WorldWideScience

Sample records for compound specific 13c

  1. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Osenbrueck, K.; Heidinger, M.; Voropaev, A.; Ertl, S.; Eichinger, L.

    2002-01-01

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13 C/ 12 C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  2. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    Science.gov (United States)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  3. Testing compound-specific δ13C of amino acids in mussels as a new approach to determine the average 13C values of primary production in littoral ecosystems

    Science.gov (United States)

    Vokhshoori, N. L.; Larsen, T.; McCarthy, M.

    2012-12-01

    Compound-specific isotope analysis of amino acids (CSI-AA) is a technique used to decouple trophic enrichment patterns from source changes at the base of the food web. With this new emerging tool, it is possible to precisely determine both trophic position and δ15N or δ13C source values in higher feeding organisms. While most work to date has focused on nitrogen (N) isotopic values, early work has suggested that δ13C CSI-AA has great potential as a new tracer both to a record δ13C values of primary production (unaltered by trophic transfers), and also to "fingerprint" specific carbon source organisms. Since essential amino acids (EAA) cannot be made de novo in metazoans but must be obtained from diet, the δ13C value of the primary producer is preserved through the food web. Therefore, the δ13C values of EAAs act as a unique signature of different primary producers and can be used to fingerprint the dominant carbon (C) source driving primary production at the base of the food web. In littoral ecosystems, such as the California Upwelling System (CUS), the likely dominant C sources of suspended particulate organic matter (POM) pool are kelp, upwelling phytoplankton or estuarine phytoplankton. While bulk isotopes of C and N are used extensively to resolve relative consumer hierarchy or shifting diet in a food web, we found that the δ13C bulk values in mussels cannot distinguish exact source in littoral ecosystems. Here we show 15 sites within the CUS, between Cape Blanco, OR and La Jolla, CA where mussels were sampled and analyzed for both bulk δ13C and CSI-AA. We found no latitudinal trends, but rather average bulk δ13C values for the entire coastal record were highly consistent (-15.7 ± 0.9‰). The bulk record would suggest either nutrient provisioning from kelp or upwelled phytoplankton, but 13C-AA fingerprinting confines these two sources to upwelling. This suggests that mussels are recording integrated coastal phytoplankton values, with the enriched

  4. Identification of animal fats via compound specific δ13C values of individual fatty acids: assessments of results for reference fats and lipid extracts of archaeological pottery vessels

    Directory of Open Access Journals (Sweden)

    Richard P. Evershed

    2002-12-01

    Full Text Available The possibility of obtaining molecular information from lipid residues associated with archaeological pottery has dramatically increased the potential for deriving new information on the use of ancient vessels and the commodities processed therein. Motivated by the high proportion of the archaeological potsherds that have been shown to contain animal fats, a new approach invol- ving compound specific stable isotope analysis of remnant fats has been developed to retrieve infor- mation which will allow new insights into animal exploitation, dietary preferences and vessel use amongst prehistoric peoples. The new approach uses the δ13C values of the major saturated fatty acid (C16:0 and C18:0 determined by gas chromatography-combustion-isotope ratio mass spectrometry (GC–C–IRMS to characterise the origins of animal fat recovered from archaeological pottery.

  5. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of specific SOM

  6. Catalytic dehydration of ethanol for poly 13 C compounds synthesis

    International Nuclear Information System (INIS)

    Almasan, Valer; Marginean, Petru; Lazar, Mihaela; Tusa, Florina

    2003-01-01

    Classical methods for the synthesis of organic compounds are not very well applied in the case of 13 C labeled compounds. One of the principal demands is to find the best method to transform a small quantity of isotopic reagent with a very high yield. In this case to obtain 13 C 2 chloroethanol from 13 C 2 ethanol there are two synthesis steps: - catalytic dehydration of ethanol to ethylene; - ethylene double bounding saturation: either via ethylene oxide (30% yield) or in diluted solution of chlorine. For the first step of synthesis we choose the thermal dehydration over alumina catalyst at 400 deg C. There were tested 2 samples of g alumina with 255 m 2 /g and 355 m 2 /g with very good results. In the second step of the synthesis we used the chlorine addition to ethylene in very diluted water solution. We have built a reactor which combined the two steps of this synthesis method to produce 13 C 2 chloroethanol from 13 C 2 ethanol. The global yield of method was 42%. (authors)

  7. Analysis of 13C-mixed triacylglycerol in stool by bulk (EA-IRMS) and compound specific (GC/MS) methods.

    Science.gov (United States)

    Slater, C; Ling, S C; Preston, T; Weaver, L T

    2002-06-01

    This paper was presented in poster form at the 17th International Congress of Nutrition, August 27-31, Vienna, Austria (Annals of Nutrition & Metabolism 2001; 45(Suppl.1):349). Some of the data were also presented in poster form at the British Society of Gastroenterology Meeting, March 18-21, Glasgow, UK (Gut 2001; 48(Suppl.1):A91). The 13C-mixed triacylglycerol (MTG) breath test is used to measure intraluminal fat digestion. In normal digestion, 20-40% of the ingested 13C label is recovered in breath CO2. We aimed to identify the proportions of ingested label excreted in stool, as well as breath following ingestion of 13C-MTG by children with impaired exocrine pancreatic function and healthy controls. 13C enrichment of breath samples was measured by continuous flow isotope ratio mass spectrometry (IRMS) and cumulative percent dose recovered (cPDR) in 10 h was calculated. Total 13C of a faecal fat extract from each stool was measured by elemental analyser-IRMS, and 13C enrichment and concentration of the TBDMS derivative of octanoic acid was measured by GC/MS after hydrolysis of the fat extract. Stool 5-day cPDR was calculated. Mean breath cPDR was 35%. Mean cPDR in stool by combustion-IRMS and GC/ MS, respectively, was 0.8% and 1.0%. Therefore, the remaining 64% of the 13C label must remain in the body and variability in breath cPDR is due to postabsorptive rather than predigestive factors.

  8. An estimation of Central Iberian Peninsula atmospheric δ13C and water δD in the Upper Cretaceous using pyrolysis compound specific isotopic analysis (Py-CSIA) of a fossil conifer.

    Science.gov (United States)

    González-Pérez, José A.; Jiménez-Morillo, Nicasio T.; De la Rosa, José M.; Almendros, Gonzalo; González-Vila, Francisco J.

    2015-04-01

    Frenelopsis is a frequently found genus of the Cretaceous floras adapted to dry, saline and in general to environmental conditions marked by severe water stress [1]. Stable isotope analysis of fossil organic materials can be used to infer palaeoenvironmental variables helpful to reconstruct plant paleohabitats [2]. In this study stable isotope analysis of organic fossil remains (FR) and humic fractions (FA, HA and humin) of Frenelopsis oligiostomata are studied in bulk (C, H, O, N IRMS) and in specific compounds released by pyrolysis (C, H, Py-CSIA). Well preserved F. oligiostomata fossils were handpicked from a limestone included in compacted marls from Upper Cretaceous (Senonian c. 72 Mya) in Guadalix de la Sierra (Madrid, Spain) [3]. The fossils were decarbonated with 6M HCl. Humic substances were extracted from finely ground fossil remains (FR) by successive treatments with 0.1M Na4P2O7 + NaOH [4]. The extract was acidified resulting into insoluble HA and soluble FA fractions. The HA and FA were purified as in [5] and [6] respectively. Bulk stable isotopic analysis (δ13C, δD, δ18O, δ15N IRMS) was done in an elemental micro-analyser coupled to a continuous flow Delta V Advantage isotope ratio mass spectrometer (IRMS). Pyrolysis compound specific isotopic analysis Py-CSIA (δ13C, δD): was done by coupling a double-shot pyrolyzer to a chromatograph connected to an IRMS. Structural features of specific peaks were inferred by comparing/matching mass spectra from conventional Py-GC/MS (data not shown) with Py-GC/IRMS chromatograms obtained using the same chromatographic conditions. Bulk C isotopic signature found for FR (-20.5±0.02 ‰) was in accordance with previous studies [2, 7-9]. This heavy isotopic δ13C signature indicates a depleted stomatal conductance and paleoenvironmental growth conditions of water and salt stress. This is in line with the morphological and depositional characteristics [3] confirming that F. oligostomata was adapted to highly xeric

  9. Position-specific 13C distributions within propane from experiments and natural gas samples

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  10. Position-specific 13C distributions within propane from experiments and natural gas samples

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  11. Site-specific 13C content by quantitative isotopic 13C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    International Nuclear Information System (INIS)

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S.

    2013-01-01

    Graphical abstract: -- Highlights: •First ring test on isotopic 13 C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic 13 C NMR spectrometry, which is able to measure intra-molecular 13 C composition, is of emerging demand because of the new information provided by the 13 C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic 13 C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular 13 C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic 13 C NMR was then assessed on vanillin from three different origins associated with specific δ 13 C i profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ 13 C i in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results

  12. Site-specific {sup 13}C content by quantitative isotopic {sup 13}C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst [Firmenich SA, Corporate R and D Division, P.O. Box 239, 1211 Geneva 8 (Switzerland); Gilbert, Alexis; Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Pagelot, Alain [Bruker Biospin SAS, 34 rue de l‘Industrie, 67166 Wissembourg Cedex (France); Moskau, Detlef; Moreno, Aitor [Bruker Biospin AG, Industriestrasse 26, 8117 Fällanden (Switzerland); Schleucher, Jürgen [Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå (Sweden); Reniero, Fabiano; Holland, Margaret; Guillou, Claude [European Commission, Joint Research Centre – Institute for Health and Consumer Protection, via E. Fermi 2749, I-21027 Ispra (Italy); Silvestre, Virginie; Akoka, Serge [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France)

    2013-07-25

    Graphical abstract: -- Highlights: •First ring test on isotopic {sup 13}C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic {sup 13}C NMR spectrometry, which is able to measure intra-molecular {sup 13}C composition, is of emerging demand because of the new information provided by the {sup 13}C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic {sup 13}C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular {sup 13}C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic {sup 13}C NMR was then assessed on vanillin from three different origins associated with specific δ{sup 13}C{sub i} profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ{sup 13}C{sub i} in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  13. Microbial Metabolism in Soil at Subzero Temperatures: Adaptation Mechanisms Revealed by Position-Specific 13C Labeling

    Directory of Open Access Journals (Sweden)

    Ezekiel K. Bore

    2017-05-01

    Full Text Available Although biogeochemical models designed to simulate carbon (C and nitrogen (N dynamics in high-latitude ecosystems incorporate extracellular parameters, molecular and biochemical adaptations of microorganisms to freezing remain unclear. This knowledge gap hampers estimations of the C balance and ecosystem feedback in high-latitude regions. To analyze microbial metabolism at subzero temperatures, soils were incubated with isotopomers of position-specifically 13C-labeled glucose at three temperatures: +5 (control, -5, and -20°C. 13C was quantified in CO2, bulk soil, microbial biomass, and dissolved organic carbon (DOC after 1, 3, and 10 days and also after 30 days for samples at -20°C. Compared to +5°C, CO2 decreased 3- and 10-fold at -5 and -20°C, respectively. High 13C recovery in CO2 from the C-1 position indicates dominance of the pentose phosphate pathway at +5°C. In contrast, increased oxidation of the C-4 position at subzero temperatures implies a switch to glycolysis. A threefold higher 13C recovery in microbial biomass at -5 than +5°C points to synthesis of intracellular compounds such as glycerol and ethanol in response to freezing. Less than 0.4% of 13C was recovered in DOC after 1 day, demonstrating complete glucose uptake by microorganisms even at -20°C. Consequently, we attribute the fivefold higher extracellular 13C in soil than in microbial biomass to secreted antifreeze compounds. This suggests that with decreasing temperature, intracellular antifreeze protection is complemented by extracellular mechanisms to avoid cellular damage by crystallizing water. The knowledge of sustained metabolism at subzero temperatures will not only be useful for modeling global C dynamics in ecosystems with periodically or permanently frozen soils, but will also be important in understanding and controlling the adaptive mechanisms of food spoilage organisms.

  14. Metabolism and transport studies of exogenous compounds thanks to 13C uniform isotopic enrichment

    International Nuclear Information System (INIS)

    Bravin, F.

    2008-12-01

    The study of many exogenous compounds does not raise difficulties when they are isolated, purified and in quantities sufficient for the usual detection methods used in biology (Chromatography, NMR, Mass Spectrometry, etc). When they are found in a biological fluid (blood, urines,..), they are often in infinitesimal amount such as the effect of their biological matrices or the background noise that make their detection and their quantification very delicate. The use of internal standards uniformly enriched with carbon 13 and/or nitrogen 15 makes it possible to obtain a signal more easily recognizable and identifiable thanks to the presence of the isotopes (peaks shifted in a mass spectrum for example). This is why, complementary to the analytical and biochemical studies of zearalenone (ZEN) metabolism, we were interested in building mass spectra of molecules enriched (rates between 0 and 1) by various isotopes ( 13 C, 15 N, 18 O and 2 H). In parallel we studied the influence of the 13 C enrichment on the reactivity of a given molecule, from a theoretical and an experimental point of view. (author)

  15. Gas chromatography and isotope ratio mass spectrometry of Pinot Noir wine volatile compounds13C) and solid residues (δ13C, δ15N) for the reassessment of vineyard water-status.

    Science.gov (United States)

    Spangenberg, Jorge E; Vogiatzaki, Maria; Zufferey, Vivian

    2017-09-29

    This paper describes a novel approach to reassess the water status in vineyards based on compound-specific isotope analysis (CSIA) of wine volatile organic compounds13 C VOC/VPDB ) and bulk carbon and nitrogen isotopes, and the C/N molar ratios of the wine solid residues (δ 13 C SR/VPDB , δ 15 N SR/Air-N2 ). These analyses link gas chromatography/combustion and elemental analysis to isotope ratio mass spectrometry (GC/C/IRMS, EA/IRMS). Field-grown cultivars of Pinot Noir grapevines were exposed during six growing seasons (2009-2014) to controlled soil water availability, while maintaining identical the other environmental variables and agricultural techniques. Wines were produced from the grapes by the same oenological protocol. This permitted for the assessment of the effects in the biochemistry of wines solely induced by the changes in the plant-soil water status. This mimicked the more recurrent and prolonged periods of soil water deficiency due to climate changes. Water stress in grapevine was assessed by the measurement of the predawn leaf water potential (Ψ pd ) and the stable carbon isotope composition of the berry sugars during harvest (must sugars). For quantitation purposes and the normalization of the measured stable carbon isotope ratios of the VOCs, the wine samples were spiked with three standard compounds with known concentration and δ 13 C VPDB values. VOCs were extracted by liquid-liquid extraction and analyzed by gas chromatography/flame ionization detection (GC/FID), gas chromatography/mass spectrometry (GC/MS), and GC/C/IRMS. δ 13 C values were obtained for eighteen VOCs. The solid residues were obtained by freeze-drying wine aliquots and were analyzed for their C and N content and isotope composition by EA/IRMS. All the isotopic ratios (δ 13 C SR , δ 15 N SR , δ 13 C VOC ) are highly correlated with the Ψ pd values, indicating that the proposed gas chromatography and isotope ratio mass spectrometry approach is a useful tool to

  16. Reconstructing past climate using a multi-specific 13C-approach

    Science.gov (United States)

    Ferrio, Juan Pedro; Aguilera, Mónica; Voltas, Jordi

    2010-05-01

    Carbon isotope composition (δ13C) in tree-rings has become routinely used in palaeoclimatic research for the assessment of changes in water availability in seasonally dry climates. Long tree-ring chronologies, however, are relatively scarce, whereas the original climate signal of wood δ13C is usually well preserved in fossil charcoal [1, 4] Accordingly, charcoal δ13C records are an alternative to classic dendroclimatology to characterize past changes in water availability (e.g. precipitation). In this work, we explore the potential for palaeoenvironmental research of two co-occuring Mediterranean species with contrasting strategies to cope with drought [2]: Aleppo pine (Pinus halepensis Mill.) and holm oak (Quercus ilex L.). We hypothesize that the differential sensitivity of pine and oak to climate variables can be exploited to refine palaeoclimate reconstructions based on δ13C in wood or charcoal. For this purpose, we put together published tree-core-δ13C data from 40 sites across Spain [2, 3] and new δ13C data from 15 sites where both species co-existed in mixed stands. The sites were selected to represent the range of variation in thermal and precipitation regimes for these species, while avoiding any correlation between precipitation and temperature across sites. Five dominant or codominant trees were selected per site, and microcores including the most recently formed tree rings were obtained with a Trephor tool [5]. Fragments were oven-dried at 60 ° C for 48 h and milled separately to a fine powder using a ball mill (Retsch MM301, Haan, Germany) for δ13C analysis. Current meteorological data (monthly estimates of air mean temperature (minimum, mean and maximum), precipitation and solar radiation) was obtained from the Digital Climatic Atlas of the Iberian Peninsula (http://opengis.uab.es/wms/iberia/index.htm) (spatial resolution of 200 m). A family of models (either linear or exponential) best predicting monthly and annual precipitation from δ13C

  17. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    Science.gov (United States)

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  18. Investigating tumor perfusion and metabolism using multiple hyperpolarized 13C compounds: HP001, pyruvate and urea

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Larson, Peder E.Z.; Hu, Simon

    2012-01-01

    The metabolically inactive hyperpolarized agents HP001 (bis-1,1-(hydroxymethyl)-[1-13C]cyclopropane-d8) and urea enable a new type of perfusion magnetic resonance imaging based on a direct signal source that is background-free. The addition of perfusion information to metabolic information obtained...... (T1=95 s ex vivo, 32 s in vivo at 3 T) using a pulse sequence with balanced steady-state free precession and ramped flip angle over time for efficient utilization of the hyperpolarized magnetization and three-dimensional echo-planar spectroscopic imaging of urea copolarized with [1-13C...... of separate dynamic HP001 imaging and copolarized pyruvate/urea imaging were compared. A strong and significant correlation (R=0.73, P=.02) detected between the urea and HP001 data confirmed the value of copolarizing urea with pyruvate for simultaneous assessment of perfusion and metabolism....

  19. Assessing microbial utilization of free versus sorbed Alanine by using position-specific 13C labeling and 13C-PLFA analysis

    Science.gov (United States)

    Herschbach, Jennifer; Apostel, Carolin; Spielvogel, Sandra; Kuzyakov, Yakov; Dippold, Michaela

    2016-04-01

    Microbial utilization is a key transformation process of soil organic matter (SOM). Sorption of low molecular weight organic substances (LMWOS) to soil mineral surfaces blocks or delays microbial uptake and therefore mineralization of LMWOS to CO2, as well as all other biochemical transformations. We used position-specific labeling, a tool of isotope applications novel to soil science, combined with 13C-phospholipid fatty acid (PLFA) analysis, to assess microbial utilization of sorbed and non-sorbed Alanine in soil. Alanine has various functional groups enabling different sorption mechanisms via its positive charge (e.g. to clay minerals by cation exchange), as well as via its negative charge (e.g. to iron oxides by ligand exchange). To assess changes in the transformation pathways caused by sorption, we added uniformly and position-specifically 13C and 14C labeled Alanine to the Ap of a loamy Luvisol in a short-term (10 days) incubation experiment. To allow for sorption of the tracer solution to an aliquot of this soil, microbial activity was minimized in this subsample by sterilizing the soil by γ-radiation. After shaking, the remaining solutions were filtered and the non-sorbed Alanine was removed with Millipore water and then added to non-sterilized soil. For the free Alanine treatment, solutions with Alanine of similar amount and isotopic composition were prepared, added to the soil and incubated as well. The respired CO2 was trapped in NaOH and its 14C-activity was determined at increasing times intervals. Microbial utilization of Alanine's individual C positions was evaluated in distinct microbial groups classified by 13C-PLFA analysis. Sorption to soil minerals delayed respiration to CO2 and reduced initial respiration rate by 80%. Irrespective of sorption, the highest amount was respired from the carboxylic position (C-1), whereas the amino-bound (C-2) and the methylic position (C-3) were preferentially incorporated into PLFA of microorganisms due to the

  20. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J.; Remaud, Gérald S.

    2015-01-01

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by 13 C NMR (irm- 13 C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources. - Highlights: • Position-Specific Isotope Analysis (PSIA) by 13 C NMR spectrometry. • PSIA on isotope fractionation during several vaporization processes. • PSIA for isotope profiling in environment pollutants. • Intramolecular 13 C reveal normal and inverse effects, bulk values being unchanged. - PSIA in pollutants during evaporation processes shows more detailed information for discerning the nature of the process involved than does bulk isotope measurements

  1. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    Science.gov (United States)

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Metabolic Response of Soil Microorganisms to Frost: A New Perspective from Position-specific 13C Labeling

    Science.gov (United States)

    Bore, E. K.; Apostel, C.; Halicki, S.; Dippold, M. A.; Kuzyakov, Y.

    2016-12-01

    Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen

  3. Species specific and environment induced variation of δ13C and δ15N in alpine plants

    Directory of Open Access Journals (Sweden)

    Yang eYang

    2015-06-01

    Full Text Available Stable carbon and nitrogen isotope signals in plant tissues integrate plant-environment interactions over long periods. In this study, we hypothesized that humid alpine life conditions are narrowing the scope for significant deviations from common carbon, water and nitrogen relations as captured by stable isotope signals. We explored the variation in δ13C and δ15N in 32 plant species from tissue type to ecosystem scale across a suite of locations at c. 2500 m elevation in the Swiss Alps. Foliar δ13C and δ15N varied among species by about 3-4 ‰ and 7-8 ‰ respectively. However, there was no overall difference in means of δ13C and δ15N for species sampled in different plant communities or when bulk plant dry matter harvests of different plant communities were compared. δ13C was found to be highly species specific, so that the ranking among species was mostly maintained across 11 habitats. However, δ15N varied significantly from place to place in all species (a range of 2.7 ‰ except in Fabaceae (Trifolium alpinum and Juncaceae (Luzula lutea. There was also a substantial variation among individuals of the same species collected next to each other. No difference was found in foliar δ15N of non-legumes, which were either collected next to or away from the most common legume, T. alpinum. δ15N data place Cyperaceae and Juncaceae, just like Fabaceae, in a low discrimination category, well separated from other families. Soil δ15N was higher than in plants and increased with soil depth. The results indicate a high functional diversity in alpine plants that is similar to that reported for low elevation plants. We conclude that the surprisingly high variation in δ13C and δ15N signals in the studied high elevation plants is largely species specific (genetic and insensitive to obvious environmental cues.

  4. NMR spectroscopy of organic compounds of selenium and tellurium. Communication 9. Chemical shifts of /sup 13/C in isological series of unsaturated ethers, sulfides, selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A.; Bzhezovskii, V.M.; Kushnarev, D.F.; Proidakov, A.G. (Irkutskii Gosudarstvennyj Univ. (USSR))

    1981-06-01

    The effects of heteroatoms Eh(Eh=O, S, Se, Te) on /sup 13/C chemical shifts in eleven isological series of R/sup 1/-Eh-R/sup 2/ unsaturated compounds are compared. A linear relation between /sup 13/C nuclei screening and tEh electronegativity is observed. An assumption is suggested that both likeness of the effects of 6A and 7A group elements on /sup 13/C chemical shifts of R/sup 1/ and R/sup 2/ substituents and their difference for elements of the 4A group are caused by unbonded interactions of the substituents with unshared electron pairs of heteroatoms.

  5. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  6. Other compounds isolated from Simira glaziovii and the 1H and 13C NMR chemical shift assignments of new 1-epi-castanopsol

    International Nuclear Information System (INIS)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino; Braz-Filho, Raimundo; Carvalho, Mario G. de

    2012-01-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D 1 H, 13 C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of 1 H and 13 C NMR chemical shift assignments. (author)

  7. The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment.

    Science.gov (United States)

    Bouzier, A K; Thiaudiere, E; Biran, M; Rouland, R; Canioni, P; Merle, M

    2000-08-01

    Lactate metabolism in the adult rat brain was investigated in relation with the concept of lactate trafficking between astrocytes and neurons. Wistar rats were infused intravenously with a solution containing either [3-(13)C]lactate (534 mM) or both glucose (750 mM) and [3-(13)C]lactate (534 mM). The time courses of both the concentration and (13)C enrichment of blood glucose and lactate were determined. The data indicated the occurrence of [3-(13)C]lactate recycling through liver gluconeogenesis. The yield of glucose labeling was, however, reduced when using the glucose-containing infusate. After a 20-min or 1-h infusion, perchloric acid extracts of the brain tissue were prepared and subsequently analyzed by (13)C- and (1)H-observed/(13)C-edited NMR spectroscopy. The (13)C labeling of amino acids indicated that [3-(13)C]lactate was metabolized in the brain. Based on the alanine C3 enrichment, lactate contribution to brain metabolism amounted to 35% under the most favorable conditions used. By contrast with what happens with [1-(13)C]glucose metabolism, no difference in glutamine C2 and C3 labeling was evidenced, indicating that lactate was metabolized in a compartment deprived of pyruvate carboxylase activity. This result confirms, for the first time from an in vivo study, that lactate is more specifically a neuronal substrate.

  8. Inter- and intra-specific variability in δ13C and δ18O values of freshwater gastropod shells from Lake Lednica, western Poland

    Science.gov (United States)

    Apolinarska, Karina; Pełechaty, Mariusz

    2017-09-01

    This study focuses on the inter- and intra-specific variability in δ13C and δ18O values of shells and opercula of gastropods sampled live from the littoral zone of Lake Lednica, western Poland. The δ13C and δ18O values were measured in individual opercula of Bithynia tentaculata and in shells of Bithynia tentaculata, Gyraulus albus, Gyraulus crista, Lymnaea sp., Physa fontinalis, Radix auricularia, Theodoxus fluviatilis and Valvata cristata. The gastropods selected for the study are among the species most commonly found in European Quaternary lacustrine sediments. The carbon isotope composition of the gastropod shells was species-specific and the same order of species from the most to the least 13C-depleted was observed at all sites sampled. Differences in shell δ13C values between species were similar at all sampling sites, thus the factors influencing shell isotopic composition were interpreted as species-specific. The δ18O values of shells were similar in all the species investigated. Significant intra-specific variability in shell δ13C and δ18O values was observed not only within the populations of Lake Lednica, which can be explained by heterogeneity of δ13C DIC, δ18O water and water temperature between the sites where macrophytes with snails attached were sampled, but also between individuals sampled from restricted areas of the lake's bottom. The latter points to the importance of factors related to the ontogeny of individual gastropods.

  9. Determination of the anomeric specificity of the Escherichia coli CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyltransferase by 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Kohlbrenner, W.E.; Fesik, S.W.

    1985-01-01

    [99%, 1- 13 C]- and [90%, 2- 13 C]3-deoxy-D-manno-octulosonic acid (KDO) were prepared enzymatically and used to determine the anomeric specificity of the CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyl transferase (CMP-KDO synthetase) by 13 C NMR spectroscopy. Addition of CMP-KDO synthetase to reaction mixtures containing either 1- 13 C- or 2- 13 C-labeled KDO resulted in rapid CMP-KDO formation which was accompanied by a substantial decrease in the 13 C-enriched resonances of the beta-pyranose form of KDO relative to the resonances of other KDO species in solution, demonstrating that the beta-pyranose is the preferred substrate. Concomitant with the production of CMP-KDO was the appearance of peaks at 174.3 and 101.4 ppm when [1- 13 C]- and [2- 13 C]KDO, respectively, were used as substrates. The correspondence of these resonances to the enriched carbons in CMP-KDO was confirmed by the expected 3-bond (3JP,C-1 = 6.9 Hz) and 2-bond coupling (2JP,C-2 = 8.3 Hz) between the labeled carbons and the ketosidically linked phosphoryl group. A large coupling (3J = 5.7 Hz) was observed in proton-coupled spectra of CMP-[1- 13 C]KDO between carbon 1 and the axial proton at carbon 3 of KDO. The magnitude of this coupling constant supports a diaxial relationship between these two groups and, along with chemical shift data, indicates that KDO retains the beta-configuration when linked in CMP-KDO

  10. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    Science.gov (United States)

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.

  11. One-azabicyclic compounds. 22. Stereochemistry and /sup 13/C NMR spectra of salts of pyrrolizidine and its homologs with protonic acids

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, O.A.; Skvortsov, I.M.

    1986-06-01

    /sup 13/C NMR spectra were obtained for pyrrolizidinium salts and their homologs and their signals were assigned. With the exception of highly strained cis-3,8-H-cis-5,8-H-3,5-dimethylpyrrolizidine (VI), all the bases studied upon their direct mixing with CF/sub 3/CO/sub 2/H form salts only with cis-fused rings in the cation. Mixtures of salts with cis- and trans-fused pyrrolizidinium fragments are formed upon the reaction of cis-3,8-H-methyl- (III) and cis-3,8-H-cis-5,8-H-3,5-dimethylpyrrolizidine (VI) under conditions close to those for kinetically-controlled amine protonation. The /sup 13/C NMR spectra of the isomeric pyrrolizidinium salts obtained as a result of the absorption of base VI by sulfuric acid were used to evaluate the conformational equilibrium in the starting compound VI. The /sup 13/C NMR chemical shifts of unsubstituted trans-fused pyrrolizidinium salts were predicted.

  12. Study of the direct detection of crosslinking in hydrocarbons by 13C-NMR. II. Identification of crosslink in model compound and application to irradiate paraffins

    International Nuclear Information System (INIS)

    Bennett, R.L.; Keller, A.; Stejny, H.H.; Murray, M.

    1976-01-01

    A 13 C-NMR investigation was carried out in aid of direct detection of crosslinks in hydrocarbons with the future objective of studying radiation-induced crosslinking in polyethylene by a direct method. The resonance signal due to a tertiary carbon atom appropriate to a crosslink far remote from molecular ends has been identified in a definitive manner with the aid of the H-shaped model compound 1,1,2,2-tetra(tridecyl)ethane synthetized in Part I of this study. This identification was then put to use in the examination of the irradiated linear paraffins n-hexadecane and n-eicosane, where it enabled the detection of radiation-induced crosslinks. This crosslinking could then be associated with corresponding changes in molecular weight (dimer, trimer formation) as revealed by discrete peaks in the gel-permeation chromatograms of the same samples and randomness of the crosslinking process in the liquid state of these compounds being inferred

  13. Bacterial production of site specific {sup 13}C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ramaraju, Bhargavi; McFeeters, Hana; Vogler, Bernhard; McFeeters, Robert L., E-mail: robert.mcfeeters@uah.edu [University of Alabama in Huntsville, Department of Chemistry (United States)

    2017-01-15

    Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific {sup 13}C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct {sup 13}C chemical shifts and multiple magnetically equivalent {sup 1}H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with {sup 13}C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated {sup 1}H-{sup 13}C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study.

  14. Chiral effects on the 13C resonances of α-tocopherol and related compounds. A novel illustration of Newman's rule of six

    International Nuclear Information System (INIS)

    Brownstein, S.; Burton, G.W.; Hughes, L.; Ingold, K.U.

    1989-01-01

    The 100-MHz 13 C NMR spectrum of (2R,4'R,8'R)-α-tocopherol (natural vitamin E) has been completely assigned with the aid of a number of selectively deuteriated (2R,4'R,8'R)-α-tocopherols. The 13 C NMR spectrum of (2RS,4'RS,8'RS)-α-tocopherol (all-racemic, synthetic vitamin E) has also been measured. Many of the individual carbons in this all-racemic mixture of eight α-tocopherol stereoisomers give more than one resonance with eight of the carbons (2-CH 3 , 2',3',4',4'-CH 3 , 5', 8', and 9') giving the maximum number of four resonances from each of the four enantiomeric pairs; these resonances have also been assigned. The structurally related 5'-hydroxy-2-(4',8',12'-trimethyltridecyl)-2,4,6,7-tetramethyl-2,3,-dihydrobenzofuran (HTDBF) has been synthesized for the first time in the 2R,4'R,8'R and 2S,4'R,8'R configurations and their 13 C resonances have been assigned. In its all-racemic form this compound also shows up to four resonances from a single carbon. Related observations have been made with phytol and isophytol. A careful examination of these chirally induced chemical shift differences for the individual carbon atoms, Δ, reveals a bond-alternation effect with maxima at a separation of one, three, and five bonds from the closest chiral center and with the maximum at a five-bond separation being greater than that at a three-bond separation. 32 references, 2 figures, 4 tables

  15. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.

    Science.gov (United States)

    Iida, K; Hidoh, O; Fukami, J; Kajiwara, M

    1991-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy has been used to observe the transformations of [1-13C]-D-glucose to [1,1'-13C2]-D-trehalose, and [3-13C]-L-alanine to [2-13C]-L-glutamic acid in the living body of Gryllodes sigillatus. [3-13C]-D-Alanine was not metabolized. The metabolic rate of [1-13C]-D-glucose was found to be altered by prior injection of boric acid.

  16. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

    Science.gov (United States)

    Ghirardo, Andrea; Gutknecht, Jessica; Zimmer, Ina; Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2011-02-28

    Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission. In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%). We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.

  17. Correlation between the 12C+12C, 12C+13C, and 13C+13C fusion cross sections

    Science.gov (United States)

    Notani, M.; Esbensen, H.; Fang, X.; Bucher, B.; Davies, P.; Jiang, C. L.; Lamm, L.; Lin, C. J.; Ma, C.; Martin, E.; Rehm, K. E.; Tan, W. P.; Thomas, S.; Tang, X. D.; Brown, E.

    2012-01-01

    The fusion cross section for 12C+13C has been measured down to Ec.m.=2.6 MeV, at which the cross section is of the order of 20 nb. By comparing the cross sections for the three carbon isotope systems, 12C+12C, 12C+13C, and 13C+13C, it is found that the cross sections for 12C+13C and 13C+13C provide an upper limit for the fusion cross section of 12C+12C over a wide energy range. After calibrating the effective nuclear potential for 12C+12C using the 12C+13C and 13C+13C fusion cross sections, it is found that a coupled-channels calculation with the ingoing wave boundary condition (IWBC) is capable of predicting the major peak cross sections in 12C+12C. A qualitative explanation for this upper limit is provided by the Nogami-Imanishi model and by level density differences among the compound nuclei. It is found that the strong resonance found at 2.14 MeV in 12C+12C exceeds this upper limit by a factor of more than 20. The preliminary result from the most recent measurement shows a much smaller cross section at this energy, which agrees with our predicted upper limit.

  18. Validation of GC-IRMS techniques for δ13C and δ2H CSIA of organophosphorus compounds and their potential for studying the mode of hydrolysis in the environment.

    Science.gov (United States)

    Wu, Langping; Kümmel, Steffen; Richnow, Hans H

    2017-04-01

    Compound-specific stable isotope analysis (CSIA) is among the most promising tools for studying the fate of organic pollutants in the environment. However, the feasibility of multidimensional CSIA was limited by the availability of a robust method for precise isotope analysis of heteroatom-bearing organic compounds. We developed a method for δ 13 C and δ 2 H analysis of eight organophosphorus compounds (OPs) with different chemical properties. In particular, we aimed to compare high-temperature conversion (HTC) and chromium-based HTC (Cr/HTC) units to explore the limitations of hydrogen isotope analysis of heteroatom-bearing compounds. Analysis of the amount dependency of the isotope values (linearity analysis) of OPs indicated that the formation of HCl was a significant isotope fractionation process leading to inaccurate δ 2 H analysis in HTC. In the case of nonchlorinated OPs, by-product formation of HCN, H 2 S, or PH 3 in HTC was observed but did not affect the dynamic range of reproducible isotope values above the limit of detection. No hydrogen-containing by-products were found in the Cr/HTC process by use of ion trap mass spectrometry analysis. The accuracy of gas chromatography - isotope ratio mass spectrometry was validated in comparison with elemental analyzer - isotope ratio mass spectrometry. Dual-isotope fractionation yielded Λ values of 0 ± 0 at pH 7, 7 ± 1 at pH 9, and 30 ± 6 at pH 12, indicating the potential of 2D CSIA to characterize the hydrolysis mechanisms of OPs. This is the first report on the combination of δ 2 H and δ 13 C isotope analysis of OPs, and this is the first study providing a systematic evaluation of HTC and Cr/HTC for hydrogen isotope analysis using OPs as target compounds. Graphical Abstract Comparison of δ 2 H measurement of non-chlorinated and chlorinated OPs via GC-Cr/HTC-IRMS and GC-HTC-IRMS system.

  19. Application of 13C-labeling and 13C-13C COSY NMR experiments in the structure determination of a microbial natural product.

    Science.gov (United States)

    Kwon, Yun; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2014-08-01

    The elucidation of the structures of complex natural products bearing many quaternary carbons remains challenging, even in this advanced spectroscopic era. (13)C-(13)C COSY NMR spectroscopy shows direct couplings between (13)C and (13)C, which comprise the backbone of a natural product. Thus, this type of experiment is particularly useful for natural products bearing consecutive quaternary carbons. However, the low sensitivity of (13)C-based NMR experiments, due to the low natural abundance of the (13)C nucleus, is problematic when applying these techniques. Our efforts in the (13)C labeling of a microbial natural product, cyclopiazonic acid (1), by feeding (13)C-labeled glucose to the fungal culture, enabled us to acquire (13)C-(13)C COSY NMR spectra on a milligram scale that clearly show the carbon backbone of the compound. This is the first application of (13)C-(13)C COSY NMR experiments for a natural product. The results suggest that (13)C-(13)C COSY NMR spectroscopy can be routinely used for the structure determination of microbial natural products by (13)C-enrichment of a compound with (13)C-glucose.

  20. 13C- and 15N-labelled non-biogenic compounds used as stable isotope drugs for human liver function tests

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1989-01-01

    As a result of liver diseases, the elimination of certain drugs is retarded. After labelling a suitable drug with 13 C, the 13 CO 2 elimination rate serves as a liver function parameter. Current contributions to the 13 CO 2 breath test method are reviewed and related to the 14 CO 2 breath test proposals. In spite of several advantages of 13 C-labelled agents, some dissatisfaction has remained with the tests, especially at using them with infants. It is the necessity of face masks and the uncertainty to consider endogeneous CO 2 contributions diluting the exhaled 13 CO 2 . The problems are avoided if the other molecule site of the drug is labelled which is known to be eliminated via urine. With 15 N as a tracer, a suitable urine test using [ 15 N]-methacetin as agent has been proposed and put into practice. (author)

  1. Compound-specific radiocarbon analysis - Analytical challenges and applications

    Science.gov (United States)

    Mollenhauer, G.; Rethemeyer, J.

    2009-01-01

    Within the last decades, techniques have become available that allow measurement of isotopic compositions of individual organic compounds (compound-specific isotope measurements). Most often the carbon isotopic composition of these compounds is studied, including stable carbon (δ13C) and radiocarbon (Δ14C) measurements. While compound-specific stable carbon isotope measurements are fairly simple, and well-established techniques are widely available, radiocarbon analysis of specific organic compounds is a more challenging method. Analytical challenges include difficulty obtaining adequate quantities of sample, tedious and complicated laboratory separations, the lack of authentic standards for measuring realistic processing blanks, and large uncertainties in values of Δ14C at small sample sizes. The challenges associated with sample preparation for compound-specific Δ14C measurements will be discussed in this contribution. Several years of compound-specific radiocarbon analysis have revealed that in most natural samples, purified organic compounds consist of heterogeneous mixtures of the same compound. These mixtures could derive from multiple sources, each having a different initial reservoir age but mixed in the same terminal reservoir, from a single source but mixed after deposition, or from a prokaryotic organism using variable carbon sources including mobilization of ancient carbon. These processes not only represent challenges to the interpretation of compound-specific radiocarbon data, but provide unique tools for the understanding of biogeochemical and sedimentological processes influencing the preserved organic geochemical records in marine sediments. We will discuss some examples where compound-specific radiocarbon analysis has provided new insights for the understanding of carbon source utilization and carbon cycling.

  2. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Identification of solution products of lanthanoid (3) diethyldithiocarbamatohexamethyl phosphotriamide compounds from IR, electron and sup 1 H, sup 13 C, sup 31 P NMR absorption spectra. Identifikatsiya produktov rastvoreniya diehtilditiokarbamatogeksametil fosfotriamidnykh soedinenij lantanoidov (3) po IK, ehlektronnym i YaMR sup 1 H, sup 13 C, sup 31 P spektram pogloshcheniya

    Energy Technology Data Exchange (ETDEWEB)

    Skopenko, V V; Savost' yanova, A F; Trachevskij, V V; Gorbalyuk, A D; Sukhan, T A [Kievskij Gosudarstvennyj Univ., Kiev (Ukrainian SSR)

    1991-01-01

    By the methods of conductometry, IR, electron and {sup 1}H, {sup 13}C, {sup 31}P NMR spectroscopy nonaqueous solutions of the compounds (La(S{sub 2}CNEt{sub 2})Hmpa{sub 5})(BPh{sub 4}){sub 2}, Hmpa=OP(NMe{sub 2}){sub 3}; (Ln(S{sub 2}CNEt{sub 2}){sub 2}Hmpa{sub 3})BPh{sub 4}, Ln=Y, La-Lu; (Ln(S{sub 2}CNEt{sub 2}){sub 3}Hmpa{sub 2}), Ln=La-Gd, have been investigated. It is ascertained that bis-dithiocarbamate compounds are dissolved in all the studied solvents with preservation of composition and structure of lanthanide (3) inner coordination sphere. Tris-dithiocarbamates in nonaqueous solutions are subjected to reactions of ligand redistribution according to schemes depending on the solvent nature. In the process of dissolving of lanthanum monodithiocarbamate bond isomerization of dithiocarbamate groups occurs, which is pronounced in splitting of {sup 1}H and {sup 13}C NMR signals.

  4. Inter-laboratory comparison of elemental analysis and gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS). Part I: delta13C measurements of selected compounds for the development of an isotopic Grob-test.

    Science.gov (United States)

    Serra, F; Janeiro, A; Calderone, G; Rojas, J M Moreno; Rhodes, C; Gonthier, L A; Martin, F; Lees, M; Mosandl, A; Sewenig, S; Hener, U; Henriques, B; Ramalho, L; Reniero, F; Teixeira, A J; Guillou, C

    2007-03-01

    This study was directed towards investigating suitable compounds to be used as stable isotope reference materials for gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) calibration. Several compounds were selected from those used in the 'Grob-test' mixture. Oxygen- and nitrogen-containing substances were added to these compounds to allow the mixture to be used as a possible multi-isotopic calibration tool for 2H/1H, 13C/12C, 15N/14N and 18O/16O ratio determinations. In this paper we present the results of delta13C measurements performed by the consortium of the five laboratories taking part in this inter-calibration exercise. All the compounds were individually assessed for homogeneity, short-term stability and long-term stability by means of EA-IRMS, as required by the bureau communitaire de reference (BCR) Guide for Production of Certified Reference Materials. The results were compared then with the GC-C-IRMS measurements using both polar and non-polar columns, and the final mixture of selected compounds underwent a further certification exercise assessing limits of accuracy and reproducibility under specified GC-C-IRMS conditions. Copyright 2007 John Wiley & Sons, Ltd.

  5. Stable carbon isotope analysis (δ13C values) of polybrominated diphenyl ethers and their UV-transformation products

    International Nuclear Information System (INIS)

    Rosenfelder, Natalie; Bendig, Paul; Vetter, Walter

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are frequently detected in food and environmental samples. We used compound specific isotope analysis to determine the δ 13 C values of individual PBDEs in two technical mixtures. Within the same technical product (DE-71 or DE-79), BDE congeners were the more depleted in 13 C the higher brominated they were. In contrast, the products of light-induced hydrodebromination of BDE 47 and technical DE-79 were more enriched in 13 C because of more stable bonds between 13 C and bromine. As a result, the δ 13 C values of the irradiated solution progressed diametrically compared to those of the technical synthesis. The ratio of the δ 13 C values of BDE 47 to BDE 99 and of BDE 99 to BDE 153 are thus suggested as indicators to distinguish native technical products from transformation products. Ratios 1) is typical of transformation products. - Highlights: → δ 13 C values of PBDEs were determined by means of compound specific isotope analysis. → PBDEs in technical mixtures were the more depleted in 13 C the higher they were brominated. → Solutions of individual PBDEs and technical PBDE mixtures were irradiated by UV light. → δ 13 C values of irradiated PBDEs and technical PBDEs progressed diametrically. → Ratios of the δ 13 C values were used to distinguish native from transformed PBDEs. - Diametrically progressing δ 13 C values in technical mixtures and UV-transformation products of DE-79 may be useful for source appointment of PBDEs in environmental samples

  6. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Chrestensen, Inge Byg; Damager, Iben

    2011-01-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by 13C single-pulse (SP) magic-angle-spinning (MAS) and 13C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by 2H SP/MAS NMR experiments. The study shows that the arabinan side chains...... hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side...... chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose...

  7. Residue-specific membrane location of peptides and proteins using specifically and extensively deuterated lipids and {sup 13}C-{sup 2}H rotational-echo double-resonance solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Xie Li; Ghosh, Ujjayini; Schmick, Scott D.; Weliky, David P., E-mail: weliky@chemistry.msu.edu [Michigan State University, Department of Chemistry (United States)

    2013-01-15

    Residue-specific location of peptides in the hydrophobic core of membranes was examined using {sup 13}C-{sup 2}H REDOR and samples in which the lipids were selectively deuterated. The transmembrane topology of the KALP peptide was validated with this approach with substantial dephasing observed for deuteration in the bilayer center and reduced or no dephasing for deuteration closer to the headgroups. Insertion of {beta} sheet HIV and helical and {beta} sheet influenza virus fusion peptides into the hydrophobic core of the membrane was validated in samples with extensively deuterated lipids.

  8. Preparation of 15N-13C-fulminic acid

    International Nuclear Information System (INIS)

    Wilmes, R.; Winnewisser, M.

    1993-01-01

    The precursor for the title compound was prepared in a three-step synthesis. The 13 C-label was incorporated in the first step employing 2- 13 C-ethyl acetate and the 15 N-label in the last step, using 15 N-sodium nitrite. Upon pyrolysis the precursor forms three fragments, one of them being the title compound. (Author)

  9. Conditions to obtain precise and true measurements of the intramolecular {sup 13}C distribution in organic molecules by isotopic {sup 13}C nuclear magnetic resonance spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, Kevin [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Gilbert, Alexis [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Julien, Maxime [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Silvestre, Virginie; Robins, Richard J.; Akoka, Serge [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France)

    2014-10-10

    Highlights: • Evaluation of the trueness and precision criteria of isotopic {sup 13}C NMR spectrometry. • Use of bi-labelled [1,2-{sup 13}C{sub 2}]acetic acid to determine the performance of the instrumental response. • Inter-calibration of the {sup 13}C intramolecular composition of acetic acid using the technique GC-Py–irm-MS. - Abstract: Intramolecular {sup 13}C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic {sup 13}C NMR spectrometry provides a general tool for measuring the position-specific {sup 13}C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal {sup 13}C distribution, and (ii) an approach to determining the “absolute” position-specific {sup 13}C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the {sup 13}C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the {sup 13}C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH{sub 3} by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was

  10. Synthesis of specifically 15N- and 13C-labeled antitumor (2-Haloethyl)nitrosoureas. The study of their conformations in solution by nitrogen-15 and carbon-13 nuclear magnetic resonance and evidence for stereoelectronic control in their aqueous decomposition

    International Nuclear Information System (INIS)

    Lown, J.W.; Chauhan, S.M.S.

    1981-01-01

    The synthesis of certain specifically 15 N, 13 C, and 2 H isotope labeled 1-(2-chloroethyl)-3-alkyl-1-nitrosoureas (CENUs) is described. Spectroscopic examination of CENUs and their isotope-labeled counterparts by 1 H, 15 N, and 13 C NMR and infrared spectra indicates that they adopt preferred conformations in nonpolar aprotic solvents in which the NO group is aligned toward the 2-chloroethyl group. The result is in accord with the conformation of MeCCNU in the crystalline state derived from X-ray diffraction. The chemical shifts and coupling constants in the CENUs change with both solvent polarity and basicity. In aqueous phosphate buffer there is evidence for the formation of a tetrahedral intermediate, the conformation of which alters according to the reaction conditions and ultimately controls the formation of the aqueous decomposition products of CENUs. This is revealed most clearly by 13 C NMR of carbonyl- 13 C- and nitroso- 15 N-labeled BCNU and CCNU where two distinct 15 N-coupled 13 C doublets with different chemical shifts are observed. The rate of conformational change is comparable with the rate of decomposition of CENUs (via the second conformer) and may therefore represent the critical initial step of the latter process in vivo. The intermediacy of the postulated tetrahedral intermediates for CENUs is supported by observed 18 O exchange into the carbonyl group in 18 O-enriched water. Consideration of the conformations of the intermediates and of the alignment of the heteroatom lone pairs provides a satisfactory interpretation of the reactions of CENUs in aqueous solution as well as their pH dependence in terms of strict steroelectronic control and accounts for the formation of the observed products

  11. Computer Code for Interpreting 13C NMR Relaxation Measurements with Specific Models of Molecular Motion: The Rigid Isotropic and Symmetric Top Rotor Models and the Flexible Symmetric Top Rotor Model

    Science.gov (United States)

    2017-01-01

    top rotor superimposes an effective correlation time, τe, onto a symmetric top rotor to account for internal motion. 2. THEORY The purpose...specifically describe how simple 13C relaxation theory is used to describe quantitatively simple molecular 3 motions. More-detailed accounts ...of nuclear magnetic relaxation can be found in a number of basic textbooks (i.e., Farrar and Becker, 1971; Fukushima and Roeder, 1981; Harris, 1986

  12. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-01-01

    Due in part to the use of labeled glycerol for the 13 C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide (∼53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific 13 C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of 13 C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of 13 C-labeled DHA to DHAP. We are especially interested in 13 C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  13. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    Stocking, E.; Khalsa, O.; Martinez, R.; Silks, L.A. III

    1994-01-01

    The authors are currently developing new synthetic routes to the various isotopomers of glycerol. Labeled glycerol is useful for 13 C enrichment of biomolecules. However, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment or have poor overall yields (12-15%). In addition, the use of glycerol for enrichment can be prohibitively expensive and its availability depends on the level of demand. The authors have developed a short de novo synthesis of [U- 13 C]glycerol from carbon dioxide (∼53% overall yield for four steps) and are currently examining the feasibility of synthesizing site-specific 13 C labeled glycerol and dihydroxyacetone (DHA) from methanol and carbon dioxide. The authors have examined the enzymatic conversion of [U- 13 C]glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25-50% (as determined by NMR spectroscopy). The authors are also pursuing the chemical conversion of 13 C labeled DHA to DHAP and the results are presented. Labeled DHAP is a possible enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  14. Applications of compound-specific carbon isotope ratios in organic contaminant studies

    International Nuclear Information System (INIS)

    Aravena, R.; Hunkeler, D.; Bloom, Y.; Frape, S.K.; Butler, B.; Edwards, E.; Cox, E.

    1999-01-01

    In this paper results are presented on the application of compound-specific isotope ratios measurements to assess biodegradation of chlorinated solvents, in particularly on microbial dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE). Analytical aspects and isotope data from laboratory and field studies are discussed. The analytical tests showed that both headspace and SPME techniques provide accurate δ 13 C values with a similar precision for a wide range of chlorinated solvents. However, the SPME method is generally more sensitive. The microcosm experiments show that a significant isotopic fractionation occurs during dechlorination of PCE and TCE to ethene. The largest fractionation factors are observed in the steps DCE-VC and VC-Ethene. In general, the δ 13 C of each dechlorination product was always more negative than the δ 13 C of the corresponding precursor. In addition, the δ 13 C values of each compound increased with time. A similar pattern was observed for dechlorination of PCE at a field site. These results show that compound-specific carbon isotope ratios technology is a very sensitive tool for evaluation of natural attenuation of chlorinated solvents in groundwater. (author)

  15. Synthesis and purification of 13C labelled xanthine derivatives

    International Nuclear Information System (INIS)

    Boukraa, M.S.; Deruaz, D.; Bannier, A.; Desage, M.; Brazier, J.L.

    1995-01-01

    3-[Methyl- 13 )C]xanthine, 7-[Methyl- 13 )C]xanthine, 1,3-[Dimethyl- 13 )C 2 ]xanthine (theophylline-1,3-[ 13 )CH 3 ] 2 ), 1,7-[Dimethyl- 13 )C 2 ]xanthine (paraxanthine-1,7[ 13 )CH 3 ] 2 ), and 3,7-[Dimethyl- 13 )C 2 ]xanthine (theobromine-3,7-[ 13 )CH 3 ] 2 were synthesized by nucleophilic substitution reaction(SN 2 ) from xanthine (X) and iodomethane-[ 13 C]. The 3-isobutylparaxanthine-7-[ 13 CH 3 ] was prepared from 3-isobutyl-1-methylxanthine (IBMX). The compounds were purified by reverse phase semipreparative liquid chromatography and their chemical structure and purity verified by GC-MS. (Author)

  16. Synthesis of [5,6-13C2, 1-14C]olivetolic acid, methyl [1'-13C]olivetolate and [5,6-13C2, 1-14C]cannabigerolic acid

    International Nuclear Information System (INIS)

    Porwoll, J.P.; Leete, E.

    1985-01-01

    Potential advanced intermediates in the biosynthesis of delta 9 -tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous 13 C atoms and 14 C. Methyl [5,6- 13 C 2 , 1- 14 C]olivetolate was prepared from lithium [ 13 C 2 ]acetylide and dimethyl [2- 14 C]malonate. Reaction with geranyl bromide afforded methyl [5,6- 13 C 2 , 1- 14 C]cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The 13 C- 13 C couplings observable in the 13 C NMR spectra of these 13 C-enriched compounds and their synthetic precursors are recorded. Methyl [1'- 14 C]olivetolate was prepared from 13 CO 2 to confirm assignments of the 13 C chemical shifts in the pentyl side chain of these compounds. (author)

  17. Tracing carbon fixation in phytoplankton—compound specific and total

    NARCIS (Netherlands)

    Grosse, J.; Van Breugel, P.; Boschker, H.T.S.

    2015-01-01

    Measurement of total primary production using 13C incorporation is a widely established tool. However, these bulk measurements lack information about the fate of fixed carbon: the production of major cellular compounds (carbohydrates, amino acids, fatty acids, and DNA/RNA) is affected by for

  18. Compound-specific isotope analysis resolves the dietary origin of docosahexaenoic acid in the mouse brain.

    Science.gov (United States)

    Lacombe, R J Scott; Giuliano, Vanessa; Colombo, Stefanie M; Arts, Michael T; Bazinet, Richard P

    2017-10-01

    DHA (22:6n-3) may be derived from two dietary sources, preformed dietary DHA or through synthesis from α-linolenic acid (ALA; 18:3n-3). However, conventional methods cannot distinguish between DHA derived from either source without the use of costly labeled tracers. In the present study, we demonstrate the proof-of-concept that compound-specific isotope analysis (CSIA) by GC-isotope ratio mass spectrometry (IRMS) can differentiate between sources of brain DHA based on differences in natural 13 C enrichment. Mice were fed diets containing either purified ALA or DHA as the sole n-3 PUFA. Extracted lipids were analyzed by CSIA for natural abundance 13 C enrichment. Brain DHA from DHA-fed mice was significantly more enriched (-23.32‰ to -21.92‰) compared with mice on the ALA diet (-28.25‰ to -27.49‰). The measured 13 C enrichment of brain DHA closely resembled the dietary n-3 PUFA source, -21.86‰ and -28.22‰ for DHA and ALA, respectively. The dietary effect on DHA 13 C enrichment was similar in liver and blood fractions. Our results demonstrate the effectiveness of CSIA, at natural 13 C enrichment, to differentiate between the incorporation of preformed or synthesized DHA into the brain and other tissues without the need for tracers. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Challenges of 13C/12C measurements by CF-IRMS of biochemical samples at sub-nanomolar levels

    International Nuclear Information System (INIS)

    Whiticar, M.J.; Eek, M.

    2001-01-01

    Recent refinements to instrumentation and methodology have facilitated measurement of 13 C/ 12 C of individual compounds within complex biogeochemical mixtures by CF-IRMS. Specific challenges such as instrument performance, effective compound partitioning, efficient combustion, effective water removal, and isotope effects during online preparation of gases are discussed and practical improvements are presented. (author)

  20. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. II. Conformational structure of vinyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Bzhezovskii, V.M.; Kalabin, G.A.

    1986-10-10

    The /sup 13/C-/sup 13/C spin-spin coupling constants between the carbon nuclei of the vinyl group were measured for a series of vinyl ethers. It was established that the unshared electron pairs of the oxygen atom can make a substantial stereospecific contribution to the direct /sup 13/C-/sup 13/C constants of the adjacent nuclei. The observed effect was used to establish the conformational structure of the compounds.

  1. Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm

    International Nuclear Information System (INIS)

    Hefke, Frederik; Bagaria, Anurag; Reckel, Sina; Ullrich, Sandra Johanna; Dötsch, Volker; Glaubitz, Clemens; Güntert, Peter

    2011-01-01

    We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with 13 C or/and 15 N such that cross peaks between 13 CO(i – 1) and 15 NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with 13 C and the second with 15 N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B 2 R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.

  2. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    Science.gov (United States)

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  3. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Audí-Miró, Carme, E-mail: carmeaudi@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Cretnik, Stefan [Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg (Germany); Torrentó, Clara; Rosell, Mònica [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Shouakar-Stash, Orfan [Department of Earth & Environmental Sciences, 200 University Ave. W, N2L 3G1 Waterloo, Ontario (Canada); Otero, Neus [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Palau, Jordi [Université de Neuchâtel, CHYN - Centre d' Hydrogéologie, Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); and others

    2015-12-15

    Highlights: • {sup 13}C to evaluate natural chlorinated ethenes biodegradation. • {sup 13}C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • {sup 13}C-{sup 37}Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • {sup 13}C-{sup 37}Cl-{sup 2}H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using {sup 13}C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element {sup 13}C-{sup 37}Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using {sup 13}C-{sup 37}Cl-{sup 2}H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the {sup 13}C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element {sup 13}C-{sup 37}Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. {sup 2}H combined with {sup 13}C and {sup 37}Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ{sup 2}H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  4. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Torrentó, Clara; Rosell, Mònica; Shouakar-Stash, Orfan; Otero, Neus; Palau, Jordi

    2015-01-01

    Highlights: • 13 C to evaluate natural chlorinated ethenes biodegradation. • 13 C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • 13 C- 37 Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • 13 C- 37 Cl- 2 H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using 13 C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element 13 C- 37 Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using 13 C- 37 Cl- 2 H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the 13 C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element 13 C- 37 Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. 2 H combined with 13 C and 37 Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ 2 H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  5. Preparation of 2H- and 13C-labelled precursors of 2-hydroxy-1, 3-butadiene

    International Nuclear Information System (INIS)

    Turecek, F.

    1987-01-01

    2-exo-Vinylbicyclo[2.2.1]hept-5-en-2-ols, specifically labelled with 2 H at C-3 and in the vinyl group were prepared from bicyclo[2.2.1]hept-5-en-2-one in several steps. [4- 13 C]oct-1-en-3-one was prepared in five steps from 13 CO 2 . These compounds serve as precursors for the preparation of specifically labelled neutral and ionized 2-hydroxy-1, 3-butadienes. (author)

  6. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    Energy Technology Data Exchange (ETDEWEB)

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  7. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  8. Dissipation kinetics of asparagine in soil measured by compound-specific analysis with metabolite tracking

    DEFF Research Database (Denmark)

    Czaban, Weronika; Rasmussen, Jim; Nicolaisen, Mogens

    2016-01-01

    labeled glutamic acid were detected in soil. This highlights the fast turnover of amino acid in soil and that the estimation of concentration of the formed compounds is important when evaluating plant available organic N. Efficiency of the compound-specific analysis showed to be a powerful technique......Estimating the potential for direct plant acquisition of organic N, in particular amino acids, requires assessment of their turnover times in soil. It is well known from 14C studies that mineralization of amino acids occurs within hours, but mineralization to 14CO2 does not indicate the rate...... of disappearance of the intact amino acid or the possible formation of metabolites during amino acid dissipation. We here used compound-specific isotope analysis with metabolite tracking to investigate the dissipation rate of universally labeled intact 13C15N-asparagine at two concentrations and the subsequent...

  9. Site-selective 13C labeling of proteins using erythrose

    International Nuclear Information System (INIS)

    Weininger, Ulrich

    2017-01-01

    NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with 13 C and/or 1 H, which is achieved in the most general way by using site-selectively 13 C-enriched glucose (1- and 2- 13 C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively 13 C-enriched erythrose (1-, 2-, 3- and 4- 13 C) as a suitable precursor for 13 C labeled aromatic side chains. We quantify 13 C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the 13 C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated 13 C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective 13 C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.

  10. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    International Nuclear Information System (INIS)

    Cotte, J.F.; Casabianca, H.; Lheritier, J.; Perrucchietti, C.; Sanglar, C.; Waton, H.; Grenier-Loustalot, M.F.

    2007-01-01

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The δ 13 C parameter was not significant for characterizing an origin, while the (D/H) I ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C 4 syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C 4 syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying

  11. A new method to reconstruct fish diet and movement patterns from δ 13 C values in otolith amino acids

    KAUST Repository

    McMahon, Kelton W.

    2011-08-01

    Fish ecologists have used geochemical values in otoliths to examine habitat use, migration, and population connectivity for decades. However, it remains difficult to determine an unambiguous dietary δ 13C signature from bulk analysis of otolith. Studies to date have focused on the aragonite component of otoliths with less attention paid to the organic fraction. We describe the application of compound-specific stable isotope analysis (SIA) to analyze amino acid (AA) δ 13C values from small amounts (<1 mg) of otolith powder. We examined δ 13C values of otolith and muscle AAs from a reef-associated snapper (Lutjanus ehrenbergii (Peters, 1869)) collected along a carbon isotope gradient (isoscape) from seagrass beds to coral reefs. Carbon isotope values in otolith and muscle samples were highly correlated within and among coastal habitats. Moreover, δ 13C values of otolith AAs provided a purely dietary record that avoided dilution from dissolved inorganic carbon. Otolith AAs served as a robust tracer of δ 13C values at the base of the food web, making compound-specific SIA a powerful tool for dietary reconstructions and tracking the movement of fishes across isoscapes.

  12. A new method to reconstruct fish diet and movement patterns from δ 13 C values in otolith amino acids

    KAUST Repository

    McMahon, Kelton W.; Fogel, Marilyn L.; Johnson, Beverly J.; Houghton, Leah A.; Thorrold, Simon R.; Gillanders, Bronwyn

    2011-01-01

    Fish ecologists have used geochemical values in otoliths to examine habitat use, migration, and population connectivity for decades. However, it remains difficult to determine an unambiguous dietary δ 13C signature from bulk analysis of otolith. Studies to date have focused on the aragonite component of otoliths with less attention paid to the organic fraction. We describe the application of compound-specific stable isotope analysis (SIA) to analyze amino acid (AA) δ 13C values from small amounts (<1 mg) of otolith powder. We examined δ 13C values of otolith and muscle AAs from a reef-associated snapper (Lutjanus ehrenbergii (Peters, 1869)) collected along a carbon isotope gradient (isoscape) from seagrass beds to coral reefs. Carbon isotope values in otolith and muscle samples were highly correlated within and among coastal habitats. Moreover, δ 13C values of otolith AAs provided a purely dietary record that avoided dilution from dissolved inorganic carbon. Otolith AAs served as a robust tracer of δ 13C values at the base of the food web, making compound-specific SIA a powerful tool for dietary reconstructions and tracking the movement of fishes across isoscapes.

  13. Syntheses of DL-[2-13C]leucine and its use in the preparation of [3-DL-[2-13C]leucine]oxytocin and [8-DL-[2-13C]leucine]oxytocin

    International Nuclear Information System (INIS)

    Viswanatha, V.; Larsen, B.; Hruby, V.J.

    1979-01-01

    DL-[2- 13 C]Leucine was prepared by condensing the sodium salt of ethyl acetamido-[2- 13 C]cyanoacetate with isobutylbromide in hexamethylphosphoroustriamide followed by acid hydrolysis. N-BOC-DL-[2- 13 C]Leucine was prepared and incorporated into [8-DL-[2- 13 C]leucine]oxytocin by total synthesis. The 13 C-labeled hormone derivative [8-[2- 13 C]leucine]oxytocin was separated from its 8-position diastereoisomer by partition chromatography. The specifically 13 C-labeled peptide hormone diastereoisomeric analog [3-DL-[2- 13 C]leucine]oxytocin also was prepared by solid phase peptide synthesis. No suitable solvent system for partition chromatography separation of the latter diastereoisomeric peptide mixture could be found. However an excellent preparative separation of the diastereoisomers could be obtained by reverse phase high pressure liquid chromatography on a partisil 10 M9 ODS column using the solvent system 0.05 M ammonium acetate (pH 4.0), acetonitrile (81:19, v/v) to give pure [3-[2- 13 C]leucine]oxytocin and [3-D-[2- 13 C]leucine]oxytocin. An excellent separation of [8-[2- 13 C]leucine]oxytocin and the corresponding delata-D-leucine diastereoisomer derivative could also be accomplished by high pressure liquid chromatography. (author)

  14. A facile synthesis of δ-aminolevulinic acid (ALA) regio-selectively labeled with 13C and direct observation of enzymatic transformation from ALA to porphobilinogen (PBG)

    International Nuclear Information System (INIS)

    Kurumaya, Katsuyuki; Okazaki, Takeo; Seido, Nobuo; Akasaka, Yuzuru; Kawajiri, Yoshiki; Kajiwara, Masahiro; Kondo, Masao

    1989-01-01

    δ-Aminolevulinic acid (ALA), labeled with 13 C at position 1, 2, 3, 4, or 5, was synthesized from 13 C-labeled glycine, Meldrum's acid, or bromoacetate. The latter compounds were prepared from 13 C-sodium acetate or 13 C-acetic acid. Enzymatic transformation from ALA to porphobilinogen (PBG) was directly observed by 13 C-NMR. (author)

  15. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this section...

  16. Electric dipole moment of 13C

    Science.gov (United States)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  17. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  18. Branched GDGTs in Lacustrine Environments: Tracing Allochthonous and Autochthonous Sources Using Compound-Specific Stable Carbon Isotope Analysis

    Science.gov (United States)

    Weber, Y.; S Sinninghe Damsté, J.; Lehmann, M. F.; Niemann, H.; Schubert, C. J.

    2015-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are ubiquitous in soils and peat, as well as in sediments of lakes, rivers and coastal marine environments. It has been found that the distribution of brGDGTs changes systematically with ambient temperature and pH, attesting to their potential as proxy indicators for paleoclimatic reconstruction. In lacustrine sedimentary archives, brGDGTs can originate from two sources: (1) allochthonous soil organic matter and (2) autochthonous brGDGTs produced within the lake system, both of which display fairly distinct temperature-brGDGT relationships. Until now, disentangling the relative contribution of these sources was impossible, complicating the use of brGDGTs for quantitative paleotemperature reconstructions. BrGDGTs in soils display a narrow range with respect to their stable carbon isotope composition (δ13C), generally between -27 and -30 ‰, whereas we recently found contrasting δ13C values as low as -43 ‰ to -46 ‰ for brGDGTs in sediments of a small Alpine lake. To trace the origin of this distinct isotope signal, we determined the 13C content of brGDGTs in suspended particulate matter (SPM) from the water column of Lake Lugano (Switzerland). The δ13C of SPM-derived brGDGTs decreased systematically from -34 ‰ in the mixolimnion to -41 ‰ in the anoxic monimolimnion of Lake Lugano, providing evidence for aquatic in situ production of 13C-depleted brGDGT. In order to study whether the negative δ13C offset of water column- vs. soil-derived brGDGTs may serve as an indicator for lacustrine brGDGT production, we also analyzed surface sediments from 36 lakes across the Alpine Region. In most (~85 %) of the studied lake sediments, the δ13C of brGDGTs ranged between -34 ‰ and -45 ‰, indicating predominance or a substantial contribution of aquatically produced brGDGTs. However, in some lakes (~15 %) δ13C values between -27 ‰ and -30 ‰ suggest a mainly

  19. An improved synthesis of α-13C glycine and heteronuclear NMR studies of its incorporation into thioredoxin

    International Nuclear Information System (INIS)

    Wishart, D.S.; Sykes, B.D.; Richards, F.M.

    1992-01-01

    We present an improved method to easily prepare gram quantities of α- 13 C glycine beginning from K 13 CN. The four step synthesis involves the production of an N, N-diphenyl-cyanoformamidine intermediate through the coupling of cyanide to N, N-diphenylcarbodiimide. Subsequent reduction by LiAlH 4 and hydrolysis of the resulting amidine produces fully enriched α- 13 C labelled glycine with a 45-50% yield. This relatively fast and simple synthesis uses only commonly available compounds and requires no special equipment, making the process easy to perform in any well equipped biochemistry laboratory. We further demonstrate that the product may be used, without extensive purification, to specifically label bacterially expressed proteins (E. coli thioredoxin) through standard biosynthetic procedures. We also show that the 13 C glycine-labelled protein may be readily analyzed using commonly available heteronuclear NMR techniques. Complete assignments for all 9 glycines of native E. coli thoredoxin are presented. (Author)

  20. Gas chromatographic isolation technique for compound-specific radiocarbon analysis

    International Nuclear Information System (INIS)

    Uchida, M.; Kumamoto, Y.; Shibata, Y.; Yoneda, M.; Morita, M.; Kawamura, K.

    2002-01-01

    Full text: We present here a gas chromatographic isolation technique for the compound-specific radiocarbon analysis of biomarkers from the marine sediments. The biomarkers of fatty acids, hydrocarbon and sterols were isolated with enough amount for radiocarbon analysis using a preparative capillary gas chromatograph (PCGC) system. The PCGC systems used here is composed of an HP 6890 GC with FID, a cooled injection system (CIS, Gerstel, Germany), a zero-dead-volume effluent splitter, and a cryogenic preparative collection device (PFC, Gerstel). For AMS analysis, we need to separate and recover sufficient quantity of target individual compounds (>50 μgC). Yields of target compounds from C 14 n-alkanes to C 40 to C 30 n-alkanes and approximately that of 80% for higher molecular weights compounds more than C 30 n-alkanes. Compound specific radiocarbon analysis of organic compounds, as well as compound-specific stable isotope analysis, provide valuable information on the origins and carbon cycling in marine system. Above PCGC conditions, we applied compound-specific radiocarbon analysis to the marine sediments from western north Pacific, which showed the possibility of a useful chronology tool for estimating the age of sediment using organic matter in paleoceanographic study, in the area where enough amounts of planktonic foraminifera for radiocarbon analysis by accelerator mass spectrometry (AMS) are difficult to obtain due to dissolution of calcium carbonate. (author)

  1. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids

    Science.gov (United States)

    Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T.

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of

  2. Measurement of δ13C values of soil amino acids by GC-C-IRMS using trimethylsilylation: a critical assessment.

    Science.gov (United States)

    Rubino, Mauro; Milin, Sylvie; D'Onofrio, Antonio; Signoret, Patrick; Hatté, Christine; Balesdent, Jérôme

    2014-01-01

    In this study, we evaluated trimethylsilyl (TMS) derivatives as derivatization reagents for the compound-specific stable carbon isotope analysis of soil amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). We used non-proteinogenic amino acids to show that the extraction-derivatization-analysis procedure provides a reliable method to measure δ(13)C values of amino acids extracted from soil. However, we found a number of drawbacks that significantly increase the final total uncertainty. These include the following: production of multiple peaks for each amino acid, identified as di-, tri- and tetra-TMS derivatives; a number of TMS-carbon (TMS-C) atoms added lower than the stoichiometric one, possibly due to incomplete combustion; different TMS-C δ(13)C for di-, tri- and tetra-TMS derivatives. For soil samples, only four amino acids (leucine, valine, threonine and serine) provide reliable δ(13)C values with a total average uncertainty of 1.3 ‰. We conclude that trimethylsilyl derivatives are only suitable for determining the (13)C incorporation in amino acids within experiments using (13)C-labelled tracers but cannot be applied for amino acids with natural carbon isotope abundance until the drawbacks described here are overcome and the measured total uncertainty significantly decreased.

  3. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Rodolfo A. (Santa Fe, NM), Unkefer; Clifford J. (Los Alamos, NM), Alvarez; Marc, A [Santa Fe, NM

    2012-06-12

    The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##

  4. Alpha Resonant States in 13C

    International Nuclear Information System (INIS)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Souza, M. A.; Miyake, H.; Cunsolo, A.; Cappuzzello, F.; Ukita, G. M.

    2011-01-01

    The 9 Be( 6 Li,d) 13 C reaction was used to investigate alpha resonant states in 13 C up to 15 MeV of excitation. The reaction was measured at a bombarding energy of 25.5 MeV employing the Sao Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. An energy resolution of 50 keV was obtained. Several narrow alpha resonant states not previously measured were detected, in particular the one at the (3α+n) threshold populated by an L = 2 transfer, revealing a 9 Be+α component for the 1/2 - cluster state candidate at this threshold. Experimental angular distributions are presented in comparison with DWBA predictions.

  5. Synthesis of C-13 labeled vitamin E, [4' a-13C]all-rac-α-tocopherol

    International Nuclear Information System (INIS)

    Urano, Shiro; Muto, Riko; Matsuo, Mitsuyoshi

    1985-01-01

    Vitamin E with a 13 C-labeled isoprenoid side chain, [4' a- 13 C]-all-rac-α-tocopherol, was synthesized by the coupling reaction of 6-4-methoxymethoxy-2-([methyl- 13 C]5-bromo-4-methyl-pent-1-yl)chroman (8) with 3,7-dimethyl-1-(thiazolin-2-yl)thio-2,6-octadiene. Compound 8 was prepared using 2-(4,4-di-ethoxycarbonylbut-1-yl)-6-methoxymethoxy-2,5,7,8-tetramethyl-chroman as a key intermediate and [ 13 C]methyl iodide as a 13 C source. The total yield of the labeled α-tocopherol based on [ 13 C]methyl iodide was 58.7%. (author)

  6. Evaluation of [14C] and [13C]Sucrose as Blood-Brain Barrier Permeability Markers.

    Science.gov (United States)

    Miah, Mohammad K; Chowdhury, Ekram A; Bickel, Ulrich; Mehvar, Reza

    2017-06-01

    Nonspecific quantitation of [ 14 C]sucrose in blood and brain has been routinely used as a quantitative measure of the in vivo blood-brain barrier (BBB) integrity. However, the reported apparent brain uptake clearance (K in ) of the marker varies widely (∼100-fold). We investigated the accuracy of the use of the marker in comparison with a stable isotope of sucrose ([ 13 C]sucrose) measured by a specific liquid chromatography-tandem mass spectrometry method. Rats received single doses of each marker, and the K in values were determined. Surprisingly, the K in value of [ 13 C]sucrose was 6- to 7-fold lower than that of [ 14 C]sucrose. Chromatographic fractionation after in vivo administration of [ 14 C]sucrose indicated that the majority of the brain content of radioactivity belonged to compounds other than the intact [ 14 C]sucrose. However, mechanistic studies failed to reveal any substantial metabolism of the marker. The octanol:water partition coefficient of [ 14 C]sucrose was >2-fold higher than that of [ 13 C]sucrose, indicating the presence of lipid-soluble impurities in the [ 14 C]sucrose solution. Our data indicate that [ 14 C]sucrose overestimates the true BBB permeability to sucrose. We suggest that specific quantitation of the stable isotope ( 13 C) of sucrose is a more accurate alternative to the current widespread use of the radioactive sucrose as a BBB marker. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Randy, E-mail: rculp@uga.edu [Center for Applied Isotope Studies, University of Georgia, Athens, Georgia (United States)

    2013-01-15

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound's history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon ({sup 13}C/{sup 12}C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon ({sup 14}C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their {sup 14}C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in {sup 14}C distribution in estuary and near-shore coastal environments. This data indicates higher than modern {sup 14}C activities in large particle-size sediment fractions in contrast to older LOP {sup 14}C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine {sup 14}C sources.

  8. Investigations on the isoprenoid biosynthesis in the green alga Scenedesmus obliquus by using the 13C-labelling technique

    International Nuclear Information System (INIS)

    Schwender, J.

    1995-01-01

    The biosynthesis of several prenyllipids (isoprenoid lipids) of the green alga Scendesmus obliquus was investigated. The aim was to verify, whether the biosynthesis of isopentenyl diphosphate (IPP) in Scenedesmus proceeds according to the classical acetate mevalonate pathway or to an alternative pathway. An alternative pathway for IPP formation has recently been detected in some eubacteria by the group of Prof. M. Rohmer. Some inhibition tests were performed with mevinolin, a specific inhibitor of HMG-CoA reductase which yields mevalonic acid. Mevinolin should block the biosynthesis of such isoprenoids which are formed via the acetate mevalonate pathway. Scenedesmus was grown heterotrophically on 13 C-labelled glucose or acetate. After isolation and purification of 13 C-labelled phytol (side chains of chlorophylls), β-carotene, lutein, plastoquinone-9 and three sterol compounds, the enrichment of 13 C at different carbon-positions of the labelled compounds was determined. This was achieved by the 13 C-NMR technique in cooperation with Miriam Seemann of the group of Prof. M. Rohmer in Mullhouse/France. (orig.) [de

  9. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  10. A field-deployable compound-specific isotope analyzer based on quantum cascade laser and hollow waveguide

    Science.gov (United States)

    Wu, Sheng; Deev, Andrei

    2013-01-01

    A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.

  11. Determination of urea 13C in urea 13C mixed powder by HPLC

    International Nuclear Information System (INIS)

    Zhong Jianguo; Song Tianqi

    2006-01-01

    A HPLC method is developed for determination of Urea 13 C in Urea 13 C Mixed Powder. A Alltech Econosphere NH2 column (250 mm x 4.6 mm, 5 μm)is used as stationary phrase, a mixture of V(acetonitrile): V(methanol): V(water) = 900 : 100: 10 is used as mobile phase and the flow rate is l mL·min -1 , UV detection wavelength is performed at 200 nm. The calibration curve shows good linearity in the range of 0.2-1.0 g·L -1 of Urea 13 C, y=2.548 x 10 6 x + 4.005 x 10 4 , r=0.9999, and the averaged recovery is 100.6%. The method is simple and accurate, and can be used for the quality control of Urea 13C Mixed Powder. (authors)

  12. Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Richard J., E-mail: Richard.J.Cooper@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom); Pedentchouk, Nikolai; Hiscock, Kevin M.; Disdle, Paul [School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom); Krueger, Tobias [IRI THESys, Humboldt University, 10099 Berlin (Germany); Rawlins, Barry G. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom)

    2015-07-01

    We present a novel application for quantitatively apportioning sources of organic matter in streambed sediments via a coupled molecular and compound-specific isotope analysis (CSIA) of long-chain leaf wax n-alkane biomarkers using a Bayesian mixing model. Leaf wax extracts of 13 plant species were collected from across two environments (aquatic and terrestrial) and four plant functional types (trees, herbaceous perennials, and C{sub 3} and C{sub 4} graminoids) from the agricultural River Wensum catchment, UK. Seven isotopic (δ{sup 13}C{sub 27}, δ{sup 13}C{sub 29}, δ{sup 13}C{sub 31}, δ{sup 13}C{sub 27–31}, δ{sup 2}H{sub 27}, δ{sup 2}H{sub 29}, and δ{sup 2}H{sub 27–29}) and two n-alkane ratio (average chain length (ACL), carbon preference index (CPI)) fingerprints were derived, which successfully differentiated 93% of individual plant specimens by plant functional type. The δ{sup 2}H values were the strongest discriminators of plants originating from different functional groups, with trees (δ{sup 2}H{sub 27–29} = − 208‰ to − 164‰) and C{sub 3} graminoids (δ{sup 2}H{sub 27–29} = − 259‰ to − 221‰) providing the largest contrasts. The δ{sup 13}C values provided strong discrimination between C{sub 3} (δ{sup 13}C{sub 27–31} = − 37.5‰ to − 33.8‰) and C{sub 4} (δ{sup 13}C{sub 27–31} = − 23.5‰ to − 23.1‰) plants, but neither δ{sup 13}C nor δ{sup 2}H values could uniquely differentiate aquatic and terrestrial species, emphasizing a stronger plant physiological/biochemical rather than environmental control over isotopic differences. ACL and CPI complemented isotopic discrimination, with significantly longer chain lengths recorded for trees and terrestrial plants compared with herbaceous perennials and aquatic species, respectively. Application of a comprehensive Bayesian mixing model for 18 streambed sediments collected between September 2013 and March 2014 revealed considerable temporal variability in the

  13. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  14. EDGE2D Simulations of JET 13C Migration Experiments

    International Nuclear Information System (INIS)

    Strachan, J.D.; Coad, J.P.; Corrigan, G.; Matthews, G.F.; Spence, J.

    2004-01-01

    Material migration has received renewed interest due to tritium retention associated with carbon transport to remote vessel locations. Those results influence the desirability of carbon usage on ITER. Subsequently, additional experiments have been performed, including tracer experiments attempting to identify material migration from specific locations. In this paper, EDGE2D models a well-diagnosed JET 13 C tracer migration experiment. The role of SOL flows upon the migration patterns is identified

  15. Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis.

    Science.gov (United States)

    Lojkasek-Lima, Paulo; Aravena, Ramon; Parker, Beth L; Cherry, John A

    2012-01-01

    A dual isotope approach based on compound-specific isotope analysis (CSIA) of carbon (C) and chlorine (Cl) was used to identify sources of persistent trichloroethylene (TCE) that caused the shut-down in 1994 of a municipal well in an extensive fractured dolostone aquifer beneath Guelph, Ontario. Several nearby industrial properties have known subsurface TCE contamination; however, only one has created a comprehensive monitoring network in the bedrock. The impacted municipal well and many monitoring wells were sampled for volatile organic compounds (VOCs), inorganic parameters, and CSIA. A wide range in isotope values was observed at the study site. The TCE varies between -35.6‰ and -21.8‰ and from 1.6‰ to 3.2‰ for δ(13) C and δ(37) Cl, respectively. In case of cis-1,2-dichloroethene, the isotope values range between -36.3‰ and -18.9‰ and from 2.4‰ to 4.7‰ for δ(13) C and δ(37) Cl, respectively. The dual isotope approach represented by a plot of δ(13) C vs. δ(37) Cl shows the municipal well samples grouped in a domain clearly separate from all other samples from the property with the comprehensive well network. The CSIA results collected under non-pumping and short-term pumping conditions thus indicate that this particular property, which has been studied intensively for several years, is not a substantial contributor of the TCE presently in the municipal well under non-pumping conditions. This case study demonstrates that CSIA signatures would have been useful much earlier in the quest to examine sources of the TCE in the municipal well if bedrock monitoring wells had been located at several depths beneath each of the potential TCE-contributing properties. Moreover, the CSIA results show that microbial reductive dechlorination of TCE occurs in some parts of the bedrock aquifer. At this site, the use of CSIA for C and Cl in combination with analyses of VOC and redox parameters proved to be important due to the complexity introduced by

  16. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    Science.gov (United States)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  17. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  18. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    International Nuclear Information System (INIS)

    Culp, Randy

    2013-01-01

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound’s history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon ( 13 C/ 12 C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon ( 14 C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their 14 C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in 14 C distribution in estuary and near-shore coastal environments. This data indicates higher than modern 14 C activities in large particle-size sediment fractions in contrast to older LOP 14 C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine 14 C sources.

  19. Applications of artificial intelligence techniques to organic chemistry. Study on sup 13 C NMR of steroids using computer. Aplicacoes de tecnicas de inteligencia artificial em quimica organica. Estudo, por computador, de RMN sup 13 C de esteroides

    Energy Technology Data Exchange (ETDEWEB)

    Lins, A P [Instituto Biologico, Sao Paulo, SP (Brazil). Secao de Farmacologia; Furlan, M [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Gastmans, G P [UNESP, Guaratingueta, SP (Brazil). Inst. de Quimica e Fisica; Emerenciano, V P [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    1991-01-01

    This work describes the utilization of two groups of programs in searching for characteristic signals of NMR {sup 13}C steroidal compounds. The first group of programs used data bases with the spectral data and a methodology that enables the choice and the search of substructures. The chemical shifts and multiplicities for each specific substructure are used as rules to identify different types and subtypes of steroidal compounds. The second one was built to apply the rules formulated by the first group of programs and to foresee any skeletal based on a spectral analysis. (author).

  20. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs

    International Nuclear Information System (INIS)

    France, R.L.; Peters, R.H.

    1997-01-01

    Data from 35 published studies were collated to examine patterns in the trophic enrichment of 13 C of consumers. Because both δ 13 C and δ 14 N vary systematically across ecosystems, it was necessary to standardize for such differences before combining data from numerous sources. Relationships of these measures of ecosystem-standardized δ 13 C to ecosystem-standardized trophic position (Δδ 15 N) for freshwater, estuarine, coastal, and open-ocean and for all aquatic ecosystems yielded regression equations of low predictive capability (average of 20% explained variance in δ 13 C). However, differences were observed in the slopes between δ 13 C and standardized trophic position when data were examined study-specifically: the average trophic fractionation of 13 C was found to increase from +0.2micron for freshwater to +0.5micron for estuarine to +0.8micron for coastal, and to +1.1micron for open-ocean food webs. This ecosystem-specific gradient in 13 C enrichment for consumers supports previous findings of a similar continuum existing for zooplankton - particulate organic matter differences in δ 13 C. Possible mechanisms to explain these ecosystem-specific patterns in 13 C enrichment may be related to the relative importance of detritus, heterotrophic respiration, partial reliance on alternative food sources, and lipid influences in the different ecosystems. (author)

  1. Multi site Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    International Nuclear Information System (INIS)

    Damian, P.A.G.; Sperl, J.I.; Janich, M.A.; Wiesinger, F.; Schulte, R.F.; Menzel, M.I.; Damian, P.A.G.; Damian, P.A.G.; Haase, A.; Janich, M.A.; Schwaiger, M.; Janich, M.A.; Khegai, O.; Glaser, S.J.

    2014-01-01

    Hyperpolarized 13 C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1- 13 C]pyruvate and downstream metabolites [1- 13 C]alanine, [1- 13 C]lactate, and [ 13 C] bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multi site, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multi site model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multi site model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues

  2. Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    Directory of Open Access Journals (Sweden)

    Pedro A. Gómez Damián

    2014-01-01

    Full Text Available Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.

  3. Applications of artificial intelligence techniques to organic chemistry. Study on 13C NMR of steroids using computer

    International Nuclear Information System (INIS)

    Lins, A.P.; Furlan, M.; Gastmans, G.P.; Emerenciano, V.P.

    1991-01-01

    This work describes the utilization of two groups of programs in searching for characteristic signals of NMR 13 C steroidal compounds. The first group of programs used data bases with the spectral data and a methodology that enables the choice and the search of substructures. The chemical shifts and multiplicities for each specific substructure are used as rules to identify different types and subtypes of steroidal compounds. The second one was built to apply the rules formulated by the first group of programs and to foresee any skeletal based on a spectral analysis. (author)

  4. Clinical value of 13C-UBT diagnosing infection of the Hp

    International Nuclear Information System (INIS)

    Xu Changde; Chen Shaoliang; Liu Wenguan

    2004-01-01

    100 dyspeptic patients are performed an endoscopy with biopsy for histology, rapid urease test, 13 C-urea breath test( 13 C-UBT) and ASSURE TM Hp rapid Test(HpRT). Patients are considered to be infected if both histology and biopsies yield positive results, and not infected when both tests are negative. The pathology and persons responsible for endoscopy, urease test and 13 C-UBT are unaware of the results from the other diagnostic methods. The 13 C-UBT has the following results: sensitivity 96% ,specificity 95%; rapid urease test has the following results: sensitivity 79%, specificity 76%; HpRT has the following results: sensitivity 86%, specificity 88%. 13 C-UBT provides excellent sensitivity and specificity for the diagnosis of Hp. Pylori infected Hp, it can be the first choice for detecting the infection of the Hp. (authors)

  5. 13C nuclear magnetic resonance study of the complexation of calcium by taurine

    International Nuclear Information System (INIS)

    Irving, C.S.; Hammer, B.E.; Danyluk, S.S.; Klein, P.D.

    1980-01-01

    13 C Nuclear magnetic resonance chemical shifts, 1 J/sub c-c/ scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-[1, 2 13 C] and a taurine-[1 13 C] and taurine-[2 13 C] mixture in the presence and absence of calcium. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their 13 C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex

  6. A facile synthesis of. delta. -aminolevulinic acid (ALA) regio-selectively labeled with sup 13 C and direct observation of enzymatic transformation from ALA to porphobilinogen (PBG)

    Energy Technology Data Exchange (ETDEWEB)

    Kurumaya, Katsuyuki; Okazaki, Takeo; Seido, Nobuo; Akasaka, Yuzuru; Kawajiri, Yoshiki; Kajiwara, Masahiro (Meiji College of Pharmacy, Tokyo (Japan)); Kondo, Masao (Institute of Public Health, Tokyo (Japan))

    1989-02-01

    {delta}-Aminolevulinic acid (ALA), labeled with {sup 13}C at position 1, 2, 3, 4, or 5, was synthesized from {sup 13}C-labeled glycine, Meldrum's acid, or bromoacetate. The latter compounds were prepared from {sup 13}C-sodium acetate or {sup 13}C-acetic acid. Enzymatic transformation from ALA to porphobilinogen (PBG) was directly observed by {sup 13}C-NMR. (author).

  7. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Science.gov (United States)

    Muhammad, Syahidah; Frew, Russell; Hayman, Alan

    2015-02-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  8. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Directory of Open Access Journals (Sweden)

    Syahidah Akmal Muhammad

    2015-02-01

    Full Text Available Compound-specific isotope analysis (CSIA offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  9. Compound-specific isotope analysis of diesel fuels in a forensic investigation.

    Science.gov (United States)

    Muhammad, Syahidah A; Frew, Russell D; Hayman, Alan R

    2015-01-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ(13)C and δ(2)H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples.

  10. NMR study of conjugation effects. 15. /sup 13/C-/sup 13/C spin-spin coupling constants in phenylalkyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Kalabin, G.A. (Siberian Branch of the Academy of Sciences of the USSR); Krivdin, L.B.; Trofimov, B.A.

    1982-07-20

    In order to elucidate the /sup 13/C-/sup 13/-C SSCC (spin-spin coupling constants) segment with the electronic excitations induced by the R group, a series of phenyl alkyl ethers, PhOAlk, where Alk = Me(I), Et(II), i-Pr(III), and t-Bu(IV), were studied. This series was chosen because in studying the /sup 13/C CS in monosubstituted benzenes it was observed that the intensity of the ..pi..-electron interaction of the unshared electron pairs of oxygen with the ..pi.. system of the benzene ring was practically the same in some compounds, but increased by 30% in others. This is related to the fact that the latter is characterized by an average noncoplanar conformation, with a dihedral angle between the benzene-ring plane and the C-O-C bond of approx. 45/sup 0/, whereas some compounds have an angle < 20/sup 0/. The reason for the difference is significant steric interaction of the alkyl hydrogens with the o-position of the ring. Thus, consideration of the /sup 13/C-/sup 13/C SSCC of a series of quite similar compounds, especially when compared to the whole set of such SSCC for other monosubstituted benzenes, shows that their relationship to the structure of the substituent R is extremely complex.

  11. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.

    Science.gov (United States)

    McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L

    2016-03-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  12. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach

    KAUST Repository

    McMahon, Kelton

    2015-11-21

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world’s oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ13C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ13C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  13. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    Science.gov (United States)

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs. © 2015 John Wiley & Sons Ltd.

  14. Synthesis of 1-13C-1-indanone and 2-13C-1,2,3,4-tetrahydroquinoline

    International Nuclear Information System (INIS)

    Pickering, R.E.; Wysocki, M.A.; Eisenbraun, E.J.

    1985-01-01

    The synthesis of 2- 13 C-1,2,3,4-tetrahydroquinoline (5) via 1- 13 C-3-phenylpropanoic acid (1), 1- 13 C-1-indanone (2), 1- 13 C-1-indanone hydrazone (3) and 2- 13 C-3,4-dihydro-2(1H)-quinolinone (4) proceeded in 78, 96, 95, 79, and 85% individual yields respectively for 1, 2, 3, 4, 5 and 61% overall yield of the latter from 1. (author)

  15. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    Science.gov (United States)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  16. Neutron orbital radii in {sup 13} C; Radios orbitales neutronicos en {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.J.; Avila, O.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1988-01-15

    In this work its were carried out experimental measurements of the reaction {sup 12}C(d,p) {sup 13}C at low energy. Preliminary results of a DWBA analysis of the data are presented, and the possibility of using this reaction to obtain the orbital radius of the transferred neutron is investigated. (Author)

  17. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  18. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  19. Stereoselective synthesis of L-[4-13C]carnitine

    International Nuclear Information System (INIS)

    Unkefer, C.J.; Ehler, D.S.

    1991-01-01

    The stereoselective synthesis of L-[4- 13 C]carnitine was achieved in 5 steps. The label was introduced from K 13 CN into an easily separated diastereomeric pair of 3-deoxy-D-[1- 13 C]aldohexoses. Reductive amination of the labeled aldohexose yielded the corresponding D-1-(dimethylamino)[1- 13 C]alditol which was oxidized in two steps and alkylated with iodomethane to yield L-[4- 13 C]carnitine. The stereochemical integrity at C-2 of the 3-deoxy-D-[1- 13 C]glucose precursor was maintained throughout the synthesis of L-[4- 13 C]carnitine. (author)

  20. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    Science.gov (United States)

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  1. Synthesis of {sup 13}C- and {sup 14}C-labeled 1192U90, an ortho-amino benzamide with a preclinical atypical antipsychotic profile

    Energy Technology Data Exchange (ETDEWEB)

    Norman, M.H.; Gabriel, S.D. [Glaxo Wellcome Inc., Research Triangle Park, NC (United States)

    1996-03-01

    Three isotopic forms of potential antipsychotic agent 1192U90 (2-amino-N-(4-(4-(1,2-benzisthiazol-3-yl)-piperazinyl)butyl)benzam ide) were synthesized: one containing {sup 13}C-isotopes and two containing {sup 14}C-isotopes. The compound in which the ortho-amino benzamide ring is completely {sup 13}C-labeled was prepared in a four-step sequence starting from [{sup 13}C{sub 6}]aniline. The {sup 14}C-labeled compounds were prepared by methods analogous to those previously described for the unlabeled material. The key step involved the condensation of 3-(4-(4aminobutyl)-1-piperazinyl)-1,2-benzisothiazole with isatoic anhydride. The first {sup 14}C-labeled compound (3) was prepared from {sup 14}C-labeled 3-(4-(4-aminobutyl)-1-piperazinyl)-1,2-benzisothiazole, while the second compound (4) derived its isotopic label from [{sup 14}C]isatoic anhydride. Compound 3 had a specific activity of 26.55 mCi/mmol, a radiochemical purity of 99.3%, and a radiochemical yield of 3.4%. Compound 4 had a specific activity of 22.67 mCi/mmol and a radiochemical purity of 99.2%. (author).

  2. Metabolic pathways for ketone body production. 13C NMR spectroscopy of rat liver in vivo using 13C-multilabeled fatty acids

    International Nuclear Information System (INIS)

    Pahl-Wostl, C.; Seelig, J.

    1986-01-01

    The hormonal regulation of ketogenesis in the liver of living rat has been studied noninvasively with 13 C nuclear magnetic resonance. The spatial selection for the liver was better than 90%, with extrahepatic adipose tissue contribution only a very small amount of signal. The metabolic activities of the liver were investigated by infusion of 13 C-labeled butyrate in the jugular vein of the anesthetized rat. The rate of butyrate infusion was chosen to be close to the maximum oxidative capacity of the rat liver, and the 13 C signal intensities were enhanced by using doubly labeled [1,3- 13 C]butyrate as a substrate. Different 13 C NMR spectra and hence different metabolites were observed depending on the hormonal state of the animal. The 13 C NMR studies demonstrate that even when rate of acetyl-CoA production are high, the disposal of this compound is not identical in fasted and diabetic animals. This supports previous suggestions that the redox state of the mitochondrion represents the most important factor in regulation. For a given metabolic state of the animal, different signal intensities were obtained depending on whether butyrate was labeled at C-1, C-3, or C-1,3. From the ratios of incorporation of 13 C label into the carbons of 3-hydroxybutyrate, it could be estimated that a large fraction of butyrate evaded β-oxidation to acetyl-CoA but was converted directly to acetoacetyl-CoA. 13 C-labeled glucose could be detected in vivo in the liver of diabetic rats

  3. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  4. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used...

  5. Compound- and position-specific carbon isotopic signatures of abiogenic hydrocarbons from on-land serpentinite-hosted Hakuba Happo hot spring in Japan

    Science.gov (United States)

    Suda, Konomi; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Ueno, Yuichiro

    2017-06-01

    It has been proposed that serpentinite-hosted hydrothermal/hot spring systems played a significant role in the origin and early evolution of life on early Earth because abiogenic synthesis of organic compounds may accompany serpentinization. However, production mechanisms for apparently abiogenic hydrocarbons that have been observed in the ongoing serpentinizing systems are still poorly constrained. We report a new geochemical study of hydrocarbons in an on-land serpentinite-hosted hot spring in Hakuba Happo, Japan. We have conducted both compound-specific and position-specific carbon isotopic analyses of the observed C1 to C5 hydrocarbons. A positive linear relationship between the δ13C values and the inverse carbon number is found in C1 to C5 straight-chain alkanes in the Happo sample. This isotopic trend is consistent with a simple polymerization model developed in this study. Our model assumes that, for any particular alkane, all of the subsequently added carbons have the same isotopic composition, and those are depleted in 13C with respect to the first carbon in the growing carbon chain. The fit of this model suggests that Happo alkanes can be produced via polymerization from methane with a constant kinetic isotopic fractionation of -8.9 ± 1.0‰. A similar carbon isotopic relationship among alkanes has been observed in some serpentinite-hosted seafloor hydrothermal systems, indicating that the same process is responsible for the abiological hydrocarbon in general serpentinization fields, not only in the Hakuba Happo hot spring. Moreover, our model is also applicable to other potentially abiogenic natural gases and experimentally synthesized hydrocarbon products. For the first time, the intramolecular 13C composition of propane from a natural sample derived from a serpentinite-hosted system was determined. The intramolecular 13C distribution in propane shows the important potential to identify different polymerization mechanisms that cannot be discriminated

  6. HSQC-1,n-ADEQUATE: a new approach to long-range 13C-13C correlation by covariance processing.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Willcott, M Robert; Blinov, Kirill A

    2011-10-01

    Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations. Three-bond correlations, however, generally predominate. Recent work has shown that the unsymmetrical indirect covariance or generalized indirect covariance processing of multiplicity edited GHSQC and 1,1-ADEQUATE spectra provides high-sensitivity access to a (13)C-(13) C connectivity map in the form of an HSQC-1,1-ADEQUATE spectrum. Covariance processing of these data allows the 1,1-ADEQUATE connectivity information to be exploited with the inherent sensitivity of the GHSQC spectrum rather than the intrinsically lower sensitivity of the 1,1-ADEQUATE spectrum itself. Data acquisition times and/or sample size can be substantially reduced when covariance processing is to be employed. In an extension of that work, 1,n-ADEQUATE spectra can likewise be subjected to covariance processing to afford high-sensitivity access to the equivalent of (4)J(CH) GHMBC connectivity information. The method is illustrated using strychnine as a model compound. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Synthesis of [21-13C]-cholesterol

    International Nuclear Information System (INIS)

    Caballero, G.M.; Gros, E.G.

    1994-01-01

    The synthesis of [21- 13 C]-cholesterol from 3β-O-(t-butyldimethylsilyl)-17β-cyano-androst-5-ene is described. Labelled carbon-atom was introduced by Grignard reaction of nitrile derivative with [ 13 C]-methylmagnesium iodide. Location of label was confirmed by 13 C-NMR spectroscopy. (author)

  8. Carbon isotope discrimination during litter decomposition can be explained by selective use of substrate with differing δ13C

    Science.gov (United States)

    Ngao, J.; Cotrufo, M. F.

    2011-01-01

    Temporal dynamics of C isotopic composition (δ13C) of CO2 and leaf litter was monitored during a litter decomposition experiment using Arbutus unedo L., as a slow decomposing model substrate. This allowed us (1) to quantify isotopic discrimination variation during litter decomposition, and (2) to test whether selective substrate use or kinetic fractionation could explain the observed isotopic discrimination. Total cumulative CO2-C loss (CL) comprised 27% of initial litter C. Temporal evolution of CL was simulated following a three-C-pool model. Isotopic composition of respired CO2 (δRL) was higher with respect to that of the bulk litter. The isotopic discrimination Δ(L/R) varied from -2‰ to 0‰ and it is mostly attributed to the variations of δRL. A three-pool model, with the three pools differing in their δ13C, described well the dynamic of Δ(L/R), in the intermediate stage of the process. This suggests that the observed isotopic discrimination between respired CO2 and bulk litter is in good agreement with the hypothesis of successive consumption of C compounds differing in δ13C during decomposition. However, to explain also 13C-CO2 dynamics at the beginning and end of the incubation the model had to be modified, with discrimination factors ranging from -1‰ to -4.6‰ attributed to the labile and the recalcitrance pool, respectively. We propose that this discrimination is also the result of further selective use of specific substrates within the two pools, likely being both the labile and recalcitrant pool of composite nature. In fact, the 2‰ 13C enrichment of the α-cellulose observed by the end of the experiment, and potentially attributable to kinetic fractionation, could not explain the measured Δ(L/R) dynamics.

  9. The /sup 13/C-/sup 13/C spin-spin coupling constants and the conformational equilibrium of alkyl phenyl sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Krividin, L.B.; Kalabin, G.A.

    1985-08-10

    The authors measure the direct geminal and vicinal spinspin coupling constants between the C-13 nuclei of the phenyl group in the series of alkyl phenyl sulfides C/sub 6/H/sub 5/SR. It was shown that the variation in most of the discussed constants is determined by the ratio of the planar and orthogonal conformers. Linear relationships were obtained between the C-13-C-13 constants and the fractions of the planar conformer. The C-13-C-13 spin-spin coupling constants in the planar and orthogonal conformers of the compounds were calculated by means of empirical relationships.

  10. Overexpression of a homogeneous oligosaccharide with {sup 13}C labeling by genetically engineered yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Yukiko; Yamamoto, Sayoko [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan); Chiba, Yasunori; Jigami, Yoshifumi [National Institute of Advanced Industrial Science and Technology, Research Center for Medical Glycoscience (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience and Institute for Molecular Science (Japan)

    2011-08-15

    This report describes a novel method for overexpression of {sup 13}C-labeled oligosaccharides using genetically engineered Saccharomyces cerevisiae cells, in which a homogeneous high-mannose-type oligosaccharide accumulates because of deletions of genes encoding three enzymes involved in the processing pathway of asparagine-linked oligosaccharides in the Golgi complex. Using uniformly {sup 13}C-labeled glucose as the sole carbon source in the culture medium of these engineered yeast cells, high yields of the isotopically labeled Man{sub 8}GlcNAc{sub 2} oligosaccharide could be successfully harvested from glycoprotein extracts of the cells. Furthermore, {sup 13}C labeling at selected positions of the sugar residues in the oligosaccharide could be achieved using a site-specific {sup 13}C-enriched glucose as the metabolic precursor, facilitating NMR spectral assignments. The {sup 13}C-labeling method presented provides the technical basis for NMR analyses of structures, dynamics, and interactions of larger, branched oligosaccharides.

  11. 13C NMR for the assessment of human brain glucose metabolism in vivo

    International Nuclear Information System (INIS)

    Beckman, N.; Seelig, J.; Turkalj, I.; Keller, U.

    1991-01-01

    Proton-decoupled 13 C NMR spectra of the human head were obtained during hyperglycemic glucose clamping using intravenous infusions of [1- 13 C]glucose in normal volunteers. In addition to 13 C signals of mobile lipids, a variety of new metabolite resonances could be resolved for the first time in the human brain. At an enrichment level of 20% [1- 13 C]glucose, the signals of α- and β-glucose at 92.7 and 96.6 ppm, respectively, could be detected in the human brain after only an infusion period of 15 minutes. The spatial localization of the different regions of interest was confirmed by 13 C NMR spectroscopic imaging with a time resolution of 9 minutes. Increasing the enrichment level to 99% [1- 13 C]glucose not only improved the time resolution but allowed the detection of metabolic breakdown products of [1- 13 C]glucose. The time course of 13 C label incorporation into the C 2 , C 3 , and C 4 resonances of glutamate/glutamine and into lactate could be recorded in the human brain. These results suggest the possibility of obtaining time-resolved, spatially selective, and chemically specific information on the human body

  12. Synthesis and characterization of "1"3C_3-tristearin

    International Nuclear Information System (INIS)

    Wu Hangyu; Lin Lin; Li Lei; Chen Dazhou

    2011-01-01

    A highly efficient synthesis of "1"3C_3 labeled triglycerides of stearic acids from "1"3C_3-glycerol and stearic acids, by immobilized lipase-catalyzed in solvent-free medium was described. The structure of the product were characterized by fourier transform infrared spectrum (FT-IR), nuclear magnetic resonance (NMR), mass spectra (MS). The results showed that triglycerides of stearic acids contained three "1"3C atoms. The isotope abundance of "1"3C_3-tristearin was more than 99% and the yield was 80% of "1"3C_3-tristearin through calculation. Chemical purity (> 98%) was obtained by differential scanning calorimetry (DSC). (authors)

  13. Production of N-13 labeled compounds with high specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazutoshi; Sasaki, Motoji; Yoshida, Yuichiro; Haradahira, Terushi; Inoue, Osamu [National Inst. of Radiological Sciences, Chiba (Japan)

    1997-03-01

    Nitrogen-13 was produced by irradiating ultra pure water saturated with a pure gas (N2, O2, He, H2) with 18 MeV protons. Ion species generated by irradiation were analyzed with radio ion chromatography systems. An automated equipment was developed to synthesize anhydrous (13N)NH3 as a synthetic precursor and (13N)p-nitrophenyl carbamate ((13N)NPC) as a model compound, using the (13N)NH3. The radiochemical yield and specific activity of (13N)NPC was high enough to carry out the receptor study with PET. (author)

  14. Millimetre-wave spectrum of anti-13C1 and 13C2 isotopologues of ethanol

    International Nuclear Information System (INIS)

    Bouchez, Aurelia; Walters, Adam; Müller, Holger S.P.; Ordu, Matthias; Lewen, Frank; Koerber, Monika; Bottinelli, Sandrine; Endres, Christian P.; Schlemmer, Stephan

    2012-01-01

    The rotational spectra of the two monosubstituted 13 C isotopologues of the anti conformer of ethanol have been measured between 80-800 GHz using three different spectrometers at the Cologne Laboratory Astrophysics group. The dataset was constrained for fitting with a standard Watson-S reduction Hamiltonian by rejecting transitions from high-lying states showing significant perturbation with the gauche states and by averaging some small methyl torsional splits. This treatment is compatible with the needs for a first astrophysical research for which an appropriate set of predictions is given.

  15. Evolution of E. coli on [U-13C] Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Long, Christopher P.; Gonzalez, Jacqueline E.

    2016-01-01

    13C-Metabolic flux analysis (13C-MFA) traditionally assumes that kinetic isotope effects from isotopically labeled compounds do not appreciably alter cellular growth or metabolism, despite indications that some biochemical reactions can be non-negligibly impacted. Here, populations of Escherichia...

  16. Site-selective {sup 13}C labeling of proteins using erythrose

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Ulrich, E-mail: ulrich.weininger@physik.uni-halle.de [Lund University, Department of Biophysical Chemistry, Center for Molecular Protein Science (Sweden)

    2017-03-15

    NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with {sup 13}C and/or {sup 1}H, which is achieved in the most general way by using site-selectively {sup 13}C-enriched glucose (1- and 2-{sup 13}C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively {sup 13}C-enriched erythrose (1-, 2-, 3- and 4-{sup 13}C) as a suitable precursor for {sup 13}C labeled aromatic side chains. We quantify {sup 13}C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the {sup 13}C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated {sup 13}C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective {sup 13}C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.

  17. Synthesis of selectively 13C-labelled benzoic acid for nuclear magnetic resonance spectroscopic measurement of glycine conjugation activity

    International Nuclear Information System (INIS)

    Akira, Kazuki; Hasegawa, Hiroshi; Baba, Shigeo

    1995-01-01

    The synthesis of [4- 13 C]benzoic acid (BA) labelled in a single protonated carbon, for use as a probe to measure glycine conjugation activity by nuclear magnetic resonance (NMR) spectroscopy, has been reported. The labelled compound was prepared by a seven-step synthetic scheme on a relatively small scale using [2- 13 C] acetone as the source of label in overall yield of 16%. The usefulness of [4- 13 C]BA was demonstrated by the NMR spectroscopic monitoring of urinary excretion of [4- 13 C]hippuric acid in the rat administered with the labelled BA. (Author)

  18. 13C CPMAS NMR Studies of Anthocyanidins and their Glucosides

    International Nuclear Information System (INIS)

    Wolniak, M.; Wawer, I.

    2005-01-01

    Anthocyanins are responsible for red, purple or blue colours of flower petals and can be found in red or black fruits and berries. Many foods, especially red grapes and wines, aronia or blueberries contain large amounts of anthocyanins. Their health beneficial effects are related to antioxidant and radical scavenging properties. Structural analysis of anthocyanins by NMR are few, owing to the difficulty in obtaining analysable spectra for unstable, interconverting compounds, available in small amounts. Compounds studied by us were isolated from fruits and berries. 13 C CPMAS NMR spectra were recorded on a Bruker DSX-400 spectrometer for solid chlorides of: cyanidin, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin and pelargonidin 3-O-glucoside. Dipolar dephased and short contact pulse sequences were used as an aid in the assignment of resonances in CPMAS spectra of solids. Inspection of the spectra indicates that anthocyanidins are in the form of flavylium (cationic) and not in form of the chalcone.: the resonance of C2 appears at ca. 160 ppm and C3 at ca. 135 ppm, whereas C ring opening produces C2 = O, for which chemical shift of ca. 180 ppm can be expected. A comparison of experimental (CPMAS) and predicted (GIAO DFT) shielding constants for cyanidin provided information about the orientation of OH groups, twist angle of aromatic ring B and the localization of the chloride anion.(author)

  19. Synthesis of (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolic acid, methyl (1'-/sup 13/C)olivetolate and (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Porwoll, J P; Leete, E [Minnesota Univ., Minneapolis (USA). Dept. of Chemistry

    1985-03-01

    Potential advanced intermediates in the biosynthesis of delta/sup 9/-tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous /sup 13/C atoms and /sup 14/C. Methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolate was prepared from lithium (/sup 13/C/sub 2/)acetylide and dimethyl (2-/sup 14/C)malonate. Reaction with geranyl bromide afforded methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The /sup 13/C-/sup 13/C couplings observable in the /sup 13/C NMR spectra of these /sup 13/C-enriched compounds and their synthetic precursors are recorded. Methyl (1'-/sup 14/C)olivetolate was prepared from /sup 13/CO/sub 2/ to confirm assignments of the /sup 13/C chemical shifts in the pentyl side chain of these compounds.

  20. Synthesis of (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolic acid, methyl (1'-/sup 13/C)olivetolate and (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Porwoll, J.P.; Leete, E. (Minnesota Univ., Minneapolis (USA). Dept. of Chemistry)

    1985-03-01

    Potential advanced intermediates in the biosynthesis of delta/sup 9/-tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous /sup 13/C atoms and /sup 14/C. Methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolate was prepared from lithium (/sup 13/C/sub 2/)acetylide and dimethyl (2-/sup 14/C)malonate. Reaction with geranyl bromide afforded methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The /sup 13/C-/sup 13/C couplings observable in the /sup 13/C NMR spectra of these /sup 13/C-enriched compounds and their synthetic precursors are recorded. Methyl (1'-/sup 14/C)olivetolate was prepared from /sup 13/CO/sub 2/ to confirm assignments of the /sup 13/C chemical shifts in the pentyl side chain of these compounds.

  1. Synthesis of edatrexate (2-13C-glutamate)

    International Nuclear Information System (INIS)

    DeGraw, J.I.; Colwell, W.T.; Jue, Thomas

    1997-01-01

    The experimental antitumor drug Edatrexate, labeled with 99% 13 C at the 2-position of the glutamate acid group was required for 13 C-magnetic resonance spectroscopy studies in biological media. Coupling of 2,4-diamino-4-deoxy-10-ethyl-10-deazapteroic acid with diethyl L-2- 13 C-glutamate as promoted by BOP reagent afforded Edatrexate (2- 13 C-glu) diethyl ester in 60% yield following purification by column chromatography. Saponification by aqueous NaOH in 2-methoxyethanol gave the target molecule in 44% yield or 26% overall. (author)

  2. (1 H, 13 C and 31 P) NMR of phosphonic acid derivatives

    International Nuclear Information System (INIS)

    Campos, Valdevino; Costa, Valentim E. Uberti

    1991-01-01

    In the last years the development of phosphates analogues in the medical and agricultural pesticides has being very expressive. 1 H, 13 C and mainly 31 P NMR are used for stereochemical and conformational analysis, and reactivity studies on the compounds resulting from those chemical processes

  3. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  4. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C

    International Nuclear Information System (INIS)

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-01-01

    Highlights: • 13 C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled 13 C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ 13 C value). However, 13 C labeled standards can be used to control the δ 13 C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the 13 C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ 13 C values between Andro and ANAD (Δδ 13 C Andro–ANAD , ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different 13 C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ 13 C Andro–ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ 13 C Andro–ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3- 13 C labeled standards

  5. Complete 1H and 13C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    International Nuclear Information System (INIS)

    Johann, Susana; Smania Junior, Artur; Branco, Alexsandro

    2007-01-01

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ( 1 H NMR, { 1 H} -13 C NMR, and APT -13 C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete 1 H and 13 C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  6. A polymer-based magnetic resonance tracer for visualization of solid tumors by 13C spectroscopic imaging.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Suzuki

    Full Text Available Morphological imaging precedes lesion-specific visualization in magnetic resonance imaging (MRI because of the superior ability of this technique to depict tissue morphology with excellent spatial and temporal resolutions. To achieve lesion-specific visualization of tumors by MRI, we investigated the availability of a novel polymer-based tracer. Although the 13C nucleus is a candidate for a detection nucleus because of its low background signal in the body, the low magnetic resonance sensitivity of the nucleus needs to be resolved before developing a 13C-based tracer. In order to overcome this problem, we enriched polyethylene glycol (PEG, a biocompatible polymer, with 13C atoms. 13C-PEG40,000 (13C-PEG with an average molecular weight of 40 kDa emitted a single 13C signal with a high signal-to-noise ratio due to its ability to maintain signal sharpness, as was confirmed by in vivo investigation, and displayed a chemical shift sufficiently distinct from that of endogenous fat. 13C-PEG40,000 intravenously injected into mice showed long retention in circulation, leading to its effective accumulation in tumors reflecting the well-known phenomenon that macromolecules accumulate in tumors because of leaky tumor capillaries. These properties of 13C-PEG40,000 allowed visualization of tumors in mice by 13C spectroscopic imaging. These findings suggest that a technique based on 13C-PEG is a promising strategy for tumor detection.

  7. Time-trends in method-specific suicide rates compared with the availability of specific compounds

    DEFF Research Database (Denmark)

    Nordentoft, Merete; Qin, Ping; Helweg-Larsen, Karin

    2006-01-01

    Restriction of means for suicide is an important part of suicide preventive strategies in different countries. All suicides in Denmark between 1970 and 2000 were examined with regard to method used for suicide. Overall suicide mortality and method-specific suicide mortality was compared...... in the number of suicides by self-poisoning with these compounds. Restricted access occurred concomittantly with a 55% decrease in suicide rate....

  8. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  9. Synthesis of [2-13C, 2-14C] 2-aminoethanol, [1-13C, 1-14C] 2-chloroethylamine, N,N'-bis([1-13C, 1-14C] 2-chloroethyl)-N-nitrosourea(BCNU) and N-([1-13C, 1-14C] 2-chloroethyl)-N-nitrosourea(CNU)

    International Nuclear Information System (INIS)

    Narayan, R.; Chang, C-j.

    1982-01-01

    [2- 13 C, 2- 14 C]2-Aminoethanol hydrochloride was prepared in good yield from Na*CN in a two step sequence by first converting the Na*CN to OHCH 2 *CN and then reducing the nitrile directly with a solution of borane-tetrahydrofuran complex. The reaction procedure was simple and the pure product could be obtained readily. Using this specifically labelled precursor, the synthesis of [1- 13 C, 1- 14 C]2-chloroethylamine hydrochloride, N-([1- 13 C, 1- 14 C]2-chloroethyl)-N-nitrosourea(CNU) and N,N'-bis([1- 13 C, 1- 14 C]2-chloroethyl)-N-nitrosourea(BCNU) in good yield without isotope scrambling was also reported. (author)

  10. 13C-NMR assignment, structure, and dynamics of deoxyoligonucleotides

    International Nuclear Information System (INIS)

    Zanatta, N.; Borer, P.N.; Levy, G.C.

    1986-01-01

    The unique spectral properties of 13 C-NMR for studying nucleic acids and some of the important features of 13 C-NMR in oligonucleotide studies are demostrated. The main difficulty in studying oligonucleotides by 13 C-NMR and recent improvements in NMR instrumentation and advances in oligonucleotide synthesis are presented. The high resolution 13 C-NMR spectra, T 1 relaxation times and NOEs were measured for duplex of the self-complementary oligo-DNAs: d(CG) 3 and d(GGTATACC) are studied. The target of this study is to developed a systematic 13 C-NMR spectral assignment and to investigate the structure and dynamics of these two sequences by this techniques. (M.J.C.) [pt

  11. Characterization of methacetin-methoxy-"1"3C

    International Nuclear Information System (INIS)

    Lu Weijing; Lu Hao; Yang Weicheng; Liu Weixia; Li Shuai; Xu Zhongjie; Guan Liang; Zhu Chengmo; Chen Suyun; Jiang Lei

    2010-01-01

    Methacetin-methoxy-"1"3C was synthesized by using methanol-"1"3C with a novel method, and the characterization of it was performed using HPLC, LC-MS and "1HMNR. The results indicated that the synthetic was right. And the yield of methacetin-methoxy-"1"3C was 70.0% with 99% "1"3C abundance and 99.8% purity. Compared with the classical method, there was more benefit. The methacetin "1"3C-breath test was performed with the synthetic on the live mice, which showed a precise reflection of alteration of liver function in liver injury and functional recovery. (authors)

  12. Intramolecular 13C analysis of tree rings provides multiple plant ecophysiology signals covering decades.

    Science.gov (United States)

    Wieloch, Thomas; Ehlers, Ina; Yu, Jun; Frank, David; Grabner, Michael; Gessler, Arthur; Schleucher, Jürgen

    2018-03-22

    Measurements of carbon isotope contents of plant organic matter provide important information in diverse fields such as plant breeding, ecophysiology, biogeochemistry and paleoclimatology. They are currently based on 13 C/ 12 C ratios of specific, whole metabolites, but we show here that intramolecular ratios provide higher resolution information. In the glucose units of tree-ring cellulose of 12 tree species, we detected large differences in 13 C/ 12 C ratios (>10‰) among carbon atoms, which provide isotopically distinct inputs to major global C pools, including wood and soil organic matter. Thus, considering position-specific differences can improve characterisation of soil-to-atmosphere carbon fluxes and soil metabolism. In a Pinus nigra tree-ring archive formed from 1961 to 1995, we found novel 13 C signals, and show that intramolecular analysis enables more comprehensive and precise signal extraction from tree rings, and thus higher resolution reconstruction of plants' responses to climate change. Moreover, we propose an ecophysiological mechanism for the introduction of a 13 C signal, which links an environmental shift to the triggered metabolic shift and its intramolecular 13 C signature. In conclusion, intramolecular 13 C analyses can provide valuable new information about long-term metabolic dynamics for numerous applications.

  13. Characterization of phenols biodegradation by compound specific stable isotope analysis

    Science.gov (United States)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    -cresol degradation and 2.2±0.3‰ for m-cresol degradation, respectively. The carbon isotope fractionation patterns of phenol degradation differed more profoundly. Oxygen-dependent monooxygenation of phenol by A.calcoaceticus as the initial reaction yielded ƐC values of -1.5±0.02‰. In contrast, the anaerobic degradation initiated by ATP-dependent carboxylation performed by Thauera aromatia DSM 6984, produced no detectable fractionation (ƐC 0±0.1‰). D. cetonica showed a slight inverse carbon isotope fractionation (ƐC 0.4±0.1‰). In conclusion, a validated method for compound specific stable isotope analysis was developed for phenolic compounds, and the first data set of carbon enrichment factors upon the biodegradation of phenol and cresols with different activation mechanisms has been obtained in the present study. Carbon isotope fractionation analysis is a potentially powerful tool to monitor phenolic compounds degradation in the environment.

  14. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-12-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  15. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-01-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  16. Whole-core analysis by 13C NMR

    International Nuclear Information System (INIS)

    Vinegar, H.J.; Tutunjian, P.N.; Edelstein, W.A.; Roemer, P.B.

    1991-01-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance 13 C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. 13 C NMR can be used in cores where the 1 H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. 13 C/ 1 H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good 13 C signal/noise ratio (SNR) is obtained within minutes, while 1 H spectra are obtained in seconds. NMR measurements have been made of the 13 C and 1 H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the 13 C and 1 H signal per unit volume is constant within about 3.5%. For heavy crudes, the 13 C and 1 H density measured by NMR is reduced by the shortening of spin-spin relaxation time. 13 C and 1 H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60 degrees API), and alkanes (C 5 through C 16 ) with viscosities at 77 degrees F ranging from 0.5 cp to 2.5 x 10 7 cp. The 13 C and 1 H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The 13 C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled 13 C NMR is shown to be insensitive to kerogen; thus, 13 C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the 13 C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon

  17. The synthesis of Org 3770 labelled with 3H, 13C and 14C

    International Nuclear Information System (INIS)

    Kaspersen, F.M.; Rooij, F.A.M. van; Sperling, E.G.M.; Wieringa, J.H.

    1989-01-01

    The syntheses of 1,2,3,4,10,14b-hexahydro-2-methylpyrazino[2,1-a]pyrido[2,3-c][2]benazepine (Org 3770) labelled with 3 H (and 2 H), 13 C and 14 C are described. Tritiated Org 3770 was prepared either by exchange under alkaline conditions with tritiated water or catalytic reductive dehalogenation of a chloro analogue with 3 H 2 . 13 C-labelled material was obtained in a seven-step synthesis starting from 13 C-labelled benzene whereas 14 C-Org 3770 was prepared in a three-step synthesis starting with 14 CO 2 . All labelled compounds were analyzed by TLC, HPLC, MS and NMR. (author)

  18. 13C(α,n)16O reaction as the knock-out exchange process

    International Nuclear Information System (INIS)

    Kim, G.; Khajdarov, R.R.; Zaparov, Eh.A.

    2000-01-01

    S-factor for the 13 C(α,n) 16 O reaction is studied. In the framework of the simple phenomenological model this reaction is analysed as neutron knocked-out by α-particle exchange process. The analysis demonstrates the importance of taking into account 2p-state in 13 C. The 13 C(α,n) 16 O cross section is considered both as the knock-out exchange process and as it's combination with process through a compound nucleus. It was shown that for E α s value extrapolated to low energies is found to be noticeably larger that of R-matrix analysis. Different ways of improving the proposed model are discussed. (author)

  19. 13C and 31P NMR [Nuclear Magnetic Resonance] studies of prostate tumor metabolism

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Halliday, K.R.; Freyer, J.P; Griffey, R.H.; Fenoglio-Preiser, C.

    1989-01-01

    The current research on prostate cancer by NMR spectroscopy and microscopy will most significantly contribute to tumor diagnosis and characterization only if sound biochemical models of tumor metabolism are established and tested. Prior searches focused on universal markers of malignancy, have to date, revealed no universal markers by any method. It is unlikely that NMRS will succeed where other methods have failed, however, NMR spectroscopy does provide a non-invasive means to analyze multiple compounds simultaneously in vivo. In order to fully evaluate the ability of NMRS to differentiate non-malignant from malignant tissues it is necessary to determine sufficient multiple parameters from specific, well-diagnosed, histological tumor types that, in comparison to normal tissue and non-neoplastic, non-normal pathologies from which the given neoplasm must be differentiated, one has enough degrees of freedom to make a mathematically and statistically significant determination. Confounding factors may consist of tumor heterogeneity arising from regional variations in differentiation, ischemia, necrosis, hemorrhage, inflammation and the presence of intermingled normal tissue. One related aspect of our work is the development of { 13 C}- 1 H metabolic imaging of 13 C for metabolic characterization, with enhanced spatial localization (46). This should markedly extend the range of potential clinical NMR uses because the spatial variation in prostate metabolism may prove to be just as important in tumor diagnoses as bulk (volume-averaged) properties themselves. It is our hope that NMRS and spectroscopic imaging will reveal a sound correlation between prostate metabolism and tumor properties that will be clinically straightforward and useful for diagnosis

  20. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  1. Synthesis of [13C6]-labelled phenethylamine derivatives for drug quantification in biological samples.

    Science.gov (United States)

    Karlsen, Morten; Liu, HuiLing; Berg, Thomas; Johansen, Jon Eigill; Hoff, Bård Helge

    2014-05-15

    The availability of high-quality (13)C-labelled internal standards will improve accurate quantification of narcotics and drugs in biological samples. Thus, the synthesis of 10 [(13)C6]-labelled phenethylamine derivatives, namely amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-N-ethylamphetamine, 4-methoxyamphetamine, 4-methoxymethamphetamine, 3,5-dimethoxyphenethylamine 4-bromo-2,5-dimethoxyphenethylamine and 2,5-dimethoxy-4-iodophenethylamine, have been undertaken. [(13)C6]-Phenol proved to be an excellent starting material for making (13)C-labelled narcotic substances in the phenethylamine class, and a developed Stille-type coupling enabled an efficient synthesis of the 3,4-methylenedioxy and 4-methoxy derivatives. The pros and cons of alternative routes and transformations are also discussed. The [(13)C6]-labelled compounds are intended for use as internal standards in forensic analysis, health sciences and metabolomics studies by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Synthesis of 13C-labeled vitamin E and interaction between vitamin E and phospholipid in liposome

    International Nuclear Information System (INIS)

    urano, S.; Matsuo, M.

    1986-01-01

    Vitamin E with a 13 C-labeled isoprenoid side chain, [4'a- 13 C], [6'- 13 C], [8'a- 13 C] and [12'a and 13'- 13 C]α-tocopherols were synthesized. These compounds were incorporated into three kinds of lecithin liposomes from dipalmitoyl phosphatidyl cholin, egg lecithin and rat liver lecithin, of which arachidonic acid contents are 0, 2.6 and 19.0%, respectively. T 1 values, which were measured by NMR for the labeled carbons, indicate that the segmental motion tends to increase with the increase of the distance from the chroman ring. This tendency is not affected with the arachidonic acid contents of phospholipids. This result can not be explained by Lucy's hypothesis. 1 figure; 1 table

  3. Succession after fire: variation in \\delta13C of organic tissues and respired CO2 in boreal forests

    Science.gov (United States)

    Fessenden, J. E.; Li, H.; Mack, M.; Schuur, T.; Warren, S.; Randerson, J. T.

    2001-12-01

    Isotope ratios of carbon dioxide and leaf organic matter were measured in 5 neighboring forests of varying ages: 7, 14, 45, 140, and 160 years. These forests are composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce 50 years after fire disturbance. Research on the carbon isotope ratios of leaf material and CO2 was conducted to look for influences from species composition, forest age, and time after most recent burn. Samples of organic \\delta13C in whole leaf tissue were collected from the dominant species of each forest. Concurrent aboveground NPP measurements allowed us to estimate total ecosystem \\delta13C by providing a method for weighting \\delta13C of individual species and plant tissues. \\delta13CO2 and [CO2] were measured on canopy CO2 to determine the isotopic ratio of ecosystem respiration. The atmospheric results indicated that the \\delta13C of ecosystem respiration changes with successional stage. Specifically, the aspen dominating forests showed 13C depleted values relative to the spruce dominated forests. Organic results showed more 13C-enriched values with increased forest age and vegetation functional type. Specifically, oldest trees within the coniferous species had the most 13C-enriched values in leaf tissues. These results suggest that increases in the disturbance regime of northern boreal forests will lead to a decrease in the \\delta13C of ecosystem carbon with consequences for the atmospheric \\delta13C budget.

  4. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C.

    Science.gov (United States)

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-12-10

    Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ(13)C value). However, (13)C labeled standards can be used to control the δ(13)C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the (13)C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ(13)C values between Andro and ANAD (Δδ(13)CAndro-ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different (13)C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ(13)CAndro-ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ(13)CAndro-ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-(13)C labeled standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. 13C-NMR of diterpenes with pimarane skeleton

    International Nuclear Information System (INIS)

    Garcez, W.S.; Pereira, A.L.; Silva Queiroz, P.P. da; Silva, R.S. da; Valente, L.M.M.; Peixoto, E.M.; Cunha Pinto, A. da

    1981-01-01

    The effect of substituent groups on the chemical shift of carbons using nuclear magnetic resonance spectra of carbon 13 ( 13 C-NMR) is discussed. Diterpenes having pimarane skeleton, isolated from plants of Velloziaceae family are analysed. (ARHC) [pt

  6. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.; Babaa, M.-R.; Bouhrara, M.; Kim, Y.; Saih, Y.; Dennler, S.; Mauri, F.; Basset, Jean-Marie; Goze-Bac, C.; Wå gberg, T.

    2011-01-01

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled

  7. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier; Lefort, Laurent; Vidal, Vé ronique; Thivolle-Cazat, Jean; Basset, Jean-Marie

    2010-01-01

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction

  8. Nitrogen Fertilizer and Straw Applications Affect Uptake of 13C,15N-Glycine by Soil Microorganisms in Wheat Growth Stages.

    Directory of Open Access Journals (Sweden)

    Lijie Yang

    Full Text Available This study investigated the influence of nitrogen (N fertilizer and straw on intact amino acid N uptake by soil microorganisms and the relationship between amino acid turnover and soil properties during the wheat growing season. A wheat pot experiment was carried out with three treatments: control (CK, N fertilizer (NF and N fertilizer plus rice straw (NS. We used stable isotope compound-specific analysis to determine the uptake of 13C,15N-glycine by soil microorganisms. In the NF treatment, microbial 13C,15N-glycine uptake was lower compared with CK, suggesting that inorganic N was the preferred N source for soil microorganisms. However, The application of straw with N fertilizer (in NS treatment increased microbial 13C,15N-glycine uptake even with the same amount of N fertilizer application. In this treatment, enzyme activities, soil microbial biomass C and microbial biomass N increased simultaneously because more C was available. Soil mineral N and plant N contents all decreased substantially. The increased uptake of intact 13C,15N-glycine in the NS treatment can be attributed to direct assimilation by soil microorganisms to satisfy the demand for N when inorganic N was consumed.

  9. Pico-CSIA: Picomolar Scale Compound-Specific Isotope Analyses

    Science.gov (United States)

    Baczynski, A. A.; Polissar, P. J.; Juchelka, D.; Schwieters, J. B.; Hilkert, A.; Freeman, K. H.

    2016-12-01

    The basic approach to analyzing molecular isotopes has remained largely unchanged since the late 1990s. Conventional compound-specific isotope analyses (CSIA) are conducted using capillary gas chromatography (GC), a combustion interface, and an isotope-ratio mass spectrometer (IRMS). Commercially available GC-IRMS systems are comprised of components with inner diameters ≥0.25 mm and employ helium flow rates of 1-4 mL/min. These flow rates are an order of magnitude larger than what the IRMS can accept. Consequently, ≥90% of the sample is lost through the open split, and 1-10s of nanomoles of carbon are required for analysis. These sample requirements are prohibitive for many biomarkers, which are often present in picomolar concentrations. We utilize the resolving power and low flows of narrow-bore capillary GC to improve the sensitivity of CSIA. Narrow bore capillary columns (<0.25 mm ID) allow low helium flow rates of ≤0.5mL/min for more efficient sample transfer to the ion source of the IRMS while maintaining the high linear flow rates necessary to preserve narrow peak widths ( 250 ms). The IRMS has been fitted with collector amplifiers configured to 25 ms response times for rapid data acquisition across narrow peaks. Previous authors (e.g., Sacks et al., 2007) successfully demonstrated improved sensitivity afforded by narrow-bore GC columns. They reported an accuracy and precision of 1.4‰ for peaks with an average width at half maximum of 720 ms for 100 picomoles of carbon on column. Our method builds on their advances and further reduces peak widths ( 600 ms) and the amount of sample lost prior to isotopic analysis. Preliminary experiments with 100 picomoles of carbon on column show an accuracy and standard deviation <1‰. With further improvement, we hope to demonstrate robust isotopic analysis of 10s of picomoles of carbon, more than 2 orders of magnitude lower than commercial systems. The pico-CSIA method affords high-precision isotopic analyses for

  10. Fourier spectroscopy of the 12C2, 13C2, and 12C13C (0-0) swan bands

    International Nuclear Information System (INIS)

    Amiot, C.

    1983-01-01

    The (0-0) band of the C 2 Swan electronic system d 3 Pi/sub g/→a 3 Pi/sub u/ has been recorded by Fourier spectroscopy. The three isotopes species 12 C 2 , 13 C 2 , and 12 C 13 C were investigated. The observed wavenumbers were reduced to molecular parameters using a nonlinear least-square fitting procedure. Well-known perturbations at N' = 47 and N' = 51 again observed in the e 12 C 2 d 3 Pi/sub g/ (v = 0) level. Perturbations of the same kind are present in the 13 C 2 spectrum at N' = 34 and N' = 44,48,52. The 12 C 13 C spectrum exhibits in the observed spectral range a unique perturbation for N' = 41

  11. Compound-Specific Isotope Analysis (CSIA Application for Source Apportionment and Natural Attenuation Assessment of Chlorinated Benzenes

    Directory of Open Access Journals (Sweden)

    Luca Alberti

    2017-11-01

    Full Text Available In light of the complex management of chlorobenzene (CB contaminated sites, at which a hydraulic barrier (HB for plumes containment is emplaced, compound-specific stable isotope analysis (CSIA has been applied for source apportionment, for investigating the relation between the upgradient and downgradient of the HB, and to target potential CB biodegradation processes. The isotope signature of all the components potentially involved in the degradation processes has been expressed using the concentration-weighted average δ13C of CBs + benzene (δ13Csum. Upgradient of the HB, the average δ13Csum of −25.6‰ and −29.4‰ were measured for plumes within the eastern and western sectors, respectively. Similar values were observed for the potential sources, with δ13Csum values of −26.5‰ for contaminated soils and −29.8‰ for the processing water pipeline in the eastern and western sectors, respectively, allowing for apportioning of these potential sources to the respective contaminant plumes. For the downgradient of the HB, similar CB concentrations but enriched δ13Csum values between −24.5‰ and −25.9‰ were measured. Moreover, contaminated soils showed a similar δ13Csum signature of −24.5‰, thus suggesting that the plumes likely originate from past activities located in the downgradient of the HB. Within the industrial property, significant δ13C enrichments were measured for 1,2,4-trichlorobenzene (TCB, 1,2-dichlorobenzene (DCB, 1,3-DCB, and 1,4-DCBs, thus suggesting an important role for anaerobic biodegradation. Further degradation of monochlorobenzene (MCB and benzene was also demonstrated. CSIA was confirmed to be an effective approach for site characterization, revealing the proper functioning of the HB and demonstrating the important role of natural attenuation processes in reducing the contamination upgradient of the HB.

  12. Nitrite and nitroso compounds can serve as specific catalase inhibitors.

    Science.gov (United States)

    Titov, Vladimir Yu; Osipov, Anatoly N

    2017-03-01

    We present evidence that nitrite and nitrosothiols, nitrosoamines and non-heme dinitrosyl iron complexes can reversibly inhibit catalase with equal effectiveness. Catalase activity was evaluated by the permanganatometric and calorimetric assays. This inhibition is not the result of chemical transformations of these compounds to a single inhibitor, as well as it is not the result of NO release from these substances (as NO traps have no effect on the extent of inhibition). It was found that chloride and bromide in concentration above 80 mM and thiocyanate in concentration above 20 μM enhance catalase inhibition by nitrite and the nitroso compounds more than 100 times. The inhibition degree in this case is comparable with that induced by azide. We propose that the direct catalase inhibitor is a positively charged NO-group. This group acquires a positive charge in the active center of enzyme by interaction of nitrite or nitroso compounds with some enzyme groups. Halides and thiocyanate protect the NO + group from hydration and thus increase its inhibition effect. It is probable that a comparatively low chloride concentration in many cells is the main factor to protect catalase from inhibition by nitrite and nitroso compounds.

  13. Delta /sup 13/C fractionation in Tarbela dam fish

    International Nuclear Information System (INIS)

    Latif, Z.; Sajjad, M.I.; Bilal, R.; Tasneem, M.A.; Khan, I.H.; Ali, M.

    1998-01-01

    The paper focuses on the study of naturally occurring /sup 13/C fractionation in Tarbela dam fish. Craig noted that gamma /sup 13/C values for animal tissues fall in the range as their food supply. DeNiro and Epstein demonstrated clearly that the carbon isotope composition of an animal greatly depends on its diet. The above mentioned statements were observed while studying the isotopic composition of carbon in different parts of the fish. Living fish was purchased from the Haripur side of the Tarbela lake. Different portions were separated and fish diet was collected from the fish stomach. Samples were dried in the oven at 40-50 deg. C for five days. Ground, homogenized and ignited with research grade oxygen at 900-1000 deg. C. CO and CO /sub 2/ were produced and CO was converted to CO/sub 2/ by circulation over CuO gauge furnace at 900 deg. C. CO/sub 2/ was purified using 70 deg. C slush and analyzed on Varian Mat (GD-150) mass spectrometer for gamma /sup 13/C measurements. The results show that fish flesh sup/13 C value is nearly similar to fish diet gamma /sup 13/C. gamma /sup 13/C values to different parts of the fish departed from that of the diet in the sequence: fish swim bladder (-22.04) >ribs (2-22.26)>skin (122.91)>diet (123.22)>flesh (-23.40)> vertebral column (-24.07). It is concluded that diet is easily metabolized in the fish flesh and skin tissues through blood streams without causing any pronounced fractionation. Fractionation was observed in the fish endo skeleton system due to which fish ribs become enriched in gamma /sup 13/C than vertebral column. Fractionation was also detected in visceral muscles (swim bladder) of the fish as comparison with somatic axial trunk muscle (fish flesh). (author)

  14. Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.

    Science.gov (United States)

    Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues

    2014-03-18

    Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside.

  15. Assessment of MTBE biodegradation in contaminated groundwater using 13C and 14C analysis: Field and laboratory microcosm studies

    International Nuclear Information System (INIS)

    Thornton, Steven F.; Bottrell, Simon H.; Spence, Keith H.; Pickup, Roger; Spence, Michael J.; Shah, Nadeem; Mallinson, Helen E.H.; Richnow, Hans H.

    2011-01-01

    Highlights: → Carbon isotope fractionation for MTBE varies with dissolved oxygen concentration. → Carbon isotope fractionation can underestimate MTBE biodegradation at plume fringes. → Fractionation factors must be for specific biodegradation mechanisms and conditions. → Specific microbial populations influence carbon isotope fractionation in groundwater. - Abstract: Radiolabelled assays and compound-specific stable isotope analysis (CSIA) were used to assess methyl tert-butyl ether (MTBE) biodegradation in an unleaded fuel plume in a UK chalk aquifer, both in the field and in laboratory microcosm experiments. The 14 C-MTBE radiorespirometry studies demonstrated widespread potential for aerobic and anaerobic MTBE biodegradation in the aquifer. However, δ 13 C compositions of MTBE in groundwater samples from the plume showed no significant 13 C enrichment that would indicate MTBE biodegradation at the field scale. Carbon isotope enrichment during MTBE biodegradation was assessed in the microcosms when dissolved O 2 was not limiting, compared with low in situ concentrations (2 mg/L) in the aquifer, and in the absence of O 2 . The microcosm experiments showed ubiquitous potential for aerobic MTBE biodegradation in the aquifer within hundreds of days. Aerobic MTBE biodegradation in the microcosms produced an enrichment of 7 per mille in the MTBE δ 13 C composition and an isotope enrichment factor (ε) of -1.53 per mille when dissolved O 2 was not limiting. However, for the low dissolved O 2 concentration of up to 2 mg/L that characterizes most of the MTBE plume fringe, aerobic MTBE biodegradation produced an enrichment of 0.5-0.7 per mille, corresponding to an ε value of -0.22 per mille to -0.24 per mille. No anaerobic MTBE biodegradation occurred under these experimental conditions. These results suggest the existence of a complex MTBE-biodegrading community in the aquifer, which may consist of different aerobic species competing for MTBE and dissolved O 2

  16. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    The ecological integrity of tropical habitats, including mangroves, seagrass beds and coral reefs, is coming under increasing pressure from human activities. Many coral reef fish species are thought to use mangroves and seagrass beds as juvenile nurseries before migrating to coral reefs as adults. Identifying essential habitats and preserving functional linkages among these habitats is likely necessary to promote ecosystem health and sustainable fisheries on coral reefs. This necessitates quantitative assessment of functional connectivity among essential habitats at the seascape level. This thesis presents the development and first application of a method for tracking fish migration using amino acid (AA) δ13C analysis in otoliths. In a controlled feeding experiment with fish reared on isotopically distinct diets, we showed that essential AAs exhibited minimal trophic fractionation between consumer and diet, providing a δ13C record of the baseline isoscape. We explored the potential for geochemical signatures in otoliths of snapper to act as natural tags of residency in seagrass beds, mangroves and coral reefs in the Red Sea, Caribbean Sea and Eastern Pacific Ocean. The δ13C values of otolith essential AAs varied as a function of habitat type and provided a better tracer of residence in juvenile nursery habitats than conventional bulk stable isotope analyses (SIA). Using our otolith AA SIA approach, we quantified the relative contribution of coastal wetlands and reef habitats to Lutjanus ehrenbergii populations on coastal, shelf and oceanic coral reefs in the Red Sea. L. ehrenbergii made significant ontogenetic migrations, traveling more than 30 km from juvenile nurseries to coral reefs and across deep open water. Coastal wetlands were important nurseries for L. ehrenbergii; however, there was significant plasticity in L. ehrenbergii juvenile habitat requirements. Seascape configuration played an important role in determining the functional connectivity of L

  17. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    Science.gov (United States)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    along the canopy to trunk continuum. We further hypothesize that pronounced depletion along the basipetal transport pathway in A. longifolia (more than 6 per mil from leaf water soluble organic matter to trunk phloem sap) may be due to high stem photosynthesis rates in this green-barked legume. Regardless of these fractionation effects, phloem sap d13C correlated well with environmental parameters driving photosynthesis (photosynthetic photon flux density, soil moisture, vapor pressure deficit) for both species indicating that phloem sap d13C is a good integrative tracer of changes in canopy-level carbon discrimination once species-specific differences in post-photosynthetic fractionation are accounted for. Furthermore, we illustrate that combining sap flow estimated canopy stomatal conductance (gs) with measurements of phloem sap d13C (adjusted for post-photosynthetic fractionation) has significant potential as a relatively non-intensive method for estimating canopy-level carbon assimilation rates in field studies.

  18. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations

    International Nuclear Information System (INIS)

    Hong, M.; Jakes, K.

    1999-01-01

    The selective and extensive 13C labeling of mostly hydrophobic amino acid residues in a 25 kDa membrane protein, the colicin Ia channel domain, is reported. The novel 13C labeling approach takes advantage of the amino acid biosynthetic pathways in bacteria and suppresses the synthesis of the amino acid products of the citric acid cycle. The selectivity and extensiveness of labeling significantly simplify the solid-state NMR spectra, reduce line broadening, and should permit the simultaneous measurement of multiple structural constraints. We show the assignment of most 13C resonances to specific amino acid types based on the characteristic chemical shifts, the 13C labeling pattern, and the amino acid composition of the protein. The assignment is partly confirmed by a 2D homonuclear double-quantum-filter experiment under magic-angle spinning. The high sensitivity and spectral resolution attained with this 13C-labeling protocol, which is termed TEASE for ten-amino acid selective and extensive labeling, are demonstrated

  19. Applications of stable isotopes of 2H, 13C and 15N to clinical problems

    International Nuclear Information System (INIS)

    Klein, P.D.; Szczepanik, P.A.; Hachey, D.L.

    1974-01-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use 2 H, 13 C, or 15 N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective 13 C and 15 N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. 13 C and 15 N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B 12 -responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. 15 N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome. (Mukohata, S.)

  20. Direct 13C-1H coupling constants in the vinyl group of 1-vinylpyrazoles

    International Nuclear Information System (INIS)

    Afonin, A.V.; Voronov, V.K.; Es'kova, L.A.; Domnina, E.S.; Petrova, E.V.; Zasyad'ko, O.V.

    1987-01-01

    In a continuation of a study of the rotational isomerism of 1-vinylpyrazoles, they studied the direct 13 C- 1 H coupling constants in the vinyl group of 1-vinylpyrazole, 1-vinyl-4-bromopyrazole, 1-vinyl-3-methylpyrazole, 1-vinyl-5-methylpyrazole, 1-vinyl-3,5-dimethylpyrazole, and 1-vinyl-4-nitro-3,5-dimethylpyrazole. The 13 C- 1 H direct coupling constants in the vinyl group of 1-vinylpyrazoles are stereo-specific and vary with change in the conformer ratio

  1. {sup 13}C relaxation in an RNA hairpin

    Energy Technology Data Exchange (ETDEWEB)

    King, G.C. [Univ. of South Wales, Kensington (Australia)]|[Rice Univ., Houston, TX (United States); Akratos, C. [Univ. of South Wales, Kensington (Australia); Xi, Z.; Michnica, M.J. [Rice Univ., Houston, TX (United States)

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  2. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    Science.gov (United States)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  3. 13C and 31P NMR studies of myocardial metabolism

    International Nuclear Information System (INIS)

    Laughlin, M.R.

    1988-01-01

    The fluxes through two enzyme systems have been measured in perfused or in in vivo heart using NMR: phosphocreatine kinase, and glycogen synthase and phosphorylase. The rates of synthesis and degradation of glycogen were monitored in vivo in fed, fasted, and diabetic rat heart during infusions of 13 C-1-glucose and insulin using proton-decoupled 13 C-NMR at 1.9 and 4.7 tesla. The enzyme activities of glycogen synthase and glycogen phosphorylase were also measured in this tissue which had been freeze clamped at the end of the experiment, for comparison with the synthetic rates. For normal fed, fasted, and diabetic animals, synthesis rates were 0.28, 0.16, and 0.15 μmol/min.gww respectively. Glycogen synthase i activity was 0.23, 0.14, and 0.14 μmol/min.gww in these hearts at the end of the experiment, when measured at appropriate substrate and activator concentrations, and follow activation time courses that are consistent with being the main rate determinant for net synthesis in all cases. Turnover of glycogen was studied by observing the preformed 13 C-1-glycogen signal during infusion of 12 C-glucose and insulin, and was found to be close to zero. Extracted phosphorylase a activity was approximately ten times that of synthase i under these circumstances. In order to fully interpret the turnover studies, glycogenolysis of preformed 13 C-glycogen was observed after a bolus of glucagon. The glycogen had either been synthesized from 13 C-1-glucose for a single hour, or during an hour of 13 C-glucose and a subsequent hour of 12 C-glucose infusion. The author observed that breakdown follows an exponential time course related to the phosphorylase a activation state and that the last synthesized glycogen breaks down at the rate of 2.5 μmol/min.gww, five times faster than that synthesized an hour earlier

  4. Detection of Helicobacter pylori in rural school children using 13C ...

    African Journals Online (AJOL)

    ulcer, gastric ulcer, non-ulcer dyspepsia and gastritis. Several diagnostic methods are available for the detection of H. pylori, with direct methods based on gastric biopsies. The 13C- Urea Breath Test (UBT) used in this study has advantage over the other methods in that, it is easy to perform, specific (100%), highly sensitive ...

  5. 13C Kinetic isotopic effect of polymerization on monomers with multiple bond

    International Nuclear Information System (INIS)

    Berman, E.L.; Polyakov, V.B.; Makovetskij, K.L.; Golenko, T.G.; Galimov, Eh.M.; AN SSSR, Moscow. Inst. Organicheskoj Khimii; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1988-01-01

    13 C kinetic isotopic effect (KIE) of anionic and radical polymerization and metathesis reaction of monomers with multiple bonds are studied and correlation between the found KIE values of polymerization and the structure of transition state is established. 13 C KIE of polymerization reactions are investigated using monomers with natural content of the isotope. Polymerization was carried out using high-vacuum equipment: radical polymerization of methyl acrylate (MA) and vinyl acetate in benzene solution under the effect of benzoyl peroxide (60 deg C); anionic polymerization of MA, initiated by potassium butyl cellosolvolate, was realized in mass at 25 deg C; cyclopentene metathesis reaction was conducted in benzene under the effect of initiating system WCl 6 - (C 3 H 5 ) 2 Si(CH 3 ) 2 at -30 deg C; phenylacetylene polymers were prepared by polymerization in benzene solution at 20 deg C under the effect of WCl 6 . It is ascertained that 13 C KIE of radical and anionic polymerization of olefins and cycloolefin metathesis constitutes 2.0 -2.4%. Polymerization of compound with ternary bond is accompanied by a lower value of 13 C KIE (<1%), which is explained by double bond of reacting bond in transition state

  6. 13C/12C ratios in human urine concrementes

    International Nuclear Information System (INIS)

    Hoefs, J.; Armbruster, T.

    1978-01-01

    Oxalate, uric acid, and phosphate stones have been analyzed for their carbon isotope composition. The oxalate stones show delta 13 C values between -17.0 and -19.5 pro mille, the uric acid stones between -14.9 and -19.4 pro mille, and the phosphate stones between -13.0 and -23.9 pro mille. It is proposed that endogenic rather than exogenic sources are responsible for the 13 C/ 12 C ratios of the stones. The isotopic composition of the phosphate stones seems to be influenced primarily by bacterial activity. (orig.) [de

  7. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments...... application of HPLC-SPE-NMR analysis using direct-detected (13)C NMR spectra. HPLC column loading, accumulative SPE trappings, and the effect of different elution solvents were evaluated and optimized. A column loading of approximately 600 mug of a prefractionated triterpenoid mixture, six trappings...

  8. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    Science.gov (United States)

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  9. Achievement report on research and development of medical and welfare equipment technology. Unit {sup 13}C-MRS for noninvasive measurement of brain metabolism; Iryo fukushi kiki gijutsu kenkyu kaihatsu seika hokokusho. Mushinshuteki no taisha keisokuyo {sup 1}3C-MRS sochi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The effort is to develop technologies of conducting highly sensitive, uninterrupted observation of metabolism in the brain by use of the {sup 13}C-MRS unit, for which some carbon chain compounds (glucose, amino acids, etc.), which assume an important part in metabolism, are labelled by a stable isotope {sup 13}C and then administered to living things. A multi-slice HSQC (heteronuclear single quantum coherence) method is developed for the achievement of sensitivity enhanced 16 folds, excellent compound isolating capability, and high localizing capability, and these contribute to the specification of an optimum pulse sequence. A double tuning coil is developed for transmission, and a 6-channel multi-surface coil for reception, these two providing a 3-fold increase in detection probe sensitivity. The nonlinear least-square method is applied for the processing of spectral data, which enables excellent isolation of compounds. It also enables the generation of an inclined magnetic field quick to rise and of a sequence high in amplitude/phase accuracy. New methods are developed for the synthesis of {sup 13}C-labelled glucose, dopa, glutamine, glutamic acid, and GABA (gamma-aminobutyric acid) which are expected to be useful in brain metabolism measurement, and the products are administered to animals for evaluation. (NEDO)

  10. Re-evaluating the isotopic divide between angiosperms and gymnosperms using n-alkane δ13C values

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2009-12-01

    Angiosperm δ13C values are typically 1-3‰ more negative than those of co-occurring gymnosperms. This is known for both bulk leaf and compound-specific values from n-alkanes, which are stable, straight-chain hydrocarbons (C23-C35) found in the epicuticular leaf wax of vascular plants. For n-alkanes, there is a second distinction between the δ13C values of angiosperms and gymnosperms—δ13C values generally decrease with increasing chain-length in angiosperms, while in gymnosperms they increase. These two distinctions have been used to support the ‘plant community change hypothesis’ explaining the difference between the terrestrial and marine carbon isotope excursions during the Paleocene-Eocene Thermal Maximum (PETM.) Preserved n-alkanes from terrestrial paleosols in the Bighorn Basin, Wyoming reveal a negative carbon isotope excursion during the PETM of 4-5‰, which is 1-2‰ greater than the excursion recorded by marine carbonates. The local plant community, known from macrofossils as well as palynoflora, shifted from a deciduous, mixed angiosperm/gymnosperm flora to a suite of evergreen angiosperm species during the PETM. At the end of the PETM, the community returned to a mixed deciduous flora very similar to the original. This change in the plant community could thus magnify the terrestrial negative carbon isotope excursion to the degree necessary to explain its divergence from the marine record. However, the comparison between modern angiosperms and gymnosperms has been made mostly between broadleaf, deciduous angiosperms and evergreen, coniferous gymnosperms. New data analyzing deciduous, coniferous gymnosperms, including Metasequoia glyptostroboides and Taxodium distichum, suggests that the division previously ascribed to taxonomy may actually be based on leaf habit and physiology, specifically broadleaf, deciduous versus needle-leaf, evergreen plants. If differences in n-alkane δ13C values can be described not as angiosperms versus gymnosperms

  11. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae

    Directory of Open Access Journals (Sweden)

    Jeferson C. do Nascimento

    2012-01-01

    Full Text Available This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae. Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts.

  12. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae)

    International Nuclear Information System (INIS)

    Nascimento, Jeferson C. do; Paula, Vanderlucia F. de; David, Jorge M.; David, Juceni P.

    2012-01-01

    This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13 C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts. (author)

  13. Occurrence, biological activities and {sup 13}C NMR data of amides from Piper (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jeferson C. do; Paula, Vanderlucia F. de [Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil). Dept. de Quimica e Exatas; David, Jorge M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; David, Juceni P., E-mail: jmdavid@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Farmacia

    2012-07-01

    This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled {sup 13}C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts. (author)

  14. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier

    2010-12-13

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction scheme combining both processes. © 2010 American Chemical Society.

  15. 13C-NMR spectra and bonding situation in ketenimines

    International Nuclear Information System (INIS)

    Firl, J.; Runge, W.; Hartmann, W.; Utikal, H.P.

    1975-01-01

    13 C-NMR spectra of a series of substituted ketenimines are reported. The terminal carbon resonances are found at unusual high fields between delta 37 and 78, while the central carbon signals appear around delta 189 - 196. On the basis of these results, the bonding situation in ketenimines has been discussed. (auth.)

  16. δ13C-CH4 in ice core samples

    DEFF Research Database (Denmark)

    Sperlich, Peter

    Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2) measure......Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2......) measurements of δ13C-CH4 in ice core samples as is required when δ13C-CH4 records that are measured in several laboratories are merged for analysis. Both the referencing and measurement techniques have been compared to further laboratories which proofed the accuracy of the analytical systems. The second part...

  17. A new, 13C-based material for neutron targets

    International Nuclear Information System (INIS)

    Romanenko, A.I.; Anikeeva, O.B.; Gorbachev, R.V.; Zhmurikov, E.I.; Gubin, K.V.; Logachev, P.V.; Avilov, M.S.; Tsybulya, S.V.; Kryukova, G.N.; Burgina, E.B.; Tecchio, L.

    2005-01-01

    A 13 C-based neutron-target material is investigated using X-ray diffraction, IR absorption and Raman scattering spectroscopies, transmission electron microscopy, and electrical (conductivity, magnetoresistance, and Hall effect) measurements before and after high-power electron irradiation for various lengths of time [ru

  18. In vivo {sup 13}C MRS studies of carbohydrate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Jane

    2003-07-01

    The work described in this thesis was performed by the author, except where indicated, within the Magnetic Resonance Centre at the University of Nottingham during the period between October 1999 and October 2002. Although much is known about the major pathways of carbohydrate metabolism, there is still much to be learnt about the exact mechanisms of many of these pathways. Of particular interest is how these pathways are modified under different physiological conditions and in diseased states. {sup 13}C NMR spectroscopy provides a non-invasive means for studying carbohydrate metabolism in vivo, and the work presented within this thesis gives two such examples of this in human subjects. Natural abundance {sup 13}C NMR spectroscopy was used to measure glycogen levels in gastrocnemius muscle. The diurnal changes in response to mixed meals were measured in both type 2 diabetic subjects and age and weight matched controls. Metabolic studies were performed to complement the NMR measurements. The data obtained in these studies show the effect of the failure of muscle glucose storage upon post-prandial hyperglycaemia despite a supra-normal increase in plasma insulin in type 2 diabetes. {sup 13}C NMR spectroscopy was also used to study cerebral metabolism. Accumulation of {sup 13}C label into glutamate and glutamine following infusion of [1{sup 13}C] glucose allows the determination of the rates of the TCA cycle (F{sub TCA}) and neurotransmitter cycling (F{sub cyc}). These rates were measured in the visual cortex under control and activated conditions. The increases seen in F{sub TCA} upon activation, together with the lack of label accumulation in lactate, suggest that cerebral glucose metabolism is oxidative, even during strong activation. No conclusion can be made as to whether or not a similar increase is seen in F{sub cyc} due to the large associated errors in these values. (author)

  19. 13C separation by IRMPD of halogenated difluoromethanes

    International Nuclear Information System (INIS)

    Ma Peihua; Chen Guancheng; Wu Bin; Liu Julin; Jing Yan; Chu Minxiong; Arai, Shigeyoshi.

    1995-01-01

    Isotopically-selective consecutive two-stage infrared multiphoton dissociation (IRMPD) of halogenated difluoromethanes in the presence of scavengers produces carbon-13 over 95 %. The reaction mechanism for the IRMPD of mixture of CHClF 2 and HI can be explained by a series of first-order dissociation reactions and followed radical-scavenger reactions occurred in a continuous irradiation procedure. Furthermore, 13 C enrichment at laboratory scaling-up level by the 13 C selective IRMPD of CHClF 2 /Br 2 mixture has been investigated in a flow reactor. The 13 C production rates, 13 C atomic fractions in the CBr 2 F 2 products and 13 C depletions in the CHClF 2 reactants at different flow rates and laser repetition frequencies were examined to optimize the parameters suitable for large-scale production of carbon isotope. The data obtained from the flow tests demonstrated a 40 mg h -1 production rate for CB 2 F 2 at 65 % carbon-13 by using a 40 W (4J, 10 Hz) laser beam focused with a lens of focal length 120 cm. If a reliable TEA CO 2 laser can be operated with 100 W (10 J, 10 Hz) output, the production rate of CBr 2 F 2 for carbon-13 at 60 % can attain 200 mg h -1 . The measurements of spatial profile of focused laser beam imply a 2 g h -1 production rate for the 60 % carbon-13 product for an incident power of 200 W (20 J, 10 Hz). (author)

  20. Synthesis of high specific activity tritium labelled compounds

    International Nuclear Information System (INIS)

    Parent, P.

    1986-01-01

    Tritiated methyl iodide of high specific activity is synthetized by Fischer-Tropsch reaction of tritium with carbon monoxide, tritiated methanol obtained is reacted with hydriodic acid. It is used for the synthesis of S-adenosyl L-methionine 3 H-methyl and of diazepam 3 H-methyl derivatives. Synthesis of 3-PPP 3 H: (hydroxy-3 phenyl)-3N-n propyl [ 3 H-2.3] piperidine [ 3 H-2.3] with a specific activity of 4.25 T Bq/mM (115 Ci/mM) and of baclofene 3 H with a specific activity of 0.925 TBq (25 Ci/mM) are also described [fr

  1. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    Directory of Open Access Journals (Sweden)

    de los Santos-Villalobos Sergio

    2017-01-01

    Full Text Available Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  2. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    Science.gov (United States)

    Sergio, de los Santos-Villalobos; Claudio, Bravo-Linares; dos Anjos Roberto, Meigikos; Renan, Cardoso; Max, Gibbs; Andrew, Swales; Lionel, Mabit; Gerd, Dercon

    Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI) analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13 C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  3. Radioluminescence of organic compounds: specific luminescence of condensed aromatic scintillators

    International Nuclear Information System (INIS)

    Lopes da Silva, J.

    1978-01-01

    The influence of the nature of ionizing particles on the radioluminescence yield of aromatic scintillators is studied. Both prompt and delayed scintillation components are considered. An expression giving the specific luminescence dS/dx as a function of the charge number z and of the incident particle specific energy loss have been derived, following a track model published before, that is consistent with recent conclusions about the nature, evolution and distribution of the primary excitations created by an ionizing particle in the organic scintillator. The good agreement between the theoretical curves derived in this paper and the experimental ones previously reported provided us with a means of evaluating the different parameters included in the proposed expressions. The numerical values of these parameters included in the proposed expressions. The numerical values of these parameters agree with those of other authors and are theoretically discussed and justified [fr

  4. Development of technology performance specifications for volatile organic compounds

    International Nuclear Information System (INIS)

    Purdy, C.; Schutte, W.E.

    1993-01-01

    The Office of Technology Development (OTD) within the Office of Environmental Restoration and Waste Management of the Department of Energy has a mission to deliver needed and usable technologies to its customers. The primary customers are individuals and organizations performing environmental characterization and remediation, waste cleanup, and pollution prevention at DOE sites. DOE faces a monumental task in cleaning up the dozen or so major sites and hundreds of smaller sites that were or are used to produce the US nuclear weapons arsenal and to develop nuclear technologies for national defense and for peaceful purposes. Contaminants and waste materials include the radionuclides associated with nuclear weapons, such as plutonium and tritium, and more common pollutants and wastes of industrial activity such as chromium, chlorinated solvents, and polychlorinated biphenyls (PCBs). Quite frequently hazardous wastes regulated by the Environmental Protection Agency are co-mingled with radioactive wastes regulated by the Nuclear Regulatory Commission to yield a open-quotes mixed waste,close quotes which increases the cleanup challenges from several perspectives. To help OTD and its investigators meet DOE's cleanup goal, technology performance specifications are being implemented for research and development and DT ampersand E projects. Technology performance specifications or open-quotes performance goalsclose quotes describe, quantitatively where possible, the technology development needs being addressed. These specifications are used to establish milestones, evaluate the status of ongoing projects, and determine the success of completed projects

  5. Computer-aided structure analysis. Structure identification by infrared and /sup 13/C NMR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Szalontai, G; Simon, Z; Csapo, Z; Farkas, M; Pfeifer, Gy [Nehezvegyipari Kutato Intezet, Veszprem (Hungary)

    1980-01-01

    The results obtained from the computer-aided interpretation of /sup 13/C NMR and IR spectra using the artificial intelligence approach are presented. In its present state the output of the system is a list of functional groups which are resonable candidates for the final structural isomers. The input requires empirical formula, /sup 13/C NMR data (off resonance data also) and IR spectral data. The confirmation of the presence of a functional group is based on comparison of the experimental data with the spectral properties of functional groups stored in a property matrix. If the molecular weight of the compounds studied is less or equal 500, the output contains usually 1.5-2.5 times more groups than really present, in most cases without the loss of the real ones.

  6. Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Katsumi Iida

    2013-01-01

    The biosynthetic pathways leading to δ-aminolevulinic acid (ALA) from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus were quantitatively evaluated by means of feeding experiments with [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate, followed by analysis of the labeling patterns of coproporphyrinogen III (Copro'gen III) (biosynthesized from ALA) using 13 C NMR spectroscopy. Two biosynthetic pathways leading to ALA from glycine via the C5 pathway were identified: i.e., transformation of glycine to l-serine catalyzed by glycine hydroxymethyltransferase, and glycine synthase-catalyzed catabolism of glycine to N 5 , N 10 -methylene-tetrahydrofolic acid (THF), which reacts with another molecule of glycine to afford l-serine. l-Serine is transformed to acetyl-CoA via pyruvic acid. Acetyl-CoA enters the tricarboxylic acid cycle, affording 2-oxoglutaric acid, which in turn is transformed to l-glutamic acid. The l-glutamic acid enters the C5 pathway, affording ALA in A. hyalinus. A 13 C NMR spectroscopic comparison of the labeling patterns of Copro'gen III obtained after feeding of [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate showed that [2- 13 C]glycine transformation and [2- 13 C]glycine catabolism in A. hyalinus proceed in the ratio of 52 and 48 %. The reaction of [2- 13 C]glycine and N 5 , N 10 -methylene-THF, that of glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF generated from the [2- 13 C]glycine catabolism, and that of [2- 13 C]glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF transformed the fed [2- 13 C]glycine to [1- 13 C]acetyl-CoA, [2- 13 C]acetyl-CoA, and [1,2- 13 C 2 ]acetyl-CoA in the ratios of 42, 37, and 21 %, respectively. These labeled acetyl-CoAs were then incorporated into ALA. Our results provide a quantitative picture of the pathways of biosynthetic transformation to ALA from glycine in A. hyalinus. (author)

  7. In vivo 13C MRS studies of carbohydrate metabolism

    International Nuclear Information System (INIS)

    Halliday, Jane

    2003-01-01

    The work described in this thesis was performed by the author, except where indicated, within the Magnetic Resonance Centre at the University of Nottingham during the period between October 1999 and October 2002. Although much is known about the major pathways of carbohydrate metabolism, there is still much to be learnt about the exact mechanisms of many of these pathways. Of particular interest is how these pathways are modified under different physiological conditions and in diseased states. 13 C NMR spectroscopy provides a non-invasive means for studying carbohydrate metabolism in vivo, and the work presented within this thesis gives two such examples of this in human subjects. Natural abundance 13 C NMR spectroscopy was used to measure glycogen levels in gastrocnemius muscle. The diurnal changes in response to mixed meals were measured in both type 2 diabetic subjects and age and weight matched controls. Metabolic studies were performed to complement the NMR measurements. The data obtained in these studies show the effect of the failure of muscle glucose storage upon post-prandial hyperglycaemia despite a supra-normal increase in plasma insulin in type 2 diabetes. 13 C NMR spectroscopy was also used to study cerebral metabolism. Accumulation of 13 C label into glutamate and glutamine following infusion of [1 1 3 C] glucose allows the determination of the rates of the TCA cycle (F TCA ) and neurotransmitter cycling (F cyc ). These rates were measured in the visual cortex under control and activated conditions. The increases seen in F TCA upon activation, together with the lack of label accumulation in lactate, suggest that cerebral glucose metabolism is oxidative, even during strong activation. No conclusion can be made as to whether or not a similar increase is seen in F cyc due to the large associated errors in these values. (author)

  8. Deconvolution of the tree ring based delta13C record

    International Nuclear Information System (INIS)

    Peng, T.; Broecker, W.S.; Freyer, H.D.; Trumbore, S.

    1983-01-01

    We assumed that the tree-ring based 13 C/ 12 C record constructed by Freyer and Belacy (1983) to be representative of the fossil fuel and forest-soil induced 13 C/ 12 C change for atmospheric CO 2 . Through the use of a modification of the Oeschger et al. ocean model, we have computed the contribution of the combustion of coal, oil, and natural gas to this observed 13 C/ 12 C change. A large residual remains when the tree-ring-based record is corrected for the contribution of fossil fuel CO 2 . A deconvolution was performed on this residual to determine the time history and magnitude of the forest-soil reservoir changes over the past 150 years. Several important conclusions were reached. (1) The magnitude of the integrated CO 2 input from these sources was about 1.6 times that from fossil fuels. (2) The forest-soil contribution reached a broad maximum centered at about 1900. (3) Over the 2 decade period covered by the Mauna Loa atmospheric CO 2 content record, the input from forests and soils was about 30% that from fossil fuels. (4) The 13 C/ 12 C trend over the last 20 years was dominated by the input of fossil fuel CO 2 . (5) The forest-soil release did not contribute significantly to the secular increase in atmospheric CO 2 observed over the last 20 years. (6) The pre-1850 atmospheric p2 values must have been in the range 245 to 270 x 10 -6 atmospheres

  9. Electronic structure and physical properties of 13C carbon composite

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Author was focused on the properties of graphite composites based on carbon isotope 13C. Generally, the review relies on the original results and concentrates...

  10. PEDOGENIC CARBONATE δ13C AND ENVIRONMENTAL PRECIPITATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Marcella Catoni

    2011-12-01

    Full Text Available Carbon isotopic analysis is a useful tool for investigating paleoenvironments, as the pedogenic carbonate δ13C is related to δ13CSOM and to the proportions of C3/C4 plants. In this work we interpreted the paleoenvironmental conditions at the time of carbonate precipitation in soils formed under different climates and during different geological ages. Samples were taken from a Bk (PR1, Holocene and from two Bkm horizons (PR2 and PR3, Pleistocene. When the mean δ13C plant values and the most plausible paleotemperatures were used in the evaluation, PR1 showed a lower percentage of C4 plants (48% than Pleistocene soils (~53%, in agreement with paleoclimate changes. When instead the δ13C values of current plants were used for PR1, C4 plants ranged from 59 (12°C to 66% (18°C, suggesting two possible interpretations: either plant species changed during the Holocene, or the plant mean values normally used in the literature are not suitable for Pleistocene reconstructions

  11. (13)C-(15)N correlation via unsymmetrical indirect covariance NMR: application to vinblastine.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Blinov, Kirill A; Williams, Antony J

    2007-12-01

    Unsymmetrical indirect covariance processing methods allow the derivation of hyphenated 2D NMR data from the component 2D spectra, potentially circumventing the acquisition of the much lower sensitivity hyphenated 2D NMR experimental data. Calculation of HSQC-COSY and HSQC-NOESY spectra from GHSQC, COSY, and NOESY spectra, respectively, has been reported. The use of unsymmetrical indirect covariance processing has also been applied to the combination of (1)H- (13)C GHSQC and (1)H- (15)N long-range correlation data (GHMBC, IMPEACH, or CIGAR-HMBC). The application of unsymmetrical indirect covariance processing to spectra of vinblastine is now reported, specifically the algorithmic extraction of (13)C- (15)N correlations via the unsymmetrical indirect covariance processing of the combination of (1)H- (13)C GHSQC and long-range (1)H- (15)N GHMBC to produce the equivalent of a (13)C- (15)N HSQC-HMBC correlation spectrum. The elimination of artifact responses with aromatic solvent-induced shifts (ASIS) is shown in addition to a method of forecasting potential artifact responses through the indirect covariance processing of the GHSQC spectrum used in the unsymmetrical indirect covariance processing.

  12. Separation of polybrominated diphenyl ethers in fish for compound-specific stable carbon isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yan-Hong [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing, 100049 (China); Luo, Xiao-Jun, E-mail: luoxiaoj@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Hua-Shan; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2012-05-15

    A separation and isotopic analysis method was developed to accurately measure the stable carbon isotope ratios of polybrominated diphenyl ethers (PBDEs) with three to six substituted bromine atoms in fish samples. Sample extracts were treated with concentrated sulfuric acid to remove lipids, purified using complex silica gel column chromatography, and finally processed using alumina/silica (Al/Si) gel column chromatography. The purities of extracts were verified by gas chromatography and mass spectrometry (GC-MS) in the full-scan mode. The average recoveries of all compounds across the purification method were between 60% and 110%, with the exception of BDE-154. The stable carbon isotopic compositions of PBDEs can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . No significant isotopic fraction was found during the purification of the main PBDE congeners. A significant change in the stable carbon isotope ratio of BDE-47 was observed in fish carcasses compared to the original isotopic signatures, implying that PBDE stable carbon isotopic compositions can be used to trace the biotransformation of PBDEs in biota. - Highlights: Black-Right-Pointing-Pointer A method for the purification of PBDEs for CSIA was developed. Black-Right-Pointing-Pointer The {delta}{sup 13}C of PBDE congeners can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . Black-Right-Pointing-Pointer Common carp were exposed to a PBDE mixture to investigate debromination. Black-Right-Pointing-Pointer Ratios of the {delta}{sup 13}C values can be used to trace the debromination of PBDE in fish.

  13. Study of lignin standard-substances type biphenyl by {sup 13} C NMR; Estudo de substancias-modelo de lignina do tipo bifenila, por RMN de {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Marcia Alves; Drumond, Mariza Guimaraes; Veloso, Dorila Pilo [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica

    1995-12-31

    Lignins structural study by NMR has utilized standard-substances spectral comparative analysis. This work has present relaxation time studies for lignin standard-substance, and {sup 13} C NMR chemical shift values were also shown and compared for several compounds. NMR spectra were commented besides experimental data analysis 2 figs., 4 tabs.

  14. ({sup 1} H, {sup 13} C and {sup 31} P) NMR of phosphonic acid derivatives; Ressonancia magnetica nuclear ({sup 1} H, {sup 13} C, {sup 31} P) de derivados do acido fosfonico

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Valdevino; Costa, Valentim E. Uberti [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Quimica

    1992-12-31

    In the last years the development of phosphates analogues in the medical and agricultural pesticides has being very expressive. {sup 1} H, {sup 13} C and mainly {sup 31} P NMR are used for stereochemical and conformational analysis, and reactivity studies on the compounds resulting from those chemical processes 2 refs., 4 figs., 1 tab.

  15. Soil fertilization leads to a decline in between-samples variability of microbial community δ13C profiles in a grassland fertilization experiment.

    Directory of Open Access Journals (Sweden)

    Stavros D Veresoglou

    Full Text Available Gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS was used to measure the (13C/(12C ratios of PLFAs at natural abundance levels from a temperate grassland nitrogen (N and phosphorus (P factorial fertilization experiment in northern Greece. In each plot two rhizosphere samples were derived centred around individual Agrostis capillaris and Prunella vulgaris plants. It was hypothesized that the isotopic signal of microbes that preferentially feed on recalcitrant litter such as fungi would be modified by fertilization more strongly than that of opportunistic microbes using labile C. Microbial community δ(13C was affected by both P and N fertilization regime and plant species identity. However, we have been unable to detect significant nutrient effects on individual groups of microbes when analyzed separately in contrast to our original hypothesis. Intra-treatment variability, as evaluated from Hartley's F(max tests in the five first PCA components axes as well as the size of the convex hulls in PCA scoreplots and Mahalanobis distances, was considerably higher in the non-fertilized controls. Moreover, a significant relationship was established between the change in PLFA abundances and their respective changes in δ(13C for the aggregate of samples and those simultaneously fertilized with N and P. We conclude that use of compound specific isotope analysis in the absence of labelling represents a valuable and overlooked tool in obtaining an insight of microbial community functioning.

  16. Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA

    International Nuclear Information System (INIS)

    Bush, S.E.; Pataki, D.E.; Ehleringer, J.R.

    2007-01-01

    The isotopic composition of fossil fuels is an important component of many studies of C sources and sinks based on atmospheric measurements of CO 2 . In C budget studies, the isotopic composition of crude petroleum and CH 4 are often used as a proxy for the isotopic composition of CO 2 emissions from combustion. In this study, the C isotope composition (δ 13 C) of exhaust from the major fossil fuel emission sources in Salt Lake City, USA, was characterized with 159 measurements of vehicle exhaust of various types and eight measurements of residential furnace exhaust. These two sources were found to be isotopically distinct, and differed from global-scale estimates based on average values for crude petroleum and CH 4 . Vehicle-specific factors such as engine load and operation time had no effect on δ 13 C of vehicle exhaust. A small difference was found between the mean δ 13 C of vehicle exhaust collected randomly from different vehicles and the mean δ 13 C of gasoline collected from multiple fueling stations representing major gasoline distributors in Salt Lake City and the surrounding area. However, a paired comparison of δ 13 C of exhaust and gasoline for six different vehicles did not show any consistent C isotope fractionation during vehicle combustion. The mean δ 13 C of crude petroleum processed for local distribution differed slightly from refined gasoline collected at multiple fueling stations, but time lags between processing and transportation cannot be ruled out as an uncontrollable contributing factor. Measured isotope ratios were then combined with fuel consumption statistics to predict the annual cycle of δ 13 C of fossil fuel emissions for the Salt Lake City metropolitan area. The results showed that the isotopic composition of CO 2 emissions from fossil fuel combustion varied by almost 3 per mille over the course of the 2002 calendar year. This study illustrates that on a regional scale, the isotopic composition of fossil fuel emissions shows

  17. Detection of antisymmetric tensor contribution to the magnetic screening of 13C nuclei

    International Nuclear Information System (INIS)

    Kuhn, W.

    1983-01-01

    In the present thesis for the first time a practicable way for the detection of antisymmetric contributions to the tensor of the magnetic screening of atomic nuclei is indicated. The detection is based on the relaxation efficiency of the antisymmetric screening. The measurements were performed on the 13 C nuclei of phthalic acid anhydride. Measured were the spin-lattice relaxation times of all 13 C nuclei of the molecule at field strengths between 4.69 T and 11.74 T, this corresponds to 1 H resonance frequencies in the range from 200 MHz to 500 MHz. From this the interaction-specific relaxation rates could be determined without problems. The space-group of the crystal and the molecule geometry were determined by X-ray structure analysis. For the accurate determination of the hydrogen position on a deuterated monocrystal by means of deuterium nuclear resonance measurements the electric field gradient tensors were measured and from the orientation of the main axes of these tensors the bonding angles calculated. On a monocrystal enriched in the C(7) respectively C(8) position with 13 C the symmetric part of the tensor of the magnetic screening of these two nuclei was measured. With these values and the relaxation rates of the 13 C nuclei by an iterative procedure from the equations for the theoretical relaxation rates of all 13 C nuclei of the molecule the main values of the rotation-diffusion tensor could be determined. On the base of the plane molecule geometry from this the tensor element sigmasub(xz)sup(A) could be explicety detected according to an amount of 11.7 ppm. (orig.) [de

  18. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS.

    Science.gov (United States)

    Berg, Michael; Bolotin, Jakov; Hofstetter, Thomas B

    2007-03-15

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry was used to determine the delta15N and delta13C signatures of selected nitroaromatic contaminants such as the explosive 2,4,6-trinitrotoluene (TNT) for derivation of isotopic enrichment factors of contaminant transformation. Parameters for efficient extraction of nitroaromatic compounds (NACs) and substituted anilines from water samples were evaluated by SPME-GC/MS. delta13C signatures determined by SPME-GC/IRMS and elemental analyzer IRMS (EA-IRMS) were in good agreement, generally within +/-0.7 per thousand, except for 2,4-dinitrotoluene (2,4-DNT) and TNT, which showed slight deviations (IRMS were between 73 and 780 microg L-1 and correlated with the extraction efficiencies of the compounds determined by SPME-GC/MS. Nitrogen isotope measurements by SPME-GC/IRMS were of similar precision (standard deviations IRMS within +/-1.3 per thousand (+2.5 per thousand for TNT), but no systematic trend was found for the deviations. LODs of delta15N measurements ranged from 1.6 to 9.6 mg L-1 for nitrotoluenes, chlorinated NACs and DNTs (22 mg L-1 for TNT). The SPME-GC/IRMS method is well suited for the determination of isotopic enrichment factors of various NAC transformation processes and provides so far unexplored possibilities to elucidate behavior and degradation mechanisms of nitroaromatic contaminants in soils and groundwaters.

  19. Regioselectivity of tributyltin ether mediated alkylations. A 119Sn and 13C NMR study

    International Nuclear Information System (INIS)

    Cruzado, C.; Bernabe, M.; Martin-Lomas, M.

    1989-01-01

    The 119 Sn and 13 C NMR spectra of the stannylated species resulting from the treatment of conformationally rigid polyhydroxylated compounds with bis(tributyltin) oxide have been determined and the effect of N-methylimidazole, added as catalyst in tributyltin ether mediated regioselective alkylations, has been investigated. The observed signal intensity changes, upfield shifts, signal broadenings, and the results of variable temperature experiments have been interpreted as indicative of the selective formation of pentacoordinated tin species, involving conveniently disposed adjacent hydroxyl groups, on addition of the catalyst. On these bases, a mechanistic hypothesis for the observed regioselectivity of N-methylimidazole-catalyzed tributyltin ether mediated benzylations is proposed. 13 references, 5 tables

  20. Conformational analysis of 9,10-dihydroanthracenes. Molecular mechanics calculations and /sup 13/C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Rabideau, P.W.; Mooney, J.L.; Lipkowitz, K.B.

    1986-12-24

    The conformational analyses of 9, 10-dihydroanthracene and several of its methylated and ethylated derivatives are studied by empirical force field calculations (MM2 and MMPI). The computational results are considered in light of previous and current carbon NMR data. Model compounds are examined which involve fixed, planar, and boat-shaped conformations about the central ring, and these /sup 13/C NMR data are then compared with flexible systems. It is concluded that carbon chemical shifts and carbon-hydrogen coupling constants are consistent with the results of molecular mechanics calculations which indicate a greater tendency for planarity around the central ring than previously considered.

  1. /sup 13/C-/sup 13/C spin-spin coupling in structural investigations. VII. Substitution effects and direct carbon-carbon constants of the triple bond in acetyline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Proidakov, A.G.; Bazhenov, B.N.; Zinchenko, S.V.; Kalabin, G.A.

    1989-01-10

    The effects of substitution on the direct /sup 13/C-/sup 13/C spin-spin coupling constants of the triple bond were studied in 100 derivatives of acetylene. It was established that these parameters exhibit increased sensitivity to the effect of substituents compared with other types of compounds. The main factor which determines their variation is the electronegativity of the substituting groups, and in individual cases the /pi/-electronic effects are appreciable. The effect of the substituents with an element of the silicon subgroup at the /alpha/ position simultaneously at the triple bond or substituent of the above-mentioned type and a halogen atom.

  2. Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy.

    Science.gov (United States)

    Prietzel, Jörg; Müller, Svenja; Kögel-Knabner, Ingrid; Thieme, Jürgen; Jaye, Cherno; Fischer, Daniel

    2018-07-01

    We compared synchrotron-based C near-edge X-ray absorption fine structure (NEXAFS) and CPMAS 13 C nuclear magnetic resonance (NMR) spectroscopy with respect to their precision and accuracy to quantify different organic carbon (OC) species in defined mixtures of soil organic matter source compounds. We also used both methods to quantify different OC species in organic surface horizons of a Histic Leptosol as well as in mineral topsoil and subsoil horizons of two soils with different parent material, stage of pedogenesis, and OC content (Cambisol: 15-30 OC mgg -1 , Podzol: 0.9-7 OC mgg -1 ). CPMAS 13 C NMR spectroscopy was more accurate and precise (mean recovery of different C functional groups 96-103%) than C NEXAFS spectroscopy (mean recovery 92-113%). For organic surface and topsoil samples, NMR spectroscopy consistently yielded larger O-alkyl C percentages and smaller alkyl C percentages than C NEXAFS spectroscopy. For the Cambisol subsoil samples both methods performed well and showed similar C speciation results. NEXAFS spectroscopy yielded excellent spectra with a high signal-to-noise ratio also for OC-poor Podzol subsoil samples, whereas this was not the case for CPMAS 13 C NMR spectroscopy even after sample treatment with HF. Our results confirm the analytical power of CPMAS 13 C NMR spectroscopy for a reliable quantitative OC speciation in soils with >10mgOCg -1 . Moreover, they highlight the potential of synchrotron-based C NEXAFS spectroscopy as fast, non-invasive method to semi-quantify different C functional groups in soils with low C content (0.9-10mgg -1 ). Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Galactose oxidation using 13C in healthy and galactosemic children

    Directory of Open Access Journals (Sweden)

    D.R. Resende-Campanholi

    2015-03-01

    Full Text Available Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  4. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions

    Directory of Open Access Journals (Sweden)

    Marin de Mas Igor

    2011-10-01

    Full Text Available Abstract Background Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate. The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose

  5. M1 suppression in pion photoproduction on 13C

    International Nuclear Information System (INIS)

    Tiator, L.

    1983-02-01

    Recently measured anomalously low cross sections for 13 C(γ,π - ) 13 N at low energy and theta sub(π)sup(lab) = 90 degrees have been analyzed in a DWIA calculation. It has been found that the EO contribution alone is able to explain the data, so that the MI cross section is expected to vanish. Using constraints from recent magnetic electron scattering, an explanation is possible by assuming a significantly lower reduced density matrix element for spin-flip isovector transitions with angular momentum L = 2 than predicted by Cohen-Kurath

  6. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete 1H and 13C chemical shift assignments.

    Science.gov (United States)

    Almeida, Macia C S DE; Souza, Luciana G S; Ferreira, Daniele A; Pinto, Francisco C L; Oliveira, Débora R DE; Santiago, Gilvandete M P; Monte, Francisco J Q; Braz-Filho, Raimundo; Lemos, Telma L G DE

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the 1H and 13C NMR spectra.

  7. Study using {sup 1} H and {sup 13} V NMR of 3-aryl-s-triazole benzoate azole type compounds and intermediaries; Estudo por ressonancia magnetica nuclear de {sup 1} H e {sup 13} C compostos do tipo 3-aril-s-triazolo benzotiazol e seus intermediarios

    Energy Technology Data Exchange (ETDEWEB)

    Garske, Jose Emilio L; Bacha, Catarina T.M.; Schenkel, Eloir Paulo [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Faculdade de Farmacia

    1992-12-31

    Approximately 62% of the compounds used for medical purposes are heterocyclic, and are distributed as follows: 95% containing hydrogen, 28% containing sulfur and 18% containing oxygen in the structural composition. Some triazole-s-triazole type hetero aromatic systems and intermediaries, such as 1-aryl hydrazides exhibited bactericide, anti inflammatory and fungi stat activities. All the triazoles are are obtained synthetically, and are not found in the Nature. The proton and carbon-13 spectra of the non usual I, II and III compounds that we obtained are discussed in this work 8 refs., 3 figs.

  8. Solid-state 13C NMR characterization of polyanilines

    International Nuclear Information System (INIS)

    Kaplan, S.

    1988-01-01

    13 C solid-state nuclear magnetic resonance measurements are reported for the leucoemeraldine base, emeraldine base, and emeraldine hydrochloride forms of polyaniline in order to characterize the structures of these three distinct polymers. Chemical shift assignments are facilitated by use of the cross-depolarization technique to distinguish carbons with and without directly bonded hydrogens. Comparison of the spectra of emeraldine base with those of leucoemeraldine base and air-oxidized leucoemeraldine (which partially converts to emeraldine base) establishes that emeraldine base is essentially an alternating copolymer of reduced 1A (-(C 6 H 4 )N(H)(C 6 H 4 )N(H)-) and oxidized 2A (-(C 6 H 4 )N double-bond(C 6 H 4 )double-bond N-) repeat units. The 8-12 ppm spectral line widths measured for both emeraldine base and leucoemeraldine base are attributed to local fluctuations in conformational and configurational geometries, a distribution in chain packing, and compositional defects. 13 C spin-echo measurements establish that the 60 ppM wide line from the conducting emeraldine hydrochloride is inhomogeneously broadened. It is postulated that this line width is due to local variations in charge density along the polymer backbone arising from polymer structural heterogeneity. 47 refs., 5 figs., 1 tab

  9. Near-threshold charged pion photoproduction from 13C

    International Nuclear Information System (INIS)

    LeRose, J.J.

    1981-01-01

    Differential cross sections to discrete final states have been measured for both positive and negative pion photo-production on 13 C at 90 0 in the lab at pion energies of 18, 29, and 41 MeV. Measurements were made using a fixed angle magnetic spectrometer located in the 14 0 area of the MIT Bates linear accelerator. Pions were detected using a 90 channel multi-wire proportional counter in the focal plane along with a backup array consisting of three 1/16'' thick plastic scintillator detectors and a 1/2'' thick Cerenkov detector. Positive pion photo-production cross sections were obtained for the excitation of the 3/2 - ground state and for the 3.45 MeV first excited state of 13 B. Negative pion photo-production cross sections were obtained for the excitation of the 1/2 - ground state, and the 3/2 to 3.51 MeV and 5/2 to 7.39 MeV excited states of 13 N. The measured positive pion photo-production ground state cross sections are in reasonable agreement wth theoretical calculations. However, there is a large discrepancy between the measured negative pion photoproduction ground state cross sections and the theoretical values. There are no theoretical calculations available for comparison with the excited state measurements in either positive or negative pion photoproduction on 13 C

  10. The Importance of Zostera marina to a Local Food Web Based on the Analysis of Compound Specific Isotopes in Maquoit Bay, Gulf of Maine

    Science.gov (United States)

    Doolittle, H. A.; Johnson, B. J.; Ambrose, W. G.; Locke, W.; Harris, C. M.

    2010-12-01

    Zostera marina (also known as eelgrass) is an important primary producer in near shore ecosystems in the Gulf of Maine, providing both habitat and nutrients for a variety of organisms (e.g., crustaceans, polychaetes, gastropods, and fish). The purpose of this study is to use compound specific δ13C analyses of essential amino acids to determine the degree to which organic matter derived from isotopically distinct primary producers (e.g., eelgrass, phytoplankton, and epiphytic algae) contribute to the diets of snails, shrimp, and fish in an eelgrass system in Casco Bay. Maquoit Bay, located in northwestern Casco Bay, in the Gulf of Maine, is a shallow estuarine system that is characterized by silt and clay sized sediments and the presence of extensive eelgrass beds. Amino acid concentrations and δ13C compositions were determined for a variety of sample-types collected in July-August, 2010, from three sites in the study area, including muscle tissue from Tautogolabrus adspersus (cunner), Gasterosteus aculeatus (3-spined stickleback), Nassarius obsoletus (snail), and Mysis spp. (shrimp), seston (i.e., phytoplankton), Z. marina, and epiphytic algae. TFAA amino acid derivatives of the total hydrolyzate were analyzed by GC-FID for amino acid concentration, and by GC-c-IRMS- for carbon isotope composition. Muscle tissue was dominated by glutamic and aspartic acids, and leucine, whereas Zostera marina was dominated by aspartic and glutamic acids, and proline. Phenylalanine and leucine in Z. marina are approximately 10 ‰ enriched in 13C relative to these same amino acids in the seston. The carbon isotope values of these essential amino acids are significantly more enriched in 13C for N. obsoletus than for T. adspersus, G. aculeatus, and Mysis spp. These data suggest that organic matter derived from Z. marina and/or epiphytic algae is more important in the diets of N. obsoletus, and organic matter derived from seston is more important for the diets of T. adspersus, G

  11. 13 C analysis of aromas and perfumes by a coupled GC-IRMS technique. The case of vanillin and leaf alcohol extracts

    International Nuclear Information System (INIS)

    Breas, O.; Fourel, F.; Martin, G.J.

    1994-01-01

    The determination of stable isotope ratios is a precious tool to establish the natural status of flavors and fragrances. Results are presented concerning δ 13 C measurements using gas chromatography-combustion interface-isotope ratio mass spectrometry (GC-C- 13 C IRMS). This technique allows to measure carbon isotope ratios on pure compounds separated by capillary gas chromatography and injected on-line into an isotopic mass spectrometer. δ 13 C measurements carried out on vanilla extracts require only very small quantities of compounds ( 13 C measurements performed on cis-3-hexanol extracted from mint, the difference between natural and synthetic cis-3-hexanol is underlined and it is demonstrated that reproducible isotope ratios may be measured for cis-3-hexanol on mint extracts without purification even if this compound only represents 0.5% of the extract. (authors). 17 refs., 1 fig., 3 tabs

  12. Pressure-dependent {sup 13}C chemical shifts in proteins: origins and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wilton, David J. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom); Kitahara, Ryo [Ritsumeikan University, College of Pharmaceutical Sciences (Japan); Akasaka, Kazuyuki [Kinki University, Department of Biotechnological Science, School of Biology-Oriented Science and Technology (Japan); Williamson, Mike P. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom)], E-mail: m.williamson@sheffield.ac.uk

    2009-05-15

    Pressure-dependent {sup 13}C chemical shifts have been measured for aliphatic carbons in barnase and Protein G. Up to 200 MPa (2 kbar), most shift changes are linear, demonstrating pressure-independent compressibilities. CH{sub 3}, CH{sub 2} and CH carbon shifts change on average by +0.23, -0.09 and -0.18 ppm, respectively, due to a combination of bond shortening and changes in bond angles, the latter matching one explanation for the {gamma}-gauche effect. In addition, there is a residue-specific component, arising from both local compression and conformational change. To assess the relative magnitudes of these effects, residue-specific shift changes for protein G were converted into structural restraints and used to calculate the change in structure with pressure, using a genetic algorithm to convert shift changes into dihedral angle restraints. The results demonstrate that residual {sup 13}C{alpha} shifts are dominated by dihedral angle changes and can be used to calculate structural change, whereas {sup 13}C{beta} shifts retain significant dependence on local compression, making them less useful as structural restraints.

  13. Synthesis of ring-13C-labelled and ring-demethylated retinals

    International Nuclear Information System (INIS)

    Courtin, J.M.L.

    1988-01-01

    Efficient synthetic schemes are described for the preparation of the required mono- and di- 13 C labelled retinals based on simple 13 C labelled starting materials. Results from solid-state 13 C-NMR spectroscopic studies of the various ring- 13 C labelled bacteriorhodopsins and rhodopsins are discussed. 404 refs.; 74 figs.; 16 tabs

  14. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  15. 13C mixed triglyceride breath test: a noninvasive method to assess lipase activity in children.

    Science.gov (United States)

    van Dijk-van Aalst, K; Van Den Driessche, M; van Der Schoor, S; Schiffelers, S; van't Westeinde, T; Ghoos, Y; Veereman-Wauters, G

    2001-05-01

    Results from the 13C mixed triglyceride (MTG) breath test correlate with duodenal lipase activity in adults. This noninvasive test is a potential screening and diagnostic tool for children with fat malabsorption. The aim of this study was to adapt the methodology of the MTG breath test to study test meals and sampling methods and to define normal values for healthy children of all age groups; premature and full-term infants have similar pancreatic lipase deficiencies. After parental consent was obtained, 12 premature infants ( 2 kg), 12 full-term infants (1-6 months old), 20 children (3-10 years old), and 20 teenagers (11-17 years old) were tested. All children were thriving well, had no gastrointestinal or respiratory problems, and had not received any medication that contained natural 13C. For the premature and full-term infants, a formula was prepared that had a low and stable natural 13C content mixed with 100 mg 13C-labeled MTG (1,3-distearyl, 2-[13C-carboxyl] octanoyl glycerol) and 1 g polyethylene-glycol 3350. The best accepted test meal for children over 3 years old was a slice of white bread with 5 g butter and 15 g chocolate paste, mixed with 250 mg 13C-labeled MTG, and a glass of 100 mL whole-fat milk. Children over 3 years old were able to blow through a straw in a vacutainer for collecting the breath samples. In children under 3 years old, expired air was collected by aspirating breath via a nasal prong. Carbon dioxide production was calculated according to weight, age, and sex. For healthy pediatric control participants, the mean values for cumulative excretion of 13CO2 as a percentage of the administered dose after 6 hours were 23.9 +/- 5.2% in premature infants, 31.9 +/- 7.7% in full-term infants, 32.5 +/- 5.3% in children, and 28.0 +/- 5.4% in teenagers. The mean value for healthy adults is 35.6% with a lower reference limit of 22.8%. Age-specific test meals and breath-sampling techniques for the MTG breath test were defined. The mean values for

  16. Foliar δ13C Showed No Altitudinal Trend in an Arid Region and Atmospheric Pressure Exerted a Negative Effect on Plant δ13C

    Directory of Open Access Journals (Sweden)

    Zixun Chen

    2017-07-01

    Full Text Available Previous studies have suggested foliar δ13C generally increases with altitude. However, some observations reported no changes or even decreased trends in foliar δ13C. We noted that all the studies in which δ13C increased with elevation were conducted in the human regions, whereas those investigations in which δ13C did not vary or decreased were conducted in areas with water stress. Thus, we proposed that the pattern of increasing δ13C with elevation is not a general one, and that δ13C may remain unchanged or decrease in plants grown in arid environments. To test the hypothesis, we sampled plants along altitude gradients on the shady and sunny slopes of Mount Tianshan characterized by arid and semiarid climates. The measurements of foliar δ13C showed no altitudinal trends for the plants grown on either of the slopes. Therefore, this study supported our hypothesis. In addition, the present study addressed the effect of atmospheric pressure on plant δ13C by accounting for the effects of temperature and precipitation on δ13C. This study found that the residual foliar δ13C increased with increasing altitude, suggesting that atmospheric pressure played a negative role in foliar δ13C.

  17. 13C-nuclear magnetic resonance studies of the biosynthesis of 5-aminolevolinic acid destined for chlorophyll formation in dark-grown Scenedesmus Obliquus

    International Nuclear Information System (INIS)

    Oh-hama, Tamiko; Seto, Harvo; Miyachi, Shigetoh

    1985-01-01

    The 13 C-nuclear magnetic resonance (NMR) spectra of chlorophyll-α-formed in dark-grown Scenedesmus Obliquus (Turp.) Kutzing in the presence of (1- 13 C) glutamate, (2- 13 C) and (1- 13 C) glycine showed that the 13 C of glutamate was specifically incorporated into the eight-carbon atoms in the tetrapyrrole macrocyles derived from C-5 of 5-aminolevolinic acid (ALA), while the C-2 of glycine was only incorporated into the methyl carbon of the methoxycarbonyl group attached to the isolcyclic ring of chlorophyll a formed in the presence of (1- 13 C)-glycine. These labelling patterns provide evidence for the operation of the C 5 -pathway and against the operation of the ALA synthase pathway for chlorophyll formation in darkness. (author)

  18. Novel proxies for reconstructing paleohydrology from ombrotrophic peatlands: biomarker and compound-specific H and C stable isotope ratios

    Science.gov (United States)

    Wang, J.; Nichols, J. E.; Huang, Y.

    2008-12-01

    Ombrotrophic peatlands are excellent archives for paleohydrologic information because they are hydrologically isolated from their surroundings. However, quantitative proxies for deciphering peatland archives are lacking. Here, we present development and application of novel organic geochemical methods for quantitative reconstruction of paleohydrology from the ombrotrophic sediments, and comparison of organic geochemical data with conventional paleoecological proxies. Application of these methods to the sediments of several North American and European peatlands has revealed significant changes in the hydroclimate throughout the Holocene. The plant assemblage living at the surface of the peatland is tightly controlled by surface moisture. Under wet conditions, Sphagnum mosses, with no active mechanism for drawing water from below the surface of the peatland, are dominant. During dry conditions, vascular plants are more productive relative to Sphagnum. A ratio of the abundance of two biomarkers representing Sphagnum and vascular plants sensitively records changes in hydrologic balance (Nichols et al., 2006, Org. Geochem. 37, 1505-1513). We have further developed stable isotope models to compute climate parameters from compound-specific H and C isotope ratios of biomarkers to create a more comprehensive climate reconstruction. Vascular plant leaf waxes carry the D/H ratio signature of precipitation that is little affected by evaporation, whereas the Sphagnum biomarker records isotopic ratios of the water at the peatland surface, which is strongly enriched by evaporation. Evaporation amount can be calculated using the differences between D/H ratios of the two types of biomarkers. C isotope ratios of Sphagnum biomarkers can also be used to quantify surface wetness. Methanotrophic bacteria live symbiotically with Sphagnum, providing isotopically light carbon for photosynthesis. These bacteria are more active when the Sphagnum is wet, thus providing more 13C-depleted CO2

  19. Monitoring biodegradation of ethene and bioremediation of chlorinated ethenes at a contaminated site using compound-specific isotope analysis (CSIA).

    Science.gov (United States)

    Mundle, Scott O C; Johnson, Tiffany; Lacrampe-Couloume, Georges; Pérez-de-Mora, Alfredo; Duhamel, Melanie; Edwards, Elizabeth A; McMaster, Michaye L; Cox, Evan; Révész, Kinga; Sherwood Lollar, Barbara

    2012-02-07

    Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = -6.7‰ ± 0.4‰, and -4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = -3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ(13)C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.

  20. Origin of Xylitol in Chewing Gum: A Compound-Specific Isotope Technique for the Differentiation of Corn- and Wood-Based Xylitol by LC-IRMS.

    Science.gov (United States)

    Köster, Daniel; Wolbert, Jens-Benjamin; Schulte, Marcel S; Jochmann, Maik A; Schmidt, Torsten C

    2018-02-28

    The sugar replacement compound xylitol has gained increasing attention because of its use in many commercial food products, dental-hygiene articles, and pharmaceuticals. It can be classified by the origin of the raw material used for its production. The traditional "birch xylitol" is considered a premium product, in contrast to xylitol produced from agriculture byproducts such as corn husks or sugar-cane straw. Bulk stable-isotope analysis (BSIA) and compound-specific stable-isotope analysis (CSIA) by liquid-chromatography isotope-ratio mass spectrometry (LC-IRMS) of chewing-gum extracts were used to determine the δ 13 C isotope signatures for xylitol. These were applied to elucidate the original plant type the xylitol was produced from on the basis of differences in isotope-fractionation processes of photosynthetic CO 2 fixation. For the LC-IRMS analysis, an organic-solvent-free extraction protocol and HPLC method for the separation of xylitol from different artificial sweeteners and sugar-replacement compounds was successfully developed and applied to the analysis of 21 samples of chewing gum, from which 18 could be clearly related to the raw-material plant class.

  1. {sup 13} C-NMR of mesquite gum

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Cristina T; Garcia, Rosangela B [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    1992-12-31

    Mesquite and guar gums are galactomannans extracted from the seeds of Proposis Juliflora and Cyamopsis tetragonolobus, respectively. An experimental sample of mesquite gum and a commercial sample of guar gum were partially depolymerized by ultrasonic radiation and the produce analysed by high resolution {sup 13} C-NMR spectroscopy. The different carbon lines were resolved and their assignments were done as those reported in the literature. The galactose to mannose ratios (G/M) were estimated from the relative peak areas of the C-1 lines as G/M=61 for mesquite and G/M=0.54 for guar gum. The next nearest-neighbour probabilities (diad frequencies) of the D-galactosyl substitution to the D-mannose backbone were evaluated by integrating C-4 mannose splitted peaks. (author) 9 refs., 2 figs., 2 tabs.

  2. Isotopic separation of 13C by selective photodissociation of formaldehyde

    International Nuclear Information System (INIS)

    Mussillon, T.

    1998-01-01

    The aim of this work is to study the feasibility of the 13 C isotopic separation by UV laser spectroscopy. The spectra of H 2 12 CO and H 2 13 CO have been recorded by a Fourier transform spectrometer between 28000 and 34000 cm -1 . From these data has been carried out a systematic study of some lines by laser spectroscopy. The selectivity measurements have been compared with the obtained enrichment factors. Thus has been revealed in a quantitative way, the importance of the isotopic re-mixture phenomena and of the selectivity loss. The best enrichment factor has been measured at 29935,56 cm -1 (band: (2,14,1)). A final percentage of 42,1 % has been obtained in a reproducible way for 13 C. The evolution of the enrichment factor has been characterized for a pressure range between 4,4 and 43 mbar. Above the radical dissociation threshold, it has not be possible to show a positive effect of NO on the enrichment factor. This negative result has been explained by a detailed kinetic study of the radical reactions (available literature). This experimental study has been completed by a bibliographic synthesis for understanding the formaldehyde photochemistry. All the processes able to influence the performance of this isotopic separation process have been gathered in this work in an exhaustive way. The radical dissociation threshold of H 2 13 CO have been calculated from molecular constants of the literature and from known thermodynamic data for H 2 12 CO. (O.M.)

  3. Direct dating of archaeological pottery by compound-specific 14C analysis of preserved lipids.

    Science.gov (United States)

    Stott, Andrew W; Berstan, Robert; Evershed, Richard P; Bronk-Ramsey, Christopher; Hedges, Robert E M; Humm, Martin J

    2003-10-01

    A methodology is described demonstrating the utility of the compound-specific 14C technique as a direct means of dating archaeological pottery. The method uses automated preparative capillary gas chromatography employing wide-bore capillary columns to isolate individual compounds from lipid extracts of archaeological potsherds in high purity (>95%) and amounts (>200 microg) sufficient for radiocarbon dating using accelerator mass spectrometry (AMS). A protocol was developed and tested on n-alkanes and n-carboxylic acids possessing a broad range of 14C ages. Analytical blanks and controls allowed background 14C measurements to be assessed and potential sources of errors to be detected, i.e., contamination with modern or dead 14C, isotopic fraction effects, etc. A "Russian doll" method was developed to transfer isolated target compounds onto tin powder/capsules prior to combustion and AMS analyses. The major advantage of the compound-specific technique is that 14C dates obtained for individual compounds can be directly linked to the commodities processed in the vessels during their use, e.g., animal fats. The compound-specific 14C dating protocol was validated on a suite of ancient pottery whose predicted ages spanned a 5000-year date range. Initial results indicate that meaningful correlations can be obtained between the predicted date of pottery and that of the preserved lipids. These findings constitute an important step forward to the direct dating of archaeological pottery.

  4. Check specific compounds lyrics Saeb and Biddle, based on syntactic and semantic core composition

    Directory of Open Access Journals (Sweden)

    khodabakhsh asadollahi

    2016-02-01

    Full Text Available Saebe Tabrizi and Bidele Dehlavi of the most famous poets in Hindi, which each in turn, the Iranian branch and Hindi Hindi style, the lyrics have been changed in this period. Most scholars who have studied the poetry Biddle to research, Specific compounds as one of the most important factors in a monopoly ambiguity Biddle poetry and in the making and meaning of these compounds have less reflection. Here are the lyrics to rely on dictionary and Biddle, the Iranian branch of specific compounds in both Hindi and Hindi poetry style is investigated. Combining both his first two exocentric and endocentric compounds is assorted, Based on Syntactic relations, various models of deep structure and composition relationships is presented. Saeb specific compounds and Biddle in deep syntactic relations as diverse as the relationship between the finite, nominative, accusative, amendment and so on.The semantic structure, certain combinations of the two poets more varied combinations are commonplace in standard language, so that some of the compounds exist in terms of meaning in language

  5. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    Science.gov (United States)

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is

  6. SUMOFLUX: A Generalized Method for Targeted 13C Metabolic Flux Ratio Analysis

    Science.gov (United States)

    Kogadeeva, Maria

    2016-01-01

    Metabolic fluxes are a cornerstone of cellular physiology that emerge from a complex interplay of enzymes, carriers, and nutrients. The experimental assessment of in vivo intracellular fluxes using stable isotopic tracers is essential if we are to understand metabolic function and regulation. Flux estimation based on 13C or 2H labeling relies on complex simulation and iterative fitting; processes that necessitate a level of expertise that ordinarily preclude the non-expert user. To overcome this, we have developed SUMOFLUX, a methodology that is broadly applicable to the targeted analysis of 13C-metabolic fluxes. By combining surrogate modeling and machine learning, we trained a predictor to specialize in estimating flux ratios from measurable 13C-data. SUMOFLUX targets specific flux features individually, which makes it fast, user-friendly, applicable to experimental design and robust in terms of experimental noise and exchange flux magnitude. Collectively, we predict that SUMOFLUX's properties realistically pave the way to high-throughput flux analyses. PMID:27626798

  7. {sup 13}C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI)

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Mitsuhiro [Kumamoto University, Department of Structural BioImaging, Faculty of Life Sciences (Japan); Miyanoiri, Yohei [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Terauchi, Tsutomu [Tokyo Metropolitan University, Graduate School of Science and Engineering (Japan); Kainosho, Masatsune, E-mail: kainosho@tmu.ac.jp [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2016-09-15

    Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14–Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D {sup 13}C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically {sup 13}C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14–Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m{sub c14} and m{sub c38}). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for {sup 13}C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m{sub c38} isomerization, the {sup 1}H-{sup 13}C signals at the β-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.

  8. Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication.

    Science.gov (United States)

    Guyon, François; Gaillard, Laetitia; Salagoïty, Marie-Hélène; Médina, Bernard

    2011-09-01

    High-performance liquid chromatography linked to isotope ratio mass spectrometry (HPLC-co-IRMS) via a Liquiface© interface has been used to simultaneously determine (13)C isotope ratios of glucose (G), fructose (F), glycerol (Gly) and ethanol (Eth) in sweet and semi-sweet wines. The data has been used the study of wine authenticity. For this purpose, 20 authentic wines from various French production areas and various vintages have been analyzed after dilution in pure water from 20 to 200 times according to sugar content. If the (13)C isotope ratios vary according to the production area and the vintage, it appears that internal ratios of (13)C isotope ratios (R((13)C)) of the four compounds studied can be considered as a constant. Thus, ratios of isotope ratios are found to be 1.00 ± 0.04 and 1.02 ± 0.08 for R((13)C(G/F)) and R((13)C(Gly/Eth)), respectively. Moreover, R((13)C(Eth/Sugar)) is found to be 1.15 ± 0.10 and 1.16 ± 0.08 for R((13)C(Gly/Sugar)). Additions of glucose, fructose and glycerol to a reference wine show a variation of the R((13)C) value for a single product addition as low as 2.5 g/L(-1). Eighteen commercial wines and 17 concentrated musts have been analyzed. Three wine samples are suspicious as the R((13)C) values are out of range indicating a sweetening treatment. Moreover, concentrated must analysis shows that (13)C isotope ratio can be also used directly to determine the authenticity of the matrix.

  9. Sediment Origin Determination in the Sub-Catchment of Mistelbach (Austria) using Fatty Acids Biomarkers and Compound-Specific Stable Isotope Techniques

    International Nuclear Information System (INIS)

    Mabit, L.; Chen, X.; Resch, C.; Toloza, A.; Meusburger, K.; Alewell, C.; Gibbs, M.; Klik, A.; Eder, A.; Strauss, P.

    2016-01-01

    Compound-specific stable isotope (CSSI) signatures of inherent soil organic biomarkers allow discriminating and apportioning the source of soil contribution from different land uses. Plant communities label the soil where they grow by exuding organic biomarkers. Although all plants produce the same biomarkers, the stable isotopic signature of those biomarkers is different for each plant species. For agri-environmental investigations, the CSSI technique is based on the measurement of carbon-13 ( 13 C) natural abundance signatures of specific organic compounds such as natural fatty acids (FAs) in the soil. By linking fingerprints of land use to the sediment in deposition zones, this approach has been shown to be a useful technique for determining the source of eroded soil and thereby identifying areas prone to soil degradation. The authors have used this innovative technique to investigate a 3 hectares sub-catchment of Mistelbach situated 60 km north of Vienna. Using the 137 Cs technique, Mabit et al. (2009) reported a local maximum sedimentation rate reaching 20 to 50 t ha -1 yr -1 in the lowest part of this Austrian catchment. To test the ability of the CSSI technique to discriminate different sediment sources of these deposited sediments, representative soil samples from four main agricultural fields of the site were analyzed

  10. Study of the metabolism of 13C labeled substrates by 13C NMR spectroscopy of intact cells, tissues, and organs

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.; London, R.E.; Hutson, J.Y.

    1982-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy, in conjunction with carbon-13 labeling, has become an important analytical technique for the study of biological systems and biologically important molecules. The growing list of its well established applications to isolated molecules in solution includes the investigation of: metabolic pathways; the microenvironments of ligands bound to proteins; the architecture and dynamics of macromolecules; the structures of coenzymes and other natural products; and the mechanisms of reactions. Recently interest has been reawakened in the use of the technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The promise and problems in the use of 13 C labeling in such investigations can be illustrated by the results on suspensions of the yeast, Candida utilis

  11. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction.

    Science.gov (United States)

    Dunn, Philip J H; Honch, Noah V; Evershed, Richard P

    2011-10-30

    Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Time-trends in method-specific suicide rates compared with the availability of specific compounds. The Danish experience

    DEFF Research Database (Denmark)

    Nordentoft, Merete; Qin, Ping; Helweg-Larsen, Karin

    2006-01-01

    Restriction of means for suicide is an important part of suicide preventive strategies in different countries. All suicides in Denmark between 1970 and 2000 were examined with regard to method used for suicide. Overall suicide mortality and method-specific suicide mortality was compared...... in the number of suicides by self-poisoning with these compounds. Restricted access occurred concomittantly with a 55% decrease in suicide rate...

  13. Screening in larval zebrafish reveals tissue-specific distribution of fifteen fluorescent compounds

    Directory of Open Access Journals (Sweden)

    Yuxiao Yao

    2017-09-01

    Full Text Available The zebrafish is a prominent vertebrate model for low-cost in vivo whole organism screening. In our recent screening of the distribution patterns of fluorescent compounds in live zebrafish larvae, fifteen compounds with tissue-specific distributions were identified. Several compounds were observed to accumulate in tissues where they were reported to induce side-effects, and compounds with similar structures tended to be enriched in the same tissues, with minor differences. In particular, we found three novel red fluorescent bone-staining dyes: purpurin, lucidin and 3-hydroxy-morindone; purpurin can effectively label bones in both larval and adult zebrafish, as well as in postnatal mice, without significantly affecting bone mass and density. Moreover, two structurally similar chemotherapeutic compounds, doxorubicin and epirubicin, were observed to have distinct distribution preferences in zebrafish. Epirubicin maintained a relatively higher concentration in the liver, and performed better in inhibiting hepatic hyperplasia caused by the over-expression of krasG12V. In total, our study suggests that the transparent zebrafish larvae serve as valuable tools for identifying tissue-specific distributions of fluorescent compounds.

  14. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C (15)N HSQC-IMPEACH and (13)C (15)N HMBC-IMPEACH correlation spectra.

    Science.gov (United States)

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. (c) 2007 John Wiley & Sons, Ltd.

  15. Specific attraction of fig-pollinating wasps: role of volatile compounds released by tropical figs.

    Science.gov (United States)

    Grison-Pigé, Laure; Bessière, Jean-Marie; Hossaert-McKey, Martine

    2002-02-01

    Floral scents often act as pollinator attractants. In the case of obligate and specific plant-pollinator relationships, the role of floral signals may be crucial in allowing the encounter of the partners. About 750 Ficus species (Moraceae) are involved in such interactions, each with a distinct species of pollinating wasp (Chalcidoidea, Agaonidae). Several species have been shown to release volatile compounds, but their role in pollinator attraction has rarely been simultaneously tested. We investigated the floral scents of four tropical fig species and combined chemical analysis with biological tests of stimulation of insects. Pollinators of three species were stimulated by the odor of their associated fig species and generally not by the odor of another species. The fourth actually comprised two distinct varieties. The main compound was often a different one in each species. Floral blends of different species always shared compounds, but ratios of these compounds varied among species.

  16. Tricarboxylic acid cycle activity measured by 13C magnetic resonance spectroscopy in rats subjected to the kaolin model of obstructed hydrocephalus

    DEFF Research Database (Denmark)

    Melø, Torun M; Håberg, Asta K; Risa, Øystein

    2011-01-01

    in the amounts of glutamate, alanine and taurine. In addition, the concentration of the neuronal marker N-acetyl aspartate was decreased. (13)C Labelling of most amino acids derived from [1,6-(13)C]glucose was unchanged 2 weeks after hydrocephalus induction. The only indication of astrocyte impairment......Evaluating early changes in cerebral metabolism in hydrocephalus can help in the decision making and the timing of surgical intervention. This study was aimed at examining the tricarboxylic acid (TCA) cycle rate and (13)C label incorporation into neurotransmitter amino acids and other compounds 2...

  17. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons

    DEFF Research Database (Denmark)

    Brekke, Eva Marie; Walls, Anne Byriel; Schousboe, Arne

    2012-01-01

    is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism...

  18. Inelastic pion scattering by 13C at low energies

    International Nuclear Information System (INIS)

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in 13 C at an incident energy of 65 MeV. The data include results from both π + and π - measurements. In addition, π - measurements were made at T/sub π/ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2 + state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs

  19. IRMS detection of testosterone manipulated with {sup 13}C labeled standards in human urine by removing the labeled {sup 13}C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingzhu, E-mail: wangjingzhu@chinada.cn [National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing (China); Yang, Rui [Sport Science College, Beijing Sport University Beijing, Beijing (China); Yang, Wenning [School of Pharmacy, Beijing University of Chinese Medicine, Beijing (China); Liu, Xin; Xing, Yanyi; Xu, Youxuan [National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing (China)

    2014-12-10

    Highlights: • {sup 13}C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled {sup 13}C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ{sup 13}C value). However, {sup 13}C labeled standards can be used to control the δ{sup 13}C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the {sup 13}C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ{sup 13}C values between Andro and ANAD (Δδ{sup 13}C{sub Andro–ANAD}, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different {sup 13}C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ{sup 13}C{sub Andro–ANAD} post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ{sup 13}C{sub Andro–ANAD} for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-{sup 13}C labeled standards.

  20. 2,6-di-tert-butylphenylvinyl ether: effect of the unshared oxygen electron pair on the /sup 13/C-/sup 13/C spin-spin interaction constant

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Glukhikh, N.G.; Sigalov, V.M.; Kalabin, G.A.

    1987-07-10

    Vinyl ethers were prepared by the well-known Favorskii-Shostakovskii method. The purity of the compounds was controlled by GLC and by the PMR and /sup 13/C NMR spectra. The proximity of sp/sup 7/-hybridized unshared pair of oxygen atoms result in a secondary, positive contribution in the constant of spin-spin interaction between neighboring carbon nuclei in the aromatic ring.

  1. [13C] GC-C-IRMS analysis of methylboronic acid derivatives of glucose from liver glycogen after the ingestion of [13C] labeled tracers in rats.

    Science.gov (United States)

    Luengo, Catherine; Azzout-Marniche, Dalila; Fromentin, Claire; Piedcoq, Julien; Lemosquet, Sophie; Tomé, Daniel; Gaudichon, Claire

    2009-11-01

    We developed a complete method to measure low [(13)C] enrichments in glycogen. Fourteen rats were fed a control diet. Six of them also ingested either [U-(13)C] glucose (n=2) or a mixture of 20 [U-(13)C] amino acids (n=4). Hepatic glycogen was extracted, digested to glucose and purified on anion-cation exchange resins. After the optimization of methylboronic acid derivatization using GC-MS, [(13)C] enrichment of extracted glucose was measured by GC-C-IRMS. The accuracy was addressed by measuring the enrichment excess of a calibration curve, which observed values were in good agreement with the expected values (R=0.9979). Corrected delta values were -15.6+/-1.6 delta(13)C (per thousand) for control rats (n=8) and increased to -5 to 8 delta(13)C (per thousand) per thousand and 12-14 delta(13)C (per thousand) per thousand after the ingestion of [U-(13)C] amino acids or [U-(13)C] glucose as oral tracers, respectively. The method enabled the determination of dietary substrate transfer into glycogen. The sequestration of dietary glucose in liver glycogen 4 h after the meal was 35% of the ingested dose whereas the transfer of carbon skeletons from amino acids was only 0.25 to 1%.

  2. Measuring soil organic matter turn over and carbon stabilisation in pasture soils using 13C enrichment methodology.

    Science.gov (United States)

    Robinson, J. M.; Barker, S.; Schipper, L. A.

    2017-12-01

    Carbon storage in soil is a balance between photosynthesis and respiration, however, not all C compounds decompose equally in soil. Soil C consists of several fractions of C ranging from, accessible C (rapidly cycling) to stored or protected C (slow cycling). The key to increasing C storage is through the transfer of soil C from this accessible fraction, where it can be easily lost through microbial degradation, into the more stable fraction. With the increasing use of isotope enrichment techniques, 13C may be used to trace the movement of newly incorporated carbon in soil and examine how land management practises affect carbon storage. A laboratory method was developed to rapidly analyse soil respired CO2 for δ13C to determine the temperature sensitivity of newly incorporated 13C enriched carbon. A Horotiu silt loam (2 mm sieved, 60% MWHC) was mixed with 13C enriched ryegrass/clover plant matter in Hungate tubes and incubated for 5 hours at 20 temperatures( 4 - 50 °C) using a temperature gradient method (Robinson J. M., et al, (2017) Biogeochemistry, 13, 101-112). The respired CO2 was analysed using a modified Los Gatos, Off-axis ICOS carbon dioxide analyser. This method was able to analyse the δ13C signature of respired CO2 as long as a minimum concentration of CO2 was produced per tube. Further analysis used a two-component mixing model to separate the CO2 into source components to determine the contribution of added C and soil to total respiration. Preliminary data showed the decomposition of the two sources of C were both temperature dependant. Overall this method is a relatively quick and easy way to analyse δ13C of respired soil CO2 samples, and will allow for the testing of the effects of multiple variables on the decomposition of carbon fractions in future use.

  3. Diet-tissue stable isotope (Δ(13)C and Δ(15)N) discrimination factors for multiple tissues from terrestrial reptiles.

    Science.gov (United States)

    Steinitz, Ronnie; Lemm, Jeffrey M; Pasachnik, Stesha A; Kurle, Carolyn M

    2016-01-15

    Stable isotope analysis is a powerful tool for reconstructing trophic interactions to better understand drivers of community ecology. Taxon-specific stable isotope discrimination factors contribute to the best use of this tool. We determined the first Δ(13)C and Δ(15)N values for Rock Iguanas (Cyclura spp.) to better understand isotopic fractionation and estimate wild reptile foraging ecology. The Δ(13)C and Δ(15)N values between diet and skin, blood, and scat were determined from juvenile and adult iguanas held for 1 year on a known diet. We measured relationships between iguana discrimination factors and size/age and quantified effects of lipid extraction and acid treatment on stable isotope values from iguana tissues. Isotopic and elemental compositions were determined by Dumas combustion using an elemental analyzer coupled to an isotope ratio mass spectrometer using standards of known composition. The Δ(13)C and Δ(15)N values ranged from -2.5 to +6.5‰ and +2.2 to +7.5‰, respectively, with some differences among tissues and between juveniles and adults. The Δ(13)C values from blood and skin differed among species, but not the Δ(15)N values. The Δ(13)C values from blood and skin and Δ(15)N values from blood were positively correlated with size/age. The Δ(13)C values from scat were negatively correlated with size (not age). Treatment with HCl (scat) and lipid extraction (skin) did not affect the isotope values. These results should aid in the understanding of processes driving stable carbon and nitrogen isotope discrimination factors in reptiles. We provide estimates of Δ(13)C and Δ(15)N values and linear relationships between iguana size/age and discrimination factors for the best interpretation of wild reptile foraging ecology. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Degradation of specific aromatic compounds migrating from PEXpipes into drinking water

    DEFF Research Database (Denmark)

    Ryssel, Sune Thyge; Arvin, Erik; Lützhøft, Hans-Christian Holten

    2015-01-01

    Nine specific compounds identified to migrate from polyethylene (PE) and cross-linked polyethylene (PEX) to drinking water were investigated for their degradation in drinking water. Three sample types were studied: field samples (collected at consumer taps), PEX pipe water extractions, and water ...

  5. Facile determination of the specific activity of carbonyl compounds reduced by tritiated borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Avigad, G [Rutgers--the State Univ., Piscataway, NJ (USA)

    1979-12-01

    Three procedures are described for microliter samples of glucose 6-phosphate or lactose as model compounds. After the reduction with (/sup 3/H)-NaBH/sub 4/ and suitable treatment, specific activity is calculated from the ratios /sup 3/H activity/total phosphorus, /sup 3/H//sup 14/C activity, or /sup 3/H activity/galactoside concentration.

  6. Computational characterization of 13C NMR lineshapes of carbon dioxide in structure 1 clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dornan, P.; Woo, T.K. [Ottawa Univ., ON (Canada). Dept. of Chemistry

    2008-07-01

    Nonspherical large cages in structure one clathrates impose non-uniform motion of nonspherical guest molecules and anisotropic lineshapes in nuclear magnetic resonance (NMR) spectra of the guest. This paper presented a general method for calculating the chemical shift lineshape anisotropy of guest molecules in clathrate hydrate compounds from molecular dynamics simulations for the case of weak host, guest dipolar coupling. In order to calculate the cage chemical shielding tensors and the NMR lineshape produced by each guest molecule, the study involved the use of orientational distributions from molecular dynamics simulation along with time and powder angle averaging. The total predicted lineshape anisotropy was calculated from the superposition of the lineshapes of all guests. The approach was applied to calculate the temperature dependent 13C NMR lineshape anisotropy of carbon dioxide in structure 1 clathrates. The paper presented the computational methodology and results and discussion. It was concluded that the resulting lineshapes were in good agreement with the experimental 13C NMR spectrum at each temperature. The method provided a uniform procedure to calculate the lineshapes at different temperatures and no prior assumptions about the nature of the motion of the guest in cages was required. 37 refs., 2 tabs., 3 figs.

  7. Identifying inter-residue resonances in crowded 2D {sup 13}C-{sup 13}C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yimin; Cross, Timothy A. [Florida State University, Department of Chemistry and Biochemistry (United States); Fu Riqiang, E-mail: rfu@magnet.fsu.edu [National High Magnet Field Lab (United States)

    2013-07-15

    The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional {sup 13}C-{sup 13}C chemical shift correlation spectra is presented. With the analyses of {sup 13}C-{sup 13}C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly {sup 13}C labeled protein that are consistent with the high resolution structure of the M2 (22-62) protein (Sharma et al., Science 330(6003):509-512, 2010)

  8. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  9. 13C and 31P NMR study of gluconeogenesis: utilization of 13C-labeled substrates by perfused liver from streptozotocin-diabetic and untreated rats

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    The metabolism of 13 C-labeled substrates was followed by 13 C and 31 P NMR in perfused liver from the streptozotocin-treated rat model of insulin-dependent diabetes. Comparison was made with perfused liver from untreated littermates, fasted either 24 or 12 h. The major routes of pyruvate metabolism were followed by a 13 C NMR approach that provided for the determination of the metabolic fate of several substances simultaneously. The rate of gluconeogenesis was 2-4-fold greater and β-hydroxybutyrate production was 50% greater in liver from the chronically diabetic rats as compared with the control groups. Large differences in the distribution of 13 C label in hepatic alanine were measured between diabetic and control groups. The biosyntheses of 13 C-labeled glutathione and N-carbamoylaspartate were monitored in time-resolved 13 C NMR spectra of perfused liver. Assignments for the resonances of glutathione and N-carbamoylaspartate were made with the aid of 13 C NMR studies of perchloric acid extracts of the freeze-clamped livers. 13 C NMR spectroscopy of the perfusates provided a convenient, rapid assay of the rate of oxidation of [2- 13 C]ethanol, the hepatic output of [2- 13 ]acetaldehyde, and the accumulation of [2- 13 C]acetate in the perfusate. By 31 P NMR spectroscopy, carbamoyl phosphate was measured in all diabetic livers and an unusual P,P'-diesterified pyrophosphate was observed in one-fourth of the diabetic livers examined. Neither of these phosphorylated metabolites was detected in control liver. Both 13 C and 31 P NMR were useful in defining changes in hepatic metabolism in experimental diabetes

  10. Tracing fresh assimilates through Larix decidua exposed to elevated CO₂ and soil warming at the alpine treeline using compound-specific stable isotope analysis.

    Science.gov (United States)

    Streit, Kathrin; Rinne, Katja T; Hagedorn, Frank; Dawes, Melissa A; Saurer, Matthias; Hoch, Günter; Werner, Roland A; Buchmann, Nina; Siegwolf, Rolf T W

    2013-02-01

    How will carbon source-sink relations of 35-yr-old larch trees (Larix decidua) at the alpine treeline respond to changes in atmospheric CO(2) and climate? We evaluated the effects of previously elevated CO(2) concentrations (9 yr, 580 ppm, ended the previous season) and ongoing soil warming (4 yr, + 4°C). Larch branches were pulse labeled (50 at% (13)CO(2)) in July 2010 to trace fresh assimilates through tissues (buds, needles, bark and wood) and non-structural carbon compounds (NCC; starch, lipids, individual sugars) using compound-specific isotope analysis. Nine years of elevated CO(2) did not lead to increased NCC concentrations, nor did soil warming increase NCC transfer velocities. By contrast, we found slower transfer velocities and higher NCC concentrations than reported in the literature for lowland larch. As a result of low dilution with older carbon, sucrose and glucose showed the highest maximum (13)C labels, whereas labels were lower for starch, lipids and pinitol. Label residence times in needles were shorter for sucrose and starch (c. 2 d) than for glucose (c. 6 d). Although our treatments showed no persistent effect on larch carbon relations, low temperature at high altitudes clearly induced a limitation of sink activities (growth, respiration, root exudation), expressed in slower carbon transfer and higher NCC concentrations. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  11. Comparison of IRMS and NMR spectrometry for the determination of intramolecular 13C isotope composition: application to ethanol.

    Science.gov (United States)

    Gilbert, Alexis; Hattori, Ryota; Silvestre, Virginie; Wasano, Nariaki; Akoka, Serge; Hirano, Satoshi; Yamada, Keita; Yoshida, Naohiro; Remaud, Gérald S

    2012-09-15

    Isotopic (13)C NMR is a relatively recent technique which allows the determination of intramolecular (13)C isotope composition at natural abundance. It has been used in various scientific fields such as authentication, counterfeiting or plant metabolism. Although its precision has already been evaluated, the determination of its trueness remains still challenging. To deal with that issue, a comparison with another normalized technique must be achieved. In this work, we compare the intramolecular (13)C isotope distribution of ethanol from different origins obtained using both Isotope Ratio Mass Spectrometry (IRMS) and Nuclear Magnetic Resonance (NMR) spectrometry techniques. The IRMS approach consists of the oxidation of ethanol to acetic acid followed by the degradation of the latter for the analysis of each fragments formed. We show here that the oxidation of ethanol to acetic acid does not bring any significant error on the determination of the site-specific δ(13)C (δ(13)C(i)) of ethanol using the IRMS approach. The difference between the data obtained for 16 samples from different origins using IRMS and NMR approaches is not statistically significant and remains below 0.3‰. These results are encouraging for the future studies using isotopic NMR, especially in combination with the IRMS approach. Copyright © 2012. Published by Elsevier B.V.

  12. Subtype and pathway specific responses to anticancer compounds in breast cancer.

    Science.gov (United States)

    Heiser, Laura M; Sadanandam, Anguraj; Kuo, Wen-Lin; Benz, Stephen C; Goldstein, Theodore C; Ng, Sam; Gibb, William J; Wang, Nicholas J; Ziyad, Safiyyah; Tong, Frances; Bayani, Nora; Hu, Zhi; Billig, Jessica I; Dueregger, Andrea; Lewis, Sophia; Jakkula, Lakshmi; Korkola, James E; Durinck, Steffen; Pepin, François; Guan, Yinghui; Purdom, Elizabeth; Neuvial, Pierre; Bengtsson, Henrik; Wood, Kenneth W; Smith, Peter G; Vassilev, Lyubomir T; Hennessy, Bryan T; Greshock, Joel; Bachman, Kurtis E; Hardwicke, Mary Ann; Park, John W; Marton, Laurence J; Wolf, Denise M; Collisson, Eric A; Neve, Richard M; Mills, Gordon B; Speed, Terence P; Feiler, Heidi S; Wooster, Richard F; Haussler, David; Stuart, Joshua M; Gray, Joe W; Spellman, Paul T

    2012-02-21

    Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.

  13. Enhancing the understanding of earthworm feeding behaviour via the use of fatty acid delta13C values determined by gas chromatography-combustion-isotope ratio mass spectrometry.

    Science.gov (United States)

    Dungait, Jennifer A J; Briones, Maria J I; Bol, Roland; Evershed, Richard P

    2008-06-01

    Litter-dwelling (epigeic) Lumbricus rubellus and soil-dwelling (endogeic) Allolobophora chlorotica earthworms were observed aggregating under C(3) (delta(13)C = -31.3 per thousand; delta(15)N = 10.7 per thousand) and C(4) (delta(13)C = -12.6 per thousand; delta(15)N = 7.5 per thousand) synthetic dung pats applied to a temperate grassland (delta(13)C = -30.3 per thousand; delta(15)N = 5.7 per thousand) in an experiment carried out for 372 days. Bulk delta(13)C values of earthworms collected from beneath either C(3) or C(4) dung after 28, 56, 112 and 372 days demonstrated that (i) L. rubellus beneath C(4) dung were significantly (13)C-enriched after 56 days (delta(13)C = -23.8 per thousand) and 112 days (delta(13)C = -22.4 per thousand) compared with those from C(3) dung treatments (56 days, delta(13)C = -26.5 per thousand; 112 days, delta(13)C = -27.0 per thousand), and (ii) A. chlorotica were 2.1 per thousand (13)C-enriched (delta(13)C = -24.2 per thousand) relative to those from C(3) dung (delta(13)C = -26.3 per thousand) treatments after 372 days. Bulk delta(15)N values did not suggest significant uptake of dung N by either species beneath C(3) or C(4) dung, but showed that the endogeic species (total mean delta(15)N = 3.3 per thousand) had higher delta(15)N values than the epigeic species (total mean delta(15)N = 5.4 per thousand). Although the two species exhibited similar fatty acid profiles, individual fatty acid delta(13)C values revealed extensive routing of dietary C into body tissue of L. rubellus, but minor incorporation into A. chlorotica. In particular, the direct incorporation of microbial biomarker fatty acids (iC(17:0), aC(17:0)) from (13)C-labelled dung in situ, the routing of dung C into de novo synthesised compounds (iC(20:4)(omega)(6),C(20:5)(omega)(3), and the assimilation of essential fatty acids ((C(18:1)(omega)(9), C(18:1)(omega(7), C(18:2)(omega(6), C(18:3)(omega)(3)) derived from dung, were determined. John Wiley & Sons, Ltd

  14. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, Petra, E-mail: petra.bombach@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany); Nägele, Norbert [Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23" a, E-09001 Burgos (Spain); Rosell, Mònica [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès s/n, 08028 Barcelona (Spain); Richnow, Hans H. [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Fischer, Anko [Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany)

    2015-04-09

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [{sup 13}C{sub 6}]-ETBE (BACTRAP{sup ®}s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant {sup 13}C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation.

  15. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    International Nuclear Information System (INIS)

    Bombach, Petra; a, E-09001 Burgos (Spain))" data-affiliation=" (Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23a, E-09001 Burgos (Spain))" >Nägele, Norbert; Rosell, Mònica; Richnow, Hans H.; Fischer, Anko

    2015-01-01

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [ 13 C 6 ]-ETBE (BACTRAP ® s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant 13 C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation

  16. Retroconversion is a minor contributor to increases in eicosapentaenoic acid following docosahexaenoic acid feeding as determined by compound specific isotope analysis in rat liver.

    Science.gov (United States)

    Metherel, Adam H; Chouinard-Watkins, Raphaël; Trépanier, Marc-Olivier; Lacombe, R J Scott; Bazinet, Richard P

    2017-01-01

    Dietary docosahexaenoic acid (DHA, 22:6n-3) not only increases blood and tissue levels of DHA, but also eicosapentaenoic acid (EPA, 20:5n-3). It is generally believed that this increase is due to DHA retroconversion to EPA, however, a slower conversion of α-linolenic acid (ALA, 18:3n-3) derived EPA to downstream metabolic products (i.e. slower turnover of EPA) is equally plausible. In this study, 21-day old Long Evans rats were weaned onto an ALA only or DHA + ALA diet for 12 weeks. Afterwards, livers were collected and the natural abundance 13 C-enrichment was determined by compound specific isotope analysis (CSIA) of liver EPA by isotope ratio mass-spectrometry and compared to dietary ALA and DHA 13 C-enrichment. Isotopic signatures (per mil, ‰) for liver EPA were not different ( p  > 0.05) between the ALA only diet (-25.89 ± 0.39 ‰, mean ± SEM) and the DHA + ALA diet (-26.26 ± 0.40 ‰), suggesting the relative contribution from dietary ALA and DHA to liver EPA did not change. However, with DHA feeding estimates of absolute EPA contribution from ALA increased 4.4-fold (147 ± 22 to 788 ± 153 nmol/g) compared to 3.2-fold from DHA (91 ± 14 to 382 ± 13 nmol/g), respectively. In conclusion, CSIA of liver EPA in rats following 12-weeks of dietary DHA suggests that retroconversion of DHA to EPA is a relatively small contributor to increases in EPA, and that this increase in EPA is largely coming from elongation/desaturation of ALA.

  17. Metabolism of Seriola lalandi during Starvation as Revealed by Fatty Acid Analysis and Compound-Specific Analysis of Stable Isotopes within Amino Acids.

    Directory of Open Access Journals (Sweden)

    Fernando Barreto-Curiel

    Full Text Available Fish starvation is defined as food deprivation for a long period of time, such that physiological processes become confined to basal metabolism. Starvation provides insights in physiological processes without interference from unknown factors in digestion and nutrient absorption occurring in fed state. Juveniles of amberjack Seriola lalandi were isotopically equilibrated to a formulated diet for 60 days. One treatment consisted of fish that continued to be fed and fish in the other treatment were not fed for 35 days. The isotopic signatures prior to the beginning of and after the starvation period, for fish in the starvation and control treatments, were analysed for lipid content, fatty acid composition and isotopic analysis of bulk (EA-IRMS and of amino acids (compound specific isotope analysis, CSIA. There were three replicates for the starvation group. Fatty acid content in muscle and liver tissue before and after starvation was determined to calculate percent change. Results showed that crude lipid was the most used source of energy in most cases; the PUFAs and LC-PUFAs were highly conserved. According to the protein signature in bulk (δ15N and per amino acid (δ13C and δ15N, in muscle tissue, protein synthesis did not appear to occur substantially during starvation, whereas in liver, increases in δ13C and δ15N indicate that protein turnover occurred, probably for metabolic routing to energy-yielding processes. As a result, isotopic values of δ15N in muscle tissue do not change, whereas CSIA net change occurred in the liver tissue. During the study period of 35 days, muscle protein was largely conserved, being neither replenished from amino acid pools in the plasma and liver nor catabolized.

  18. A protocol for pressurized liquid extraction and processing methods to isolate modern and ancient bone cholesterol for compound-specific stable isotope analysis.

    Science.gov (United States)

    Laffey, Ann O; Krigbaum, John; Zimmerman, Andrew R

    2017-02-15

    Bone lipid compound-specific isotope analysis (CSIA) and bone collagen and apatite stable isotope ratio analysis are important sources of ecological and paleodietary information. Pressurized liquid extraction (PLE) is quicker and utilizes less solvent than traditional methods of lipid extraction such as soxhlet and ultrasonication. This study facilitates dietary analysis by optimizing and testing a standardized methodology for PLE of bone cholesterol. Modern and archaeological bones were extracted by PLE using varied temperatures, solvent solutions, and sample weights. The efficiency of PLE was assessed via quantification of cholesterol yields. Stable isotopic ratio integrity was evaluated by comparing isotopic signatures (δ 13 C and δ 18 O values) of cholesterol derived from whole bone, bone collagen and bone apatite. Gas chromatography/mass spectrometry (GC/MS) and gas chromatography isotope ratio mass spectrometry (GC/IRMS) were conducted on purified collagen and lipid extracts to assess isotopic responses to PLE. Lipid yield was optimized at two PLE extraction cycles of 75 °C using dichloromethane/methanol (2:1 v/v) as a solvent with 0.25-0.75 g bone sample. Following lipid extraction, saponification combined with the derivatization of the neutral fraction using trimethylsilylation yielded nearly twice the cholesterol of non-saponified or non-derivatized samples. It was also found that lipids extracted from purified bone collagen and apatite could be used for cholesterol CSIA. There was no difference in the bulk δ 13 C values of collagen extracted from bone with or without lipid. However, there was a significant depletion in 18 O of bone apatite due to lipid presence or processing. These results should assist sample selection and provide an effective, alternative extraction method for bone cholesterol that may be used for isotopic and paleodietary analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. {sup 13}C-Methyl isocyanide as an NMR probe for cytochrome P450 active sites

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, Christopher R.; Pullela, Phani Kumar [Marquette University, Chemical Proteomics Facility at Marquette, Department of Chemistry (United States); Im, Sang-Choul; Waskell, Lucy [University of Michigan and VA Medical Center, Department of Anesthesiology (United States); Sem, Daniel S. [Marquette University, Chemical Proteomics Facility at Marquette, Department of Chemistry (United States)], E-mail: Daniel.sem@marquette.edu

    2009-03-15

    The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could be obtained in reasonably high throughput. To this end, we have developed an analog of the promiscuous heme ligand, cyanide, with a {sup 13}CH{sub 3}-reporter attached. This {sup 13}C-methyl isocyanide ligand binds to bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. It can be used in a rapid 1D experiment to identify binders, and provides a qualitative measure of structural changes in the active site.

  20. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    Science.gov (United States)

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    OpenAIRE

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride gave [2-13C]2-nitropropane in 14,3% overall yield.

  2. Distinguishing between old and modern permafrost sources in the northeast Siberian land-shelf system with compound-specific δ2H analysis

    Science.gov (United States)

    Vonk, Jorien E.; Tesi, Tommaso; Bröder, Lisa; Holmstrand, Henry; Hugelius, Gustaf; Andersson, August; Dudarev, Oleg; Semiletov, Igor; Gustafsson, Örjan

    2017-08-01

    Pleistocene ice complex permafrost deposits contain roughly a quarter of the organic carbon (OC) stored in permafrost (PF) terrain. When permafrost thaws, its OC is remobilized into the (aquatic) environment where it is available for degradation, transport or burial. Aquatic or coastal environments contain sedimentary reservoirs that can serve as archives of past climatic change. As permafrost thaw is increasing throughout the Arctic, these reservoirs are important locations to assess the fate of remobilized permafrost OC.We here present compound-specific deuterium (δ2H) analysis on leaf waxes as a tool to distinguish between OC released from thawing Pleistocene permafrost (ice complex deposits; ICD) and from thawing Holocene permafrost (from near-surface soils). Bulk geochemistry (%OC; δ13C; %total nitrogen, TN) was analyzed as well as the concentrations and δ2H signatures of long-chain n-alkanes (C21 to C33) and mid- to long-chain n-alkanoic acids (C16 to C30) extracted from both ICD-PF samples (n = 9) and modern vegetation and O-horizon (topsoil-PF) samples (n = 9) from across the northeast Siberian Arctic. Results show that these topsoil-PF samples have higher %OC, higher OC / TN values and more depleted δ13C-OC values than ICD-PF samples, suggesting that these former samples trace a fresher soil and/or vegetation source. Whereas the two investigated sources differ on the bulk geochemical level, they are, however, virtually indistinguishable when using leaf wax concentrations and ratios. However, on the molecular isotope level, leaf wax biomarker δ2H values are statistically different between topsoil PF and ICD PF. For example, the mean δ2H value of C29 n-alkane was -246 ± 13 ‰ (mean ± SD) for topsoil PF and -280 ± 12 ‰ for ICD PF. With a dynamic isotopic range (difference between two sources) of 34 to 50 ‰; the isotopic fingerprints of individual, abundant, biomarker molecules from leaf waxes can thus serve as endmembers to distinguish between

  3. 13C nuclear magnetic resonance data of lanosterol derivatives—Profiling the steric topology of the steroid skeleton via substituent effects on its 13C NMR

    Science.gov (United States)

    Dias, Jerry Ray; Gao, Hongwu

    2009-12-01

    The 13C NMR spectra of over 24 tetracyclic triterpenoid derivatives have been structurally analyzed. The 13C NMR chemical shifts allow one to probe the steric topology of the rigid steroid skeleton and inductive effects of its substituents. Use of deuterium labeling in chemical shift assignment and B-ring aromatic terpenoids are also featured.

  4. Espiritu Santo, Vanuatu Stable Isotope (delta 18O, delta 13C) Data for 1806 to 1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site: Espiritu Santo Island, Vanuatu, 15S, 167E. 173 year record of d18O and d13C. Variable names: QSR Age, QSR 13C, QSR 18O, GRL Age, GRL Qtrly 13C, GRL Qtrly 18O,...

  5. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    NARCIS (Netherlands)

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride

  6. Synthesis and Physicochemical Properties of [19,20-13C]-17α-Ethinylestradiol

    NARCIS (Netherlands)

    Kraan, G.P.B.; Drayer, N.M.; Kruizinga, W.H.; Vaalburg, W.; Hummelen, J.C.

    1989-01-01

    13C2-17α-ethinylestradiol (13C2-EE2) was synthesized from estrone and 13C2-C2H2-gas to measure the metabolic clearance rate and the plasma concentration of 17α-ethinylestradiol (EE2) in tall girls, who are treated with high dosages of this estrogen. Interesting characteristics determined by (i) MS:

  7. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A 13C NMR study using [U-13C]fructose

    International Nuclear Information System (INIS)

    Gopher, A.; Lapidot, A.; Vaisman, N.; Mandel, H.

    1990-01-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-[U- 13 C]fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of 13 C NMR spectra of plasma glucose. Significantly lower values (∼3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from 13 C NMR measurement of plasma [ 13 C]glucose isotopomer populations. The finding of isotopomer populations of three adjacent 13 C atoms at glucose C-4 ( 13 C 3 - 13 C 4 - 13 C 5 ) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only ∼50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of [ 13 C]glucose formation from a trace amount of [U- 13 C]fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism

  8. Biosynthesis of quinolizidine alkaloids. Incorporation of [1-amino-15N, 1-13C] cadaverine into lupanine, 13-hydroxylupanine, and angustifoline

    International Nuclear Information System (INIS)

    Rana, J.; Robins, D.J.

    1985-01-01

    The labelling patterns in (+)-lupanine, (+)-13-hydroxylupanine, and (+)-angustifoline derived biosynthetically from [1-amino- 15 N,1- 13 C]-1,5-diaminopentane (cadaverine) have been established by 13 C n.m.r. spectroscopy. Three cadaverine units are incorporated to about the same extent into each of these three alkaloids. The presence of two doublets due to 13 C- 15 N coupling in the 13 C brace 1 H brace n.m.r. spectra associated with C-2 and C-15 of lupanine and 13-hydroxylupanine, and one 13 C- 15 N doublet at C-2 of angustifoline, indicate that two of the cadaverine units are converted into the outer rings of the tetracyclic quinolizidine alkaloids in a specific fashion. (author)

  9. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  10. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  11. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    Science.gov (United States)

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  12. Acetylenes bearing Aromatic Terminal Groups. : II 13C-NMR Spectra of Monosubstituted Diphenylacetylenes

    OpenAIRE

    野本, 健雄; Nomoto, Takeo

    1986-01-01

    Six monosubstituted diphenylacetylenes, p-X-C6H4-C≡C-C6H5 1 (Ⅹ=NMe2, NH2, OMe, Cl, and NO2), were synthesized, and 13C-NMR spectra of their acetylenic carbons were measured. Hammett plots of the chemical shifts of the acetylenic α-13C and β-13C (against substituent constants σ) respectively showed a linear relationship, eXCept for β-13C on NMe2 and NH2 groups. The effects of substituents on 13C-Chemical shifts of diphenylacetylenes and effeciency of the C≡C bonds in transmitting the substitue...

  13. 13C, 1H spin-spin coupling constants. Pt. 4

    International Nuclear Information System (INIS)

    Aydin, R.; Guenther, H.

    1979-01-01

    One-bond, geminal, and vicinal 13 C, 1 H coupling constants have been determined for adamantane using α-and β-[D]adamantane and the relation sup(n)J( 13 C, 1 H)=6,5144sup(n)J( 13 C, 2 H) for the conversion of the measured sup(n)J( 13 C, 2 H) values. It is shown that the magnitude of 3 Jsub(trans) is strongly influenced by the substitution pattern. Relative H,D isotope effects for 13 C chemical shifts are given. (orig.) [de

  14. Assessment of Hepatic Mitochondrial Oxidation and Pyruvate Cycling in NAFLD by (13)C Magnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Petersen, Kitt Mia Falck; Befroy, Douglas E; Dufour, Sylvie

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and there is great interest in understanding the potential role of alterations in mitochondrial metabolism in its pathogenesis. To address this question, we assessed rates of hepatic mitochondrial oxidation...... in subjects with and without NAFLD by monitoring the rate of (13)C labeling in hepatic [5-(13)C]glutamate and [1-(13)C]glutamate by (13)C MRS during an infusion of [1-(13)C]acetate. We found that rates of hepatic mitochondrial oxidation were similar between NAFLD and control subjects. We also assessed rates...

  15. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  16. Low temperature specific heat of the spin-density-wave compound (TMTSF)2PF6

    DEFF Research Database (Denmark)

    Odin, J.; Lasjaunias, J.C.; Biljakovic, K.

    1994-01-01

    We report on specific heat measurements of the SDW compound (TMTSF)2PF6 between 2 and 25 K, performed by two different techniques. We discuss the two successive transitions which occur in this T-range : the SDW ordering transition at T = 12.1 K, and a glass transition around-3-3.5 K. The latter i...... is very dependent on the kinetics of measurements, and has all characteristic features of freezing of supercooled liquids....

  17. Dynamics of growth/mature-related substances in vegetables using specific triple labeled compound

    International Nuclear Information System (INIS)

    Yamato, Yoichi; Hamano, Megumi; Yamazaki, Hiroko; Miura, Hiroyuki

    2000-01-01

    To progress physiological studies of vegetables, development of biosynthetic method for production of triple labeled compounds was attempted in this study and such method for vegetables using specifically labeled sugars was examined. As a sugar compound, 6-C 14 -glucose (14-CG) and 1-H 3 -glucose (3-HG) were given to culture medium for cells derived from tomato embryonic axis and the changes of these compounds were monitored. Tomato embryonic cells were harvested 20 and 44 hours after the addition of 14-CG or 3-CG into the culture medium the cells. The cells were homogenized and the supernatant after centrifugation was applied onto HPLC. Radio analyzer revealed major two peaks in the chromatography of the sugar fraction from the cells after 20 hours from the addition of 14-CG. One was the peak of glucose, itself and the other was estimated to be that of fructose based on the retention time. Whereas in the elution pattern of the sugar fraction after 44 hours from the addition, a peak of sucrose was found along with the peak of glucose. These results indicate that C 14 in 14-CG but not H 3 in 3-HG was transferred into fructose after the metabolism in tomato. Moreover, in both elution patterns, there was a peak positioned at the same retention time, indicating that the compound in this peak was produced from either of 14-CG or 3-HG. Therefore, it is thought that H 3 and C 14 double-labeled compound could be produced from the cell culture added with both labeled compounds; 14-CG and 3-HG. (M.N.)

  18. (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling.

    Science.gov (United States)

    Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun

    2016-03-01

    Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.

  19. 13C solid state NMR investigation of natural resins components

    International Nuclear Information System (INIS)

    Tavares, Maria I.B.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Nogueira, Jose S.

    2001-01-01

    The objective of this work is to establish and analytical methodology as a routine using solid state nuclear magnetic resonance (NMR) techniques to investigate the mainly chemical components presented in natural resins in bulk. And also to evaluate the molecular behaviour of these resins. The routine solid state techniques allow us to assign the main compounds presented in the resins. Therefore, applying specialised techniques, like variable contact time, delayed contact time, dephasing time and proton spin lattice relaxation time in the rotating frame (T 1 H ρ), more information about chemical structure and molecular dynamic is available

  20. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes

    Science.gov (United States)

    Guzzo, Rodrigo N.; Rezende, Michelle Jakeline Cunha; Kartnaller, Vinicius; Carneiro, José Walkimar de M.; Stoyanov, Stanislav R.; Costa, Leonardo Moreira da

    2018-04-01

    The density functional theory is employed to determine the efficiency of 11 exchange-correlation (XC) functionals to compute the 1H and 13C NMR chemical shifts of p-tert-butylcalix[4]arene (ptcx4, R1 = C(CH3)3) and congeners using the 6-31G(d,p) basis set. The statistical analysis shows that B3LYP, B3PW91 and PBE1PBE are the best XC functionals for the calculation of 1H chemical shifts. Moreover, the best results for the 13C chemical shifts are obtained using the LC-WPBE, M06-2X and wB97X-D functionals. The performance of these XC functionals is tested for three other calix[4]arenes: p-sulfonic acid calix[4]arene (sfxcx4 - R1 = SO3H), p-nitro-calix[4]arene (ncx4, R1 = NO2) and calix[4]arene (cx4 - R1 = H). For 1H chemical shifts B3LYP, B3PW91 and PBE1PBE yield similar results, although B3PW91 shows more consistency in the calculated error for the different structures. For 13C NMR chemical shifts, the XC functional that stood out as best is LC-WPBE. Indeed, the three functionals selected for each of 1H and 13C show good accuracy and can be used in future studies involving the prediction of 1H and 13C chemical shifts for this type of compounds.

  1. Novel HTS strategy identifies TRAIL-sensitizing compounds acting specifically through the caspase-8 apoptotic axis.

    Directory of Open Access Journals (Sweden)

    Darren Finlay

    Full Text Available Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL is potentially a very important therapeutic as it shows selectivity for inducing apoptosis in cancer cells whilst normal cells are refractory. TRAIL binding to its cognate receptors, Death Receptors-4 and -5, leads to recruitment of caspase-8 and classical activation of downstream effector caspases, leading to apoptosis. As with many drugs however, TRAIL's usefulness is limited by resistance, either innate or acquired. We describe here the development of a novel 384-well high-throughput screening (HTS strategy for identifying potential TRAIL-sensitizing agents that act solely in a caspase-8 dependent manner. By utilizing a TRAIL resistant cell line lacking caspase-8 (NB7 compared to the same cells reconstituted with the wild-type protein, or with a catalytically inactive point mutant of caspase-8, we are able to identify compounds that act specifically through the caspase-8 axis, rather than through general toxicity. In addition, false positive hits can easily be "weeded out" in this assay due to their activity in cells lacking caspase-8-inducible activity. Screening of the library of pharmacologically active compounds (LOPAC was performed as both proof-of-concept and to discover potential unknown TRAIL sensitizers whose mechanism is caspase-8 mediated. We identified known TRAIL sensitizers from the library and identified new compounds that appear to sensitize specifically through caspase-8. In sum, we demonstrate proof-of-concept and discovery of novel compounds with a screening strategy optimized for the detection of caspase-8 pathway-specific TRAIL sensitizers. This screen was performed in the 384-well format, but could easily be further miniaturized, allows easy identification of artifactual false positives, and is highly scalable to accommodate diverse libraries.

  2. Synthesis and biosynthesis of 13C, 15N labeled deoxynucleosides useful for biomolecular structural determinations

    International Nuclear Information System (INIS)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-01-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study utilizes nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy (more than 10,000 mw) in this arena requires stable isotope enrichment. Herein, the authors present strategies for the site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of [U- 13 C, 15 N] DNA from methylotrophic bacteria. With commercially available 6-chloropurine, an effective 2-step route leads to [6- 15 N]-2'-deoxadenosine (dA). The resulting [6- 15 N]-dA is used in a series of reactions to synthesize [2- 13 C, 1,2'- 15 N 2 ]-2'-deoxyguanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4g of methanol to yield 1 gram of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. The authors are currently developing large scale isolation protocols. General synthetic pathways to oligomeric DNA are presented

  3. Synthesis and biosynthesis of 13C-, 15N-labeled deoxynucleosides useful for biomolecular structural determinations

    International Nuclear Information System (INIS)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.; Silks, L.A. III; Unkefer, C.J.

    1994-01-01

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U- 13 C, 15 N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2'-deoxy-(amino- 15 N)adenosine (dA). The resulting d(amino- 15 N)A is used in a series of reactions to synthesize 2'-deoxy-(2- 13 C,1,amino- 15 N 2 )guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented

  4. What is hiding behind ontogenic d13C variations in mollusk shells: New insights from scallops.

    Science.gov (United States)

    Chauvaud, L.; Lorrain, A.; Gillikin, D. P.; Thebault, J.; Paulet, Y.; Strand, O.; Blamart, D.; Guarini, J.; Clavier, J.

    2008-12-01

    We examined d13Ccalcite variations along scallop shells (Pecten maximus) sampled in Norway, France and Spain. Time series of shell calcite d13C show a consistent pattern of decreasing d13C with age. This almost linear d13C trend reflects an increasing contribution of metabolic CO2 to skeletal carbonate throughout ontogeny. We have removed this ontogenic trend to try to extract other information from our shell calcite d13C dataset. Scallops from the Bay of Brest (western Brittany, France) were then used to interpret the data as many environmental parameters were available for this site. d13Ccalcite variations were compared to d13C of dissolved inorganic carbon (DIC) and Chl a. The detrended calcite d13C profiles seem to follow a seasonal pattern, but surprisingly are inversely related to the d13C DIC and chlorophyll a concentrations measured within the water column. Theses results suggest that shell d13C variations are not controlled by isotopic variation of DIC. Since scallops eat phytoplankton and microphytobenthos cells, and, as a consequence respire organic mater largely depleted in 13C, we therefore suggest that in mollusk suspension feeders the shell d13Ccalcite might still be used to track the annual number of phytoplankton blooms when d13C values of calcite are detrended. We must consider this trend as a potential biological filter hiding precious environmental records.

  5. Biosynthetically directed fractional 13C labeling facilitates identification of Phe and Tyr aromatic signals in proteins

    International Nuclear Information System (INIS)

    Jacob, Jaison; Louis, John M.; Nesheiwat, Issa; Torchia, Dennis A.

    2002-01-01

    Analysis of 2D [ 13 C, 1 H]-HSQC spectra of biosynthetic fractionally 13 C labeled proteins is a reliable, straightforward means to obtain stereospecific assignments of Val and Leu methyl sites in proteins. Herein we show that the same fractionally labeled protein sample facilitates observation and identification of Phe and Tyr aromatic signals. This is the case, in part, because the fractional 13 C labeling yields aromatic rings in which some of the 13 C- 13 C J-couplings, present in uniformly labeled samples, are absent. Also, the number of homonuclear J-coupling partners differs for the δ-, ε- and ζ-carbons. This enabled us to vary their signal intensities in distinctly different ways by appropriately setting the 13 C constant-time period in 2D [ 13 C, 1 H]-HSQC spectra. We illustrate the application of this approach to an 18 kDa protein, c-VIAF, a modulator of apoptosis. In addition, we show that cancellation of the aromatic 13 C CSA and 13 C- 1 H dipolar interactions can be fruitfully utilized in the case of the fractionally labeled sample to obtain high resolution 13 C constant-time spectra with good sensitivity

  6. Effect of the nitrogen unshared electron pair on the direct /sup 13/C-/sup 13/C spin-spin coupling constant of a neighboring bond in oximes

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, V.V.; Krivdin, L.B.; Kalabin, G.A.; Trofimov, B.A.

    1986-11-20

    The authors have previously established that the direct /sup 13/C-/sup 13/C coupling constants are stereospecific relative to the orientation of unshared electron pairs (UEP) of nitrogen and oxygen atoms. Here they show that the nitrogen UEP produces a positive contribution to the direct /sup 13/C-/sup 13/C coupling constant of an adjacent syn-periplanar carbon-carbon bond and not to a negative contribution of the corresponding constant of the anti-periplanar bond. Thus, the observed effect is not a consequence of the interaction of the heteroatom UEP with the anti-bonding orbital of the adjacent anti-periplanar bond (n/sub o-o/* interaction) as in the case of anomeric and related effects.

  7. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    Science.gov (United States)

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from

  8. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. I. New method of determining the configuration of oximes and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1986-07-10

    It was shown that the direct /sup 13/C-/sup 13/C spin-spin coupling constants can be used for the unambiguous identification of the configurational isomers of oximes and their derivatives. The stereospecificity of the constants is explained by the additional contribution from the unshared electron pair of the nitrogen atom to the spin-spin coupling constant between the adjacent carbon nuclei in the cis position.

  9. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. V. The direct carbon-carbon coupling constants in the vinyl group

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1988-03-10

    The direct spin-spin coupling constants in the vinyl group were measured in 100 mono-substituted ethylene derivatives. The inductive effect of the substituent was found to be the major factor in the variation of this constant and, in some cases, the stereospecific effect of the unshared electron pairs of heteratoms makes a significant contribution to the /sup 13/C-/sup 13/C coupling constants.

  10. Utilization of low molecular weight organics by soil microorganisms: combination of 13C-labelling with PLFA analysis

    Science.gov (United States)

    Gunina, Anna; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    synthesis pathway. Gram-negative bacteria (16:1w7c and 18:1w7c) were the most numerous and active in using LMWOS. Their high activity corresponds to a high demand for anabolic products, leading to an increased incorporation of pentose-phosphate pathway C i.e., ribose-C into PLFAs. The turnover of 13C-sugar and 13C-amino acid in filamentous microorganisms was lower than in all procaryotic groups. However, their turnover was in the same range as that of gram-positive bacteria if 13C-carboxylic acids were considered as the substrate. This is associated with the preference of fungi or filamentous microorganisms in general, for acidic and more complex organics. Thus, we showed the divergence of C pathways from LMWOS over the medium-term, despite their similar initial uptake by microorganisms. Further investigation of the formation of microbial compounds from LMWOS and their stabilisation in soils is necessary to improve our understanding of the impact of this highly available C on the soil C cycle.

  11. Compound-Specific Radiocarbon Dating Reveals the Age Distribution of Plant-Wax Biomarkers Exported to the Bengal Fan

    Science.gov (United States)

    Galy, V.; French, K. L.; Hein, C. J.; Haghipour, N.; Wacker, L.; Kudrass, H.; Eglinton, T. I.

    2017-12-01

    The stable isotope composition of leaf-wax compounds preserved in lacustrine and marine sediments has been widely used to reconstruct terrestrial paleo-environments. However, the timescales of plant-wax storage in continental reservoirs before riverine export are not well known, representing a key uncertainty in paleo-environment studies. We couple numerical models with bulk and leaf-wax fatty acid organic 13C and 14C signatures hosted in a high-deposition-rate sediment core from the Bengal shelf canyon in order to estimate storage timescales within the Ganges-Brahmaputra catchment area. The fatty acid 14C record reveals a muted nuclear weapons bomb spike, requiring that the Ganges-Brahmaputra river system exports a mixture of young and old (pre-aged) leaf-wax compounds. According to numerical simulations, 79-83% of the leaf-wax fatty acids in this core are sourced from continental reservoirs that store organic carbon on an average of 1000-1200 calendar years, while the remainder has an average age of 15 years. These results demonstrate that a majority of the leaf-wax compounds produced in the Ganges-Brahmaputra river basin was stored in soils, floodplains, and wetlands prior to its export to the Bengal Fan. We will discuss the implications of these findings for plant-wax based paleoenvironmental records.

  12. Effect of alcohol consumption on the liver detoxication capacity as measured by [13C]methacetin- and [methyl-13C]methionine-breath tests.

    Science.gov (United States)

    Wutzke, Klaus D; Forberger, Anke; Wigger, Marianne

    2008-06-01

    The aim of this study was to investigate the hepatic microsomal and mitochondrial functions by using the 13CO2-breath test in healthy subjects either before or after the consumption of red wine. Fourteen adults received [13C]methacetin and [methyl-13C]methionine together with a standardised dinner. Expired air samples were taken over 6 h. After a wash-out period, the subjects consumed 0.4 ml ethanol/kg/day together with dinner over a 10-day period. Thereafter, 13C-tracer administration was repeated under identical conditions. The 13CO2-enrichments were measured by isotope ratio mass spectrometry. The mean cumulative percentage 13C-dose recovery (CPDR) after administration of [13C]methacetin and [methyl-13C]methionine either without or with red wine consumption amounted to 38.2+/-6.3 vs. 36.3+/-6.7% (p=0.363) and 9.5+/-3.3 vs. 8.8+/-2.5% (p=0.47), respectively. Moderate alcohol consumption does not induce significant short-term changes of the microsomal and the mitochondrial functions of the human liver in healthy subjects.

  13. Effect of alcohol consumption on the liver detoxication capacity as measured by [13C2]aminopyrine and L-[1-13C]phenylalanine breath tests.

    Science.gov (United States)

    Wutzke, Klaus D; Wigger, Marianne

    2009-09-01

    The aim of this study was to investigate the hepatic microsomal and cytosolic functions by using the 13CO2 breath test in healthy subjects either before or after consumption of red wine. Twelve adults received [13C2]aminopyrine and L-[1-13C]phenylalanine together with a standardised dinner. Expired air samples were taken over 6 h. After a wash-out period, the subjects consumed 0.4 ml ethanol per kg per day together with dinner over a 7.5-day period on average. Thereafter, 13C-tracer administration was repeated under identical conditions. The 13CO2 enrichments were measured by isotope ratio mass spectrometry. The mean cumulative percentage 13C-dose recovery after administration of [13C2]aminopyrine and L-[1-13C]phenylalanine either without or with red wine consumption amounted to 17.0+/-4.4 vs. 14.7+/-3.1% (p=0.170) and 14.0+/-2.8 vs. 11.5+/-3.9% (p=0.084), respectively. Moderate alcohol consumption does not induce significant short-term changes of the microsomal and the cytosolic function of the human liver in healthy subjects.

  14. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    Kalderon, B.; Korman, S.H.; Gutman, A.; Lapidot, A.

    1989-01-01

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U- 13 C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13 C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U- 13 C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13 C-enriched D-[U- 13 C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non- 13 C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  15. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    Science.gov (United States)

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  16. Complete {sup 1}H and {sup 13}C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Susana; Smania Junior, Artur [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Microbiologia e Parasitologia. Lab. de Antibioticos; Pizzolatti, Moacir G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica; Schripsema, Jan; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Branco, Alexsandro [Universidade Estadual de Feira de Santana, BA (Brazil). Dept. de Saude. Lab. de Fitoquimica]. E-mail: branco@uefs.br

    2007-06-15

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ({sup 1}H NMR, {l_brace}{sup 1}H{r_brace} {sup -13}C NMR, and APT{sup -13}C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete {sup 1}H and {sup 13}C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  17. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study

    Science.gov (United States)

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Mayo, Juan C.

    2017-01-01

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the “Warburg effect” only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type. PMID:28933733

  18. Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study.

    Science.gov (United States)

    Hevia, David; Gonzalez-Menendez, Pedro; Fernandez-Fernandez, Mario; Cueto, Sergio; Rodriguez-Gonzalez, Pablo; Garcia-Alonso, Jose I; Mayo, Juan C; Sainz, Rosa M

    2017-07-26

    The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/ SLC2A ) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the "Warburg effect" only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13 C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13 C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13 C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13 C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type.

  19. Biosynthesis of the sesquiterpene germacrene D in Solidago canadensis: 13C and (2)H labeling studies.

    Science.gov (United States)

    Steliopoulos, Panagiotis; Wüst, Matthias; Adam, Klaus-Peter; Mosandl, Armin

    2002-05-01

    The biogenetic origin of the isoprenoid building blocks of the sesquiterpene germacrene D was studied in Solidago canadensis. Feeding experiments were carried out with 1-[5,5-D(2)]deoxy-D-xylulose-5-phosphate (D(2)-DOXP), [5-13C]mevalonolactone (13C-MVL) and [1-13C]-D-glucose. The hydrodistillate of a cut shoot fed with D(2)-DOXP was investigated by enantio-MDGC-MS and the volatile fraction of a shoot supplied with 13C-MVL was examined by GC-C-IRMS. The incorporation of [1-13C]-D-glucose was analyzed by quantitative 13C NMR spectroscopy after isolation of germacrene D from the essential oil. Our labeling studies revealed that the biosynthesis of the C-15 skeleton of sesquiterpene germacrene D in Solidago canadensis proceeds predominantly via the methylerythritol phosphate pathway.

  20. Foliar phenolic compounds of ten wild species of Verbenacea as antioxidants and specific chemomarkers

    Directory of Open Access Journals (Sweden)

    J. A. Ávila-Reyes

    2017-06-01

    Full Text Available Abstract The family Verbenaceae hosts important species used in traditional medicine of many countries. The taxonomic controversies concerning the specific delimitation of several of its species make it difficult to guarantee the botanical origin of herbal preparations based on species of this family. To contribute to the development of both specific chemomarkers and a quality control tool to authenticate the botanical origin of herbal preparations of Verbenacea species, we determined the foliar HPLC-DAD phenolic profiles and the antioxidant properties of 10 wild species of this family occurring in Mexico. The contents of phenols and flavonoids varied significantly among species. Priva mexicana showed the highest levels of total phenolics (53.4 mg g-1 dry tissue and Verbena carolina had the highest levels of flavonoids (17.89 mg g-1 dry tissue. Relevant antioxidant properties revealed by antiradical and reducing power were found for the analyzed species. These properties varied significantly in a species-dependent manner. The phenolic compounds accumulated were flavones and phenolic acids. Flavones were the only type of flavonoids found. The results of a cluster analysis showed that the compounds were accumulated in species-specific profiles. The phenolic profiles are proposed as valuable chemomarkers that can become a useful tool for the quality control concerning the botanical origin of herbal medicinal preparations based on the species analyzed. In addition, phenolic profiles could contribute importantly to solve the taxonomic controversies concerning species delimitation in the family Verbenaceae.

  1. Unexpected relationships between δ13C and wine grape performance in organic farming

    Directory of Open Access Journals (Sweden)

    Edoardo Antonio Costantino Costantini

    2013-12-01

    Significance and impact of the study: Water nutrition is crucial for wine grape performance. δ13C is a method used to assess vine water status during the growing season and to estimate vine performance. A good performance is expected at moderate stress and intermediate δ13C values. A better knowledge of the interaction between water and nutrient scarcity is needed, as it can affect the use of δ13C to predict vine performance.

  2. Preparation of [13C3]-melamine and [13C3]-cyanuric acid and their application to the analysis of melamine and cyanuric acid in meat and pet food using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Varelis, P; Jeskelis, R

    2008-10-01

    For the determination of melamine and cyanuric acid the labelled internal standards [(13)C(3)]-melamine and [(13)C(3)]-cyanuric acid were synthesized using the common substrate [(13)C(3)]-cyanuric chloride by reaction with ammonia and acidified water, respectively. Standards with excellent isotopic and chemical purities were obtained in acceptable yields. These compounds were used to develop an isotope dilution liquid chromatography/mass spectrometry (LC/MS) method to determine melamine and cyanuric acid in catfish, pork, chicken, and pet food. The method involved extraction into aqueous methanol, liquid-liquid extraction and ion exchange solid phase clean-up, with normal phase high-performance liquid chromatography (HPLC) in the so-called hydrophilic interaction mode. The method had a limit of detection (LOD) of 10 microg kg(-1) for both melamine and cyanuric acid in the four foods with a percentage coefficient of variation (CV) of less than 10%. The recovery of the method at this level was in the range of 87-110% and 96-110% for melamine and cyanuric acid, respectively.

  3. Biokinetics of 13C in the human body after oral administration of 13C-labeled glucose as an index for the biokinetics of 14C.

    Science.gov (United States)

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of 13 C in the human body after oral administration of 13 C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for 13 C as an index of the committed dose of the radioisotope 14 C. After administration of 13 C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic 13 C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for 13 C/ 12 C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the 13 C administered was excreted in breath, whereas    0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for 13 C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of 13 C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and therefore should be studied further to clarify the fate of carbon in the human body. In addition to excreta, data for serum and blood cell samples were also collected from the subjects to examine the metabolism of 13 C in human body.

  4. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

    Science.gov (United States)

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis

    2016-03-03

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. {sup 13}C NMR spectral data and molecular descriptors to predict the antioxidant activity of flavonoids

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Mariane Balerine; Muramatsu, Eric [Universidade de Sao Paulo (USP). Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmauceuticas; Emereciano, Vicente de Paula [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica; Scotti, Marcus Tullius [Universidade Federal da Paraiba (UFPA), Joao Pessoa, PA (Brazil). Centro de Ciencias Aplicadas e Educacao; Scotti, Luciana; Tavares, Josean Fechine; Silva, Marcelo Sobral da [Universidade Federal da Paraiba (UFPA), Joao Pessoa, PA (Brazil). Lab. de Tecnologia Farmaceutica

    2011-04-15

    Tissue damage due to oxidative stress is directly linked to development of many, if not all, human morbidity factors and chronic diseases. In this context, the search for dietary natural occurring molecules with antioxidant activity, such as flavonoids, has become essential. In this study, we investigated a set of 41 flavonoids (23 flavones and 18 flavonols) analyzing their structures and biological antioxidant activity. The experimental data were submitted to a QSAR (quantitative structure-activity relationships) study. NMR {sup 13}C data were used to perform a Kohonen self-organizing map study, analyzing the weight that each carbon has in the activity. Additionally, we performed MLR (multilinear regression) using GA (genetic algorithms) and molecular descriptors to analyze the role that specific carbons and substitutions play in the activity. (author)

  6. Robust refocusing of 13C magnetization in multidimensional NMR experiments by adiabatic fast passage pulses

    International Nuclear Information System (INIS)

    Zweckstetter, Markus; Holak, Tad A.

    1999-01-01

    We show that adiabatic fast passage (AFP) pulses are robust refocusing elements of transverse 13 C magnetization in multidimensional NMR experiments. A pair of identical AFP pulses can refocus selected parts or a complete 13 C chemical shift range in 13 C spectra. In the constant time 13 C- 1 H HSQC, replacement of attenuated rectangular pulses by selective AFP pulses results in a sensitivity enhancement of up to a factor of 1.8. In the 3D CBCA(CO)NH the signal-to-noise ratio is increased by a factor of up to 1.6

  7. Improved labeling strategy for 13C relaxation measurements of methyl groups in proteins

    International Nuclear Information System (INIS)

    Lee, Andrew L.; Urbauer, Jeffrey L.; Wand, A. Joshua

    1997-01-01

    Selective incorporation of 13 C into the methyl groups of protein side chains is described as a means for simplifying the measurement and interpretation of 13 C relaxation parameters.High incorporation (>90%) is accomplished by using pyruvate(3- 13 C, 99%) as the sole carbon source in the growth media for protein overexpression in E. coli. This improved labeling scheme increases the sensitivity of the relaxation experiments by approximately fivefold when compared to randomly fractionally 13 C-labeled protein, allowing high-quality measurements on relatively dilute (<1 mM)protein samples at a relatively low cost

  8. Comparison of 15N- and 13C-determined parameters of mobility in melittin

    International Nuclear Information System (INIS)

    Zhu Lingyang; Prendergast, Franklyn G.; Kemple, Marvin D.

    1998-01-01

    Backbone and tryptophan side-chain mobilities in the 26-residue, cytolytic peptide melittin (MLT) were investigated by 15 N and 13 C NMR. Specifically, inverse-detected 15 N T 1 and steady-state NOE measurements were made at 30 and 51 MHz on MLT at 22 deg. C enriched with 15 N at six amide positions and in the Trp 19 side chain. Both the disordered MLT monomer (1.2 mM peptide at pH 3.6 in neat water) and α-helical MLT tetramer (4.0 mM peptide at pH 5.2 in 150 mM phosphate buffer) were examined. The relaxation data were analyzed in terms of the Lipari and Szabo model-free formalism with three parameters: τ m , the correlation time for the overall rotation; S 2 , a site-specific order parameter which is a measure of the amplitude of the internal motion; and τ e , a local, effective correlation time of the internal motion. A comparison was made of motional parameters from the 15 N measurements and from 13 C measurements on MLT, the latter having been made here and previously [Kemple et al. (1997) Biochemistry, 36, 1678-1688]. τ m and τ e values were consistent from data on the two nuclei. In the MLT monomer, S 2 values for the backbone N-H and Cα-H vectors in the same residue were similar in value but in the tetramer the N-H order parameters were about 0.2 units larger than the Cα-H order parameters. The Trp side-chain N-H and C-H order parameters, and τ e values were generally similar in both the monomer and tetramer. Implications of these results regarding the dynamics of MLT are examined

  9. Synthesis of labeled compounds

    International Nuclear Information System (INIS)

    Whaley, T.W.

    1977-01-01

    Intermediate compounds labeled with 13 C included methane, sodium cyanide, methanol, ethanol, and acetonitrile. A new method for synthesizing 15 N-labeled 4-ethylsulfonyl-1-naphthalene-sulfonamide was developed. Studies were conducted on pathways to oleic-1- 13 C acid and a second pathway investigated was based on carbonation of 8-heptadecynylmagnesium bromide with CO 2 to prepare sterolic acid. Biosynthetic preparations included glucose- 13 C from starch isolated from tobacco leaves following photosynthetic incubation with 13 CO 2 and galactose- 13 C from galactosylglycerol- 13 C from kelp. Research on growth of organisms emphasized photosynthetic growth of algae in which all cellular carbon is labeled. Preliminary experiments were performed to optimize the growth of Escherichia coli on sodium acetate- 13 C

  10. Increase in the specific radioactivity of tritium-labeled compounds obtained by tritium thermal activation method

    International Nuclear Information System (INIS)

    Badun, G.A.; Chernysheva, M.G.; Ksenofontov, A.L.

    2012-01-01

    A method of tritium introduction into different types of organic molecules that is based on the interaction of atomic tritium with solid organic target is described. Tritium atoms are formed on the hot W-wire, which is heated by the electric current. Such an approach is called 'tritium thermal activation method'. Here we summarize the results of labeling globular proteins (lysozyme, human and bovine serum albumins); derivatives of pantothenic acid and amino acids; ionic surfactants (sodium dodecylsulfate and alkyltrimethylammonium bromides) and nonionic high-molecular weight surfactants - pluronics. For the first time it is observed that if the target-compound is fixed and its radicals are stable the specific radioactivity of the labeled product can be drastically increased (up to 400 times) when the target temperature is ca. 295 K compared with the results obtained at 77 K. The influence of labeling parameters as tritium gas pressure, exposure time and W-wire temperature was tested for each target temperature that results in the optimum labeling conditions with high specific radioactivity and chemical yield of the resulting compound. (orig.)

  11. Lichen specific thallus mass and secondary compounds change across a retrogressive fire-driven chronosequence.

    Science.gov (United States)

    Asplund, Johan; Sandling, Aron; Wardle, David A

    2012-01-01

    In the long-term absence of major disturbances ecosystems enter a state of retrogression, which involves declining soil fertility and consequently a reduction in decomposition rates. Recent studies have looked at how plant traits such as specific leaf mass and amounts of secondary compounds respond to declining soil fertility during retrogression, but there are no comparable studies for lichen traits despite increasing recognition of the role that lichens can play in ecosystem processes. We studied a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. We used this system to explore how specific thallus mass (STM) and carbon based secondary compounds (CBSCs) change in three common epiphytic lichen species (Hypogymnia phsyodes, Melanohalea olivacea and Parmelia sulcata) as soil fertility declines during this retrogression. We found that STMs of lichens increased sharply during retrogression, and for all species soil N to P ratio (which increased during retrogression) was a strong predictor of STM. When expressed per unit area, medullary CBSCs in all species and cortical CBSCs in P. sulcata increased during retrogression. Meanwhile, when expressed per unit mass, only cortical CBSCs in H. physodes responded to retrogression, and in the opposite direction. Given that lichen functional traits are likely to be important in driving ecological processes that drive nutrient and carbon cycling in the way that plant functional traits are, the changes that they undergo during retrogression could potentially be significant for the functioning of the ecosystem.

  12. Quantifying the Contribution of Grape Hexoses to Wine Volatiles by High-Precision [U13C]-Glucose Tracer Studies

    Science.gov (United States)

    Nisbet, Mark A.; Tobias, Herbert J.; Brenna, J. Thomas; Sacks, Gavin L.; Mansfield, Anna Katharine

    2016-01-01

    Many fermentation volatiles important to wine aroma potentially arise from yeast metabolism of hexose sugars, but assessing the relative importance of these pathways is challenging due to high endogenous hexose substrate concentrations. To overcome this problem, gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) was used to measure high-precision 13C/12C isotope ratios of volatiles in wines produced from juices spiked with tracer levels (0.01–1 APE) of uniformly labeled [U-13C]-glucose. The contribution of hexose to individual volatiles was determined from the degree of 13C enrichment. As expected, straight-chain fatty acids and their corresponding ethyl esters were derived almost exclusively from hexoses. Most fusel alcohols and their acetate esters were also majority hexose-derived, indicating the importance of anabolic pathways for their formation. Only two compounds were not derived primarily from hexoses (hexanol and isobutyric acid). This approach can be extended to other food systems or substrates for studying precursor–product relationships. PMID:24960193

  13. Needle-Age Related Variability in Nitrogen, Mobile Carbohydrates, and δ13C within Pinus koraiensis Tree Crowns

    Science.gov (United States)

    Yan, Cai-Feng; Han, Shi-Jie; Zhou, Yu-Mei; Wang, Cun-Guo; Dai, Guan-Hua; Xiao, Wen-Fa; Li, Mai-He

    2012-01-01

    For both ecologists and physiologists, foliar physioecology as a function of spatially and temporally variable environmental factors such as sunlight exposure within a tree crown is important for understanding whole tree physiology and for predicting ecosystem carbon balance and productivity. Hence, we studied concentrations of nitrogen (N), non-structural carbohydrates (NSC = soluble sugars + starch), and δ13C in different-aged needles within Pinus koraiensis tree crowns, to understand the needle age- and crown position-related physiology, in order to test the hypothesis that concentrations of N, NSC, and δ13C are needle-age and crown position dependent (more light, more photosynthesis affecting N, NSC, and δ13C), and to develop an accurate sampling strategy. The present study indicated that the 1-yr-old needles had significantly higher concentration levels of mobile carbohydrates (both on a mass and an area basis) and Narea (on an area basis), as well as NSC-N ratios, but significantly lower levels of Nmass (on a mass basis) concentration and specific leaf area (SLA), compared to the current-year needles. Azimuthal (south-facing vs. north-facing crown side) effects were found to be significant on starch [both on a mass (STmass) and an area basis (STarea)], δ13C values, and Narea, with higher levels in needles on the S-facing crown side than the N-facing crown side. Needle Nmass concentrations significantly decreased but needle STmass, STarea, and δ13C values significantly increased with increasing vertical crown levels. Our results suggest that the sun-exposed crown position related to photosynthetic activity and water availability affects starch accumulation and carbon isotope discrimination. Needle age associated with physiological activity plays an important role in determining carbon and nitrogen physiology. The present study indicates that across-scale sampling needs to carefully select tissue samples with equal age from a comparable crown position

  14. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  15. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate

    Science.gov (United States)

    Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.; Larson, Peder E. Z.; Harzstark, Andrea L.; Ferrone, Marcus; van Criekinge, Mark; Chang, Jose W.; Bok, Robert; Park, Ilwoo; Reed, Galen; Carvajal, Lucas; Small, Eric J.; Munster, Pamela; Weinberg, Vivian K.; Ardenkjaer-Larsen, Jan Henrik; Chen, Albert P.; Hurd, Ralph E.; Odegardstuen, Liv-Ingrid; Robb, Fraser J.; Tropp, James; Murray, Jonathan A.

    2014-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials. PMID:23946197

  16. Identification of degradation routes of metamitron in soil microcosms using 13C-isotope labeling.

    Science.gov (United States)

    Wang, Shizong; Miltner, Anja; Nowak, Karolina M

    2017-01-01

    Metamitron is one of the most commonly used herbicide in sugar beet and flower bulb cultures. Numerous laboratory and field studies on sorption and degradation of metamitron were performed. Detailed biodegradation studies in soil using 13 C-isotope labeling are still missing. Therefore, we aimed at providing a detailed turnover mass balance of 13 C 6 -metamitron in soil microcosms over 80 days. In the biotic system, metamitron mineralized rapidly, and 13 CO 2 finally constituted 60% of the initial 13 C 6 -metamitron equivalents. In abiotic control experiments CO 2 rose to only 7.4% of the initial 13 C 6 -metamitron equivalents. The 13 C label from 13 C 6 -metamitron was incorporated into microbial amino acids that were ultimately stabilized in the soil organic matter forming presumably harmless biogenic residues. Finally, 13 C label from 13 C 6 -metamitron was distributed between the 13 CO 2 and the 13 C-biogenic residues indicating nearly complete biodegradation. The parallel increase of 13 C-alanine, 13 C-glutamate and 13 CO 2 indicates that metamitron was initially biodegraded via the desamino-metamitron route suggesting its relevance in the growth metabolism. In later phases of biodegradation, the "Rhodococcus route" was indicated by the low 13 CO 2 evolution and the high relevance of the pyruvate pathway, which aims at biomolecule synthesis and seems to be related to starvation. This is a first report on the detailed degradation route of metamitron in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH.

    Science.gov (United States)

    Mithoo-Singh, Paramjeet Kaur; Keng, Fiona S-L; Phang, Siew-Moi; Leedham Elvidge, Emma C; Sturges, William T; Malin, Gill; Abd Rahman, Noorsaadah

    2017-01-01

    Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr 3 ), dibro-momethane (CH 2 Br 2 ), iodomethane (CH 3 I), diiodomethane (CH 2 I 2 ), bromoiodomethane (CH 2 BrI), bromochlorometh-ane (CH 2 BrCl), bromodichloromethane (CHBrCl 2 ), and dibro-mochloromethane (CHBr 2 Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH 2 I 2 and CH 3 I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis . The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis ( F v ∕ F m ) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum

  18. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH

    Directory of Open Access Journals (Sweden)

    Paramjeet Kaur Mithoo-Singh

    2017-01-01

    Full Text Available Five tropical seaweeds, Kappaphycus alvarezii (Doty Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner C. Agardh, Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient, 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3, dibro­momethane (CH2Br2, iodomethane (CH3I, diiodomethane (CH2I2, bromoiodomethane (CH2BrI, bromochlorometh­ane (CH2BrCl, bromodichloromethane (CHBrCl2, and dibro­mochloromethane (CHBr2Cl. These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of

  19. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons.

    Science.gov (United States)

    Brekke, Eva M F; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S; Sonnewald, Ursula

    2012-09-01

    The brain is highly susceptible to oxidative injury, and the pentose phosphate pathway (PPP) has been shown to be affected by pathological conditions, such as Alzheimer's disease and traumatic brain injury. While this pathway has been investigated in the intact brain and in astrocytes, little is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism of (13)C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ~6% of glucose metabolism in cortical neurons and ~4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that (13)C labeling from glucose is incorporated into glutamate proves that both the oxidative and the nonoxidative stages of the PPP are active in neurons.

  20. Chemotaxonomy of three genera of the Annonaceae family using self-organizing maps and 13C NMR data of diterpenes

    International Nuclear Information System (INIS)

    Scotti, Luciana; Tavares, Josean Fechine; Silva, Marcelo Sobral da; Falcao, Emanuela Viana; Silva, Luana de Morais e; Soares, Gabriela Cristina da Silva; Scotti, Marcus Tullius

    2012-01-01

    The Annonaceae family is distributed throughout Neotropical regions of the world. In Brazil, it covers nearly all natural formations particularly Annona, Xylopia and Polyalthia and is characterized chemically by the production of sources of terpenoids (mainly diterpenes), alkaloids, steroids, polyphenols and, flavonoids. Studies from 13 C NMR data of diterpenes related with their botanical occurrence were used to generate self-organizing maps. Results corroborate those in the literature obtained from morphological and molecular data for three genera and the model can be used to project other diterpenes. Therefore, the model produced can predict which genera are likely to contain a compound. (author)

  1. Identification and quantitative determination of carbohydrates in ethanolic extracts of two conifers using 13C NMR spectroscopy.

    Science.gov (United States)

    Duquesnoy, Emilie; Castola, Vincent; Casanova, Joseph

    2008-04-07

    We developed a method for the direct identification and quantification of carbohydrates in raw vegetable extracts using (13)C NMR spectroscopy without any preliminary step of precipitation or reduction of the components. This method has been validated (accuracy, precision and response linearity) using pure compounds and artificial mixtures before being applied to authentic ethanolic extracts of pine needles, pine wood and pine cones and fir twigs. We determined that carbohydrates represented from 15% to 35% of the crude extracts in which pinitol was the principal constituent accompanied by arabinitol, mannitol, glucose and fructose.

  2. Assessing raw materials for carbon black production using 1H- and 13C-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bekarek, V.; Meic, Z.

    1980-01-01

    1 H and 13 C NMR spectroscopy in combination with elemental analysis and/or infrared spetroscopy were used in evaluating raw materials for the preparation of carbon black. Three models and seven industrial mixtures were analysed. The evaluation of experimental results by the Brown-Ladner method yielded information on the basic chemical characteristics of the raw material, ie., the contents of carbon and other elements, the contents of aromatic and aliphatic components and the nature of the aromatic compounds present. The obtained results are in good agreement with theoretical results for the model mixtures and with results of gas chromatography for the industrial mixtures

  3. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses

    Science.gov (United States)

    Peter, A.; Steinbach, A.; Liedl, R.; Ptak, T.; Michaelis, W.; Teutsch, G.

    2004-07-01

    In recent years, natural attenuation (NA) has evolved into a possible remediation alternative, especially in the case of BTEX spills. In order to be approved by the regulators, biodegradation needs to be demonstrated which requires efficient site investigation and monitoring tools. Three methods—the Integral Groundwater Investigation method, the compound-specific isotope analysis (CSIA) and a newly developed combination of both—were used in this work to quantify at field scale the biodegradation of o-xylene at a former gasworks site which is heavily contaminated with BTEX and PAHs. First, the Integral Groundwater Investigation method [Schwarz, R., Ptak, T., Holder, T., Teutsch, G., 1998. Groundwater risk assessment at contaminated sites: a new investigation approach. In: Herbert, M. and Kovar, K. (Editors), GQ'98 Groundwater Quality: Remediation and Protection. IAHS Publication 250, pp. 68-71; COH 4 (2000) 170] was applied, which allows the determination of mass flow rates of o-xylene by integral pumping tests. Concentration time series obtained during pumping at two wells were used to calculate inversely contaminant mass flow rates at the two control planes that are defined by the diameter of the maximum isochrone. A reactive transport model was used within a Monte Carlo approach to identify biodegradation as the dominant process for reduction in the contaminant mass flow rate between the two consecutive control planes. Secondly, compound-specific carbon isotope analyses of o-xylene were performed on the basis of point-scale samples from the same two wells. The Rayleigh equation was used to quantify the degree of biodegradation that occurred between the wells. Thirdly, a combination of the Integral Groundwater Investigation method and the compound-specific isotope analysis was developed and applied. It comprises isotope measurements during the integral pumping tests and the evaluation of δ13C time series by an inversion algorithm to obtain spatially

  4. Field dependence of T1 for hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Chattergoon, N.; Martnez-Santiesteban, F.; Handler, W. B.

    2013-01-01

    conformation and properties of the dissolution media such as buffer composition, solution pH, temperature and magnetic field. We have measured the magnetic field dependence of the spin–lattice relaxation time of hyperpolarized [1-13C]pyruvate using field-cycled relaxometry. [1-13C]pyruvate was hyperpolarized...

  5. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  6. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    Science.gov (United States)

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  7. Evaluation of carbon transfers in cattle and humans using 13C

    International Nuclear Information System (INIS)

    Masuda, Tsuyoshi; Tako, Yasuhiro; Nakamura, Yuji

    2010-01-01

    In the safety assessment made around the spent nuclear fuel reprocessing plant in Rokkasho, Aomori, among radioactive nuclides released from the plant, 14 C is expected to be the largest contributor to radiation dose received by the neighboring population through agricultural and dairy products. The objectives of this study are to clarify the transfer of 14 C from grass to beef and milk and its metabolism in the human body experimentally. (1) 13 C-labeled grass was fed for 28 days to beef cattle and cows. 13 C isotopic ratio was measured in serum and other samples including muscle of beef cattle and milk of dairy cow. The 13 C rations in milk, breath air, urine and feces decreased very rapidly within 3 day after cessation of the administration of 13 C-labeled feed. However, a slow decrease in 13 C ratio was observed in muscle and serum. (2) 13 C isotopic ratios were measured in breath air, urine, feces and serum over 16 weeks in humans who were orally administered of 13 C labeled leucine, palmitic acid, glucose, boiled rice and soymilk, respectively. Residual 13 C in their bodies experimentally observed were lower than the estimates by the ICRP metabolic model for organic carbon ingestion. (author)

  8. Biosynthetic studies of the glycopeptide teicoplanin by 1H and 13C NMR

    DEFF Research Database (Denmark)

    Heydorn, Arne; Petersen, Bent O.; Duus, Jens Øllgaard

    2000-01-01

    The biosynthesis of the glycopeptide antibiotic teicoplanin was studied by growing a teicoplanin producing strain of Actinoplanes teichomyceticus (ATCC 31121) on glucose containing either 34.0% [1-13C]glucose or 9.7% [U- 13C]glucose. The fractional enrichment pattern of teicoplanin produced in th...

  9. Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla.

    NARCIS (Netherlands)

    Klomp, D.W.J.; Renema, W.K.J.; Graaf, M. de; Galan, B.E. de; Kentgens, A.P.M.; Heerschap, A.

    2006-01-01

    A new coil design for sensitivity-enhanced 13C MR spectroscopy (MRS) of the human brain is presented. The design includes a quadrature transmit/receive head coil optimized for 13C MR sensitivity. Loss-less blocking circuits inside the coil conductors allow this coil to be used inside a homogeneous

  10. Intracellular PHB conversion in a type II methanotroph studied by 13 C NMR

    NARCIS (Netherlands)

    Vecherskaya, M.; Dijkema, C.; Stams, A.J.M.

    2001-01-01

    Poly-g-hydroxybutyrate (PHB) formation under aerobic conditions via incorporation of [13C-2]acetate as a cosubstrate and its intracellular degradation under anaerobic conditions in a Type II methanotroph was studied by 13C NMR. During PHB synthesis in the presence of labelled acetate, low levels of

  11. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found to be nega...

  12. Regional origin assignment of red wines from Valencia (Spain) by (2)H NMR and (13)C IRMS stable isotope analysis of fermentative ethanol.

    Science.gov (United States)

    Giménez-Miralles, J E; Salazar, D M; Solana, I

    1999-07-01

    The use of the stable hydrogen and carbon isotope ratios of fermentative ethanol as suitable environmental fingerprints for the regional origin identification of red wines from Valencia (Spain) has been explored. Monovarietal Vitis vinifera L. cvs. Bobal, Tempranillo, and Monastrell wines have been investigated by (2)H NMR and (13)C IRMS for the natural ranges of site-specific (2)H/(1)H ratios and global delta(13)C values of ethanol over three vintage years. Statistically significant interregional and interannual (2)H and (13)C abundance differences have been noticed, which are interpreted in terms of environmental and ecophysiological factors of isotope content variation. Multivariate discriminant analysis is shown to provide a convenient means for integration of the classifying information, high discriminating abilities being demonstrated for the (2)H and (13)C fingerprints of ethanol. Reasonable differentiation results are achieved at a microregional scale in terms of geographic provenance and even grapevine genotypic features.

  13. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete "1H and "1"3C chemical shift assignments

    International Nuclear Information System (INIS)

    Almeida, Macia C.S. de; Souza, Luciana G.S.; Ferreira, Daniele A.; Pinto, Francisco C.L.; Santiago, Gilvandete M.P.; Monte, Francisco J.Q.; Lemos, Telma L.G.; Oliveira, Debora R. de; Braz-Filho, Raimundo

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the "1H and "1"3C NMR spectra. (author)

  14. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete {sup 1}H and {sup 13}C chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Macia C.S. de; Souza, Luciana G.S.; Ferreira, Daniele A.; Pinto, Francisco C.L.; Santiago, Gilvandete M.P.; Monte, Francisco J.Q.; Lemos, Telma L.G., E-mail: fmonte@dqoi.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Oliveira, Debora R. de; Braz-Filho, Raimundo [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Departamento de Quimica

    2017-09-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the {sup 1}H and {sup 13}C NMR spectra. (author)

  15. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Fish Movement and Dietary History Derived from Otolith (delta)13C

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Finlay, J C; Power, M E; Phillis, C C; Ramon, C E; Eaton, G F; Ingram, B L

    2005-09-08

    Habitat use and food web linkages are critical data for fish conservation and habitat restoration efforts, particularly for threatened salmonids species. Otolith microchemistry has been shown to be a powerful tool for reconstructing fish movement, but over small distances (kilometers), geology-derived differences in otolith chemistry are rare. Here, we demonstrate that otolith {sup 13}C/{sup 12}C ratio (i.e. {delta}{sup 13}C) of anadromous steelhead trout can be used to distinguish residence in small streams from residence in larger streams and rivers. While previous research has shown that water dissolved inorganic carbon {delta}{sup 13}C is the primary source of carbon in otoliths, the downstream change in food {delta}{sup 13}C in this watershed appears to be the primary control on otolith {delta}{sup 13}C. As a result, this method can also be applied to the problem of reconstructing feeding history at a location.

  17. Synthesis of (+-)-[1,1'-15N2, 2'-13C]-trans-3'-methylnicotine

    International Nuclear Information System (INIS)

    Sirimanne, S.R.; Maggio, V.L.; Patterson, D.G. Jr.

    1992-01-01

    The synthesis of (±)- [1,1'- 15 N 2 , 2'- 13 C]-trans-3'-methylnicotine is reported. 15 N-3-Bromopyridine obtained from bromination of pyridine was formylated with nBuLi/[carbonyl- 13 C]-methyl formate. The resulting 15 n-Pyridine-3-[ 13 C-carbonyl]-carboxaldehyde was reacted with 15 N-methylamine and then the resulting Schiff's base was condensed with succinic anhydride to give (±)- [1,1'- 15 N 2 , 5'- 13 C]-trans-4'-carboxycotinine. Reduction with lithium aluminum hydride and mesylation followed by reduction with Zn/NaI gave (±)-[1,1'- 15 N 2 , 2'- 13 C]-trans-3'-methylnicotine. (Author)

  18. Synthesis of [sup 13]C warfarin labelled at the hemiketal carbon, and its resolution

    Energy Technology Data Exchange (ETDEWEB)

    Savell, V.H. Jr.; Valente, E.J. (Mississippi College, Clinton. MS (United States). Dept. of Chemistry); Eggleston, D.S. (Smith, Kline and French Labs., King of Prussia, PA (United States). Physical and Structural Chemistry)

    1989-06-01

    Warfarin (cyclic hemiketal form: 2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-2H,5H-pyrano[3,2-c][1]benz opyran-5-one) is labeled with 98+% [sup 13]C at the anomeric carbon (C2) and resolved into its enantiomers. Acetone-2-[sup 13]C(98.6%) condenses with benzaldehyde in aqueous base to produce 4-phenyl-3-buten-2-one-2-[sup 13]C(98+%). Michael-type addition of this to 4-hydroxycoumarin in methanol produces the labeled diastereomeric warfarin methyl ketals which on deprotection form racemic warfarin-2-[sup 13]C(98+%). Classical resolution of labeled warfarin with quinidine produces partly resolved (S)-(-)-warfarin-2-[sup 13]C(98+%). Labeled warfarin is a suitable probe for warfarin configuration for which three distinct isomeric forms are known. (Author).

  19. Synthesis of 13C warfarin labelled at the hemiketal carbon, and its resolution

    International Nuclear Information System (INIS)

    Savell, V.H. Jr.; Valente, E.J.; Eggleston, D.S.

    1989-01-01

    Warfarin (cyclic hemiketal form: 2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-2H,5H-pyrano[3,2-c][1]benz opyran-5-one) is labeled with 98+% 13 C at the anomeric carbon (C2) and resolved into its enantiomers. Acetone-2- 13 C(98.6%) condenses with benzaldehyde in aqueous base to produce 4-phenyl-3-buten-2-one-2- 13 C(98+%). Michael-type addition of this to 4-hydroxycoumarin in methanol produces the labeled diastereomeric warfarin methyl ketals which on deprotection form racemic warfarin-2- 13 C(98+%). Classical resolution of labeled warfarin with quinidine produces partly resolved (S)-(-)-warfarin-2- 13 C(98+%). Labeled warfarin is a suitable probe for warfarin configuration for which three distinct isomeric forms are known. (Author)

  20. Compound-specific radiocarbon analysis of polycyclic aromatic hydrocarbons (PAHs) in sediments from an urban reservoir

    International Nuclear Information System (INIS)

    Kanke, Hirohide; Uchida, Masao; Okuda, Tomoaki; Yoneda, Minoru; Takada, Hideshige; Shibata, Yasuyuki; Morita, Masatoshi

    2004-01-01

    A quantitative apportionment of polycyclic aromatic hydrocarbons (PAHs) derived from fossil fuel combustion ( 14 C-free) and biomass burning (contemporary 14 C) was carried out using a recently developed compound-specific radiocarbon analysis (CSRA) method for a sediment core from an urban reservoir located in the central Tokyo metropolitan area, Japan. The 14 C abundance of PAHs in the sediments was measured by accelerator mass spectrometry (AMS) after extraction and purification by three types of column chromatography, by high performance liquid chromatography (HPLC), and, subsequently, by a preparative capillary gas chromatography (PCGC) system. This method yielded a sufficient quantity of pure compounds and allowed a high degree of confidence in the determination of 14 C. The fraction modern values (f M ) of individual PAHs (phenanthrene, alkylphenanthrenes, fluoranthene, pyrene and benz[a]anthracene) in the sediments ranged from 0.06 to 0.21. These results suggest that sedimentary PAHs (those compounds mentioned above) were derived mostly from fossil fuel combustion. Three sectioned-downcore profiles (∼40 cm) of the 14 C abundance in phenanthrene and alkylphenanthrenes showed a decreasing trend with depth, that was anti-correlated with the trend of ΣPAHs concentration. The f M values of phenanthrene were also larger than those of alkylphenanthrenes in each section of the core. This result indicates that phenanthrene received a greater contribution from biomass burning than alkylphenanthrenes throughout the core. This finding highlights the method used here as an useful approach to elucidate the source and origin of PAHs in the environment

  1. Provitamin A-biofortified maize consumption increases serum xanthophylls and 13C-natural abundance of retinol in Zambian children.

    Science.gov (United States)

    Sheftel, Jesse; Gannon, Bryan M; Davis, Christopher R; Tanumihardjo, Sherry A

    2017-09-01

    Plants that undergo C 4 photosynthesis, such as maize, are enriched in the stable isotope of carbon ( 13 C) compared with other dietary plants and foods. Consumption of maize that has been biofortified to contain elevated levels of provitamin A carotenoids (orange maize) increased the abundance of 13 C in serum retinol of Mongolian gerbils. We evaluated this method in humans to determine if it has potential for further use in intervention effectiveness studies. A random subset of samples from a two-month randomized controlled feeding trial of rural three- to five-year old Zambian children were used to determine the impact of orange maize intake on serum carotenoid concentrations ( n = 88) and 13 C-natural abundance in serum retinol ( n = 77). Concentrations of β-cryptoxanthin (a xanthophyll provitamin A carotenoid) and the dihydroxy xanthophylls lutein and zeaxanthin, which do not have vitamin A activity, were elevated in children consuming orange maize compared with those consuming a white maize control ( P  0.3). Furthermore, 13 C natural abundance was higher after two months' intervention in the orange maize group compared with the white maize group ( P = 0.049). Predictions made from equations developed in the aforementioned gerbil study estimated that maize provided 11% (2-21%, 95% confidence interval) of the recent dietary vitamin A to these children. These results demonstrate that orange maize is efficacious at providing retinol to the vitamin A pool in children through provitamin A carotenoids, as monitored by the change in 13 C enrichment, which was not reflected in serum β-carotene concentrations. Further effectiveness studies in countries who have adopted orange maize should consider determining differences in retinol 13 C-enrichment among target groups in addition to profiling serum xanthophyll carotenoids with specific emphasis on zeaxanthin. Impact statement Maize biofortified with provitamin A carotenoids (orange) has been released

  2. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation

    Science.gov (United States)

    Bracho-Nunez, Araceli; Welter, Saskia; Staudt, Michael; Kesselmeier, Jürgen

    2011-08-01

    The seasonality of vegetation, i.e., developmental stages and phenological processes, affects the emission of volatile organic compounds (VOCs). Despite the potential significance, the contributions of seasonality to VOC emission quality and quantity are not well understood and are therefore often ignored in emission simulations. We investigated the VOC emission patterns of young and mature leaves of several Mediterranean plant species in relation to their physiological and developmental changes during the growing period and estimated Es. Foliar emissions of isoprenoids and oxygenated VOCs like methanol and acetone were measured online by means of a proton transfer reaction mass spectrometer (PTR-MS) and offline with gas chromatography coupled with a mass spectrometer and flame ionization detector. The results suggest that VOC emission is a developmentally regulated process and that quantitative and qualitative variability is plant species specific. Leaf ontogeny clearly influenced both the VOC Es and the relative importance of different VOCs. Methanol was the major compound contributing to the sum of target VOC emissions in young leaves (11.8 ± 10.4 μg g-1 h-1), while its contribution was minor in mature leaves (4.1 ± 4.1 μg g-1 h-1). Several plant species showed a decrease or complete subsidence of monoterpene, sesquiterpene, and acetone emissions upon maturity, perhaps indicating a potential response to the higher defense demands of young emerging leaves.

  3. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    . The compound-specific SIA approach presented in this thesis will be particularly valuable for tracking the movement of species and life-stages not amenable to conventional tagging techniques. This thesis provides quantitative scientific support for establishing

  4. Volatile organic compounds as biomarkers of bladder cancer: Sensitivity and specificity using trained sniffer dogs.

    Science.gov (United States)

    Willis, Carolyn M; Britton, Lezlie E; Harris, Rob; Wallace, Joshua; Guest, Claire M

    In a previous canine study, we demonstrated that volatile organic compounds specific to bladder cancer are present in urine headspace, subsequently showing that up to 70% of tumours can be correctly classified using an electronic nose. This study aimed to evaluate the sensitivity and specificity which can be achieved by a group of four trained dogs. In a series of 30 double-blind test runs, each consisting of one bladder cancer urine sample placed alongside six controls, the highest sensitivity achieved by the best performing dog was 73% (95% CI 55-86%), with the group as a whole correctly identifying the cancer samples 64% (95% CI 55-73%) of the time. Specificity of the dogs individually ranged from 92% (95% CI 82-97%) for urine samples obtained from healthy, young volunteers down to 56% (95% CI 42-68%) for those taken from older patients with non-cancerous urological disease. Odds ratio comparisons confirmed a significant decrease in performance as the extent of urine dipstick abnormality and/or pathology amongst the control population increased. Importantly, however, statistical analysis indicated that covariates such as smoking, gender and age, as well as blood, protein and /or leucocytes in the urine did not significantly alter the odds of response to the cancer samples. Our results provide further evidence that volatile biomarkers for bladder cancer exist in urine headspace, and that these have the potential to be exploited for diagnosis.

  5. A Simplified Method for Laboratory Preparation of Organ Specific Indium 113m Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Adatepe, M H; Potchen, E James [Washington University School of Medicine, St. Louis (United States)

    1969-03-15

    Generator systems producing short lived nuclides from longer lived parents have distinct clinical advantages. They are more economical, result in a lower radiation dose, and can make short lived scanning readily available even in areas remote from rapid radiopharmaceutical delivery services. The {sup 113}Sn-{sup 113m}In generator has the additional advantage that, as a transition metal, Indium can be readily complexed into organ specific preparations. 113Sn, a reactor produced nuclide with a 118 day half life, is absorbed on a zirconium or silica gel column. the generator is eluded with 5 to 8 ml of 0.05 N HCL solution at pH 1.3-1.4. The daughter nuclide, {sup 113m}In, has a half life of 1.7 hours and emits a 393 Kev monoenergetic gamma ray. Previous methods for labeling organ specific complexes with {sup 113m}In required terminal autoclaving before injection. With the recent introduction of sterile, apyrogenic {sup 113}Sn-{sup 113m}In generators, we have developed a simplified technique for the laboratory preparation of Indium labeled compounds. This method eliminates autoclaving and titration enabling us to pre-prepare organ specific complexes for blood pool, liver, spleen, brain, kidney and lung scanning.

  6. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis

    Directory of Open Access Journals (Sweden)

    R. J. Sheesley

    2009-05-01

    Full Text Available Natural abundance radiocarbon analysis facilitates distinct source apportionment between contemporary biomass/biofuel (14C "alive" versus fossil fuel (14C "dead" combustion. Here, the first compound-specific radiocarbon analysis (CSRA of atmospheric polycyclic aromatic hydrocarbons (PAHs was demonstrated for a set of samples collected in Lycksele, Sweden a small town with frequent episodes of severe atmospheric pollution in the winter. Renewed interest in using residential wood combustion (RWC means that this type of seasonal pollution is of increasing concern in many areas. Five individual/paired PAH isolates from three pooled fortnight-long filter collections were analyzed by CSRA: phenanthrene, fluoranthene, pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene; phenanthrene was the only compound also analyzed in the gas phase. The measured Δ14C for PAHs spanned from −138.3‰ to 58.0‰. A simple isotopic mass balance model was applied to estimate the fraction biomass (fbiomass contribution, which was constrained to 71–87% for the individual PAHs. Indeno[cd]pyrene plus benzo[ghi]perylene had an fbiomass of 71%, while fluoranthene and phenanthrene (gas phase had the highest biomass contribution at 87%. The total organic carbon (TOC, defined as carbon remaining after removal of inorganic carbon fbiomass was estimated to be 77%, which falls within the range for PAHs. This CSRA data of atmospheric PAHs established that RWC is the dominating source of atmospheric PAHs to this region of the boreal zone with some variations among RWC contributions to specific PAHs.

  7. Validated ¹H and 13C Nuclear Magnetic Resonance Methods for the Quantitative Determination of Glycerol in Drug Injections.

    Science.gov (United States)

    Lu, Jiaxi; Wang, Pengli; Wang, Qiuying; Wang, Yanan; Jiang, Miaomiao

    2018-05-15

    In the current study, we employed high-resolution proton and carbon nuclear magnetic resonance spectroscopy (¹H and 13 C NMR) for quantitative analysis of glycerol in drug injections without any complex pre-treatment or derivatization on samples. The established methods were validated with good specificity, linearity, accuracy, precision, stability, and repeatability. Our results revealed that the contents of glycerol were convenient to calculate directly via the integration ratios of peak areas with an internal standard in ¹H NMR spectra, while the integration of peak heights were proper for 13 C NMR in combination with an external calibration of glycerol. The developed methods were both successfully applied in drug injections. Quantitative NMR methods showed an extensive prospect for glycerol determination in various liquid samples.

  8. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    Pardoen, J.A.

    1986-01-01

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13 C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1 H NMR and 75 MHz 13 C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  9. (13)C MR spectroscopy study of lactate as substrate for rat brain.

    Science.gov (United States)

    Qu, H; Håberg, A; Haraldseth, O; Unsgård, G; Sonnewald, U

    2000-01-01

    In order to address the question whether lactate in blood can serve as a precursor for cerebral metabolites, fully awake rats were injected intravenously with [U-(13)C]lactate or [U-(13)C]glucose followed 15 min later by decapitation. Incorporation of label from [U-(13)C]glucose was seen mainly in glutamate, GABA, glutamine, aspartate, alanine and lactate. More label was found in glutamate than glutamine, underscoring the predominantly neuronal metabolism of pyruvate from [U-(13)C]glucose. It was estimated that the neuronal metabolism of acetyl CoA from glucose accounts for at least 66% and the glial for no more than 34% of the total glucose consumption. When [U-(13)C]lactate was the precursor, label incorporation was similar to that observed from [U-(13)C]glucose, but much reduced. Plasma analysis revealed the presence of approximately equal amounts of [1,2,3-(13)C]- and [1,2-(13)C]glucose, showing gluconeogenesis from [U-(13)C]lactate. It was thus possible that the labeling seen in the cerebral amino acids originated from labeled glucose, not [U-(13)C]lactate. However, the presence of significantly more label in [U-(13)C]- than in [2,3-(13)C]alanine demonstrated that [U-(13)C]lactate did indeed cross the blood-brain barrier, and was metabolized further in the brain. Furthermore, contributions from pyruvate carboxylase (glial enzyme) were detectable in glutamine, glutamate and GABA, and were comparatively more pronounced in the glucose group. This indicated that relatively more pyruvate from lactate than glucose was metabolized in neurons. Surprisingly, the same amount of lactate was synthesized via the tricarboxylic acid cycle in both groups, indicating transfer of neurotransmitters from the neuronal to the astrocytic compartment, as previous studies have shown that this lactate is synthesized primarily in astrocytes. Taking into consideration that astrocytes take up glutamate more avidly than GABA, it is conceivable that neuronal lactate metabolism was more

  10. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    Science.gov (United States)

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    -risk regions. It has been estimated that up to 1.7 million YFV infections occur in Africa each year, resulting in 29,000 to 60,000 death. Thus far, there is no specific antiviral treatment for yellow fever. To cope with this medical challenge, we identified a benzodiazepine compound that selectively inhibits YFV by targeting the viral NS4B protein. To our knowledge, this is the first report demonstrating in vivo safety and antiviral efficacy of an YFV NS4B inhibitor in an animal model. We have thus reached a critical milestone toward the development of specific antiviral therapeutics for clinical management of yellow fever. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Bioaccumulation of photoprotective compounds in copepods: environmental triggers and sources of intra-specific variability

    Science.gov (United States)

    Zagarese, H. E.; García, P.; Diéguez, M. D.; Ferraro, M. A.

    2012-12-01

    Ultraviolet radiation (UVR) and temperature are two globally important abiotic factors affecting freshwater ecosystems. Planktonic organisms have developed a battery of counteracting mechanisms to minimize the risk of being damaged by UVR, which respond to three basic principles: avoid, protect, repair. Copepods are among the most successful zooplankton groups. They are highly adaptable animals, capable of displaying flexible behaviors, physiologies, and life strategies. In particular, they are well equipped to cope with harmful UVR. Their arsenal includes vertical migration, accumulation of photoprotective compounds, and photorepair. The preference for a particular strategy is affected by a plethora of environmental (extrinsic) parameters, such as the existence of a depth refuge, the risk of visual predation, and temperature. Temperature modifies the environment (e.g. the lake thermal structure), and animal metabolism (e.g., swimming speed, bioaccumulation of photoprotective compounds). In addition, the relative weight of UVR-coping strategies is also influenced by the organism (intrinsic) characteristics (e.g., inter- and intra-specific variability). The UV absorbing compounds, mycosporine-like amino acids (MAAs), are widely distributed among freshwater copepods. Animals are unable to synthesize MAAs, and therefore depend on external sources for accumulating these compounds. Although copepods may acquire MAAs from their food, for the few centropagic species investigated so far, the main source of MAAs are microbial (most likely prokaryotic) organisms living in close association with the copepods. Boeckella gracilipes is a common centropagic copepod in Patagonian lakes. We suspected that its occurrence in different types of lakes, hydrologically unconnected, but within close geographical proximity, could have resulted in different microbial-copepod associations (i.e., different MAAs sources) that could translate into intra-specific differences in the accumulation

  12. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems

    DEFF Research Database (Denmark)

    Ravn, Nynne Marie Rand; Elberling, Bo; Michelsen, Anders

    2017-01-01

    Background and aim: Nutrient distribution and carbon fluxes upon spring thaw are compared in mesocosms from high arctic and subarctic ecosystems dominated by Cassiope tetragona or Salix hastata/Salix arctica, in order to evaluate the possibility of plant and microbial utilization of an organic...... compound in thawing permafrost and surface soil. Methods: Double labeled glycine (13C15N) was added to soil columns with vegetation and to permafrost. During thaw conditions ecosystem respiration 13C was measured and 13C and 15N distribution in the ecosystem pools was quantified one day and one month after...... glycine addition. Results: Near-surface soil microbes were more efficient in the uptake of intact glycine immediately upon thaw than plants. After one month plants had gained more 15N whereas microbes seemed to lose 15N originating from glycine. We observed a time lag in glycine degradation upon...

  13. Differentiation of wood-derived vanillin from synthetic vanillin in distillates using gas chromatography/combustion/isotope ratio mass spectrometry for δ13 C analysis.

    Science.gov (United States)

    van Leeuwen, Katryna A; Prenzler, Paul D; Ryan, Danielle; Paolini, Mauro; Camin, Federica

    2018-02-28

    Typical storage in oak barrels releases in distillates different degradation products such as vanillin, which play an important role in flavour and aroma. The addition of vanillin, as well as other aroma compounds, of different origin is prohibited by European laws. As vanillin samples from different sources have different δ 13 C values, the δ 13 C value could be used to determine whether the vanillin is authentic (lignin-derived), or if it has been added from another source (e.g. synthetic). The δ 13 C values for vanillin derived from different sources, including natural, synthetic and tannins, were measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), after diethyl ether addition and/or ethanol dilution. A method for analysing vanillin in distillates after dichloromethane extraction was developed. Tests were undertaken to prove the reliability, reproducibility and accuracy of the method with standards and samples. Distillate samples were run to measure the δ 13 C values of vanillin and to compare them with values for other sources of vanillin. δ 13 C values were determined for: natural vanillin extracts (-21.0 to -19.3‰, 16 samples); vanillin ex-lignin (-28.2‰, 1 sample); and synthetic vanillin (-32.6 to -29.3‰, 7 samples). Seventeen tannin samples were found to have δ 13 C values of -29.5 to -26.7‰, which were significantly different (p distillates (-28.9 to -25.7‰) were mainly in the tannin range, although one spirit (-32.5‰) was found to contain synthetic vanillin. The results show that synthetic vanillin added to a distillate could be differentiated from vanillin derived from oak barrels by their respective δ 13 C values. The GC/C/IRMS method could be a useful tool in the determination of adulteration of distillates. Copyright © 2017 John Wiley & Sons, Ltd.

  14. (13)C enrichment of the CO2 in breast milk and in the breath is rapidly modified by changes in the (13)C content of the diet.

    Science.gov (United States)

    Villalpando, Salvador; Del Prado, Martha; Cienfuego, Edith; Morales, Pedro

    2014-01-01

    C4 plants (e.g. corn and sugar cane) have greater (13)C enrichment than C3 plants (e.g. wheat and sugar beet). To assess whether (13)C enrichment of CO2 in the breath and breast milk of women on diets based on C3 and C4 foods changes from one diet to the other. Six breast-feeding women were studied at 5-6 months postpartum. They ate a controlled C4 diet on days 1 and 2 followed by a C3 diet on days 3 and 4. Diet duplicates, breast milk on days 2 and 4 and hourly breath samples were collected over 4 days. (13)C enrichment was measured by isotope-ratio mass spectrometry. Values of δ(13)C were calculated from the international PDBV standard (δ(13)CPDBV). Differences between means were compared by paired t test or t test for repeated measurements. δ(13)CPDBV values were significantly higher in the C4 diet than in the C3 diet composites (p value was greater on days 1 and 2 (range -15.4 to -13.2, respectively) and declined on days 3 and 4 (range -20.0 to -21.8, respectively, p value in the breath and breast milk fractions, which diminish rapidly on a C3 diet. Further studies focusing on individual nutrients are warranted.

  15. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  16. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil

    Science.gov (United States)

    Qi, Haiping; Coplen, Tyler B.; Geilmann, Heike; Brand, Willi A.; Böhlke, J.K.

    2003-01-01

    Analytical grade L-glutamic acid is chemically stable and has a C/N mole ratio of 5, which is close to that of many of natural biological materials, such as blood and animal tissue. Two L-glutamic acid reference materials with substantially different 13C and 15N abundances have been prepared for use as organic reference materials for C and N isotopic measurements. USGS40 is analytical grade L-glutamic acid and has a δ13C value of −26.24‰ relative to VPDB and a δ15N value of −4.52‰ relative to N2 in air. USGS41 was prepared by dissolving analytical grade L-glutamic acid with L-glutamic acid enriched in 13C and 15N. USGS41 has a δ13C value of +37.76‰ and a δ15N value of +47.57‰. The δ13C and δ15N values of both materials were measured against the international reference materials NBS 19 calcium carbonate (δ13C = +1.95‰), L-SVEC lithium carbonate (δ13C = −46.48‰), IAEA-N-1 ammonium sulfate (δ15N = 0.43‰), and USGS32 potassium nitrate (δ15N = 180‰) by on-line combustion continuous-flow and off-line dual-inlet isotope-ratio mass spectrometry. Both USGS40 and USGS41 are isotopically homogeneous; reproducibility of δ13C is better than 0.13‰, and that of δ15N is better than 0.13‰ in 100-μg amounts. These two isotopic reference materials can be used for (i) calibrating local laboratory reference materials, and (ii) quantifying drift with time, mass-dependent fractionations, and isotope-ratio-scale contraction in the isotopic analysis of various biological materials. Isotopic results presented in this paper yield a δ13C value for NBS 22 oil of −29.91‰, in contrast to the commonly accepted value of −29.78‰ for which off-line blank corrections probably have not been quantified satisfactorily.

  17. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    Science.gov (United States)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  18. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives

    Science.gov (United States)

    McMahon, Kelton W.; Williams, Branwen; Guilderson, Thomas P.; Glynn, Danielle S.; McCarthy, Matthew D.

    2018-01-01

    Compound-specific stable isotopes of amino acids (CSI-AA) from proteinaceous deep-sea coral skeletons have the potential to improve paleoreconstructions of plankton community composition, and our understanding of the trophic dynamics and biogeochemical cycling of sinking organic matter in the Ocean. However, the assumption that the molecular isotopic values preserved in protein skeletal material reflect those of the living coral polyps has never been directly investigated in proteinaceous deep-sea corals. We examined CSI-AA from three genera of proteinaceous deep-sea corals from three oceanographically distinct regions of the North Pacific: Primnoa from the Gulf of Alaska, Isidella from the Central California Margin, and Kulamanamana from the North Pacific Subtropical Gyre. We found minimal offsets in the δ13C values of both essential and non-essential AAs, and in the δ15N values of source AAs, between paired samples of polyp tissue and protein skeleton. Using an essential AA δ13C fingerprinting approach, we show that estimates of the relative contribution of eukaryotic microalgae and prokaryotic cyanobacteria to the sinking organic matter supporting deep-sea corals are the same when calculated from polyp tissue or recently deposited skeletal tissue. The δ15N values of trophic AAs in skeletal tissue, on the other hand, were consistently 3-4‰ lower than polyp tissue for all three genera. We hypothesize that this offset reflects a partitioning of nitrogen flux through isotopic branch points in the synthesis of polyp (fast turnover tissue) and skeleton (slow, unidirectional incorporation). This offset indicates an underestimation, albeit correctable, of approximately half a trophic position from gorgonin protein-based deep-sea coral skeleton. Together, our observations open the door for applying many of the rapidly evolving CSI-AA based tools developed for metabolically active tissues in modern systems to archival coral tissues in a paleoceanographic context.

  19. "VALIDATION OF 13C-UREA BREATH TEST WITH NON DISPERSIVE ISOTOPE SELECTIVE INFRARED SPECTROSCOPY FOR THE DIAGNOSIS OF HELICOBACTER PYLORI INFECTION: A SURVEY IN IRANIAN POPULATION"

    Directory of Open Access Journals (Sweden)

    "Davood Beiki

    2005-04-01

    Full Text Available The urea breath test (UBT which is carried out with 13C or 14C labeled urea is one of the most important non invasive methods for detection of Helicobacter pylori infection. Application of 13C-UBT is becoming increasingly popular because of its non radioactive nature which makes it suitable for diagnostic purposes in children and women of child bearing ages. While isotope ratio mass spectrometer (IRMS is generally used to detect 13C in expired breath, this instrument is expensive and recently non dispersive isotope selective infrared (NDIR spectroscopy which is a lower cost technique has been employed as a reliable counterpart for IRMS in small clinics. The aim of this study was to assess the validity of NDIR spectroscopy technique in Iranian population in comparison with histological examination, rapid urease test and 14C-urea breath test as gold standard. Seventy six patients with dyspepsia were underwent 13CUBT for diagnosis of Helicobacter pylori infection. Good agreements were found between the 13C-UBT and gold standard methods. The 13C-UBT showed 100% sensitivity, 97.3% specificity, 97.56% positive predictive value, 100% negative predictive value and 98.65% accuracy. On the basis of these results it could be concluded that 13C-UBT performed with NDIR spectroscopy is a reliable, accurate and non invasive diagnostic tool for detection of Helicobacter pylori infection in the Iranian population.

  20. Inference of past atmospheric delta13C and P/sub CO2/ from 13C/12C measurements in tree rings

    International Nuclear Information System (INIS)

    Leavitt, S.W.

    1982-01-01

    Carbon dioxide release from fossil-fuel burning is significant enough that we may soon experience perceptible changes in climate with important human consequences. An accurate reconstruction of past 13 C/ 12 C ratios of atmospheric CO 2 may provide key constraints on the historical activity of the biosphere as CO 2 source or sink. Tree rings appear to be a repository of this information but there is much noise in the collection of previous reconstructions, presumably associated with site selection, radial variability, choice of representative wood chemical constituent, and subtle effects of climate on fractionation. This study attempts to avoid these pitfalls and develop a 50-yr delta 13 C/sub ATM/ record from juniper trees (genus Juniperus), in fact, by taking advantage of the influence of climate on fractionation. Trees were harvested from suitable sites in close proximity to weather stations with monthly records of temperature and precipitation. The most useful relationships for at most 7 of the 10 sites were delta 13 C with December temperature or precipitation, because the coefficients were nearly constant from one interval to the next and the intercepts differed. Local pollution effects are believed responsible for the three anomalous sites. The separation of these regression lines of different intervals is interpreted as the response of the trees to the changing delta 13 C of atmospheric CO 2 so that delta 13 C/sub ATM/ curves are constructed from this spacing. The shape of the best-fit reconstruction suggests the biosphere has acted as CO 2 source to about 1965 and may now be a net sink

  1. 13C/12C ratio variations in Pinus longaeva (bristlecone pine) cellulose during the last millennium

    International Nuclear Information System (INIS)

    Grinsted, M.J.; Wilson, A.T.; Ferguson, C.W.

    1979-01-01

    Delta 13 C values are presented for cellulose samples prepared from two dendrochronologically dated Pinus longaeva (bristlecone pine) trees which grew during the last 1000 years. Delta 13 C variations for these forest border trees are similar to upper tree line ring-width variations for the same species and English high summer temperature variations for the same time period. However, the delta 13 C variations appear to be unrelated to lower forest border ring-width variations and cellulose deltaD variations for the same specimens. (Auth.)

  2. Synthesis of {sup 14}C-labeled levamisole and {sup 13}C-labeled tetramisole

    Energy Technology Data Exchange (ETDEWEB)

    Feil, V.J. [US Department of Agriculture, Agricultural Research Service, Biosciences Research Lab., Fargo, ND (United States)

    1996-12-01

    The syntheses of {sup 14}C-ring labeled levamisole ([-]-2,3,5,6-tetrahydro-6-phenyl [{sup 14}C]-UL imidazo[2,1-b]thiazole) from acetophenone-ring-UL-{sup 14}C in 5 steps plus resolution with a 7.5% overall yield, and {sup 13}C{sub 6}-ring labeled tetramisole ([{+-}]-2,3,5,6-tetrahydro-6-phenyl [{sup 13}C{sub 6}]imidazo[2,1-b]thiazole) from benzene-{sup 13}C{sub 6} in 6 steps with a 9.0% overall yield are described. (author).

  3. Virus Capsids as Targeted Nanoscale Delivery Vessels of Photoactive Compounds for Site-Specific Photodynamic Therapy

    Science.gov (United States)

    Cohen, Brian A.

    The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin

  4. Identification of an Epoxide Metabolite of Lycopene in Human Plasma Using 13C-Labeling and QTOF-MS

    Directory of Open Access Journals (Sweden)

    Morgan J. Cichon

    2018-03-01

    Full Text Available The carotenoid lycopene is a bioactive component of tomatoes and is hypothesized to reduce risk of several chronic diseases, such as prostate cancer. The metabolism of lycopene is only beginning to be understood and some studies suggest that metabolites of lycopene may be partially responsible for bioactivity associated with the parent compound. The detection and characterization of these compounds in vivo is an important step in understanding lycopene bioactivity. The metabolism of lycopene likely involves both chemical and enzymatic oxidation. While numerous lycopene metabolites have been proposed, few have actually been identified in vivo following lycopene intake. Here, LC-QTOF-MS was used along with 13C-labeling to investigate the post-prandial oxidative metabolism of lycopene in human plasma. Previously reported aldehyde cleavage products were not detected, but a lycopene 1,2-epoxide was identified as a new candidate oxidative metabolite.

  5. Identification of an Epoxide Metabolite of Lycopene in Human Plasma Using 13C-Labeling and QTOF-MS.

    Science.gov (United States)

    Cichon, Morgan J; Moran, Nancy E; Riedl, Ken M; Schwartz, Steven J; Clinton, Steven K

    2018-03-20

    The carotenoid lycopene is a bioactive component of tomatoes and is hypothesized to reduce risk of several chronic diseases, such as prostate cancer. The metabolism of lycopene is only beginning to be understood and some studies suggest that metabolites of lycopene may be partially responsible for bioactivity associated with the parent compound. The detection and characterization of these compounds in vivo is an important step in understanding lycopene bioactivity. The metabolism of lycopene likely involves both chemical and enzymatic oxidation. While numerous lycopene metabolites have been proposed, few have actually been identified in vivo following lycopene intake. Here, LC-QTOF-MS was used along with 13 C-labeling to investigate the post-prandial oxidative metabolism of lycopene in human plasma. Previously reported aldehyde cleavage products were not detected, but a lycopene 1,2-epoxide was identified as a new candidate oxidative metabolite.

  6. Mapping cancer cell metabolism with 13 C flux analysis: Recent progress and future challenges

    Directory of Open Access Journals (Sweden)

    Casey Scott Duckwall

    2013-01-01

    Full Text Available The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of 13 C metabolic flux analysis (MFA to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case.

  7. Stable Carbon Isotopes (δ 13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    Science.gov (United States)

    Grottoli, A. G.

    2004-12-01

    Scleractinian corals obtain fixed carbon via photosynthesis by their endosymbiotic algae (zooxanthellae) and via hetertrophy (injestion of zooplankton, δ 13C ≈ -17 to -22‰ ). Carbon dioxide (CO2) used for photosynthesis is obtained from seawater (δ 13C ≈ 0%) or from respired CO2 within the coral host. The δ 13C of the carbon used in the formation of the underlying coral skeleton is fractionated as a result of both of these metabolic processes. Here I have pooled evidence from several field and tank experiments on the effect of photosynthesis and heterotrophy of coral skeletal δ 13C. In the experiments, decreases in light levels due to shading or depth resulted in a significant decrease in skeletal δ 13C in all species studied (Pavona gigantea, Pavona clavus, Porites compressa). Decreases in photosynthesis in bleached corals also resulted in a decrease in skeletal δ 13C compared to non-bleached corals growing under the same conditions and at the same location. Skeletal δ 13C also decreased at higher than normal light levels most likely due to photoinhibition. Thus, decreases in photosynthesis due to reduced light levels, due to bleaching-induced decreases in chlorophyll a concentrations, or due to photodamage-induced decreases in functional cholorphyll a, results in significant δ 13C decreases. Comprehensive interpretation of all of the data showed that changes in photosynthesis itself can drive the changes in δ 13C. In field experiments, the addition of natural concentrations of zooplankton to the diet resulted in decreases in skeletal δ 13C. Such a decrease was more pronounced with depth and in P. gigantea compared to P. clavus. In situ feeding experiments have since confirmed these findings. However under tank conditions with unaturally high feeding rates, enhanced nitrogen supply in the diet can disrupt the coral-algal symbiosis, stimlate zooxanthellae growth and photosynthesis, and cause an incrase in skeletal δ 13C. It is proposed that under

  8. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    Science.gov (United States)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  9. Methods for sequential resonance assignment in solid, uniformly 13C, 15N labelled peptides: Quantification and application to antamanide

    International Nuclear Information System (INIS)

    Detken, Andreas; Hardy, Edme H.; Ernst, Matthias; Kainosho, Masatsune; Kawakami, Toru; Aimoto, Saburo; Meier, Beat H.

    2001-01-01

    The application of adiabatic polarization-transfer experiments to resonance assignment in solid, uniformly 13 C- 15 N-labelled polypeptides is demonstrated for the cyclic decapeptide antamanide. A homonuclear correlation experiment employing the DREAM sequence for adiabatic dipolar transfer yields a complete assignment of the C α and aliphatic side-chain 13 C resonances to amino acid types. The same information can be obtained from a TOBSY experiment using the recently introduced P9 1 12 TOBSY sequence, which employs the J couplings as a transfer mechanism. A comparison of the two methods is presented. Except for some aromatic phenylalanine resonances, a complete sequence-specific assignment of the 13 C and 15 N resonances in antamanide is achieved by a series of selective or broadband adiabatic triple-resonance experiments. Heteronuclear transfer by adiabatic-passage Hartmann-Hahn cross polarization is combined with adiabatic homonuclear transfer by the DREAM and rotational-resonance tickling sequences into two- and three-dimensional experiments. The performance of these experiments is evaluated quantitatively

  10. Large variation in lipid content, ΣPCB and δ13C within individual Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Persson, Maria E.; Larsson, Per; Holmqvist, Niklas; Stenroth, Patrik

    2007-01-01

    Many studies that investigate pollutant levels, or use stable isotope ratios to define trophic level or animal origin, use different standard ways of sampling (dorsal, whole filet or whole body samples). This study shows that lipid content, ΣPCB and δ 13 C display large differences within muscle samples taken from a single Atlantic salmon. Lipid- and PCB-content was lowest in tail muscles, intermediate in anterior-dorsal muscles and highest in the stomach (abdominal) muscle area. Stable isotopes of carbon (δ 13 C) showed a lipid accumulation in the stomach muscle area and a depletion in tail muscles. We conclude that it is important to choose an appropriate sample location within an animal based on what processes are to be studied. Care should be taken when attributing persistent pollutant levels or stable isotope data to specific environmental processes before controlling for within-animal variation in these variables. - Lipid content, ΣPCB and δ 13 C vary to a large extent within Atlantic salmon, therefore, the sample technique for individual fish is of outmost importance for proper interpretation of data

  11. Authentication of the origin of vanillin using quantitative natural abundance 13C NMR.

    Science.gov (United States)

    Tenailleau, Eve J; Lancelin, Pierre; Robins, Richard J; Akoka, Serge

    2004-12-29

    The use of 13C isotopic distribution as an efficient means to determine the origin of vanillin has been substantiated. Using quantitative 13C NMR, the 13C/12C ratios at all eight carbon positions can be exploited. On a set of 21 samples of vanillin from five different origins, complete discrimination can be achieved. It is shown that, for many purposes, a rapid analysis in which only five sites are used is sufficient. However, improved discrimination using all eight sites is preferable to differentiate between different methods of production from natural ferulic acid or between natural and lignin-derived vanillin on the basis of the 13C/12C ratios characteristic of different origins. The C1 and C8 positions are demonstrated to be the most significant sites for discrimination using principle component analysis. However, aromatic carbon positions make an essential contribution, notably in differentiating between natural and lignin-derived vanillin.

  12. Speculations about the upper Miocene change in abyssal Pacific dissolved bicarbonate delta13C

    International Nuclear Information System (INIS)

    Bender, M.L.; Keigwin, L.D. Jr

    1979-01-01

    New data from three Tasman Sea cores support Kleigwin's observation that the delta 13 C of Pacific benthic foraminifera (and by inference bottom-water TCO 2 ) decreased by 0.7 per thousand at about 6.5 Myr B.P. Simple box models are developed and used to test several hypotheses about the cause of the delta 13 C decrease. The authors favor the idea that the delta 13 C shift was due to a rapid change in TCO 2 cycling within the oceans (such as would result from either a decrease in upwelling rate, or an increase in the fraction of PO 4 3- reaching the deep oceans in particulate organic matter and a corresponding drop in the performed PO 4 3- concentration). The delta 13 C decrease across the shift might reflect either a global decrease in upwelling rate, or a different abyssal circulation pattern before the shift. (Auth.)

  13. Detailed {sup 1}H and {sup 13}C NMR spectral data assignment for two dihydrobenzofuran neolignans

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M., E-mail: millercrotti@ffclrp.usp.br [Universidade de São Paulo (USP), Ribeirão Preto, SP (Brazil). Faculdade de Filosofia, Ciências e Letras. Departamento de Química

    2016-07-01

    In this work we present a complete proton ({sup 1}H) and carbon 13 ({sup 13}C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled {sup 13}C ({sup 13}C{"1H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the {sup 1}H and {sup 13}C chemical shifts and showed good agreement with the trans configuration of the substituents at C{sub 7} and C{sub 8}. (author)

  14. Detailed 1H and 13C NMR spectral data assignment for two dihydrobenzofuran neolignans

    International Nuclear Information System (INIS)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M.

    2016-01-01

    In this work we present a complete proton ( 1 H) and carbon 13 ( 13 C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled 13 C ( 13 C{ 1 H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the 1 H and 13 C chemical shifts and showed good agreement with the trans configuration of the substituents at C 7 and C 8 . (author)

  15. A procedure to validate and correct the {sup 13}C chemical shift calibration of RNA datasets

    Energy Technology Data Exchange (ETDEWEB)

    Aeschbacher, Thomas; Schubert, Mario, E-mail: schubert@mol.biol.ethz.ch; Allain, Frederic H.-T., E-mail: allain@mol.biol.ethz.ch [ETH Zuerich, Institute for Molecular Biology and Biophysics (Switzerland)

    2012-02-15

    Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of {sup 13}C NMR data of RNAs. Our procedure uses five {sup 13}C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the {sup 13}C calibration and detect errors or inconsistencies in RNA {sup 13}C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure-{sup 13}C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable {sup 13}C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure-chemical shift relationships with this improved list of {sup 13}C chemical shift data. This is demonstrated by a clear relationship between ribose {sup 13}C shifts and the sugar pucker, which can be used to predict a C2 Prime - or C3 Prime -endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

  16. Relationships between tobacco leaf δ"1"3C and physiological characteristics

    International Nuclear Information System (INIS)

    Wang Yi; Song Pengfei; Yan Kan; Tan Shuwen; Wu Xiaoxiao; Chen Zongyu

    2013-01-01

    In this paper, the flue-cured tobacco K326 was employed to study the abundance of carbon isotope composition, photosynthetic pigment content, soluble protein content and leaf mass per area (LMA) of tobacco leaf which were grown at four testing sites of different altitude (T_1, T_2, T_3, T_4). The correlations of carbon isotope composition with altitude, leaf position and physiological measures were understood as well. Results showed that δ"1"3C of those samples varied from -27.4‰ to -23.4‰. The δ"1"3C of samples from T_1, T_2and T_3 were increased with rising of the leaf position. δ"1"3C of middle and upper leaves from T_1, T_2and T_3 were positively correlated with altitude. However, δ"1"3C of samples from T_4 ranging from -26.8‰ to -26.4‰ was lower than the values from previous samples. The δ"1"3C also decreased with the increasing of leaf position, and was significantly negatively correlated with chlorophyll content and chlorophyll/carotinoid ratio (P < 0.05). The δ"1"3C was not significantly correlated with carotinoid content and chlorophyll a/b ratio. Meanwhile, it was positively correlated with soluble protein content and LMA significantly (P < 0.01). Generally, our findings indicated that chlorophyll content, chlorophyll/carotenoid ratio, soluble protein content, and LMA had strong relationships with δ"1"3C, whereas the relationship of δ"1"3C with altitude and leaf position was still unclear. (authors)

  17. Detection of human muscle glycogen by natural abundance 13C NMR

    International Nuclear Information System (INIS)

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-01-01

    Natural abundance 13 C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1 H decoupling was used to obtain decoupled natural abundance 13 C NMR spectra of the C-1 position of muscle glycogen

  18. Methodology and application of 13C breath test in gastroenterology practice

    International Nuclear Information System (INIS)

    Yan Weili; Jiang Yibin

    2002-01-01

    13 C breath test has been widely used in research of nutrition, pharmacology and gastroenterology for its properties such as safety, non-invasion and so on. The author describes the principle, methodology of 13 C breath test and its application in detection to Helico-bacteria pylori infection in stomach and small bowl bacterial overgrowth, measurement of gastric emptying, pancreatic exocrine function and liver function with various substrates

  19. Evidence for in situ degradation of mono-and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with 13C-labeled contaminants

    International Nuclear Information System (INIS)

    Morasch, B.; Hoehener, P.; Hunkeler, D.

    2007-01-01

    A microcosm study was conducted to investigate the degradation of mono- and polyaromatic hydrocarbons under in situ-like conditions using alluvial sediments from the site of a former cokery. Benzene, naphthalene, or acenaphthene were added to the sediments as 13 C-labeled substrates. Based on the evolution of 13 C-CO 2 determined by gas chromatography isotope-ratio mass spectrometry (GC-IRMS) it was possible to prove mineralization of the compound of interest in the presence of other unknown organic substances of the sediment material. This new approach was suitable to give evidence for the intrinsic biodegradation of benzene, naphthalene, and acenaphthene under oxic and also under anoxic conditions, due to the high sensitivity and reproducibility of 13 C/ 12 C stable isotope analysis. This semi-quantitative method can be used to screen for biodegradation of any slowly degrading, strongly sorbing compound in long-term experiments. - A method based on 13 C-labeled substrates was developed to determine the intrinsic biodegradation potential of aromatic pollutants under oxic and under anoxic conditions

  20. Search for biological effects of 13C-enrichment in developing mammalian systems

    International Nuclear Information System (INIS)

    Gregg, C.; Ott, D.; Deaven, L.; Spielmann, H.; Krowke, R.; Neubert, D.

    1975-01-01

    Increasing diagnostic use of stable isotopes, especially in children and pregnant women, enhances the importance of studies on the biological isotope effects in sensitive mammalian systems. Experimental data on animal systems are meager. The mouse embryos was studied at various stages and mouse limb buds were studied in organ culture. Limb bud development in vitro was unaffected by incubation with 82 mol percent 13 C-glucose as judged by either morphological or biochemical criteria. Of 271 preimplantation embryos incubated in vitro, 95.2 percent developed normally; in 13 C-enriched medium, 96.5 percent showed normal development. 13 C-Enrichment of the embryos in vitro is over 60 percent. Administration of 1.2 g glucose-U- 13 C to pregnant mice during organogenesis leads to enrichment of maternal liver glycogen to over 17 mol percent 13 C, about one-third this level in the embryo, and a lower level in maternal blood. The absolute 13 C content of the embryo continues to increase for several days after the end of isotope administration, while the enrichment in maternal tissues falls. The lipid fraction of the fetus is most highly labeled shortly after the end of isotope administration []These studies on developing mammalian systems have not yet revealed any alteration of normal development due to stable isotope enrichment. (auth)

  1. Sparse "1"3C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins

    International Nuclear Information System (INIS)

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A.; Ladizhansky, Vladimir; Brown, Leonid S.; Wang, Shenlin

    2016-01-01

    We demonstrate a novel sparse "1"3C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically "1"3C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  2. A Paleoevaporation Proxy Using Compound Specific Stable Isotope Measurements from Peatland Biomarkers

    Science.gov (United States)

    Wang, J.; Nichols, J. E.; Huang, Y.

    2009-12-01

    It is important to understand how evaporation from wetlands changes with climate. To do this, we have developed a paleoevaporation proxy for use in ombrotrophic peatland sediments. Using compound specific hydrogen isotopic ratios of vascular plant and Sphagnum biomarkers, we can quantitatively reconstruct past changes in evaporation. The contrast in H isotopic ratios of water available to living Sphagnum and water in the acrotelm can be used to estimate “f”—the fraction of water remaining after evaporation. Vascular plant leaf waxes record H isotopic ratios of precipitation which is little affected by evaporation, whereas the Sphagnum biomarker, C23 n-alkane, records H isotopic ratios of the water inside its cells and between its leaves, which is strongly affected by evaporation at the bog surface. Evaporation changes can then be calculated with the H-isotopic ratios of the two types of biomarkers. We calibrated the apparent fractionation of D/H ratios from source water to C23 n-alkane with lab-grown Sphagnum. We also present several reconstructions of paleoevaporation from peatlands throughout eastern North America. By comparison with overall hydrologic balance, we are able to understand the varying role of evaporation in the hydrologic system in both time and space.

  3. 12C(d,p) 13C reaction at Esub(d) = 30 MeV to the positive-parity states in 13C

    International Nuclear Information System (INIS)

    Ohnuma, H.; Hoshino, N.; Mikoshiba, O.

    1985-07-01

    The 12 C(d, p) 13 C reaction has been studied at Esub(d) = 30 MeV. All the known positive-parity states of 13 C below 10 MeV in excitation energy, including the 7/2 + and 9/2 + states, are observed in this reaction. The angular distributions for these positive-parity bound and unbound states are analyzed in CCBA frame work. The 13 C wave functions, which reproduce the resonant and non-resonant scattering of neutrons from 12 C, also give good accounts of the experimentally observed angular distributions and energy spectra of outgoing protons in the 12 C(d, p) 13 C reaction. In most cases the cross section magnitude and the angular distribution shape are primarily determined by the 0 + x j component, even if it is only a small fraction of the total wave function. An exception is the 7/2 + state, where the main contribution comes from the 2 + x dsub(5/2) component. The inclusion of the 4 + state in 12 C and the gsub(9/2) and gsub(7/2) neutron components in the n + 12 C system has very small effects on the low-spin states, but is indispensable for a good fit to the 7/2 + and 9/2 + angular distributions. The transitions to the negative-parity states, 1/2 1 - , 3/2 1 - , 5/2 - , 7/2 - and 1/2 3 - , are also observed experimentally, and analyzed by DWBA. (author)

  4. Solid state CP/MAS 13C n.m.r. analysis of particle size and density fractions of soil incubated with uniformly labelled 13C-glucose

    International Nuclear Information System (INIS)

    Baldock, J.A.; Oades, J.M.

    1990-01-01

    A soil incubated for 34 days in the absence (control) and presence (treated) of uniformly labelled 13 C-glucose was dispersed using an ultrasonic probe and fractionated by sedimentation in water and a polytungstate solution of density 2.0 Mg m -3 . Solid state CP/MAS 13 C n.m.r. (cross polarization/magic angle spinning 13 C nuclear magnetic resonance) spectroscopy was used to characterize the chemical structure of the native soil organic carbon and the residual substrate carbon in the fractions of the control and treated soils. To obtain quantitative results it was essential to determine the spin lattice relaxation time in a rotating frame of the individual carbon types in the spectra as the relaxation behaviour of the native organic material in the clay fraction was different from that of the residual substrate carbon. The residual substrate carbon was found to accumulate in predominantly alkyl and O-alkyl structures in both fractions. However, significant amounts of acetal and carboxyl carbon were also observed in the clay fraction. Little if any aromatic or phenolic carbon was synthesized by the soil microorganisms utilizing substrate carbon. Dipolar dephasing CP/MAS 13 C n.m.r. experiments were also performed and allowed the proportion of each type of carbon which was protonated and nonprotonated to be estimated. Essentially all of the O-alkyl and acetal carbon, 25-40% of the aromatic carbon and 66-80% of the alkyl carbon was protonated in the fractions isolated from the treated soil. 24 refs., 4 figs., 2 tabs

  5. Migration and deposition of 13C in the full-tungsten ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Hakola, A; Aho-Mantila, L; Groth, M; Kurki-Suonio, T; Makkonen, T; Likonen, J; Koivuranta, S; Krieger, K; Mayer, M; Mueller, H W; Neu, R; Rohde, V

    2010-01-01

    The migration of carbon in low-density, low-confinement plasmas of ASDEX Upgrade was studied by injecting 13 C into the main chamber of the torus at the end of the 2007 experimental campaign. A selection of standard tungsten-coated lower-divertor and main-chamber tiles as well as a complete set of lower-divertor tiles with an uncoated poloidal marker stripe were removed from one poloidal cross section and analysed using secondary ion mass spectrometry. The poloidal deposition profiles of 13 C on both the tungsten-coated tiles and on the uncoated graphite areas of the marker tiles were measured and compared. For the W-coated lower-divertor tiles, 13 C was deposited mainly on the high-field side tiles, while barely detectable amounts of 13 C were observed on low-field side samples. In contrast, on the uncoated marker stripes the deposition was equally pronounced in the high-field and low-field side divertor. The marker-tile results are in agreement with those obtained from graphite tiles after the 2003 and 2005 13 C experiments in ASDEX Upgrade. In the case of W-coated tiles, the 13 C measurements were complemented by determining the total amount of deposited carbon ( 12 C) on the tiles, which also shows strong deposition at the inner parts of the lower divertor. The estimated deposition of 13 C on W at the divertor areas was less than 1.5% of the injected amount of 13 C atoms. The 13 C analyses of the main-chamber tiles and small silicon samples mounted in remote areas revealed significant deposition in the upper divertor, in upper parts of the heat shield, in the limiter region close to the injection valve, and below the roof baffle. Approximately 8% of the injected 13 C is estimated to have accumulated in these regions. Possible reasons for the different deposition patterns on W and on graphite in different regions of the torus are discussed.

  6. Carbon-13 composition of bulk dry wines by irm-EA/MS and irm-13C NMR: An indicator of vine water status

    Directory of Open Access Journals (Sweden)

    Guyon Francois

    2017-01-01

    Full Text Available Measurements performed on a set of 32 authentic wines (not submitted to any oenological treatment and their ethanol, recovered by distillation, show high correlation between δ13C of bulk wine and its ethanol. These measurements were performed by isotope ratio monitoring by mass spectrometry coupled to an elemental analyzer (irm-EA/MS. Then a series of wines produced by vines of which water status was assessed during the growing season with predawn leaf water potential measurements, was studied by irm-EA/MS. As expected δ13C is correlated to vine water status conditions, as a result of stomatal closure. The ethanol of these specific wines was also analyzed by isotope ratio monitoring and by nuclear magnetic resonance (irm-13C NMR to determine carbon-13 composition on the two specific sites of the ethanol skeleton. If these measurements confirm the correlation between 13C composition and vine growth conditions, the 13C stereospecific information does not make vine water status assessment more precise.

  7. The synthesis of 13C-bilirubin and its use in the validation of bilirubin kinetic studies in rats

    International Nuclear Information System (INIS)

    Sturrock, E.D.

    1994-04-01

    The total synthesis of [10- 13 C] bilirubin IXα], the principal waste product of haem degradation, is described. Site specific labelling was accomplished by the Vilsmeier formulation of one of the dipyrrolic fragments using [1- 13 C] dimethylformamide. The penultimate dehydrohalogenation reaction was complicated by a competing elimination reaction which yielded a bridged biliverdin derivative. The base catalysed reaction affords a novel [10- 13 C]-8,12-bis(2-methoxycarbonylethyl)-7,13,17-trimethyl-2,18-propano-3-vinylbilin-1,19(21H,24H)-dione in which the 2 and 18 positions of the macrocycle are bridged with a propano tether, the structure has been established using single crystal X-ray and 1 H nuclear Overhauser effect studies. [ 14 C]bilirubin was prepared, bio synthetically, using [ 14 C]aminolevulinic acid. Bilirubin kinetics in 4 rats were measured by the analysis of the plasma disappearance of [ 14 C]bilirubin in a two-compartment model. The plasma half-life of the first and second exponentials were 1.97 and 32.8 minutes respectively. The data were used to determine model independent parameters k 12 , k 21 , and k 20 . In the proposed model, plasma unconjugated bilirubin exchanges with a hepatic unconjugated bilirubin pool. Bilirubin is eliminated from the system via the proposed hepatic pool. These studies provide an analysis of the kinetics of unconjugated bilirubin in rates and are intended to serve as a reference point for studies using a stable isotope of bilirubin. The plasma disappearance of [10- 13 C]bilirubin IXα in three rats was studied using mass spectrometry to measure the bilirubin δ 13 C. Validation of the experimental procedure in terms of range and reproducibility of the detection method was carried out. The half lives of the initial and terminal exponentials were 2.27±2.5 and 22.8±12.9 minutes. Despite the large 95% confidence limits calculated for these clearance curves they serve as an important foundation for future bilirubin kinetic

  8. The 12C/13C Isotopic Ratio in Planetary Nebulae as Deduced from IUE Data

    Science.gov (United States)

    Miskey, C. L.; Feibelman, W. A.; Bruhweiler, F. C.

    2000-05-01

    The relative abundances of C, N, and O and the isotopic ratio of 12C/13C represent tracers of nucleosynthesis in intermediate stars with main-sequence masses between 0.6 and 8.0 solar masses in our Galaxy. Determining these abundances and the isotopic 12C/13C ratio in planetary nebulae (PNe) represent perhaps the best means to discern exactly how the ISM is enriched by CNO stellar nucleosynthesis. Walsh et al. (1996) and Clegg et al. (1997), using the Hubble Space Telescope, have derived the isotopic 12C/13C abundance ratio in the galactic carbon-rich PN, NGC 3918, and placed marginal constraints on it for the Magellanic PNe, N2 (SMC) and N122 (LMC). This was done using the well-known 12C 3P-1S (J=1-0 and J=2-0) transitions of C+2 at 1906.68 Angstroms and 1908.77 Angstroms and a J=0-0 transition at 1909.6 Angstroms, which is strictly forbidden in 12C. The finite nuclear spin of 13C (I=1/2) permits a corresponding F=1/2-1/2 electric dipole transition not seen in 12C. Since the 1909.6 Angstroms line is well separated from the other two 12C transitions, it provides an important means of determining 12C/13C in planetary nebulae. We have just completed a search of archival International Ultraviolet Explorer (IUE) high-dispersion spectra of approximately three dozen PNe, and derived 12C/13C ratios of 39 and 23 for the galactic PNe, NGC 2440 and NGC 6302, respectively. These are values much lower than the solar value of 89. In the other objects, the limited S/N of the IUE data indicate 12C/13C ratio upper limits much higher than 50. The implications of these results and their pertinence to stellar evolution are discussed.

  9. Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to {sup 13}C nuclear magnetic resonance pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, Sarah K. [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria); Hubert, Jane, E-mail: jane.hubert@univ-reims.fr [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Nuzillard, Jean-Marc [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Stuppner, Hermann [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria); Renault, Jean-Hugues [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Rollinger, Judith M. [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria)

    2014-10-10

    Highlights: • The major depsides of a lichen extract were directly identified within mixtures. • The initial extract was rapidly fractionated by CPC in the pH-zone refining mode. • Hierarchical clustering of {sup 13}C NMR signals resulted in the identification of depside molecular skeletons. • {sup 13}C chemical shift clusters were assigned to structures using a {sup 13}C NMR database. • Six depsides were unambiguously identified by this approach. - Abstract: Lichens produce a diversity of secondary metabolites, among them depsides comprised of two or more hydroxybenzoic acid units linked by ester, ether, or C-C-bonds. During classic solid support-based purification processes, depsides are often hydrolyzed and in many cases time, consuming procedures result only in the isolation of decomposition products. In an attempt to avoid extensive purification steps while maintaining metabolite structure integrity, we propose an alternative method to identify the major depsides of a lichen crude extract (Pseudevernia furfuracea var. ceratea (Ach.) D. Hawksw., Parmeliaceae) directly within mixtures. Exploiting the acidic character of depsides and differences in polarity, the extract was fractionated by centrifugal partition chromatography in the pH-zone refining mode resulting in twelve simplified mixtures of depsides. After {sup 13}C nuclear magnetic resonance analysis of the produced fractions, the major molecular structures were directly identified within the fraction series by using a recently developed pattern recognition method, which combines spectral data alignment and hierarchical clustering analysis. The obtained clusters of {sup 13}C chemical shifts were assigned to their corresponding molecular structures with the help of an in-house {sup 13}C NMR chemical shift database, resulting in six unambiguously identified compounds, namely methyl β-orcinolcarboxylate (1), atranorin (2), 5-chloroatranorin (3), olivetol carboxylic acid (4), olivetoric acid (5

  10. Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to 13C nuclear magnetic resonance pattern recognition

    International Nuclear Information System (INIS)

    Oettl, Sarah K.; Hubert, Jane; Nuzillard, Jean-Marc; Stuppner, Hermann; Renault, Jean-Hugues; Rollinger, Judith M.

    2014-01-01

    Highlights: • The major depsides of a lichen extract were directly identified within mixtures. • The initial extract was rapidly fractionated by CPC in the pH-zone refining mode. • Hierarchical clustering of 13 C NMR signals resulted in the identification of depside molecular skeletons. • 13 C chemical shift clusters were assigned to structures using a 13 C NMR database. • Six depsides were unambiguously identified by this approach. - Abstract: Lichens produce a diversity of secondary metabolites, among them depsides comprised of two or more hydroxybenzoic acid units linked by ester, ether, or C-C-bonds. During classic solid support-based purification processes, depsides are often hydrolyzed and in many cases time, consuming procedures result only in the isolation of decomposition products. In an attempt to avoid extensive purification steps while maintaining metabolite structure integrity, we propose an alternative method to identify the major depsides of a lichen crude extract (Pseudevernia furfuracea var. ceratea (Ach.) D. Hawksw., Parmeliaceae) directly within mixtures. Exploiting the acidic character of depsides and differences in polarity, the extract was fractionated by centrifugal partition chromatography in the pH-zone refining mode resulting in twelve simplified mixtures of depsides. After 13 C nuclear magnetic resonance analysis of the produced fractions, the major molecular structures were directly identified within the fraction series by using a recently developed pattern recognition method, which combines spectral data alignment and hierarchical clustering analysis. The obtained clusters of 13 C chemical shifts were assigned to their corresponding molecular structures with the help of an in-house 13 C NMR chemical shift database, resulting in six unambiguously identified compounds, namely methyl β-orcinolcarboxylate (1), atranorin (2), 5-chloroatranorin (3), olivetol carboxylic acid (4), olivetoric acid (5), and olivetonide (6)

  11. Study for the charge symmetric systems, 12C+13N and 12C+13C with the orthogonalized coupled-reaction-channel method

    International Nuclear Information System (INIS)

    Imanishi, B.; Denisov, V.; Motobayashi, T.

    1996-10-01

    The charge-symmetric scattering systems, 12 C+ 13 N and 12 C+ 13 C have been investigated by using the orthogonalized coupled-reaction-channel (OCRC) method with the basis functions of the elastic, inelastic and transfer channels defined by the single-particle states, 1p1/2, 2s1/2, 1d5/2 and 1d3/2 of the valence nucleon in 13 N or 13 C. The data of the elastic scattering of 13 N on 12 C measured by Lienard et al. have been explained consistently with the data of the elastic and inelastic scattering of the 12 C+ 13 C system. The CRC effects both on the above systems are very strong, although those on the 12 C+ 13 N system are fairly weaker than the 12 C+ 13 C system. The role of the highly excited single-particle states 1d3/2 is particularly important in the formation of a specific CRC scheme, i.e., the formation of the covalent molecules due to the hybridization caused by the mixing of the different parity single-particle states. The fusion cross sections of the 12 C+ 13 C system at energies below the Coulomb barrier are strongly enhanced as a result of the strong CRC effects as compared with those of the 12 C+ 12 C system, while in 12 C+ 13 N system the enhancement of the sub-barrier fusion has not been observed. The above absorption mechanism for the 12 C+ 13 C system explains the lack of the molecular-resonance phenomena observed in the 12 C+ 12 C system. We check the effects of the dipole (E1) transition of the valence nucleon in 13 N (and also in 13 C) due to the core-core Coulomb interaction in the scattering at sub-barrier energies. The effects are not appreciable. (author)

  12. Structure of Selected Derivates of p-Hydroxy Cynamonic Acid According to 13C CP MAS NMR and DFT Calculation

    International Nuclear Information System (INIS)

    Pisklak, D.M.; Wawer, I.; Tkaczyk, M.

    2005-01-01

    Derivatives of p-hydroxy cynamonic acid are widely occurring in fruits, vegetables, tea and coffee. They exhibit strong antioxidant activity due to the presence of phenolic group. Epidemiological, biological and biochemical data support health beneficial role of this group of compounds and anticarcinogenic, antimutagenic and antiinflamatory effects have been reported. The most common caffeic acid contributes significantly to the total polyphenol intake and has been suggested to play a role in the apparent association between the regular consumption of polyphenol-rich food and beverages, and the prevetion of inflammatory and proliferative diseases. 13 C MAS NMR spectra were recorded on a BRUKER DSX 400 spectrometer at 400,13. Powder samples were spun in a 4 mm rotor at 10 kHz ( 13 C). Signals were assigned:- By comparison with solution spectra; - Using dipolar dephasing and variable contact time experiments; - Confirmed by DFT calculations of shielding constants. The differences in chemical shifts between solution and solid state spectra are due to the formation of intramolecular and intermolecular hydrogen bonds, including C-OH...OC within cyclic dimers. (author)

  13. Curing reactions of bismaleimide resins catalyzed by triphenylphosphine. High resolution solid-state 13C NMR study

    International Nuclear Information System (INIS)

    Shibahara, Sumio; Enoki, Takashi; Yamamoto, Takahisa; Motoyoshiya, Jiro; Hayashi, Sadao.

    1996-01-01

    The curing reactions of bismaleimide resins consisted of N,N'-4,4'-diphenylmethanebismaleimide (BMI) and o,o'-diallylbisphenol-A (DABA) in the presence of triphenylphosphine (TPP) as a catalyst were investigated. DSC measurements showed that the catalytic effect of TPP on the curing reaction of BMI was more in the presence of DABA than in its absence. In order to explore this curing reaction, N-phenylmaleimide (PMI) and o-allylphenol (AP) were selected as model compounds. The products of the PMI/TPP system were oligomers and polymers of PMI, whereas the main product of the PMI/AP/TPP system was the PMI trimer which had the five-membered ring formed via the phosphonium ylide intermediate. In these model reactions, 13 C NMR was found to be useful to distinguish between trimerization and polymerization of PMI. On the basis of the results of the model reactions, the curing reactions of bismaleimide resins were investigated by high resolution solid state 13 C NMR techniques. In the BMI/TPP system, maleimides polymerize above 175degC, but the polymerization does not proceed at 120degC. On the other hand, maleimides trimerize above 120degC in the presence of DABA and TPP. The mechanism of the trimerization is briefly discussed. (author)

  14. Identification of the urinary metabolites of 4-bromoaniline and 4-bromo-[carbonyl-13C]-acetanilide in rat.

    Science.gov (United States)

    Scarfe, G B; Nicholson, J K; Lindon, J C; Wilson, I D; Taylor, S; Clayton, E; Wright, B

    2002-04-01

    1. The urinary excretion of 4-bromoaniline and its [carbonyl-(13)C]-labelled N-acetanilide, together with their corresponding metabolites, have been investigated in the rat following i.p. administration at 50 mg kg(-1). 2. Metabolite profiling was performed by reversed-phase HPLC with UV detection, whilst identification was performed using a combination of enzymic hydrolysis and directly coupled HPLC-NMR-MS analysis. The urinary metabolite profile was quantitatively and qualitatively similar for both compounds with little of either excreted unchanged. 3. The major metabolite present in urine was 2-amino-5-bromophenylsulphate, but, in addition, a number of metabolites with modification of the N-acetyl moiety were identified (from both the [(13)C]-acetanilide or produced following acetylation of the free bromoaniline). 4. For 4-bromoacetanilide, N-deacetylation was a major route of metabolism, but despite the detection of the acetanilide following the administration of the free aniline, there was no evidence of reacetylation (futile deacetylation). 5. Metabolites resulting from the oxidation of the acetyl group included a novel glucuronide of an N-glycolanilide, an unusual N-oxanilic acid and a novel N-acetyl cysteine conjugate.

  15. Compound-Specific Isotope Analyses to Assess TCE Biodegradation in a Fractured Dolomitic Aquifer.

    Science.gov (United States)

    Clark, Justin A; Stotler, Randy L; Frape, Shaun K; Illman, Walter A

    2017-01-01

    The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ 37 Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis-DCE. Carbon isotopic values range between -28.9 and -20.7‰ VPDB for TCE, and -26.5 and -11.8‰ VPDB for cis-DCE. In most wells, isotopic values remained steady over the 15-month study. Isotopic enrichment from TCE to cis-DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine-carbon isotopic enrichment ratios (ϵ Cl /ϵ C ) were 0.18 for TCE and 0.69 for cis-DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume. © 2016, National Ground Water Association.

  16. Compound-specific isotope records of late-quaternary environmental change in southeastern North Carolina

    Science.gov (United States)

    Lane, Chad S.; Taylor, Audrey K.; Spencer, Jessica; Jones, Kaylee B.

    2018-02-01

    Reconstructions of late Quaternary paleohydrology are rare from the U.S. Atlantic coastal plain (ACP). Here we present compound-specific hydrogen (δ2Halkane) and carbon (δ13Calkane) isotope analyses of terrestrially-derived n-alkanes from Jones Lake and Singletary Lake in eastern North Carolina spanning the last ∼50,000 years. Combined with pollen, charcoal, and bulk geochemical analyses, the δ2Halkane data indicate arid conditions during the late-Pleistocene, but differing edaphic conditions at the sites perhaps related to differing water table depths. The δ13Calkane data indicate a significant C4 plant component during the late Pleistocene, but other proxies indicate a sparsely-vegetated landscape. The Pleistocene-Holocene transition is marked by rapid fluctuations in δ2Halkane values that are similar to the patterns of Bølling Allerød and Younger Dryas isotope data from Greenland indicating sensitivity of the regional climate to short-lived, high-amplitude climatic events. The δ2Halkane data indicate a mesic early Holocene that supported colonization by Quercus-dominated ecosystems. Evidence of middle Holocene aridity in eastern Tennessee and western North Carolina contrasts with evidence of mesic conditions on the ACP, a geographic pattern similar to modern teleconnected precipitation responses to the Pacific Decadal Oscillation. A transition to Pinus-dominated ecosystems ∼5500 cal yr B.P. is accompanied by a large increase charcoal, but is not coincident with any large changes in δ2Halkane values, indicating that hydrologic change was likely not responsible for sustained late-Holocene dominance of Pinus. The lack of a change in middle Holocene hydrology and the spatiotemporally heterogeneous nature of the Quercus-Pinus transition on the ACP indicate prehistoric anthropogenic land management practices may represent the most parsimonious explanation for the regionally pervasive ecological change.

  17. New protocol for compound-specific radiocarbon analysis of archaeological bones.

    Science.gov (United States)

    Deviese, Thibaut; Comeskey, Daniel; McCullagh, James; Bronk Ramsey, Christopher; Higham, Thomas

    2018-03-15

    For radiocarbon results to be accurate, samples must be free of contaminating carbon. Sample pre-treatment using a high-performance liquid chromatography (HPLC) approach has been developed at the Oxford Radiocarbon Accelerator Unit (ORAU) as an alternative to conventional methods for dating heavily contaminated bones. This approach isolates hydroxyproline from bone collagen, enabling a purified bone-specific fraction to then be radiocarbon dated by accelerator mass spectrometry (AMS). Using semi-preparative chromatography and non-carbon-based eluents, this technique enables the separation of underivatised amino acids liberated by hydrolysis of extracted bone collagen. A particular focus has been the isolation of hydroxyproline for single-compound AMS dating since this amino acid is one of the main contributors to the total amount of carbon in mammalian collagen. Our previous approach, involving a carbon-free aqueous mobile phase, required a two-step separation using two different chromatographic columns. This paper reports significant improvements that have been recently made to the method to enable faster semi-preparative separation of hydroxyproline from bone collagen, making the method more suitable for routine radiocarbon dating of contaminated and/or poorly preserved bone samples by AMS. All steps of the procedure, from the collagen extraction to the correction of the AMS data, are described. The modifications to the hardware and to the method itself have reduced significantly the time required for the preparation of each sample. This makes it easier for other radiocarbon facilities to implement and use this approach as a routine method for preparing contaminated bone samples. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    Science.gov (United States)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  19. Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Zhang, Xi-Chang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Liu, Weiping [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Center for Environmental Research – UFZ, Leipzig 04318 (Germany)

    2015-09-15

    Highlights: • Alpha-cypermethrin (α-CP) can be degraded by microorganisms in soil. • Biodegradation of α-CP resulted in carbon isotope fractionation. • A relationship was found between carbon isotope ratios and concentrations of α-CP. • An enrichment factor ϵ of α-CP was determined as −1.87‰. • CSIA is applicable to assess biodegradation of α-CP. - Abstract: To assess microbial degradation of alpha-cypermethrin in soil, attenuation of alpha-cypermethrin was investigated by compound-specific stable isotope analysis. The variations of the residual concentrations and stable carbon isotope ratios of alpha-cypermethrin were detected in unsterilized and sterilized soils spiked with alpha-cypermethrin. After an 80 days’ incubation, the concentrations of alpha-cypermethrin decreased to 0.47 and 3.41 mg/kg in the unsterilized soils spiked with 2 and 10 mg/kg, while those decreased to 1.43 and 6.61 mg/kg in the sterilized soils. Meanwhile, the carbon isotope ratios shifted to −29.14 ± 0.22‰ and −29.86 ± 0.33‰ in the unsterilized soils spiked with 2 and 10 mg/kg, respectively. The results revealed that microbial degradation contributed to the attenuation of alpha-cypermethrin and induced the carbon isotope fractionation. In order to quantitatively assess microbial degradation, a relationship between carbon isotope ratios and residual concentrations of alpha-cypermethrin was established according to Rayleigh equation. An enrichment factor, ϵ = −1.87‰ was obtained, which can be employed to assess microbial degradation of alpha-cypermethrin. The significant carbon isotope fractionation during microbial degradation suggests that CSIA is a proper approach to qualitatively detect and quantitatively assess the biodegradation during attenuation process of alpha-cypermethrin in the field.

  20. A synthesis of marine sediment core δ13C data over the last 150 000 years

    Directory of Open Access Journals (Sweden)

    R. E. M. Rickaby

    2010-10-01

    Full Text Available The isotopic composition of carbon, δ13C, in seawater is used in reconstructions of ocean circulation, marine productivity, air-sea gas exchange, and biosphere carbon storage. Here, a synthesis of δ13C measurements taken from foraminifera in marine sediment cores over the last 150 000 years is presented. The dataset comprises previously published and unpublished data from benthic and planktonic records throughout the global ocean. Data are placed on a common δ18O age scale suitable for examining orbital timescale variability but not millennial events, which are removed by a 10 ka filter. Error estimates account for the resolution and scatter of the original data, and uncertainty in the relationship between δ13C of calcite and of dissolved inorganic carbon (DIC in seawater. This will assist comparison with δ13C of DIC output from models, which can be further improved using model outputs such as temperature, DIC concentration, and alkalinity to improve estimates of fractionation during calcite formation. High global deep ocean δ13C, indicating isotopically heavy carbon, is obtained during Marine Isotope Stages (MIS 1, 3, 5a, c and e, and low δ13C during MIS 2, 4 and 6, which are temperature minima, with larger amplitude variability in the Atlantic Ocean than the Pacific Ocean. This is likely to result from changes in biosphere carbon storage, modulated by changes in ocean circulation, productivity, and air-sea gas exchange. The North Atlantic vertical δ13C gradient is greater during temperature minima than temperature maxima, attributed to changes in the spatial extent of Atlantic source waters. There are insufficient data from shallower than 2500 m to obtain a coherent pattern in other ocean basins. The data synthesis indicates that basin-scale δ13C during the last interglacial (MIS 5e is not clearly distinguishable from the Holocene (MIS 1 or from MIS 5a and 5c, despite significant differences in ice volume and atmospheric CO2

  1. Multi-objective experimental design for (13)C-based metabolic flux analysis.

    Science.gov (United States)

    Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel

    2015-10-01

    (13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi

  2. 13C MRS Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Corin O. Miller

    2017-06-01

    Full Text Available Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well-known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs using 13C MRS.Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal, along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion half way through the study on the second study session.Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e., monotonic increases in the 13C-glycogen NMR signal was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen

  3. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Science.gov (United States)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  4. [2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.

    Science.gov (United States)

    Eloqayli, Haytham; Melø, Torun M; Haukvik, Anne; Sonnewald, Ursula

    2011-08-01

    This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-(13)C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by (1)H magnetic resonance spectroscopy and HPLC. Using [2,4-(13)C]BHB and [1-(13)C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by (13)C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate.

  5. A Robust Analysis Method For Δ13c Signal Of Bulk Organic Matter In Speleothems

    Science.gov (United States)

    Bian, F.; Blyth, A. J.; Smith, C.; Baker, A.

    2017-12-01

    Speleothems preserve organic matter that is derived from both the surface soil and cave environments. This organic matter can be used to understand paleoclimate and paleoenvironments. However, a stable and quick micro-analysis method to measure the δ13C signals from speleothem organic matter separate from the total δ13C remains absent. And speleothem organic geochemistry is still relatively unexplored compared to inorganic geochemistry. In this research, for the organic matter analysis, bulk homogeneous power samples were obtained from one large stalagmite. These were dissolved by phosphoric acid to produce the aqueous solution. Then, the processed solution was degassed through a rotational vacuum concentrator. A liquid chromatograph was coupled to IRMS to control the oxidization and the measurement of analytes. This method is demonstrated to be robust for the analysis of speleothem d13C organic matter analysis under different preparation and instrumental settings, with the low standard deviation ( 0.2‰), and low sample consumption (<25 mg). Considering the complexity of cave environments, this method will be useful in further investigations the δ13C of entrapped organic matter and environmental controls in other climatic and ecological contexts, including the determination of whether vegetation or soil microbial activity is the dominant control on speleothem d13C of organic matter.

  6. SRS-sensor 13C/12C isotops measurements for detecting Helicobacter Pylori

    Science.gov (United States)

    Grishkanich, Aleksandr; Chubchenko, Yan; Elizarov, Valentin; Zhevlakov, Aleksandr; Konopelko, Leonid

    2018-02-01

    We developed SRS-sensor 13C/12C isotops measurements detecting Helicobacter Pylori for medical diagnostics of human health. Measuring of absolute 13C/12C isotope amount ratios allows to explore the topical problems of the modern world, alcoholic beverages and tobacco, medical diagnostics of human health. SRS method is used to measure the ratio of carbon isotopes in the exhaled carbon dioxide, which is used to diagnose the human infection of Helicobacter pylori and the influence of the Helicobacter pylori bacterium on the occurrence of gastritis, gastric and duodenal ulcers. A method for the analysis of human infection with Helicobacter pylori was developed on the basis of measurements of the ratio of 13C / 12C carbon isotopes in human exhaled air with a high level of measurement accuracy. The article reviews the work in the field of provision comparability of absolute 13C/12C isotope amount ratios in the environment and food. The analysis of the technical and metrological characteristics of traditional and perspective instruments for measuring isotope ratios is presented. The provision of comparability of absolute 13C/12C isotope amount ratios is carried by gravimetrically prepared reference standards. The key features and emerging issues are discussed.

  7. To be certain about the uncertainty: Bayesian statistics for 13 C metabolic flux analysis.

    Science.gov (United States)

    Theorell, Axel; Leweke, Samuel; Wiechert, Wolfgang; Nöh, Katharina

    2017-11-01

    13 C Metabolic Fluxes Analysis ( 13 C MFA) remains to be the most powerful approach to determine intracellular metabolic reaction rates. Decisions on strain engineering and experimentation heavily rely upon the certainty with which these fluxes are estimated. For uncertainty quantification, the vast majority of 13 C MFA studies relies on confidence intervals from the paradigm of Frequentist statistics. However, it is well known that the confidence intervals for a given experimental outcome are not uniquely defined. As a result, confidence intervals produced by different methods can be different, but nevertheless equally valid. This is of high relevance to 13 C MFA, since practitioners regularly use three different approximate approaches for calculating confidence intervals. By means of a computational study with a realistic model of the central carbon metabolism of E. coli, we provide strong evidence that confidence intervals used in the field depend strongly on the technique with which they were calculated and, thus, their use leads to misinterpretation of the flux uncertainty. In order to provide a better alternative to confidence intervals in 13 C MFA, we demonstrate that credible intervals from the paradigm of Bayesian statistics give more reliable flux uncertainty quantifications which can be readily computed with high accuracy using Markov chain Monte Carlo. In addition, the widely applied chi-square test, as a means of testing whether the model reproduces the data, is examined closer. © 2017 Wiley Periodicals, Inc.

  8. Applications of stable isotopes of /sup 2/H, /sup 13/C and /sup 15/N to clinical problems. Experience of a collaborative program at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P D; Szczepanik, P A; Hachey, D L [Argonne National Lab., Evanston, Ill. (USA)

    1974-08-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use /sup 2/H, /sup 13/C, or /sup 15/N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective /sup 13/C and /sup 15/N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. /sup 13/C and /sup 15/N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B/sub 12/-responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. /sup 15/N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome.

  9. Sampling technique for collection of expired COsub(2) in studies using naturally labelled sup(13)C in calves

    International Nuclear Information System (INIS)

    Chevalier, R.; Pelletier, G.; Gagnon, M.

    1984-01-01

    Natural isotopic labelling of animal metabolic processes presents great advantages over the use of artificially enriched compounds. These advantages include the use of natural diets, low cost and easiness of handling, sampling and disposal. Changes in the sup(13)C/sup(12)C ratio of expired COsub(2) after ingestion of a test meal containing a variable proportion of Csub(3) and/or Csub(4) plant-derived products permits measurements of the immediate oxidation of dietary carbohydrates. A breathing device for collection of expired COsub(2) and purification techniques are described. The breath-sampling device is composed of a polypropylene enclosure and a rubber bag. The rubber bag is blown up by the animal and a sample of the expired gas is transferred to a sampling glass holder in which a vacuum had been previously achieved. Sample purification of expired COsub(2) is done by differential freezing

  10. Backbone and stereospecific (13)C methyl Ile (δ1), Leu and Val side-chain chemical shift assignments of Crc.

    Science.gov (United States)

    Sharma, Rakhi; Sahu, Bhubanananda; Ray, Malay K; Deshmukh, Mandar V

    2015-04-01

    Carbon catabolite repression (CCR) allows bacteria to selectively assimilate a preferred compound among a mixture of several potential carbon sources, thus boosting growth and economizing the cost of adaptability to variable nutrients in the environment. The RNA-binding catabolite repression control (Crc) protein acts as a global post-transcriptional regulator of CCR in Pseudomonas species. Crc triggers repression by inhibiting the expression of genes involved in transport and catabolism of non-preferred substrates, thus indirectly favoring assimilation of preferred one. We report here a nearly complete backbone and stereospecific (13)C methyl side-chain chemical shift assignments of Ile (δ1), Leu and Val of Crc (~ 31 kDa) from Pseudomonas syringae Lz4W.

  11. Studies of the pH dependence of 13C shifts and carbon-carbon coupling constants of [U-13C]aspartic and -glutamic acids

    International Nuclear Information System (INIS)

    London, R.E.; Walker, T.E.; Kollman, V.H.; Matwiyoff, N.A.

    1978-01-01

    13 C NMR studies of the chemical shifts and carbon--carbon spin--spin coupling constants of 90% [U- 13 C]aspartic and -glutamic acids are reported. Effects of titration of the two carboxyl groups are separated computationally and the results compared with those for asparagine and glutamine, aspartate and glutamate containing peptides, and a series of amino-n-butyric acids. The results indicate that the carboxyl carbon shift resulting from titration of the carboxyl group is strongly dependent on its distance (number of bonds) from an amino group. Alternatively, remote methyl groups exhibit a much smaller titration induced shift than carboxyl groups in the corresponding position. Significant remote effects of pH titration on the one-bond carbon-carbon coupling are also observed, particularly for couplings involving the side-chain carboxyl carbons. These results are discussed in terms of polarization of the C--O bonds in response to titration of a remote carboxyl group. Values of 3 J/sub CC/ in asparate and glutamate indicate a strong conformational dependence. Rotamer populations predicted on the basis of the observed couplings and theoretical INDO calculations are in good agreement with values based on analysis of the 3 J/sub HH/ and 3 J/sub CH/ couplings. For a given conformation of glutamic acid, it is found that 3 J 14 is considerably smaller than 3 J 25 . This result is consistent with obsrvations on a number of other 13 C-labeled amino acids. 5 figures, 4 tables

  12. Late pleistocene-recent atmospheric δ13C record in C4 grasses

    International Nuclear Information System (INIS)

    Toolin, L.J.; Eastoe, C.

    1993-01-01

    Samples of Setaria species from packrat middens, herbarium specimens and modern plants preserve a record of δ 13 C of atmospheric CO 2 from 12,600 Bp to the present. No secular trend is detected between 12,600 and 1,800 Bp, when the mean value of δ 13 C during that period was -6.5 ± 0.1 per-thousand (the error is the standard deviation of the mean). The value agrees with δ 13 C averages of pre-industrial CO 2 from polar ice cores, and differs significantly from modern regional (-8.2 ± 0.1 per-thousand) and global (-7.7 per-thousand) values, which are higher because of fossil fuel burning

  13. 13C and 18O isotope enrichment by vibrational energy exchange pumping of CO

    International Nuclear Information System (INIS)

    Bergman, R.C.; Homicz, G.F.; Rich, J.W.; Wolk, G.L.

    1983-01-01

    Measurements of preferential vibration-to-vibration (V--V) pumping of high vibrational states of 13 C 16 O and 12 C 18 O in optically excited CO gas are reported. It is found that the v = 22, 25, 27, 30, and 32 states of 13 C 16 O and the v = 8, 10, and 12 states of 12 C 18 O are substantially overpopulated compared to the same states in 12 C 16 O in strongly V--V pumped CO. Such mixtures are observed to react, forming products enriched in 13 C. The results are in reasonable agreement with an analytical kinetic model of V--V pumping in binary mixtures of diatomic gases

  14. Resonant states in 13C and 16,17O at high excitation energy

    International Nuclear Information System (INIS)

    Rodrigues, M R D; Borello-Lewin, T; Miyake, H; Duarte, J L M; Rodrigues, C L; Horodynski-Matsushigue, L B; Ukita, G M; Cappuzzello, F; Foti, A; Cavallaro, M; Agodi, C; Cunsolo, A; Carbone, D; Bondi, M; Napoli, M De; Roeder, B T; Linares, R; Lombardo, I

    2014-01-01

    The 9 Be( 6 Li,d) 13 C and 12,13 C( 6 Li,d) 16,17 O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13 C and 15-30 keV for 16 O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θ d = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility

  15. 13C trend in an Egyptian recent tree as a record for global carbon dioxide behaviour

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Belacy, N.; Abou El-Nour, F.

    1988-01-01

    The record of the 13 C content in tree rings of an Egyptian tree is used as indication for the increase of the atmospheric carbon dioxide concentration. A decrease of the 13 C isotopic content of the tree rings is observed starting from 1940 coinciding with a significant increase in the global production of CO 2 due to combustion of fossil fuel depleted in 13 C with respect to the atmosphere. Considering the local as well as the global CO 2 production rates together with the measured isotopic data, it may be concluded that the behaviour of carbon dioxide in the investigated Eastern Delta province in Egypt reflects mainly a global rather than a local effect. (author)

  16. 14C and 13C in the atmosphere and soil air at two localities of Slovakia

    International Nuclear Information System (INIS)

    Sivo, A.; Simon, J.; Richtarikova, M.; Holy, K.; Polaskova, A.; Bulko, M.; Hola, O.

    2006-01-01

    In this paper there are presented the long-term measurements of 13 R and 14 R in urban and countryside atmosphere. The different conditions and particularities of both the localities which influence on the mentioned characteristics are pointed out. The existence of δ 13 C and δ 14 C variations and their phase correlation were confirmed as well as their origin were qualitatively explained. By means of the non-linear regression and harmonic analysis the trends of δ 13 C and δ 14 C variations was found. The study of δ 13 C and δ 14 C courses has shown that it can be used as an effective tool to determine the level of the anthropogenic CO 2 pollution of the atmosphere. (authors)

  17. The 12C/13C ratio in stellar atmospheres. VI. Five luminous cool stars

    International Nuclear Information System (INIS)

    Hinkle, K.H.; Lambert, D.L.; Snell, R.L.

    1976-01-01

    The isotopic abundance ratio, 12 C/ 13 C, is derived from the CO vibration rotation lines at 1.6 and 2.3 μ for five cool luminous stars by a simple curve-of-growth technique. A new analysis of CN lines at 8000 A is also described for α Sco and α Ori. Results derived independently from CO and CN are in agreement. Final results are 12 C/ 13 C=7 +- 2(α Ori), 12 +- 3(α Sco), 7 +- 3(β Peg), 25 +- 7(chi Cyg), 17 +- 4(α Her), and 7 +- 1.5(α Boo). The α Boo analysis provides a check on the CO curve-of-growth technique; the 12 C/ 13 C ratio from the 2.3 μ CO lines is in good agreement with the previously determined ratio from CN and CH lines

  18. Resonant states in 13C and 16,17O at high excitation energy

    Science.gov (United States)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Duarte, J. L. M.; Rodrigues, C. L.; Horodynski-Matsushigue, L. B.; Ukita, G. M.; Cappuzzello, F.; Cavallaro, M.; Foti, A.; Agodi, C.; Cunsolo, A.; Carbone, D.; Bondi, M.; De Napoli, M.; Roeder, B. T.; Linares, R.; Lombardo, I.

    2014-12-01

    The 9Be(6Li,d)13C and 12,13C(6Li,d)16,17O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13C and 15-30 keV for 16O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θd = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility.

  19. Investigation of α-cluster states in 13C via the (6Li,d) reaction

    CERN Document Server

    Rodrigues, M R D; Horodynski-Matsushigue, L B; Cunsolo, A; Cappuzzello, F; Duarte, J L M; Rodrigues, C L; Ukita, G M; Souza, M A; Miyake, H

    2010-01-01

    The 9Be(6Li,d)13C reaction was used to investigate possible α-cluster states in 13C. The reaction was measured at 25.5 MeV incident energy, employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Ten out of sixteen known levels of 13C, up to 11 MeV of excitation, were observed and, due to the much improved energy resolution of 50 keV, at least three doublets could be resolved. This work presents a preliminary analysis of five of the most intensely populated states, also in comparison with the results of former transfer studies.

  20. 13C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    13 C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the 13 C enrichments at the individual carbons of glutamate when [3- 13 C]alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of 13 C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by [1- 13 C]acetyl-CoA (from [2- 13 C]pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by [3- 13 C]alanine plus [2- 13 C]ethanol, which are converted to [2- 13 C]acetyl-CoA. Thus, measurement of 13 C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the 13 C-labeled fatty acids produced

  1. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-glycine and FACE CO2.

    Directory of Open Access Journals (Sweden)

    Louise C Andresen

    Full Text Available It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g(-1 soil of (13C-labeled glycine ((13C2, 99 atom % to soils in situ. Plots were treated with elevated temperature (+1°C, T, summer drought (D and elevated atmospheric carbon dioxide (510 ppm [CO2], as well as combined treatments (TD, TCO2, DCO2 and TDCO2. The (13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs was determined after 24 h. (13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS. Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated (13C in all treatments, whereas fungi had minor or no glycine derived (13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G(+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was (13C-depleted (δ(13C = 12.2‰ compared to ambient (δ(13C = ∼-8‰, and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to

  2. Oceanic uptake of CO2 re-estimated through δ13C in WOCE samples

    International Nuclear Information System (INIS)

    Lerperger, Michael; McNichol, A.P.; Peden, J.; Gagnon, A.R.; Elder, K.L.; Kutschera, W.; Rom, W.; Steier, P.

    2000-01-01

    In addition to 14 C, a large set of δ 13 C data was produced at NOSAMS as part of the World ocean circulation experiment (WOCE). In this paper, a subset of 973 δ 13 C results from 63 stations in the Pacific Ocean was compared to a total number of 219 corresponding results from 12 stations sampled during oceanographic programs in the early 1970s. The data were analyzed in light of recent work to estimate the uptake of CO 2 derived from fossil fuel and biomass burning in the oceans by quantifying the δ 13 C Suess effect in the oceans. In principle, the δ 13 C value of dissolved inorganic carbon (DIC) allows a quantitative estimate of how much of the anthropogenic CO 2 released into the atmosphere is taken up by the oceans, because the δ 13 C of CO 2 derived from organic matter (∼2.7 percent) is significantly different from that of the atmosphere (∼0.8 percent). Our new analysis indicates an apparent discrepancy between the old and the new data sets, possibly caused by a constant offset in δ 13 C values in a subset of the data. A similar offset was reported in an earlier work by Paul Quay et al. for one station that was not included in their final analysis. We present an estimate for this assumed offset based on data from water depths below which little or no change in δ 13 C over time would be expected. Such a correction leads to a significantly reduced estimate of the CO 2 uptake, possibly as low as one half of the amount of 2.1 GtC yr -1 (gigatons carbon per year) estimated previously. The present conclusion is based on a comparison with a relatively small data set from the 70s in the Pacific Ocean. The larger data set collected during the GEOSECS program was not used because of problems reported with the data. This work suggests there may also be problems in comparing non-GEOSECS data from the 1970s to the current data. The calculation of significantly lower uptake estimates based on an offset-related problem appears valid, but the exact figures are

  3. Minimally invasive (13)C-breath test to examine phenylalanine metabolism in children with phenylketonuria.

    Science.gov (United States)

    Turki, Abrar; Murthy, Gayathri; Ueda, Keiko; Cheng, Barbara; Giezen, Alette; Stockler-Ipsiroglu, Sylvia; Elango, Rajavel

    2015-01-01

    Phenylketonuria (PKU) is an autosomal recessive disorder caused by deficiency of hepatic phenylalanine hydroxylase (PAH) leading to increased levels of phenylalanine in the plasma. Phenylalanine levels and phenylalanine hydroxylase (PAH) activity monitoring are currently limited to conventional blood dot testing. 1-(13)C-phenylalanine, a stable isotope can be used to examine phenylalanine metabolism, as the conversion of phenylalanine to tyrosine occurs in vivo via PAH and subsequently releases the carboxyl labeled (13)C as (13)CO2 in breath. Our objective was to examine phenylalanine metabolism in children with PKU using a minimally-invasive 1-(13)C-phenylalanine breath test ((13)C-PBT). Nine children (7 M: 2 F, mean age 12.5 ± 2.87 y) with PKU participated in the study twice: once before and once after sapropterin supplementation. Children were provided 6 mg/kg oral dose of 1-(13)C-phenylalanine and breath samples were collected at 20 min intervals for a period of 2h. Rate of CO2 production was measured at 60 min post-oral dose using indirect calorimetry. The percentage of 1-(13)C-phenylalanine exhaled as (13)CO2 was measured over a 2h period. Prior to studying children with PKU, we tested the study protocol in healthy children (n = 6; 4M: 2F, mean age 10.2 ± 2.48 y) as proof of principle. Production of a peak enrichment (Cmax) of (13)CO2 (% of dose) in all healthy children occurred at 20 min ranging from 17-29% of dose, with a subsequent return to ~5% by the end of 2h. Production of (13)CO2 from 1-(13)C-phenylalanine in all children with PKU prior to sapropterin treatment remained low. Following sapropterin supplementation for a week, production of (13)CO2 significantly increased in five children with a subsequent decline in blood phenylalanine levels, suggesting improved PAH activity. Sapropterin treatment was not effective in three children whose (13)CO2 production remained unchanged, and did not show a reduction in blood phenylalanine levels and improvement

  4. Cyclohexanecarbonitriles: Assigning Configurations at Quaternary Centers From 13C NMR CN Chemical Shifts.1

    Science.gov (United States)

    Wei, Guoqing

    2009-01-01

    13C NMR chemical shifts of the nitrile carbon in cyclohexanecarbonitriles directly correlate with the configuration of the quaternary, nitrile-bearing stereocenter. Comparing 13C NMR chemical shifts for over 200 cyclohexanecarbonitriles reveals that equatorially oriented nitriles resonate 3.3 ppm downfield, on average, from their axial counterparts. Pairs of axial/equatorial diastereomers varying only at the nitrile-bearing carbon consistently exhibit downfield shifts of δ 0.4–7.2 for the equatorial nitrile carbon, even in angularly substituted decalins and hydrindanes. PMID:19348434

  5. DARC PLURIDATA system: the /sup 13/C-N. M. R. data bank

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J E; Bonnet, J C [Paris-7 Univ., 75 (France)

    1979-09-15

    The capabilities of the DARC system are discussed and illustrated by the storage and retrieval functions of the /sup 13/C-N.M.R. data bank of the DARC PLURIDATA system. The data covered by the bank, as well as the input stream to the bank and validation of the spectra, are described. Particular stress is laid on the DARC structural retrieval system, which illustrates the interactive interrogration of a chemical bank by means of the structural diagram of a molecule, i.e. the universal language in chemistry. The potential of the /sup 13/C-N.M.R. data bank in computer-aided structural elucidation is outlined.

  6. Automated 13CO2 analyzing system for the 13C breath test

    International Nuclear Information System (INIS)

    Suehiro, Makiko; Kuroda, Akira; Maeda, Masahiro; Hinaga, Kou; Watanabe, Hiroyuki.

    1987-01-01

    An automated 13 CO 2 analyzing system for the 13 C breath test was designed, built and evaluated. The system, which was designed to be controlled by a micro-computer, includes CO 2 purification, 13 CO 2 abundance measurement, data processing and data filing. This article gives the description of the whole system with flow charts. This system has proved to work well and it has become feasible to dispose of 5 to 6 CO 2 samples per hour. With such a system, the 13 C breath test will be carried out much more easily and will obtain much greater popularity. (author)

  7. Nuclear critical opalescence and the M1 form factors of 12C and 13C

    International Nuclear Information System (INIS)

    Delorme, J.; Figureau, A.; Guichon, P.

    1981-01-01

    It is shown that core polarization by the nuclear pion field has opposite effects on the M1 form factors of 12 C(15.11 MeV) and 13 C(g.s.). New data on 13 C are found to agree with this prediction and a common interpretation of the experiments is shown to be possible for the two nuclei in terms of critical opalescence. Discrimination from alternative explanations of the observed anomalies should await further experiments, especially photopion reactions. (orig.)

  8. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables cardiac metabolism assessment and provides a powerful tool for heart physiology studies, although the low molar concentration of derivate metabolites gives rise to technological limitations in terms of data quality. The desi...... throughout the volume of interest for cardiac imaging in pig. Experimental SNR-vs-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), permitted to highlight the performance of the proposed coils configuration. © 2013 Elsevier Ltd. All rights reserved....

  9. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  10. Structure–kinetic relationship study of CDK8/CycC specific compounds

    Science.gov (United States)

    Schneider, Elisabeth V.; Böttcher, Jark; Huber, Robert; Maskos, Klaus; Neumann, Lars

    2013-01-01

    In contrast with the very well explored concept of structure–activity relationship, similar studies are missing for the dependency between binding kinetics and compound structure of a protein ligand complex, the structure–kinetic relationship. Here, we present a structure–kinetic relationship study of the cyclin-dependent kinase 8 (CDK8)/cyclin C (CycC) complex. The scaffold moiety of the compounds is anchored in the kinase deep pocket and extended with diverse functional groups toward the hinge region and the front pocket. These variations can cause the compounds to change from fast to slow binding kinetics, resulting in an improved residence time. The flip of the DFG motif (“DMG” in CDK8) to the inactive DFG-out conformation appears to have relatively little influence on the velocity of binding. Hydrogen bonding with the kinase hinge region contributes to the residence time but has less impact than hydrophobic complementarities within the kinase front pocket. PMID:23630251

  11. Accuracy of non-invasive 13C-urea breath test compared to invasive tests for helicobacter pylori detection

    International Nuclear Information System (INIS)

    Bilal, R.; Khaar, B.; Omar, M.; Qureshi, T.Z.; Ahmed, T.; Latif, Z.; Jaffery, I.; Omar, M.

    2007-01-01

    To compare the sensitivity, specificity and Positive Predictive Value (PPV) of histology, Campylobacter-Like Organism (CLO) test, culture and 13C-Urea Breath Test (UBT) for the diagnosis of Helicobacter pylori infection. District Headquarter Hospital, Rawalpindi, Military Hospital, Rawalpindi and Pakistan Institute of Science and Technology (PINSTECH), Nilore, Islamabad from June 2002 to 2003. Three mucosal biopsy specimens were obtained during endoscopy of 90 symptomatic patients. Histology, CLO test and culture were performed on these specimens. Breath samples for 13C-UBT were collected and sent to RIAD, PINSTECH on the same day for isotope ratio mass spectrometry. For analysis purpose, each of the tests was fixed as the gold standard in turn and the others were then compared against it. In addition, any two as well as any three positive tests were then set as the gold standard and the other tests compared against them to calculate the sensitivity, specificity, accuracy and PPV of other tests. Urea breath test had the highest sensitivity, ranging from 95 to 100%, against all the gold standards with specificity ranging from 55 to 100%, whereas the sensitivity of histological examination was around 98% but it had comparatively lower specificity (49-89%). The CLO test had a sensitivity range of 86-100% and specificity of 67-100%. Culture had the minimum sensitivity (59-70%) but had highest specificity (96-100%) against all the gold standards. Age and gender had no effect on p-value of each test or in combination. The urea breath test has shown the highest ability to detect the organism with 95-100% sensitivity in symptomatic individuals and specificity, which is comparable to other tests. (author)

  12. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    Science.gov (United States)

    Chen, Daizhao; Qing, Hairuo; Li, Renwei

    2005-06-01

    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  13. CACA-TOCSY with alternate {sup 13}C-{sup 12}C labeling: a {sup 13}C{sup {alpha}} direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute of Advanced Industrial Science and Technology (AIST), Biomedicinal Information Research Center (BIRC) (Japan); Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian; Wagner, Gerhard, E-mail: gerhard_wagner@hms.harvard.ed [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2010-05-15

    We present a {sup 13}C direct detection CACA-TOCSY experiment for samples with alternate {sup 13}C-{sup 12}C labeling. It provides inter-residue correlations between {sup 13}C{sup {alpha}} resonances of residue i and adjacent C{sup {alpha}s} at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C{sup {alpha}} nuclei separated by more than one residue. The experiment also provides C{sup {alpha}}-to-side chain correlations, some amino acid type identifications and estimates for {psi} dihedral angles. The power of the experiment derives from the alternate {sup 13}C-{sup 12}C labeling with [1,3-{sup 13}C] glycerol or [2-{sup 13}C] glycerol, which allows utilizing the small scalar {sup 3}J{sub CC} couplings that are masked by strong {sup 1}J{sub CC} couplings in uniformly {sup 13}C labeled samples.

  14. Country-specific chemical signatures of persistent environmental compounds in breast milk

    DEFF Research Database (Denmark)

    Krysiak-Baltyn, Konrad; Toppari, J.; Skakkebaek, N.E.

    2010-01-01

    for exposure of the foetus to such agents. Therefore, we undertook a comprehensive ecological study of 121 EDCs, including the persistent compounds dioxins, polychlorinated biphenyls (PCBs), pesticides and flame retardants, and non-persistent phthalates, in 68 breast milk samples from Denmark and Finland...

  15. Distinguishing between old and modern permafrost sources in the northeast Siberian land–shelf system with compound-specific δ2H analysis

    Directory of Open Access Journals (Sweden)

    J. E. Vonk

    2017-08-01

    Full Text Available Pleistocene ice complex permafrost deposits contain roughly a quarter of the organic carbon (OC stored in permafrost (PF terrain. When permafrost thaws, its OC is remobilized into the (aquatic environment where it is available for degradation, transport or burial. Aquatic or coastal environments contain sedimentary reservoirs that can serve as archives of past climatic change. As permafrost thaw is increasing throughout the Arctic, these reservoirs are important locations to assess the fate of remobilized permafrost OC.We here present compound-specific deuterium (δ2H analysis on leaf waxes as a tool to distinguish between OC released from thawing Pleistocene permafrost (ice complex deposits; ICD and from thawing Holocene permafrost (from near-surface soils. Bulk geochemistry (%OC; δ13C; %total nitrogen, TN was analyzed as well as the concentrations and δ2H signatures of long-chain n-alkanes (C21 to C33 and mid- to long-chain n-alkanoic acids (C16 to C30 extracted from both ICD-PF samples (n =  9 and modern vegetation and O-horizon (topsoil-PF samples (n =  9 from across the northeast Siberian Arctic. Results show that these topsoil-PF samples have higher %OC, higher OC ∕ TN values and more depleted δ13C-OC values than ICD-PF samples, suggesting that these former samples trace a fresher soil and/or vegetation source. Whereas the two investigated sources differ on the bulk geochemical level, they are, however, virtually indistinguishable when using leaf wax concentrations and ratios. However, on the molecular isotope level, leaf wax biomarker δ2H values are statistically different between topsoil PF and ICD PF. For example, the mean δ2H value of C29 n-alkane was −246 ± 13 ‰ (mean ± SD for topsoil PF and −280 ± 12 ‰ for ICD PF. With a dynamic isotopic range (difference between two sources of 34 to 50 ‰; the isotopic fingerprints of individual, abundant, biomarker molecules from leaf waxes can

  16. Modeling of isotope fractionation at the catchment scale: How promising is compound specific isotope analysis (CSIA) as a tool for analyzing diffuse pollution by agrochemicals?

    Science.gov (United States)

    Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.

    2012-04-01

    Concentration measurements are indispensable for the assessment of subsurface and surface water pollution by agrochemicals such as pesticides. However, monitoring data is often ambiguous and easily misinterpreted as a decrease in concentration could be caused by transformation, dilution or changes in the application of the pesticide. In this context, compound specific isotope analysis (CSIA) has recently emerged as a complementary monitoring technique. It is based on the measurement of the isotopic composition (e.g. δ13C and δ2H) of the contaminant. Since transformation processes are likely accompanied by isotope fractionation, thus a change in this composition, CSIA offers the opportunity to gain additional knowledge about transport and degradation processes as well as to track pollutants back to their sources. Isotopic techniques have not yet been applied in a comprehensive way in the analysis of catchment-wide organic pollution. We therefore incorporated fractionation processes associated with the fate of pesticides into the numerical flow and solute transport model HydroGeoSphere in order to assess the feasibility of CSIA within the context of catchment monitoring. The model was set up for a hypothetical hillslope transect which drains into a river. Reactive solute transport was driven by two pesticides applications within one year and actual data for rainfall and potential evapotranspiration from a meteorological station in the Netherlands. Degradation of the pesticide was assumed to take place at a higher rate under the prevailing oxic conditions in the topsoil than in deeper, anoxic subsurface layers. In terms of CSIA, these two degradation pathways were associated with different strengths of isotope fractionation for both hydrogen and carbon atoms. By simulating changes in δ13C and δ2H, the share of the oxic and the anoxic reaction on the overall degradation could be assessed. Model results suggest that CSIA is suitable for assessing degradation of

  17. Excitation functions of the systems 12C+14C and 13C+12C

    International Nuclear Information System (INIS)

    Haindl, E.

    1975-01-01

    The excitation functions of the systems 12 C+ 14 C and 13 C+ 12 C are investigated for different exit channels. The excitation functions measured do not show correlated structures as in the system 12 C+ 12 C. (WL/AK) [de

  18. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    DEFF Research Database (Denmark)