of neighbouring faults and volcanoes. Rapid estimates of these stress changes can provide the authorities managing the post-disaster situation with a useful tool to identify and monitor potential threads and to update the estimates of seismic and volcanic hazard in a region. Space geodesy is now routinely used following an earthquake to image the displacement of the ground and estimate the rupture geometry and the distribution of slip. Using the obtained source model, it is possible to evaluate the remaining moment deficit and to infer the stress changes on nearby faults and volcanoes produced by the earthquake, which can be used to identify which faults and volcanoes are brought closer to failure or activation. Although these procedures are commonly used today, the transference of these results to the authorities managing the post-disaster situation is not straightforward and thus its usefulness is reduced in practice. Here we propose a methodology to evaluate the potential influence of an earthquake on nearby faults and volcanoes and create easy-to-understand maps for decision-making support after an earthquake. We apply this methodology to the Mw 7.8, 2016 Ecuador earthquake. Using Sentinel-1 SAR and continuous GPS data, we measure the coseismic ground deformation and estimate the distribution of slip. Then we use this model to evaluate the moment deficit on the subduction interface and changes of stress on the surrounding faults and volcanoes. The results are compared with the seismic and volcanic events that have occurred after the earthquake. We discuss potential and limits of the methodology and the lessons learnt from discussion with local authorities.

  8. Forest Fire Management: A Comprehensive And Operational Approach

    Science.gov (United States)

    Fabrizi, Roberto; Perez, Bruno; Gomez, Antonio

    2013-12-01

    Remote sensing plays an important role in obtaining rapid and complete information on the occurrence and evolution in space and time of forest fires. In this paper, we present a comprehensive study of fire events through Earth Observation data for early warning, crisis monitoring and post-event damage assessment or a synthesis of the fire event, both in a wide spatial range (local to regional) and temporal scale (short to long term). The fire products are stored and distributed by means of a WebGIS and a Geoportal with additional auxiliary geospatial data. These products allow fire managers to perform analysis and decision making in a more comprehensive manner.

  9. Development of a comprehensive model for stakeholder management in mental healthcare

    NARCIS (Netherlands)

    Bierbooms, J.J.P.A.; van Oers, J.A.M.; Bongers, I.M.B.

    2016-01-01

    Purpose Stakeholder management is not yet incorporated into the standard practice of most healthcare providers. The purpose of this paper is to assess the applicability of a comprehensive model for stakeholder management in mental healthcare organization for more evidence-based (stakeholder)

  10. A Comprehensive Model of Municipal Housing Stock Management

    Directory of Open Access Journals (Sweden)

    Muczyński Andrzej

    2016-06-01

    Full Text Available In many European countries there are still substantial housing needs which social landlords have to fulfill. Especially in countries with a shortage of affordable housing for underprivileged households, the effective and efficient management of the existing social housing stock, which includes technical, social, financial and tenure management activities on the strategic, tactical and operational level, is very important. The paper presents a comprehensive model of municipal housing stock management in the context of Polish conditions. This model was built by adapting the multidimensional concept of real estate management originally developed for commercial real estate portfolio management. It shows an integrative view of municipal housing stock management in Poland and contributes to the better organization and coordination of management activities and tasks in this area. The prepared model may be of interest to other countries where the functions of social landlords are mostly carried out directly by municipalities and their organizational units.

  11. Comprehensive Sediment Management to Improve Wetland Sustainability in Coastal Louisiana

    Science.gov (United States)

    Khalil, S.; Freeman, A. M.; Raynie, R.

    2016-02-01

    Human intervention has impaired the Mississippi River's ability to deliver sediment to its deltaic wetlands, and as a consequence acute land loss in coastal Louisiana has resulted in an unprecedented ecocatastrophe. Since the 1930s, Louisiana has lost approximately 5,000 square kilometers of coastal land, and is continuing to lose land at the rate of approximately 43 square kilometers/year. This extreme rate of land loss threatens a range of key national assets and important communities. Coastal communities across the world as well as in Louisiana have realized the importance of sediment for the continuation of their very existence in these productive but vulnerable regions. Ecological restoration can only be undertaken on a stable coastline, for which sedimentological restoration is needed. A large-scale effort to restore coastal Louisiana is underway, guided by Louisiana's Comprehensive Master Plan for a Sustainable Coast. This 50-year, $50-billion plan prescribes 109 protection and restoration projects to reduce land loss, maintain and restore coastal environments and sustain communities. Nowhere else has a restoration and protection program of this scale been developed or implemented, and critical to its success is the optimized usage of limited fluvial and offshore sediment resources, and a keen understanding of the complex interactions of various geological/geophysical processes in ecosystem restoration. A comprehensive sediment management plan has been developed to identify and delineate potential sediment sources for restoration, and to provide a framework for managing sediment resources wisely, cost effectively, and in a systematic manner. The Louisiana Sediment Management Plan provides regional strategies for improved comprehensive management of Louisiana's limited sediment resources. Adaptive management via a robust system-wide monitoring plays an important role along with a regional approach for the efficient management of sediment resources.

  12. Management of limb fractures in a teaching hospital: comparison between Wenchuan and Yushu earthquakes.

    Science.gov (United States)

    Min, Li; Tu, Chong-qi; Liu, Lei; Zhang, Wen-li; Yi, Min; Song, Yue-ming; Huang, Fu-guo; Yang, Tian-fu; Pei, Fu-xing

    2013-01-01

    To comparatively analyze the medical records of patients with limb fractures as well as rescue strategy in Wenchuan and Yushu earthquakes so as to provide references for post-earthquake rescue. We retrospectively investigated 944 patients sustaining limb fractures, including 891 in Wenchuan earthquake and 53 in Yushu earthquake, who were admitted to West China Hospital (WCH) of Sichuan University. In Wenchuan earthquake, WCH met its three peaks of limb fracture patients influx, on post-earthquake day (PED) 2, 8 and 14 respectively. Between PED 3-14, 585 patients were transferred from WCH to other hospitals outside the Sichuan Province. In Yushu earthquake, the maximum influx of limb fracture patients happened on PED 3, and no one was shifted to other hospitals. Both in Wenchuan and Yushu earthquakes, most limb fractures were caused by blunt strike and crush/burying. In Wenchuan earthquake, there were 396 (396/942, 42.0%) open limb fractures, including 28 Gustilo I, 201 Gustilo II and 167 Gustilo III injuries. But in Yushu earthquake, the incidence of open limb fracture was much lower (6/61, 9.8%). The percent of patients with acute complications in Wenchuan earthquake (167/891, 18.7%) was much higher than that in Yushu earthquake (5/53, 3.8%). In Wenchuan earthquake rescue, 1 018 surgeries were done, composed of debridement in 376, internal fixation in 283, external fixation in 119, and vacuum sealing drainage in 117, etc. While among the 64 surgeries in Yushu earthquake rescue, the internal fixation for limb fracture was mostly adopted. All patients received proper treatment and survived except one who died due to multiple organs failure in Wenchuan earthquake. Provision of suitable and sufficient medical care in a catastrophe can only be achieved by construction of sophisticated national disaster medical system, prediction of the injury types and number of injuries, and confirmation of participating hospitals?exact role. Based on the valuable rescue experiences

  13. Environmental risk evaluation to minimize impacts within the area affected by the Wenchuan earthquake

    International Nuclear Information System (INIS)

    Du, Pengfei; Chen, Jining; Chen, Chao; Liu, Yi; Liu, Jianguo; Wang, Hongtao; Zhang, Xiaojian

    2012-01-01

    Earthquakes can be devastating to built infrastructure and the natural environment, as evidenced by the March 2011, M = 9.0 earthquake, and subsequent tsunami, in Japan. As seen in the Japanese event, environmental damage caused by secondary disasters (tsunami, leakage from a nuclear reactor) can equal or exceed the impacts of the primary event. In order to develop an environmental assessment system to examine secondary disasters, a comprehensive environmental impact evaluation was conducted after the Wenchuan earthquake that occurred on 12 May 2008 in the Sichuan Province, China. This evaluation focused on several key environmental elements such as wastewater, drinking water, soil, solid waste, radiation, and ecosystem-level effects. As part of this assessment, an analysis of root causes and potential solutions was conducted for key issues such as population relocation and resettlement in temporary dwellings, recovery of environmental protection functions, industrial development strategies and production recovery. Methods for post-quake environmental assessment were developed, utilizing GIS-based techniques for spatial evaluation of primary and secondary disaster patterns. The goal of this exercise was the development of effective assessment methods that can be rapidly applied in a post-disaster situation to reduce and mitigate damage caused by secondary disasters, and facilitate the recovery of impaired environmental management structure and function. - Highlights: ► A comprehensive post-quake environmental risk evaluation system was developed. ► The research identifies potential long-term environmental risks in many aspects. ► The research analyzes potential solutions for many typical post-disaster issues. ► Effective assessment methods can be applied in a post-disaster situation to reduce damage caused by secondary disasters.

  14. Environmental risk evaluation to minimize impacts within the area affected by the Wenchuan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Du, Pengfei, E-mail: dupf@tsinghua.edu.cn; Chen, Jining, E-mail: jchen1@tsinghua.edu.cn; Chen, Chao, E-mail: chen_water@tsinghua.edu.cn; Liu, Yi, E-mail: yi.liu@tsinghua.edu.cn; Liu, Jianguo, E-mail: jgliu@tsinghua.edu.cn; Wang, Hongtao, E-mail: htwang@tsinghua.edu.cn; Zhang, Xiaojian, E-mail: zhangxj@tsinghua.edu.cn

    2012-03-01

    Earthquakes can be devastating to built infrastructure and the natural environment, as evidenced by the March 2011, M = 9.0 earthquake, and subsequent tsunami, in Japan. As seen in the Japanese event, environmental damage caused by secondary disasters (tsunami, leakage from a nuclear reactor) can equal or exceed the impacts of the primary event. In order to develop an environmental assessment system to examine secondary disasters, a comprehensive environmental impact evaluation was conducted after the Wenchuan earthquake that occurred on 12 May 2008 in the Sichuan Province, China. This evaluation focused on several key environmental elements such as wastewater, drinking water, soil, solid waste, radiation, and ecosystem-level effects. As part of this assessment, an analysis of root causes and potential solutions was conducted for key issues such as population relocation and resettlement in temporary dwellings, recovery of environmental protection functions, industrial development strategies and production recovery. Methods for post-quake environmental assessment were developed, utilizing GIS-based techniques for spatial evaluation of primary and secondary disaster patterns. The goal of this exercise was the development of effective assessment methods that can be rapidly applied in a post-disaster situation to reduce and mitigate damage caused by secondary disasters, and facilitate the recovery of impaired environmental management structure and function. - Highlights: Black-Right-Pointing-Pointer A comprehensive post-quake environmental risk evaluation system was developed. Black-Right-Pointing-Pointer The research identifies potential long-term environmental risks in many aspects. Black-Right-Pointing-Pointer The research analyzes potential solutions for many typical post-disaster issues. Black-Right-Pointing-Pointer Effective assessment methods can be applied in a post-disaster situation to reduce damage caused by secondary disasters.

  15. A global building inventory for earthquake loss estimation and risk management

    Science.gov (United States)

    Jaiswal, K.; Wald, D.; Porter, K.

    2010-01-01

    We develop a global database of building inventories using taxonomy of global building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat's demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature. ?? 2010, Earthquake Engineering Research Institute.

  16. Management of limb fractures in a teaching hospital: comparison between Wenchuan and Yushu earthquakes

    Directory of Open Access Journals (Sweden)

    MIN Li

    2013-02-01

    Full Text Available 【Abstract】Objective: To comparatively analyze the medical records of patients with limb fractures as well as rescue strategy in Wenchuan and Yushu earthquakes so as to provide references for post-earthquake rescue. Methods: We retrospectively investigated 944 patients sustaining limb fractures, including 891 in Wenchuan earth-quake and 53 in Yushu earthquake, who were admitted to West China Hospital (WCH of Sichuan University. Results: In Wenchuan earthquake, WCH met its three peaks of limb fracture patients influx, on post-earthquake day (PED 2, 8 and 14 respectively. Between PED 3-14, 585 patients were transferred from WCH to other hospitals out-side the Sichuan Province. In Yushu earthquake, the maxi-mum influx of limb fracture patients happened on PED 3, and no one was shifted to other hospitals. Both in Wenchuan and Yushu earthquakes, most limb fractures were caused by blunt strike and crush/burying. In Wenchuan earthquake, there were 396 (396/942, 42.0% open limb fractures, includ-ing 28 Gustilo I, 201 Gustilo II and 167 Gustilo III injuries. But in Yushu earthquake, the incidence of open limb frac-ture was much lower (6/61, 9.8%. The percent of patients with acute complications in Wenchuan earthquake (167/891, 18.7% was much higher than that in Yushu earthquake (5/53, 3.8%. In Wenchuan earthquake rescue, 1 018 surgeries were done, composed of debridement in 376, internal fixation in 283, external fixation in 119, and vacuum sealing drainage in 117, etc. While among the 64 surgeries in Yushu earthquake rescue, the internal fixation for limb fracture was mostly adopted. All patients received proper treatment and sur-vived except one who died due to multiple organs failure in Wenchuan earthquake. Conclusion: Provision of suitable and sufficient medi-cal care in a catastrophe can only be achieved by construc-tion of sophisticated national disaster medical system, pre-diction of the injury types and number of injuries, and con-firmation of

  17. Europeanisation and the EU's comprehensive approach to crisis management in Africa

    DEFF Research Database (Denmark)

    Olsen, Gorm Rye; Furness, Mark

    2016-01-01

    This article asks to what extent the European Union (EU) and its member states actually pursued and implemented comprehensive approaches in relation to crisis management in Africa. It also asks what can explain the lack of full implementation of the comprehensive approach in the cases of South...... may follow policy declarations more closely. The comprehensive approach nevertheless indicates an emerging Europeanisation norm influencing policy approaches to the sensitive nexuses that link security, development and crisis response. Evidence from country-level interventions reveals that this norm...

  18. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  19. Accounts of damage from historical earthquakes in the northeastern Caribbean to aid in the determination of their location and intensity magnitudes

    Science.gov (United States)

    Flores, Claudia H.; ten Brink, Uri S.; Bakun, William H.

    2012-01-01

    Earthquakes have been documented in the northeastern Caribbean since the arrival of Columbus to the Americas; written accounts of these felt earthquakes exist in various parts of the world. To better understand the earthquake cycle in the Caribbean, the records of earthquakes in earlier catalogs and historical documents from various archives, which are now available online, were critically examined. This report updates previous catalogs of earthquakes, in particular earthquakes in Hispaniola, to give to the public the most comprehensive documentation of earthquake damage and to further the understanding of the earthquake cycle in the northeastern Caribbean.

  20. LastQuake: a comprehensive strategy for rapid engagement of earthquake eyewitnesses, massive crowdsourcing and risk reduction

    Science.gov (United States)

    Bossu, R.; Roussel, F.; Mazet-Roux, G.; Steed, R.; Frobert, L.

    2015-12-01

    LastQuake is a smartphone app, browser add-on and the most sophisticated Twitter robot (quakebot) for earthquakes currently in operation. It fulfills eyewitnesses' needs by offering information on felt earthquakes and their effects within tens of seconds of their occurrence. Associated with an active presence on Facebook, Pinterest and on websites, this proves a very efficient engagement strategy. For example, the app was installed thousands of times after the Ghorka earthquake in Nepal. Language barriers have been erased by using visual communication; for example, felt reports are collected through a set of cartoons representing different shaking levels. Within 3 weeks of the magnitude 7.8 Ghorka earthquakes, 7,000 felt reports with thousands of comments were collected related to the mainshock and tens of its aftershocks as well as 100 informative geo-located pics. The QuakeBot was essential in allowing us to be identified so well and interact with those affected. LastQuake is also a risk reduction tool since it provides rapid information. Rapid information is similar to prevention since when it does not exist, disasters can happen. When no information is available after a felt earthquake, the public block emergency lines by trying to find out the cause of the shaking, crowds form potentially leading to unpredictable crowd movement, rumors spread. In its next release LastQuake will also provide people with guidance immediately after a shaking through a number of pop-up cartoons illustrating "do/don't do" items (go to open places, do not phone emergency services except if people are injured…). LastQuake's app design is simple and intuitive and has a global audience. It benefited from a crowdfunding campaign (and the support of the Fondation MAIF) and more improvements have been planned after an online feedback campaign organized in early June with the Ghorka earthquake eyewitnesses. LastQuake is also a seismic risk reduction tools thanks to its very rapid

  1. The evolution of NATO’s comprehensive approach to crisis management operations

    Directory of Open Access Journals (Sweden)

    Guillem Colom Piella

    2012-04-01

    Full Text Available The crisis management operations, post-war stabilisation and nation-building that has taken place since the end of the Cold War has all highlighted the extreme need to harmonise multinational and inter-agency cooperation in order to increase the coherence and effectiveness of the operation. That is the basic principle of Comprehensive Approach, which is defined as the coordination of strategies and actions of the participating actors in crisis management and at all levels, stages and planes of same. The NATO has also incorporated these advances into the area of crisis management, as a result of which, since 2006, it has been defining its own concept of Comprehensive Approach for non-Article 5 missions, and as a central theme in its political-military strategy for the present and immediate future.

  2. It's Our Fault: better defining earthquake risk in Wellington, New Zealand

    Science.gov (United States)

    Van Dissen, R.; Brackley, H. L.; Francois-Holden, C.

    2012-12-01

    The Wellington region, home of New Zealand's capital city, is cut by a number of major right-lateral strike slip faults, and is underlain by the currently locked west-dipping subduction interface between the down going Pacific Plate, and the over-riding Australian Plate. In its short historic period (ca. 160 years), the region has been impacted by large earthquakes on the strike-slip faults, but has yet to bear the brunt of a subduction interface rupture directly beneath the capital city. It's Our Fault is a comprehensive study of Wellington's earthquake risk. Its objective is to position the capital city of New Zealand to become more resilient through an encompassing study of the likelihood of large earthquakes, and the effects and impacts of these earthquakes on humans and the built environment. It's Our Fault is jointly funded by New Zealand's Earthquake Commission, Accident Compensation Corporation, Wellington City Council, Wellington Region Emergency Management Group, Greater Wellington Regional Council, and Natural Hazards Research Platform. The programme has been running for six years, and key results to date include better definition and constraints on: 1) location, size, timing, and likelihood of large earthquakes on the active faults closest to Wellington; 2) earthquake size and ground shaking characterization of a representative suite of subduction interface rupture scenarios under Wellington; 3) stress interactions between these faults; 4) geological, geotechnical, and geophysical parameterisation of the near-surface sediments and basin geometry in Wellington City and the Hutt Valley; and 5) characterisation of earthquake ground shaking behaviour in these two urban areas in terms of subsoil classes specified in the NZ Structural Design Standard. The above investigations are already supporting measures aimed at risk reduction, and collectively they will facilitate identification of additional actions that will have the greatest benefit towards further

  3. Initiatives to Reduce Earthquake Risk of Developing Countries

    Science.gov (United States)

    Tucker, B. E.

    2008-12-01

    The seventeen-year-and-counting history of the Palo Alto-based nonprofit organization GeoHazards International (GHI) is the story of many initiatives within a larger initiative to increase the societal impact of geophysics and civil engineering. GHI's mission is to reduce death and suffering due to earthquakes and other natural hazards in the world's most vulnerable communities through preparedness, mitigation and advocacy. GHI works by raising awareness in these communities about their risk and about affordable methods to manage it, identifying and strengthening institutions in these communities to manage their risk, and advocating improvement in natural disaster management. Some of GHI's successful initiatives include: (1) creating an earthquake scenario for Quito, Ecuador that describes in lay terms the consequences for that city of a probable earthquake; (2) improving the curricula of Pakistani university courses about seismic retrofitting; (3) training employees of the Public Works Department of Delhi, India on assessing the seismic vulnerability of critical facilities such as a school, a hospital, a police headquarters, and city hall; (4) assessing the vulnerability of the Library of Tibetan Works and Archives in Dharamsala, India; (5) developing a seismic hazard reduction plan for a nonprofit organization in Kathmandu, Nepal that works to manage Nepal's seismic risk; and (6) assisting in the formulation of a resolution by the Council of the Organization for Economic Cooperation and Development (OECD) to promote school earthquake safety among OECD member countries. GHI's most important resource, in addition to its staff and Board of Trustees, is its members and volunteer advisors, who include some of the world's leading earth scientists, earthquake engineers, urban planners and architects, from the academic, public, private and nonprofit sectors. GHI is planning several exciting initiatives in the near future. One would oversee the design and construction of

  4. Four Examples of Short-Term and Imminent Prediction of Earthquakes

    Science.gov (United States)

    zeng, zuoxun; Liu, Genshen; Wu, Dabin; Sibgatulin, Victor

    2014-05-01

    We show here 4 examples of short-term and imminent prediction of earthquakes in China last year. They are Nima Earthquake(Ms5.2), Minxian Earthquake(Ms6.6), Nantou Earthquake (Ms6.7) and Dujiangyan Earthquake (Ms4.1) Imminent Prediction of Nima Earthquake(Ms5.2) Based on the comprehensive analysis of the prediction of Victor Sibgatulin using natural electromagnetic pulse anomalies and the prediction of Song Song and Song Kefu using observation of a precursory halo, and an observation for the locations of a degasification of the earth in the Naqu, Tibet by Zeng Zuoxun himself, the first author made a prediction for an earthquake around Ms 6 in 10 days in the area of the degasification point (31.5N, 89.0 E) at 0:54 of May 8th, 2013. He supplied another degasification point (31N, 86E) for the epicenter prediction at 8:34 of the same day. At 18:54:30 of May 15th, 2013, an earthquake of Ms5.2 occurred in the Nima County, Naqu, China. Imminent Prediction of Minxian Earthquake (Ms6.6) At 7:45 of July 22nd, 2013, an earthquake occurred at the border between Minxian and Zhangxian of Dingxi City (34.5N, 104.2E), Gansu province with magnitude of Ms6.6. We review the imminent prediction process and basis for the earthquake using the fingerprint method. 9 channels or 15 channels anomalous components - time curves can be outputted from the SW monitor for earthquake precursors. These components include geomagnetism, geoelectricity, crust stresses, resonance, crust inclination. When we compress the time axis, the outputted curves become different geometric images. The precursor images are different for earthquake in different regions. The alike or similar images correspond to earthquakes in a certain region. According to the 7-year observation of the precursor images and their corresponding earthquake, we usually get the fingerprint 6 days before the corresponding earthquakes. The magnitude prediction needs the comparison between the amplitudes of the fingerpringts from the same

  5. [Comprehensive quality management in hospitals--experience and recommendations].

    Science.gov (United States)

    Schubert, H J

    1999-03-01

    Total quality management concepts, increasingly being introduced into hospitals, offer opportunities for integrative leadership concepts because of their multidimensional character viewed from the aspects of results and from the standpoint of organisational design. Customized for leadership and organisation of hospitals in Germany, questions of introduction strategies as well as recommendations for the integration of total quality understanding into the daily practice of management and employees are discussed. The active support of top and middle management and a combination of radical change in selected problem areas and continual incremental improvements on a broad base have been proven as significant factors for the success in the introductory phase. For a lasting integration of the principles of a comprehensive quality management concept in a hospital, it will be necessary to carry out regularly relevant measurements of success. The results become an important part of agreements with management.

  6. THE IMPORTANCE OF OTHER COMPREHENSIVE INCOME FOR MANAGERS IN A PRODUCTION ENTITY

    Directory of Open Access Journals (Sweden)

    Marzena STROJEK‐FILUS

    2013-01-01

    Full Text Available One of the main parameters of the evaluation of financial position of entity is the level of total comprehensive income reported in financial reports. The study contains an overview of the other comprehensive income as the part of total comprehensive income. The research problem related to the significance of dates about the other comprehensive income ingredients for production entity management. The essence, arise reasons and main principles of the other comprehensive income in relating to the changes in own capital of entity was explained within the scope of law‐regulated accounting. The paper concentrated on the producing tangible fixed assets problems.

  7. Global building inventory for earthquake loss estimation and risk management

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David; Porter, Keith

    2010-01-01

    We develop a global database of building inventories using taxonomy of global building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat’s demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature.

  8. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    damage than those that did not. However, the progress in practice was very far behind the progress in knowledge and regulations; more strict enforcement of seismic design provisions and wiser selection of construction sites would have saved many more lives in the Wenchuan area. The Wenchuan earthquake has started a new era. Confidence in prediction has dropped to a historical low despite a strong sentimental attachment to it, and practical mitigation management has firmly gained its priority position.

  9. Building with Earthquakes in Mind

    Science.gov (United States)

    Mangieri, Nicholas

    2016-04-01

    Earthquakes are some of the most elusive and destructive disasters humans interact with on this planet. Engineering structures to withstand earthquake shaking is critical to ensure minimal loss of life and property. However, the majority of buildings today in non-traditional earthquake prone areas are not built to withstand this devastating force. Understanding basic earthquake engineering principles and the effect of limited resources helps students grasp the challenge that lies ahead. The solution can be found in retrofitting existing buildings with proper reinforcements and designs to deal with this deadly disaster. The students were challenged in this project to construct a basic structure, using limited resources, that could withstand a simulated tremor through the use of an earthquake shake table. Groups of students had to work together to creatively manage their resources and ideas to design the most feasible and realistic type of building. This activity provided a wealth of opportunities for the students to learn more about a type of disaster they do not experience in this part of the country. Due to the fact that most buildings in New York City were not designed to withstand earthquake shaking, the students were able to gain an appreciation for how difficult it would be to prepare every structure in the city for this type of event.

  10. Environmental Health assessment 200 Days after Earthquake-Affected Region in East Azerbaijan Earthquake, North-Western of Iran, 2012

    Directory of Open Access Journals (Sweden)

    Alihossein Zeinalzadeh

    2017-04-01

    Full Text Available Evaluating of health status and explore the challenges of health problems that threaten human life following disasters and major earthquakes providing windows of opportunities for health care providers in future planning of disasters. The main purpose of this report was to survey the environmental sanitation statues after 200 days of the affected populations in earthquakes of East Azerbaijan, northwestern of Iran, 2012. The survey was carried out in earthquake zones 200 days after the occurrence of the earthquake. A single stage cluster sampling from among 95 villages damaged in the earthquake of 2012 East Azerbaijan of three towns Ahar, Varzeghan and Heris were selected. The data were collected with questionnaire, site visits and evaluation of water and sanitation. In a twin Earthquake, East Azerbaijan province that 399 villages of Ahar, Varzeghan, Heris, Tabriz and Kaleibar cities were affected and 356 (89.2 % villages were destroyed between 30-100%.  Evaluation of water and sanitation infrastructure after 200 days, shown that only half of these villages consumed healthy water with high coverage and adequate. Half of the villages in 200 days after the earthquake were covered safe drinking water (treated drinking water. The bacteriological quality of drinking-water supply of the affected area was assessed in randomly collected 146 samples from this region and ten (6.8% reported as unsuitable. Solid waste management facilities in residents have not been acceptable that affect public health. Solid waste disposal was done by district residents (cooperation rural residents 68.4%, 36.8% and 76.3% in Ahar, Varzeghan and Heris, respectively. Overall, the impact of infectious and communicable diseases after Earthquake was reported 42.1% (16 villages in the Varzeghan. The lack of geographical view with a focus in mountainous and rural areas, partial support and dispersion of earthquake-stricken people in affected villages and lack of participatory need

  11. The role of INGVterremoti blog in information management during the earthquake sequence in central Italy

    Directory of Open Access Journals (Sweden)

    Maurizio Pignone

    2017-01-01

    Full Text Available In this paper, we describe the role the INGVterremoti blog in information management during the first part of the earthquake sequence in central Italy (August 24 to September 30. In the last four years, we have been working on the INGVterremoti blog in order to provide quick updates on the ongoing seismic activity in Italy and in-depth scientific information. These include articles on specific historical earthquakes, seismic hazard, geological interpretations, source models from different type of data, effects at the surface, and so on. We have delivered information in quasi-real-time also about all the recent magnitude M≥4.0 earthquakes in Italy, the strongest events in the Mediterranean and in the world. During the 2016 central Italy, the INGVterremoti blog has continuously released information about seismic sequences with three types of posts: i updates on the ongoing seismic activity; ii reports on the activities carried out by the INGV teams in the field and any other working groups; iii in-depth scientific articles describing some specific analysis and results. All the blog posts have been shared automatically and in real time on the other social media of the INGVterremoti platform, also to counter the bad information and to fight rumors. These include Facebook, Twitter and INGVterremoti App on IOS and Android. As well, both the main INGV home page (http://www.ingv.it and the INGV earthquake portal (http://terremoti.ingv.it have published the contents of the blog on dedicated pages that were fed automatically. The work done day by day on the INGVterremoti blog has been coordinated with the INGV Press Office that has written several press releases based on the contents of the blog. Since August 24, 53 articles were published on the blog they have had more than 1.9 million views and 1 million visitors. The peak in the number of views, which was more than 800,000 in a single day, was registered on August 24, 2016, following the M 6

  12. The comprehensiveness of environmental management systems: The influence of institutional pressures and the impact on environmental performance.

    Science.gov (United States)

    Phan, Thanh Nguyet; Baird, Kevin

    2015-09-01

    This study contributes to the EMS literature by providing a more detailed insight into the comprehensiveness of environmental management systems (EMSs) by focusing on the intensity of use of environmental management practices. In addition, the study examines the influence of institutional pressures (coercive, mimetic and normative) on the comprehensiveness of environmental management systems (EMSs), and the impact of EMS comprehensiveness on environmental performance. A mail survey questionnaire was used to collect data from a random sample of Australian senior managers across various industries. Both coercive and normative pressures were found to influence the comprehensiveness of EMSs. Specifically, the pressure exerted by the government, through the creation of appropriate regulatory pressures and public incentives, and by employees, customers, professional groups, the media, and community, influenced the comprehensiveness of the EMS. In addition, organisations with more comprehensive EMSs were found to experience higher levels of environmental performance. With more than 300,000 organisations worldwide adopting EMSs (ISO, 2013), the findings provide an important insight into the relevance of EMSs. In particular, it is suggested that organisations should endeavour to implement a more comprehensive EMS and be conscious of the role that coercive and normative pressures play in influencing the comprehensiveness of their EMSs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    Science.gov (United States)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  14. Exploring Earthquakes in Real-Time

    Science.gov (United States)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  15. A comprehensive approach to managing hazardous materials

    International Nuclear Information System (INIS)

    Donovan, A.

    1990-01-01

    An increased emphasis on the need for environmental protection indicates that engineers must now consider the disposition of unused hazardous materials as waste. Before specifying and ordering materials, the engineer must consider the impact of the Resource Conservation and Recovery Act (RCRA) and the Occupational Safety and Health Administration's (OSHA's) Hazard Communication Standard. Many commonly used materials such as paint, solvents, glues, and sealants fall under the requirements of these regulations. This paper presents a plant to manage hazardous materials at the US Department of Energy's (DOE's) Waste Isolation Pilot Plant (WIPP), which is managed and operated by Westinghouse Electric Corporation. The basic elements of the plan are training, hazard communication, storage and handling, tracking, and disposal. Steps to be taken to develop the plan are outlined, problems and successes are addressed, and interactions among all affected departments are identified. The benefits of an organized and comprehensive approach to managing hazardous materials are decreased worker injuries, reduction of accidental releases, minimization of waste, and compliance with federal, state, and local safety and environmental laws. In summary, the benefits of an organized program for the management of hazardous materials include compliance with the Environmental Protection Agency's (EPA's) requirements, demonstration of Westinghouse's role as a responsible corporate entity, and reduction of waste management costs

  16. Investigating Earthquake-induced Landslides­a Historical Review

    Science.gov (United States)

    Keefer, D. K.; Geological Survey, Us; Park, Menlo; Usa, Ca

    Although earthquake-induced landslides have been described in documents for more than 3700 years, accounts from earthquakes before the late eighteenth century are incomplete concerning landslide numbers and vague concerning landslide character- istics. They are thus typically misleading concerning the true abundance of landslides and range of landslide characteristics. Beginning with studies of the 1783 Calabria, Italy earthquake, more complete and precise data concerning the occurrence of land- slides in earthquakes have become available. The historical development of knowl- edge concerning landslides triggered by earthquakes can be divided into several peri- ods. The first period, from 1783 until the first application of aerial photography, was characterized by ground-based studies of earthquake effects, typically carried out by formal scientific commissions. These formal studies typically identified a large, but not necessarily comprehensive, sampling of localities where landslides had occurred. In some, but not all cases, landslide characteristics were also described in enough de- tail that the general range of landslide characteristics could begin to be determined. More recently, some nineteenth to mid-twentieth century earthquakes have been stud- ied using retrospective analyses, in which the landslide occurrences associated with the event are inferred years to decades later, using contemporary accounts, mapping from aerial photographs, statistical studies, and (or) geotechnical analyses. The first use of aerial photographs to map earthquake effects immediately after the event prob- ably occurred in 1948. Since that time, the use of aerial photography has greatly facil- itated the compilation of post-earthquake landslide inventories, although because of the limitations of aerial photography, ground-based field studies continue to be cru- cial in preparing accurate and comprehensive landslide maps. Beginning with a small California earthquake in 1957

  17. National Earthquake Hazards Program at a Crossroads

    Science.gov (United States)

    Showstack, Randy

    The U.S.National Earthquake Hazards Reduction Program, which turns 25 years old on 1 October 2003, is passing through two major transitions, which experts said either could weaken or strengthen the program. On 1 March, a federal government reorganization placed NEHRP's lead agency,the Federal Emergency Management Agency (FEMA),within the new Department of Homeland Security (DHS). A number of earthquake scientists and engineers expressed concern that NEHRP, which already faces budgetary and organizational challenges, and lacks visibility,could end up being marginalized in the bureaucratic shuffle. Some experts, though,as well as agency officials, said they hope DHS will recognize synergies between dealing with earthquakes and terrorist attacks.

  18. Report by the 'Mega-earthquakes and mega-tsunamis' subgroup

    International Nuclear Information System (INIS)

    Friedel, Jacques; Courtillot, Vincent; Dercourt, Jean; Jaupart, Claude; Le Pichon, Xavier; Poirier, Jean-Paul; Salencon, Jean; Tapponnier, Paul; Dautray, Robert; Carpentier, Alain; Taquet, Philippe; Blanchet, Rene; Le Mouel, Jean-Louis; BARD, Pierre-Yves; Bernard, Pascal; Montagner, Jean-Paul; Armijo, Rolando; Shapiro, Nikolai; Tait, Steve; Cara, Michel; Madariaga, Raul; Pecker, Alain; Schindele, Francois; Douglas, John

    2011-06-01

    This report comprises a presentation of scientific data on subduction earthquakes, on tsunamis and on the Tohoku earthquake. It proposes a detailed description of the French situation (in the West Indies, in metropolitan France, and in terms of soil response), and a discussion of social and economic issues (governance, seismic regulation and nuclear safety, para-seismic protection of constructions). The report is completed by other large documents: presentation of data on the Japanese earthquake, discussion on prediction and governance errors in the management of earthquake mitigation in Japan, discussions on tsunami prevention, on needs of research on accelerometers, and on the seismic risk in France

  19. Prevent recurrence of nuclear disaster (3). Agenda on nuclear safety from earthquake engineering

    International Nuclear Information System (INIS)

    Kameda, Hiroyuki; Takada, Tsuyoshi; Ebisawa, Katsumi; Nakamura, Susumu

    2012-01-01

    Based on results of activities of committee on seismic safety of nuclear power plants (NPPs) of Japan Association for Earthquake Engineering, which started activities after Chuetsu-oki earthquake and then experienced Great East Japan Earthquake, (under close collaboration with the committee of Atomic Energy Society of Japan started activities simultaneously), and taking account of further development of concept, agenda on nuclear safety were proposed from earthquake engineering. In order to prevent recurrence of nuclear disaster, individual technical issues of earthquake engineering and comprehensive issues of integration technology, multidisciplinary collaboration and establishment of technology governance based on them were of prime importance. This article described important problems to be solved; (1) technical issues and mission of seismic safety of NPPs, (2) decision making based on risk assessment - basis of technical governance, (3) framework of risk, design and regulation - framework of required technology governance, (4) technical issues of earthquake engineering for nuclear safety, (5) role of earthquake engineering in nuclear power risk communication and (6) importance of multidisciplinary collaboration. Responsibility of engineering would be attributed to establishment of technology governance, cultivation of individual technology and integration technology, and social communications. (T. Tanaka)

  20. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  1. Comprehensive analysis of tornado statistics in comparison to earthquakes: intensity and temporal behaviour

    Directory of Open Access Journals (Sweden)

    L. Schielicke

    2013-01-01

    Full Text Available Tornadoes and earthquakes are characterised by a high variability in their properties concerning intensity, geometric properties and temporal behaviour. Earthquakes are known for power-law behaviour in their intensity (Gutenberg–Richter law and temporal statistics (e.g. Omori law and interevent waiting times. The observed similarity of high variability of these two phenomena motivated us to compare the statistical behaviour of tornadoes using seismological methods and quest for power-law behaviour. In general, the statistics of tornadoes show power-law behaviour partly coextensive with characteristic scales when the temporal resolution is high (10 to 60 min. These characteristic scales match with the typical diurnal behaviour of tornadoes, which is characterised by a maximum of tornado occurrences in the late afternoon hours. Furthermore, the distributions support the observation that tornadoes cluster in time. Finally, we shortly discuss a possible similar underlying structure composed of heterogeneous, coupled, interactive threshold oscillators that possibly explains the observed behaviour.

  2. Earthquakes and trauma: review of triage and injury-specific, immediate care.

    Science.gov (United States)

    Gautschi, Oliver P; Cadosch, Dieter; Rajan, Gunesh; Zellweger, René

    2008-01-01

    Earthquakes present a major threat to mankind. Increasing knowledge about geophysical interactions, progressing architectural technology, and improved disaster management algorithms have rendered modern populations less susceptible to earthquakes. Nevertheless, the mass casualties resulting from earthquakes in Great Kanto (Japan), Ancash (Peru), Tangshan (China), Guatemala, Armenia, and Izmit (Turkey) or the recent earthquakes in Bhuj (India), Bam (Iran), Sumatra (Indonesia) and Kashmir (Pakistan) indicate the devastating effect earthquakes can have on both individual and population health. Appropriate preparation and implementation of crisis management algorithms are of utmost importance to ensure a large-scale medical-aid response is readily available following a devastating event. In particular, efficient triage is vital to optimize the use of limited medical resources and to effectively mobilize these resources so as to maximize patient salvage. However, the main priorities of disaster rescue teams are the rescue and provision of emergency care for physical trauma. Furthermore, the establishment of transport evacuation corridors, a feature often neglected, is essential in order to provide the casualties with a chance for survival. The optimal management of victims under such settings is discussed, addressing injuries of the body and psyche by means of simple diagnostic and therapeutic procedures globally applicable and available.

  3. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  4. Update earthquake risk assessment in Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2017-07-01

    The Cairo earthquake (12 October 1992; m b = 5.8) is still and after 25 years one of the most painful events and is dug into the Egyptians memory. This is not due to the strength of the earthquake but due to the accompanied losses and damages (561 dead; 10,000 injured and 3000 families lost their homes). Nowadays, the most frequent and important question that should rise is "what if this earthquake is repeated today." In this study, we simulate the same size earthquake (12 October 1992) ground motion shaking and the consequent social-economic impacts in terms of losses and damages. Seismic hazard, earthquake catalogs, soil types, demographics, and building inventories were integrated into HAZUS-MH to produce a sound earthquake risk assessment for Cairo including economic and social losses. Generally, the earthquake risk assessment clearly indicates that "the losses and damages may be increased twice or three times" in Cairo compared to the 1992 earthquake. The earthquake risk profile reveals that five districts (Al-Sahel, El Basateen, Dar El-Salam, Gharb, and Madinat Nasr sharq) lie in high seismic risks, and three districts (Manshiyat Naser, El-Waily, and Wassat (center)) are in low seismic risk level. Moreover, the building damage estimations reflect that Gharb is the highest vulnerable district. The analysis shows that the Cairo urban area faces high risk. Deteriorating buildings and infrastructure make the city particularly vulnerable to earthquake risks. For instance, more than 90 % of the estimated buildings damages are concentrated within the most densely populated (El Basateen, Dar El-Salam, Gharb, and Madinat Nasr Gharb) districts. Moreover, about 75 % of casualties are in the same districts. Actually, an earthquake risk assessment for Cairo represents a crucial application of the HAZUS earthquake loss estimation model for risk management. Finally, for mitigation, risk reduction, and to improve the seismic performance of structures and assure life safety

  5. Analysis of Earthquake Source Spectra in Salton Trough

    Science.gov (United States)

    Chen, X.; Shearer, P. M.

    2009-12-01

    Previous studies of the source spectra of small earthquakes in southern California show that average Brune-type stress drops vary among different regions, with particularly low stress drops observed in the Salton Trough (Shearer et al., 2006). The Salton Trough marks the southern end of the San Andreas Fault and is prone to earthquake swarms, some of which are driven by aseismic creep events (Lohman and McGuire, 2007). In order to learn the stress state and understand the physical mechanisms of swarms and slow slip events, we analyze the source spectra of earthquakes in this region. We obtain Southern California Seismic Network (SCSN) waveforms for earthquakes from 1977 to 2009 archived at the Southern California Earthquake Center (SCEC) data center, which includes over 17,000 events. After resampling the data to a uniform 100 Hz sample rate, we compute spectra for both signal and noise windows for each seismogram, and select traces with a P-wave signal-to-noise ratio greater than 5 between 5 Hz and 15 Hz. Using selected displacement spectra, we isolate the source spectra from station terms and path effects using an empirical Green’s function approach. From the corrected source spectra, we compute corner frequencies and estimate moments and stress drops. Finally we analyze spatial and temporal variations in stress drop in the Salton Trough and compare them with studies of swarms and creep events to assess the evolution of faulting and stress in the region. References: Lohman, R. B., and J. J. McGuire (2007), Earthquake swarms driven by aseismic creep in the Salton Trough, California, J. Geophys. Res., 112, B04405, doi:10.1029/2006JB004596 Shearer, P. M., G. A. Prieto, and E. Hauksson (2006), Comprehensive analysis of earthquake source spectra in southern California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979.

  6. The Relationship between Knowledge and Attitude of Managers with Preparedness of Healthcare Centers in Rey Health Network against Earthquake Risk - 2013

    Directory of Open Access Journals (Sweden)

    Mohammad Asadzadeh

    2014-06-01

    Conclusions: Considering that managers’ knowledge was rather low, preparedness among centers was low as well. According to low knowledge and unsuitable preparedness, more theoretical and practical trainings and maneuvers were necessary to be held for managers about earthquake preparedness.

  7. Development of a comprehensive model for stakeholder management in mental healthcare.

    Science.gov (United States)

    Bierbooms, Joyce; Van Oers, Hans; Rijkers, Jeroen; Bongers, Inge

    2016-06-20

    Purpose - Stakeholder management is not yet incorporated into the standard practice of most healthcare providers. The purpose of this paper is to assess the applicability of a comprehensive model for stakeholder management in mental healthcare organization for more evidence-based (stakeholder) management. Design/methodology/approach - The assessment was performed in two research parts: the steps described in the model were executed in a single case study at a mental healthcare organization in the Netherlands; and a process and effect evaluation was done to find the supporting and impeding factors with regard to the applicability of the model. Interviews were held with managers and directors to evaluate the effectiveness of the model with a view to stakeholder management. Findings - The stakeholder analysis resulted in the identification of eight stakeholder groups. Different expectations were identified for each of these groups. The analysis on performance gaps revealed that stakeholders generally find the collaboration with a mental healthcare provider "sufficient." Finally a prioritization showed that five stakeholder groups were seen as "definite" stakeholders by the organization. Practical implications - The assessment of the model showed that it generated useful knowledge for more evidence-based (stakeholder) management. Adaptation of the model is needed to increase its feasibility in practice. Originality/value - Provided that the model is properly adapted for the specific field, the analysis can provide more knowledge on stakeholders and can help integrate stakeholder management as a comprehensive process in policy planning.

  8. Social Media as Seismic Networks for the Earthquake Damage Assessment

    Science.gov (United States)

    Meletti, C.; Cresci, S.; La Polla, M. N.; Marchetti, A.; Tesconi, M.

    2014-12-01

    The growing popularity of online platforms, based on user-generated content, is gradually creating a digital world that mirrors the physical world. In the paradigm of crowdsensing, the crowd becomes a distributed network of sensors that allows us to understand real life events at a quasi-real-time rate. The SoS-Social Sensing project [http://socialsensing.it/] exploits the opportunistic crowdsensing, involving users in the sensing process in a minimal way, for social media emergency management purposes in order to obtain a very fast, but still reliable, detection of emergency dimension to face. First of all we designed and implemented a decision support system for the detection and the damage assessment of earthquakes. Our system exploits the messages shared in real-time on Twitter. In the detection phase, data mining and natural language processing techniques are firstly adopted to select meaningful and comprehensive sets of tweets. Then we applied a burst detection algorithm in order to promptly identify outbreaking seismic events. Using georeferenced tweets and reported locality names, a rough epicentral determination is also possible. The results, compared to Italian INGV official reports, show that the system is able to detect, within seconds, events of a magnitude in the region of 3.5 with a precision of 75% and a recall of 81,82%. We then focused our attention on damage assessment phase. We investigated the possibility to exploit social media data to estimate earthquake intensity. We designed a set of predictive linear models and evaluated their ability to map the intensity of worldwide earthquakes. The models build on a dataset of almost 5 million tweets exploited to compute our earthquake features, and more than 7,000 globally distributed earthquakes data, acquired in a semi-automatic way from USGS, serving as ground truth. We extracted 45 distinct features falling into four categories: profile, tweet, time and linguistic. We run diagnostic tests and

  9. Earthquake location in island arcs

    Science.gov (United States)

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  10. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  11. Disturbances in equilibrium function after major earthquake.

    Science.gov (United States)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi

    2012-01-01

    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  12. The plan to coordinate NEHRP post-earthquake investigations

    Science.gov (United States)

    Holzer, Thomas L.; Borcherdt, Roger D.; Comartin, Craig D.; Hanson, Robert D.; Scawthorn, Charles R.; Tierney, Kathleen; Youd, T. Leslie

    2003-01-01

    This is the plan to coordinate domestic and foreign post-earthquake investigations supported by the National Earthquake Hazards Reduction Program (NEHRP). The plan addresses coordination of both the NEHRP agencies—Federal Emergency Management Agency (FEMA), National Institute of Standards and Technology (NIST), National Science Foundation (NSF), and U. S. Geological Survey (USGS)—and their partners. The plan is a framework for both coordinating what is going to be done and identifying responsibilities for post-earthquake investigations. It does not specify what will be done. Coordination is addressed in various time frames ranging from hours to years after an earthquake. The plan includes measures for (1) gaining rapid and general agreement on high-priority research opportunities, and (2) conducting the data gathering and fi eld studies in a coordinated manner. It deals with identifi cation, collection, processing, documentation, archiving, and dissemination of the results of post-earthquake work in a timely manner and easily accessible format.

  13. The Validity and Reliability Work of the Scale That Determines the Level of the Trauma after the Earthquake

    Science.gov (United States)

    Tanhan, Fuat; Kayri, Murat

    2013-01-01

    In this study, it was aimed to develop a short, comprehensible, easy, applicable, and appropriate for cultural characteristics scale that can be evaluated in mental traumas concerning earthquake. The universe of the research consisted of all individuals living under the effects of the earthquakes which occurred in Tabanli Village on 23.10.2011 and…

  14. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    Science.gov (United States)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  15. Scientists Engage South Carolina Community in Earthquake Education and Preparedness

    Science.gov (United States)

    Hall, C.; Beutel, E.; Jaume', S.; Levine, N.; Doyle, B.

    2008-12-01

    Scientists at the College of Charleston are working with the state of South Carolina's Emergency Management Division to increase awareness and understanding of earthquake hazards throughout South Carolina. As part of this mission, the SCEEP (South Carolina Earthquake Education and Preparedness) program was formed at the College of Charleston to promote earthquake research, outreach, and education in the state of South Carolina. Working with local, regional, state and federal offices, SCEEP has developed education programs for everyone from professional hazard management teams to formal and informal educators. SCEEP also works with the media to ensure accurate reporting of earthquake and other hazard information and to increase the public's understanding of earthquake science and earthquake seismology. As part of this program, we have developed a series of activities that can be checked out by educators for use in their classrooms and in informal education venues. These activities are designed to provide educators with the information and tools they lack to adequately, informatively, and enjoyably teach about earthquake and earth science. The toolkits contain seven activities meeting a variety of National Education Standards, not only in Science, but also in Geography, Math, Social Studies, Arts Education, History and Language Arts - providing a truly multidisciplinary toolkit for educators. The activities provide information on earthquake myths, seismic waves, elastic rebound, vectors, liquefaction, location of an epicenter, and then finally South Carolina earthquakes. The activities are engaging and inquiry based, implementing proven effective strategies for peaking learners' interest in scientific phenomena. All materials are provided within the toolkit and so it is truly check and go. While the SCEEP team has provided instructions and grade level suggestions for implementing the activity in an educational setting, the educator has full reign on what to showcase

  16. THE GREAT SOUTHERN CALIFORNIA SHAKEOUT: Earthquake Science for 22 Million People

    Science.gov (United States)

    Jones, L.; Cox, D.; Perry, S.; Hudnut, K.; Benthien, M.; Bwarie, J.; Vinci, M.; Buchanan, M.; Long, K.; Sinha, S.; Collins, L.

    2008-12-01

    Earthquake science is being communicated to and used by the 22 million residents of southern California to improve resiliency to future earthquakes through the Great Southern California ShakeOut. The ShakeOut began when the USGS partnered with the California Geological Survey, Southern California Earthquake Center and many other organizations to bring 300 scientists and engineers together to formulate a comprehensive description of a plausible major earthquake, released in May 2008, as the ShakeOut Scenario, a description of the impacts and consequences of a M7.8 earthquake on the Southern San Andreas Fault (USGS OFR2008-1150). The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. The ShakeOut drill occurred in houses, businesses, and public spaces throughout southern California at 10AM on November 13, 2008, when southern Californians were asked to pretend that the M7.8 scenario earthquake had occurred and to practice actions that could reduce the impact on their lives. Residents, organizations, schools and businesses registered to participate in the drill through www.shakeout.org where they could get accessible information about the scenario earthquake and share ideas for better reparation. As of September 8, 2008, over 2.7 million confirmed participants had been registered. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The goal of the ShakeOut has been to change the culture of earthquake preparedness in southern California, making earthquakes a reality that are regularly discussed. This implements the sociological finding that 'milling,' discussing a problem with loved ones, is a prerequisite to taking action. ShakeOut milling is taking place at all levels from individuals and families, to corporations and governments. Actions taken as a result of the ShakeOut include the adoption of earthquake

  17. Report on the 2010 Chilean earthquake and tsunami response

    Science.gov (United States)

    ,

    2011-01-01

    . These plans need to be flexible, include alternative options, and be completed in conjunction with local officials and other volunteers. The Executive/Red Cross Management Team took a broad look at the impacts of the earthquake and the implications for California. Some of the most important preparation for the disaster came from relationships formed before the event. The communities with strong connections between different government services generally fared well. The initial response and resilience of individuals and communities was another important component. Communication system failures limited the ability of a central government to assist impacted communities, or to issue tsunami warnings. It also delayed the response since the government did not know (in some case for several days) the impact and needs of local governments. In general, plans for congregate care shelters existed but were little used as most people chose to stay at damaged homes or with relatives. Looting was a surprise to response officials as well as social scientists, but both public and private sector organizations, including NGOs (Non-Governmental Organizations), must consider security for damaged businesses as a priority in California’s multihazard planning. Class and ethnic divisions that become heightened during some cases of actual or perceived injustice may also emerge in natural disasters in California. Several factors contributed overall to the low casualty rate and rapid recovery. A major factor is the strong building code in Chile and its comprehensive enforcement. In particular, Chile has a law that holds building owners accountable for losses in a building they build for 10 years. A second factor was the limited number of fires after the earthquake. In the last few California earthquakes, 60% of the fires were started by electrical problems, so the rarity of fires may have been affected by the shut down of the electricity grid early in the earthquake. Third, in many areas, the

  18. Recovering from the ShakeOut earthquake

    Science.gov (United States)

    Wein, Anne; Johnson, Laurie; Bernknopf, Richard

    2011-01-01

    Recovery from an earthquake like the M7.8 ShakeOut Scenario will be a major endeavor taking many years to complete. Hundreds of Southern California municipalities will be affected; most lack recovery plans or previous disaster experience. To support recovery planning this paper 1) extends the regional ShakeOut Scenario analysis into the recovery period using a recovery model, 2) localizes analyses to identify longer-term impacts and issues in two communities, and 3) considers the regional context of local recovery.Key community insights about preparing for post-disaster recovery include the need to: geographically diversify city procurement; set earthquake mitigation priorities for critical infrastructure (e.g., airport), plan to replace mobile homes with earthquake safety measures, consider post-earthquake redevelopment opportunities ahead of time, and develop post-disaster recovery management and governance structures. This work also showed that communities with minor damages are still sensitive to regional infrastructure damages and their potential long-term impacts on community recovery. This highlights the importance of community and infrastructure resilience strategies as well.

  19. Actions at Kashiwazaki Kariwa Nuclear Power Station after the Niigataken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Orita, Shuichi

    2009-01-01

    'The Niigataken Chuetsu-oki Earthquake in 2007' occurred on July 16, 2007, and seismic motions beyond those of the design basis earthquake were recorded at Kashiwazaki Kariwa nuclear power station located near the epicenter. After the earthquake, inspections and seismic response analyses have been being performed to grasp seismic induced impacts on structures, systems and components (SSCs). In addition, re-definition of design basis earthquake, upgrading, management against disasters have been also being conducted. (author)

  20. Mexican Earthquakes and Tsunamis Catalog Reviewed

    Science.gov (United States)

    Ramirez-Herrera, M. T.; Castillo-Aja, R.

    2015-12-01

    Today the availability of information on the internet makes online catalogs very easy to access by both scholars and the public in general. The catalog in the "Significant Earthquake Database", managed by the National Center for Environmental Information (NCEI formerly NCDC), NOAA, allows access by deploying tabular and cartographic data related to earthquakes and tsunamis contained in the database. The NCEI catalog is the product of compiling previously existing catalogs, historical sources, newspapers, and scientific articles. Because NCEI catalog has a global coverage the information is not homogeneous. Existence of historical information depends on the presence of people in places where the disaster occurred, and that the permanence of the description is preserved in documents and oral tradition. In the case of instrumental data, their availability depends on the distribution and quality of seismic stations. Therefore, the availability of information for the first half of 20th century can be improved by careful analysis of the available information and by searching and resolving inconsistencies. This study shows the advances we made in upgrading and refining data for the earthquake and tsunami catalog of Mexico since 1500 CE until today, presented in the format of table and map. Data analysis allowed us to identify the following sources of error in the location of the epicenters in existing catalogs: • Incorrect coordinate entry • Place name erroneous or mistaken • Too general data that makes difficult to locate the epicenter, mainly for older earthquakes • Inconsistency of earthquakes and the tsunami occurrence: earthquake's epicenter located too far inland reported as tsunamigenic. The process of completing the catalogs directly depends on the availability of information; as new archives are opened for inspection, there are more opportunities to complete the history of large earthquakes and tsunamis in Mexico. Here, we also present new earthquake and

  1. Reactivation of slow-moving landslides by earthquakes, kinematics measurements and mechanical implications

    Science.gov (United States)

    Lacroix, Pascal; Perfettini, Hugo; Berthier, Etienne; Taipe, Edu; Guillier, Bertrand

    2015-04-01

    Major earthquakes in mountainous areas often trigger landslides. The impact of earthquakes on slow-moving landslides is however not well constrained due to few co-seismic measurements of landslide motion. We document the first time-series of a landslide reactivation by an earthquake (Mw6.0, distance 20 km), using continuous GPS measurements over the Maca landslide (Peru). Our survey shows a coseismic response of the landslide of about 2 cm, followed by a relaxation period of 5 weeks during which postseismic slip is three times greater than the coseismic displacement itself. Our results confirm the coseismic activation of landslides and provide the first observation of a post seismic displacement. Finally, a multi-temporal survey using images from the very high resolution Pléiades optical satellite, allowed us to detect 9 active slow-moving landslides over the whole valley. Their pattern of motion show they have been reactivated by the same earthquake. We analyze this small but comprehensive database of landslides reactivated by the earthquake. We find that the landslide motion due to the earthquake is function of the shaking intensity, suggesting a friction at the basal interface dependent on the earthquake solicitation. These various observations are consistent with a mechanical model where slip on the landslide basal interface is governed by rate and state friction, analogous to the mechanics of creeping tectonic faults.

  2. The DOE Office of Environmental Restoration and Waste Management comprehensive integrated planning process

    International Nuclear Information System (INIS)

    Aiken, R.J.; Draffin, C.W. Jr.; Pflock, K.T.

    1992-01-01

    This paper reports that comprehensive integrated planning is critical to the ultimate success of the DOE Office of Environmental Restoration and Waste Management's (EM) program because of the significant technical and institutional complexities, the tens of billions of dollars required, the regulatory and fiscal uncertainty, and the multitude of federal, state, and private sector organizations involved. Using the philosophy that sound and forward looking planning should guide budgetary and management decisionmaking, and that clear priorities are essential to program success, EM's comprehensive approach includes strategic planning, the annually updated EM Five-Year Plan, the EM Management Plan, and Site Specific Plans. Roadmaps (which facilitate issue identification and resolution), Activity Data Sheets, prioritization methodologies, and installation-specific Progress Charts are among the tools employed in support of the EM integrated planning process

  3. A comprehensive analysis of earthquake damage patterns using high dimensional model representation feature selection

    Science.gov (United States)

    Taşkin Kaya, Gülşen

    2013-10-01

    Recently, earthquake damage assessment using satellite images has been a very popular ongoing research direction. Especially with the availability of very high resolution (VHR) satellite images, a quite detailed damage map based on building scale has been produced, and various studies have also been conducted in the literature. As the spatial resolution of satellite images increases, distinguishability of damage patterns becomes more cruel especially in case of using only the spectral information during classification. In order to overcome this difficulty, textural information needs to be involved to the classification to improve the visual quality and reliability of damage map. There are many kinds of textural information which can be derived from VHR satellite images depending on the algorithm used. However, extraction of textural information and evaluation of them have been generally a time consuming process especially for the large areas affected from the earthquake due to the size of VHR image. Therefore, in order to provide a quick damage map, the most useful features describing damage patterns needs to be known in advance as well as the redundant features. In this study, a very high resolution satellite image after Iran, Bam earthquake was used to identify the earthquake damage. Not only the spectral information, textural information was also used during the classification. For textural information, second order Haralick features were extracted from the panchromatic image for the area of interest using gray level co-occurrence matrix with different size of windows and directions. In addition to using spatial features in classification, the most useful features representing the damage characteristic were selected with a novel feature selection method based on high dimensional model representation (HDMR) giving sensitivity of each feature during classification. The method called HDMR was recently proposed as an efficient tool to capture the input

  4. A cooperative NRC/CEA research project on earthquake ground motion on soil sites: overview

    International Nuclear Information System (INIS)

    Murphy, A.J.; Mohammadioun, B.

    1989-10-01

    This paper provides an overview of a multi-phase experiment being conducted jointly by the U.S. Nuclear Regulatory Commission and the French Commissariat a l'Energie Atomique. The objective of the experiment is to collect a comprehensive set of data on the propagation of earthquake ground motions vertically through a shallow soil column (on the order of several tens of meters). The data will be used to validate several of the available engineering computer codes for modeling earthquake ground motion. The data set will also be used to develop an improved understanding of the earthquake source function and the potential for non-linear effects controlling the propagation through the shallow soil column

  5. An investigation into the socioeconomic aspects of two major earthquakes in Iran.

    Science.gov (United States)

    Amini Hosseini, Kambod; Hosseinioon, Solmaz; Pooyan, Zhila

    2013-07-01

    An evaluation of the socioeconomic consequences of earthquakes is an essential part of the development of risk reduction and disaster management plans. However, these variables are not normally addressed sufficiently after strong earthquakes; researchers and relevant stakeholders focus primarily on the physical damage and casualties. The importance of the socioeconomic consequences of seismic events became clearer in Iran after the Bam earthquake on 26 December 2003, as demonstrated by the formulation and approval of various laws and ordinances. This paper reviews the country's regulatory framework in the light of the socioeconomic aspects of two major and destructive earthquakes: in Manjil-Rudbar in 1990, and in Bam in 2003. The results take the form of recommendations and practical strategies for incorporating the socioeconomic dimensions of earthquakes in disaster risk management planning. The results presented here can be applied in other countries with similar conditions to those of Iran in order to improve public preparedness and risk reduction. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  6. Challenges for the comprehensive management of Cloud Services in a PaaS framework

    NARCIS (Netherlands)

    Garcia-Gomez, S.; Jimenez-Ganan, M.; Taher, Y.; Momm, C.; Junker, F.; Biro, J.; Menychtas, A.; Andrikopoulos, V.; Strauch, S.

    2012-01-01

    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. This paper describes the major challenges tackled by 4CaaSt for the comprehensive management of applications and services in a PaaS.

  7. INTEGRATED FRAMEWORK FOR ENHANCING EARTHQUAKE RISK MITIGATION DECISIONS

    Directory of Open Access Journals (Sweden)

    Temitope Egbelakin

    2015-12-01

    Full Text Available The increasing scale of losses from earthquake disasters has reinforced the need for property owners to become proactive in seismic risk reduction programs. However, despite advancement in seismic design methods and legislative frameworks, building owners are found unwilling or lack motivation to adopt adequate mitigation measures that will reduce their vulnerability to earthquake disasters. Various theories and empirical findings have been used to explain the adoption of protective behaviours including seismic mitigation decisions, but their application has been inadequate to enhance building owners’ protective decisions. A holistic framework that incorporates the motivational orientations of decision-making, coupled with the social, cultural, economic, regulatory, institutional and political realms of earthquake risk mitigation to enhance building owners’ decisions to voluntarily implement adequate mitigation measures, is proposed. This framework attempts to address any multi-disciplinary barriers that exist in earthquake disaster management, by ensuring that stakeholders involved in seismic mitigation decisions work together to foster seismic rehabilitation of EPBs, as well as illuminate strategies that will initiate, promote and sustain the adoption of long-term earthquake mitigation. .

  8. Nurse willingness to report for work in the event of an earthquake in Israel.

    Science.gov (United States)

    Ben Natan, Merav; Nigel, Simon; Yevdayev, Innush; Qadan, Mohamad; Dudkiewicz, Mickey

    2014-10-01

    To examine variables affecting nurse willingness to report for work in the event of an earthquake in Israel and whether this can be predicted through the Theory of Self-Efficacy. The nursing profession has a major role in preparing for earthquakes. Nurse willingness to report to work in the event of an earthquake has never before been examined. Self-administered questionnaires were distributed among a convenience sample of 400 nurses and nursing students in Israel during January-April 2012. High willingness to report to work in the event of an earthquake was declared by 57% of respondents. High perceived self-efficacy, level of knowledge and experience predict willingness to report to work in the event of an earthquake. Multidisciplinary collaboration and support was also cited as a meaningful factor. Perceived self-efficacy, level of knowledge, experience and the support of a multidisciplinary staff affect nurse willingness to report to work in the event of an earthquake. Nurse managers can identify factors that increase nurse willingness to report to work in the event of an earthquake and consequently develop strategies for more efficient management of their nursing workforce. © 2013 John Wiley & Sons Ltd.

  9. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    International Nuclear Information System (INIS)

    Robert S. Anderson

    2005-01-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  10. 14 April 1895, Ljubljana earthquake - A new, cross-border study

    Science.gov (United States)

    Albini, Paola; Cecić, Ina; Hammerl, Christa

    2014-05-01

    Though it has been the object of both contemporary and modern investigations, the 14 April 1895, Ljubljana event (Mw ~6, according to the European catalogue SHEEC) is still not fully described in its effects. One manifest reason for this is that being the 1895 earthquake a cross-border event, it affected an area that today pertains to three different countries, Slovenia, Austria, and Italy, as well as accounted for in sources today scattered in different archives and libraries. In addition, the 1895 Ljubljana earthquake was a turning point for many aspects. Imperial Vienna sent help to rebuild the damaged city and its surroundings, and the architects brought modern ideas about urban planning, public hygiene and contemporary design. It was also the beginning of organised seismological observations in Slovenia - macroseismic, right after the earthquake, and instrumental, in 1896. The macroseismic data about this earthquake are plentiful and very well preserved. In this new, cross-border study we intend to re-evaluate the already known as well as the newly collected data sources. Specific attention is devoted to the archival documentation on damage, and to the far-field data, which were not comprehensively taken into account beforehand. As the earthquake was felt in a large part of central and Eastern Europe, a considerable effort is put into collecting and interpreting the coeval sources, written in many different languages.

  11. Performance of underground coal mines during the 1976 Tangshan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.F.

    1987-01-01

    The Tangshan earthquake of 1976 costs 242 000 lives and was responsible for 164 000 serious injuries and structural damage of immense proportion. The area has eight coal mines, which together form the largest underground coal mining operation in China. Approximately 10 000 miners were working underground at the time of the earthquake. With few exceptions they survived and returned safely to the surface, only to find their families and belongings largely destroyed. Based on a comprehensive survey of the miners' observations, subsurface intensity profiles were drawn up. The profiles clearly indicated that seismic damage in the underground mines was far less severe than at the surface. 16 refs., 4 figs., 2 tabs.

  12. Far-Field Effects of Large Earthquakes on South Florida's Confined Aquifer

    Science.gov (United States)

    Voss, N. K.; Wdowinski, S.

    2012-12-01

    The similarity between a seismometer and a well hydraulic head record during the passage of a seismic wave has long been documented. This is true even at large distances from earthquake epicenters. South Florida lacks a dense seismic array but does contain a comparably dense network of monitoring wells. The large spatial distribution of deep monitoring wells in South Florida provides an opportunity to study the variance of aquifer response to the passage of seismic waves. We conducted a preliminary study of hydraulic head data, provided by the South Florida Water Management District, from 9 deep wells in South Florida's confined Floridian Aquifer in response to 27 main shock events (January 2010- April 2012) with magnitude 6.9 or greater. Coseismic hydraulic head response was observed in 7 of the 27 events. In order to determine what governs aquifer response to seismic events, earthquake parameters were compared for the 7 positive events. Seismic energy density (SED), an empirical relationship between distance and magnitude, was also used to compare the relative energy between the events at each well site. SED is commonly used as a parameter for establishing thresholds for hydrologic events in the near and intermediate fields. Our analysis yielded a threshold SED for well response in South Florida as 8 x 10-3 J m-3, which is consistent with other studies. Deep earthquakes, with SED above this threshold, did not appear to trigger hydraulic head oscillations. The amplitude of hydraulic head oscillations had no discernable relationship to SED levels. Preliminary results indicate a need for a modification of the SED equation to better accommodate depth in order to be of use in the study of hydrologic response in the far field. We plan to conduct a more comprehensive study incorporating a larger subset (~60) of wells in South Florida in order to further examine the spatial variance of aquifers to the passing of seismic waves as well as better confine the relationship

  13. Leading survey and research report for fiscal 1999. Survey and research on earthquake disaster prevention technology for industrial machinery system; 1999 nendo sangyo kikai system no taishin bosai gijutsu no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The current status was investigated of the above technology, and several matters were found to be important, which are the improvement of earthquake-proof performance, safety assessment, early-stage acquisition of information on earthquake, highly aseismic structures, inexpensive seismic isolation devices, prompt restoration, and the security of energy supply and materials transportation just after earthquake. Technologies that have to be developed before earthquake involve active vibration control, constant surveillance, management and maintenance of disaster preventing devices, preparation and updating of disaster-related databases, etc. Technologies need to be developed for real-time disaster control in case of earthquake, which involve instant-start vibration control devices, information gathering, airborne monitoring robots, rescue robots, etc. Also required are technologies for prompt assistance and recovery after earthquake, such as those for the physical soundness related diagnosis and assessment of structures, facilities, and machinery, and for their restoration, remedy, and reinforcement. What is required is the establishment of a comprehensive technology into which all the necessary element technologies are incorporated. Since coordination is necessary with other official projects being implemented in a unified way for an industrial area, this project will be effectively accomplished when it is also treated as an official project. (NEDO)

  14. Analysis of Earthquake Catalogs for CSEP Testing Region Italy

    International Nuclear Information System (INIS)

    Peresan, A.; Romashkova, L.; Nekrasova, A.; Kossobokov, V.; Panza, G.F.

    2010-07-01

    A comprehensive analysis shows that the set of catalogs provided by the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) as the authoritative database for the Collaboratory for the Study of Earthquake Predictability - Testing Region Italy (CSEP-TRI), is hardly a unified one acceptable for the necessary tuning of models/algorithms, as well as for running rigorous prospective predictability tests at intermediate- or long-term scale. (author)

  15. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  16. The Alaska earthquake, March 27, 1964: lessons and conclusions

    Science.gov (United States)

    Eckel, Edwin B.

    1970-01-01

    local waves. Better earthquake-hazard maps, based on improved knowledge of regional geology, fault behavior, and earthquake mechanisms, are needed for the entire country. Their preparation will require the close collaboration of engineers, seismologists, and geologists. Geologic maps of all inhabited places in earthquake-prone parts of the country are also needed by city planners and others, because the direct relationship between local geology and potential earthquake damage is now well understood. Improved and enlarged nets of earthquake-sensing instruments, sited in relation to known geology, are needed, as are many more geodetic and hydrographic measurements. Every large earthquake, wherever located, should be regarded as a full-scale laboratory experiment whose study can give scientific and engineering information unobtainable from any other source. Plans must be made before the event to insure staffing, funding, and coordination of effort for the scientific and engineering study of future earthquakes. Advice of earth scientists and engineers should be used in the decision-making processes involved in reconstruction after any future disastrous earthquake, as was done after the Alaska earthquake. The volume closes with a selected bibliography and a comprehensive index to the entire series of U.S. Geological Survey Professional Papers 541-546. This is the last in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 546, in 1 part, describes Lessons and Conclusions.

  17. Do I Really Sound Like That? Communicating Earthquake Science Following Significant Earthquakes at the NEIC

    Science.gov (United States)

    Hayes, G. P.; Earle, P. S.; Benz, H.; Wald, D. J.; Yeck, W. L.

    2017-12-01

    The U.S. Geological Survey's National Earthquake Information Center (NEIC) responds to about 160 magnitude 6.0 and larger earthquakes every year and is regularly inundated with information requests following earthquakes that cause significant impact. These requests often start within minutes after the shaking occurs and come from a wide user base including the general public, media, emergency managers, and government officials. Over the past several years, the NEIC's earthquake response has evolved its communications strategy to meet the changing needs of users and the evolving media landscape. The NEIC produces a cascade of products starting with basic hypocentral parameters and culminating with estimates of fatalities and economic loss. We speed the delivery of content by prepositioning and automatically generating products such as, aftershock plots, regional tectonic summaries, maps of historical seismicity, and event summary posters. Our goal is to have information immediately available so we can quickly address the response needs of a particular event or sequence. This information is distributed to hundreds of thousands of users through social media, email alerts, programmatic data feeds, and webpages. Many of our products are included in event summary posters that can be downloaded and printed for local display. After significant earthquakes, keeping up with direct inquiries and interview requests from TV, radio, and print reports is always challenging. The NEIC works with the USGS Office of Communications and the USGS Science Information Services to organize and respond to these requests. Written executive summaries reports are produced and distributed to USGS personnel and collaborators throughout the country. These reports are updated during the response to keep our message consistent and information up to date. This presentation will focus on communications during NEIC's rapid earthquake response but will also touch on the broader USGS traditional and

  18. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1985-01-01

    The Seismic Safety Guide provides facilities managers with practical guidelines for administering a comprehensive earthquake safety program. Most facilities managers, unfamiliar with earthquake engineering, tend to look for answers in techniques more sophisticated than required to solve the actual problems in earthquake safety. Often the approach to solutions to these problems is so academic, legalistic, and financially overwhelming that mitigation of actual seismic hazards simply does not get done in a timely, cost-effective way. The objective of the Guide is to provide practical advice about earthquake safety so that managers and engineers can get the job done without falling into common pitfalls, prolonged diagnosis, and unnecessary costs. It is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, non-structural elements, life lines, and risk management. 5 references

  19. "Earthquake!"--A Cooperative Learning Experience.

    Science.gov (United States)

    Hodder, A. Peter W.

    2001-01-01

    Presents an exercise designed as a team building experience for managers that can be used to demonstrate to science students the potential benefit of group decision-making. Involves the ranking of options for surviving a large earthquake. Yields quantitative measures of individual student knowledge and how well the groups function. (Author/YDS)

  20. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  1. A comprehensive model for executing knowledge management audits in organizations: a systematic review.

    Science.gov (United States)

    Shahmoradi, Leila; Ahmadi, Maryam; Sadoughi, Farahnaz; Piri, Zakieh; Gohari, Mahmood Reza

    2015-01-01

    A knowledge management audit (KMA) is the first phase in knowledge management implementation. Incomplete or incomprehensive execution of the KMA has caused many knowledge management programs to fail. A study was undertaken to investigate how KMAs are performed systematically in organizations and present a comprehensive model for performing KMAs based on a systematic review. Studies were identified by searching electronic databases such as Emerald, LISA, and the Cochrane library and e-journals such as the Oxford Journal and hand searching of printed journals, theses, and books in the Tehran University of Medical Sciences digital library. The sources used in this study consisted of studies available through the digital library of the Tehran University of Medical Sciences that were published between 2000 and 2013, including both Persian- and English-language sources, as well as articles explaining the steps involved in performing a KMA. A comprehensive model for KMAs is presented in this study. To successfully execute a KMA, it is necessary to perform the appropriate preliminary activities in relation to the knowledge management infrastructure, determine the knowledge management situation, and analyze and use the available data on this situation.

  2. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when

  3. “Shake, Rattle and Roll”: risk assessment and management for food safety during two Christchurch earthquakes

    Directory of Open Access Journals (Sweden)

    Sally Johnston

    2012-06-01

    Full Text Available Problem: Two earthquakes recently struck the Christchurch region. The 2010 earthquake in Canterbury was strong yet sustained less damage than the 2011 earthquake in Christchurch, which although not as strong, was more damaging and resulted in 185 deaths. Both required activation of a food safety response.Context: The food safety response for both earthquakes was focused on reducing the risk of gastroenteritis by limiting the use of contaminated water and food, both in households and food businesses. Additional food safety risks were identified in the 2011 Christchurch earthquake due the use of large-scale catering for rescue workers, volunteers and residents unable to return home.Action: Using a risk assessment framework, the food safety response involved providing water and food safety advice, issuing a boil water notice for the region and initiating water testing on reticulation systems. Food businesses were contacted to ensure the necessary measures were being taken. Additional action during the 2011 Christchurch earthquake response included making contact with food businesses using checklists and principles developed in the first response and having regular contact with those providing catering for large numbers.Outcome: In the 2010 earthquake in Canterbury, several cases of gastroenteritis were reported, although most resulted from person-to-person contact rather than contamination of food. There was a small increase in gastroenteritis cases following the 2011 Christchurch earthquake.Discussion: The food safety response for both earthquakes was successful in meeting the goal of ensuring that foodborne illness did not put additional pressure on hospitals or affect search and rescue efforts.

  4. Isolating social influences on vulnerability to earthquake shaking: identifying cost-effective mitigation strategies.

    Science.gov (United States)

    Bhloscaidh, Mairead Nic; McCloskey, John; Pelling, Mark; Naylor, Mark

    2013-04-01

    Until expensive engineering solutions become more universally available, the objective targeting of resources at demonstrably effective, low-cost interventions might help reverse the trend of increasing mortality in earthquakes. Death tolls in earthquakes are the result of complex interactions between physical effects, such as the exposure of the population to strong shaking, and the resilience of the exposed population along with supporting critical infrastructures and institutions. The identification of socio-economic factors that contribute to earthquake mortality is crucial to identifying and developing successful risk management strategies. Here we develop a quantitative methodology more objectively to assess the ability of communities to withstand earthquake shaking, focusing on, in particular, those cases where risk management performance appears to exceed or fall below expectations based on economic status. Using only published estimates of the shaking intensity and population exposure for each earthquake, data that is available for earthquakes in countries irrespective of their level of economic development, we develop a model for mortality based on the contribution of population exposure to shaking only. This represents an attempt to remove, as far as possible, the physical causes of mortality from our analysis (where we consider earthquake engineering to reduce building collapse among the socio-economic influences). The systematic part of the variance with respect to this model can therefore be expected to be dominated by socio-economic factors. We find, as expected, that this purely physical analysis partitions countries in terms of basic socio-economic measures, for example GDP, focusing analytical attention on the power of economic measures to explain variance in observed distributions of earthquake risk. The model allows the definition of a vulnerability index which, although broadly it demonstrates the expected income-dependence of vulnerability to

  5. Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence

    Directory of Open Access Journals (Sweden)

    L. M. Matias

    2013-01-01

    Full Text Available The Gulf of Cadiz, as part of the Azores-Gibraltar plate boundary, is recognized as a potential source of big earthquakes and tsunamis that may affect the bordering countries, as occurred on 1 November 1755. Preparing for the future, Portugal is establishing a national tsunami warning system in which the threat caused by any large-magnitude earthquake in the area is estimated from a comprehensive database of scenarios. In this paper we summarize the knowledge about the active tectonics in the Gulf of Cadiz and integrate the available seismological information in order to propose the generation model of destructive tsunamis to be applied in tsunami warnings. The fault model derived is then used to estimate the recurrence of large earthquakes using the fault slip rates obtained by Cunha et al. (2012 from thin-sheet neotectonic modelling. Finally we evaluate the consistency of seismicity rates derived from historical and instrumental catalogues with the convergence rates between Eurasia and Nubia given by plate kinematic models.

  6. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  7. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  8. Role of the Internet in Anticipating and Mitigating Earthquake Catastrophes, and the Emergence of Personal Risk Management (Invited)

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Donnellan, A.; Graves, W.; Tiampo, K. F.; Klein, W.

    2009-12-01

    Risks from natural and financial catastrophes are currently managed by a combination of large public and private institutions. Public institutions usually are comprised of government agencies that conduct studies, formulate policies and guidelines, enforce regulations, and make “official” forecasts. Private institutions include insurance and reinsurance companies, and financial service companies that underwrite catastrophe (“cat”) bonds, and make private forecasts. Although decisions about allocating resources and developing solutions are made by large institutions, the costs of dealing with catastrophes generally fall for the most part on businesses and the general public. Information on potential risks is generally available to the public for some hazards but not others. For example, in the case of weather, private forecast services are provided by www.weather.com and www.wunderground.com. For earthquakes in California (only), the official forecast is the WGCEP-USGS forecast, but provided in a format that is difficult for the public to use. Other privately made forecasts are currently available, for example by the JPL QuakeSim and Russian groups, but these efforts are limited. As more of the world’s population moves increasingly into major seismic zones, new strategies are needed to allow individuals to manage their personal risk from large and damaging earthquakes. Examples include individual mitigation measures such as retrofitting, as well as microinsurance in both developing and developed countries, as well as other financial strategies. We argue that the “long tail” of the internet offers an ideal, and greatly underutilized mechanism to reach out to consumers and to provide them with the information and tools they need to confront and manage seismic hazard and risk on an individual, personalized basis. Information of this type includes not only global hazard forecasts, which are now possible, but also global risk estimation. Additionally

  9. What Can We Learn from a Simple Physics-Based Earthquake Simulator?

    Science.gov (United States)

    Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele

    2018-03-01

    Physics-based earthquake simulators are becoming a popular tool to investigate on the earthquake occurrence process. So far, the development of earthquake simulators is commonly led by the approach "the more physics, the better". However, this approach may hamper the comprehension of the outcomes of the simulator; in fact, within complex models, it may be difficult to understand which physical parameters are the most relevant to the features of the seismic catalog at which we are interested. For this reason, here, we take an opposite approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple simulator may be more informative than a complex one for some specific scientific objectives, because it is more understandable. Our earthquake simulator has three main components: the first one is a realistic tectonic setting, i.e., a fault data set of California; the second is the application of quantitative laws for earthquake generation on each single fault, and the last is the fault interaction modeling through the Coulomb Failure Function. The analysis of this simple simulator shows that: (1) the short-term clustering can be reproduced by a set of faults with an almost periodic behavior, which interact according to a Coulomb failure function model; (2) a long-term behavior showing supercycles of the seismic activity exists only in a markedly deterministic framework, and quickly disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault; (3) faults that are strongly coupled in terms of Coulomb failure function model are synchronized in time only in a marked deterministic framework, and as before, such a synchronization disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault. Overall, the results show that even in a simple and perfectly known earthquake occurrence world, introducing a small degree of

  10. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  11. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  12. Natural disaster management: experience of an academic institution after a 7.8 magnitude earthquake in Ecuador.

    Science.gov (United States)

    Cordero-Reyes, A M; Palacios, I; Ramia, D; West, R; Valencia, M; Ramia, N; Egas, D; Rodas, P; Bahamonde, M; Grunauer, M

    2017-03-01

    This case study describes the implementation of an academic institution's disaster management plan. Case study. USFQ's Medical School developed a six-phase disaster relief plan consisting of: induction, establishing a base camp, crisis management and mental health aid, creation of multidisciplinary teams and multi-agency teams, and reconstruction. Each phase uses a community-oriented approach to foster survivor autonomy and recovery. Our methodology facilitated the successful implementation of multidisciplinary interventions to manage the earthquake's aftermath on the personal, community and regional levels, treated and prevented psychological and physical morbidity among survivors and promoted healthy living conditions and independence. A multidisciplinary response team that addresses medical needs, mental health, education, food, nutrition and sanitation is highly effective in contributing to timely, effective relief efforts. The short- and long-term solutions we describe could be applicable to other academic centres' interventions in future disaster scenarios around the world. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  13. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  14. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  15. Comparing population exposure to multiple Washington earthquake scenarios for prioritizing loss estimation studies

    Science.gov (United States)

    Wood, Nathan J.; Ratliff, Jamie L.; Schelling, John; Weaver, Craig S.

    2014-01-01

    Scenario-based, loss-estimation studies are useful for gauging potential societal impacts from earthquakes but can be challenging to undertake in areas with multiple scenarios and jurisdictions. We present a geospatial approach using various population data for comparing earthquake scenarios and jurisdictions to help emergency managers prioritize where to focus limited resources on data development and loss-estimation studies. Using 20 earthquake scenarios developed for the State of Washington (USA), we demonstrate how a population-exposure analysis across multiple jurisdictions based on Modified Mercalli Intensity (MMI) classes helps emergency managers understand and communicate where potential loss of life may be concentrated and where impacts may be more related to quality of life. Results indicate that certain well-known scenarios may directly impact the greatest number of people, whereas other, potentially lesser-known, scenarios impact fewer people but consequences could be more severe. The use of economic data to profile each jurisdiction’s workforce in earthquake hazard zones also provides additional insight on at-risk populations. This approach can serve as a first step in understanding societal impacts of earthquakes and helping practitioners to efficiently use their limited risk-reduction resources.

  16. Development of the U.S. Geological Survey's PAGER system (Prompt Assessment of Global Earthquakes for Response)

    Science.gov (United States)

    Wald, D.J.; Earle, P.S.; Allen, T.I.; Jaiswal, K.; Porter, K.; Hearne, M.

    2008-01-01

    The Prompt Assessment of Global Earthquakes for Response (PAGER) System plays a primary alerting role for global earthquake disasters as part of the U.S. Geological Survey’s (USGS) response protocol. We provide an overview of the PAGER system, both of its current capabilities and our ongoing research and development. PAGER monitors the USGS’s near real-time U.S. and global earthquake origins and automatically identifies events that are of societal importance, well in advance of ground-truth or news accounts. Current PAGER notifications and Web pages estimate the population exposed to each seismic intensity level. In addition to being a useful indicator of potential impact, PAGER’s intensity/exposure display provides a new standard in the dissemination of rapid earthquake information. We are currently developing and testing a more comprehensive alert system that will include casualty estimates. This is motivated by the idea that an estimated range of possible number of deaths will aid in decisions regarding humanitarian response. Underlying the PAGER exposure and loss models are global earthquake ShakeMap shaking estimates, constrained as quickly as possible by finite-fault modeling and observed ground motions and intensities, when available. Loss modeling is being developed comprehensively with a suite of candidate models that range from fully empirical to largely analytical approaches. Which of these models is most appropriate for use in a particular earthquake depends on how much is known about local building stocks and their vulnerabilities. A first-order country-specific global building inventory has been developed, as have corresponding vulnerability functions. For calibrating PAGER loss models, we have systematically generated an Atlas of 5,000 ShakeMaps for significant global earthquakes during the last 36 years. For many of these, auxiliary earthquake source and shaking intensity data are also available. Refinements to the loss models are ongoing

  17. Earthquake induced landslide hazard field observatory in the Avcilar peninsula

    Science.gov (United States)

    Bigarre, Pascal; Coccia, Stella; Theoleyre, Fiona; Ergintav, Semih; Özel, Oguz; Yalçinkaya, Esref; Lenti, Luca; Martino, Salvatore; Gamba, Paolo; Zucca, Francesco; Moro, Marco

    2015-04-01

    Earthquake-triggered landslides have an increasing disastrous impact in seismic regions due to the fast growing urbanization and infrastructures. Just considering disasters from the last fifteen years, among which the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2011 Tohoku earthquake, these events generated tens of thousands of coseismic landslides. Those resulted in amazing death toll and considerable damages, affecting the regional landscape including its hydrological main features. Despite a strong impetus in research during past decades, knowledge on those geohazards is still fragmentary, while databases of high quality observational data are lacking. These phenomena call for further collaborative researches aiming eventually to enhance preparedness and crisis management. The MARSITE project gathers research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region, one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. Besides the seismic threat, landslides in Turkey and in this region constitute an important source of loss. The 6th Work Package of MARSITE project gathers 9 research groups to study earthquake-induced landslides focusing on two sub-regional areas of high interest among which the Cekmece-Avcilar peninsula, located westwards of Istanbul, as a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. A multidisciplinary research program based on pre-existing studies has been designed with objectives and tasks linked to constrain and tackle progressively some challenging issues related to data integration, modeling, monitoring and mapping technologies. Since the start of the project, progress has been marked on several important points as follows. The photogeological interpretation and analysis of ENVISAT-ERS DIn

  18. Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake

    Science.gov (United States)

    Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi

    2016-01-01

    Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138

  19. The impact of the Canterbury earthquakes on successful school leaving for adolescents.

    Science.gov (United States)

    Beaglehole, Ben; Bell, Caroline; Frampton, Christopher; Moor, Stephanie

    2017-02-01

    To examine the impact of the Canterbury earthquakes on the important adolescent transition period of school leaving. Local and national data on school leaving age, attainment of National Certificate of Educational Achievement (NCEA) standards, and school rolls (total registered students for schools) were examined to clarify long-term trends and delineate these from any impacts of the Canterbury earthquakes.  Results: Despite concerns about negative impacts, there was no evidence for increased school disengagement or poorer academic performance by students as a consequence of the earthquakes. Although there may have been negative effects for a minority, the possibility of post-disaster growth and resilience being the norm for the majority meant that negative effects on school leaving were not observed following the earthquakes. A range of post-disaster responses may have mitigated adverse effects on the adolescent population. Implications for Public Health: Overall long-term negative effects are unlikely for the affected adolescent population. The results also indicate that similar populations exposed to disasters in other settings are likely to do well in the presence of a comprehensive post-disaster response. © 2016 The Authors.

  20. From Data-Sharing to Model-Sharing: SCEC and the Development of Earthquake System Science (Invited)

    Science.gov (United States)

    Jordan, T. H.

    2009-12-01

    Earthquake system science seeks to construct system-level models of earthquake phenomena and use them to predict emergent seismic behavior—an ambitious enterprise that requires high degree of interdisciplinary, multi-institutional collaboration. This presentation will explore model-sharing structures that have been successful in promoting earthquake system science within the Southern California Earthquake Center (SCEC). These include disciplinary working groups to aggregate data into community models; numerical-simulation working groups to investigate system-specific phenomena (process modeling) and further improve the data models (inverse modeling); and interdisciplinary working groups to synthesize predictive system-level models. SCEC has developed a cyberinfrastructure, called the Community Modeling Environment, that can distribute the community models; manage large suites of numerical simulations; vertically integrate the hardware, software, and wetware needed for system-level modeling; and promote the interactions among working groups needed for model validation and refinement. Various socio-scientific structures contribute to successful model-sharing. Two of the most important are “communities of trust” and collaborations between government and academic scientists on mission-oriented objectives. The latter include improvements of earthquake forecasts and seismic hazard models and the use of earthquake scenarios in promoting public awareness and disaster management.

  1. Comprehensive change management concepts. Development of a participatory approach.

    Science.gov (United States)

    Zink, Klaus J; Steimle, Ulrich; Schröder, Delia

    2008-07-01

    During the last years, many change projects in organizations did not have the planned success. Therefore at first, the causes for these failures and the success factors contributing to organizational change have to be discussed. To get better results, a comprehensive change management concept has been developed and tested in an ongoing research project. By using concepts for an integrated assessment and design of organizations, an approach for analyzing the current situation has been elaborated to identify "lack of integration" in the change initiatives of a company. To realize an integrated overall approach of modernization by harmonizing different methods and concepts, first, one has to prove their relationship to policy and strategy (vertical harmonization). The second step is to take into account the fact that there has to be a logical fit between the single concepts (horizontal harmonization). But even if all elements are logically coherent, that does not mean that the people working in the company also see this coherence. Therefore, in addition to the "logical fit", one has to examine the "psychological fit". In the end, a concept for analyzing the status quo in an organization as a result of "objective data" and "subjective data" originated. Subsequently, instruments for harmonizing different modernizing concepts have been applied. As part of the comprehensive change management concept participatory ergonomic approaches have been used during the project. The present study shows this approach in the case of one company.

  2. Using Earthquake Analysis to Expand the Oklahoma Fault Database

    Science.gov (United States)

    Chang, J. C.; Evans, S. C.; Walter, J. I.

    2017-12-01

    The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.

  3. The GED4GEM project: development of a Global Exposure Database for the Global Earthquake Model initiative

    Science.gov (United States)

    Gamba, P.; Cavalca, D.; Jaiswal, K.S.; Huyck, C.; Crowley, H.

    2012-01-01

    In order to quantify earthquake risk of any selected region or a country of the world within the Global Earthquake Model (GEM) framework (www.globalquakemodel.org/), a systematic compilation of building inventory and population exposure is indispensable. Through the consortium of leading institutions and by engaging the domain-experts from multiple countries, the GED4GEM project has been working towards the development of a first comprehensive publicly available Global Exposure Database (GED). This geospatial exposure database will eventually facilitate global earthquake risk and loss estimation through GEM’s OpenQuake platform. This paper provides an overview of the GED concepts, aims, datasets, and inference methodology, as well as the current implementation scheme, status and way forward.

  4. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    Science.gov (United States)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  5. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  6. Seismological database for Banat seismic region (Romania) - Part 1: The parametric earthquake catalogue

    International Nuclear Information System (INIS)

    Oros, E.; Popa, M.; Moldovan, I. A.

    2008-01-01

    The most comprehensive seismological database for Banat seismic region (Romania) has been achieved. This paper refers to the essential characteristics of the first component of this database, namely the Parametric Earthquakes Catalogue for the Banat Seismic Region (PECBSR). PECBSR comprises 7783 crustal earthquakes (3 ≤ h ≤ 25 km) with 0.4 ≤ M i ≥ 5.6 (M i is M L , M D , M S , M W , Mm and/or mb from compiled sources) occurred in the Banat region and its surroundings between years 1443 and 2006. Different magnitude scales were converted into moment magnitude scale, Mw. The completeness of PECBSR strongly depends on the time. (authors)

  7. Development of damage probability matrices based on Greek earthquake damage data

    Science.gov (United States)

    Eleftheriadou, Anastasia K.; Karabinis, Athanasios I.

    2011-03-01

    A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio α g/ a o, where α g is the maximum peak ground acceleration (PGA) of the earthquake event and a o is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.

  8. Comprehensive Overview of Contemporary Management Strategies for Cerebral Aneurysms.

    Science.gov (United States)

    Manhas, Amitoz; Nimjee, Shahid M; Agrawal, Abhishek; Zhang, Jonathan; Diaz, Orlando; Zomorodi, Ali R; Smith, Tony; Powers, Ciarán J; Sauvageau, Eric; Klucznik, Richard P; Ferrell, Andrew; Golshani, Kiarash; Stieg, Philip E; Britz, Gavin W

    2015-10-01

    Aneurysmal subarachnoid hemorrhage (SAH) remains an important health issue in the United States. Despite recent improvements in the diagnosis and treatment of cerebral aneurysms, the mortality rate following aneurysm rupture. In those patients who survive, up to 50% are left severely disabled. The goal of preventing the hemorrhage or re-hemorrhage can only be achieved by successfully excluding the aneurysm from the circulation. This article is a comprehensive review by contemporary vascular neurosurgeons and interventional neuroradiolgists on the modern management of cerebral aneurysms. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Earthquake Risk Mitigation in the Tokyo Metropolitan area

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Kasahara, K.; Nakagawa, S.; Nanjo, K.; Panayotopoulos, Y.; Tsuruoka, H.

    2010-12-01

    Seismic disaster risk mitigation in urban areas constitutes a challenge through collaboration of scientific, engineering, and social-science fields. Examples of collaborative efforts include research on detailed plate structure with identification of all significant faults, developing dense seismic networks; strong ground motion prediction, which uses information on near-surface seismic site effects and fault models; earthquake resistant and proof structures; and cross-discipline infrastructure for effective risk mitigation just after catastrophic events. Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (magnitude M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that the M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. This earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area (2007-2011) was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. The results that are obtained in the respective fields will be integrated until project termination to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area. In this talk, we give an outline of our project as an example of collaborative research on earthquake risk mitigation. Discussion is extended to our effort in progress and

  10. The use of waveform shapes to automatically determine earthquake focal depth

    Science.gov (United States)

    Sipkin, S.A.

    2000-01-01

    Earthquake focal depth is an important parameter for rapidly determining probable damage caused by a large earthquake. In addition, it is significant both for discriminating between natural events and explosions and for discriminating between tsunamigenic and nontsunamigenic earthquakes. For the purpose of notifying emergency management and disaster relief organizations as well as issuing tsunami warnings, potential time delays in determining source parameters are particularly detrimental. We present a method for determining earthquake focal depth that is well suited for implementation in an automated system that utilizes the wealth of broadband teleseismic data that is now available in real time from the global seismograph networks. This method uses waveform shapes to determine focal depth and is demonstrated to be valid for events with magnitudes as low as approximately 5.5.

  11. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  12. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  13. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  14. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  15. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  16. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  17. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  18. Vrancea earthquakes. Courses for specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    Earthquakes in the Carpathian-Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 Km occur. For example, the ruptured area migrated from 150 km to 180 km (November 10,1940, M w = 7.7) from 90 km to 110 km (March 4, 1977, M w 7.4), from 130 km to 150 km (August 30, 1986, M w = 7.1) and from 70 km to 90 km (May 30, 1990, M w = 6.9) depth. The depth interval between 110 km and 130 km remains not ruptured since 1802, October 26, when it was the strongest earthquake occurred in this part of Central Europe. The magnitude is assumed to be M w = 7.9 - 8.0 and this depth interval is a natural candidate for the next strong Vrancea event. While no country in the world is entirely safe, the lack of capacity to limit the impact of seismic hazards remains a major burden for all countries and while the world has witnessed an exponential increase in human and material losses due to natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses for specific actions to mitigate the seismic risk given by strong deep Vrancea earthquakes should be considered as key for development actions: - Early warning system for industrial facilities. Early warning is more than a technological instrument to detect, monitor and submit warnings. It should become part of a management information system for decision-making in the context of national institutional frameworks for disaster management and part of national and local strategies and programmers for risk mitigation; - Prediction program of Vrancea strong earthquakes of short and long term; - Hazard seismic map of Romania. The wrong assessment of the seismic hazard can lead to dramatic situations as those from Bucharest or Kobe. Before the 1977 Vrancea earthquake, the city of Bucharest was designed to intensity I = VII (MMI) and the real intensity was I = IX1/2-X (MMI); - Seismic microzonation of large populated

  19. Building Infrastructure for Preservation and Publication of Earthquake Engineering Research Data

    Directory of Open Access Journals (Sweden)

    Stanislav Pejša

    2014-10-01

    Full Text Available The objective of this paper is to showcase the progress of the earthquake engineering community during a decade-long effort supported by the National Science Foundation in the George E. Brown Jr., Network for Earthquake Engineering Simulation (NEES. During the four years that NEES network operations have been headquartered at Purdue University, the NEEScomm management team has facilitated an unprecedented cultural change in the ways research is performed in earthquake engineering. NEES has not only played a major role in advancing the cyberinfrastructure required for transformative engineering research, but NEES research outcomes are making an impact by contributing to safer structures throughout the USA and abroad. This paper reflects on some of the developments and initiatives that helped instil change in the ways that the earthquake engineering and tsunami community share and reuse data and collaborate in general.

  20. Effects of Huge Earthquakes on Earth Rotation and the length of Day

    Directory of Open Access Journals (Sweden)

    Changyi Xu

    2013-01-01

    Full Text Available We calculated the co-seismic Earth rotation changes for several typical great earthquakes since 1960 based on Dahlen¡¦s analytical expression of Earth inertia moment change, the excitation functions of polar motion and, variation in the length of a day (ΔLOD. Then, we derived a mathematical relation between polar motion and earthquake parameters, to prove that the amplitude of polar motion is independent of longitude. Because the analytical expression of Dahlen¡¦s theory is useful to theoretically estimate rotation changes by earthquakes having different seismic parameters, we show results for polar motion and ΔLOD for various types of earthquakes in a comprehensive manner. The modeled results show that the seismic effect on the Earth¡¦s rotation decreases gradually with increased latitude if other parameters are unchanged. The Earth¡¦s rotational change is symmetrical for a 45° dip angle and the maximum changes appear at the equator and poles. Earthquakes at a medium dip angle and low latitudes produce large rotation changes. As an example, we calculate the polar motion and ΔLOD caused by the 2011 Tohoku-Oki Earthquake using two different fault models. Results show that a fine slip fault model is useful to compute co-seismic Earth rotation change. The obtained results indicate Dahlen¡¦s method gives good approximations for computation of co-seismic rotation changes, but there are some differences if one considers detailed fault slip distributions. Finally we analyze and discuss the co-seismic Earth rotation change signal using GRACE data, showing that such a signal is hard to be detected at present, but it might be detected under some conditions. Numerical results of this study will serve as a good indicator to check if satellite observations such as GRACE can detect a seismic rotation change when a great earthquake occur.

  1. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  2. Leveraging geodetic data to reduce losses from earthquakes

    Science.gov (United States)

    Murray, Jessica R.; Roeloffs, Evelyn A.; Brooks, Benjamin A.; Langbein, John O.; Leith, William S.; Minson, Sarah E.; Svarc, Jerry L.; Thatcher, Wayne R.

    2018-04-23

    Seismic hazard assessments that are based on a variety of data and the best available science, coupled with rapid synthesis of real-time information from continuous monitoring networks to guide post-earthquake response, form a solid foundation for effective earthquake loss reduction. With this in mind, the Earthquake Hazards Program (EHP) of the U.S. Geological Survey (USGS) Natural Hazards Mission Area (NHMA) engages in a variety of undertakings, both established and emergent, in order to provide high quality products that enable stakeholders to take action in advance of and in response to earthquakes. Examples include the National Seismic Hazard Model (NSHM), development of tools for improved situational awareness such as earthquake early warning (EEW) and operational earthquake forecasting (OEF), research about induced seismicity, and new efforts to advance comprehensive subduction zone science and monitoring. Geodetic observations provide unique and complementary information directly relevant to advancing many aspects of these efforts (fig. 1). EHP scientists have long leveraged geodetic data for a range of influential studies, and they continue to develop innovative observation and analysis methods that push the boundaries of the field of geodesy as applied to natural hazards research. Given the ongoing, rapid improvement in availability, variety, and precision of geodetic measurements, considering ways to fully utilize this observational resource for earthquake loss reduction is timely and essential. This report presents strategies, and the underlying scientific rationale, by which the EHP could achieve the following outcomes: The EHP is an authoritative source for the interpretation of geodetic data and its use for earthquake loss reduction throughout the United States and its territories.The USGS consistently provides timely, high quality geodetic data to stakeholders.Significant earthquakes are better characterized by incorporating geodetic data into USGS

  3. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  4. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  5. Expanding the Delivery of Rapid Earthquake Information and Warnings for Response and Recovery

    Science.gov (United States)

    Blanpied, M. L.; McBride, S.; Hardebeck, J.; Michael, A. J.; van der Elst, N.

    2017-12-01

    Scientific organizations like the United States Geological Survey (USGS) release information to support effective responses during an earthquake crisis. Information is delivered to the White House, the National Command Center, the Departments of Defense, Homeland Security (including FEMA), Transportation, Energy, and Interior. Other crucial stakeholders include state officials and decision makers, emergency responders, numerous public and private infrastructure management centers (e.g., highways, railroads and pipelines), the media, and the public. To meet the diverse information requirements of these users, rapid earthquake notifications have been developed to be delivered by e-mail and text message, as well as a suite of earthquake information resources such as ShakeMaps, Did You Feel It?, PAGER impact estimates, and data are delivered via the web. The ShakeAlert earthquake early warning system being developed for the U.S. West Coast will identify and characterize an earthquake a few seconds after it begins, estimate the likely intensity of ground shaking, and deliver brief but critically important warnings to people and infrastructure in harm's way. Currently the USGS is also developing a capability to deliver Operational Earthquake Forecasts (OEF). These provide estimates of potential seismic behavior after large earthquakes and during evolving aftershock sequences. Similar work is underway in New Zealand, Japan, and Italy. In the development of OEF forecasts, social science research conducted during these sequences indicates that aftershock forecasts are valued for a variety of reasons, from informing critical response and recovery decisions to psychologically preparing for more earthquakes. New tools will allow users to customize map-based, spatiotemporal forecasts to their specific needs. Hazard curves and other advanced information will also be available. For such authoritative information to be understood and used during the pressures of an earthquake

  6. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  7. Protecting your family from earthquakes: The seven steps to earthquake safety

    Science.gov (United States)

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  8. Earthquake forecasting studies using radon time series data in Taiwan

    Science.gov (United States)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  9. Mathematical models for estimating earthquake casualties and damage cost through regression analysis using matrices

    International Nuclear Information System (INIS)

    Urrutia, J D; Bautista, L A; Baccay, E B

    2014-01-01

    The aim of this study was to develop mathematical models for estimating earthquake casualties such as death, number of injured persons, affected families and total cost of damage. To quantify the direct damages from earthquakes to human beings and properties given the magnitude, intensity, depth of focus, location of epicentre and time duration, the regression models were made. The researchers formulated models through regression analysis using matrices and used α = 0.01. The study considered thirty destructive earthquakes that hit the Philippines from the inclusive years 1968 to 2012. Relevant data about these said earthquakes were obtained from Philippine Institute of Volcanology and Seismology. Data on damages and casualties were gathered from the records of National Disaster Risk Reduction and Management Council. This study will be of great value in emergency planning, initiating and updating programs for earthquake hazard reduction in the Philippines, which is an earthquake-prone country.

  10. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  11. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  12. Assessing the Utility of and Improving USGS Earthquake Hazards Program Products

    Science.gov (United States)

    Gomberg, J. S.; Scott, M.; Weaver, C. S.; Sherrod, B. L.; Bailey, D.; Gibbons, D.

    2010-12-01

    A major focus of the USGS Earthquake Hazards Program (EHP) has been the development and implementation of products and information meant to improve earthquake hazard assessment, mitigation and response for a myriad of users. Many of these products rely on the data and efforts of the EHP and its partner scientists who are building the Advanced National Seismic System (ANSS). We report on a project meant to assess the utility of many of these products and information, conducted collaboratively by EHP scientists and Pierce County Department of Emergency Management staff. We have conducted focus group listening sessions with members of the engineering, business, medical, media, risk management, and emergency response communities as well as participated in the planning and implementation of earthquake exercises in the Pacific Northwest. Thus far we have learned that EHP and ANSS products satisfy many of the needs of engineers and some planners, and information is widely used by media and the general public. However, some important communities do not use these products despite their intended application for their purposes, particularly county and local emergency management and business communities. We have learned that products need to convey more clearly the impact of earthquakes, in everyday terms. Users also want products (e.g. maps, forecasts, etc.) that can be incorporated into tools and systems they use regularly. Rather than simply building products and posting them on websites, products need to be actively marketed and training provided. We suggest that engaging users prior to and during product development will enhance their usage and effectiveness.

  13. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    Science.gov (United States)

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  14. Comprehensive management of presbycusis: central and peripheral.

    Science.gov (United States)

    Parham, Kourosh; Lin, Frank R; Coelho, Daniel H; Sataloff, Robert T; Gates, George A

    2013-04-01

    The prevailing otolaryngologic approach to treatment of age-related hearing loss (ARHL), presbycusis, emphasizes compensation of peripheral functional deficits (ie, hearing aids and cochlear implants). This approach does not address adequately the needs of the geriatric population, 1 in 5 of whom is expected to consist of the "old old" in the coming decades. Aging affects both the peripheral and central auditory systems, and disorders of executive function become more prevalent with advancing age. Growing evidence supports an association between age-related hearing loss and cognitive decline. Thus, to facilitate optimal functional capacity in our geriatric patients, a more comprehensive management strategy of ARHL is needed. Diagnostic evaluation should go beyond standard audiometric testing and include measures of central auditory function, including dichotic tasks and speech-in-noise testing. Treatment should include not only appropriate means of peripheral compensation but also auditory rehabilitative training and counseling.

  15. Near real-time aftershock hazard maps for earthquakes

    Science.gov (United States)

    McCloskey, J.; Nalbant, S. S.

    2009-04-01

    Stress interaction modelling is routinely used to explain the spatial relationships between earthquakes and their aftershocks. On 28 October 2008 a M6.4 earthquake occurred near the Pakistan-Afghanistan border killing several hundred and causing widespread devastation. A second M6.4 event occurred 12 hours later 20km to the south east. By making some well supported assumptions concerning the source event and the geometry of any likely triggered event it was possible to map those areas most likely to experience further activity. Using Google earth, it would further have been possible to identify particular settlements in the source area which were particularly at risk and to publish their locations globally within about 3 hours of the first earthquake. Such actions could have significantly focused the initial emergency response management. We argue for routine prospective testing of such forecasts and dialogue between social and physical scientists and emergency response professionals around the practical application of these techniques.

  16. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    Science.gov (United States)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  17. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  18. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    Energy Technology Data Exchange (ETDEWEB)

    Ramdhan, Mohamad [Study Program of Earth Science, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Agency for Meteorology, Climatology and Geophysics of Indonesia (BMKG) Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Nugraha, Andri Dian; Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut TeknologiBandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Métaxian, Jean-Philippe [Institut de Recherche pour le Développement (IRD) (France); Valencia, Ayunda Aulia, E-mail: mohamad.ramdhan@bmkg.go.id [Study Program of Geophysical Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia)

    2015-04-24

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  19. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  20. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  1. A Method for Estimation of Death Tolls in Disastrous Earthquake

    Science.gov (United States)

    Pai, C.; Tien, Y.; Teng, T.

    2004-12-01

    Fatality tolls caused by the disastrous earthquake are the one of the most important items among the earthquake damage and losses. If we can precisely estimate the potential tolls and distribution of fatality in individual districts as soon as the earthquake occurrences, it not only make emergency programs and disaster management more effective but also supply critical information to plan and manage the disaster and the allotments of disaster rescue manpower and medicine resources in a timely manner. In this study, we intend to reach the estimation of death tolls caused by the Chi-Chi earthquake in individual districts based on the Attributive Database of Victims, population data, digital maps and Geographic Information Systems. In general, there were involved many factors including the characteristics of ground motions, geological conditions, types and usage habits of buildings, distribution of population and social-economic situations etc., all are related to the damage and losses induced by the disastrous earthquake. The density of seismic stations in Taiwan is the greatest in the world at present. In the meantime, it is easy to get complete seismic data by earthquake rapid-reporting systems from the Central Weather Bureau: mostly within about a minute or less after the earthquake happened. Therefore, it becomes possible to estimate death tolls caused by the earthquake in Taiwan based on the preliminary information. Firstly, we form the arithmetic mean of the three components of the Peak Ground Acceleration (PGA) to give the PGA Index for each individual seismic station, according to the mainshock data of the Chi-Chi earthquake. To supply the distribution of Iso-seismic Intensity Contours in any districts and resolve the problems for which there are no seismic station within partial districts through the PGA Index and geographical coordinates in individual seismic station, the Kriging Interpolation Method and the GIS software, The population density depends on

  2. Comprehensive flood mitigation and management in the Chi River Basin, Thailand

    OpenAIRE

    Kunitiyawichai, K.; Schultz, B.; Uhlenbrook, S.; Suryadi, F.X.; Corzo, G.A.

    2011-01-01

    Severe flooding of the flat downstream area of the Chi River Basin occurs frequently. This flooding is causing catastrophic loss of human lives, damage and economic loss. Effective flood management requires a broad and practical approach. Although flood disasters cannot completely be prevented, major part of potential loss of lives and damages can be reduced by comprehensive mitigation measures. In this paper, the effects of river normalisation, reservoir operation, green river (bypass), and ...

  3. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    Science.gov (United States)

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  4. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  5. Earthquake induced landslide hazard: a multidisciplinary field observatory in the Marmara SUPERSITE

    Science.gov (United States)

    Bigarré, Pascal

    2014-05-01

    Earthquake-triggered landslides have an increasing disastrous impact in seismic regions due to the fast growing urbanization and infrastructures. Just considering disasters from the last fifteen years, among which the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2011 Tohoku earthquake, these events generated tens of thousands of coseismic landslides. Those resulted in amazing death toll and considerable damages, affecting the regional landscape including its hydrological main features. Despite a strong impetus in research during past decades, knowledge on those geohazards is still fragmentary, while databases of high quality observational data are lacking. These phenomena call for further collaborative researches aiming eventually to enhance preparedness and crisis management. As one of the three SUPERSITE concept FP7 projects dealing with long term high level monitoring of major natural hazards at the European level, the MARSITE project gathers research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region, one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. Besides the seismic threat, landslides in Turkey and in this region constitute an important source of loss. The 1999 Earthquake caused extensive landslides while tsunami effects were observed during the post-event surveys in several places along the coasts of the Izmit bay. The 6th Work Package of MARSITE project gathers 9 research groups to study earthquake-induced landslides focusing on two sub-regional areas of high interest. First, the Cekmece-Avcilar peninsula, located westwards of Istanbul, is a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. Second, the off-shore entrance of the Izmit Gulf, close to the termination of the surface rupture of the 1999 earthquake

  6. Geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan

    Science.gov (United States)

    Garrett, Ed; Fujiwara, Osamu; Garrett, Philip; Heyvaert, Vanessa M. A.; Shishikura, Masanobu; Yokoyama, Yusuke; Hubert-Ferrari, Aurélia; Brückner, Helmut; Nakamura, Atsunori; De Batist, Marc

    2016-04-01

    The Nankai-Suruga Trough, lying immediately south of Japan's densely populated and highly industrialised southern coastline, generates devastating great earthquakes (magnitude > 8). Intense shaking, crustal deformation and tsunami generation accompany these ruptures. Forecasting the hazards associated with future earthquakes along this >700 km long fault requires a comprehensive understanding of past fault behaviour. While the region benefits from a long and detailed historical record, palaeoseismology has the potential to provide a longer-term perspective and additional insights. Here, we summarise the current state of knowledge regarding geological evidence for past earthquakes and tsunamis, incorporating literature originally published in both Japanese and English. This evidence comes from a wide variety of sources, including uplifted marine terraces and biota, marine and lacustrine turbidites, liquefaction features, subsided marshes and tsunami deposits in coastal lakes and lowlands. We enhance available results with new age modelling approaches. While publications describe proposed evidence from > 70 sites, only a limited number provide compelling, well-dated evidence. The best available records allow us to map the most likely rupture zones of eleven earthquakes occurring during the historical period. Our spatiotemporal compilation suggests the AD 1707 earthquake ruptured almost the full length of the subduction zone and that earthquakes in AD 1361 and 684 were predecessors of similar magnitude. Intervening earthquakes were of lesser magnitude, highlighting variability in rupture mode. Recurrence intervals for ruptures of the a single seismic segment range from less than 100 to more than 450 years during the historical period. Over longer timescales, palaeoseismic evidence suggests intervals ranging from 100 to 700 years. However, these figures reflect thresholds of evidence creation and preservation as well as genuine recurrence intervals. At present, we have

  7. From technical quality assurance of radiotherapy to a comprehensive quality of service management system

    International Nuclear Information System (INIS)

    Kehoe, T.; Rugg, L.

    1999-01-01

    A hierarchy of dosimetry, planning and machine performance checks and evaluations of clinical outcomes have been widely used in radiotherapy for decades. Procedures, codes of practice and guidance are readily available on the technical aspects of radiotherapy treatments, maintenance of which is achieved by quality control checks within a quality assurance approach to radiotherapy. Recently a series of high profile, well-publicised treatment accidents resulting in damage to patients have focused the attention of both professionals and the public. There is now pressure to introduce formal quality management systems. Patients and their relatives/carers are having their expectations raised but their definition of a quality service differs from that generally considered by the oncology professionals. Most departmental managers and staff have wide experience of quality control checks. They understand the philosophy of quality assurance. However the idea of formal quality systems/quality management is alien to them. What is a professional/departmental manager to do? This paper addresses that question by discussing the underlying principles of quality management covering service provision as well as technical radiotherapy treatment delivery and by providing some guidance based on experience in the practical implementation of quality management through three stages of development: a QA programme incorporating checks on essential parts of the technical treatment delivery, a formal documented certified QA system focusing on technical treatment delivery, a comprehensive quality management system covering all parts of a service. One possible action plan is provided indicating progress through the three stages of development based on experience in one large Radiation Oncology Department. With planning, resources and commitment. a comprehensive quality of service management system is achievable in radiotherapy. (author.)

  8. The earthquake problem in engineering design: generating earthquake design basis information

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1987-01-01

    Designing earthquake resistant structures requires certain design inputs specific to the seismotectonic status of the region, in which a critical facility is to be located. Generating these inputs requires collection of earthquake related information using present day techniques in seismology and geology, and processing the collected information to integrate it to arrive at a consolidated picture of the seismotectonics of the region. The earthquake problem in engineering design has been outlined in the context of a seismic design of nuclear power plants vis a vis current state of the art techniques. The extent to which the accepted procedures of assessing seismic risk in the region and generating the design inputs have been adherred to determine to a great extent the safety of the structures against future earthquakes. The document is a step towards developing an aproach for generating these inputs, which form the earthquake design basis. (author)

  9. The UK medical response to the Sichuan earthquake.

    Science.gov (United States)

    Redmond, A D; Li, J

    2011-06-01

    At 14:48 on 12 May 2008 an earthquake of magnitude 8.0 struck the Wenchuan area of Sichuan province, China. A decision to offer/receive UK medical assistance was agreed at a Sino/British political level and a medical team was despatched to the earthquake area. This study describes the team's experience during the immediate aftermath of the earthquake and the following 18 months, during which there have been joint developments in emergency medicine, disaster planning/preparedness and the management of spinal cord injury. The long-term disability following sudden onset natural disaster and the wider impact on healthcare delivery may prove to be a greater burden to the country than the immediate medical needs, and, accordingly, emergency international aid may need to widen its focus. Although international teams usually arrive too late to support resuscitative measures, they can respond to specific requests for specialised assistance, for example plastic and reconstructive surgery to assist with the ongoing management of complex injury, relieve those who have worked continuously through the disaster, and when required maintain routine day-to-day services while local staff continue to manage the disaster. The timing of this does not necessarily need to be immediate. To maximise its impact, the team planned from the outset to build a relationship with Chinese colleagues that would lead to a sharing of knowledge and experience that would benefit major incident responses in both countries in the future. This has been established, and the linkage of emergency humanitarian assistance to longer term development should be considered by others the next time international emergency humanitarian assistance is contemplated.

  10. Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty

    Science.gov (United States)

    Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon

    2006-01-01

    Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions

  11. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    Science.gov (United States)

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change.

  12. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  13. 100 years after the Marsica earthquake: contribute of outreach activities

    Science.gov (United States)

    D'Addezio, Giuliana; Giordani, Azzurra; Valle, Veronica; Riposati, Daniela

    2015-04-01

    Many outreach events have been proposed by the scientific community to celebrate the Centenary of the January 13, 1915 earthquake, that devastated the Marsica territory, located in Central Apennines. The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, has realised an interactive exhibition in the Castello Piccolomini, Celano (AQ), to retrace the many aspects of the earthquake disaster, in a region such as Abruzzo affected by several destructive earthquakes during its history. The initiatives represent an ideal opportunity for the development of new programs of communication and training on seismic risk and to spread the culture of prevention. The INGV is accredited with the Servizio Civile Nazionale (National Civic Service) and volunteers are involved in the project "Science and Outreach: a comprehensive approach to the divulgation of knowledge of Earth Sciences" starting in 2014. In this contest, volunteers had the opportunity to fully contribute to the exhibition, in particular, promoting and realising two panels concerning the social and environmental consequences of the Marsica earthquake. Describing the serious consequences of the earthquake, we may raise awareness about natural hazards and about the only effective action for earthquake defense: building with anti seismic criteria. After studies and researches conducted in libraries and via web, two themes have been developped: the serious problem of orphans and the difficult reconstruction. Heavy snowfalls and the presence of wolves coming from the high and wild surrounding mountains complicated the scenario and decelerated the rescue of the affected populations. It is important to underline that the earthquake was not the only devastating event in the country in 1915; another drammatic event was, in fact, the First World War. Whole families died and the still alive infants and

  14. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  15. ShakeCast: Automating and improving the use of shakemap for post-earthquake deeision-making and response

    Science.gov (United States)

    Wald, D.; Lin, K.-W.; Porter, K.; Turner, Loren

    2008-01-01

    When a potentially damaging earthquake occurs, utility and other lifeline managers, emergency responders, and other critical users have an urgent need for information about the impact on their particular facilities so they can make appropriate decisions and take quick actions to ensure safety and restore system functionality. ShakeMap, a tool used to portray the extent of potentially damaging shaking following an earthquake, on its own can be useful for emergency response, loss estimation, and public information. However, to take full advantage of the potential of ShakeMap, we introduce ShakeCast. ShakeCast facilitates the complicated assessment of potential damage to a user's widely distributed facilities by comparing the complex shaking distribution with the potentially highly variable damageability of their inventory to provide a simple, hierarchical list and maps of structures or facilities most likely impacted. ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users' facilities, sends notifications of potential damage to responsible parties, and generates facility damage maps and other Web-based products for both public and private emergency managers and responders. ?? 2008, Earthquake Engineering Research Institute.

  16. Reflections from the interface between seismological research and earthquake risk reduction

    Science.gov (United States)

    Sargeant, S.

    2012-04-01

    Scientific understanding of earthquakes and their attendant hazards is vital for the development of effective earthquake risk reduction strategies. Within the global disaster reduction policy framework (the Hyogo Framework for Action, overseen by the UN International Strategy for Disaster Reduction), the anticipated role of science and scientists is clear, with respect to risk assessment, loss estimation, space-based observation, early warning and forecasting. The importance of information sharing and cooperation, cross-disciplinary networks and developing technical and institutional capacity for effective disaster management is also highlighted. In practice, the degree to which seismological information is successfully delivered to and applied by individuals, groups or organisations working to manage or reduce the risk from earthquakes is variable. The challenge for scientists is to provide fit-for-purpose information that can be integrated simply into decision-making and risk reduction activities at all levels of governance and at different geographic scales, often by a non-technical audience (i.e. people without any seismological/earthquake engineering training). The interface between seismological research and earthquake risk reduction (defined here in terms of both the relationship between the science and its application, and the scientist and other risk stakeholders) is complex. This complexity is a function of a range issues that arise relating to communication, multidisciplinary working, politics, organisational practices, inter-organisational collaboration, working practices, sectoral cultures, individual and organisational values, worldviews and expectations. These factors can present significant obstacles to scientific information being incorporated into the decision-making process. The purpose of this paper is to present some personal reflections on the nature of the interface between the worlds of seismological research and risk reduction, and the

  17. Comprehensive understanding of a deep transition zone from an unstable- to stable-slip regime of the megathrust interplate earthquake

    Science.gov (United States)

    Kato, A.; Iidaka, T.; Ikuta, R.; Yoshida, Y.; Katsumata, K.; Iwasaki, T.; Sakai, S.; Yamaoka, K.; Watanabe, T.; Kunitomo, T.; Yamazaki, F.; Tsumura, N.; Nozaki, K.; Okubo, M.; Suzuki, S.; Hirata, N.; Zhang, H.; Thurber, C. H.

    2009-12-01

    Most slow slips have occurred in the deep transition zone from an unstable- to stable-slip regime. Detailed knowledge about a deep transition zone is essentially important to understand the mechanism of the slow slips, and the stress concentration process to the source region of the megathrust interplate earthquake. We have conducted a very dense seismic observation in the Tokai-region from the April to the August in 2008 through a linear deployment of 75 portable stations, in Japan. The array extended from the bottom part of the source region of the Tokai earthquake to deep low-frequency earthquakes (LFE, ~ 35 km depth) including the long-term slow-slip region (~ 25 km depth). Here we present a high-resolution tomographic imaging of seismic velocities and highly-accurate hypocenters including LFEs, using first arrival data from the dense seismograph deployment. We manually picked the first arrivals of P- and S- waves from each waveform for about 700 earthquakes including about 20 LFEs observed by the dense array. Then, we applied the TomoDD-code [Zhang and Thurber, 2003] to the arrival data set, adding an accurate double-difference data estimated by a waveform cross-correlation technique. A low velocity (Vp, Vs) layer with high Poisson’s ratio is clearly imaged, and tilts to the northwestward with a low dip angle, which corresponds to the subducting oceanic crust of the Philippine Sea Slab. Although seismicity within the oceanic crust is significantly low, few earthquakes occur within the oceanic crust. The LFEs are linearly aligned along the top surface of the subducting oceanic crust at depths from 30 to 40 km. The Poisson’s ratio within the oceanic crust does not show significant depth-dependent increase beneath the linear alignment of LFEs. This result argues against a depth section of Poisson’s ratio obtained in the SW Japan [Shelly et al., 2006]. Beneath the LFEs, active cluster of slab earthquakes are horizontally distributed. At the depths greater

  18. Earthquake engineering development before and after the March 4, 1977, Vrancea, Romania earthquake

    International Nuclear Information System (INIS)

    Georgescu, E.-S.

    2002-01-01

    At 25 years since the of the Vrancea earthquake of March, 4th 1977, we can analyze in an open and critical way its impact on the evolution of earthquake engineering codes and protection policies in Romania. The earthquake (M G-R = 7.2; M w = 7.5), produced 1,570 casualties and more than 11,300 injured persons (90% of the victims in Bucharest), seismic losses were estimated at more then USD 2 billions. The 1977 earthquake represented a significant episode of XXth century in seismic zones of Romania and neighboring countries. The INCERC seismic record of March 4, 1977 put, for the first time, in evidence the spectral content of long period seismic motions of Vrancea earthquakes, the duration, the number of cycles and values of actual accelerations, with important effects of overloading upon flexible structures. The seismic coefficients k s , the spectral curve (the dynamic coefficient β r ) and the seismic zonation map, the requirements in the antiseismic design norms were drastically, changed while the microzonation maps of the time ceased to be used, and the specific Vrancea earthquake recurrence was reconsidered based on hazard studies Thus, the paper emphasises: - the existing engineering knowledge, earthquake code and zoning maps requirements until 1977 as well as seismology and structural lessons since 1977; - recent aspects of implementing of the Earthquake Code P.100/1992 and harmonization with Eurocodes, in conjunction with the specific of urban and rural seismic risk and enforcing policies on strengthening of existing buildings; - a strategic view of disaster prevention, using earthquake scenarios and loss assessments, insurance, earthquake education and training; - the need of a closer transfer of knowledge between seismologists, engineers and officials in charge with disaster prevention public policies. (author)

  19. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  20. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  1. Making the Handoff from Earthquake Hazard Assessments to Effective Mitigation Measures (Invited)

    Science.gov (United States)

    Applegate, D.

    2010-12-01

    This year has witnessed a barrage of large earthquakes worldwide with the resulting damages ranging from inconsequential to truly catastrophic. We cannot predict when earthquakes will strike, but we can build communities that are resilient to strong shaking as well as to secondary hazards such as landslides and liquefaction. The contrasting impacts of the magnitude-7 earthquake that struck Haiti in January and the magnitude-8.8 event that struck Chile in April underscore the difference that mitigation and preparedness can make. In both cases, millions of people were exposed to severe shaking, but deaths in Chile were measured in the hundreds rather than the hundreds of thousands that perished in Haiti. Numerous factors contributed to these disparate outcomes, but the most significant is the presence of strong building codes in Chile and their total absence in Haiti. The financial cost of the Chilean earthquake still represents an unacceptably high percentage of that nation’s gross domestic product, a reminder that life safety is the paramount, but not the only, goal of disaster risk reduction measures. For building codes to be effective, both in terms of lives saved and economic cost, they need to reflect the hazard as accurately as possible. As one of four federal agencies that make up the congressionally mandated National Earthquake Hazards Reduction Program (NEHRP), the U.S. Geological Survey (USGS) develops national seismic hazard maps that form the basis for seismic provisions in model building codes through the Federal Emergency Management Agency and private-sector practitioners. This cooperation is central to NEHRP, which both fosters earthquake research and establishes pathways to translate research results into implementation measures. That translation depends on the ability of hazard-focused scientists to interact and develop mutual trust with risk-focused engineers and planners. Strengthening that interaction is an opportunity for the next generation

  2. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  3. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  4. Effects of a comprehensive self-management programme in patients with chronic obstructive pulmonary disease.

    NARCIS (Netherlands)

    Monninkhof, E.M.; Valk, P.D.L.P.M. van der; Palen, J.A.M. van der; Herwaarden, C.L.A. van; Zielhuis, G.A.

    2003-01-01

    The aim of this study was to assess the effects of a comprehensive self-management intervention on health-related quality of life (HRQoL), symptoms and walking distance in patients with stable moderately severe chronic obstructive pulmonary disease (COPD). This study was part of the overall COPD

  5. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  6. Earthquakes, May-June 1991

    Science.gov (United States)

    Person, W.J.

    1992-01-01

    One major earthquake occurred during this reporting period. This was a magntidue 7.1 in Indonesia (Minahassa Peninsula) on June 20. Earthquake-related deaths were reported in the Western Caucasus (Georgia, USSR) on May 3 and June 15. One earthquake-related death was also reported El Salvador on June 21. 

  7. Effectiveness of a Comprehensive Stress Management Program to Reduce Work-Related Stress in a Medium-Sized Enterprise

    Science.gov (United States)

    2014-01-01

    Objectives To assess the effectiveness of a comprehensive workplace stress management program consisting of participatory action-oriented training (PAOT) and individual management. Methods A comprehensive workplace stress management program was conducted in a medium-sized enterprise. The baseline survey was conducted in September 2011, using the Korean Occupational Stress Scale (KOSS) and Worker’s Stress Response Inventory (WSRI). After implementing both organizational and individual level interventions, the follow up evaluation was conducted in November 2011. Results Most of the workers participated in the organizational level PAOT and made Team-based improvement plans. Based on the stress survey, 24 workers were interviewed by a researcher. After the organizational and individual level interventions, there was a reduction of several adverse psychosocial factors and stress responses. In the case of blue-collar workers, psychosocial factors such as the physical environment, job demands, organizational system, lack of rewards, and occupational climate were significantly improved; in the case of white-collar workers, the occupational climate was improved. Conclusions In light of these results, we concluded that the comprehensive stress management program was effective in reducing work-related stress in a short-term period. A persistent long-term follow up is necessary to determine whether the observed effects are maintained over time. Both team-based improvement activities and individual interviews have to be sustainable and complementary to each other under the long-term plan. PMID:24524591

  8. Effectiveness of a comprehensive stress management program to reduce work-related stress in a medium-sized enterprise.

    Science.gov (United States)

    Kim, Shin-Ae; Suh, Chunhui; Park, Mi-Hee; Kim, Kunhyung; Lee, Chae-Kwan; Son, Byung-Chul; Kim, Jeong-Ho; Lee, Jong-Tae; Woo, Kuck-Hyun; Kang, Kabsoon; Jung, Hyunjin

    2014-01-01

    To assess the effectiveness of a comprehensive workplace stress management program consisting of participatory action-oriented training (PAOT) and individual management. A comprehensive workplace stress management program was conducted in a medium-sized enterprise. The baseline survey was conducted in September 2011, using the Korean Occupational Stress Scale (KOSS) and Worker's Stress Response Inventory (WSRI). After implementing both organizational and individual level interventions, the follow up evaluation was conducted in November 2011. Most of the workers participated in the organizational level PAOT and made Team-based improvement plans. Based on the stress survey, 24 workers were interviewed by a researcher. After the organizational and individual level interventions, there was a reduction of several adverse psychosocial factors and stress responses. In the case of blue-collar workers, psychosocial factors such as the physical environment, job demands, organizational system, lack of rewards, and occupational climate were significantly improved; in the case of white-collar workers, the occupational climate was improved. In light of these results, we concluded that the comprehensive stress management program was effective in reducing work-related stress in a short-term period. A persistent long-term follow up is necessary to determine whether the observed effects are maintained over time. Both team-based improvement activities and individual interviews have to be sustainable and complementary to each other under the long-term plan.

  9. Urban Policies and Earthquake Risk Mitigation

    International Nuclear Information System (INIS)

    Sarlo, Antonella

    2008-01-01

    The paper aims at proposing some considerations about some recent experiences of research carried out on the theme of earthquake risk mitigation and combining policies and actions of mitigation with urban development strategies. The objective was to go beyond the classical methodological approach aiming at defining a 'technical' evaluation of the earthquake risk through a procedure which can correlate the three 'components' of danger, exposure and vulnerability. These researches experiment, in terms of methodology and application, with a new category of interpretation and strategy: the so-called Struttura Urbana Minima (Minimum urban structure).Actually, the introduction of the Struttura Urbana Minima establishes a different approach towards the theme of safety in the field of earthquake risk, since it leads to a wider viewpoint, combining the building aspect of the issue with the purely urban one, involving not only town planning, but also social and managerial implications.In this sense the constituent logic of these researches is strengthened by two fundamental issues:- The social awareness of earthquake;- The inclusion of mitigation policies in the ordinary strategies for town and territory management. Three main aspects of the first point, that is of the 'social awareness of earthquake', characterize this issue and demand to be considered within a prevention policy:- The central role of the risk as a social production,- The central role of the local community consent,- The central role of the local community capability to planTherefore, consent, considered not only as acceptance, but above all as participation in the elaboration and implementation of choices, plays a crucial role in the wider issue of prevention policies.As far as the second point is concerned, the inclusion of preventive mitigation policies in ordinary strategies for the town and territory management demands the identification of criteria of choice and priorities of intervention and, as a

  10. State-of-the-art of historical earthquake research in Fennoscandia and the Baltic Republics

    Directory of Open Access Journals (Sweden)

    V. Nikulin

    2004-06-01

    Full Text Available We review historical earthquake research in Northern Europe. 'Historical' is defined as being identical with seismic events occurring in the pre-instrumental and early instrumental periods between 1073 and the mid-1960s. The first seismographs in this region were installed in Uppsala, Sweden and Bergen, Norway in 1904-1905, but these mechanical pendulum instruments were broad band and amplification factors were modest at around 500. Until the 1960s few modern short period electromagnetic seismographs were deployed. Scientific earthquake studies in this region began during the first decades of the 1800s, while the systematic use of macroseismic questionnaires commenced at the end of that century. Basic research efforts have vigorously been pursued from the 1970s onwards because of the mandatory seismic risk studies for commissioning nuclear power plants in Sweden, Finland, NW Russia, Kola and installations of huge oil platforms in the North Sea. The most comprehensive earthquake database currently available for Northern Europe is the FENCAT catalogue covering about six centuries and representing the accumulation of work conducted by many scientists during the last 200 years. This catalogue is given in parametric form, while original macroseismic observations and intensity maps for the largest earthquakes can be found in various national publications, often in local languages. No database giving intensity data points exists in computerized form for the region. The FENCAT catalogue still contains some spurious events of various kinds but more serious are some recent claims that some of the presumed largest historical earthquakes have been assigned too large magnitude values, which would have implications for earthquake hazard levels implemented in national building codes. We discuss future cooperative measures such as establishing macroseismic data archives as a means for promoting further research on historical earthquakes in Northern Europe.

  11. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  12. The extent of soft tissue and musculoskeletal injuries after earthquakes; describing a role for reconstructive surgeons in an emergency response.

    Science.gov (United States)

    Clover, A J P; Jemec, B; Redmond, A D

    2014-10-01

    Earthquakes are the leading cause of natural disaster-related mortality and morbidity. Soft tissue and musculoskeletal injuries are the predominant type of injury seen after these events and a major reason for admission to hospital. Open fractures are relatively common; however, they are resource-intense to manage. Appropriate management is important in minimising amputation rates and preserving function. This review describes the pattern of musculoskeletal and soft-tissue injuries seen after earthquakes and explores the manpower and resource implications involved in their management. A Medline search was performed, including terms "injury pattern" and "earthquake," "epidemiology injuries" and "earthquakes," "plastic surgery," "reconstructive surgery," "limb salvage" and "earthquake." Papers published between December 1992 and December 2012 were included, with no initial language restriction. Limb injuries are the commonest injuries seen accounting for 60 % of all injuries, with fractures in more than 50 % of those admitted to hospital, with between 8 and 13 % of these fractures open. After the first few days and once the immediate lifesaving phase is over, the management of these musculoskeletal and soft-tissue injuries are the commonest procedures required. Due to the predominance of soft-tissue and musculoskeletal injuries, plastic surgeons as specialists in soft-tissue reconstruction should be mobilised in the early stages of a disaster response as part of a multidisciplinary team with a focus on limb salvage.

  13. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  14. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  15. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  16. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.; Cameron, H.M.; Davies, A.R.; Hiscox, A.W.

    1995-01-01

    Probabilistic safety assessment methodology has been applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  17. Historic Eastern Canadian earthquakes

    International Nuclear Information System (INIS)

    Asmis, G.J.K.; Atchinson, R.J.

    1981-01-01

    Nuclear power plants licensed in Canada have been designed to resist earthquakes: not all plants, however, have been explicitly designed to the same level of earthquake induced forces. Understanding the nature of strong ground motion near the source of the earthquake is still very tentative. This paper reviews historical and scientific accounts of the three strongest earthquakes - St. Lawrence (1925), Temiskaming (1935), Cornwall (1944) - that have occurred in Canada in 'modern' times, field studies of near-field strong ground motion records and their resultant damage or non-damage to industrial facilities, and numerical modelling of earthquake sources and resultant wave propagation to produce accelerograms consistent with the above historical record and field studies. It is concluded that for future construction of NPP's near-field strong motion must be explicitly considered in design

  18. Technical strategy map to employing nuclear power plant aging management

    International Nuclear Information System (INIS)

    Sekimura, Naoto; Kanno, Masanori

    2008-01-01

    Stated in this report are back ground of technical strategy map for nuclear power plant aging management, result of the first road map, significance of technical strategy map, introduction scenario, technology map, road map, upgrade in every year, three groups of academia, industry and government, plan of technical strategy map, upgrade system, comprehensive introduction scenario, measures of nuclear power plant aging management in Japan and the world, new inspection system, outline of 'technical strategy map 2008', preparation of technical information bases in industry, academia and government, collaboration of them, safety researches of neutron radiation damage, stress corrosion crack, fatigue, piping thinning, insulation degradation, concrete degradation, thermal aging, evaluation technologies of earthquake resistance, preparation of rules and standards, ideal maintenance, and training talent. (S.Y.)

  19. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  20. Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  1. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    Science.gov (United States)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of

  2. Do Earthquakes Shake Stock Markets?

    Science.gov (United States)

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  3. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  4. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    Directory of Open Access Journals (Sweden)

    W. F. Peng

    2012-03-01

    Full Text Available The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC from the global ionosphere map (GIM. We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0–2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time. Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  5. Toward a sustainable waste management system: a comprehensive assessment of thermal and electric energy recovery from waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Salvia, Monica; Cosmi, Carmelina; Cuomo, Vincenzo; Macchiato, Maria [Istituto Nazionale per la Fisica della Materia, Napoli (Italy); Mangiamele, Lucia [Univ. della Basilicata, Potenza (Italy). Dipt. Ingegneria e Fisica dell Ambiente; Pietrapertosa, Filomena [Univ. di Napoli Federico II, (Italy). Dipt. di Scienze Fisiche

    2002-12-01

    Energy-environmental planning must join normative, environmental and socio-economic features to obtain effective strategies aimed to a sustainable development. Therefore a comprehensive methodology for the analysis and the optimisation of the anthropogenic activities system configuration, can usefully support decision-makers in the definition of harmonised sector plans, joining waste management issues with resource use problems and exploiting energy and materials feedback among supply and demand sectors. In this paper we present an innovative application of the Advanced Local Energy Environmental Planning methodology (ALEP), aimed to the definition of optimal waste management strategies which comply with comprehensive as well as sectorial issues.

  6. Automatic Blocked Roads Assessment after Earthquake Using High Resolution Satellite Imagery

    Science.gov (United States)

    Rastiveis, H.; Hosseini-Zirdoo, E.; Eslamizade, F.

    2015-12-01

    In 2010, an earthquake in the city of Port-au-Prince, Haiti, happened quite by chance an accident and killed over 300000 people. According to historical data such an earthquake has not occurred in the area. Unpredictability of earthquakes has necessitated the need for comprehensive mitigation efforts to minimize deaths and injuries. Blocked roads, caused by debris of destroyed buildings, may increase the difficulty of rescue activities. In this case, a damage map, which specifies blocked and unblocked roads, can be definitely helpful for a rescue team. In this paper, a novel method for providing destruction map based on pre-event vector map and high resolution world view II satellite images after earthquake, is presented. For this purpose, firstly in pre-processing step, image quality improvement and co-coordination of image and map are performed. Then, after extraction of texture descriptor from the image after quake and SVM classification, different terrains are detected in the image. Finally, considering the classification results, specifically objects belong to "debris" class, damage analysis are performed to estimate the damage percentage. In this case, in addition to the area objects in the "debris" class their shape should also be counted. The aforementioned process are performed on all the roads in the road layer.In this research, pre-event digital vector map and post-event high resolution satellite image, acquired by Worldview-2, of the city of Port-au-Prince, Haiti's capital, were used to evaluate the proposed method. The algorithm was executed on 1200×800 m2 of the data set, including 60 roads, and all the roads were labelled correctly. The visual examination have authenticated the abilities of this method for damage assessment of urban roads network after an earthquake.

  7. 1/f and the Earthquake Problem: Scaling constraints that facilitate operational earthquake forecasting

    Science.gov (United States)

    yoder, M. R.; Rundle, J. B.; Turcotte, D. L.

    2012-12-01

    The difficulty of forecasting earthquakes can fundamentally be attributed to the self-similar, or "1/f", nature of seismic sequences. Specifically, the rate of occurrence of earthquakes is inversely proportional to their magnitude m, or more accurately to their scalar moment M. With respect to this "1/f problem," it can be argued that catalog selection (or equivalently, determining catalog constraints) constitutes the most significant challenge to seismicity based earthquake forecasting. Here, we address and introduce a potential solution to this most daunting problem. Specifically, we introduce a framework to constrain, or partition, an earthquake catalog (a study region) in order to resolve local seismicity. In particular, we combine Gutenberg-Richter (GR), rupture length, and Omori scaling with various empirical measurements to relate the size (spatial and temporal extents) of a study area (or bins within a study area) to the local earthquake magnitude potential - the magnitude of earthquake the region is expected to experience. From this, we introduce a new type of time dependent hazard map for which the tuning parameter space is nearly fully constrained. In a similar fashion, by combining various scaling relations and also by incorporating finite extents (rupture length, area, and duration) as constraints, we develop a method to estimate the Omori (temporal) and spatial aftershock decay parameters as a function of the parent earthquake's magnitude m. From this formulation, we develop an ETAS type model that overcomes many point-source limitations of contemporary ETAS. These models demonstrate promise with respect to earthquake forecasting applications. Moreover, the methods employed suggest a general framework whereby earthquake and other complex-system, 1/f type, problems can be constrained from scaling relations and finite extents.; Record-breaking hazard map of southern California, 2012-08-06. "Warm" colors indicate local acceleration (elevated hazard

  8. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    Science.gov (United States)

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  9. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  10. Earthquake Scenario-Based Tsunami Wave Heights in the Eastern Mediterranean and Connected Seas

    Science.gov (United States)

    Necmioglu, Ocal; Özel, Nurcan Meral

    2015-12-01

    We identified a set of tsunami scenario input parameters in a 0.5° × 0.5° uniformly gridded area in the Eastern Mediterranean, Aegean (both for shallow- and intermediate-depth earthquakes) and Black Seas (only shallow earthquakes) and calculated tsunami scenarios using the SWAN-Joint Research Centre (SWAN-JRC) code ( Mader 2004; Annunziato 2007) with 2-arcmin resolution bathymetry data for the range of 6.5—Mwmax with an Mw increment of 0.1 at each grid in order to realize a comprehensive analysis of tsunami wave heights from earthquakes originating in the region. We defined characteristic earthquake source parameters from a compiled set of sources such as existing moment tensor catalogues and various reference studies, together with the Mwmax assigned in the literature, where possible. Results from 2,415 scenarios show that in the Eastern Mediterranean and its connected seas (Aegean and Black Sea), shallow earthquakes with Mw ≥ 6.5 may result in coastal wave heights of 0.5 m, whereas the same wave height would be expected only from intermediate-depth earthquakes with Mw ≥ 7.0 . The distribution of maximum wave heights calculated indicate that tsunami wave heights up to 1 m could be expected in the northern Aegean, whereas in the Black Sea, Cyprus, Levantine coasts, northern Libya, eastern Sicily, southern Italy, and western Greece, up to 3-m wave height could be possible. Crete, the southern Aegean, and the area between northeast Libya and Alexandria (Egypt) is prone to maximum tsunami wave heights of >3 m. Considering that calculations are performed at a minimum bathymetry depth of 20 m, these wave heights may, according to Green's Law, be amplified by a factor of 2 at the coastline. The study can provide a basis for detailed tsunami hazard studies in the region.

  11. A Paradigm Shift from Emergency Response to Reconstruction and Rehabilitation: Creation of Peak National Body for Disaster Management in Pakistan

    Directory of Open Access Journals (Sweden)

    Shahed Khan

    2015-09-01

    Full Text Available The earthquake of 8 October 2005, an unprecedented disaster in the history of Pakistan, led to an equally exceptional national response. Reconstruction and rehabilitation of affected areas was indeed a herculean task. The Earthquake Reconstruction and Rehabilitation Authority (ERRA was immediately established as a peak national body with extraordinary powers and mandate to ensure coordinated actions for rescue, relief, reconstruction and rehabilitation. The national institutional set up was forced to readjust rapidly to convert this adversity into an opportunity to improve its capability to deal with disasters. This paper aims to provide an overview of the institutional strategy and measures undertaken in the wake of the 2005 earthquake. It looks at the strengths and weaknesses of installing an efficient entity largely adopting a command and control approach to efficiently and effectively deliver reconstruction projects on the ground. The paper seeks to derive lessons that can be useful for governments considering the setting up of comprehensive proactive disaster management systems.

  12. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    Science.gov (United States)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that

  13. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  14. Inspection and repair in JRR-3 after the 2011 off the Pacific coast of Tohoku Earthquake

    International Nuclear Information System (INIS)

    Hosoya, Toshiaki; Nagadomi, Hideki; Torii, Yoshiya

    2014-01-01

    In the 2011 off the Pacific Coast of Tohoku Earthquake, seismic intensity of 6 lower was observed at Tokai Village. However, the maximum acceleration of ground motion that was observed in the JRR-3 reactor facilities had exceeded the maximum response acceleration at the time of design. Therefore, to confirm whether the predetermined performance of the facility equipment of the reactor facilities had been maintained after the earthquake, soundness confirmation inspection was carried out. In the inspection, the soundness of equipment and facilities was evaluated from the results of the equipment inspection and seismic impact assessment, and the repair work was applied when necessary. As a result, it was confirmed that after the earthquake, the equipment of JRR-3 reactor facilities maintained the predetermined performance, and was possible to resume operation. The following item are reported here: (1) overview of JRR-3, (2) conditions of JRR-3 reactor facilities while earthquake occurrence, (3) basic principle for soundness evaluation of facilities, (4) soundness confirmation of buildings and structures, (5) contents of repair, and (6) soundness verification and comprehensive evaluation of each facility and equipment. (A.O.)

  15. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  16. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    Science.gov (United States)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  17. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Daley, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ahdieh, N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bentley, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.

  18. Unusual downhole and surface free-field records near the Carquinez Strait bridges during the 24 August 2014 Mw6.0 South Napa, California earthquake

    Science.gov (United States)

    Çelebi, Mehmet; Ghahari, S. Farid; Taciroglu, Ertugrul

    2015-01-01

    This paper reports the results of Part A of a study of the recorded strong-motion accelerations at the well-instrumented network of the two side-by-side parallel bridges over the Carquinez Strait during the 24 August 2014 (Mw6.0 ) South Napa, Calif. earthquake that occurred at 03:20:44 PDT with epicentral coordinates 38.22N, 122.31W. (http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2014/20140824.php, last accessed on October 17, 2014). Both bridges and two boreholes were instrumented by the California Strong motion Instrumentation Program (CSMIP) of California Geological Survey (CGS) (Shakal et al., 2014). A comprehensive comparison of several ground motion prediction equations as they relate to recorded ground motions of the earthquake is provided by Baltay and Boatright (2015).

  19. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    Science.gov (United States)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  20. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    Science.gov (United States)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  1. Earthquake Early Warning ShakeAlert System: Testing and certification platform

    Science.gov (United States)

    Cochran, Elizabeth S.; Kohler, Monica D.; Given, Douglas; Guiwits, Stephen; Andrews, Jennifer; Meier, Men-Andrin; Ahmad, Mohammad; Henson, Ivan; Hartog, Renate; Smith, Deborah

    2017-01-01

    Earthquake early warning systems provide warnings to end users of incoming moderate to strong ground shaking from earthquakes. An earthquake early warning system, ShakeAlert, is providing alerts to beta end users in the western United States, specifically California, Oregon, and Washington. An essential aspect of the earthquake early warning system is the development of a framework to test modifications to code to ensure functionality and assess performance. In 2016, a Testing and Certification Platform (TCP) was included in the development of the Production Prototype version of ShakeAlert. The purpose of the TCP is to evaluate the robustness of candidate code that is proposed for deployment on ShakeAlert Production Prototype servers. TCP consists of two main components: a real‐time in situ test that replicates the real‐time production system and an offline playback system to replay test suites. The real‐time tests of system performance assess code optimization and stability. The offline tests comprise a stress test of candidate code to assess if the code is production ready. The test suite includes over 120 events including local, regional, and teleseismic historic earthquakes, recentering and calibration events, and other anomalous and potentially problematic signals. Two assessments of alert performance are conducted. First, point‐source assessments are undertaken to compare magnitude, epicentral location, and origin time with the Advanced National Seismic System Comprehensive Catalog, as well as to evaluate alert latency. Second, we describe assessment of the quality of ground‐motion predictions at end‐user sites by comparing predicted shaking intensities to ShakeMaps for historic events and implement a threshold‐based approach that assesses how often end users initiate the appropriate action, based on their ground‐shaking threshold. TCP has been developed to be a convenient streamlined procedure for objectively testing algorithms, and it has

  2. Response and recovery lessons from the 2010-2011 earthquake sequence in Canterbury, New Zealand

    Science.gov (United States)

    Pierepiekarz, Mark; Johnston, David; Berryman, Kelvin; Hare, John; Gomberg, Joan S.; Williams, Robert A.; Weaver, Craig S.

    2014-01-01

    The impacts and opportunities that result when low-probability moderate earthquakes strike an urban area similar to many throughout the US were vividly conveyed in a one-day workshop in which social and Earth scientists, public officials, engineers, and an emergency manager shared their experiences of the earthquake sequence that struck the city of Christchurch and surrounding Canterbury region of New Zealand in 2010-2011. Without question, the earthquake sequence has had unprecedented impacts in all spheres on New Zealand society, locally to nationally--10% of the country's population was directly impacted and losses total 8-10% of their GDP. The following paragraphs present a few lessons from Christchurch.

  3. Stress triggering of the Lushan M7. 0 earthquake by the Wenchuan Ms8. 0 earthquake

    Directory of Open Access Journals (Sweden)

    Wu Jianchao

    2013-08-01

    Full Text Available The Wenchuan Ms8. 0 earthquake and the Lushan M7. 0 earthquake occurred in the north and south segments of the Longmenshan nappe tectonic belt, respectively. Based on the focal mechanism and finite fault model of the Wenchuan Ms8. 0 earthquake, we calculated the coulomb failure stress change. The inverted coulomb stress changes based on the Nishimura and Chenji models both show that the Lushan M7. 0 earthquake occurred in the increased area of coulomb failure stress induced by the Wenchuan Ms8. 0 earthquake. The coulomb failure stress increased by approximately 0. 135 – 0. 152 bar in the source of the Lushan M7. 0 earthquake, which is far more than the stress triggering threshold. Therefore, the Lushan M7. 0 earthquake was most likely triggered by the coulomb failure stress change.

  4. The 2016 Central Italy Earthquake: an Overview

    Science.gov (United States)

    Amato, A.

    2016-12-01

    The M6 central Italy earthquake occurred on the seismic backbone of the Italy, just in the middle of the highest hazard belt. The shock hit suddenly during the night of August 24, when people were asleep; no foreshocks occurred before the main event. The earthquake ruptured from 10 km to the surface, and produced a more than 17,000 aftershocks (Oct. 19) spread on a 40x20 km2 area elongated NW-SE. It is geologically very similar to previous recent events of the Apennines. Both the 2009 L'Aquila earthquake to the south and the 1997 Colfiorito to the north, were characterized by the activation of adjacent fault segments. Despite its magnitude and the well known seismic hazard of the region, the earthquake produced extensive damage and 297 fatalities. The town of Amatrice, that paid the highest toll, was classified in zone 1 (the highest) since 1915, but the buildings in this and other villages revealed highly vulnerable. In contrast, in the town of Norcia, that also experienced strong ground shaking, no collapses occurred, most likely due to the retrofitting carried out after an earthquake in 1979. Soon after the quake, the INGV Crisis Unit convened at night in the Rome headquarters, in order to coordinate the activities. The first field teams reached the epicentral area at 7 am with the portable seismic stations installed to monitor the aftershocks; other teams followed to map surface faults, damage, to measure GPS sites, to install instruments for site response studies, and so on. The INGV Crisis Unit includes the Press office and the INGVterremoti team, in order to manage and coordinate the communication towards the Civil Protection Dept. (DPC), the media and the web. Several tens of reports and updates have been delivered in the first month of the sequence to DPC. Also due to the controversial situation arisen from the L'Aquila earthquake and trials, particular attention was given to the communication: continuous and timely information has been released to

  5. An Earthquake Information Service with Free and Open Source Tools

    Science.gov (United States)

    Schroeder, M.; Stender, V.; Jüngling, S.

    2015-12-01

    At the GFZ German Research Centre for Geosciences in Potsdam, the working group Earthquakes and Volcano Physics examines the spatiotemporal behavior of earthquakes. In this context also the hazards of volcanic eruptions and tsunamis are explored. The aim is to collect related information after the occurrence of such extreme event and make them available for science and partly to the public as quickly as possible. However, the overall objective of this research is to reduce the geological risks that emanate from such natural hazards. In order to meet the stated objectives and to get a quick overview about the seismicity of a particular region and to compare the situation to historical events, a comprehensive visualization was desired. Based on the web-accessible data from the famous GFZ GEOFON network a user-friendly web mapping application was realized. Further, this web service integrates historical and current earthquake information from the USGS earthquake database, and more historical events from various other catalogues like Pacheco, International Seismological Centre (ISC) and more. This compilation of sources is unique in Earth sciences. Additionally, information about historical and current occurrences of volcanic eruptions and tsunamis are also retrievable. Another special feature in the application is the containment of times via a time shifting tool. Users can interactively vary the visualization by moving the time slider. Furthermore, the application was realized by using the newest JavaScript libraries which enables the application to run in all sizes of displays and devices. Our contribution will present the making of, the architecture behind, and few examples of the look and feel of this application.

  6. Comprehensive safety cases for radioactive waste management facilities

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1993-01-01

    Probabilistic safety assessment methodology is being applied by Nuclear Electric plc (NE) to the development of comprehensive safety cases for the radioactive waste management processing and accumulation facilities associated with its 26 reactor systems. This paper describes the methodology and the safety case assessment criteria employed by NE. An overview of the results from facilities used by the first 16 reactors is presented, together with more detail of a specific safety analysis: storage of fuel element debris. No risk to the public greater than 10 -6 /y has been identified and the more significant risks arise from the potential for radioactive waste fires. There are no unacceptable risks from external hazards such as flooding, aircrash or seismic events. Some operations previously expected to have significant risks in fact have negligible risks, while the few faults with risks exceeding the assessment criteria were only identified as a result of this study

  7. A dynamic dispatching and routing model to plan/replan the logistical activities in the response phase of an earthquake

    NARCIS (Netherlands)

    Najafi, M.; Eshgi, K.; de Leeuw, S.L.J.M.

    2014-01-01

    The unpredictable nature and devastating impact of earthquakes enforce governments of disaster-prone regions to provide practical response plans to minimize damage and losses resulting from earthquakes. Logistics management is one of the key issues that should be considered for an appropriate

  8. Sensing the earthquake

    Science.gov (United States)

    Bichisao, Marta; Stallone, Angela

    2017-04-01

    Making science visual plays a crucial role in the process of building knowledge. In this view, art can considerably facilitate the representation of the scientific content, by offering a different perspective on how a specific problem could be approached. Here we explore the possibility of presenting the earthquake process through visual dance. From a choreographer's point of view, the focus is always on the dynamic relationships between moving objects. The observed spatial patterns (coincidences, repetitions, double and rhythmic configurations) suggest how objects organize themselves in the environment and what are the principles underlying that organization. The identified set of rules is then implemented as a basis for the creation of a complex rhythmic and visual dance system. Recently, scientists have turned seismic waves into sound and animations, introducing the possibility of "feeling" the earthquakes. We try to implement these results into a choreographic model with the aim to convert earthquake sound to a visual dance system, which could return a transmedia representation of the earthquake process. In particular, we focus on a possible method to translate and transfer the metric language of seismic sound and animations into body language. The objective is to involve the audience into a multisensory exploration of the earthquake phenomenon, through the stimulation of the hearing, eyesight and perception of the movements (neuromotor system). In essence, the main goal of this work is to develop a method for a simultaneous visual and auditory representation of a seismic event by means of a structured choreographic model. This artistic representation could provide an original entryway into the physics of earthquakes.

  9. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Science.gov (United States)

    Dong, Zhi-hui; Yang, Zhi-gang; Chen, Tian-wu; Chu, Zhi-gang; Deng, Wen; Shao, Heng

    2011-01-01

    PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT). METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR) = 2.2; pchest (45/143 vs. 11/66 patients, RR = 1.9; ptraumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries. PMID:21789386

  10. Consideration for standard earthquake vibration (1). The Niigataken Chuetsu-oki Earthquake in 2007

    International Nuclear Information System (INIS)

    Ishibashi, Katsuhiko

    2007-01-01

    Outline of new guideline of quakeproof design standard of nuclear power plant and the standard earthquake vibration are explained. The improvement points of new guideline are discussed on the basis of Kashiwazaki-Kariwa Nuclear Power Plant incidents. The fundamental limits of new guideline are pointed. Placement of the quakeproof design standard of nuclear power plant, JEAG4601 of Japan Electric Association, new guideline, standard earthquake vibration of new guideline, the Niigataken Chuetsu-oki Earthquake in 2007 and damage of Kashiwazaki-Kariwa Nuclear Power Plant are discussed. The safety criteria of safety review system, organization, standard and guideline should be improved on the basis of this earthquake and nuclear plant accident. The general knowledge, 'a nuclear power plant is not constructed in the area expected large earthquake', has to be realized. Preconditions of all nuclear power plants should not cause damage to anything. (S.Y.)

  11. Earthquake Emergency Education in Dushanbe, Tajikistan

    Science.gov (United States)

    Mohadjer, Solmaz; Bendick, Rebecca; Halvorson, Sarah J.; Saydullaev, Umed; Hojiboev, Orifjon; Stickler, Christine; Adam, Zachary R.

    2010-01-01

    We developed a middle school earthquake science and hazards curriculum to promote earthquake awareness to students in the Central Asian country of Tajikistan. These materials include pre- and post-assessment activities, six science activities describing physical processes related to earthquakes, five activities on earthquake hazards and mitigation…

  12. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    Science.gov (United States)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  13. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    Science.gov (United States)

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  14. Earthquake Damage Assessment Using Objective Image Segmentation: A Case Study of 2010 Haiti Earthquake

    Science.gov (United States)

    Oommen, Thomas; Rebbapragada, Umaa; Cerminaro, Daniel

    2012-01-01

    In this study, we perform a case study on imagery from the Haiti earthquake that evaluates a novel object-based approach for characterizing earthquake induced surface effects of liquefaction against a traditional pixel based change technique. Our technique, which combines object-oriented change detection with discriminant/categorical functions, shows the power of distinguishing earthquake-induced surface effects from changes in buildings using the object properties concavity, convexity, orthogonality and rectangularity. Our results suggest that object-based analysis holds promise in automatically extracting earthquake-induced damages from high-resolution aerial/satellite imagery.

  15. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  16. The CATDAT damaging earthquakes database

    Science.gov (United States)

    Daniell, J. E.; Khazai, B.; Wenzel, F.; Vervaeck, A.

    2011-08-01

    The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture) database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes. Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon. Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected), and economic losses (direct, indirect, aid, and insured). Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto (214 billion USD damage; 2011 HNDECI-adjusted dollars) compared to the 2011 Tohoku (>300 billion USD at time of writing), 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product), exchange rate, wage information, population, HDI (Human Development Index), and insurance information have been collected globally to form comparisons. This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global reinsurance field.

  17. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell

    2011-08-01

    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  18. Multi-time scale energy management of wind farms based on comprehensive evaluation technology

    Science.gov (United States)

    Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.

    2017-11-01

    A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.

  19. EPOS1 - a multiparameter measuring system to earthquake prediction research

    Energy Technology Data Exchange (ETDEWEB)

    Streil, T.; Oeser, V. [SARAD GmbH, Dresden (Germany); Heinicke, J.; Koch, U.; Wiegand, J.

    1998-12-31

    The approach to earthquake prediction by geophysical, geochemical and hydrological measurements is a long and winding road. Nevertheless, the results show a progress in that field (e.g. Kobe). This progress is also a result of a new generation of measuring equipment. SARAD has developed a versatile measuring system (EPOS1) based on experiences and recent results from different research groups. It is able to record selected parameters suitable to earthquake prediction research. A micro-computer system handles data exchange, data management and control. It is connected to a modular sensor system. Sensor modules can be selected according to the actual needs at the measuring site. (author)

  20. Comprehensive Self-Management Strategies.

    Science.gov (United States)

    Bourbeau, J; Lavoie, K L; Sedeno, M

    2015-08-01

    In this article, we provide a review of the literature on self-management interventions and we are giving some thought to how, when, and by whom they should be offered to patients. The present literature based on randomized clinical trials has demonstrated benefits (reduced hospital admissions and improved health status) for chronic obstructive pulmonary disease (COPD) patients undergoing self-management interventions, although there are still problems with the heterogeneity among interventions, study populations, follow-up time, and outcome measures that make generalization difficult in real life. Key to the success, self-management intervention has to target behavior change. Proper self-management support is a basic prerequisite, for example, techniques and skills used by health care providers "case manager" to instrument patients with the knowledge, confidence, and skills required to effectively self-manage their disease. To improve health behaviors and engagement in self-management, self-management interventions need to target enhancing intrinsic motivation to change. This will best be done using client-centered communication (motivational communication) that encourages patients to express what intrinsically motivates them (e.g., consistent with their values or life goals) to adopt certain health behavior, with the goal of helping them overcome their ambivalence about change. Finally, if we want to be able to design and implement self-management interventions that are integrated, coherent, and have a strong likelihood of success, we need to take a more careful look and give more attention at the case manager, the patient (patient evaluation), and the quality assurance. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  2. St. Louis Area Earthquake Hazards Mapping Project - A Progress Report-November 2008

    Science.gov (United States)

    Karadeniz, D.; Rogers, J.D.; Williams, R.A.; Cramer, C.H.; Bauer, R.A.; Hoffman, D.; Chung, J.; Hempen, G.L.; Steckel, P.H.; Boyd, O.L.; Watkins, C.M.; McCallister, N.S.; Schweig, E.

    2009-01-01

    St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project (SLAEHMP) is producing digital maps that show variability of earthquake hazards, including liquefaction and ground shaking, in the St. Louis area. The maps will be available free via the internet. Although not site specific enough to indicate the hazard at a house-by-house resolution, they can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as the result of an earthquake. Earthquake hazard maps provide one way of conveying such estimates. The U.S. Geological Survey (USGS), which produces earthquake hazard maps for the Nation, is working with local partners to develop detailed maps for urban areas vulnerable to strong ground shaking. These partners, which along with the USGS comprise the SLAEHMP, include the Missouri University of Science and Technology-Rolla (Missouri S&T), Missouri Department of Natural Resources (MDNR), Illinois State Geological Survey (ISGS), Saint Louis University, Missouri State Emergency Management Agency, and URS Corporation. Preliminary hazard maps covering a test portion of the 29-quadrangle St. Louis study area have been produced and are currently being evaluated by the SLAEHMP. A USGS Fact Sheet summarizing this project was produced and almost 1000 copies have been distributed at several public outreach meetings and field trips that have featured the SLAEHMP (Williams and others, 2007). In addition, a USGS website focusing on the SLAEHMP, which provides links to project results and relevant earthquake hazard information, can be found at: http://earthquake.usgs.gov/regional/ceus/urban_map/st_louis/index.php. This progress report summarizes the

  3. Ionospheric phenomena before strong earthquakes

    Directory of Open Access Journals (Sweden)

    A. S. Silina

    2001-01-01

    Full Text Available A statistical analysis of several ionospheric parameters before earthquakes with magnitude M > 5.5 located less than 500 km from an ionospheric vertical sounding station is performed. Ionospheric effects preceding "deep" (depth h > 33 km and "crust" (h 33 km earthquakes were analysed separately. Data of nighttime measurements of the critical frequencies foF2 and foEs, the frequency fbEs and Es-spread at the middle latitude station Dushanbe were used. The frequencies foF2 and fbEs are proportional to the square root of the ionization density at heights of 300 km and 100 km, respectively. It is shown that two days before the earthquakes the values of foF2 averaged over the morning hours (00:00 LT–06:00 LT and of fbEs averaged over the nighttime hours (18:00 LT–06:00 LT decrease; the effect is stronger for the "deep" earthquakes. Analysing the coefficient of semitransparency which characterizes the degree of small-scale turbulence, it was shown that this value increases 1–4 days before "crust" earthquakes, and it does not change before "deep" earthquakes. Studying Es-spread which manifests itself as diffuse Es track on ionograms and characterizes the degree of large-scale turbulence, it was found that the number of Es-spread observations increases 1–3 days before the earthquakes; for "deep" earthquakes the effect is more intensive. Thus it may be concluded that different mechanisms of energy transfer from the region of earthquake preparation to the ionosphere occur for "deep" and "crust" events.

  4. 78 FR 5492 - Draft Environmental Impact Statement for Merced Wild and Scenic River Comprehensive Management...

    Science.gov (United States)

    2013-01-25

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-PWRO-11522; PX.P0131800B.00.1] Draft Environmental Impact Statement for Merced Wild and Scenic River Comprehensive Management Plan, Yosemite National Park, Madera and Mariposa Counties, CA AGENCY: National Park Service, Interior. ACTION: Notice of...

  5. Tradable Earthquake Certificates

    NARCIS (Netherlands)

    Woerdman, Edwin; Dulleman, Minne

    2018-01-01

    This article presents a market-based idea to compensate for earthquake damage caused by the extraction of natural gas and applies it to the case of Groningen in the Netherlands. Earthquake certificates give homeowners a right to yearly compensation for both property damage and degradation of living

  6. People's perspectives and expectations on preparedness against earthquakes: Tehran case study.

    Science.gov (United States)

    Jahangiri, Katayoun; Izadkhah, Yasamin Ostovar; Montazeri, Ali; Hosseinip, Mahmood

    2010-06-01

    , Discussion: A participatory approach to earthquake-preparedness planning is recommended. This would ensure that program planners use methods, tools, media, and educational materials that are compatible with the culture, needs, and skills of the local communities. The findings of this study also reveal methods and tools that the local community considers to be most effective for earthquake-preparedness planning and management. The development of an earthquake-resistance and a safe community requires a high level of collaboration between broadcasting organizations, seismologists, experts in the disaster- preparedness field, as well as the local community. This will allow for timely planning, development, and dissemination of essential information to all stakeholders including the local communities. ‎

  7. What Can Sounds Tell Us About Earthquake Interactions?

    Science.gov (United States)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  8. An information infrastructure for earthquake science

    Science.gov (United States)

    Jordan, T. H.; Scec/Itr Collaboration

    2003-04-01

    The Southern California Earthquake Center (SCEC), in collaboration with the San Diego Supercomputer Center, the USC Information Sciences Institute,IRIS, and the USGS, has received a large five-year grant from the NSF's ITR Program and its Geosciences Directorate to build a new information infrastructure for earthquake science. In many respects, the SCEC/ITR Project presents a microcosm of the IT efforts now being organized across the geoscience community, including the EarthScope initiative. The purpose of this presentation is to discuss the experience gained by the project thus far and lay out the challenges that lie ahead; our hope is to encourage cross-discipline collaboration in future IT advancements. Project goals have been formulated in terms of four "computational pathways" related to seismic hazard analysis (SHA). For example, Pathway 1 involves the construction of an open-source, object-oriented, and web-enabled framework for SHA computations that can incorporate a variety of earthquake forecast models, intensity-measure relationships, and site-response models, while Pathway 2 aims to utilize the predictive power of wavefield simulation in modeling time-dependent ground motion for scenario earthquakes and constructing intensity-measure relationships. The overall goal is to create a SCEC "community modeling environment" or collaboratory that will comprise the curated (on-line, documented, maintained) resources needed by researchers to develop and use these four computational pathways. Current activities include (1) the development and verification of the computational modules, (2) the standardization of data structures and interfaces needed for syntactic interoperability, (3) the development of knowledge representation and management tools, (4) the construction SCEC computational and data grid testbeds, and (5) the creation of user interfaces for knowledge-acquisition, code execution, and visualization. I will emphasize the increasing role of standardized

  9. A smartphone application for earthquakes that matter!

    Science.gov (United States)

    Bossu, Rémy; Etivant, Caroline; Roussel, Fréderic; Mazet-Roux, Gilles; Steed, Robert

    2014-05-01

    Smartphone applications have swiftly become one of the most popular tools for rapid reception of earthquake information for the public, some of them having been downloaded more than 1 million times! The advantages are obvious: wherever someone's own location is, they can be automatically informed when an earthquake has struck. Just by setting a magnitude threshold and an area of interest, there is no longer the need to browse the internet as the information reaches you automatically and instantaneously! One question remains: are the provided earthquake notifications always relevant for the public? What are the earthquakes that really matters to laypeople? One clue may be derived from some newspaper reports that show that a while after damaging earthquakes many eyewitnesses scrap the application they installed just after the mainshock. Why? Because either the magnitude threshold is set too high and many felt earthquakes are missed, or it is set too low and the majority of the notifications are related to unfelt earthquakes thereby only increasing anxiety among the population at each new update. Felt and damaging earthquakes are the ones that matter the most for the public (and authorities). They are the ones of societal importance even when of small magnitude. A smartphone application developed by EMSC (Euro-Med Seismological Centre) with the financial support of the Fondation MAIF aims at providing suitable notifications for earthquakes by collating different information threads covering tsunamigenic, potentially damaging and felt earthquakes. Tsunamigenic earthquakes are considered here to be those ones that are the subject of alert or information messages from the PTWC (Pacific Tsunami Warning Centre). While potentially damaging earthquakes are identified through an automated system called EQIA (Earthquake Qualitative Impact Assessment) developed and operated at EMSC. This rapidly assesses earthquake impact by comparing the population exposed to each expected

  10. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    Science.gov (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  11. Nowcasting Earthquakes and Tsunamis

    Science.gov (United States)

    Rundle, J. B.; Turcotte, D. L.

    2017-12-01

    The term "nowcasting" refers to the estimation of the current uncertain state of a dynamical system, whereas "forecasting" is a calculation of probabilities of future state(s). Nowcasting is a term that originated in economics and finance, referring to the process of determining the uncertain state of the economy or market indicators such as GDP at the current time by indirect means. We have applied this idea to seismically active regions, where the goal is to determine the current state of a system of faults, and its current level of progress through the earthquake cycle (http://onlinelibrary.wiley.com/doi/10.1002/2016EA000185/full). Advantages of our nowcasting method over forecasting models include: 1) Nowcasting is simply data analysis and does not involve a model having parameters that must be fit to data; 2) We use only earthquake catalog data which generally has known errors and characteristics; and 3) We use area-based analysis rather than fault-based analysis, meaning that the methods work equally well on land and in subduction zones. To use the nowcast method to estimate how far the fault system has progressed through the "cycle" of large recurring earthquakes, we use the global catalog of earthquakes, using "small" earthquakes to determine the level of hazard from "large" earthquakes in the region. We select a "small" region in which the nowcast is to be made, and compute the statistics of a much larger region around the small region. The statistics of the large region are then applied to the small region. For an application, we can define a small region around major global cities, for example a "small" circle of radius 150 km and a depth of 100 km, as well as a "large" earthquake magnitude, for example M6.0. The region of influence of such earthquakes is roughly 150 km radius x 100 km depth, which is the reason these values were selected. We can then compute and rank the seismic risk of the world's major cities in terms of their relative seismic risk

  12. Exposure management systems in emergencies as comprehensive medical care

    International Nuclear Information System (INIS)

    Shinohara, Teruhiko

    2000-01-01

    The emergency management of nuclear hazards relies on a comprehensive medical care system that includes accident prevention administration, environmental monitoring, a health physics organization, and a medical institution. In this paper, the care organization involved in the criticality accident at Tokai-mura is described, and the problems that need to be examined are pointed out. In that incident, even the expert was initially utterly confused and was unable to take appropriate measures. The author concluded that the members of the care organization were all untrained for dealing with nuclear hazards and radiation accidents. The education and training of personnel at the job site are important, and they are even more so for the leaders. Revisions of the regional disaster prevention plans and care manual are needed. (K.H.)

  13. Seismicity map tools for earthquake studies

    Science.gov (United States)

    Boucouvalas, Anthony; Kaskebes, Athanasios; Tselikas, Nikos

    2014-05-01

    We report on the development of new and online set of tools for use within Google Maps, for earthquake research. We demonstrate this server based and online platform (developped with PHP, Javascript, MySQL) with the new tools using a database system with earthquake data. The platform allows us to carry out statistical and deterministic analysis on earthquake data use of Google Maps and plot various seismicity graphs. The tool box has been extended to draw on the map line segments, multiple straight lines horizontally and vertically as well as multiple circles, including geodesic lines. The application is demonstrated using localized seismic data from the geographic region of Greece as well as other global earthquake data. The application also offers regional segmentation (NxN) which allows the studying earthquake clustering, and earthquake cluster shift within the segments in space. The platform offers many filters such for plotting selected magnitude ranges or time periods. The plotting facility allows statistically based plots such as cumulative earthquake magnitude plots and earthquake magnitude histograms, calculation of 'b' etc. What is novel for the platform is the additional deterministic tools. Using the newly developed horizontal and vertical line and circle tools we have studied the spatial distribution trends of many earthquakes and we here show for the first time the link between Fibonacci Numbers and spatiotemporal location of some earthquakes. The new tools are valuable for examining visualizing trends in earthquake research as it allows calculation of statistics as well as deterministic precursors. We plan to show many new results based on our newly developed platform.

  14. Earthquake at 40 feet

    Science.gov (United States)

    Miller, G. J.

    1976-01-01

    The earthquake that struck the island of Guam on November 1, 1975, at 11:17 a.m had many unique aspects-not the least of which was the experience of an earthquake of 6.25 Richter magnitude while at 40 feet. My wife Bonnie, a fellow diver, Greg Guzman, and I were diving at Gabgab Beach in teh outer harbor of Apra Harbor, engaged in underwater phoyography when the earthquake struck. 

  15. Earthquakes and economic growth

    OpenAIRE

    Fisker, Peter Simonsen

    2012-01-01

    This study explores the economic consequences of earthquakes. In particular, it is investigated how exposure to earthquakes affects economic growth both across and within countries. The key result of the empirical analysis is that while there are no observable effects at the country level, earthquake exposure significantly decreases 5-year economic growth at the local level. Areas at lower stages of economic development suffer harder in terms of economic growth than richer areas. In addition,...

  16. Radon anomalies prior to earthquakes (2). Atmospheric radon anomaly observed before the Hyogoken-Nanbu earthquake

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuo; Tokonami, Shinji; Yasuoka, Yumi; Shinogi, Masaki; Nagahama, Hiroyuki; Omori, Yasutaka; Kawada, Yusuke

    2008-01-01

    Before the 1995 Hyogoken-Nanbu earthquake, various geochemical precursors were observed in the aftershock area: chloride ion concentration, groundwater discharge rate, groundwater radon concentration and so on. Kobe Pharmaceutical University (KPU) is located about 25 km northeast from the epicenter and within the aftershock area. Atmospheric radon concentration had been continuously measured from 1984 at KPU, using a flow-type ionization chamber. The radon concentration data were analyzed using the smoothed residual values which represent the daily minimum of radon concentration with the exclusion of normalized seasonal variation. The radon concentration (smoothed residual values) demonstrated an upward trend about two months before the Hyogoken-Nanbu earthquake. The trend can be well fitted to a log-periodic model related to earthquake fault dynamics. As a result of model fitting, a critical point was calculated to be between 13 and 27 January 1995, which was in good agreement with the occurrence date of earthquake (17 January 1995). The mechanism of radon anomaly before earthquakes is not fully understood. However, it might be possible to detect atmospheric radon anomaly as a precursor before a large earthquake, if (1) the measurement is conducted near the earthquake fault, (2) the monitoring station is located on granite (radon-rich) areas, and (3) the measurement is conducted for more than several years before the earthquake to obtain background data. (author)

  17. Retrospective stress-forecasting of earthquakes

    Science.gov (United States)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  18. Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    As it is the 200th anniversary of Darwin's birth, 2009 has also been marked as 170 years since the publication of his book Journal of Researches. During the voyage Darwin landed at Valdivia and Concepcion, Chile, just before, during, and after a great earthquake, which demolished hundreds of buildings, killing and injuring many people. Land was waved, lifted, and cracked, volcanoes awoke and giant ocean waves attacked the coast. Darwin was the first geologist to observe and describe the effects of the great earthquake during and immediately after. These effects sometimes repeated during severe earthquakes; but great earthquakes, like Chile 1835, and giant earthquakes, like Chile 1960, are rare and remain completely unpredictable. This is one of the few areas of science, where experts remain largely in the dark. Darwin suggested that the effects were a result of ‘ …the rending of strata, at a point not very deep below the surface of the earth…' and ‘…when the crust yields to the tension, caused by its gradual elevation, there is a jar at the moment of rupture, and a greater movement...'. Darwin formulated big ideas about the earth evolution and its dynamics. These ideas set the tone for the tectonic plate theory to come. However, the plate tectonics does not completely explain why earthquakes occur within plates. Darwin emphasised that there are different kinds of earthquakes ‘...I confine the foregoing observations to the earthquakes on the coast of South America, or to similar ones, which seem generally to have been accompanied by elevation of the land. But, as we know that subsidence has gone on in other quarters of the world, fissures must there have been formed, and therefore earthquakes...' (we cite the Darwin's sentences following researchspace. auckland. ac. nz/handle/2292/4474). These thoughts agree with results of the last publications (see Nature 461, 870-872; 636-639 and 462, 42-43; 87-89). About 200 years ago Darwin gave oneself airs by the

  19. Efficient blind search for similar-waveform earthquakes in years of continuous seismic data

    Science.gov (United States)

    Yoon, C. E.; Bergen, K.; Rong, K.; Elezabi, H.; Bailis, P.; Levis, P.; Beroza, G. C.

    2017-12-01

    Cross-correlating an earthquake waveform template with continuous seismic data has proven to be a sensitive, discriminating detector of small events missing from earthquake catalogs, but a key limitation of this approach is that it requires advance knowledge of the earthquake signals we wish to detect. To overcome this limitation, we can perform a blind search for events with similar waveforms, comparing waveforms from all possible times within the continuous data (Brown et al., 2008). However, the runtime for naive blind search scales quadratically with the duration of continuous data, making it impractical to process years of continuous data. The Fingerprint And Similarity Thresholding (FAST) detection method (Yoon et al., 2015) enables a comprehensive blind search for similar-waveform earthquakes in a fast, scalable manner by adapting data-mining techniques originally developed for audio and image search within massive databases. FAST converts seismic waveforms into compact "fingerprints", which are efficiently organized and searched within a database. In this way, FAST avoids the unnecessary comparison of dissimilar waveforms. To date, the longest duration of continuous data used for event detection with FAST was 3 months at a single station near Guy-Greenbrier, Arkansas, which revealed microearthquakes closely correlated with stages of hydraulic fracturing (Yoon et al., 2017). In this presentation we introduce an optimized, parallel version of the FAST software with improvements to the fingerprinting algorithm and the ability to detect events using continuous data from a network of stations (Bergen et al., 2016). We demonstrate its ability to detect low-magnitude earthquakes within several years of continuous data at locations of interest in California.

  20. The earthquakes of stable continental regions. Volume 2: Appendices A to E. Final report

    International Nuclear Information System (INIS)

    Johnston, A.C.; Kanter, L.R.; Coppersmith, K.J.; Cornell, C.A.

    1994-12-01

    The objectives of the study were to develop a comprehensive database of earthquakes in stable continental regions (SCRs) and to statistically examine use of the database for the assessment of large earthquake potential. We identified nine major and several minor SCRs worldwide and compiled a database of geologic characteristics of tectonic domains within each SCR. We examined all available earthquake data from SCRs, from historical accounts of events with no instrumental ground-motion data to present-day instrumentally recorded events. In all, 1,385 events were analyzed. Using moment magnitude 4.5 as the lower bound threshold for inclusion in the database, 870 were assigned to an SCR, 124 were found to be transitional to an SCR, and 391 were examined, but rejected. We then performed a seismotectonic analysis to determine what distinguishes seismic activity in SCRs from other types of crust, such as active plate margins or active continental regions. General observations are: (1) SCRs comprise nearly two-thirds of all continental crust of which 25% is considered to be extended (i.e., rifted); (2) the majority of seismic energy release and the largest earthquakes in SCRs have occurred in extended crust; and (3) active plate margins release seismic energy at a rate per unit area approximately 7,000 times the average for non-extended SCRs. Finally, results of a statistical examination of distributions of historical maximum earthquakes between different crustal domain types indicated that additional information is needed in order to adequately constrain estimates of maximum earthquakes for any given region. Thus, a Bayesian approach was developed in which statistical constraints from the database were used to develop a prior distribution, which may then be combined with source-specific information to constrain maximum magnitude assessments for use in probabilistic seismic hazard analyses

  1. Rumours about the Po Valley earthquakes of 20th and 29th May 2012

    Science.gov (United States)

    La Longa, Federica; Crescimbene, Massimo; Camassi, Romano; Nostro, Concetta

    2013-04-01

    The history of rumours is as old as human history. Even in remote antiquity, rumours, gossip and hoax were always in circulation - in good or bad faith - to influence human affairs. Today with the development of mass media, rise of the internet and social networks, rumours are ubiquitous. The earthquakes, because of their characteristics of strong emotional impact and unpredictability, are among the natural events that more cause the birth and the spread of rumours. For this reason earthquakes that occurred in the Po valley the 20th and 29th May 2012 generated and still continue to generate a wide variety of rumours regarding issues related to the earthquake, its effects, the possible causes, future predictions. For this reason, as occurred during the L'Aquila earthquake sequence in 2009, following the events of May 2012 in Emilia Romagna was created a complex initiative training and information that at various stages between May and September 2012, involved population, partly present in the camp, and then the school staff of the municipalities affected by the earthquake. This experience has been organized and managed by the Department of Civil Protection (DPC), the National Institute of Geophysics and Volcanology (INGV), the Emilia Romagna region in collaboration with the Network of University Laboratories for Earthquake Engineering (RELUIS), the Health Service Emilia Romagna Regional and voluntary organizations of civil protection in the area. Within this initiative, in the period June-September 2012 were collected and catalogued over 240 rumours. In this work rumours of the Po Valley are studied in their specific characteristics and strategies and methods to fight them are also discussed. This work of collection and discussion of the rumours was particularly important to promote good communication strategies and to fight the spreading of the rumours. Only in this way it was possible to create a full intervention able to supporting both the local institutions and

  2. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  3. Earthquake effect on the geological environment

    International Nuclear Information System (INIS)

    Kawamura, Makoto

    1999-01-01

    Acceleration caused by the earthquake, changes in the water pressure, and the rock-mass strain were monitored for a series of 344 earthquakes from 1990 to 1998 at Kamaishi In Situ Test Site. The largest acceleration was registered to be 57.14 gal with the earthquake named 'North coast of Iwate Earthquake' (M4.4) occurred in June, 1996. Changes of the water pressure were recorded with 27 earthquakes; the largest change was -0.35 Kgt/cm 2 . The water-pressure change by earthquake was, however, usually smaller than that caused by rainfall in this area. No change in the electric conductivity or pH of ground water was detected before and after the earthquake throughout the entire period of monitoring. The rock-mass strain was measured with a extensometer whose detection limit was of the order of 10 -8 to 10 -9 degrees and the remaining strain of about 2.5x10 -9 degrees was detected following the 'Offshore Miyagi Earthquake' (M5.1) in October, 1997. (H. Baba)

  4. Earthquake predictions using seismic velocity ratios

    Science.gov (United States)

    Sherburne, R. W.

    1979-01-01

    Since the beginning of modern seismology, seismologists have contemplated predicting earthquakes. The usefulness of earthquake predictions to the reduction of human and economic losses and the value of long-range earthquake prediction to planning is obvious. Not as clear are the long-range economic and social impacts of earthquake prediction to a speicifc area. The general consensus of opinion among scientists and government officials, however, is that the quest of earthquake prediction is a worthwhile goal and should be prusued with a sense of urgency. 

  5. USGS SAFRR Tsunami Scenario: Potential Impacts to the U.S. West Coast from a Plausible M9 Earthquake near the Alaska Peninsula

    Science.gov (United States)

    Ross, S.; Jones, L. M.; Wilson, R. I.; Bahng, B.; Barberopoulou, A.; Borrero, J. C.; Brosnan, D.; Bwarie, J. T.; Geist, E. L.; Johnson, L. A.; Hansen, R. A.; Kirby, S. H.; Knight, E.; Knight, W. R.; Long, K.; Lynett, P. J.; Miller, K. M.; Mortensen, C. E.; Nicolsky, D.; Oglesby, D. D.; Perry, S. C.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Suleimani, E. N.; Thio, H. K.; Titov, V. V.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2012-12-01

    The U.S. Geological Survey's Science Application for Risk Reduction (SAFRR) project, in collaboration with the California Geological Survey, the California Emergency Management Agency, the National Oceanic and Atmospheric Administration, and other agencies and institutions are developing a Tsunami Scenario to describe in detail the impacts of a tsunami generated by a hypothetical, but realistic, M9 earthquake near the Alaska Peninsula. The overarching objective of SAFRR and its predecessor, the Multi-Hazards Demonstration Project, is to help communities reduce losses from natural disasters. As requested by emergency managers and other community partners, a primary approach has been comprehensive, scientifically credible scenarios that start with a model of a geologic event and extend through estimates of damage, casualties, and societal consequences. The first product was the ShakeOut scenario, addressing a hypothetical earthquake on the southern San Andreas fault, that spawned the successful Great California ShakeOut, an annual event and the nation's largest emergency preparedness exercise. That was followed by the ARkStorm scenario, which addresses California winter storms that surpass hurricanes in their destructive potential. Some of the Tsunami Scenario's goals include developing advanced models of currents and inundation for the event; spurring research related to Alaskan earthquake sources; engaging the port and harbor decision makers; understanding the economic impacts to local, regional and national economy in both the short and long term; understanding the ecological, environmental, and societal impacts of coastal inundation; and creating enhanced communication products for decision-making before, during, and after a tsunami event. The state of California, through CGS and Cal EMA, is using the Tsunami Scenario as an opportunity to evaluate policies regarding tsunami impact. The scenario will serve as a long-lasting resource to teach preparedness and

  6. A simulation of Earthquake Loss Estimation in Southeastern Korea using HAZUS and the local site classification Map

    Science.gov (United States)

    Kang, S.; Kim, K.

    2013-12-01

    Regionally varying seismic hazards can be estimated using an earthquake loss estimation system (e.g. HAZUS-MH). The estimations for actual earthquakes help federal and local authorities develop rapid, effective recovery measures. Estimates for scenario earthquakes help in designing a comprehensive earthquake hazard mitigation plan. Local site characteristics influence the ground motion. Although direct measurements are desirable to construct a site-amplification map, such data are expensive and time consuming to collect. Thus we derived a site classification map of the southern Korean Peninsula using geologic and geomorphologic data, which are readily available for the entire southern Korean Peninsula. Class B sites (mainly rock) are predominant in the area, although localized areas of softer soils are found along major rivers and seashores. The site classification map is compared with independent site classification studies to confirm our site classification map effectively represents the local behavior of site amplification during an earthquake. We then estimated the losses due to a magnitude 6.7 scenario earthquake in Gyeongju, southeastern Korea, with and without the site classification map. Significant differences in loss estimates were observed. The loss without the site classification map decreased without variation with increasing epicentral distance, while the loss with the site classification map varied from region to region, due to both the epicentral distance and local site effects. The major cause of the large loss expected in Gyeongju is the short epicentral distance. Pohang Nam-Gu is located farther from the earthquake source region. Nonetheless, the loss estimates in the remote city are as large as those in Gyeongju and are attributed to the site effect of soft soil found widely in the area.

  7. Earthquakes and Schools

    Science.gov (United States)

    National Clearinghouse for Educational Facilities, 2008

    2008-01-01

    Earthquakes are low-probability, high-consequence events. Though they may occur only once in the life of a school, they can have devastating, irreversible consequences. Moderate earthquakes can cause serious damage to building contents and non-structural building systems, serious injury to students and staff, and disruption of building operations.…

  8. Smoking prevalence increases following Canterbury earthquakes.

    Science.gov (United States)

    Erskine, Nick; Daley, Vivien; Stevenson, Sue; Rhodes, Bronwen; Beckert, Lutz

    2013-01-01

    A magnitude 7.1 earthquake hit Canterbury in September 2010. This earthquake and associated aftershocks took the lives of 185 people and drastically changed residents' living, working, and social conditions. To explore the impact of the earthquakes on smoking status and levels of tobacco consumption in the residents of Christchurch. Semistructured interviews were carried out in two city malls and the central bus exchange 15 months after the first earthquake. A total of 1001 people were interviewed. In August 2010, prior to any earthquake, 409 (41%) participants had never smoked, 273 (27%) were currently smoking, and 316 (32%) were ex-smokers. Since the September 2010 earthquake, 76 (24%) of the 316 ex-smokers had smoked at least one cigarette and 29 (38.2%) had smoked more than 100 cigarettes. Of the 273 participants who were current smokers in August 2010, 93 (34.1%) had increased consumption following the earthquake, 94 (34.4%) had not changed, and 86 (31.5%) had decreased their consumption. 53 (57%) of the 93 people whose consumption increased reported that the earthquake and subsequent lifestyle changes as a reason to increase smoking. 24% of ex-smokers resumed smoking following the earthquake, resulting in increased smoking prevalence. Tobacco consumption levels increased in around one-third of current smokers.

  9. Financial planning on a comprehensive scale.

    Science.gov (United States)

    Mishra, Simita

    2013-04-01

    Hospitals and health systems that wish to explore the shift to comprehensive care management should: Assess the investments in infrastructure necessary to support comprehensive care management, Gauge the financial implications and set quality and financial goals, Monitor performance using metrics such as patient satisfaction, avoidable admissions, out-of-group referrals, and average length of stay.

  10. Victims' time discounting 2.5 years after the Wenchuan earthquake: an ERP study.

    Science.gov (United States)

    Li, Jin-Zhen; Gui, Dan-Yang; Feng, Chun-Liang; Wang, Wen-Zhong; Du, Bo-Qi; Gan, Tian; Luo, Yue-Jia

    2012-01-01

    Time discounting refers to the fact that the subjective value of a reward decreases as the delay until its occurrence increases. The present study investigated how time discounting has been affected in survivors of the magnitude-8.0 Wenchuan earthquake that occurred in China in 2008. Nineteen earthquake survivors and 22 controls, all school teachers, participated in the study. Event-related brain potentials (ERPs) for time discounting tasks involving gains and losses were acquired in both the victims and controls. The behavioral data replicated our previous findings that delayed gains were discounted more steeply after a disaster. ERP results revealed that the P200 and P300 amplitudes were increased in earthquake survivors. There was a significant group (earthquake vs. non-earthquake) × task (gain vs. loss) interaction for the N300 amplitude, with a marginally significantly reduced N300 for gain tasks in the experimental group, which may suggest a deficiency in inhibitory control for gains among victims. The results suggest that post-disaster decisions might involve more emotional (System 1) and less rational thinking (System 2) in terms of a dual-process model of decision making. The implications for post-disaster intervention and management are also discussed.

  11. Cyclic migration of weak earthquakes between Lunigiana earthquake of October 10, 1995 and Reggio Emilia earthquake of October 15, 1996 (Northern Italy)

    Science.gov (United States)

    di Giovambattista, R.; Tyupkin, Yu

    The cyclic migration of weak earthquakes (M 2.2) which occurred during the yearprior to the October 15, 1996 (M = 4.9) Reggio Emilia earthquake isdiscussed in this paper. The onset of this migration was associated with theoccurrence of the October 10, 1995 (M = 4.8) Lunigiana earthquakeabout 90 km southwest from the epicenter of the Reggio Emiliaearthquake. At least three series of earthquakes migrating from theepicentral area of the Lunigiana earthquake in the northeast direction wereobserved. The migration of earthquakes of the first series terminated at adistance of about 30 km from the epicenter of the Reggio Emiliaearthquake. The earthquake migration of the other two series halted atabout 10 km from the Reggio Emilia epicenter. The average rate ofearthquake migration was about 200-300 km/year, while the time ofrecurrence of the observed cycles varied from 68 to 178 days. Weakearthquakes migrated along the transversal fault zones and sometimesjumped from one fault to another. A correlation between the migratingearthquakes and tidal variations is analysed. We discuss the hypothesis thatthe analyzed area is in a state of stress approaching the limit of thelong-term durability of crustal rocks and that the observed cyclic migrationis a result of a combination of a more or less regular evolution of tectonicand tidal variations.

  12. Associating Factors With Public Preparedness Behavior Against Earthquake: A Review of Iranian Research Literature

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2018-01-01

    Full Text Available Local preparedness against earthquakes has been recently highlighted in research and policies on disaster management and risk reduction promotion in Iran. To advance the understanding of public preparedness and how it can be applied in diverse localities, further information is required about the predictors of people’s adoption of mitigation activities and earthquake preparedness. A synthesis of the available published research results on earthquake preparedness and the influencing factors in Iran are presented in this literature review. It emphasizes the complexity of both the concept of preparedness and the contextual factors that mediate its adoption. The predominant roles of public awareness, trusted information resources, social capital and community collaboration as predictors are discussed. 

  13. Effects of Comprehensive Risk Management Program on the Preparedness of Rofeide Rehabilitation Hospital in Disasters and Incidents

    Directory of Open Access Journals (Sweden)

    Samira Rajabi

    2017-07-01

    Conclusion: Considering the positive impact of the implementation of the risk management program on the preparedness of Rofeide Rehabilitation Hospital and promotion of its preparedness level from poor to moderate, as well as relatively high vulnerability of hospitals against internal and external risks, national hospitals are recommended to use the comprehensive hospital risk management model to be more prepared for disasters.

  14. The 2012 Mw5.6 earthquake in Sofia seismogenic zone - is it a slow earthquake

    Science.gov (United States)

    Raykova, Plamena; Solakov, Dimcho; Slavcheva, Krasimira; Simeonova, Stela; Aleksandrova, Irena

    2017-04-01

    Recently our understanding of tectonic faulting has been shaken by the discoveries of seismic tremor, low frequency earthquakes, slow slip events, and other models of fault slip. These phenomenas represent models of failure that were thought to be non-existent and theoretically impossible only a few years ago. Slow earthquakes are seismic phenomena in which the rupture of geological faults in the earth's crust occurs gradually without creating strong tremors. Despite the growing number of observations of slow earthquakes their origin remains unresolved. Studies show that the duration of slow earthquakes ranges from a few seconds to a few hundred seconds. The regular earthquakes with which most people are familiar release a burst of built-up stress in seconds, slow earthquakes release energy in ways that do little damage. This study focus on the characteristics of the Mw5.6 earthquake occurred in Sofia seismic zone on May 22nd, 2012. The Sofia area is the most populated, industrial and cultural region of Bulgaria that faces considerable earthquake risk. The Sofia seismic zone is located in South-western Bulgaria - the area with pronounce tectonic activity and proved crustal movement. In 19th century the city of Sofia (situated in the centre of the Sofia seismic zone) has experienced two strong earthquakes with epicentral intensity of 10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK64).The 2012 quake occurs in an area characterized by a long quiescence (of 95 years) for moderate events. Moreover, a reduced number of small earthquakes have also been registered in the recent past. The Mw5.6 earthquake is largely felt on the territory of Bulgaria and neighbouring countries. No casualties and severe injuries have been reported. Mostly moderate damages were observed in the cities of Pernik and Sofia and their surroundings. These observations could be assumed indicative for a

  15. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.; Amos, C. B.; Zielke, Olaf; Jayko, A. S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  16. Surface slip during large Owens Valley earthquakes

    Science.gov (United States)

    Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  17. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.

    2016-01-10

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  18. 16 CFR 1018.43 - Comprehensive review.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Comprehensive review. 1018.43 Section 1018.43 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL ADVISORY COMMITTEE MANAGEMENT Records, Annual Reports and Audits § 1018.43 Comprehensive review. A comprehensive review of all...

  19. The severity of an earthquake

    Science.gov (United States)

    ,

    1997-01-01

    The severity of an earthquake can be expressed in terms of both intensity and magnitude. However, the two terms are quite different, and they are often confused. Intensity is based on the observed effects of ground shaking on people, buildings, and natural features. It varies from place to place within the disturbed region depending on the location of the observer with respect to the earthquake epicenter. Magnitude is related to the amount of seismic energy released at the hypocenter of the earthquake. It is based on the amplitude of the earthquake waves recorded on instruments

  20. Disaster mental health service at Fukushima after 2011 Tohoku earthquake

    International Nuclear Information System (INIS)

    Furuno, Taku

    2013-01-01

    The 2011 Tohoku earthquake was the most powerful earthquake ever to have hit Japan, which triggered the devastating tsunami sweeping through the cities, and caused the nuclear crisis in Fukushima. Due to the disaster, numerous people in Fukushima had to be in emergency evacuation, which also must have influenced people's mental states. After the earthquake, department of psychiatry, Yokohama City University School of Medicine, organized the disaster mental health service teams, and participated in psychological aid at Fukushima prefecture during March, May and June 2011. Our teams visited the shelters, schools and healthcare center, to evaluate psychological condition of the evacuees, and provide counseling to the people who had psychological problems. Many people at the disaster site who have prolonged psychological symptoms, also had some problems related to the social situations. Therefore, managing social support of evacuees is equally an important role of the disaster mental health service team as caring acute symptoms of stress and helping damaged psychiatric service network. In addition, the earthquake made the people aware of importance of sharing information in the time of disaster, especially via internet. We should take this opportunity to think more about information exchange for medical support, such as collaboration of medical teams and provision of expert knowledge to sufferers. (author)

  1. Thoracic Injuries in earthquake-related versus non-earthquake-related trauma patients: differentiation via Multi-detector Computed Tomography

    Directory of Open Access Journals (Sweden)

    Zhi-hui Dong

    2011-01-01

    Full Text Available PURPOSE: Massive earthquakes are harmful to humankind. This study of a historical cohort aimed to investigate the difference between earthquake-related crush thoracic traumas and thoracic traumas unrelated to earthquakes using a multi-detector Computed Tomography (CT. METHODS: We retrospectively compared an earthquake-exposed cohort of 215 thoracic trauma crush victims of the Sichuan earthquake to a cohort of 215 non-earthquake-related thoracic trauma patients, focusing on the lesions and coexisting injuries to the thoracic cage and the pulmonary parenchyma and pleura using a multi-detector CT. RESULTS: The incidence of rib fracture was elevated in the earthquake-exposed cohort (143 vs. 66 patients in the non-earthquake-exposed cohort, Risk Ratio (RR = 2.2; p<0.001. Among these patients, those with more than 3 fractured ribs (106/143 vs. 41/66 patients, RR=1.2; p<0.05 or flail chest (45/143 vs. 11/66 patients, RR=1.9; p<0.05 were more frequently seen in the earthquake cohort. Earthquake-related crush injuries more frequently resulted in bilateral rib fractures (66/143 vs. 18/66 patients, RR= 1.7; p<0.01. Additionally, the incidence of non-rib fracture was higher in the earthquake cohort (85 vs. 60 patients, RR= 1.4; p<0.01. Pulmonary parenchymal and pleural injuries were more frequently seen in earthquake-related crush injuries (117 vs. 80 patients, RR=1.5 for parenchymal and 146 vs. 74 patients, RR = 2.0 for pleural injuries; p<0.001. Non-rib fractures, pulmonary parenchymal and pleural injuries had significant positive correlation with rib fractures in these two cohorts. CONCLUSIONS: Thoracic crush traumas resulting from the earthquake were life threatening with a high incidence of bony thoracic fractures. The ribs were frequently involved in bilateral and severe types of fractures, which were accompanied by non-rib fractures, pulmonary parenchymal and pleural injuries.

  2. Microearthquake detection at 2012 M4.9 Qiaojia earthquake source area , the north of the Xiaojiang Fault in Yunnan, China

    Science.gov (United States)

    Li, Y.; Yang, H.; Zhou, S.; Yan, C.

    2016-12-01

    We perform a comprehensive analysis in Yunnan area based on continuous seismic data of 38 stations of Qiaojia Network in Xiaojiang Fault from 2012.3 to 2015.2. We use an effective method: Match and Locate (M&L, Zhang&Wen, 2015) to detect and locate microearthquakes to conduct our research. We first study dynamic triggering around the Xiaojiang Fault in Yunnan. The triggered earthquakes are identified as two impulsive seismic arrivals in 2Hz-highpass-filtered velocity seismograms during the passage of surface waves of large teleseismic earthquakes. We only find two earthquakes that may have triggered regional earthquakes through inspecting their spectrograms: Mexico Mw7.4 earthquake in 03/20/2012 and El Salvador Mw7.3 earthquake in 10/14/2014. To confirm the two earthquakes are triggered instead of coincidence, we use M&L to search if there are any repeating earthquakes. The result of the coefficients shows that it is a coincidence during the surface waves of El Salvador earthquake and whether 2012 Mexico have triggered earthquake is under discussion. We then visually inspect the 2-8Hz-bandpass-filterd velocity envelopes of these years to search for non-volcanic tremor. We haven't detected any signals similar to non-volcanic tremors yet. In the following months, we are going to study the 2012 M4.9 Qiaojia earthquake. It occurred only 30km west of the epicenter of the 2014 M6.5 Ludian earthquake. We use Match and Locate (M&L) technique to detect and relocate microearthquakes that occurred 2 days before and 3 days after the mainshock. Through this, we could obtain several times more events than listed in the catalogs provided by NEIC and reduce the magnitude of completeness Mc. We will also detect microearthquakes along Xiaojiang Fault using template earthquakes listed in the catalogs to learn more about fault shape and other properties of Xiaojiang Fault. Analyzing seismicity near Xiaojiang Fault systematically may cast insight on our understanding of the features of

  3. The Loma Prieta, California, Earthquake of October 17, 1989: Strong Ground Motion and Ground Failure

    Science.gov (United States)

    Coordinated by Holzer, Thomas L.

    1992-01-01

    Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were: * Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter. * Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils. * Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions. * Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes. * Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards. * The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter. * Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for

  4. Earthquake prediction by Kina Method

    International Nuclear Information System (INIS)

    Kianoosh, H.; Keypour, H.; Naderzadeh, A.; Motlagh, H.F.

    2005-01-01

    Earthquake prediction has been one of the earliest desires of the man. Scientists have worked hard to predict earthquakes for a long time. The results of these efforts can generally be divided into two methods of prediction: 1) Statistical Method, and 2) Empirical Method. In the first method, earthquakes are predicted using statistics and probabilities, while the second method utilizes variety of precursors for earthquake prediction. The latter method is time consuming and more costly. However, the result of neither method has fully satisfied the man up to now. In this paper a new method entitled 'Kiana Method' is introduced for earthquake prediction. This method offers more accurate results yet lower cost comparing to other conventional methods. In Kiana method the electrical and magnetic precursors are measured in an area. Then, the time and the magnitude of an earthquake in the future is calculated using electrical, and in particular, electrical capacitors formulas. In this method, by daily measurement of electrical resistance in an area we make clear that the area is capable of earthquake occurrence in the future or not. If the result shows a positive sign, then the occurrence time and the magnitude can be estimated by the measured quantities. This paper explains the procedure and details of this prediction method. (authors)

  5. Sense of Community and Depressive Symptoms among Older Earthquake Survivors Following the 2008 Earthquake in Chengdu China

    Science.gov (United States)

    Li, Yawen; Sun, Fei; He, Xusong; Chan, Kin Sun

    2011-01-01

    This study examined the impact of an earthquake as well as the role of sense of community as a protective factor against depressive symptoms among older Chinese adults who survived an 8.0 magnitude earthquake in 2008. A household survey of a random sample was conducted 3 months after the earthquake and 298 older earthquake survivors participated…

  6. The Bronchiectasis Toolbox—A Comprehensive Website for the Management of People with Bronchiectasis

    Directory of Open Access Journals (Sweden)

    Caroline H. Nicolson

    2017-06-01

    Full Text Available While the health burden of bronchiectasis is increasing worldwide, medical and physiotherapy treatment strategies have progressed significantly over the past decade. For this reason, clinicians require readily accessible current evidence based information on the management of this condition. E-learning is a suitable educational forum for the development and maintenance of professional skills, however a comprehensive, evidence based, multidisciplinary website for bronchiectasis was not available. The Bronchiectasis Toolbox at www.bronchiectasis.com.au was developed by a team of clinicians in Australia and New Zealand with extensive experience in bronchiectasis. The content of this website, based on national and international guidelines, is presented under the headings: ‘Bronchiectasis’, ‘Assessment’, ‘Physiotherapy’, ‘Indigenous’, ‘Paediatrics’, and ‘Resources’. Through a blend of multimedia resources, this website provides information to consolidate the knowledge and practical skills for health professionals caring for people with this condition. After launching in 2015 the website has received 64,549 hits from over 100 countries and the videos have been viewed 10,205 times in 89 countries. The Bronchiectasis Toolbox is a comprehensive multidisciplinary resource accessible to health professionals worldwide who manage people with bronchiectasis and is a unique solution to an educational need. Regular updates will ensure that the website continues to be relevant.

  7. Spatial and Temporal Characteristics of the Microseismicity Preceding the 2016 M L 6.6 Meinong Earthquake in Southern Taiwan

    Science.gov (United States)

    Pu, Hsin-Chieh

    2018-02-01

    Before the M L 6.6 Meinong earthquake in 2016, intermediate-term quiescence (Q i), foreshocks, and short-term quiescence (Q s) were extracted from a comprehensive earthquake catalog. In practice, these behaviors are thought to be the seismic indicators of an earthquake precursor, and their spatiotemporal characteristics may be associated with location, magnitude, and occurrence time of the following main shock. Hence, detailed examinations were carried out to derive the spatiotemporal characteristics of these meaningful seismic behaviors. First, the spatial range of the Q i that occurred for 96 days was revealed in and around the Meinong earthquake. Second, a series of foreshocks was present for 1 day, clustered at the southeastern end of the Meinong earthquake. Third, Q s was present for 3 days and was pronounced after the foreshocks. Although these behaviors were recorded difficultly because the Q i was characterized by microseismicity at the lower cut-off magnitude, between M L 1.2 and 1.6, and most of the foreshocks were comprised of earthquakes with a magnitude lower than 1.8, they carried meaningful precursory indicators preceding the Meinong earthquake. These indicators provide the information of (1) the hypocenter, which was indicated by the area including the Q i, foreshocks, and Q s; (2) the magnitude, which could be associated to the spatial range of the Q i; (3) the asperity locations, which might be related to the areas of extraordinary low seismicity; and (4) a short-term warning leading of 3 days, which could have been announced based on the occurrence of the Q s. Particularly, Q i also appeared before strong inland earthquakes so that Q i might be an anticipative phenomenon before a strong earthquake in Taiwan.

  8. Precisely locating the Klamath Falls, Oregon, earthquakes

    Science.gov (United States)

    Qamar, A.; Meagher, K.L.

    1993-01-01

    The Klamath Falls earthquakes on September 20, 1993, were the largest earthquakes centered in Oregon in more than 50 yrs. Only the magnitude 5.75 Milton-Freewater earthquake in 1936, which was centered near the Oregon-Washington border and felt in an area of about 190,000 sq km, compares in size with the recent Klamath Falls earthquakes. Although the 1993 earthquakes surprised many local residents, geologists have long recognized that strong earthquakes may occur along potentially active faults that pass through the Klamath Falls area. These faults are geologically related to similar faults in Oregon, Idaho, and Nevada that occasionally spawn strong earthquakes

  9. Characteristic behavior of water radon associated with Wenchuan and Lushan earthquakes along Longmenshan fault

    International Nuclear Information System (INIS)

    Ye, Qing; Singh, Ramesh P.; He, Anhua; Ji, Shouwen; Liu, Chunguo

    2015-01-01

    In China, numerous subsurface, surface water well and spring parameters are being monitored through a large network of stations distributed in China sponsored by China Earthquake Administration (CEA). All the data from these network is managed by China Earthquake Network Center (CENC). In this paper, we have used numerous data (water radon, gas radon, water level, water temperature) available through CENC for the period 2002–2014 and studied the behavior and characteristics of water 222 radon [Rn(w)]. The observed parameters were also complemented by rainfall data retrieved from Tropical Rainfall Measuring Mission (TRMM) satellite. Our detailed analysis shows pronounced changes in the observed parameters (especially water and gas radon) prior to the earthquake. The changes in water radon, ground water level and rainfall showing characteristics behavior for Wenchuan and Lushan earthquakes. The long term data analysis of water radon and water level at various locations around epicenters of two major earthquakes along Longmenshan fault show a positive and negative relation of water radon and water level prior to these earthquakes. It is difficult to find any trend of water radon and changes in water radon pattern with these two earthquakes that could prove as a reliable precursor of earthquakes. Changes in the water radon concentrations from one location to other may be associated with the changes in ground water regime and geological settings in the epicentral and surrounding regions. - Highlights: • Long trend of water radon measured in China during 2003–2014 at six stations round Longmenshan fault. • Water radon shows characteristics behavior associated with Wenchuan and Lushan earthquakes. • Water radon shows one to one relation with rainfall and ground water level variations. • Sharp increase or decrease in water radon concentrations are found few days prior to the earthquake

  10. Earthquake Early Warning: A Prospective User's Perspective (Invited)

    Science.gov (United States)

    Nishenko, S. P.; Savage, W. U.; Johnson, T.

    2009-12-01

    With more than 25 million people at risk from high hazard faults in California alone, Earthquake Early Warning (EEW) presents a promising public safety and emergency response tool. EEW represents the real-time end of an earthquake information spectrum which also includes near real-time notifications of earthquake location, magnitude, and shaking levels; as well as geographic information system (GIS)-based products for compiling and visually displaying processed earthquake data such as ShakeMap and ShakeCast. Improvements to and increased multi-national implementation of EEW have stimulated interest in how such information products could be used in the future. Lifeline organizations, consisting of utilities and transportation systems, can use both onsite and regional EEW information as part of their risk management and public safety programs. Regional EEW information can provide improved situational awareness to system operators before automatic system protection devices activate, and allow trained personnel to take precautionary measures. On-site EEW is used for earthquake-actuated automatic gas shutoff valves, triggered garage door openers at fire stations, system controls, etc. While there is no public policy framework for preemptive, precautionary electricity or gas service shutdowns by utilities in the United States, gas shut-off devices are being required at the building owner level by some local governments. In the transportation sector, high-speed rail systems have already demonstrated the ‘proof of concept’ for EEW in several countries, and more EEW systems are being installed. Recently the Bay Area Rapid Transit District (BART) began collaborating with the California Integrated Seismic Network (CISN) and others to assess the potential benefits of EEW technology to mass transit operations and emergency response in the San Francisco Bay region. A key issue in this assessment is that significant earthquakes are likely to occur close to or within the BART

  11. The 2015 Nepal earthquake disaster: lessons learned one year on.

    Science.gov (United States)

    Hall, M L; Lee, A C K; Cartwright, C; Marahatta, S; Karki, J; Simkhada, P

    2017-04-01

    The 2015 earthquake in Nepal killed over 8000 people, injured more than 21,000 and displaced a further 2 million. One year later, a national workshop was organized with various Nepali stakeholders involved in the response to the earthquake. The workshop provided participants an opportunity to reflect on their experiences and sought to learn lessons from the disaster. One hundred and thirty-five participants took part and most had been directly involved in the earthquake response. They included representatives from the Ministry of Health, local and national government, the armed forces, non-governmental organizations, health practitioners, academics, and community representatives. Participants were divided into seven focus groups based around the following topics: water, sanitation and hygiene, hospital services, health and nutrition, education, shelter, policy and community. Facilitated group discussions were conducted in Nepalese and the key emerging themes are presented. Participants described a range of issues encountered, some specific to their area of expertize but also more general issues. These included logistics and supply chain challenges, leadership and coordination difficulties, impacts of the media as well as cultural beliefs on population behaviour post-disaster. Lessons identified included the need for community involvement at all stages of disaster response and preparedness, as well as the development of local leadership capabilities and community resilience. A 'disconnect' between disaster management policy and responses was observed, which may result in ineffective, poorly planned disaster response. Finding time and opportunity to reflect on and identify lessons from disaster response can be difficult but are fundamental to improving future disaster preparedness. The Nepal Earthquake National Workshop offered participants the space to do this. It garnered an overwhelming sense of wanting to do things better, of the need for a Nepal-centric approach

  12. 78 FR 34041 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Fishery Management...

    Science.gov (United States)

    2013-06-06

    ... environmental impact statement (DEIS); scoping meetings; request for comments. SUMMARY: NMFS, Southeast Region... in developing the final environmental impact statement (FEIS), and before voting to submit the FMP to... the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Fishery Management Plan for the...

  13. 78 FR 34042 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Fishery Management...

    Science.gov (United States)

    2013-06-06

    ... environmental impact statement (DEIS); scoping meetings; request for comments. SUMMARY: NMFS, Southeast Region... in developing the final environmental impact statement (FEIS), and before voting to submit the FMP to... the Caribbean, Gulf of Mexico, and South Atlantic; Comprehensive Fishery Management Plan for the...

  14. The mechanism of earthquake

    Science.gov (United States)

    Lu, Kunquan; Cao, Zexian; Hou, Meiying; Jiang, Zehui; Shen, Rong; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    The physical mechanism of earthquake remains a challenging issue to be clarified. Seismologists used to attribute shallow earthquake to the elastic rebound of crustal rocks. The seismic energy calculated following the elastic rebound theory and with the data of experimental results upon rocks, however, shows a large discrepancy with measurement — a fact that has been dubbed as “the heat flow paradox”. For the intermediate-focus and deep-focus earthquakes, both occurring in the region of the mantle, there is not reasonable explanation either. This paper will discuss the physical mechanism of earthquake from a new perspective, starting from the fact that both the crust and the mantle are discrete collective system of matters with slow dynamics, as well as from the basic principles of physics, especially some new concepts of condensed matter physics emerged in the recent years. (1) Stress distribution in earth’s crust: Without taking the tectonic force into account, according to the rheological principle of “everything flows”, the normal stress and transverse stress must be balanced due to the effect of gravitational pressure over a long period of time, thus no differential stress in the original crustal rocks is to be expected. The tectonic force is successively transferred and accumulated via stick-slip motions of rock blocks to squeeze the fault gouge and then exerted upon other rock blocks. The superposition of such additional lateral tectonic force and the original stress gives rise to the real-time stress in crustal rocks. The mechanical characteristics of fault gouge are different from rocks as it consists of granular matters. The elastic moduli of the fault gouges are much less than those of rocks, and they become larger with increasing pressure. This peculiarity of the fault gouge leads to a tectonic force increasing with depth in a nonlinear fashion. The distribution and variation of the tectonic stress in the crust are specified. (2) The

  15. Turkish Children's Ideas about Earthquakes

    Science.gov (United States)

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  16. How to eliminate non-damaging earthquakes from the results of a probabilistic seismic hazard analysis (PSHA)-A comprehensive procedure with site-specific application

    International Nuclear Information System (INIS)

    Kluegel, Jens-Uwe

    2009-01-01

    The results of probabilistic seismic hazard analyses are frequently presented in terms of uniform hazard spectra or hazard curves with spectral accelerations as the output parameter. The calculation process is based on the evaluation of the probability of exceedance of specified acceleration levels without consideration of the damaging effects of the causative earthquakes. The same applies to the empirical attenuation equations for spectral accelerations used in PSHA models. This makes interpreting and using the results in engineering or risk applications difficult. Uniform hazard spectra and the associated hazard curves may contain a significant amount of contributions of weak, low-energy earthquakes not able to damage the seismically designed structures of nuclear power plants. For the development of realistic engineering designs and for realistic seismic probabilistic risk assessments (seismic PRA) it is necessary to remove the contribution of non-damaging earthquakes from the results of a PSHA. A detailed procedure for the elimination of non-damaging earthquakes based on the CAV (Cumulative Absolute Velocity)-filtering approach was developed and applied to the results of the large-scale PEGASOS probabilistic seismic hazard study for the site of the Goesgen nuclear power plant. The procedure considers the full scope of epistemic uncertainty and aleatory variability present in the PEGASOS study. It involves the development of a set of empirical correlations for CAV and the subsequent development of a composite distribution for the probability of exceedance of the damaging threshold of 0.16 gs. Additionally, a method was developed to measure the difference in the damaging effects of earthquakes of different strengths by the ratio of a power function of ARIAS-intensity or, in the ideal case, by the ratio of the square roots of the associated strong motion durations. The procedure was applied for the update of the Goesgen seismic PRA and for the confirmation of a

  17. Global earthquake fatalities and population

    Science.gov (United States)

    Holzer, Thomas L.; Savage, James C.

    2013-01-01

    Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes (>100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.

  18. Instruction system upon occurrence of earthquakes

    International Nuclear Information System (INIS)

    Inagaki, Masakatsu; Morikawa, Matsuo; Suzuki, Satoshi; Fukushi, Naomi.

    1987-01-01

    Purpose: To enable rapid re-starting of a nuclear reactor after earthquakes by informing various properties of encountered earthquake to operators and properly displaying the state of damages in comparison with designed standard values of facilities. Constitution: Even in a case where the maximum accelerations due to the movements of earthquakes encountered exceed designed standard values, it may be considered such a case that equipments still remain intact depending on the wave components of the seismic movements and the vibration properties inherent to the equipments. Taking notice of the fact, the instruction device comprises a system that indicates the relationship between the seismic waveforms of earthquakes being encountered and the scram setting values, a system for indicating the comparison between the floor response spectrum of the seismic waveforms of the encountered earthquakes and the designed floor response spectrum used for the design of the equipments and a system for indicating those equipments requiring inspection after the earthquakes. Accordingly, it is possible to improve the operationability upon scram of a nuclear power plant undergoing earthquakes and improve the power saving and safety by clearly defining the inspection portion after the earthquakes. (Kawakami, Y.)

  19. How fault geometry controls earthquake magnitude

    Science.gov (United States)

    Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.

    2016-12-01

    Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.

  20. Evaluation of awareness and preparedness of school Principals and teachers on earthquake reduction effects issues - State's actions

    Science.gov (United States)

    Kourou, Assimina; Ioakeimidou, Anastasia; Mokos, Vasileios; Bakas, Konstantinos

    2013-04-01

    It is generally accepted that the effects of the disasters can be mainly reduced if people are aware, well informed and motivated towards a culture of disaster prevention and resilience. Particularly, in earthquake prone countries, a continuous update and education of the public, on earthquake risk management issues, is essential. Schools can play a crucial role concerning training and building a disaster prevention culture, among various community groups. Principals and teachers have a key role to play in any school-wide initiative through developing and reviewing awareness policy, developing and revising emergency response plans, holding emergency drills and training the students. During the last decade, the Greek State have done a lot of efforts in order to better educate teachers and students in disaster preparedness and management, such as: a. implementation of the E.P.P.O.'s educational project "Earthquake Protection at Schools" which is addressed mainly to school Principals. The project started right after the 1999 earthquake in Athens. b. publication of educational material for students, teachers and people with disabilities and publication of guidelines concerning the development of emergency plans. c. implementation of projects and elaboration of innovative and mobile experiential educational material connected with school curricula. The aim of the present study is to assess levels of awareness and preparedness concerning earthquake protection issues, as well as risk mitigation behaviours, undertaken by teachers at individual, family and workplace level. Furthermore, the assessment of teachers' current levels of earthquake awareness and preparedness, could lead to conclusions about the effectiveness of State's current Policy. In this framework, specific questionnaires were developed and were addressed to Principals and teachers who were responsible for the preparation of their School Emergency Preparedness Plans. The sample of the survey comprises of

  1. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake

    Science.gov (United States)

    Walter, Jacob I.; Meng, Xiaofeng; Peng, Zhigang; Schwartz, Susan Y.; Newman, Andrew V.; Protti, Marino

    2015-12-01

    On 5 September 2012, a moment magnitude (MW) 7.6 earthquake occurred directly beneath the Nicoya Peninsula, an area with dense seismic and geodetic network coverage. The mainshock ruptured a portion of a previously identified locked patch that was recognized due to a decade-long effort to delineate the megathrust seismic and aseismic processes in this area. Here we conduct a comprehensive study of the seismicity prior to this event utilizing a matched-filter analysis that allows us to decrease the magnitude of catalog completeness by 1 unit. We observe a statistically significant increase in seismicity rate below the Nicoya Peninsula following the 27 August 2012 (MW 7.3) El Salvador earthquake (about 450 km to the northwest and 9 days prior to the Nicoya earthquake). Additionally, we identify a cluster of small-magnitude (earthquakes preceding the mainshock by about 35 min and within 15 km of its hypocenter. The immediate foreshock sequence occurred in the same area as those earthquakes triggered shortly after the El Salvador event; though it is not clear whether the effect of triggering from the El Salvador event persisted until the foreshock sequence given the uncertainties in seismicity rates from a relatively small number of earthquakes. If megathrust earthquakes at such distances can induce significant increases in seismicity during the days before another larger event, this sequence strengthens the need for real-time seismicity monitoring for large earthquake forecasting.

  2. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    Science.gov (United States)

    Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  3. PROPOSAL FOR IMPROVEMENT OF BUINESS CONTINUITY PLAN (BCP) BASED ON THE LESSONS OF THE GREAT EAST JAPAN EARTHQUAKE

    Science.gov (United States)

    Maruya, Hiroaki

    For most Japanese companies and organizations, the enormous damage of the Great East Japan Earthquake was more than expected. In addition to great tsunami and earthquake motion, the lack of electricity and fuel disturbed to business activities seriously, and they should be considered important constraint factors in future earthquakes. Furthermore, disruption of supply chains also led considerable decline of production in many industries across Japan and foreign countries. Therefore it becomes urgent need for Japanese government and industries to utilize the lessons of the Great Earthquake and execute effective countermeasures, considering great earthquakes such as Tonankai & Nankai earthquakes and Tokyo Inland Earthquakes. Obviously most basic step is improving earthquake-resistant ability of buildings and facilities. In addition the spread of BCP and BCM to enterprises and organizations is indispensable. Based on the lessons, the BCM should include the point of view of the supply chain management more clearly, and emphasize "substitute strategy" more explicitly because a company should survive even if it completely loses its present production base. The central and local governments are requested, in addition to develop their own BCP, to improve related systematic conditions for BCM of the private sectors.

  4. Regional dependence in earthquake early warning and real time seismology

    International Nuclear Information System (INIS)

    Caprio, M.

    2013-01-01

    An effective earthquake prediction method is still a Chimera. What we can do at the moment, after the occurrence of a seismic event, is to provide the maximum available information as soon as possible. This can help in reducing the impact of the quake on population or and better organize the rescue operations in case of post-event actions. This study strives to improve the evaluation of earthquake parameters shortly after the occurrence of a major earthquake, and the characterization of regional dependencies in Real-Time Seismology. The recent earthquake experience from Tohoku (M 9.0, 11.03.2011) showed how an efficient EEW systems can inform numerous people and thus potentially reduce the economic and human losses by distributing warning messages several seconds before the arrival of seismic waves. In the case of devastating earthquakes, usually, in the first minutes to days after the main shock, the common communications channels can be overloaded or broken. In such cases, a precise knowledge of the macroseismic intensity distribution will represent a decisive contribution in help management and in the valuation of losses. In this work, I focused on improving the adaptability of EEW systems (chapters 1 and 2) and in deriving a global relationship for converting peak ground motion into macroseismic intensity and vice versa (chapter 3). For EEW applications, in chapter 1 we present an evolutionary approach for magnitude estimation for earthquake early warning based on real-time inversion of displacement spectra. The Spectrum Inversion (SI) method estimates magnitude and its uncertainty by inferring the shape of the entire displacement spectral curve based on the part of the spectra constrained by available data. Our method can be applied in any region without the need for calibration. SI magnitude and uncertainty estimates are updated each second following the initial P detection and potentially stabilize within 10 seconds from the initial earthquake detection

  5. Regional dependence in earthquake early warning and real time seismology

    Energy Technology Data Exchange (ETDEWEB)

    Caprio, M.

    2013-07-01

    An effective earthquake prediction method is still a Chimera. What we can do at the moment, after the occurrence of a seismic event, is to provide the maximum available information as soon as possible. This can help in reducing the impact of the quake on population or and better organize the rescue operations in case of post-event actions. This study strives to improve the evaluation of earthquake parameters shortly after the occurrence of a major earthquake, and the characterization of regional dependencies in Real-Time Seismology. The recent earthquake experience from Tohoku (M 9.0, 11.03.2011) showed how an efficient EEW systems can inform numerous people and thus potentially reduce the economic and human losses by distributing warning messages several seconds before the arrival of seismic waves. In the case of devastating earthquakes, usually, in the first minutes to days after the main shock, the common communications channels can be overloaded or broken. In such cases, a precise knowledge of the macroseismic intensity distribution will represent a decisive contribution in help management and in the valuation of losses. In this work, I focused on improving the adaptability of EEW systems (chapters 1 and 2) and in deriving a global relationship for converting peak ground motion into macroseismic intensity and vice versa (chapter 3). For EEW applications, in chapter 1 we present an evolutionary approach for magnitude estimation for earthquake early warning based on real-time inversion of displacement spectra. The Spectrum Inversion (SI) method estimates magnitude and its uncertainty by inferring the shape of the entire displacement spectral curve based on the part of the spectra constrained by available data. Our method can be applied in any region without the need for calibration. SI magnitude and uncertainty estimates are updated each second following the initial P detection and potentially stabilize within 10 seconds from the initial earthquake detection

  6. Measuring the size of an earthquake

    Science.gov (United States)

    Spence, W.; Sipkin, S.A.; Choy, G.L.

    1989-01-01

    Earthquakes range broadly in size. A rock-burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat Island earthquake in the Aleutian arc involved a 650-kilometer length of the Earth's crust. Earthquakes can be even smaller and even larger. If an earthquake is felt or causes perceptible surface damage, then its intensity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic areas or at great focal depths and are either simply not felt or their felt pattern does not really indicate their true size.

  7. Earthquakes-Rattling the Earth's Plumbing System

    Science.gov (United States)

    Sneed, Michelle; Galloway, Devin L.; Cunningham, William L.

    2003-01-01

    Hydrogeologic responses to earthquakes have been known for decades, and have occurred both close to, and thousands of miles from earthquake epicenters. Water wells have become turbid, dry or begun flowing, discharge of springs and ground water to streams has increased and new springs have formed, and well and surface-water quality have become degraded as a result of earthquakes. Earthquakes affect our Earth’s intricate plumbing system—whether you live near the notoriously active San Andreas Fault in California, or far from active faults in Florida, an earthquake near or far can affect you and the water resources you depend on.

  8. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    Science.gov (United States)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  9. Earthquake forewarning in the Cascadia region

    Science.gov (United States)

    Gomberg, Joan S.; Atwater, Brian F.; Beeler, Nicholas M.; Bodin, Paul; Davis, Earl; Frankel, Arthur; Hayes, Gavin P.; McConnell, Laura; Melbourne, Tim; Oppenheimer, David H.; Parrish, John G.; Roeloffs, Evelyn A.; Rogers, Gary D.; Sherrod, Brian; Vidale, John; Walsh, Timothy J.; Weaver, Craig S.; Whitmore, Paul M.

    2015-08-10

    This report, prepared for the National Earthquake Prediction Evaluation Council (NEPEC), is intended as a step toward improving communications about earthquake hazards between information providers and users who coordinate emergency-response activities in the Cascadia region of the Pacific Northwest. NEPEC charged a subcommittee of scientists with writing this report about forewarnings of increased probabilities of a damaging earthquake. We begin by clarifying some terminology; a “prediction” refers to a deterministic statement that a particular future earthquake will or will not occur. In contrast to the 0- or 100-percent likelihood of a deterministic prediction, a “forecast” describes the probability of an earthquake occurring, which may range from >0 to processes or conditions, which may include Increased rates of M>4 earthquakes on the plate interface north of the Mendocino region 

  10. A matter of life or limb? A review of traumatic injury patterns and anesthesia techniques for disaster relief after major earthquakes.

    Science.gov (United States)

    Missair, Andres; Pretto, Ernesto A; Visan, Alexandru; Lobo, Laila; Paula, Frank; Castillo-Pedraza, Catalina; Cooper, Lebron; Gebhard, Ralf E

    2013-10-01

    All modalities of anesthetic care, including conscious sedation, general, and regional anesthesia, have been used to manage earthquake survivors who require urgent surgical intervention during the acute phase of medical relief. Consequently, we felt that a review of epidemiologic data from major earthquakes in the context of urgent intraoperative management was warranted to optimize anesthesia disaster preparedness for future medical relief operations. The primary outcome measure of this study was to identify the predominant preoperative injury pattern (anatomic location and pathology) of survivors presenting for surgical care immediately after major earthquakes during the acute phase of medical relief (0-15 days after disaster). The injury pattern is of significant relevance because it closely relates to the anesthetic techniques available for patient management. We discuss our findings in the context of evidence-based strategies for anesthetic management during the acute phase of medical relief after major earthquakes and the associated obstacles of devastated medical infrastructure. To identify reports on acute medical care in the aftermath of natural disasters, a query was conducted using MEDLINE/PubMed, Embase, CINAHL, as well as an online search engine (Google Scholar). The search terms were "disaster" and "earthquake" in combination with "injury," "trauma," "surgery," "anesthesia," and "wounds." Our investigation focused only on studies of acute traumatic injury that specified surgical intervention among survivors in the acute phase of medical relief. A total of 31 articles reporting on 15 major earthquakes (between 1980 and 2010) and the treatment of more than 33,410 patients met our specific inclusion criteria. The mean incidence of traumatic limb injury per major earthquake was 68.0%. The global incidence of traumatic limb injury was 54.3% (18,144/33,410 patients). The pooled estimate of the proportion of limb injuries was calculated to be 67.95%, with a

  11. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  12. Earthquakes; May-June 1982

    Science.gov (United States)

    Person, W.J.

    1982-01-01

    There were four major earthquakes (7.0-7.9) during this reporting period: two struck in Mexico, one in El Salvador, and one in teh Kuril Islands. Mexico, El Salvador, and China experienced fatalities from earthquakes.

  13. CISN Display Progress to Date - Reliable Delivery of Real-Time Earthquake Information, and ShakeMap to Critical End Users

    Science.gov (United States)

    Rico, H.; Hauksson, E.; Thomas, E.; Friberg, P.; Frechette, K.; Given, D.

    2003-12-01

    The California Integrated Seismic Network (CISN) has collaborated to develop a next-generation earthquake notification system that is nearing its first operations-ready release. The CISN Display actively alerts users of seismic data, and vital earthquake hazards information following a significant event. It will primarily replace the Caltech/USGS Broadcast of Earthquakes (CUBE) and Rapid Earthquake Data Integration (REDI) Display as the principal means of delivering geographical seismic data to emergency operations centers, utility companies and media outlets. A subsequent goal is to provide automated access to the many Web products produced by regional seismic networks after an earthquake. Another aim is to create a highly configurable client, allowing user organizations to overlay infrastructure data critical to their roles as first-responders, or lifeline operators. And the final goal is to integrate these requirements, into a package offering several layers of reliability to ensure delivery of services. Central to the CISN Display's role as a gateway to Web-based earthquake products is its comprehensive XML-messaging schema. The message model uses many of the same attributes in the CUBE format, but extends the old standard by provisioning additional elements for products currently available, and others yet to be considered. The client consumes these XML-messages, sorts them through a resident Quake Data Merge filter, and posts updates that also include hyperlinks associated to specific event IDs on the display map. Earthquake products available for delivery to the CISN Display are ShakeMap, focal mechanisms, waveform data, felt reports, aftershock forecasts and earthquake commentaries. By design the XML-message schema can evolve as products and information needs change, without breaking existing applications that rely on it. The latest version of the CISN Display can also automatically download ShakeMaps and display shaking intensity within the GIS system. This

  14. Radon observation for earthquake prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wakita, Hiroshi [Tokyo Univ. (Japan)

    1998-12-31

    Systematic observation of groundwater radon for the purpose of earthquake prediction began in Japan in late 1973. Continuous observations are conducted at fixed stations using deep wells and springs. During the observation period, significant precursory changes including the 1978 Izu-Oshima-kinkai (M7.0) earthquake as well as numerous coseismic changes were observed. At the time of the 1995 Kobe (M7.2) earthquake, significant changes in chemical components, including radon dissolved in groundwater, were observed near the epicentral region. Precursory changes are presumably caused by permeability changes due to micro-fracturing in basement rock or migration of water from different sources during the preparation stage of earthquakes. Coseismic changes may be caused by seismic shaking and by changes in regional stress. Significant drops of radon concentration in groundwater have been observed after earthquakes at the KSM site. The occurrence of such drops appears to be time-dependent, and possibly reflects changes in the regional stress state of the observation area. The absence of radon drops seems to be correlated with periods of reduced regional seismic activity. Experience accumulated over the two past decades allows us to reach some conclusions: 1) changes in groundwater radon do occur prior to large earthquakes; 2) some sites are particularly sensitive to earthquake occurrence; and 3) the sensitivity changes over time. (author)

  15. Comprehensive scenario management of sustainable spatial planning and urban water services.

    Science.gov (United States)

    Baron, Silja; Hoek, Jannis; Kaufmann Alves, Inka; Herz, Sabine

    2016-01-01

    Adaptations of existing central water supply and wastewater disposal systems to demographic, climatic and socioeconomic changes require a profound knowledge about changing influencing factors. The paper presents a scenario management approach for the identification of future developments of drivers influencing water infrastructures. This method is designed within a research project with the objective of developing an innovative software-based optimisation and decision support system for long-term transformations of existing infrastructures of water supply, wastewater and energy in rural areas. Drivers of water infrastructures comprise engineering and spatial factors and these are predicted by different methods and techniques. The calculated developments of the drivers are illustrated for a model municipality. The developed scenario-manager enables the generation of comprehensive scenarios by combining different drivers. The scenarios are integrated into the optimisation model as input parameters. Furthermore, the result of the optimisation process - an optimal transformation strategy for water infrastructures - can have impacts on the existing fee system. General adaptation possibilities of the present fee system are presented.

  16. Community energy auditing: experience with the comprehensive community energy management program

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.L.; Berger, D.A.; Rubin, C.B.; Hutchinson, P.A. Sr.; Griggs, H.M.

    1980-09-01

    The report provides local officials and staff with information on lessons from the audit, projection, and general planning experiences of the Comprehensive Community Energy Management Program (CCEMP) communities and provides ANL and US DOE with information useful to the further development of local energy management planning methods. In keeping with the objectives, the report is organized into the following sections: Section II presents the evaluation issues and key findings based on the communities' experiences from Spring of 1979 to approximately March of 1980; Section III gives an organized review of experience of communities in applying the detailed audit methodology for estimating current community energy consumption and projecting future consumption and supply; Section IV provides a preliminary assessment of how audit information is being used in other CCEMP tasks; Section V presents an organized review of preliminary lessons from development of the community planning processes; and Section VI provides preliminary conclusions on the audit and planning methodology. (MCW)

  17. Earthquake number forecasts testing

    Science.gov (United States)

    Kagan, Yan Y.

    2017-10-01

    We study the distributions of earthquake numbers in two global earthquake catalogues: Global Centroid-Moment Tensor and Preliminary Determinations of Epicenters. The properties of these distributions are especially required to develop the number test for our forecasts of future seismic activity rate, tested by the Collaboratory for Study of Earthquake Predictability (CSEP). A common assumption, as used in the CSEP tests, is that the numbers are described by the Poisson distribution. It is clear, however, that the Poisson assumption for the earthquake number distribution is incorrect, especially for the catalogues with a lower magnitude threshold. In contrast to the one-parameter Poisson distribution so widely used to describe earthquake occurrences, the negative-binomial distribution (NBD) has two parameters. The second parameter can be used to characterize the clustering or overdispersion of a process. We also introduce and study a more complex three-parameter beta negative-binomial distribution. We investigate the dependence of parameters for both Poisson and NBD distributions on the catalogue magnitude threshold and on temporal subdivision of catalogue duration. First, we study whether the Poisson law can be statistically rejected for various catalogue subdivisions. We find that for most cases of interest, the Poisson distribution can be shown to be rejected statistically at a high significance level in favour of the NBD. Thereafter, we investigate whether these distributions fit the observed distributions of seismicity. For this purpose, we study upper statistical moments of earthquake numbers (skewness and kurtosis) and compare them to the theoretical values for both distributions. Empirical values for the skewness and the kurtosis increase for the smaller magnitude threshold and increase with even greater intensity for small temporal subdivision of catalogues. The Poisson distribution for large rate values approaches the Gaussian law, therefore its skewness

  18. Role of Actors and Gender Factor in Disaster Management

    Science.gov (United States)

    Gundogdu, Oguz; Isik, Ozden; Ozcep, Ferhat; Goksu, Goksel

    2014-05-01

    In Turkey, the discussions in the modern sense about disaster management begun after the 1992 Erzincan and the 1995 Dinar earthquakes, faulting in terms of features and effects. These earthquakes are "Urban Earthquakes'' with effects and faulting charectristics, and have led to radical changes in terms of disaster and disaster management. Disaster Management, to become a science in the world, but with the 1999 Izmit and Duzce earthquakes in Turkey has begun to take seriously on the agenda. Firstly, such as Civil Defense and Red Crescent organizations, by transforming its own, have entered into a new organizing effort. By these earthquakes, NGO's have contributed the search-rescue efforts in the field and to the process of normalization of life. Because "the authority and responsibilities" of NGO's could not be determined, and could not be in planning and scenario studies, we faced the problems. Thus, to the citizens of our country-specific "voluntary" has not benefited enough from the property. The most important development in disaster management in 2009, the Disaster and Emergency Management Presidency (AFAD) has been the establishment. However, in terms of coordination and accreditation to the target point has been reached yet. Another important issue in disaster management (need to be addressed along with disaster actors) is the role of women in disasters. After the Golcuk Earthquake, successful field works of women and women's victimization has attracted attention in two different directions. Gender-sensitive policies should be noted by the all disaster actors due to the importance of the mitigation, and these policies should take place in laws, regulations and planning.

  19. Probabilistic Approach to Provide Scenarios of Earthquake-Induced Slope Failures (PARSIFAL Applied to the Alcoy Basin (South Spain

    Directory of Open Access Journals (Sweden)

    Salvatore Martino

    2018-02-01

    Full Text Available The PARSIFAL (Probabilistic Approach to pRovide Scenarios of earthquake-Induced slope FAiLures approach was applied in the basin of Alcoy (Alicante, South Spain, to provide a comprehensive scenario of earthquake-induced landslides. The basin of Alcoy is well known for several historical landslides, mainly represented by earth-slides, that involve urban settlement as well as infrastructures (i.e., roads, bridges. The PARSIFAL overcomes several limits existing in other approaches, allowing the concomitant analyses of: (i first-time landslides (due to both rock-slope failures and shallow earth-slides and reactivations of existing landslides; (ii slope stability analyses of different failure mechanisms; (iii comprehensive mapping of earthquake-induced landslide scenarios in terms of exceedance probability of critical threshold values of co-seismic displacements. Geotechnical data were used to constrain the slope stability analysis, while specific field surveys were carried out to measure jointing and strength conditions of rock masses and to inventory already existing landslides. GIS-based susceptibility analyses were performed to assess the proneness to shallow earth-slides as well as to verify kinematic compatibility to planar or wedge rock-slides and to topples. The experienced application of PARSIFAL to the Alcoy basin: (i confirms the suitability of the approach at a municipality scale, (ii outputs the main role of saturation in conditioning slope instabilities in this case study, (iii demonstrates the reliability of the obtained results respect to the historical data.

  20. Management of Substance Use Disorder in Military Services: A Comprehensive Approach.

    Science.gov (United States)

    Sharbafchi, Mohammad Reza; Heydari, Mostafa

    2017-01-01

    Historically, substance misuse has been a serious problem faced by worldwide military personnel. Some research showed that military personnel have higher rates of unhealthy substance use than their age peers in the general population. These problems have serious consequences and may lead to significant military difficulties in the field of readiness, discipline, and mental or physical health. In this review, we gathered various methods for prevention, diagnosis, and treatment of substance use disorders and suggested a comprehensive plan for Iran Armed Forces to improve existing services. This article is a narrative review study, which was carried out on 2016. A careful literature review was performed between January 1970 and April 2016 on several national and international databases. Articles were screened according to the following inclusion criteria: (1) review articles about prevention and treatment protocols, (2) executive guidance, (3) cohort articles about risk factors of addiction, and (4) randomized controlled trials about prevention or treatment of substance use disorders in army service members. After screening by title and abstract, 130 articles selected of 832 founded articles, and after quality assessment, finally, 63 articles included in the review. There is a necessity to manage substance use disorder through prevention, screening, and then referral to proper services for diagnosis and treatment. Urinalysis programs for screening are cost-effective and should be considered as a main method. Effective treatment includes both behavioral and pharmacological methods. The ideal prevention program will include multiple and mutually reinforcing evidence-based universal, selective, and indicated attempts at both the individual and environmental levels. The implementation of screening and treatment strategies needs strict rules and national guideline for the comprehensive management of substance use disorders in army.

  1. 33 CFR 222.4 - Reporting earthquake effects.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Reporting earthquake effects. 222..., DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.4 Reporting earthquake effects. (a) Purpose. This... significant earthquakes. It primarily concerns damage surveys following the occurrences of earthquakes. (b...

  2. Earthquakes - a danger to deep-lying repositories?

    International Nuclear Information System (INIS)

    2012-03-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed

  3. Evidence for Ancient Mesoamerican Earthquakes

    Science.gov (United States)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  4. Earthquake data base for Romania

    International Nuclear Information System (INIS)

    Rizescu, M.; Ghica, D.; Grecu, B.; Popa, M.; Borcia, I. S.

    2002-01-01

    A new earthquake database for Romania is being constructed, comprising complete earthquake information and being up-to-date, user-friendly and rapidly accessible. One main component of the database consists from the catalog of earthquakes occurred in Romania since 984 up to present. The catalog contains information related to locations and other source parameters, when available, and links to waveforms of important earthquakes. The other very important component is the 'strong motion database', developed for strong intermediate-depth Vrancea earthquakes where instrumental data were recorded. Different parameters to characterize strong motion properties as: effective peak acceleration, effective peak velocity, corner periods T c and T d , global response spectrum based intensities were computed and recorded into this database. Also, information on the recording seismic stations as: maps giving their positioning, photographs of the instruments and site conditions ('free-field or on buildings) are included. By the huge volume and quality of gathered data, also by its friendly user interface, the Romania earthquake data base provides a very useful tool for geosciences and civil engineering in their effort towards reducing seismic risk in Romania. (authors)

  5. Mapping Tectonic Stress Using Earthquakes

    International Nuclear Information System (INIS)

    Arnold, Richard; Townend, John; Vignaux, Tony

    2005-01-01

    An earthquakes occurs when the forces acting on a fault overcome its intrinsic strength and cause it to slip abruptly. Understanding more specifically why earthquakes occur at particular locations and times is complicated because in many cases we do not know what these forces actually are, or indeed what processes ultimately trigger slip. The goal of this study is to develop, test, and implement a Bayesian method of reliably determining tectonic stresses using the most abundant stress gauges available - earthquakes themselves.Existing algorithms produce reasonable estimates of the principal stress directions, but yield unreliable error bounds as a consequence of the generally weak constraint on stress imposed by any single earthquake, observational errors, and an unavoidable ambiguity between the fault normal and the slip vector.A statistical treatment of the problem can take into account observational errors, combine data from multiple earthquakes in a consistent manner, and provide realistic error bounds on the estimated principal stress directions.We have developed a realistic physical framework for modelling multiple earthquakes and show how the strong physical and geometrical constraints present in this problem allow inference to be made about the orientation of the principal axes of stress in the earth's crust

  6. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  7. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Orhan, E-mail: orhan.polat@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey (Turkey)

    2016-04-18

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  8. Investigation of 1-D crustal velocity structure beneath Izmir Gulf and surroundings by using local earthquakes

    International Nuclear Information System (INIS)

    Polat, Orhan; Özer, Çaglar

    2016-01-01

    In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.

  9. Landslide maps and seismic noise: Rockmass weakening caused by shallow earthquakes

    Science.gov (United States)

    Uchida, Tara; Marc, Odin; Sens-Schönfelder, Christoph; Sawazaki, Kaoru; Hobiger, Manuel; Hovius, Niels

    2015-04-01

    Some studies have suggested that the shaking and deformation associated with earthquake would result in a temporary increased hillslope erodibility. However very few data have been able to clarify such effect. We present integrated geomorphic data constraining an elevated landslide rate following 4 continental shallow earthquakes, the Mw 6.9 Finisterre (1993), the Mw 7.6 ChiChi (1999), the Mw 6.6 Niigata (2004) and the Mw 6.8 Iwate-Miyagi (2008) earthquakes. We constrained the magnitude, the recovery time and somewhat the mechanism at the source of this higher landslide risk. We provide some evidences excluding aftershocks or rain forcing intensity as possible mechanism and leaving subsurface weakening as the most likely. The landslide data suggest that this ground strength weakening is not limited to the soil cover but also affect the shallow bedrock. Additionally, we used ambient noise autocorrelation techniques to monitor shallow subsurface seismic velocity within the epicentral area of three of those earthquakes. For most stations we observe a velocity drop followed by a recovery processes of several years in fair agreement with the recovery time estimated based on landslide observation. Thus a common processes could alter the strength of the first 10m of soil/rock and simultaneously drive the landslide rate increase and the seismic velocity drop. The ability to firmly demonstrate this link require additional constraints on the seismic signal interpretation but would provide a very useful tool for post-earthquake risk managment.

  10. Vrancea earthquakes. Specific actions to mitigate seismic risk

    International Nuclear Information System (INIS)

    Marmureanu, Gheorghe; Marmureanu, Alexandru

    2005-01-01

    natural disasters given by earthquakes, there is a need to reverse trends in seismic risk mitigation to future events. Main courses of specific action to mitigate the seismic risks from strong deep Vrancea earthquakes should be considered as key to future development projects, including: - Early warning system for industrial facilities; - Short and long term prediction program of strong Vrancea earthquakes; - Seismic hazard map of Romania; - Seismic microzonation of large populated cities; - Shake map; - Seismic tomography of dams for avoiding disasters. The quality of life and the security of infrastructure (including human services, civil and industrial structures, financial infrastructure, information transmission and processing systems) in every nation are increasingly vulnerable to disasters caused by events that have geological, atmospheric, hydrologic, and technological origins. As UN Secretary General Kofi Annan pointed out, 'Building a culture of prevention is not easy. While the costs of prevention have to be paid in the present, its benefits lie in a distant future'. In other words: Prevention pays off. This may not always become apparent immediately, but, in the long run, the benefits from prevention measures will always outweigh their costs by far. Romania is an earthquake prone area and these main specific actions are really contributing to seismic risk mitigation. These specific actions are provided for in Law nr. 372/March 18,2004 -'The National Program of Seismic Risk Management'. (authors)

  11. The USGS Earthquake Notification Service (ENS): Customizable notifications of earthquakes around the globe

    Science.gov (United States)

    Wald, Lisa A.; Wald, David J.; Schwarz, Stan; Presgrave, Bruce; Earle, Paul S.; Martinez, Eric; Oppenheimer, David

    2008-01-01

    At the beginning of 2006, the U.S. Geological Survey (USGS) Earthquake Hazards Program (EHP) introduced a new automated Earthquake Notification Service (ENS) to take the place of the National Earthquake Information Center (NEIC) "Bigquake" system and the various other individual EHP e-mail list-servers for separate regions in the United States. These included northern California, southern California, and the central and eastern United States. ENS is a "one-stop shopping" system that allows Internet users to subscribe to flexible and customizable notifications for earthquakes anywhere in the world. The customization capability allows users to define the what (magnitude threshold), the when (day and night thresholds), and the where (specific regions) for their notifications. Customization is achieved by employing a per-user based request profile, allowing the notifications to be tailored for each individual's requirements. Such earthquake-parameter-specific custom delivery was not possible with simple e-mail list-servers. Now that event and user profiles are in a structured query language (SQL) database, additional flexibility is possible. At the time of this writing, ENS had more than 114,000 subscribers, with more than 200,000 separate user profiles. On a typical day, more than 188,000 messages get sent to a variety of widely distributed users for a wide range of earthquake locations and magnitudes. The purpose of this article is to describe how ENS works, highlight the features it offers, and summarize plans for future developments.

  12. Conversion of Local and Surface-Wave Magnitudes to Moment Magnitude for Earthquakes in the Chinese Mainland

    Science.gov (United States)

    Li, X.; Gao, M.

    2017-12-01

    The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18

  13. Victims' time discounting 2.5 years after the Wenchuan earthquake: an ERP study.

    Directory of Open Access Journals (Sweden)

    Jin-Zhen Li

    Full Text Available Time discounting refers to the fact that the subjective value of a reward decreases as the delay until its occurrence increases. The present study investigated how time discounting has been affected in survivors of the magnitude-8.0 Wenchuan earthquake that occurred in China in 2008.Nineteen earthquake survivors and 22 controls, all school teachers, participated in the study. Event-related brain potentials (ERPs for time discounting tasks involving gains and losses were acquired in both the victims and controls.The behavioral data replicated our previous findings that delayed gains were discounted more steeply after a disaster. ERP results revealed that the P200 and P300 amplitudes were increased in earthquake survivors. There was a significant group (earthquake vs. non-earthquake × task (gain vs. loss interaction for the N300 amplitude, with a marginally significantly reduced N300 for gain tasks in the experimental group, which may suggest a deficiency in inhibitory control for gains among victims.The results suggest that post-disaster decisions might involve more emotional (System 1 and less rational thinking (System 2 in terms of a dual-process model of decision making. The implications for post-disaster intervention and management are also discussed.

  14. Stigma in science: the case of earthquake prediction.

    Science.gov (United States)

    Joffe, Helene; Rossetto, Tiziana; Bradley, Caroline; O'Connor, Cliodhna

    2018-01-01

    This paper explores how earthquake scientists conceptualise earthquake prediction, particularly given the conviction of six earthquake scientists for manslaughter (subsequently overturned) on 22 October 2012 for having given inappropriate advice to the public prior to the L'Aquila earthquake of 6 April 2009. In the first study of its kind, semi-structured interviews were conducted with 17 earthquake scientists and the transcribed interviews were analysed thematically. The scientists primarily denigrated earthquake prediction, showing strong emotive responses and distancing themselves from earthquake 'prediction' in favour of 'forecasting'. Earthquake prediction was regarded as impossible and harmful. The stigmatisation of the subject is discussed in the light of research on boundary work and stigma in science. The evaluation reveals how mitigation becomes the more favoured endeavour, creating a normative environment that disadvantages those who continue to pursue earthquake prediction research. Recommendations are made for communication with the public on earthquake risk, with a focus on how scientists portray uncertainty. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  15. Knowledge base about earthquakes as a tool to minimize strong events consequences

    Science.gov (United States)

    Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Alexander; Kijko, Andrzej

    2017-04-01

    The paper describes the structure and content of the knowledge base on physical and socio-economical consequences of damaging earthquakes, which may be used for calibration of near real-time loss assessment systems based on simulation models for shaking intensity, damage to buildings and casualties estimates. Such calibration allows to compensate some factors which influence on reliability of expected damage and loss assessment in "emergency" mode. The knowledge base contains the description of past earthquakes' consequences for the area under study. It also includes the current distribution of built environment and population at the time of event occurrence. Computer simulation of the recorded in knowledge base events allow to determine the sets of regional calibration coefficients, including rating of seismological surveys, peculiarities of shaking intensity attenuation and changes in building stock and population distribution, in order to provide minimum error of damaging earthquakes loss estimations in "emergency" mode. References 1. Larionov, V., Frolova, N: Peculiarities of seismic vulnerability estimations. In: Natural Hazards in Russia, volume 6: Natural Risks Assessment and Management, Publishing House "Kruk", Moscow, 120-131, 2003. 2. Frolova, N., Larionov, V., Bonnin, J.: Data Bases Used In Worlwide Systems For Earthquake Loss Estimation In Emergency Mode: Wenchuan Earthquake. In Proc. TIEMS2010 Conference, Beijing, China, 2010. 3. Frolova N. I., Larionov V. I., Bonnin J., Sushchev S. P., Ugarov A. N., Kozlov M. A. Loss Caused by Earthquakes: Rapid Estimates. Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol.84, ISSN 0921-030, Nat Hazards DOI 10.1007/s11069-016-2653

  16. Impact of the Christchurch earthquakes on hospital staff.

    Science.gov (United States)

    Tovaranonte, Pleayo; Cawood, Tom J

    2013-06-01

    On September 4, 2010 a major earthquake caused widespread damage, but no loss of life, to Christchurch city and surrounding areas. There were numerous aftershocks, including on February 22, 2011 which, in contrast, caused substantial loss of life and major damage to the city. The research aim was to assess how these two earthquakes affected the staff in the General Medicine Department at Christchurch Hospital. Problem To date there have been no published data assessing the impact of this type of natural disaster on hospital staff in Australasia. A questionnaire that examined seven domains (demographics, personal impact, psychological impact, emotional impact, impact on care for patients, work impact, and coping strategies) was handed out to General Medicine staff and students nine days after the September 2010 earthquake and 14 days after the February 2011 earthquake. Response rates were ≥ 99%. Sixty percent of responders were earthquakes, respectively. A fifth to a third of people had to find an alternative route of transport to get to work but only eight percent to 18% took time off work. Financial impact was more severe following the February earthquake, with 46% reporting damage of >NZ $1,000, compared with 15% following the September earthquake (P earthquake than the September earthquake (42% vs 69%, P earthquake but this rose to 53% after the February earthquake (12/53 vs 45/85, P earthquake but this dropped significantly to 15% following the February earthquake (27/53 vs 13/62, P earthquakes upon General Medicine hospital staff. The effect was widespread with minor financial impact during the first but much more during the second earthquake. Moderate psychological impact was experienced in both earthquakes. This data may be useful to help prepare plans for future natural disasters. .

  17. Real Time Earthquake Information System in Japan

    Science.gov (United States)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  18. Lessons Learned about Best Practices for Communicating Earthquake Forecasting and Early Warning to Non-Scientific Publics

    Science.gov (United States)

    Sellnow, D. D.; Sellnow, T. L.

    2017-12-01

    Earthquake scientists are without doubt experts in understanding earthquake probabilities, magnitudes, and intensities, as well as the potential consequences of them to community infrastructures and inhabitants. One critical challenge these scientific experts face, however, rests with communicating what they know to the people they want to help. Helping scientists translate scientific information to non-scientists is something Drs. Tim and Deanna Sellnow have been committed to for decades. As such, they have compiled a host of data-driven best practices for communicating effectively to non-scientific publics about earthquake forecasting, probabilities, and warnings. In this session, they will summarize what they have learned as it may help earthquake scientists, emergency managers, and other key spokespersons share these important messages to disparate publics in ways that result in positive outcomes, the most important of which is saving lives.

  19. Earthquake precursory events around epicenters and local active faults; the cases of two inland earthquakes in Iran

    Science.gov (United States)

    Valizadeh Alvan, H.; Mansor, S.; Haydari Azad, F.

    2012-12-01

    The possibility of earthquake prediction in the frame of several days to few minutes before its occurrence has stirred interest among researchers, recently. Scientists believe that the new theories and explanations of the mechanism of this natural phenomenon are trustable and can be the basis of future prediction efforts. During the last thirty years experimental researches resulted in some pre-earthquake events which are now recognized as confirmed warning signs (precursors) of past known earthquakes. With the advances in in-situ measurement devices and data analysis capabilities and the emergence of satellite-based data collectors, monitoring the earth's surface is now a regular work. Data providers are supplying researchers from all over the world with high quality and validated imagery and non-imagery data. Surface Latent Heat Flux (SLHF) or the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere has been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. On the other hand, the leak of Radon gas occurred as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT) prior to main event. Although co-analysis of direct and indirect observation for precursory events is considered as a promising method for future successful earthquake prediction, without proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will not be able to identify anomalies due to seismic activity in the earth's crust. Active faulting is a key factor in identification of the

  20. Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough (Japan) based on stochastic rupture scenarios

    KAUST Repository

    Goda, Katsuichiro

    2017-02-23

    In this study, earthquake rupture models for future mega-thrust earthquakes in the Nankai–Tonankai subduction zone are developed by incorporating the main characteristics of inverted source models of the 2011 Tohoku earthquake. These scenario ruptures also account for key features of the national tsunami source model for the Nankai–Tonankai earthquake by the Central Disaster Management Council of the Japanese Government. The source models capture a wide range of realistic slip distributions and kinematic rupture processes, reflecting the current best understanding of what may happen due to a future mega-earthquake in the Nankai–Tonankai Trough, and therefore are useful for conducting probabilistic tsunami hazard and risk analysis. A large suite of scenario rupture models is then used to investigate the variability of tsunami effects in coastal areas, such as offshore tsunami wave heights and onshore inundation depths, due to realistic variations in source characteristics. Such investigations are particularly valuable for tsunami hazard mapping and evacuation planning in municipalities along the Nankai–Tonankai coast.

  1. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  2. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    Science.gov (United States)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    Japan frequently suffers from many kinds of disasters such as earthquakes, typhoons, floods, volcanic eruptions, and landslides. On average, we lose about 120 people a year due to natural hazards in this decade. Above all, earthquakes are noteworthy, since it may kill thousands of people in a moment like in Kobe in 1995. People know that we may have "a big one" some day as long as we live on this land and that what to do; retrofit houses, appliance heavy furniture to walls, add latches to kitchen cabinets, and prepare emergency packs. Yet most of them do not take the action, and result in the loss of many lives. It is only the victims that learn something from the earthquake, and it has never become the lore of the nations. One of the most essential ways to reduce the damage is to educate the general public to be able to make the sound decision on what to do at the moment when an earthquake hits. This will require the knowledge of the backgrounds of the on-going phenomenon. The Ministry of Education, Culture, Sports, Science and Technology (MEXT), therefore, offered for public subscription to choose several model areas to adopt scientific education to the local elementary schools. This presentation is the report of a year and half courses that we had at the model elementary school in Tokyo Metropolitan Area. The tectonic setting of this area is very complicated; there are the Pacific and Philippine Sea plates subducting beneath the North America and the Eurasia plates. The subduction of the Philippine Sea plate causes mega-thrust earthquakes such as the 1923 Kanto earthquake (M 7.9) making 105,000 fatalities. A magnitude 7 or greater earthquake beneath this area is recently evaluated to occur with a probability of 70 % in 30 years. This is of immediate concern for the devastating loss of life and property because the Tokyo urban region now has a population of 42 million and is the center of approximately 40 % of the nation's activities, which may cause great global

  3. Book review: Earthquakes and water

    Science.gov (United States)

    Bekins, Barbara A.

    2012-01-01

    It is really nice to see assembled in one place a discussion of the documented and hypothesized hydrologic effects of earthquakes. The book is divided into chapters focusing on particular hydrologic phenomena including liquefaction, mud volcanism, stream discharge increases, groundwater level, temperature and chemical changes, and geyser period changes. These hydrologic effects are inherently fascinating, and the large number of relevant publications in the past decade makes this summary a useful milepost. The book also covers hydrologic precursors and earthquake triggering by pore pressure. A natural need to limit the topics covered resulted in the omission of tsunamis and the vast literature on the role of fluids and pore pressure in frictional strength of faults. Regardless of whether research on earthquake-triggered hydrologic effects ultimately provides insight into the physics of earthquakes, the text provides welcome common ground for interdisciplinary collaborations between hydrologists and seismologists. Such collaborations continue to be crucial for investigating hypotheses about the role of fluids in earthquakes and slow slip. 

  4. Epidemiological analysis of trauma patients following the Lushan earthquake.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available BACKGROUND: A 7.0-magnitude earthquake hit Lushan County in China's Sichuan province on April 20, 2013, resulting in 196 deaths and 11,470 injured. This study was designed to analyze the characteristics of the injuries and the treatment of the seismic victims. METHODS: After the earthquake, an epidemiological survey of injured patients was conducted by the Health Department of Sichuan Province. Epidemiological survey tools included paper-and-pencil questionnaires and a data management system based on the Access Database. Questionnaires were completed based on the medical records of inpatients with earthquake-related injuries. Outpatients or non-seismic injured inpatients were excluded. A total of 2010 patients from 140 hospitals were included. RESULTS: The most common type of injuries involved bone fractures (58.3%. Children younger than 10 years of age suffered fewer fractures and chest injuries, but more skin and soft -tissue injuries. Patients older than 80 years were more likely to suffer hip and thigh fractures, pelvis fractures, and chest injuries, whereas adult patients suffered more ankle and foot fractures. A total of 207 cases of calcaneal fracture were due to high falling injuries related to extreme panic. The most common type of infection in hospitalized patients was pulmonary infections. A total of 70.5% patients had limb dysfunction, and 60.1% of this group received rehabilitation. Most patients received rehabilitation within 1 week, and the median duration of rehabilitation was 3 weeks. The cause of death of all seven hospitalized patients who died was severe traumatic brain injuries; five of this group died within 24 h after the earthquake. CONCLUSIONS: Injuries varied as a function of the age of the victim. As more injuries were indirectly caused by the Lushan earthquake, disaster education is urgently needed to avoid secondary injuries.

  5. [Operating room during natural disaster: lessons from the 2011 Tohoku earthquake].

    Science.gov (United States)

    Fukuda, Ikuo; Hashimoto, Hiroshi; Suzuki, Yasuyuki; Satomi, Susumu; Unno, Michiaki; Ohuchi, Noriaki; Nakaji, Shigeyuki

    2012-03-01

    Objective of this study is to clarify damages in operating rooms after the 2011 Tohoku Earthquake. To survey structural and non-structural damage in operating theaters, we sent questionnaires to 155 acute care hospitals in Tohoku area. Questionnaires were sent back from 105 hospitals (70.3%). Total of 280 patients were undergoing any kinds of operations during the earthquake and severe seismic tremor greater than JMA Seismic Intensity 6 hit 49 hospitals. Operating room staffs experienced life-threatening tremor in 41 hospitals. Blackout occurred but emergency electronic supply unit worked immediately in 81 out of 90 hospitals. However, emergency power plant did not work in 9 hospitals. During earthquake some materials fell from shelves in 44 hospitals and medical instruments fell down in 14 hospitals. In 5 hospitals, they experienced collapse of operating room wall or ceiling causing inability to maintain sterile operative field. Damage in electric power and water supply plus damage in logistics made many operating rooms difficult to perform routine surgery for several days. The 2011 Tohoku earthquake affected medical supply in wide area of Tohoku district and induced dysfunction of operating room. Supply-chain management of medical goods should be reconsidered to prepare severe natural disaster.

  6. Earthquake resistant design of structures

    International Nuclear Information System (INIS)

    Choi, Chang Geun; Kim, Gyu Seok; Lee, Dong Geun

    1990-02-01

    This book tells of occurrence of earthquake and damage analysis of earthquake, equivalent static analysis method, application of equivalent static analysis method, dynamic analysis method like time history analysis by mode superposition method and direct integration method, design spectrum analysis considering an earthquake-resistant design in Korea. Such as analysis model and vibration mode, calculation of base shear, calculation of story seismic load and combine of analysis results.

  7. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  8. Parallel Earthquake Simulations on Large-Scale Multicore Supercomputers

    KAUST Repository

    Wu, Xingfu

    2011-01-01

    Earthquakes are one of the most destructive natural hazards on our planet Earth. Hugh earthquakes striking offshore may cause devastating tsunamis, as evidenced by the 11 March 2011 Japan (moment magnitude Mw9.0) and the 26 December 2004 Sumatra (Mw9.1) earthquakes. Earthquake prediction (in terms of the precise time, place, and magnitude of a coming earthquake) is arguably unfeasible in the foreseeable future. To mitigate seismic hazards from future earthquakes in earthquake-prone areas, such as California and Japan, scientists have been using numerical simulations to study earthquake rupture propagation along faults and seismic wave propagation in the surrounding media on ever-advancing modern computers over past several decades. In particular, ground motion simulations for past and future (possible) significant earthquakes have been performed to understand factors that affect ground shaking in populated areas, and to provide ground shaking characteristics and synthetic seismograms for emergency preparation and design of earthquake-resistant structures. These simulation results can guide the development of more rational seismic provisions for leading to safer, more efficient, and economical50pt]Please provide V. Taylor author e-mail ID. structures in earthquake-prone regions.

  9. Children's emotional experience two years after an earthquake: An exploration of knowledge of earthquakes and associated emotions.

    Science.gov (United States)

    Raccanello, Daniela; Burro, Roberto; Hall, Rob

    2017-01-01

    We explored whether and how the exposure to a natural disaster such as the 2012 Emilia Romagna earthquake affected the development of children's emotional competence in terms of understanding, regulating, and expressing emotions, after two years, when compared with a control group not exposed to the earthquake. We also examined the role of class level and gender. The sample included two groups of children (n = 127) attending primary school: The experimental group (n = 65) experienced the 2012 Emilia Romagna earthquake, while the control group (n = 62) did not. The data collection took place two years after the earthquake, when children were seven or ten-year-olds. Beyond assessing the children's understanding of emotions and regulating abilities with standardized instruments, we employed semi-structured interviews to explore their knowledge of earthquakes and associated emotions, and a structured task on the intensity of some target emotions. We applied Generalized Linear Mixed Models. Exposure to the earthquake did not influence the understanding and regulation of emotions. The understanding of emotions varied according to class level and gender. Knowledge of earthquakes, emotional language, and emotions associated with earthquakes were, respectively, more complex, frequent, and intense for children who had experienced the earthquake, and at increasing ages. Our data extend the generalizability of theoretical models on children's psychological functioning following disasters, such as the dose-response model and the organizational-developmental model for child resilience, and provide further knowledge on children's emotional resources related to natural disasters, as a basis for planning educational prevention programs.

  10. 13 CFR 120.174 - Earthquake hazards.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  11. Operation Windshield and the simplification of emergency management.

    Science.gov (United States)

    Andrews, Michael

    2016-01-01

    Large, complex, multi-stakeholder exercises are the culmination of years of gradual progression through a comprehensive training and exercise programme. Exercises intended to validate training, refine procedures and test processes initially tested in isolation are combined to ensure seamless response and coordination during actual crises. The challenges of integrating timely and accurate situational awareness from an array of sources, including response agencies, municipal departments, partner agencies and the public, on an ever-growing range of media platforms, increase information management complexity in emergencies. Considering that many municipal emergency operations centre roles are filled by staff whose day jobs have little to do with crisis management, there is a need to simplify emergency management and make it more intuitive. North Shore Emergency Management has accepted the challenge of making emergency management less onerous to occasional practitioners through a series of initiatives aimed to build competence and confidence by making processes easier to use as well as by introducing technical tools that can simplify processes and enhance efficiencies. These efforts culminated in the full-scale earthquake exercise, Operation Windshield, which preceded the 2015 Emergency Preparedness and Business Continuity Conference in Vancouver, British Columbia.

  12. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    Science.gov (United States)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  13. Earthquake evaluation of a substation network

    International Nuclear Information System (INIS)

    Matsuda, E.N.; Savage, W.U.; Williams, K.K.; Laguens, G.C.

    1991-01-01

    The impact of the occurrence of a large, damaging earthquake on a regional electric power system is a function of the geographical distribution of strong shaking, the vulnerability of various types of electric equipment located within the affected region, and operational resources available to maintain or restore electric system functionality. Experience from numerous worldwide earthquake occurrences has shown that seismic damage to high-voltage substation equipment is typically the reason for post-earthquake loss of electric service. In this paper, the authors develop and apply a methodology to analyze earthquake impacts on Pacific Gas and Electric Company's (PG and E's) high-voltage electric substation network in central and northern California. The authors' objectives are to identify and prioritize ways to reduce the potential impact of future earthquakes on our electric system, refine PG and E's earthquake preparedness and response plans to be more realistic, and optimize seismic criteria for future equipment purchases for the electric system

  14. WebEQ: a web-GIS System to collect, display and query data for the management of the earthquake emergency in Central Italy

    Science.gov (United States)

    Carbone, Gianluca; Cosentino, Giuseppe; Pennica, Francesco; Moscatelli, Massimiliano; Stigliano, Francesco

    2017-04-01

    After the strong earthquakes that hit central Italy in recent months, the Center for Seismic Microzonation and its applications (CentroMS) was commissioned by the Italian Department of Civil Protection to conduct the study of seismic microzonation of the territories affected by the earthquake of August 24, 2016. As part of the activities of microzonation, IGAG CNR has created WebEQ, a management tool of the data that have been acquired by all participants (i.e., more than twenty research institutes and university departments). The data collection was organized and divided into sub-areas, assigned to working groups with multidisciplinary expertise in geology, geophysics and engineering. WebEQ is a web-GIS System that helps all the subjects involved in the data collection activities, through tools aimed at data uploading and validation, and with a simple GIS interface to display, query and download geographic data. WebEQ is contributing to the creation of a large database containing geographical data, both vector and raster, from various sources and types: - Regional Technical Map em Geological and geomorphological maps em Data location maps em Maps of microzones homogeneous in seismic perspective and seismic microzonation maps em National strong motion network location. Data loading is done through simple input masks that ensure consistency with the database structure, avoiding possible errors and helping users to interact with the map through user-friendly tools. All the data are thematized through standardized symbologies and colors (Gruppo di lavoro MS 2008), in order to allow the easy interpretation by all users. The data download tools allow data exchange between working groups and the scientific community to benefit from the activities. The seismic microzonation activities are still ongoing. WebEQ is enabling easy management of large amounts of data and will form a basis for the development of tools for the management of the upcoming seismic emergencies.

  15. Seismic Safety Guide

    International Nuclear Information System (INIS)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls

  16. Seismic Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Eagling, D.G. (ed.)

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  17. Swedish earthquakes and acceleration probabilities

    International Nuclear Information System (INIS)

    Slunga, R.

    1979-03-01

    A method to assign probabilities to ground accelerations for Swedish sites is described. As hardly any nearfield instrumental data is available we are left with the problem of interpreting macroseismic data in terms of acceleration. By theoretical wave propagation computations the relation between seismic strength of the earthquake, focal depth, distance and ground accelerations are calculated. We found that most Swedish earthquake of the area, the 1904 earthquake 100 km south of Oslo, is an exception and probably had a focal depth exceeding 25 km. For the nuclear power plant sites an annual probability of 10 -5 has been proposed as interesting. This probability gives ground accelerations in the range 5-20 % for the sites. This acceleration is for a free bedrock site. For consistency all acceleration results in this study are given for bedrock sites. When applicating our model to the 1904 earthquake and assuming the focal zone to be in the lower crust we get the epicentral acceleration of this earthquake to be 5-15 % g. The results above are based on an analyses of macrosismic data as relevant instrumental data is lacking. However, the macroseismic acceleration model deduced in this study gives epicentral ground acceleration of small Swedish earthquakes in agreement with existent distant instrumental data. (author)

  18. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  19. The Impact of Comprehensive Case Management on HIV Client Outcomes.

    Directory of Open Access Journals (Sweden)

    Mark Brennan-Ing

    Full Text Available In 1990, New York State instituted Comprehensive Medicaid Case Management, also known as Target Case Management (TCM, for people dealing with multiple comorbid conditions, including HIV. The goal of TCM is to assist clients in navigating the health care system to increase care engagement and treatment adherence for individuals with complex needs. HIV-positive individuals engaged in care are more likely to be virally suppressed, improving clinical outcomes and decreasing chances of HIV transmission. The purpose of this study was to understand the impact of TCM management on outcomes for people with HIV. Data were obtained from Amida Care, which operates not-for-profit managed care Medicaid and Medicare Special Needs Plans (SNPs for HIV clients. Changes in clinical, cost, as well as medical and pharmacy utilization data among TCM clients were examined between January 2011 through September 2012 from the start of case management enrollment through the end of the study period (i.e., up to 6 months after disenrollment. Additionally, CD4 counts were compared between Amida Care TCM clients and non-TCM clients. Notable findings include increased CD4 counts for TCM clients over the one-year study period, achieving parity with non-TCM clients (i.e., Mean CD4 count > 500. When looking exclusively at TCM clients, there were increases in medication costs over time, which were concomitant with increased care engagement. Current findings demonstrate that TCM is able to achieve its goals of improving care engagement and treatment adherence. Subsequent policy changes resulting from the Affordable Care Act and the New York State Medicaid Redesign have made the Health Home the administrator of TCM services. Government entities charged with securing and managing TCM and care coordination for people with HIV should provide thoughtful and reasonable guidance and oversight in order to maintain optimal clinical outcomes for TCM clients and reduce the transmission of

  20. History of decontamination after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Omura, Takashi; Onodera, Hideaki; Morishita, Satoru; Kato, Sei

    2015-01-01

    The magnitude 9.0 earthquake (the Great East Japan Earthquake) hit Japan on March 11, 2011 brought tsunami hazard as well as a nuclear accident in addition to the seismic hazard. A wide area of the eastern Japan was contaminated by radioactive materials released from the Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. In response to the unprecedented situation of the radioactive pollution after the accident, the Act on Special Measures Concerning the Handling of Radioactive Pollution was enacted in August 2011. The Ministry of the Environment (MOE) has formulated a set of guidelines by the end of 2011 to provide information on how to store and manage contaminated waste. In addition, the MOE established 'The Policies for the Decontamination of Specific Areas (Decontamination Roadmap)' in January 2012. As a result, the radiation dose rate has decreased by approximately 46% in the residential area of Naraha town. The MOE will have been promoting decontamination and construction of interim storage facilities which are able to store and manage the removed soils and incineration ashes generated from decontamination works. (author)

  1. Thermal infrared anomalies of several strong earthquakes.

    Science.gov (United States)

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.

  2. Lessons Learned from the First Decade of Adaptive Management in Comprehensive Everglades Restoration

    Directory of Open Access Journals (Sweden)

    Andrew J. LoSchiavo

    2013-12-01

    Full Text Available Although few successful examples of large-scale adaptive management applications are available to ecosystem restoration scientists and managers, examining where and how the components of an adaptive management program have been successfully implemented yields insight into what approaches have and have not worked. We document five key lessons learned during the decade-long development and implementation of the Comprehensive Everglades Restoration Plan (CERP Collaborative Adaptive Management Program that might be useful to other adaptive management practitioners. First, legislative and regulatory authorities that require the development of an adaptive management program are necessary to maintain funding and support to set up and implement adaptive management. Second, integration of adaptive management activities into existing institutional processes, and development of technical guidance, helps to ensure that adaptive management activities are understood and roles and responsibilities are clearly articulated so that adaptive management activities are implemented successfully. Third, a strong applied science framework is critical for establishing a prerestoration ecosystem reference condition and understanding of how the system works, as well as for providing a conduit for incorporating new scientific information into the decision-making process. Fourth, clear identification of uncertainties that pose risks to meeting restoration goals helps with the development of hypothesis-driven strategies to inform restoration planning and implementation. Tools such as management options matrices can provide a coherent way to link hypotheses to specific monitoring efforts and options to adjust implementation if performance goals are not achieved. Fifth, independent external peer review of an adaptive management program provides important feedback critical to maintaining and improving adaptive management implementation for ecosystem restoration. These lessons

  3. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    Science.gov (United States)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  4. Automatic Earthquake Detection by Active Learning

    Science.gov (United States)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  5. Indoor radon and earthquake

    International Nuclear Information System (INIS)

    Saghatelyan, E.; Petrosyan, L.; Aghbalyan, Yu.; Baburyan, M.; Araratyan, L.

    2004-01-01

    For the first time on the basis of the Spitak earthquake of December 1988 (Armenia, December 1988) experience it is found out that the earthquake causes intensive and prolonged radon splashes which, rapidly dispersing in the open space of close-to-earth atmosphere, are contrastingly displayed in covered premises (dwellings, schools, kindergartens) even if they are at considerable distance from the earthquake epicenter, and this multiplies the radiation influence on the population. The interval of splashes includes the period from the first fore-shock to the last after-shock, i.e. several months. The area affected by radiation is larger vs. Armenia's territory. The scale of this impact on population is 12 times higher than the number of people injured in Spitak, Leninakan and other settlements (toll of injured - 25 000 people, radiation-induced diseases in people - over 300 000). The influence of radiation directly correlates with the earthquake force. Such a conclusion is underpinned by indoor radon monitoring data for Yerevan since 1987 (120 km from epicenter) 5450 measurements and multivariate analysis with identification of cause-and-effect linkages between geo dynamics of indoor radon under stable and conditions of Earth crust, behavior of radon in different geological mediums during earthquakes, levels of room radon concentrations and effective equivalent dose of radiation impact of radiation dose on health and statistical data on public health provided by the Ministry of Health. The following hitherto unexplained facts can be considered as consequences of prolonged radiation influence on human organism: long-lasting state of apathy and indifference typical of the population of Armenia during the period of more than a year after the earthquake, prevalence of malignant cancer forms in disaster zones, dominating lung cancer and so on. All urban territories of seismically active regions are exposed to the threat of natural earthquake-provoked radiation influence

  6. Modified-Fibonacci-Dual-Lucas method for earthquake prediction

    Science.gov (United States)

    Boucouvalas, A. C.; Gkasios, M.; Tselikas, N. T.; Drakatos, G.

    2015-06-01

    The FDL method makes use of Fibonacci, Dual and Lucas numbers and has shown considerable success in predicting earthquake events locally as well as globally. Predicting the location of the epicenter of an earthquake is one difficult challenge the other being the timing and magnitude. One technique for predicting the onset of earthquakes is the use of cycles, and the discovery of periodicity. Part of this category is the reported FDL method. The basis of the reported FDL method is the creation of FDL future dates based on the onset date of significant earthquakes. The assumption being that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series The connection between past earthquakes and future earthquakes based on FDL numbers has also been reported with sample earthquakes since 1900. Using clustering methods it has been shown that significant earthquakes (conjunct Sun, Moon opposite Sun, Moon conjunct or opposite North or South Modes. In order to test improvement of the method we used all +8R earthquakes recorded since 1900, (86 earthquakes from USGS data). We have developed the FDL numbers for each of those seeds, and examined the earthquake hit rates (for a window of 3, i.e. +-1 day of target date) and for <6.5R. The successes are counted for each one of the 86 earthquake seeds and we compare the MFDL method with the FDL method. In every case we find improvement when the starting seed date is on the planetary trigger date prior to the earthquake. We observe no improvement only when a planetary trigger coincided with the earthquake date and in this case the FDL method coincides with the MFDL. Based on the MDFL method we present the prediction method capable of predicting global events or localized earthquakes and we will discuss the accuracy of the method in as far as the prediction and location parts of the method. We show example calendar style predictions for global events as well as for the Greek region using

  7. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  8. Improving adolescent pregnancy outcomes and maternal health:a case study of comprehensive case managed services.

    Science.gov (United States)

    Bowman, Elizabeth K; Palley, Howard A

    2003-01-01

    Our findings indicate how health outcomes regarding adolescent pregnancy and maternal and infant health care are intertwined with a case management process that fosters measures that are social in nature-the provision of direct services, as well as the encouragement of informal social supports systems. They also show how case managed services in a small, nongovernmental organization (NGO) with a strong commitment to its clients may provide the spontaneity and caring which results in a "match" between client needs and the delivery of services-and positive outcomes for pregnant women, early maternal health and infant health. The delivery of such case managed services in a manner which is intensive, comprehensive, flexible and integrated contributes significantly to such improved health outcomes.

  9. Comprehensive long-term management program for asthma: effect on outcomes in adult African-Americans.

    Science.gov (United States)

    Kelso, T M; Abou-Shala, N; Heilker, G M; Arheart, K L; Portner, T S; Self, T H

    1996-06-01

    To determine if a comprehensive long-term management program, emphasizing inhaled corticosteroids and patient education, would improve outcomes in adult African-American asthmatics a nonrandomized control trial with a 2-year intervention was performed in a university-based clinic. Inclusion criteria consisted of (> or = 5) emergency department (ED) visits or hospitalizations (> or = 2) during the previous 2 years. Intervention patients were volunteers; a comparable control group was identified via chart review at hospitals within the same area and time period as the intervention patients. Individualized doses of beclomethasone with a spacer, inhaled albuterol "as needed," and crisis prednisone were the primary therapies. Environmental control, peak flow monitoring, and a partnership with the patient were emphasized. Detailed patient education was an integral part of management. Control patients received usual care from local physicians. ED visits and hospitalizations for 2 years before and 2 years during the intervention period were compared. Quality of life (QOL) measurements were made at baseline and every 6 months in the intervention group. Study group (n = 21) had a significant reduction in ED visits (2.3 +/- 0.2 pre-intervention versus 0.6 +/- 0.2 post-intervention; P = 0.0001). Control group (n = 18) did not have a significant change in ED visits during the 2-year post-intervention period (2.6 +/- 0.2 pre-intervention versus 2.0 +/- 0.2 post-intervention; P = 0.11). Both groups had significant reductions in hospitalizations, but the study group had a greater reduction. Sixty-two percent of study patients had complete elimination of ED visits and hospitalizations, whereas no control patients had total elimination of the need for institutional acute care. QOL in the study patients revealed significant improvements for most parameters. A comprehensive long-term management program emphasizing inhaled corticosteroids combined with other state-of-the-art management

  10. Determination of Design Basis Earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Muneaki [Japan Atomic Power Co., Tokyo (Japan)

    1997-03-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  11. Determination of Design Basis Earthquake ground motion

    International Nuclear Information System (INIS)

    Kato, Muneaki

    1997-01-01

    This paper describes principle of determining of Design Basis Earthquake following the Examination Guide, some examples on actual sites including earthquake sources to be considered, earthquake response spectrum and simulated seismic waves. In sppendix of this paper, furthermore, seismic safety review for N.P.P designed before publication of the Examination Guide was summarized with Check Basis Earthquake. (J.P.N.)

  12. Impact- and earthquake- proof roof structure

    International Nuclear Information System (INIS)

    Shohara, Ryoichi.

    1990-01-01

    Building roofs are constituted with roof slabs, an earthquake proof layer at the upper surface thereof and an impact proof layer made of iron-reinforced concrete disposed further thereover. Since the roofs constitute an earthquake proof structure loading building dampers on the upper surface of the slabs by the concrete layer, seismic inputs of earthquakes to the buildings can be moderated and the impact-proof layer is formed, to ensure the safety to external conditions such as earthquakes or falling accidents of airplane in important facilities such as reactor buildings. (T.M.)

  13. The wicked problem of earthquake hazard in developing countries: the example of Bangladesh

    Science.gov (United States)

    Steckler, M. S.; Akhter, S. H.; Stein, S.; Seeber, L.

    2017-12-01

    Many developing nations in earthquake-prone areas confront a tough problem: how much of their limited resources to use mitigating earthquake hazards? This decision is difficult because it is unclear when an infrequent major earthquake may happen, how big it could be, and how much harm it may cause. This issue faces nations with profound immediate needs and ongoing rapid urbanization. Earthquake hazard mitigation in Bangladesh is a wicked problem. It is the world's most densely populated nation, with 160 million people in an area the size of Iowa. Complex geology and sparse data make assessing a possibly-large earthquake hazard difficult. Hence it is hard to decide how much of the limited resources available should be used for earthquake hazard mitigation, given other more immediate needs. Per capita GDP is $1200, so Bangladesh is committed to economic growth and resources are needed to address many critical challenges and hazards. In their subtropical environment, rural Bangladeshis traditionally relied on modest mud or bamboo homes. Their rapidly growing, crowded capital, Dhaka, is filled with multistory concrete buildings likely to be vulnerable to earthquakes. The risk is compounded by the potential collapse of services and accessibility after a major temblor. However, extensive construction as the population shifts from rural to urban provides opportunity for earthquake-risk reduction. While this situation seems daunting, it is not hopeless. Robust risk management is practical, even for developing nations. It involves recognizing uncertainties and developing policies that should give a reasonable outcome for a range of the possible hazard and loss scenarios. Over decades, Bangladesh has achieved a thousandfold reduction in risk from tropical cyclones by building shelters and setting up a warning system. Similar efforts are underway for earthquakes. Smart investments can be very effective, even if modest. Hence, we suggest strategies consistent with high

  14. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    Science.gov (United States)

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  15. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    Science.gov (United States)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  16. The Road to Total Earthquake Safety

    Science.gov (United States)

    Frohlich, Cliff

    Cinna Lomnitz is possibly the most distinguished earthquake seismologist in all of Central and South America. Among many other credentials, Lomnitz has personally experienced the shaking and devastation that accompanied no fewer than five major earthquakes—Chile, 1939; Kern County, California, 1952; Chile, 1960; Caracas,Venezuela, 1967; and Mexico City, 1985. Thus he clearly has much to teach someone like myself, who has never even actually felt a real earthquake.What is this slim book? The Road to Total Earthquake Safety summarizes Lomnitz's May 1999 presentation at the Seventh Mallet-Milne Lecture, sponsored by the Society for Earthquake and Civil Engineering Dynamics. His arguments are motivated by the damage that occurred in three earthquakes—Mexico City, 1985; Loma Prieta, California, 1989; and Kobe, Japan, 1995. All three quakes occurred in regions where earthquakes are common. Yet in all three some of the worst damage occurred in structures located a significant distance from the epicenter and engineered specifically to resist earthquakes. Some of the damage also indicated that the structures failed because they had experienced considerable rotational or twisting motion. Clearly, Lomnitz argues, there must be fundamental flaws in the usually accepted models explaining how earthquakes generate strong motions, and how we should design resistant structures.

  17. Earthquake forecasting test for Kanto district to reduce vulnerability of urban mega earthquake disasters

    Science.gov (United States)

    Yokoi, S.; Tsuruoka, H.; Nanjo, K.; Hirata, N.

    2012-12-01

    Collaboratory for the Study of Earthquake Predictability (CSEP) is a global project on earthquake predictability research. The final goal of this project is to search for the intrinsic predictability of the earthquake rupture process through forecast testing experiments. The Earthquake Research Institute, the University of Tokyo joined CSEP and started the Japanese testing center called as CSEP-Japan. This testing center provides an open access to researchers contributing earthquake forecast models applied to Japan. Now more than 100 earthquake forecast models were submitted on the prospective experiment. The models are separated into 4 testing classes (1 day, 3 months, 1 year and 3 years) and 3 testing regions covering an area of Japan including sea area, Japanese mainland and Kanto district. We evaluate the performance of the models in the official suite of tests defined by CSEP. The total number of experiments was implemented for approximately 300 rounds. These results provide new knowledge concerning statistical forecasting models. We started a study for constructing a 3-dimensional earthquake forecasting model for Kanto district in Japan based on CSEP experiments under the Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters. Because seismicity of the area ranges from shallower part to a depth of 80 km due to subducting Philippine Sea plate and Pacific plate, we need to study effect of depth distribution. We will develop models for forecasting based on the results of 2-D modeling. We defined the 3D - forecasting area in the Kanto region with test classes of 1 day, 3 months, 1 year and 3 years, and magnitudes from 4.0 to 9.0 as in CSEP-Japan. In the first step of the study, we will install RI10K model (Nanjo, 2011) and the HISTETAS models (Ogata, 2011) to know if those models have good performance as in the 3 months 2-D CSEP-Japan experiments in the Kanto region before the 2011 Tohoku event (Yokoi et al., in preparation). We use CSEP

  18. Temporal stress changes caused by earthquakes: A review

    Science.gov (United States)

    Hardebeck, Jeanne L.; Okada, Tomomi

    2018-01-01

    Earthquakes can change the stress field in the Earth’s lithosphere as they relieve and redistribute stress. Earthquake-induced stress changes have been observed as temporal rotations of the principal stress axes following major earthquakes in a variety of tectonic settings. The stress changes due to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake were particularly well documented. Earthquake stress rotations can inform our understanding of earthquake physics, most notably addressing the long-standing problem of whether the Earth’s crust at plate boundaries is “strong” or “weak.” Many of the observed stress rotations, including that due to the Tohoku-Oki earthquake, indicate near-complete stress drop in the mainshock. This implies low background differential stress, on the order of earthquake stress drop, supporting the weak crust model. Earthquake stress rotations can also be used to address other important geophysical questions, such as the level of crustal stress heterogeneity and the mechanisms of postseismic stress reloading. The quantitative interpretation of stress rotations is evolving from those based on simple analytical methods to those based on more sophisticated numerical modeling that can capture the spatial-temporal complexity of the earthquake stress changes.

  19. Remote Triggering of the Mw 6.9 Hokkaido Earthquake as a Result of the Mw 6.6 Indonesian Earthquake on September 11, 2008

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2012-01-01

    Full Text Available Only just recently, the phenomenon of earthquakes being triggered by a distant earthquake has been well established. Yet, most of the triggered earthquakes have been limited to small earthquakes (M < 3. Also, the exact triggering mechanism for earthquakes is still not clear. Here I show how one strong earthquake (Mw = 6.6 is capable of triggering another (Mw = 6.9 at a remote distance (~4750 km. On September 11, 2008, two strong earthquakes with magnitudes (Mw of 6.6 and 6.9 hit respectively in Indonesia and Japan within a short interval of ~21 minutes time. Careful examination of broadband seismograms recorded in Japan shows that the Hokkaido earthquake occurred just as the surface waves generated by the Indonesia earthquake arrived. Although the peak dynamic stress estimated at the focus of the Hokkaido earthquake was just reaching the lower bound for the capability of triggering earthquakes in general, a more plausible mechanism for triggering an earthquake might be attributed to the change of a fault property by fluid infiltration. These observations suggest that the Hokkaido earthquake was likely triggered from a remote distance by the surface waves generated from the Indonesia earthquake. If some more cases can be observed, a temporal warning of possible interaction between strong earthquakes might be concerned in the future.

  20. Living with earthquakes - development and usage of earthquake-resistant construction methods in European and Asian Antiquity

    Science.gov (United States)

    Kázmér, Miklós; Major, Balázs; Hariyadi, Agus; Pramumijoyo, Subagyo; Ditto Haryana, Yohanes

    2010-05-01

    Earthquakes are among the most horrible events of nature due to unexpected occurrence, for which no spiritual means are available for protection. The only way of preserving life and property is applying earthquake-resistant construction methods. Ancient Greek architects of public buildings applied steel clamps embedded in lead casing to hold together columns and masonry walls during frequent earthquakes in the Aegean region. Elastic steel provided strength, while plastic lead casing absorbed minor shifts of blocks without fracturing rigid stone. Romans invented concrete and built all sizes of buildings as a single, unflexible unit. Masonry surrounding and decorating concrete core of the wall did not bear load. Concrete resisted minor shaking, yielding only to forces higher than fracture limits. Roman building traditions survived the Dark Ages and 12th century Crusader castles erected in earthquake-prone Syria survive until today in reasonably good condition. Concrete and steel clamping persisted side-by-side in the Roman Empire. Concrete was used for cheap construction as compared to building of masonry. Applying lead-encased steel increased costs, and was avoided whenever possible. Columns of the various forums in Italian Pompeii mostly lack steel fittings despite situated in well-known earthquake-prone area. Whether frequent recurrence of earthquakes in the Naples region was known to inhabitants of Pompeii might be a matter of debate. Seemingly the shock of the AD 62 earthquake was not enough to apply well-known protective engineering methods throughout the reconstruction of the city before the AD 79 volcanic catastrophe. An independent engineering tradition developed on the island of Java (Indonesia). The mortar-less construction technique of 8-9th century Hindu masonry shrines around Yogyakarta would allow scattering of blocks during earthquakes. To prevent dilapidation an intricate mortise-and-tenon system was carved into adjacent faces of blocks. Only the

  1. Bam Earthquake in Iran

    CERN Multimedia

    2004-01-01

    Following their request for help from members of international organisations, the permanent Mission of the Islamic Republic of Iran has given the following bank account number, where you can donate money to help the victims of the Bam earthquake. Re: Bam earthquake 235 - UBS 311264.35L Bubenberg Platz 3001 BERN

  2. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults

    Science.gov (United States)

    Norbeck, Jack H.; Horne, Roland N.

    2018-05-01

    The maximum expected earthquake magnitude is an important parameter in seismic hazard and risk analysis because of its strong influence on ground motion. In the context of injection-induced seismicity, the processes that control how large an earthquake will grow may be influenced by operational factors under engineering control as well as natural tectonic factors. Determining the relative influence of these effects on maximum magnitude will impact the design and implementation of induced seismicity management strategies. In this work, we apply a numerical model that considers the coupled interactions of fluid flow in faulted porous media and quasidynamic elasticity to investigate the earthquake nucleation, rupture, and arrest processes for cases of induced seismicity. We find that under certain conditions, earthquake ruptures are confined to a pressurized region along the fault with a length-scale that is set by injection operations. However, earthquakes are sometimes able to propagate as sustained ruptures outside of the zone that experienced a pressure perturbation. We propose a faulting criterion that depends primarily on the state of stress and the earthquake stress drop to characterize the transition between pressure-constrained and runaway rupture behavior.

  3. Compilation, assessment and expansion of the strong earthquake ground motion data base. Seismic Safety Margins Research Program (SSMRP)

    International Nuclear Information System (INIS)

    Crouse, C.B.; Hileman, J.A.; Turner, B.E.; Martin, G.R.

    1980-09-01

    A catalog has been prepared which contains information for: (1) world-wide, ground-motion accelerograms (2) the accelerograph sites where these records were obtained, and (3) the seismological parameters of the causative earthquakes. The catalog is limited to data for those accelerograms which have been digitized and published. In addition, the quality and completeness of these data are assessed. This catalog is unique because it is the only publication which contains comprehensive information on the recording conditions of all known digitized accelerograms. However, information for many accelerograms is missing. Although some literature may have been overlooked, most of the missing data has not been published. Nevertheless, the catalog provides a convenient reference and useful tool for earthquake engineering research and applications. (author)

  4. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  5. Report by the 'Mega-earthquakes and mega-tsunamis' subgroup; Rapport du sous-groupe Sismique 'Megaseismes et megatsunamis'

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, Jacques; Courtillot, Vincent; Dercourt, Jean; Jaupart, Claude; Le Pichon, Xavier; Poirier, Jean-Paul; Salencon, Jean; Tapponnier, Paul; Dautray, Robert; Carpentier, Alain; Taquet, Philippe; Blanchet, Rene; Le Mouel, Jean-Louis [Academie des sciences, 23, quai de Conti, 75006 Paris (France); BARD, Pierre-Yves [Observatoire des sciences de l' Univers de l' universite de Grenoble - OSUG, Universite Joseph Fourier, BP 53, 38041 Grenoble Cedex 9 (France); Bernard, Pascal; Montagner, Jean-Paul; Armijo, Rolando; Shapiro, Nikolai; Tait, Steve [Institut de physique du globe de Paris, 1, rue Jussieu - 75238 Paris cedex 05 (France); Cara, Michel [Ecole et Observatoire des sciences de la Terre de l' universite de Strasbourg - EOST, F-67084 Strasbourg cedex (France); Madariaga, Raul [Ecole normale superieure, 45, rue d' Ulm / 29, rue d' Ulm, F-75230 Paris cedex 05 (France); Pecker, Alain [Academie des technologies, Grand Palais des Champs Elysees - Porte C - Avenue Franklin D. Roosevelt - 75008 Paris (France); Schindele, Francois [CEA/DAM, DIF/DASE/SLDG, 91297 ARPAJON Cedex (France); Douglas, John [BRGM, 3 avenue Claude-Guillemin - BP 36009 - 45060 Orleans Cedex 2 (France)

    2011-06-15

    This report comprises a presentation of scientific data on subduction earthquakes, on tsunamis and on the Tohoku earthquake. It proposes a detailed description of the French situation (in the West Indies, in metropolitan France, and in terms of soil response), and a discussion of social and economic issues (governance, seismic regulation and nuclear safety, para-seismic protection of constructions). The report is completed by other large documents: presentation of data on the Japanese earthquake, discussion on prediction and governance errors in the management of earthquake mitigation in Japan, discussions on tsunami prevention, on needs of research on accelerometers, and on the seismic risk in France

  6. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.; Mai, Paul Martin; Schorlemmer, Danijel

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data

  7. Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Hattori, K.; Liu, J.-Y.; Yang. T. Y.; Parrot, M.; Kafatos, M.; Taylor, P.

    2012-01-01

    We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct

  8. Simulating Earthquakes for Science and Society: Earthquake Visualizations Ideal for use in Science Communication and Education

    Science.gov (United States)

    de Groot, R.

    2008-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently gained visibility via television news coverage in Southern California. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin & Brick, 2002). For example, The Great Southern California ShakeOut was based on a potential magnitude 7.8 earthquake on the southern San Andreas fault. The visualization created for the ShakeOut was a key scientific and communication tool for the earthquake drill. This presentation will also feature SCEC Virtual Display of Objects visualization software developed by SCEC Undergraduate Studies in Earthquake Information Technology interns. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  9. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  10. Meeting the Challenge of Earthquake Risk Globalisation: Towards the Global Earthquake Model GEM (Sergey Soloviev Medal Lecture)

    Science.gov (United States)

    Zschau, J.

    2009-04-01

    Earthquake risk, like natural risks in general, has become a highly dynamic and globally interdependent phenomenon. Due to the "urban explosion" in the Third World, an increasingly complex cross linking of critical infrastructure and lifelines in the industrial nations and a growing globalisation of the world's economies, we are presently facing a dramatic increase of our society's vulnerability to earthquakes in practically all seismic regions on our globe. Such fast and global changes cannot be captured with conventional earthquake risk models anymore. The sciences in this field are, therefore, asked to come up with new solutions that are no longer exclusively aiming at the best possible quantification of the present risks but also keep an eye on their changes with time and allow to project these into the future. This does not apply to the vulnerablity component of earthquake risk alone, but also to its hazard component which has been realized to be time-dependent, too. The challenges of earthquake risk dynamics and -globalisation have recently been accepted by the Global Science Forum of the Organisation for Economic Co-operation and Development (OECD - GSF) who initiated the "Global Earthquake Model (GEM)", a public-private partnership for establishing an independent standard to calculate, monitor and communicate earthquake risk globally, raise awareness and promote mitigation.

  11. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation.

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-05-10

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.

  12. Possible scenarios for occurrence of M ~ 7 interplate earthquakes prior to and following the 2011 Tohoku-Oki earthquake based on numerical simulation

    Science.gov (United States)

    Nakata, Ryoko; Hori, Takane; Hyodo, Mamoru; Ariyoshi, Keisuke

    2016-01-01

    We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011. PMID:27161897

  13. Strong intermediate-depth Vreancea earthquakes: Damage capacity in Bulgaria

    International Nuclear Information System (INIS)

    Kouteva-Guentcheva, M.P.; Paskaleva, I.P.; Panza, G.F.

    2008-08-01

    The sustainable development of the society depends not only on a reasonable policy for economical growth but also on the reasonable management of natural risks. The regional earthquake danger due to the Vrancea intermediate-depth earthquakes dominates the hazard of NE Bulgaria. These quakes have particularly long-period and far-reaching effects, causing damages at large epicentral distances. Vrancea events energy attenuates considerably less rapidly than that of the wave field radiated by the seismically active zones in Bulgaria. The available strong motion records at Russe, NE Bulgaria, due to both Vrancea events - August 30, 1986 and May 30, 1990 show higher seismic response spectra amplitudes for periods up to 0.6 s for the horizontal components, compared to the values given in the Bulgarian Code and Eurocode 8. A neo-deterministic analytical procedure which models the wavefield generated by a realistic earthquake source, as it propagates through a laterally varying anelastic medium, is applied to obtain the seismic loading at Russe. After proper validation, using the few available data and parametric analyses, from the synthesized seismic signals damage capacity of selected scenario Vrancea quakes is estimated and compared with available capacity curves for some reinforced concrete and masonry structures, representative of the Balkan Region. The performed modelling has shown that the earthquake focal mechanisms control the seismic loading much more than the local geology, and that the site response should be analyzed by considering the whole thickness of sediments until the bedrock, and not only the topmost 30 m. (author)

  14. Laboratory generated M -6 earthquakes

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.

    2014-01-01

    We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.

  15. CISN Display - Reliable Delivery of Real-time Earthquake Information, Including Rapid Notification and ShakeMap to Critical End Users

    Science.gov (United States)

    Rico, H.; Hauksson, E.; Thomas, E.; Friberg, P.; Given, D.

    2002-12-01

    The California Integrated Seismic Network (CISN) Display is part of a Web-enabled earthquake notification system alerting users in near real-time of seismicity, and also valuable geophysical information following a large earthquake. It will replace the Caltech/USGS Broadcast of Earthquakes (CUBE) and Rapid Earthquake Data Integration (REDI) Display as the principal means of delivering graphical earthquake information to users at emergency operations centers, and other organizations. Features distinguishing the CISN Display from other GUI tools are a state-full client/server relationship, a scalable message format supporting automated hyperlink creation, and a configurable platform-independent client with a GIS mapping tool; supporting the decision-making activities of critical users. The CISN Display is the front-end of a client/server architecture known as the QuakeWatch system. It is comprised of the CISN Display (and other potential clients), message queues, server, server "feeder" modules, and messaging middleware, schema and generators. It is written in Java, making it platform-independent, and offering the latest in Internet technologies. QuakeWatch's object-oriented design allows components to be easily upgraded through a well-defined set of application programming interfaces (APIs). Central to the CISN Display's role as a gateway to other earthquake products is its comprehensive XML-schema. The message model starts with the CUBE message format, but extends it by provisioning additional attributes for currently available products, and those yet to be considered. The supporting metadata in the XML-message provides the data necessary for the client to create a hyperlink and associate it with a unique event ID. Earthquake products deliverable to the CISN Display are ShakeMap, Ground Displacement, Focal Mechanisms, Rapid Notifications, OES Reports, and Earthquake Commentaries. Leveraging the power of the XML-format, the CISN Display provides prompt access to

  16. Radon, gas geochemistry, groundwater, and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    King, Chi-Yu [Power Reactor and Nuclear Fuel Development Corp., Tono Geoscience Center, Toki, Gifu (Japan)

    1998-12-31

    Radon monitoring in groundwater, soil air, and atmosphere has been continued in many seismic areas of the world for earthquake-prediction and active-fault studies. Some recent measurements of radon and other geochemical and hydrological parameters have been made for sufficiently long periods, with reliable instruments, and together with measurements of meteorological variables and solid-earth tides. The resultant data are useful in better distinguishing earthquake-related changes from various background noises. Some measurements have been carried out in areas where other geophysical measurements are being made also. Comparative studies of various kinds of geophysical data are helpful in ascertaining the reality of the earthquake-related and fault-related anomalies and in understanding the underlying mechanisms. Spatial anomalies of radon and other terrestrial gasses have been observed for many active faults. Such observations indicate that gas concentrations are very much site dependent, particularly on fault zones where terrestrial fluids may move vertically. Temporal anomalies have been reliably observed before and after some recent earthquakes, including the 1995 Kobe earthquake, and the general pattern of anomaly occurrence remains the same as observed before: They are recorded at only relatively few sensitive sites, which can be at much larger distances than expected from existing earthquake-source models. The sensitivity of a sensitive site is also found to be changeable with time. These results clearly show the inadequacy of the existing dilatancy-fluid diffusion and elastic-dislocation models for earthquake sources to explain earthquake-related geochemical and geophysical changes recorded at large distances. (J.P.N.)

  17. The Christchurch earthquake stroke incidence study.

    Science.gov (United States)

    Wu, Teddy Y; Cheung, Jeanette; Cole, David; Fink, John N

    2014-03-01

    We examined the impact of major earthquakes on acute stroke admissions by a retrospective review of stroke admissions in the 6 weeks following the 4 September 2010 and 22 February 2011 earthquakes. The control period was the corresponding 6 weeks in the previous year. In the 6 weeks following the September 2010 earthquake there were 97 acute stroke admissions, with 79 (81.4%) ischaemic infarctions. This was similar to the 2009 control period which had 104 acute stroke admissions, of whom 80 (76.9%) had ischaemic infarction. In the 6 weeks following the February 2011 earthquake, there were 71 stroke admissions, and 61 (79.2%) were ischaemic infarction. This was less than the 96 strokes (72 [75%] ischaemic infarction) in the corresponding control period. None of the comparisons were statistically significant. There was also no difference in the rate of cardioembolic infarction from atrial fibrillation between the study periods. Patients admitted during the February 2011 earthquake period were less likely to be discharged directly home when compared to the control period (31.2% versus 46.9%, p=0.036). There was no observable trend in the number of weekly stroke admissions between the 2 weeks leading to and 6 weeks following the earthquakes. Our results suggest that severe psychological stress from earthquakes did not influence the subsequent short term risk of acute stroke, but the severity of the earthquake in February 2011 and associated civil structural damages may have influenced the pattern of discharge for stroke patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Plant state display device after occurrence of earthquake

    International Nuclear Information System (INIS)

    Kitada, Yoshio; Yonekura, Kazuyoshi.

    1992-01-01

    If a nuclear power plant should encounter earthquakes, an earthquake response analysis value previously stored and the earthquakes observed are compared to judge the magnitude of the earthquakes. From the result of the judgement, a possibility that an abnormality is recognized in plant equipment systems after the earthquakes is evaluated, in comparison with a previously stored earthquake fragility data base of each of equipment/systems. The result of the evaluation is displayed in a central control chamber. The plant equipment system is judged such that abnormalities are recognized at a high probability is evaluated by a previously stored earthquake PSA method for the influence of the abnormality on plant safety, and the result is displayed in the central control chamber. (I.S.)

  19. A minimalist model of characteristic earthquakes

    DEFF Research Database (Denmark)

    Vázquez-Prada, M.; González, Á.; Gómez, J.B.

    2002-01-01

    In a spirit akin to the sandpile model of self- organized criticality, we present a simple statistical model of the cellular-automaton type which simulates the role of an asperity in the dynamics of a one-dimensional fault. This model produces an earthquake spectrum similar to the characteristic-earthquake...... behaviour of some seismic faults. This model, that has no parameter, is amenable to an algebraic description as a Markov Chain. This possibility illuminates some important results, obtained by Monte Carlo simulations, such as the earthquake size-frequency relation and the recurrence time...... of the characteristic earthquake....

  20. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  1. Seismic-resistant design of nuclear power stations in Japan, earthquake country. Lessons learned from Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Irikura, Kojiro

    2008-01-01

    The new assessment (back-check) of earthquake-proof safety was being conducted at Kashiwazaki-Kariwa Nuclear Power Plants, Tokyo Electric Co. in response to a request based on the guideline for reactor evaluation for seismic-resistant design code, revised in 2006, when the 2007 Chuetsu-oki Earthquake occurred and brought about an unexpectedly huge tremor in this area, although the magnitude of the earthquake was only 6.8 but the intensity of earthquake motion exceeded 2.5-fold more than supposed. This paper introduces how and why the guideline for seismic-resistant design of nuclear facilities was revised in 2006, the outline of the Chuetsu-oki Earthquake, and preliminary findings and lessons learned from the Earthquake. The paper specifically discusses on (1) how we may specify in advance geologic active faults as has been overlooked this time, (2) how we can make adequate models for seismic origin from which we can extract its characteristics, and (3) how the estimation of strong ground motion simulation may be possible for ground vibration level of a possibly overlooked fault. (S. Ohno)

  2. Antioptimization of earthquake exitation and response

    Directory of Open Access Journals (Sweden)

    G. Zuccaro

    1998-01-01

    Full Text Available The paper presents a novel approach to predict the response of earthquake-excited structures. The earthquake excitation is expanded in terms of series of deterministic functions. The coefficients of the series are represented as a point in N-dimensional space. Each available ccelerogram at a certain site is then represented as a point in the above space, modeling the available fragmentary historical data. The minimum volume ellipsoid, containing all points, is constructed. The ellipsoidal models of uncertainty, pertinent to earthquake excitation, are developed. The maximum response of a structure, subjected to the earthquake excitation, within ellipsoidal modeling of the latter, is determined. This procedure of determining least favorable response was termed in the literature (Elishakoff, 1991 as an antioptimization. It appears that under inherent uncertainty of earthquake excitation, antioptimization analysis is a viable alternative to stochastic approach.

  3. Extraction Method for Earthquake-Collapsed Building Information Based on High-Resolution Remote Sensing

    International Nuclear Information System (INIS)

    Chen, Peng; Wu, Jian; Liu, Yaolin; Wang, Jing

    2014-01-01

    At present, the extraction of earthquake disaster information from remote sensing data relies on visual interpretation. However, this technique cannot effectively and quickly obtain precise and efficient information for earthquake relief and emergency management. Collapsed buildings in the town of Zipingpu after the Wenchuan earthquake were used as a case study to validate two kinds of rapid extraction methods for earthquake-collapsed building information based on pixel-oriented and object-oriented theories. The pixel-oriented method is based on multi-layer regional segments that embody the core layers and segments of the object-oriented method. The key idea is to mask layer by layer all image information, including that on the collapsed buildings. Compared with traditional techniques, the pixel-oriented method is innovative because it allows considerably rapid computer processing. As for the object-oriented method, a multi-scale segment algorithm was applied to build a three-layer hierarchy. By analyzing the spectrum, texture, shape, location, and context of individual object classes in different layers, the fuzzy determined rule system was established for the extraction of earthquake-collapsed building information. We compared the two sets of results using three variables: precision assessment, visual effect, and principle. Both methods can extract earthquake-collapsed building information quickly and accurately. The object-oriented method successfully overcomes the pepper salt noise caused by the spectral diversity of high-resolution remote sensing data and solves the problem of same object, different spectrums and that of same spectrum, different objects. With an overall accuracy of 90.38%, the method achieves more scientific and accurate results compared with the pixel-oriented method (76.84%). The object-oriented image analysis method can be extensively applied in the extraction of earthquake disaster information based on high-resolution remote sensing

  4. Delphi survey of issues after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Maeda, Yasunobu; Seo, Kami; Motoyoshi, Tadahiro; Okada, Shinya

    2011-01-01

    The Great East Japan Earthquake on March 11, 2011 has catastrophic impacts on Japan. Japan is currently on the way to recovery. However, as the damage on the country as well as society is so serious, Japanese society is urged to change some systems including hazard management, energy policy, information systems and city planning. These changes are accompanied with social group realignments, thus necessarily followed by various risks. To cope with these risk issues, SRA-Japan established the special research committee for the Great East Japan Earthquake. The aim of the committee is, from viewpoints of risk analysts, to create and relate messages about risk issues in 2-3 years, in ten years and in thirty years from the earthquake. To do this, the committee garners SRA-Japan member's opinions about possible risks in Japan by using Delphi method. In SRA-Japan, there are over 600 members in interdisciplinary fields from various backgrounds, thus the messages are expected to be helpful for Japanese society to lower its risks and to optimize the resource allocation. The research is now underway. An interim report will be presented. (author)

  5. Estimating annualized earthquake losses for the conterminous United States

    Science.gov (United States)

    Jaiswal, Kishor S.; Bausch, Douglas; Chen, Rui; Bouabid, Jawhar; Seligson, Hope

    2015-01-01

    We make use of the most recent National Seismic Hazard Maps (the years 2008 and 2014 cycles), updated census data on population, and economic exposure estimates of general building stock to quantify annualized earthquake loss (AEL) for the conterminous United States. The AEL analyses were performed using the Federal Emergency Management Agency's (FEMA) Hazus software, which facilitated a systematic comparison of the influence of the 2014 National Seismic Hazard Maps in terms of annualized loss estimates in different parts of the country. The losses from an individual earthquake could easily exceed many tens of billions of dollars, and the long-term averaged value of losses from all earthquakes within the conterminous U.S. has been estimated to be a few billion dollars per year. This study estimated nationwide losses to be approximately $4.5 billion per year (in 2012$), roughly 80% of which can be attributed to the States of California, Oregon and Washington. We document the change in estimated AELs arising solely from the change in the assumed hazard map. The change from the 2008 map to the 2014 map results in a 10 to 20% reduction in AELs for the highly seismic States of the Western United States, whereas the reduction is even more significant for Central and Eastern United States.

  6. Modified Mercalli intensities for some recent California earthquakes and historic San Francisco Bay Region earthquakes

    Science.gov (United States)

    Bakun, William H.

    1998-01-01

    Modified Mercalli Intensity (MMI) data for recent California earthquakes were used by Bakun and Wentworth (1997) to develop a strategy for bounding the location and moment magnitude M of earthquakes from MMI observations only. Bakun (Bull. Seismol. Soc. Amer., submitted) used the Bakun and Wentworth (1997) strategy to analyze 19th century and early 20th century San Francisco Bay Region earthquakes. The MMI data and site corrections used in these studies are listed in this Open-file Report. 

  7. A comprehensive scoring system in correlation with perioperative airway management for neonatal Pierre Robin Sequence.

    Directory of Open Access Journals (Sweden)

    Ning Yin

    Full Text Available To evaluate a comprehensive scoring system which combines clinical manifestations of Pierre Robin Sequence (PRS including severity of breathing difficulties, body weight and preoperative Cormack-Lehane grade, for its correlation with perioperative PRS airway management decision.Forty PRS children were retrospectively recruited after surgery. Specialists examined all subjects and scored for clinical manifestations (1´ - 4´, weight gain (1´- 4´, dyspnea scores (1´- 4´, and Cormack-Lehane grade (1´- 4´. The correlation of the integrated scores and the necessity of endotracheal intubation or laryngeal mask application were analyzed. In addition, the score correlation with postoperative dyspnea and/or low pulse oxygen saturation (SPO2 levels after extubation was determined.In our study every individual patient had a score from 0´ to 16´, while the higher in the numbers represented higher risk of breathing difficulty. All patients with comprehensive scores 13 points required a laryngeal mask assisted airway management and were considered to have difficult airways. Dyspnea after extubation and postoperative low SPO2 occurred among patients who scored over 10 points.In PRS patients, preoperative weight gaining status and severity of dyspnea in combination with Cormack-Lehane classification provide a scoring system that could help to optimize airway management decisions such as endotracheal intubation or laryngeal mask airway placement and has the potential to predict postoperative dyspnea or low SPO2 levels.

  8. <> earthquakes: a growing contribution to the Catalogue of Strong Italian Earthquakes

    Directory of Open Access Journals (Sweden)

    E. Guidoboni

    2000-06-01

    Full Text Available The particular structure of the research into historical seismology found in this catalogue has allowed a lot of information about unknown seismic events to be traced. This new contribution to seismologic knowledge mainly consists in: i the retrieval and organisation within a coherent framework of documentary evidence of earthquakes that took place between the Middle Ages and the sixteenth century; ii the improved knowledge of seismic events, even destructive events, which in the past had been "obscured" by large earthquakes; iii the identification of earthquakes in "silent" seismic areas. The complex elements to be taken into account when dealing with unknown seismic events have been outlined; much "new" information often falls into one of the following categories: simple chronological errors relative to other well-known events; descriptions of other natural phenomena, though defined in texts as "earthquakes" (landslides, hurricanes, tornadoes, etc.; unknown tremors belonging to known seismic periods; tremors that may be connected with events which have been catalogued under incorrect dates and with very approximate estimates of location and intensity. This proves that this was not a real seismic "silence" but a research vacuum.

  9. Smartphone MEMS accelerometers and earthquake early warning

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  10. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  11. Fundamental questions of earthquake statistics, source behavior, and the estimation of earthquake probabilities from possible foreshocks

    Science.gov (United States)

    Michael, Andrew J.

    2012-01-01

    Estimates of the probability that an ML 4.8 earthquake, which occurred near the southern end of the San Andreas fault on 24 March 2009, would be followed by an M 7 mainshock over the following three days vary from 0.0009 using a Gutenberg–Richter model of aftershock statistics (Reasenberg and Jones, 1989) to 0.04 using a statistical model of foreshock behavior and long‐term estimates of large earthquake probabilities, including characteristic earthquakes (Agnew and Jones, 1991). I demonstrate that the disparity between the existing approaches depends on whether or not they conform to Gutenberg–Richter behavior. While Gutenberg–Richter behavior is well established over large regions, it could be violated on individual faults if they have characteristic earthquakes or over small areas if the spatial distribution of large‐event nucleations is disproportional to the rate of smaller events. I develop a new form of the aftershock model that includes characteristic behavior and combines the features of both models. This new model and the older foreshock model yield the same results when given the same inputs, but the new model has the advantage of producing probabilities for events of all magnitudes, rather than just for events larger than the initial one. Compared with the aftershock model, the new model has the advantage of taking into account long‐term earthquake probability models. Using consistent parameters, the probability of an M 7 mainshock on the southernmost San Andreas fault is 0.0001 for three days from long‐term models and the clustering probabilities following the ML 4.8 event are 0.00035 for a Gutenberg–Richter distribution and 0.013 for a characteristic‐earthquake magnitude–frequency distribution. Our decisions about the existence of characteristic earthquakes and how large earthquakes nucleate have a first‐order effect on the probabilities obtained from short‐term clustering models for these large events.

  12. Treatment phases in management of a comprehensive restorative case. A case report

    International Nuclear Information System (INIS)

    AlSamh, Duaa Abo; Endo, Cert End

    2008-01-01

    The aim of this case report was to emphasize the value of preforming patient's treatment plan into phases of treatment and encouraging colleagues to apply such phases in the clinical practice for the management of complex restorative cases. Traditional approach to treatment planning has certain merits. However, new treatment approach should improve oral health rather than react to presenting problems and therefore, dentists should aim to convert their irregular attendee to a regular attendee with treatment plan directed to enhance oral health, prevent disease, improve esthetic and free the patient from pain and discomfort. In this report, a complex restorative case of a 16-year-old female patient was managed for comprehensive dental therapy in the form of treatment plan which was divided into phases by way of a ''staircase'' approach with one clinical step being dependent on the previous step. The whole treatment was completed in three months and the results were satisfactory and patient became a highly motivated person with more self-confidence. (author)

  13. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  14. Evaluating spatial and temporal relationships between an earthquake cluster near Entiat, central Washington, and the large December 1872 Entiat earthquake

    Science.gov (United States)

    Brocher, Thomas M.; Blakely, Richard J.; Sherrod, Brian

    2017-01-01

    We investigate spatial and temporal relations between an ongoing and prolific seismicity cluster in central Washington, near Entiat, and the 14 December 1872 Entiat earthquake, the largest historic crustal earthquake in Washington. A fault scarp produced by the 1872 earthquake lies within the Entiat cluster; the locations and areas of both the cluster and the estimated 1872 rupture surface are comparable. Seismic intensities and the 1–2 m of coseismic displacement suggest a magnitude range between 6.5 and 7.0 for the 1872 earthquake. Aftershock forecast models for (1) the first several hours following the 1872 earthquake, (2) the largest felt earthquakes from 1900 to 1974, and (3) the seismicity within the Entiat cluster from 1976 through 2016 are also consistent with this magnitude range. Based on this aftershock modeling, most of the current seismicity in the Entiat cluster could represent aftershocks of the 1872 earthquake. Other earthquakes, especially those with long recurrence intervals, have long‐lived aftershock sequences, including the Mw">MwMw 7.5 1891 Nobi earthquake in Japan, with aftershocks continuing 100 yrs after the mainshock. Although we do not rule out ongoing tectonic deformation in this region, a long‐lived aftershock sequence can account for these observations.

  15. Rupture process of the 2013 Okhotsk deep mega earthquake from iterative backprojection and compress sensing methods

    Science.gov (United States)

    Qin, W.; Yin, J.; Yao, H.

    2013-12-01

    On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for

  16. How Mode of Delivery Affects Comprehension of an Operations Management Simulation: Online vs Face-to-Face Classrooms

    Science.gov (United States)

    Riley, Jason M.; Ellegood, William A.; Solomon, Stanislaus; Baker, Jerrine

    2017-01-01

    Purpose: This study aims to understand how mode of delivery, online versus face-to-face, affects comprehension when teaching operations management concepts via a simulation. Conceptually, the aim is to identify factors that influence the students' ability to learn and retain new concepts. Design/methodology/approach: Leveraging Littlefield…

  17. Prospective testing of Coulomb short-term earthquake forecasts

    Science.gov (United States)

    Jackson, D. D.; Kagan, Y. Y.; Schorlemmer, D.; Zechar, J. D.; Wang, Q.; Wong, K.

    2009-12-01

    Earthquake induced Coulomb stresses, whether static or dynamic, suddenly change the probability of future earthquakes. Models to estimate stress and the resulting seismicity changes could help to illuminate earthquake physics and guide appropriate precautionary response. But do these models have improved forecasting power compared to empirical statistical models? The best answer lies in prospective testing in which a fully specified model, with no subsequent parameter adjustments, is evaluated against future earthquakes. The Center of Study of Earthquake Predictability (CSEP) facilitates such prospective testing of earthquake forecasts, including several short term forecasts. Formulating Coulomb stress models for formal testing involves several practical problems, mostly shared with other short-term models. First, earthquake probabilities must be calculated after each “perpetrator” earthquake but before the triggered earthquakes, or “victims”. The time interval between a perpetrator and its victims may be very short, as characterized by the Omori law for aftershocks. CSEP evaluates short term models daily, and allows daily updates of the models. However, lots can happen in a day. An alternative is to test and update models on the occurrence of each earthquake over a certain magnitude. To make such updates rapidly enough and to qualify as prospective, earthquake focal mechanisms, slip distributions, stress patterns, and earthquake probabilities would have to be made by computer without human intervention. This scheme would be more appropriate for evaluating scientific ideas, but it may be less useful for practical applications than daily updates. Second, triggered earthquakes are imperfectly recorded following larger events because their seismic waves are buried in the coda of the earlier event. To solve this problem, testing methods need to allow for “censoring” of early aftershock data, and a quantitative model for detection threshold as a function of

  18. Conceptualizing ¬the Abstractions of Earthquakes Through an Instructional Sequence Using SeisMac and the Rapid Earthquake Viewer

    Science.gov (United States)

    Taber, J.; Hubenthal, M.; Wysession, M.

    2007-12-01

    because they have a physical sense of what the wiggles indicate. As a result students are better positioned to identify S and P arrivals within the complexity of real data available through REV rather than using the canned or artificial data normally associated with a location exercise. REV provides easy access to recent and noteworthy earthquake data via a simple Web interface. Earthquake locations and near-real time ground motion data are accessed via the IRIS Data Management System, and data are automatically processed and selected so that only events with "good" data are presented within REV. Once students have completed the learning sequence using SeisMac, they will be better able to relate the trace of a seismogram to the physical motion of the ground. This can then lead to better understanding of more advanced exercises including detecting the core and finding the Moho. Building on an understanding of the basics of a seismogram, SeisMac can next be used to help student further understand earthquakes by provide a kinesthetic experience to model how hard the Earth shakes during earthquakes. Through another guided exploration students discover that the SeisMac display is calibrated in units of acceleration and can be related to the Modified Mercalli scale. They then compare shaking during an earthquake via video clips and ground shaking maps from the USGS "Did you feel it" Web site to the shaking of personal objects and the laptop.

  19. Whereabouts of process and the processing over the issue earthquake disaster waste

    International Nuclear Information System (INIS)

    Omura, Tomomi

    2011-01-01

    The generation amount of earthquake disaster waste due to the Great East Japan Earthquake amounts to totally about 22,720,000 tons by only counting the wreckage generated in the coast areas of three prefectures of Iwate, Miyagi, and Fukushima, which suffered especially large damage, while waste treatment facilities have suffered a great blow. This paper introduces the countermeasures for emergency taken by the government and local governments under such circumstances. First, the government, under leadership of the Ministry of the Environment, promptly drew up guidelines and standards with the cooperation of government-related organizations and academic societies, and issued various guidelines including 'Guidelines for the Removal of Fallen Houses Damaged by the 2011 off the Pacific Coast of Tohoku Earthquake.' In addition, the Ministry of the Environment formulated 'Guidelines (master plan) for Disaster Waste Management after the Great East Japan Earthquake' that shows the procedure for waste treatment. In addition, 'The Act on Special Measures concerning the Handling of Radioactive Pollution by Radioactive Materials Discharged by the Nuclear Power Station' was enacted in order to treat radioactive pollutants discharged from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, and the pollutants are to be treated based on this act. As for the countermeasures by local governments, since the local governments themselves suffered damage, management entrustment is being used for treatment, based on the Local Autonomy Act. As for the situation of treatment, Iwate Prefecture uses mainly cement plants as the treatment center, and Miyagi Prefecture uses mainly general contractors' treatment projects. However, Fukushima Prefecture is under difficult situation for treatment due to pollution problems of radioactive substances. This paper also describes the related budget in the third supplementary budget and the fiscal 2012 demand for budgetary

  20. Surface latent heat flux as an earthquake precursor

    Directory of Open Access Journals (Sweden)

    S. Dey

    2003-01-01

    Full Text Available The analysis of surface latent heat flux (SLHF from the epicentral regions of five recent earthquakes that occurred in close proximity to the oceans has been found to show anomalous behavior. The maximum increase of SLHF is found 2–7 days prior to the main earthquake event. This increase is likely due to an ocean-land-atmosphere interaction. The increase of SLHF prior to the main earthquake event is attributed to the increase in infrared thermal (IR temperature in the epicentral and surrounding region. The anomalous increase in SLHF shows great potential in providing early warning of a disastrous earthquake, provided that there is a better understanding of the background noise due to the tides and monsoon in surface latent heat flux. Efforts have been made to understand the level of background noise in the epicentral regions of the five earthquakes considered in the present paper. A comparison of SLHF from the epicentral regions over the coastal earthquakes and the earthquakes that occurred far away from the coast has been made and it has been found that the anomalous behavior of SLHF prior to the main earthquake event is only associated with the coastal earthquakes.

  1. Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami Earthquakes for Tsunami Early Warning in Central America

    Science.gov (United States)

    Tanioka, Yuichiro; Miranda, Greyving Jose Arguello; Gusman, Aditya Riadi; Fujii, Yushiro

    2017-08-01

    Large earthquakes, such as the Mw 7.7 1992 Nicaragua earthquake, have occurred off the Pacific coasts of El Salvador and Nicaragua in Central America and have generated distractive tsunamis along these coasts. It is necessary to determine appropriate fault models before large tsunamis hit the coast. In this study, first, fault parameters were estimated from the W-phase inversion, and then an appropriate fault model was determined from the fault parameters and scaling relationships with a depth dependent rigidity. The method was tested for four large earthquakes, the 1992 Nicaragua tsunami earthquake (Mw7.7), the 2001 El Salvador earthquake (Mw7.7), the 2004 El Astillero earthquake (Mw7.0), and the 2012 El Salvador-Nicaragua earthquake (Mw7.3), which occurred off El Salvador and Nicaragua in Central America. The tsunami numerical simulations were carried out from the determined fault models. We found that the observed tsunami heights, run-up heights, and inundation areas were reasonably well explained by the computed ones. Therefore, our method for tsunami early warning purpose should work to estimate a fault model which reproduces tsunami heights near the coast of El Salvador and Nicaragua due to large earthquakes in the subduction zone.

  2. Earthquake simulation, actual earthquake monitoring and analytical methods for soil-structure interaction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H T [Seismic Center, Electric Power Research Institute, Palo Alto, CA (United States)

    1988-07-01

    Approaches for conducting in-situ soil-structure interaction experiments are discussed. High explosives detonated under the ground can generate strong ground motion to induce soil-structure interaction (SSI). The explosive induced data are useful in studying the dynamic characteristics of the soil-structure system associated with the inertial aspect of the SSI problem. The plane waves generated by the explosives cannot adequately address the kinematic interaction associated with actual earthquakes because of he difference in wave fields and their effects. Earthquake monitoring is ideal for obtaining SSI data that can address all aspects of the SSI problem. The only limitation is the level of excitation that can be obtained. Neither the simulated earthquake experiments nor the earthquake monitoring experiments can have exact similitude if reduced scale test structures are used. If gravity effects are small, reasonable correlations between the scaled model and the prototype can be obtained provided that input motion can be scaled appropriately. The key product of the in-situ experiments is the data base that can be used to qualify analytical methods for prototypical applications. (author)

  3. Real-time earthquake data feasible

    Science.gov (United States)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  4. Is Your Class a Natural Disaster? It can be... The Real Time Earthquake Education (RTEE) System

    Science.gov (United States)

    Whitlock, J. S.; Furlong, K.

    2003-12-01

    In cooperation with the U.S. Geological Survey (USGS) and its National Earthquake Information Center (NEIC) in Golden, Colorado, we have implemented an autonomous version of the NEIC's real-time earthquake database management and earthquake alert system (Earthworm). This is the same system used professionally by the USGS in its earthquake response operations. Utilizing this system, Penn State University students participating in natural hazard classes receive real-time alerts of worldwide earthquake events on cell phones distributed to the class. The students are then responsible for reacting to actual earthquake events, in real-time, with the same data (or lack thereof) as earthquake professionals. The project was first implemented in Spring 2002, and although it had an initial high intrigue and "coolness" factor, the interest of the students waned with time. Through student feedback, we observed that scientific data presented on its own without an educational context does not foster student learning. In order to maximize the impact of real-time data and the accompanying e-media, the students need to become personally involved. Therefore, in collaboration with the Incorporated Research Institutes of Seismology (IRIS), we have begun to develop an online infrastructure that will help teachers and faculty effectively use real-time earthquake information. The Real-Time Earthquake Education (RTEE) website promotes student learning by integrating inquiry-based education modules with real-time earthquake data. The first module guides the students through an exploration of real-time and historic earthquake datasets to model the most important criteria for determining the potential impact of an earthquake. Having provided the students with content knowledge in the first module, the second module presents a more authentic, open-ended educational experience by setting up an earthquake role-play situation. Through the Earthworm system, we have the ability to "set off

  5. Critical behavior in earthquake energy dissipation

    Science.gov (United States)

    Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro

    2017-09-01

    We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

  6. Parallelization of the Coupled Earthquake Model

    Science.gov (United States)

    Block, Gary; Li, P. Peggy; Song, Yuhe T.

    2007-01-01

    This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.

  7. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  8. Comprehensive management of pressure ulcers in spinal cord injury: Current concepts and future trends

    Science.gov (United States)

    Kruger, Erwin A.; Pires, Marilyn; Ngann, Yvette; Sterling, Michelle; Rubayi, Salah

    2013-01-01

    Pressure ulcers in spinal cord injury represent a challenging problem for patients, their caregivers, and their physicians. They often lead to recurrent hospitalizations, multiple surgeries, and potentially devastating complications. They present a significant cost to the healthcare system, they require a multidisciplinary team approach to manage well, and outcomes directly depend on patients' education, prevention, and compliance with conservative and surgical protocols. With so many factors involved in the successful treatment of pressure ulcers, an update on their comprehensive management in spinal cord injury is warranted. Current concepts of local wound care, surgical options, as well as future trends from the latest wound healing research are reviewed to aid medical professionals in treating patients with this difficult problem. PMID:24090179

  9. Retrospective analysis of the Spitak earthquake

    Directory of Open Access Journals (Sweden)

    A. K. Tovmassian

    1995-06-01

    Full Text Available Based on the retrospective analysis of numerous data and studies of the Spitak earthquake the present work at- tempts to shed light on different aspects of that catastrophic seismic event which occurred in Northern Arme- nia on December 7, 1988. The authors follow a chronological order of presentation, namely: changes in geo- sphere, atmosphere, biosphere during the preparation of the Spitak earthquake, foreshocks, main shock, after- shocks, focal mechanisms, historical seismicity; seismotectonic position of the source, strong motion records, site effects; the macroseismic effect, collapse of buildings and structures; rescue activities; earthquake conse- quences; and the lessons of the Spitak earthquake.

  10. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  11. On the plant operators performance during earthquake

    International Nuclear Information System (INIS)

    Kitada, Y.; Yoshimura, S.; Abe, M.; Niwa, H.; Yoneda, T.; Matsunaga, M.; Suzuki, T.

    1994-01-01

    There is little data on which to judge the performance of plant operators during and after strong earthquakes. In order to obtain such data to enhance the reliability on the plant operation, a Japanese utility and a power plant manufacturer carried out a vibration test using a shaking table. The purpose of the test was to investigate operator performance, i.e., the quickness and correctness in switch handling and panel meter read-out. The movement of chairs during earthquake as also of interest, because if the chairs moved significantly or turned over during a strong earthquake, some arresting mechanism would be required for the chair. Although there were differences between the simulated earthquake motions used and actual earthquakes mainly due to the specifications of the shaking table, the earthquake motions had almost no influence on the operators of their capability (performance) for operating the simulated console and the personal computers

  12. Data base pertinent to earthquake design basis

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1988-01-01

    Mitigation of earthquake risk from impending strong earthquakes is possible provided the hazard can be assessed, and translated into appropriate design inputs. This requires defining the seismic risk problem, isolating the risk factors and quantifying risk in terms of physical parameters, which are suitable for application in design. Like all other geological phenomena, past earthquakes hold the key to the understanding of future ones. Quantificatio n of seismic risk at a site calls for investigating the earthquake aspects of the site region and building a data base. The scope of such investigations is il lustrated in Figure 1 and 2. A more detailed definition of the earthquake problem in engineering design is given elsewhere (Sharma, 1987). The present document discusses the earthquake data base, which is required to support a seismic risk evaluation programme in the context of the existing state of the art. (author). 8 tables, 10 figs., 54 refs

  13. Seismic-electromagnetic precursors of Romania's Vrancea earthquakes

    International Nuclear Information System (INIS)

    Enescu, B.D.; Enescu, C.; Constantin, A. P.

    1999-01-01

    Diagrams were plotted from electromagnetic data that were recorded at Muntele Rosu Observatory during December 1996 to January 1997, and December 1997 to September 1998. The times when Vrancea earthquakes of magnitudes M ≥ 3.9 occurred within these periods are marked on the diagrams.The parameters of the earthquakes are given in a table which also includes information on the magnetic and electric anomalies (perturbations) preceding these earthquakes. The magnetic data prove that Vrancea earthquakes are preceded by magnetic perturbations that may be regarded as their short-term precursors. Perturbations, which could likewise be seen as short-term precursors of Vrancea earthquakes, are also noticed in the electric records. Still, a number of electric data do cast a doubt on their forerunning nature. Some suggestions are made in the end of the paper on how electromagnetic research should go ahead to be of use for Vrancea earthquake prediction. (authors)

  14. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  15. Prediction of site specific ground motion for large earthquake

    International Nuclear Information System (INIS)

    Kamae, Katsuhiro; Irikura, Kojiro; Fukuchi, Yasunaga.

    1990-01-01

    In this paper, we apply the semi-empirical synthesis method by IRIKURA (1983, 1986) to the estimation of site specific ground motion using accelerograms observed at Kumatori in Osaka prefecture. Target earthquakes used here are a comparatively distant earthquake (Δ=95 km, M=5.6) caused by the YAMASAKI fault and a near earthquake (Δ=27 km, M=5.6). The results obtained are as follows. 1) The accelerograms from the distant earthquake (M=5.6) are synthesized using the aftershock records (M=4.3) for 1983 YAMASAKI fault earthquake whose source parameters have been obtained by other authors from the hypocentral distribution of the aftershocks. The resultant synthetic motions show a good agreement with the observed ones. 2) The synthesis for a near earthquake (M=5.6, we call this target earthquake) are made using a small earthquake which occurred in the neighborhood of the target earthquake. Here, we apply two methods for giving the parameters for synthesis. One method is to use the parameters of YAMASAKI fault earthquake which has the same magnitude as the target earthquake, and the other is to use the parameters obtained from several existing empirical formulas. The resultant synthetic motion with the former parameters shows a good agreement with the observed one, but that with the latter does not. 3) We estimate the source parameters from the source spectra of several earthquakes which have been observed in this site. Consequently we find that the small earthquakes (M<4) as Green's functions should be carefully used because the stress drops are not constant. 4) We propose that we should designate not only the magnitudes but also seismic moments of the target earthquake and the small earthquake. (J.P.N.)

  16. Clustered and transient earthquake sequences in mid-continents

    Science.gov (United States)

    Liu, M.; Stein, S. A.; Wang, H.; Luo, G.

    2012-12-01

    Earthquakes result from sudden release of strain energy on faults. On plate boundary faults, strain energy is constantly accumulating from steady and relatively rapid relative plate motion, so large earthquakes continue to occur so long as motion continues on the boundary. In contrast, such steady accumulation of stain energy does not occur on faults in mid-continents, because the far-field tectonic loading is not steadily distributed between faults, and because stress perturbations from complex fault interactions and other stress triggers can be significant relative to the slow tectonic stressing. Consequently, mid-continental earthquakes are often temporally clustered and transient, and spatially migrating. This behavior is well illustrated by large earthquakes in North China in the past two millennia, during which no single large earthquakes repeated on the same fault segments, but moment release between large fault systems was complementary. Slow tectonic loading in mid-continents also causes long aftershock sequences. We show that the recent small earthquakes in the Tangshan region of North China are aftershocks of the 1976 Tangshan earthquake (M 7.5), rather than indicators of a new phase of seismic activity in North China, as many fear. Understanding the transient behavior of mid-continental earthquakes has important implications for assessing earthquake hazards. The sequence of large earthquakes in the New Madrid Seismic Zone (NMSZ) in central US, which includes a cluster of M~7 events in 1811-1812 and perhaps a few similar ones in the past millennium, is likely a transient process, releasing previously accumulated elastic strain on recently activated faults. If so, this earthquake sequence will eventually end. Using simple analysis and numerical modeling, we show that the large NMSZ earthquakes may be ending now or in the near future.

  17. Measures for groundwater security during and after the Hanshin-Awaji earthquake (1995) and the Great East Japan earthquake (2011), Japan

    Science.gov (United States)

    Tanaka, Tadashi

    2016-03-01

    Many big earthquakes have occurred in the tectonic regions of the world, especially in Japan. Earthquakes often cause damage to crucial life services such as water, gas and electricity supply systems and even the sewage system in urban and rural areas. The most severe problem for people affected by earthquakes is access to water for their drinking/cooking and toilet flushing. Securing safe water for daily life in an earthquake emergency requires the establishment of countermeasures, especially in a mega city like Tokyo. This paper described some examples of groundwater use in earthquake emergencies, with reference to reports, books and newspapers published in Japan. The consensus is that groundwater, as a source of water, plays a major role in earthquake emergencies, especially where the accessibility of wells coincides with the emergency need. It is also important to introduce a registration system for citizen-owned and company wells that can form the basis of a cooperative during a disaster; such a registration system was implemented by many Japanese local governments after the Hanshin-Awaji Earthquake in 1995 and the Great East Japan Earthquake in 2011, and is one of the most effective countermeasures for groundwater use in an earthquake emergency. Emphasis is also placed the importance of establishing of a continuous monitoring system of groundwater conditions for both quantity and quality during non-emergency periods.

  18. New geological perspectives on earthquake recurrence models

    International Nuclear Information System (INIS)

    Schwartz, D.P.

    1997-01-01

    In most areas of the world the record of historical seismicity is too short or uncertain to accurately characterize the future distribution of earthquakes of different sizes in time and space. Most faults have not ruptured once, let alone repeatedly. Ultimately, the ability to correctly forecast the magnitude, location, and probability of future earthquakes depends on how well one can quantify the past behavior of earthquake sources. Paleoseismological trenching of active faults, historical surface ruptures, liquefaction features, and shaking-induced ground deformation structures provides fundamental information on the past behavior of earthquake sources. These studies quantify (a) the timing of individual past earthquakes and fault slip rates, which lead to estimates of recurrence intervals and the development of recurrence models and (b) the amount of displacement during individual events, which allows estimates of the sizes of past earthquakes on a fault. When timing and slip per event are combined with information on fault zone geometry and structure, models that define individual rupture segments can be developed. Paleoseismicity data, in the form of timing and size of past events, provide a window into the driving mechanism of the earthquake engine--the cycle of stress build-up and release

  19. Detection and Mapping of the September 2017 Mexico Earthquakes Using DAS Fiber-Optic Infrastructure Arrays

    Science.gov (United States)

    Karrenbach, M. H.; Cole, S.; Williams, J. J.; Biondi, B. C.; McMurtry, T.; Martin, E. R.; Yuan, S.

    2017-12-01

    Fiber-optic distributed acoustic sensing (DAS) uses conventional telecom fibers for a wide variety of monitoring purposes. Fiber-optic arrays can be located along pipelines for leak detection; along borders and perimeters to detect and locate intruders, or along railways and roadways to monitor traffic and identify and manage incidents. DAS can also be used to monitor oil and gas reservoirs and to detect earthquakes. Because thousands of such arrays are deployed worldwide and acquiring data continuously, they can be a valuable source of data for earthquake detection and location, and could potentially provide important information to earthquake early-warning systems. In this presentation, we show that DAS arrays in Mexico and the United States detected the M8.1 and M7.2 Mexico earthquakes in September 2017. At Stanford University, we have deployed a 2.4 km fiber-optic DAS array in a figure-eight pattern, with 600 channels spaced 4 meters apart. Data have been recorded continuously since September 2016. Over 800 earthquakes from across California have been detected and catalogued. Distant teleseismic events have also been recorded, including the two Mexican earthquakes. In Mexico, fiber-optic arrays attached to pipelines also detected these two events. Because of the length of these arrays and their proximity to the event locations, we can not only detect the earthquakes but also make location estimates, potentially in near real time. In this presentation, we review the data recorded for these two events recorded at Stanford and in Mexico. We compare the waveforms recorded by the DAS arrays to those recorded by traditional earthquake sensor networks. Using the wide coverage provided by the pipeline arrays, we estimate the event locations. Such fiber-optic DAS networks can potentially play a role in earthquake early-warning systems, allowing actions to be taken to minimize the impact of an earthquake on critical infrastructure components. While many such fiber

  20. Defeating Earthquakes

    Science.gov (United States)

    Stein, R. S.

    2012-12-01

    The 2004 M=9.2 Sumatra earthquake claimed what seemed an unfathomable 228,000 lives, although because of its size, we could at least assure ourselves that it was an extremely rare event. But in the short space of 8 years, the Sumatra quake no longer looks like an anomaly, and it is no longer even the worst disaster of the Century: 80,000 deaths in the 2005 M=7.6 Pakistan quake; 88,000 deaths in the 2008 M=7.9 Wenchuan, China quake; 316,000 deaths in the M=7.0 Haiti, quake. In each case, poor design and construction were unable to withstand the ferocity of the shaken earth. And this was compounded by inadequate rescue, medical care, and shelter. How could the toll continue to mount despite the advances in our understanding of quake risk? The world's population is flowing into megacities, and many of these migration magnets lie astride the plate boundaries. Caught between these opposing demographic and seismic forces are 50 cities of at least 3 million people threatened by large earthquakes, the targets of chance. What we know for certain is that no one will take protective measures unless they are convinced they are at risk. Furnishing that knowledge is the animating principle of the Global Earthquake Model, launched in 2009. At the very least, everyone should be able to learn what his or her risk is. At the very least, our community owes the world an estimate of that risk. So, first and foremost, GEM seeks to raise quake risk awareness. We have no illusions that maps or models raise awareness; instead, earthquakes do. But when a quake strikes, people need a credible place to go to answer the question, how vulnerable am I, and what can I do about it? The Global Earthquake Model is being built with GEM's new open source engine, OpenQuake. GEM is also assembling the global data sets without which we will never improve our understanding of where, how large, and how frequently earthquakes will strike, what impacts they will have, and how those impacts can be lessened by