WorldWideScience

Sample records for compost application cultivo

  1. Sweet Sorghum crop. Effect of the Compost Application; Cultivo de Sorgo Dulce. Efecto de la Aplicacion de Compost

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M J; Solano, M L; Carrasco, J; Ciria, P

    1998-12-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs.

  2. Desarrollo del cultivo de Agaricus bisporus en Brasil: suplementación del compost y utilización de híbridos

    Directory of Open Access Journals (Sweden)

    Diego Cunha Zied

    Full Text Available RESUMEN La utilización de variedades híbridas de Agaricus bisporus de origen conocido no es una práctica habitual en los cultivos de Brasil. Por otro lado, tampoco se encuentra establecida la práctica de la suplementación, consistente en la adición al compost de sustancias nutritivas al final de la fase II del proceso de compostaje. El objetivo del presente trabajo es el estudio del efecto sobre la producción, en cultivos de champiñón en condiciones controladas, de la aplicación al compost de dos dosis de un suplemento comercial utilizando dos variedades híbridas de champiñón diferentes. Se han llevado a cabo para ello dos ciclos de cultivo. Los rendimientos se ven positivamente afectados como consecuencia de la suplementación, de manera significativa con la variedad del tipo híbrido blanco liso. Esta variedad proporciona mayor número de carpóforos y mayores rendimientos que la del tipo híbrido blanco grueso, aunque los champiñones presentaron menor tamaño. Los parámetros de producción cualitativos no han visto afectados como consecuencia de la suplementación. Esta práctica supone incrementos moderados de la temperatura del compost durante la fase de crecimiento vegetativo. Los resultados obtenidos confirman el interés de la suplementación del compost para aumentar la productividad.

  3. POTENTIAL APPLICATIONS OF BIOCHAR FOR COMPOSTING

    Directory of Open Access Journals (Sweden)

    Krystyna Malińska

    2014-10-01

    for composting of materials with high moisture and/or nitrogen contents. The addition of biochar to composting mixtures can reduce ammonia emissions, and thus limit nitrogen losses during composting, increase water holding capacity and retention of nutrients. Biochar can also function as a carrier substrate for microbial inoculants and a scrubing material used in biofilters at composting facilities. Due to the fact that the literature does not provide many examples of biochar applications for composting, and there is little known about the effects of biochar added to composting mixtures on composting dynamics and properties of final composts, futher investigations should focus on mechanisms of biochar-composting mixtures interactions and analysis of properties of biochar-based composts. The overall goal of the article is to analyze the potentials of biochars for composting, to report the effects of various biochars on composting dynamics and quality of produced biochar-based composts, and to indicate the areas of further studies on biochar properties that would allow optimization of composting and improve the quality of final products.

  4. Effects of Vermi compost and Compost tea Application on the Growth criteria of Corn (Zea mays

    Directory of Open Access Journals (Sweden)

    R Afsharmanesh

    2016-07-01

    Full Text Available Introduction Maize (Zea mays is a cereal crop that is grown widely throughout the world in a range of agroecological environments. .Its value as a cost-effective ruminant feed is one of the main reasons that farmers grow it. However, lack of nutrients such as N and P, are the principal obstacles - to crop production under low input agricultural systems leading to dependency on chemical fertilizers. Long-term use of chemical fertilizers destroy soil physicochemical properties and it reduced permeability which restricts root growth, nutrient uptake and plant production. Therefore, the use of organic fertilizers can help to enrich the soil root zone As a result growth and yield will improve. Materials and Methods In order to study the effects of different levels of vermicompost and foliar application of tea compost on growth characteristics of the hybrid maize genotype 713, a greenhouse experiment was conducted as a factorial experiment in randomized complete block design with three replications at the Vali-e-Asr University of Rafsanjan, during 2013. Treatments were included vermicompost (0, 5%, 10%, 15%, 20%, 25% and 30% pot weight and tea composts (foliar application, non-foliar application. Measured traits were included root dry weight, root volume, leaf dry weight, stem dry weight, macro nutrient concentration (N and P and micro nutrient concentration (Zn, Mn, Fe and Cu. All the data were subjected to the statistical analysis (two-way ANOVA using SAS software (SAS 9.1.3. Differences between the treatments were performed by Duncan’s multiple range test (DMRT at 1% confidence interval. Results and Discussion Results indicated that leaf and stem dry weight affected by the application of vermicompost and tea compost. However, the interaction effects had no significant effects on the leaf and stem dry weight. Application of tea compost increased 20% and 50% leaf dry weight and stem dry weight of corn compared to non- foliar application

  5. Sweet Sorghum Crop. Effect of the Compost Application

    International Nuclear Information System (INIS)

    Negro, M. J.; Solano, M. L.; Carrasco, J.; Ciria, P.

    1998-01-01

    A 3 year-plot experiments were performed to determined the possible persistence of the positive effects of treating soil with compost. For this purpose, a sweet sorghum bagasse compost has been used. Experiments were achieved with sweet sorghum (Sorghum bicolor. L. Moench) vr Dale as energy crop. Similar sorghum productivities were obtained both in plots with consecutive compost applications and in plots amended with mineral fertilizers. No residual effect after three years has been detected. It could be due to the low dose of compost application. (Author) 27 refs

  6. Evaluación agronómica del uso de compost de residuos de la industria azucarera (biofertilizante) en el cultivo de maíz (Zea mays L.)

    OpenAIRE

    Matheus, Jesús

    2004-01-01

    Se evaluó agronómicamente un compost elaborado con desechos sólidos de la industria azucarera (biofertilizante La Pastora) como alternativa para restaurar la fertilidad de un suelo degradado y suplir los requerimientos nutricionales del cultivo de maíz (híbrido Himeca 2000). La experiencia se realizó en el Núcleo Universitario Rafael Rangel en el estado Trujillo, Venezuela, mediante un diseño de bloques al azar con cuatro repeticiones se evaluaron los siguientes tratamientos: biofertilizante ...

  7. Home composting versus industrial composting: influence of composting system on compost quality with focus on compost stability.

    Science.gov (United States)

    Barrena, Raquel; Font, Xavier; Gabarrell, Xavier; Sánchez, Antoni

    2014-07-01

    Stability is one of the most important properties of compost obtained from the organic fraction of municipal solid wastes. This property is essential for the application of compost to land to avoid further field degradation and emissions of odors, among others. In this study, a massive characterization of compost samples from both home producers and industrial facilities is presented. Results are analyzed in terms of chemical and respiration characterizations, the latter representing the stability of the compost. Results are also analyzed in terms of statistical validation. The main conclusion from this work is that home composting, when properly conducted, can achieve excellent levels of stability, whereas industrial compost produced in the studied facilities can also present a high stability, although an important dispersion is found in these composts. The study also highlights the importance of respiration techniques to have a reliable characterization of compost quality, while the chemical characterization does not provide enough information to have a complete picture of a compost sample. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.

    Science.gov (United States)

    Spargo, John T; Evanylo, Gregory K; Alley, Marcus M

    2006-01-01

    Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.

  9. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe.

    Science.gov (United States)

    Viaene, J; Van Lancker, J; Vandecasteele, B; Willekens, K; Bijttebier, J; Ruysschaert, G; De Neve, S; Reubens, B

    2016-02-01

    Maintaining and increasing soil quality and fertility in a sustainable way is an important challenge for modern agriculture. The burgeoning bioeconomy is likely to put further pressure on soil resources unless they are managed carefully. Compost has the potential to be an effective soil improver because of its multiple beneficial effects on soil quality. Additionally, it fits within the bioeconomy vision because it can valorize biomass from prior biomass processing or valorize biomass unsuitable for other processes. However, compost is rarely used in intensive agriculture, especially in regions with high manure surpluses. The aim of this research is to identify the barriers to on-farm composting and the application of compost in agriculture, using a mixed method approach for the case of Flanders. The significance of the 28 identified barriers is analyzed and they are categorized as market and financial, policy and institutional, scientific and technological and informational and behavioral barriers. More specifically, the shortage of woody biomass, strict regulation, considerable financial and time investment, and lack of experience and knowledge are hindering on-farm composting. The complex regulation, manure surplus, variable availability and transport of compost, and variable compost quality and composition are barriers to apply compost. In conclusion, five recommendations are suggested that could alleviate certain hindering factors and thus increase attractiveness of compost use in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Heat recovery in compost piles for building applications

    Directory of Open Access Journals (Sweden)

    Walther Edouard

    2017-01-01

    Full Text Available This work proposes an estimation of the possible heat recovery of self-heating compost piles for building applications. The energy released during the aerobic composting of lignin and cellulose-based materials is computed by solving an inverse problem. The method consists first in an experimental phase with measurement of the temperature within the heap, then a numerical procedure allows for the inverse identification of the heat production due to the chemical reaction of composting. The simulation results show a good accordance with the experiments for the chosen source-term model. Comparing the results to the theoretical values for the energy released by aerobic composting provides an estimate for the efficiency of the reaction. The reached temperatures and recovered energy fit with the order of magnitude of building needs.

  11. Changes in cadmium mobility during composting and after soil application

    International Nuclear Information System (INIS)

    Hanc, Ales; Tlustos, Pavel; Szakova, Jirina; Habart, Jan

    2009-01-01

    The effect of twelve weeks of composting on the mobility and bioavailability of cadmium in six composts containing sewage sludge, wood chips and grass was studied, along with the cadmium immobilization capacity of compost. Two different soils were used and Cd accumulation measured in above-ground oat biomass (Avena sativa L.). Increasing pH appears to be an important cause of the observed decreases in available cadmium through the composting process. A pot experiment was performed with two different amounts of compost (9.6 and 28.8 g per kg of soil) added into Fluvisol with total Cd 0.255 mg kg -1 , and contaminated Cambisol with total Cd 6.16 mg kg -1 . Decrease of extractable Cd (0.01 mol l -1 CaCl 2 ) was found in both soils after compost application. The higher amount of compost immobilized an exchangeable portion of Cd (0.11 mol l -1 CH 3 COOH extractable) in contaminated Cambisol unlike in light Fluvisol. The addition of a low amount of compost decreased the content of Cd in associated above-ground oat biomass grown in both soils, while a high amount of compost decreased the Cd content in oats only in the Cambisol.

  12. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    Science.gov (United States)

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  13. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality.

    Science.gov (United States)

    Jusoh, Mohd Lokman Che; Manaf, Latifah Abd; Latiff, Puziah Abdul

    2013-02-07

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P compost without EM. Although the Fe in compost with EM is much higher (P compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.

  14. [Emissions of greenhouse gas and ammonia from the full process of sewage sludge composting and land application of compost].

    Science.gov (United States)

    Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang

    2013-11-01

    There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology.

  15. Fractionation characterization and speciation of heavy metals in composts and compost and compost-amended soils

    International Nuclear Information System (INIS)

    Lwegbue, C. M.A.; Emuh, F.N.; Isirimah, N.O.; Egun, A.C.

    2007-01-01

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation and chemical extraction. Chemical extraction schemes are most frequently used approach to fractionate trace metals in soils, sewage sludge and composts. Several variations exist in the sequential extraction procedures. These variations include reagent types, strength, volume and extraction time. A main drawback shared by all sequential extraction schemes is that the procedures themselves are complex and time consuming. This setback has been overcome by the use of ultrasound accelerated extraction which reduce the extraction time for the entire extraction steps to about 90 minutes allowing composting process to be monitored more frequently which help to provide detailed understanding of the partitioning behaviour of heavy metals. Inspite of the variability the sequential extraction schemes, they all aimed at correlating each fraction with the mobility and plant availability of each metal. Several studies have shown that phase association of heavy metal in composts include water-soluble, exchangeable, precipitated as discrete phases, co-precipitate in metal oxides and adsorbed or complexed by organic ligands and residual forms. The phase association and solubility of metals changes over composting time thereby altering metal availability. It is apparent that the positive effects of resulting from compost application far outweigh the negative effect, but more research is needed on a wide range of municipal solid waste compost with more precise determination of the fate of municipal solid waste compost applied trace metals in the environment. (author)

  16. Interactions Between Beneficial and Harmful Microorganisms: From the Composting Process to Compost Application

    OpenAIRE

    Fuchs, Jacques G.

    2010-01-01

    Numerous microorganisms are involved in the composting process, but their precise roles are often unknown. Compost microorganisms are influenced by the composition of the substrate and by the temperature in the compost pile. In addition, different microorganisms also influence each other, e.g. through competition. In the first phase of composting, microbial activity increase drastically, leading to a rise in temperature. The initial bacterial dominance is replaced by a fungal one during compo...

  17. Decline in extractable antibiotics in manure-based composts during composting.

    Science.gov (United States)

    Kim, K-R; Owens, G; Ok, Y S; Park, W-K; Lee, D B; Kwon, S-I

    2012-01-01

    A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20mgkg(-1)) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8mgkg(-1) for tetracyclines, 0.2mgkg(-1) for sulfonamides and 1.0mgkg(-1) for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Disponibilidad de nutrientes en fertilizantes orgánicos e inorgánicos a corto plazo en cultivo de lechuga y espinaca

    OpenAIRE

    Ganuza Larumbe, Eduardo

    2014-01-01

    El objetivo de este TFC es comparar la disponibilidad de nutrientes, principalmente nitrógeno, en fertilizantes orgánicos e inorgánicos a corto plazo en cultivo de lechuga y espinaca. Para ello se realizaron dos ensayos en invernadero, en los que se cultivaron dos especies en maceta: lechuga (Lactuca sativa L.) y espinaca (Spinacia oleracea L.), para evaluar la idoneidad como fertilizantes de siete abonos orgánicos (cuatro compost domésticos y tres compost comerciales), y un...

  19. Nutritional status, yield and composition of peach fruit subjected to the application of organic compost

    Directory of Open Access Journals (Sweden)

    George Wellington Bastos de Melo

    2016-01-01

    Full Text Available The purpose of this study was to evaluate the nutritional state, yield and composition of peaches on peach trees subjected to the application of organic compost to the soil. This experiment was conducted during the 2008 and 2009 cropping season in an orchard containing Chimarrita cultivars grafted onto Capdeboscq rootstocks and Haplumbrept soils in the municipality of Farroupilha (RS, Brazil. The treatments included 0, 9, 18, 36, 72 and 144 liters of organic compost per plant-1 year-1. The total nutrient contents in the leaves, yield components, yields per plant and hectare and compositions of the fruits were evaluated in 2008 and 2009 soon after harvest and after 30 days of storage. The application of organic compost to the soil increased the yield components and the yields per plant and hectare in the two treatments with the highest compost additions, which indicated that the addition of 72 L of compost per plant-1 is ideal economically. The organic compost had little effect on the composition of the peach fruit after harvest and after 30 days of storage.

  20. Composting Technology and the Impact of Compost on Soil Biochemical Properties

    International Nuclear Information System (INIS)

    Abdel-aziz, Reda Abdel Thaher; Al-Barakh, Fahad bin Nasser

    2005-01-01

    Organic farming is one of several approaches to sustainable agriculture. Properly managed, organic farming reduces or eliminates environmental pollution and helps conserve water and soil on the farm. Organic farming systems require significantly greater amounts of organic fertilizers input than conventional systems. Because of the shortage of organic fertilizers in arid areas, composting is a way to transform waste materials left over from agricultural production and processing into a useful resource. Mature compost is an excellent organic fertilizer and soil amendment. The potential of composting to turn on-farm waste material into farm resources makes it an attractive proposition. Composting offers several benefits such as to enhance soil fertility and soil health, thereby increasing agricultural productivity, improving soil biodiversity, reducing ecological risks and improving the environment. Aerobic composting of some agricultural wastes (peanut, wheat straw and palm tree wastes) was carried out to raise its fertilizing value compared with widely used organic fertilizer, farmyard manure. The influence of composted and non-composted agricultural wastes on the availability of nitrogen, phosphorus and potassium (NPK) in sandy soil, as well as the uptake of these elements by corn plants, was also studied. Results indicated a rapid degradation of palm tree and wheat straw wastes as compared with peanut wastes. The composting process raised the fertilizing value of agricultural wastes as indicated by increase in nutritional availability. The application of the composted wastes as organic fertilizers to sandy soil increased the content of available N, P and K. Results showed that the application of different composted organic materials increased the dry weight and NPK uptake by corn plants. (author)

  1. Effects of Vermi-compost Fertilizer Application and Foliar Spraying on Yield and Yield Component of Isabgol (Plantago ovate L. Medicinal Plant

    Directory of Open Access Journals (Sweden)

    Asghar Rahimi

    2017-12-01

    Full Text Available Introduction Vermi-compost is the ability of some species of earthworms to consume and break down a wide range of organic residues such as sewage sludge, animal wastes, crop residues and industrial refuse. Vermi-composts are usually more stable than their parent materials with increased availability of nutrients and improved physicochemical and microbiological properties. Aerial compost tea contains high populations of live microorganism consisting of rhizobactria, trichoderma and pseudomonas species which increase the growth and yield of the plant. Acid humic is the main humic substance and the important ingredient of soil organic matter (humus which causes increase of yield and quality of crop. The aim of this research is evaluating the effect of vermi-compost and foliar application of compost tea and acid humic on yield, yield component and mucilage content of isabgol. Vermiwash as the extract of vermi-compost is liquid organic fertilizer obtained from unit of vermiculture and vermi-compost as drainage. It is used as a foliar spraying on the leaf. Vermiwash stimulate and increase the yield of crop products and foliar application of vermiwash can be caused of plant resistance to different factors and can prevent leaf necrosis. Material and Methods In order to study the effect of vermi-compost and foliar application of tea compost and acid humic on growth indices of isabgol (Plantago ovata, an experiment was conducted as a factorial based on complete randomized design with three replications in agricultural research farm at Vali-e-Asr University of Rafsanjan. Treatments were included application of vermi-compost (0 (control, 4, 8, 12 and 16 t.ha-1 and 3 levels of foliar application (distilled water as control, acid humic and compost tea. Samples for evaluating of yield, yield components and mucilage content were taken from 1 m2 area of each treatment. Tea compost solution prepared using mix of vermi-compost, acid humic, yeast and alga extract

  2. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  3. Efecto de la aplicación de compost y nematicida sobre la dinámica de las poblaciones de microorganismos, nematodos fitoparásitos del suelo y la salud del sistema radical en el cultivo del banano (Musa AAA sembrado en domos

    Directory of Open Access Journals (Sweden)

    María Araya

    2014-12-01

    Full Text Available Se evaluó el efecto de la aplicación de 6 dosis de compost más un testigo, en interacción con la aplicación ó no aplicación de nematicida, sobre la dinámica de las poblaciones de microorganismos del suelo (bacterias, hongos y actinomicetes, las poblaciones de nematodos fitoparásitos y la salud del sistema radical en el cultivo del banano. Los resultados obtenidos no indicaron diferencias en las poblaciones de microorganismos con respecto a las diferentes dosis de compost ni con respecto a la aplicación ó no aplicación de nematicida. En cuanto a los índices de diversidad biológica, en las poblaciones de hongos, no se obtuvieron diferencias de acuerdo con las dosis de compost, pero sí en lo referente a la aplicación ó no aplicación de nematicida, siendo mayor en el primer caso para la variable riqueza. La sanidad del sistema radical no difirió con las diferentes dosis de compost ni con ó sin nematicida, solamente hubo diferencias según los muestreos realizados. Por último, las poblaciones de nematodos fitoparásitos no presentaron diferencias debidas a las dosis de compost, a excepción de Pratylenchus. Con respecto a la aplicación de nematicida, todas las poblaciones fueron mayores en el área donde no se aplicó nematicida.

  4. Compost de ave de corral como componente de sustratos

    Directory of Open Access Journals (Sweden)

    Lorena Alejandra Barbaro¹

    2011-07-01

    Full Text Available El sustrato para cultivo es un material que colocado en un contenedor permite el anclaje del sistema radicular, proporcionando agua y nutrientes. Entre los materiales empleados para formular sustratos se encuentran los compost. Entre ellos el compost de cama de ave de corral (CAC, elaborado en base al estiércol de aves mezclado con los materiales que forman su lecho. El objetivo de este trabajo fue evaluar dos compost de CAC como componente de sustrato, mediante el desarrollo de plantas de Coral (Salvia splendens. Uno de los compost contenía cama de stud (CAC+S durante su compostaje. Se formularon sustratos con diferentes proporciones de compost de CAC, compost de corteza de pino y pinocha, luego fueron analizados física y químicamente. A las plantas cultivadas en cada sustrato se midió la longitud y el diámetro del tallo, peso fresco y seco de la parte aérea y radicular. La densidad, porosidad y capacidad de retención de agua de todos los sustratos fueron aceptables. El pH de ambos compost de CAC fue mayor a 6,3, y los valores de las mezclas se encontraron dentro del rango aceptable. Todos los sustratos superaron 1 dS m-1 (1+5 v/v, principalmente los formulados con compost de CAC+S, cuyo material puro contenía altos niveles salinos. Al disminuir el porcentaje de CAC en las mezclas, diminuyó la concentración de cada nutriente. Las plantas cultivadas en el sustrato comercial y en las mezclas con 20% de CAC fueron las que lograron los mayores pesos aéreos y radiculares, diámetro y longitud del tallo. Por lo tanto, el compost de ave de corral podría ser una alternativa viable como componente de sustrato si se lo utiliza hasta un 20%.

  5. YIELD FORMING EFFECT OF APPLICATION OF COMPOSTS CONTAINING POLYMER MATERIALS ENRICHED IN BIOCOMPONENTS

    Directory of Open Access Journals (Sweden)

    Florian Gambuś

    2014-01-01

    Full Text Available In a pot experiment the impact of composts containing polymeric materials modified with biocomponents on the diversity of crops of oats and mustard was examined. The composts used in the study were produced in the laboratory from wheat and rape straw, and pea seed cleaning waste with 8-percent addition of chopped biopolymer materials (films which were prepared in the Central Mining Institute (GIG in Katowice. Three polymers differing in content of starch and density were selected for the composting. The pot experiment was conducted on three substrates: light and medium soil and on the sediment obtained after flotation of zinc and lead ores, coming from the landfill ZGH “Boleslaw” S.A. in Bukowno. The need for using such materials and substrates results from the conditions of processing some morphological fractions of municipal waste and from improving methods of reclamation. Yield enhancing effect of composts depends on the substrate on which the compost was used, cultivated plants and crop succession. Application of composts prepared with 8% of polymeric materials based on polyethylene, modified with starch as biocomponent, resulted in significantly lower yields in sandy (light soil in case of oats and, in some cases, in medium soil. Subsequent plant yield did not differ significantly between the objects fertilized with compost.

  6. Composting Phragmites australis Cav. plant material and compost effects on soil and tomato (Lycopersicon esculentum Mill.) growth.

    Science.gov (United States)

    Toumpeli, Anna; Pavlatou-Ve, Athina K; Kostopoulou, Sofia K; Mamolos, Andreas P; Siomos, Anastasios S; Kalburtji, Kiriaki L

    2013-10-15

    Composting organic residues is a friendly to the environment alternative to producing fertilizer. This research was carried out to study the process of composting Phragmites australis Cav. plant material alone or with animal manure on a pilot-scale, to evaluate firstly the quality of the composts produced and secondly, using a pot experiment, the effects of their application on soil physicochemical characteristics and tomato plants development. For the compost production a randomized complete block design was used with five treatments (five compost types) and four replications. For the pot experiment, a completely randomized design was used with 17 treatments (plain soil, soil with synthetic fertilizer and the application of five compost types, at three rates each) and five replications. Compost N increased with composting time, while C/N ratio decreased significantly and by the end it ranged from 43.3 for CM to 22.6 for CY. Compost pH became almost neutral, ranging from 6.73 for CY to 7.21 for CM3Y3AM4 by the end. Compost combinations CY7AM3 and CM7AM3 had a more positive influence on the soil physicochemical characteristics than the others. Soil N, P, Ca and Mg concentrations and the reduction of clay dispersion were the highest when CM7AM3 compost was added. The macro-aggregate stability was the highest for CY7AM3, which also sustained plant growth. The latter compost combination improved most of the soil physicochemical characteristics and plant growth especially, when the application rate was 4% (w/w), which equals to 156 Mg ha(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Composting of waste algae: a review.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of Compost Application on Some Properties of a Volcanic Soil from Central South Chile Efecto de la Aplicación de Compost sobre Algunas Propiedades de un Suelo Volcánico de La Región Centro-Sur de Chile

    Directory of Open Access Journals (Sweden)

    Pedro José Valarini

    2009-09-01

    Full Text Available Soil compost application is a common soil management practice used by small farmers of Central-South Chile that produces positive effects on soil properties and also promotes presence and activity of arbuscular mycorrhizal fungi (AMF. This fungi form symbiosis with plant roots improving plant nutrition, as well as producing glomalin, a glycoprotein that has been associated with soil aggregation stability. Therefore, the aim of this study was to evaluate, in an Ultisol from Central-South Chile, the effect of different doses of compost on some soil characteristics at the end of the third year of a crop sequence including wheat (Triticum aestivum L., bean (Phaseolus vulgaris L., and grassland (Lolium multiflorum Lam. associated with Trifolium repens L.. Studied soil characteristics included chemical (pH, available-P, organic C, biological (C and N biomass, AMF spore number, root colonization percentage, mycelium length, and glomalin content, as well as physical parameters (water holding capacity [WHC], and water stable aggregates [WSA]. Results showed that, in general, compost application increased soil pH, mycorrizal roots, mycelium length, glomalin levels, and WSA. Significant relationships were found between C and N biomass, C biomass and WSA, C biomass and glomalin, WSA and WHC, among others. Results suggest that compost application to this type of soil is a feasible option as a fertilizer substitute, and a way to avoid soil erosion by small local farmers involved in organic agriculture.La aplicación de compost al suelo, práctica habitual en predios de pequeños agricultores de la región centro-sur de Chile, produce efectos positivos en sus propiedades y promueve la presencia y actividad de los hongos micorrícicos arbusculares (AMF. Estos hongos forman simbiosis con las raíces de las plantas mejorando su nutrición y además producen una glicoproteína llamada glomalina, la cual ha sido relacionada con la estabilidad de los agregados de

  9. Application of a modified OxiTop® respirometer for laboratory composting studies

    Directory of Open Access Journals (Sweden)

    Malińska Krystyna

    2016-03-01

    Full Text Available This study applied a modified OxiTop® system to determine the oxygen uptake rate during a 2-day respiration test of selected composting materials at different moisture contents, air-filled porosities and composition of composting mixtures. The modification of the OxiTop® respirometer included replacement and adjustment of a glass vessel (i.e. a 1.9-L glass vessel with wide mouth was used instead of a standard 1-L glass bottle, additionally the twist-off vessel lid was adjusted to attach the measuring head and application of a closed steel mesh cylinder of 5 cm in diameter and 10 cm in height with the open surface area of the mesh of approximately 56.2%. This modification allowed obtaining different bulk densities (and thus air-porosities of the investigated composting materials in laboratory composting studies. The test was performed for apple pomace and composting mixtures of apple pomace with wood chips at ratios of 1:0.5, 1:1, 1:1.5 (d.w, moisture contents of 60%, 65% and 75% and air-filled porosities ranging from 46% to 1%. Due to diverse biodegradability of the investigated apple pomace and composting mixtures this test allows for the determination of the effects of different air-porosities (due to compaction in a pile on the oxygen uptake rate for mixtures with a fixed ratio of a bulking agent. The described method allows for laboratory determination of the effects of moisture content and compaction on biodegradation dynamics during composting.

  10. Assessing thermal conductivity of composting reactor with attention on varying thermal resistance between compost and the inner surface.

    Science.gov (United States)

    Wang, Yongjiang; Niu, Wenjuan; Ai, Ping

    2016-12-01

    Dynamic estimation of heat transfer through composting reactor wall was crucial for insulating design and maintaining a sanitary temperature. A model, incorporating conductive, convective and radiative heat transfer mechanisms, was developed in this paper to provide thermal resistance calculations for composting reactor wall. The mechanism of thermal transfer from compost to inner surface of structural layer, as a first step of heat loss, was important for improving insulation performance, which was divided into conduction and convection and discussed specifically in this study. It was found decreasing conductive resistance was responsible for the drop of insulation between compost and reactor wall. Increasing compost porosity or manufacturing a curved surface, decreasing the contact area of compost and the reactor wall, might improve the insulation performance. Upon modeling of heat transfers from compost to ambient environment, the study yielded a condensed and simplified model that could be used to conduct thermal resistance analysis for composting reactor. With theoretical derivations and a case application, the model was applicable for both dynamic estimation and typical composting scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Stabilization of Organic Matter by Biochar Application in Compost-amended Soils with Contrasting pH Values and Textures

    Directory of Open Access Journals (Sweden)

    Shih-Hao Jien

    2015-09-01

    Full Text Available Food demand and soil sustainability have become urgent concerns because of the impacts of global climate change. In subtropical and tropical regions, practical management that stabilizes and prevents organic fertilizers from rapid decomposition in soils is necessary. This study conducted a short-term (70 days incubation experiment to assess the effects of biochar application on the decomposition of added bagasse compost in three rural soils with different pH values and textures. Two rice hull biochars, produced through slow pyrolization at 400 °C (RHB-400 and 700 °C (RHB-700, with application rates of 1%, 2%, and 4% (w/w, were separately incorporated into soils with and without compost (1% (w/w application rate. Experimental results indicated that C mineralization rapidly increased at the beginning in all treatments, particularly in those involving 2% and 4% biochar. The biochar addition increased C mineralization by 7.9%–48% in the compost-amended soils after 70 days incubation while the fractions of mineralized C to applied C significantly decreased. Moreover, the estimated maximum of C mineralization amount in soils treated with both compost and biochar were obviously lower than expectation calculated by a double exponential model (two pool model. Based on the micromorphological observation, added compost was wrapped in the soil aggregates formed after biochar application and then may be protected from decomposing by microbes. Co-application of compost with biochar may be more efficient to stabilize and sequester C than individual application into the studied soils, especially for the biochar produced at high pyrolization temperature.

  12. Lead accumulation by jabon seedling (Anthocephalus cadamba) on tailing media with application of compost and arbuscular mycorrhizal fungi

    Science.gov (United States)

    Setyaningsih, L.; Setiadi, Y.; Budi, S. W.; Hamim; Sopandie, D.

    2017-03-01

    Lead (Pb) is one of the dangerous heavy metal contained in tailing that needs remediation activity. This study aimed to investigate the potency of jabon to take up and accumulate lead in its tissue by the application of compost and arbuscular mycorrhiza fungus (AMF) on pot observation. In Pb-containing tailing media, the average levels of Pb in roots seedling was 50% greater as compared to the levels of Pb in the stem and leaves of seedlings. Application of compost in tailings media significantly increased (p ≤ 0.5) the average levels of Pb in the roots and stems, but decreased Pb levels in leaves. Applications AMF significantly decreased (p ≤ 0.5) the average levels of Pb in the roots, stem and leaves of seedlings by approximately 18-33%. The combination applications of compost and AMF significantly (p ≤ 0.5) increased the level of Pb in the roots, stems and leaves of seedlings at 6, 16 and 27 fold respectively than that in control plant (without compost and AMF). After 12 weeks exposure, lead bioconcentration factor varied from 0.1-1.6 in seedling tissue with transport factor varied from 0.1-1.0. The application of active compost and AMF increased 1-15 fold lead accumulation from control, and the biggest accumulation was 452.9 x10-2 mg/plant with Pb concentration of 1.5 mM. Active compost and AMF application supported jabon seedling to act as lead phytostabilizer and to remove lead from the tailing to the above part of the plant.

  13. Composting of biochars improves their sorption properties, retains nutrients during composting and affects greenhouse gas emissions after soil application

    Science.gov (United States)

    Biochar application to soils has been suggested to elevate nutrient sorption, improve soil fertility and reduce net greenhouse gas (GHG) emissions. We examined the impact of composting biochar together with a biologically active substrate (i.e., livestock manure-straw mixture). We hypothesized that ...

  14. Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times.

    Science.gov (United States)

    Neher, Deborah A; Weicht, Thomas R; Bates, Scott T; Leff, Jonathan W; Fierer, Noah

    2013-01-01

    Compost production is a critical component of organic waste handling, and compost applications to soil are increasingly important to crop production. However, we know surprisingly little about the microbial communities involved in the composting process and the factors shaping compost microbial dynamics. Here, we used high-throughput sequencing approaches to assess the diversity and composition of both bacterial and fungal communities in compost produced at a commercial-scale. Bacterial and fungal communities responded to both compost recipe and composting method. Specifically, bacterial communities in manure and hay recipes contained greater relative abundances of Firmicutes than hardwood recipes with hay recipes containing relatively more Actinobacteria and Gemmatimonadetes. In contrast, hardwood recipes contained a large relative abundance of Acidobacteria and Chloroflexi. Fungal communities of compost from a mixture of dairy manure and silage-based bedding were distinguished by a greater relative abundance of Pezizomycetes and Microascales. Hay recipes uniquely contained abundant Epicoccum, Thermomyces, Eurotium, Arthrobotrys, and Myriococcum. Hardwood recipes contained relatively abundant Sordariomycetes. Holding recipe constant, there were significantly different bacterial and fungal communities when the composting process was managed by windrow, aerated static pile, or vermicompost. Temporal dynamics of the composting process followed known patterns of degradative succession in herbivore manure. The initial community was dominated by Phycomycetes, followed by Ascomycota and finally Basidiomycota. Zygomycota were associated more with manure-silage and hay than hardwood composts. Most commercial composters focus on the thermophilic phase as an economic means to insure sanitation of compost from pathogens. However, the community succeeding the thermophilic phase begs further investigation to determine how the microbial dynamics observed here can be best managed

  15. Feasibility of medical stone amendment for sewage sludge co-composting and production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Awasthi, Sanjeev Kumar; Li, Ronghua; Zhao, Junchao; Ren, Xiuna; Wang, Meijing; Chen, Hongyu; Zhang, Zengqiang

    2018-06-15

    The feasibility of medical stone (MS) amendment as an innovative additive for dewatered fresh sewage sludge (DFSS) co-composting was assessed using a 130-L vessel-scale composter. To verify successful composting, five treatments were designed with four different dosages (2, 4, 6, and 10) % of MS with a 1:1 mixture (dry weight) of DFSS + wheat straw (WS). The WS was used as a bulking agent. A control without any amendment treatment was carried out for the purpose of comparison. For DFSS co-composting, the amendment with MS improved the mineralization efficiency and compost quality in terms of CO 2 emissions, dehydrogenase enzyme (DE), electrical conductivity (EC), water-solubility, and total nutrients transformation. The DTPA-extractable Cu and Zn were also estimated to confirm the immobilization ability of the applied MS. Seed germination and plant growth tests were conducted to ensure the compost stability and phytotoxicity for Chinese cabbage (Brassica rapa chinensis L.) growth and biomass, as well as chlorophyll content. The results showed that during the bio-oxidative phase, DOC, DON, AP, NH 4 + -N, and NO 3 - -N increased drastically in all the MS-blended treatments, except the application of 2% MS and the control treatment; significantly lower water-soluble nutrients were observed in the 2% MS and control treatments. A novel additive with 6-10% MS dosages considerably enhanced the organic matter conversion in the stable end-product (compost) and reduced the maturity period by two weeks compared to the 2% MS and control treatments. Consequently, the maturity parameters (e.g., EC, SGI, NH 4 + -N, DOC, and DON) confirmed that compost with 6-10% MS became more stable and mature within four weeks of DFSS co-composting. At the end of composting, significantly higher DTPA-extractable Cu and Zn contents were observed in the control treatment, and subsequently, in the very low application (10%) of MS. Higher MS dosage lowered the pH and EC to within the permissible

  16. Property and quinone profile analysis of the compost made in Kuriyama town

    OpenAIRE

    森本, 正則; 桑原, 直美; 田中, 尚道; 駒井, 功一郎

    2006-01-01

    [Synopsis] Application of compost made from garbage and bio-sludge show crop growth promoting effect in the field. We have evaluated to a property of the compost made in Kuriyama town (Hokkaido). Kuriyama town have a compost producing facility established in 2004. Mainly, we have evaluated suppression of the plant disease and plant growth promotion by using this compost. Application of this compost had promoted the cucumber growth in dose dependent manner. Application of native compost ...

  17. Critical evaluation of municipal solid waste composting and potential compost markets.

    Science.gov (United States)

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  18. Substrates with green manure compost and leaf application of biofertilizer on seedlings of yellow passion fruit plants

    Directory of Open Access Journals (Sweden)

    Cristiane Muniz Barbosa Barros

    2013-12-01

    Full Text Available Substrates and fertilization are fundamental for seedling production, which well nourished can produce earlier and are more resistant to stresses. Animal manures are often used in non-industrialized substrates with good results, but their costs are increasing. Other residues may be used for plant nutrition, in substrates or in leaf fertilization. The aim of this work was to evaluate substrates prepared with green manure composts and the leaf application of biofertilizer on the formation of yellow passion fruit seedlings. A greenhouse experiment was conducted between December 2009 and February 2010, with a split-plot random block design. Plots received or not leaf application of supermagro biofertilizer. Subplots consisted of different substrates: soil; soil + cattle manure; soil + cattle manure composted with black oats straw; soil + cattle manure composted with ryegrass straw; soil + cattle manure composted with turnip straw; and soil + cattle manure composted with vetch straw. There were three dates of leaf fertilization: 10, 25 and 40 days after emergence (DAE. At 50 DAE plants were collected for evaluation of growth and accumulation of biomass and nutrients: N, P, K, Ca, Mg, Cu, Mn and Zn. Data were submitted to analysis of variance and means compared by Tukey test. The substrate soil + cattle manure promoted higher stem diameter, plant height, leaf area, root length and volume and nutrient accumulation. Among substrates with green manure composts, those prepared with black oats and turnip straw outranked the others. The use of leaf biofertilizer showed diverse results on seedling formation, being beneficial when combined to substrates with black oats composted straw, and prejudicial when combined to soil + cattle manure and soil + turnip composted straw substrates. The accumulation of nutrients by the seedlings occurred in the following order: K>Ca>N>Mg>P>Zn>Cu=Mn.

  19. Compost amendment of sandy soil affects soil properties and greenhouse tomato productivity

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.; Razzaghi, Fatemeh

    2012-01-01

    Sandy soils, with low productivity, could be improved by compost application to sustain crop production. This study aimed to examine the effect of three compost types (vegetable, fruit and yard waste compost, garden waste compost, and spent mushroom compost) on basic properties of a loamy sand...... compost had greater effect in improving tomato productivity. A decade-long application of composts on loamy sand improved basic chemical and physical properties which were reflected in increased fruit yield in tomato. Since no negative effect of compost was observed, we suggest that sandy soils may serve...... and greenhouse tomato productivity. Disturbed and intact soil samples were taken from a decade-long compost field experiment on loamy sand with three compost types at application rate of 30 m3 ha-1 yr-1 (7.5 ton ha-1 yr-1). The soils were characterized for chemical and physical properties. Tomato was planted...

  20. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    Science.gov (United States)

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of compost on erodibility of loamy sand under simulated rainfall

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    Three types of composts [vegetable, fruit and yard waste compost (VFYW), garden waste compost (GW), and spent mushroom compost (SM)] were applied at a rate of 30 m3 ha−1 for 10 years to loamy sand, to determine its effect on the aggregate stability and susceptibility to water erosion. Aggregate...... significant improvement for any of the compost types. SM application resulted in a significant increase (51%) in the shear strength of the soil after rainfall. Long term compost application does not appreciably improve the resistance of loamy sand to water erosion....

  2. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    Science.gov (United States)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between

  3. Composting

    Science.gov (United States)

    Stanley, Andrew; Turner, Geraldine

    2010-01-01

    Composting can provide both a means of managing organic waste, and a vehicle to teach Science at all levels of schooling. In response to a local organic waste issue a process has been developed to compost waste from an olive oil press and analyse the resultant compost. In this article, the composting process is described in a manner that can be…

  4. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D; Warman, Phil R

    2004-09-01

    Two experiments were conducted to evaluate the effect of compost addition to soil on fractionation and bioavailability of Cu, Mn, and Zn to four crops. Soils growing Swiss chard (Beta vulgaris var. cicla L.) and basil (Ocimum basilicum L.) were amended (by volume) with 0, 20, 40, and 60% Source-Separated Municipal Solid Waste (SS-MSW) compost, and dill (Anethum graveolens L.) and peppermint (Mentha X piperita L.) were amended with 0, 20, 40, and 60% of high-Cu manure compost (by volume). The SS-MSW compost applications increased the concentration of Cu and Zn in all fractions, increased Mn in acid extractable (ACID), iron and manganese oxides (FeMnOX), and organic matter (OM) fractions, but decreased slightly exchangeable-Mn. Addition of 60% high-Cu manure compost to the soil increased Cu EXCH, ACID, FeMnOX, and OM fractions, but decreased EXCH-Mn, and did not change EXCH-Zn. Addition of both composts to soil reduced bioavailability and transfer factors for Cu and Zn. Our results suggest that mature SS-MSW and manure composts with excess Cu and Zn could be safely used as soil conditioners for agricultural crops.

  5. [Effect of bio-charcoal on the trans of polycyclic aromatic hydrocarbons in soil-plant system with composted sludge application].

    Science.gov (United States)

    Hua, Li; Chen, Ying-xu; Wu, Wei-xiang; Ma, Hong-rui

    2009-08-15

    The effects of bio-charcoal acted as sludge-composting additive on soil characteristics and plant growth were studied. Compared with the treatment of composted sludge without bio-charcoal, soil cation exchange capacity in treatment of composted sludge with bio-charcoal increased over 5% and 10% respectively and soil nitrogen content increased 13% and 18% respectively for two kind soils. The composted sludge with bio-charcoal also resulted in 23% higher enhancement on ryegrass biomass and 8%-10% higher enhancement on ryegrass chlorophyll content. In addition, with the amendment of bio-charcoal, the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in composted sludge was decreased, which resulted in the lower absorption and accumulation of ryegrass to PAHs. Compared with the control, the PAHs concentration in ryegrass amended composted sludge with bio-charcoal decreased 27%-34%. The results indicated that composted sludge with bio-charcoal resulted in much more improvement on the plant growth as well as less negative effect on environment. Therefore, biocharcoal was in favor of the safe land application of sewage sludge.

  6. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  7. Composting as a strategy to reduce greenhouse gas emissions

    International Nuclear Information System (INIS)

    Paul, J.W.; Wagner-Riddle, C.; Thompson, A.; Fleming, R.; MacAlpine, A.

    2001-01-01

    Composting animal manure has the potential to reduce emissions of nitrous oxide (N 2 O) and methane (CH 4 ) from agriculture. Agriculture has been recognized as a major contributor of greenhouse gases, releasing an estimated 81% and 70% of the anthropogenic emissions of nitrous oxide (N 2 O) and methane (CH 4 ), respectively. A significant amount of methane is emitted during the storage of liquid manure, whereas nitrous oxide is emitted from the storage of manure and from soil following manure or fertilizer application. Composting animal manure can reduce GHG emissions in two ways; by reducing nitrous oxide and methane emissions during manure storage and application, and by reducing the amount of manufactured fertilizers and the GHG associated with their production and use. We will present information of GHG emissions and potentials for reduction based on available data, and on specific composting experiments. Nitrous oxide and methane emissions were monitored on an enclosed composting system processing liquid hog manure. Measurements indicated that total GHG emissions during composting were 24% of the Tier 2 IPCC estimates for traditional liquid hog manure management on that farm. Previous research has also indicated little nitrous oxide emission following application of composted manure to soil. The method of composting has a large impact on GHG emissions, where GHG emissions are higher from outdoor windrow composting systems than from controlled aerated systems. Further research is required to assess the whole manure management system, but composting appears to have great potential to reduce GHG emissions from agriculture. The bonus is that composting also addresses a number of other environmental concerns such as pathogens, surface and groundwater quality and ammonia emissions. (author)

  8. The effect of municipal compost application on the amount of micro ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the effect of municipal compost (MC) application on micro elements concentration in soil and tissues of medicinal plant of mint. This study was carried out in a split plot based on complete randomized block design in three replications in the field of the University of Agricultural Sciences ...

  9. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  10. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    International Nuclear Information System (INIS)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-01-01

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments

  11. Quantifying the effects of green waste compost application, water content and nitrogen fertilization on nitrous oxide emissions in 10 agricultural soils.

    Science.gov (United States)

    Zhu, Xia; Silva, Lucas C R; Doane, Timothy A; Wu, Ning; Horwath, William R

    2013-01-01

    Common management practices, such as the application of green waste compost, soil moisture manipulation, and nitrogen fertilization, affect nitrous oxide (NO) emissions from agricultural soils. To expand our understanding of how soils interact with these controls, we studied their effects in 10 agricultural soils. Application of compost slightly increased NO emissions in soils with low initial levels of inorganic N and low background emission. For soils in which compost caused a decrease in emission, this decrease was larger than any of the observed increases in the other soils. The five most important factors driving emission across all soils, in order of increasing importance, were native dissolved organic carbon (DOC), treatment-induced change in DOC, native inorganic N, change in pH, and soil iron (Fe). Notable was the prominence of Fe as a regulator of NO emission. In general, compost is a viable amendment, considering the agronomic benefits it provides against the risk of producing a small increase in NO emissions. However, if soil properties and conditions are taken into account, management can recognize the potential effect of compost and thereby reduce NO emissions from susceptible soils, particularly by avoiding application of compost under wet conditions and together with ammonium fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. The efficiency of home composting programmes and compost quality.

    Science.gov (United States)

    Vázquez, M A; Soto, M

    2017-06-01

    The efficiency of home composting programmes and the quality of the produced compost was evaluated in eight rural areas carrying out home composting programmes (up to 880 composting bins) for all household biowaste including meat and fish leftovers. Efficiency was analysed in terms of reduction of organic waste collected by the municipal services. An efficiency of 77% on average was obtained, corresponding to a composting rate of 126kg/person·year of biowaste (or 380kg/composter·year). Compost quality was determined for a total of 90 composting bins. The operation of composting bins by users was successful, as indicated by a low C/N ratio (10-15), low inappropriate materials (or physical contaminant materials, mean of 0.27±0.44% dry matter), low heavy metal content (94% of samples met required standards for agricultural use) and high nutrient content (2.1% N, 0.6% P, 2.5% K, 0.7% Mg and 3.7% Ca on average, dry matter). The high moisture (above 70% in 48% of the samples) did not compromise the compost quality. Results of this study show that home composting of household organic waste including meat and fish leftovers is a feasible practice. Home composting helps individuals and families to reduce the amount of household waste at the same time gaining a fertiliser material (compost) of excellent quality for gardens or vegetable plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain

    Science.gov (United States)

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn. PMID

  14. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.

    Science.gov (United States)

    Sevilla-Perea, A; Mingorance, M D

    2015-08-01

    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity.

    Science.gov (United States)

    Zhang, Zhenhua; Zhao, Juan; Yu, Cigang; Dong, Shanshan; Zhang, Dini; Yu, Ran; Wang, Changyong; Liu, Yan

    2015-12-01

    Improper treatment of penicillin fermentation fungi residue (PFFR), one of the by-products of penicillin production process, may result in environmental pollution due to the high concentration of penicillin. Aerobic co-composting of PFFR with pig manure was determined to degrade penicillin in PFFR. Results showed that co-composting of PFFR with pig manure can significantly reduce the concentration of penicillin in PFFR, make the PFFR-compost safer as organic fertilizer for soil application. More than 99% of penicillin in PFFR were removed after 7-day composting. PFFR did not affect the composting process and even promote the activity of the microorganisms in the compost. Quantitative PCR (qPCR) indicated that the bacteria and actinomycetes number in the AC samples were 40-80% higher than that in the pig-manure compost (CK) samples in the same composting phases. This research indicated that the aerobic co-composting was a feasible PFFR treatment method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of long-term application of municipal solid waste compost on speciation and availability of heavy metals in soil

    International Nuclear Information System (INIS)

    Ben Achiba, W.; Lakdar, A.; Verloo, M. G.; Gabteni, N.; Jedidi, N.; Gallali, T.

    2009-01-01

    The application of municipal solid waste compost in agriculture provides a valuable source of plant nutrients and soil fertility. Nevertheless, heavy metals accumulation may be a problem. A seven-year field study was carried out to investigate the effects of farmyard manure (40 and 120 t/ha) and municipal solid waste compost (40, 80 and 120 t/ha) application on the total content, speciation and availability of heavy metals in a calcareous Tunisian soil without vegetation. (Author)

  17. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    Science.gov (United States)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characterization of explosives processing waste decomposition due to composting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Ho, C.H.; Tyndall, R.L.; Vass, A.A.; Caton, J.E.; Caldwell, W.M.

    1994-09-01

    The objective of this work was to provide data and methodology assisting the transfer and acceptance of composting technology for the remediation of explosives-contaminated soils and sediments. Issues and activities addressed included: (a) chemical and toxicological characterization of compost samples from new field composting experiments, and the environmental availability of composting efficiency by isolation of bacterial consortia and natural surfactants from highly efficient composts, and (c) improved assessment of compost product suitability for land application.

  19. Biochar for composting improvement and contaminants reduction. A review.

    Science.gov (United States)

    Godlewska, Paulina; Schmidt, Hans Peter; Ok, Yong Sik; Oleszczuk, Patryk

    2017-12-01

    Biochar is characterised by a large specific surface area, porosity, and a large amount of functional groups. All of those features cause that biochar can be a potentially good material in the optimisation of the process of composting and final compost quality. The objective of this study was to compile the current knowledge on the possibility of biochar application in the process of composting and on the effect of biochar on compost properties and on the content of contaminants in compost. The paper presents the effect of biochar on compost maturity indices, composting temperature and moisture, and also on the content and bioavailability of nutrients and of organic and inorganic contaminants. In the paper note is also taken of the effect of biochar added to composted material on plants, microorganisms and soil invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Composting; Konposuto ka shori

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K. [Saitama Univ., Saitama (Japan)

    2000-02-05

    The composting method can be divided roughly into the aerobic process and the anaerobic process. The former one is a method of processing which decomposes organic substances in the work of the micro-aerobion by blowing the air in the compost material layer, and the latter one is a method for mainly decomposing the organic substance by the work of the anaerobiont microorganism without the positive contact of the material and air. Since the anaerobic process has a slow reaction rate, and emits a resistant odor, an aerobic process system is taken in many plants. In this paper, the aerobic process is described. At first, a fermenter, crush equipment, screening system and a deodorizer as the composting facilities are explained, and the problems of the composting process are described. The largest problem is to exploit a demand without a seasonal variation. It is necessary to exploit the market except for farmland and orchards in order to avoid the seasonal variation. For example, there is a demand for compost in parks, green land and golf courses. It can be also utilized for the normal plane protection of roads and railways. In addition, there are utilization applications such as barn bedding, earthworm culture floors and a deodorant of sewage urine disposal facilities. (NEDO)

  1. Short communication. Response of bacterial community composition to long-term applications of different composts in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Ros, M; Knapp, B A; Peintner, U; Insam, H

    2011-07-01

    Differences in the bacterial community composition of agricultural soils caused by a long-term (12 year) application of different composts were identified by cultivation-dependent and -independent methods (PCR-DGGE and 16S rRNA clone libraries). The number of colony forming units indicated that the successive incorporation of organic amendments increased the bacterial abundance (6.41-5.66 log10 cfu g-1dry soil) compared to control and mineral soils (5.54-3.74 log10 cfu g-1 dry soil). Isolated bacteria were dominated by Actinobacteria, whereby compost-amended soils and green compost-amended soils showed, respectively, higher number of members of Actinobacteria (100% and 64%) than control and mineral soils (50% and 40%). The 16S rRNA clone libraries were dominated by Proteobacteria (43%), Acidobacteria (21%) and Actinobacteria (13%). Proteobacteria and Actinobacteria were most abundant in compost amended soils while Acidobacteria were more frequently found in mineral fertilizer and control soils. Partial 16S rRNA gene clone libraries revealed a higher bacterial diversity than cultivation. In conclusion, we found differences of bacterial community composition with a cultivation approach and clone libraries between compost amended soils and control and mineral soil. (Author) 31 refs.

  2. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  3. Effects of mixing and covering with mature compost on gaseous emissions during composting.

    Science.gov (United States)

    Luo, Wen Hai; Yuan, Jing; Luo, Yi Ming; Li, Guo Xue; Nghiem, Long D; Price, William E

    2014-12-01

    This study investigated effects of mature compost on gaseous emissions during composting using pig manure amended with corn stalks. Apart from a control treatment, three treatments were conducted with the addition of 5% (wet weight of raw materials) of mature compost: (a) mixing raw materials with mature compost at the beginning of composting; (b) covering raw materials with mature compost throughout the experimental period; and (c) covering raw materials with mature compost at the start of composting, but incorporating it into composting pile on day 6 of composting. Mature compost used for the last treatment was inoculated with 2% (wet weight) of raw materials of strain M5 (a methanotrophic bacterium) solution. During 30-d of composting, three treatments with the addition of mature compost could reduce CH4 emission by 53-64% and N2O emission by 43-71%. However, covering with mature compost throughout the experimental period increased cumulative NH3 emission by 61%, although it could reduce 34% NH3 emission in the first 3d. Inoculating strain M5 in mature compost covered on the top of composting pile within first 6d enhanced CH4 oxidation, but simultaneously increased N2O emission. In addition, mixing with mature compost could improve compost maturity. Given the operational convenience in practice, covering with mature compost and then incorporating it into composting pile is a suitable approach to mitigate gaseous emissions during composting. Copyright © 2014. Published by Elsevier Ltd.

  4. Influence of sewage sludge compost applications on uptake of element by cultivated crops in a brown forest soil. Measurement by neutron activation analysis

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki; Kumagai, Hiroshi; Suzuki, Yuichi; Sakamoto, Kazunori; Inubushi, Kazuyuki; Nogawa, Norio; Kawate, Minoru; Sawahata, Hiroyuki

    2006-01-01

    A field study was conducted to investigate the absorption of various elements into oats and carrots cultivated in brown forest soil after three years' applications of chemical fertilizer and two types of sewage sludge compost mixed with sawdust (SD compost) or rice husk (RH compost). The results obtained in this study are summarized as follows. 1) The application of SD compost led to a significant increase on the concentrations of Mn, Zn, Ag and Ba in oat root, of Zn and Br in oat shoot, of Cl and Zn in oat ears, of Mg, Sc, Mn, Zn, Br, Ba and La in carrot peel, of Mn, Fe, Co and Zn in carrot edible portion and of Na, Sc, Mn, Fe, Co and Sm in carrot shoot. 2) The application of RH compost increased the concentrations of Mn, Zn, and Ag in oat root, of K, Cr, Mn, Zn and Br in oat shoot, of Zn and Br in oat ears, of Mg, Mn and Br in carrot peel, of Cl, Mn, Zn and Br in carrot edible portion and of Na, Mn, Zn, Br and Sm in carrot shoot. (author)

  5. Use of composts in revegetating arid lands

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C.A.; Hendrickson, P.L.

    1991-09-01

    Compost has been suggested as a soil amendment for arid lands at the US Department of Energy's Hanford Site in southeastern Washington State. The operating contractor of the site, Westinghouse Hanford Company, requested that the Pacific Northwest Laboratory conduct a literature review to compile additional information on the use of compost amendments and their benefits. This report provides background information on the factors needed for plant growth and the consequences of severe soil disturbance. This report also discussed the characteristics of composts relative to other amendments and how they each affect plant growth. Finally,regulatory requirements that could affect land application of sludge-based compost on the Hanford Site are reviewed.

  6. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    Science.gov (United States)

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  7. Composting: Great Rotten Idea.

    Science.gov (United States)

    Chemecology, 1992

    1992-01-01

    To help students investigate both the advantages and disadvantages of composting, various activities are presented dealing with the definitions and the applications of the concepts of recyclable and biodegradable. (MCO)

  8. ENGINEERING BULLETIN: COMPOSTING

    Science.gov (United States)

    Composting is an emerging ex situ biological technology that is potentially applicable to nonvolatile and semivolatile organic compounds (SVOCs) in soils. It has been applied to polycyclic aromatic hydrocarbons (PAHs) and explosives. It has been found to be potentially effectiv...

  9. Nitrogen losses to the environment following food-based digestate and compost applications to agricultural land.

    Science.gov (United States)

    Nicholson, Fiona; Bhogal, Anne; Cardenas, Laura; Chadwick, Dave; Misselbrook, Tom; Rollett, Alison; Taylor, Matt; Thorman, Rachel; Williams, John

    2017-09-01

    The anaerobic digestion of food waste for energy recovery produces a nutrient-rich digestate which is a valuable source of crop available nitrogen (N). As with any 'new' material being recycled to agricultural land it is important to develop best management practices that maximise crop available N supply, whilst minimising emissions to the environment. In this study, ammonia (NH 3 ) and nitrous oxide (N 2 O) emissions to air and nitrate (NO 3 - ) leaching losses to water following digestate, compost and livestock manure applications to agricultural land were measured at 3 sites in England and Wales. Ammonia emissions were greater from applications of food-based digestate (c.40% of total N applied) than from livestock slurry (c.30% of total N applied) due to its higher ammonium-N content (mean 5.6 kg/t compared with 1-2 kg/t for slurry) and elevated pH (mean 8.3 compared with 7.7 for slurry). Whilst bandspreading was effective at reducing NH 3 emissions from slurry compared with surface broadcasting it was not found to be an effective mitigation option for food-based digestate in this study. The majority of the NH 3 losses occurred within 6 h of spreading highlighting the importance of rapid soil incorporation as a method for reducing NH 3 emissions. Nitrous oxide losses from food-based digestates were low, with emission factors all less than the IPCC default value of 1% (mean 0.45 ± 0.15%). Overwinter NO 3 - leaching losses from food-based digestate were similar to those from pig slurry, but much greater than from pig farmyard manure or compost. Both gaseous N losses and NO 3 - leaching from green and green/food composts were low, indicating that, in these terms, compost can be considered as an 'environmentally benign' material. These findings have been used in the development of best practice guidelines which provide a framework for the responsible use of digestates and composts in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Recent developments in biochar utilization as an additive in organic solid waste composting: A review.

    Science.gov (United States)

    Xiao, Ran; Awasthi, Mukesh Kumar; Li, Ronghua; Park, Jonghwan; Pensky, Scott M; Wang, Quan; Wang, Jim J; Zhang, Zengqiang

    2017-12-01

    In recent years, considerable studies have been devoted to investigating the effect of biochar application on organic solid waste composting. This review provides an up-to-date overview of biochar amendment on composting processes and compost quality. Biochar production, characteristics, and its application coupled with the basic concepts of composting are briefly introduced before detailing the effects of biochar addition on composting. According to recent studies, biochar has exhibited great potential for enhancing composting. It is evident that biochar addition in composting can: (1) improve compost mixture physicochemical properties, (2) enhance microbial activities and promote organic matter decomposition, (3) reduce ammonia (NH 3 ) and greenhouse gas (GHG) emissions, and (4) upgrade compost quality by increasing the total/available nutrient content, enhancing maturity, and decreasing phytotoxicity. Despite that, further research is needed to explore the mechanism of biochar addition on composting and to evaluate the agricultural and environmental performances of co-composted biochar compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model.

    Science.gov (United States)

    Zhang, Yuan; Guan, Yidong; Shi, Qi

    2015-02-01

    Organic pollutants (OPs) are potentially present in composts, and the assessment of their content and bioaccessibility in these composts is of paramount importance to minimize the risk of soil contamination and improve soil fertility. In this work, integration of the dynamics of organic carbon (OC) and OPs in an overall experimental framework is first proposed and adopted to validate the applicability of the COP-Compost model and to calibrate the model parameters on the basis of what has been achieved with the COP-Compost model. The COP-Compost model was evaluated via composting experiments containing 16 US Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs) and the sorption coefficient (Kd) values of two types of OP: fluorenthene (FLT) and pyrene (PHE). In our study, these compounds are used to characterize the sequential extraction and are quantified as soluble, sorbed, and non-extractable fractions. The model was calibrated, and coupling the OC and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. The results show good agreement between the simulated and experimental results describing the evolution of different organic pollutants using the OP module, as well as the coupling module. However, no clear relationship is found between the Kd and the property of organic fractions. Further estimation of parameters is still necessary to modify the insufficiency of this present research.

  12. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  13. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application

    International Nuclear Information System (INIS)

    Hartley, William; Dickinson, Nicholas M.; Riby, Philip; Leese, Elizabeth; Morton, Jackie; Lepp, Nicholas W.

    2010-01-01

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. - A comparison of mulching and mixing of green waste compost to an urban soil results in differences in arsenic and metal leaching.

  14. Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, William, E-mail: w.hartley@ljmu.ac.u [Liverpool John Moores University, Faculty of Science, Byrom Street, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M.; Riby, Philip [Liverpool John Moores University, Faculty of Science, Byrom Street, Liverpool L3 3AF (United Kingdom); Leese, Elizabeth; Morton, Jackie [Health and Safety Laboratory, Harpur Hill, Buxton, Derbyshire SK17 9JN (United Kingdom); Lepp, Nicholas W., E-mail: nickandeileenlepp@hotmail.co [35 Victoria Road, Formby L37 7DH (United Kingdom)

    2010-12-15

    Application of green waste compost (GWC) to brownfield land is now common practice in soil restoration. However, previous studies have demonstrated both beneficial and detrimental effects on arsenic and metal mobility. In this paper, trace element behaviour was investigated following GWC application, either as surface mulch to, or mixed into soil from a previously described brownfield site in the U.K. Significant differences in arsenic mobility were observed between treatments. Mulching caused most disturbance, significantly increasing soil pore water As, together with Fe, P, Cr, Ni and dissolved organic carbon, the latter was a critical factor enhancing As mobilization. Arsenate was the main inorganic As species in soil pore water, increasing in concentration over time. An initial flush of potentially more toxic arsenite decreased 4 weeks after compost application. Biological processes appeared to play an important role in influencing As mobility. The results point to the necessity for careful management of As-contaminated soils. - A comparison of mulching and mixing of green waste compost to an urban soil results in differences in arsenic and metal leaching.

  15. Use of Urban composts for the regeneration of a burnt Mediterranean soil

    Energy Technology Data Exchange (ETDEWEB)

    Cellier, A.; Baldy, V.; Ballini, C.; Houot, S.; Francou, C.

    2009-07-01

    In Mediterranean region, forest fires are a major problem towards the desertification of the environment. Use of composts is considered as a solution for soil and vegetation rehabilitation. In this study, we determined the effects of three urban composts and their mode of application (laid at the soil surface or buried) on soil restoration after fire: municipal wastes compost (MWC), sewage sludge and green wastes compost (SSC) and, green wastes compost (GWC). (Author)

  16. Physico-chemical and biological characteristics of compost from decentralised composting programmes.

    Science.gov (United States)

    Vázquez, M A; Sen, R; Soto, M

    2015-12-01

    Composts that originated from small-scale composting programmes including home, community and canteen waste composters were studied. Heavy metals concentration indicated compliance with current regulations for conventional and organic agriculture. Compost from canteen waste showed high organic matter content (74% VS), while community (44 ± 20% VS) and home composts (31 ± 16% VS) had moderate levels. N content increased from home compost (1.3 ± 0.9% dm) to community (2.0 ± 0.9%) and canteen compost (2.5-3.0%) while P content ranged from 0.4% to 0.6% dm. C/N, absorbance E4/E6 and N-NH4(+)/N-NO3(-) ratios as well as respiration index indicated well-stabilized final products. Culturable bacterial and fungal cfu linkage to composting dynamics were identified and higher diversity of invertebrates was found in the smaller scale static systems. With similar process evolution indicators to industrial systems, overall results support the sustainability of these small-scale, self-managed composting systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Repeated applications of compost and manure mainly affect the size and chemical nature of particulate organic matter in a loamy soil after 8 years

    Science.gov (United States)

    Peltre, Clement; Dignac, Marie-France; Doublet, Jeremy; Plante, Alain; Houot, Sabine

    2013-04-01

    Land application of exogenous organic matter (EOM) of residual origin can help to maintain or increase soil organic carbon (SOC) stocks. However, it remains necessary to quantify and predict the soil C accumulation and to determine under which form the C accumulates. Changes to the chemical composition of soil organic matter (SOM) after repeated applications of composts and farmyard manure were investigated in a field experiment (Qualiagro experiment, Ile-de-France) after 8 years of applications of green waste and sludge compost (GWS), municipal solid waste compost (MSW), biowaste compost (BIOW) or farmyard manure (FYM). The soil was fractionated into particulate organic matter >50 µm (POM), a heavy fraction >50 µm and a 0-50 µm fraction demineralized with hydrofluoric acid (HF). Repeated EOM applications significantly increased total SOC stocks, the C amount in the POM fraction and to a less extent in the 0-50 µm fraction compared to the reference treatment. Compost applications accumulated C preferentially under the form of coarse organic matter of size >50 µm, whereas the FYM accumulated similar C proportions of size >50 µm and 0-50 µm, which was attributed to the presence in the FYM of a fraction of labile C stimulating microbial activity and producing humified by-products together with a fraction of stabilized C directly alimenting the humified fraction of SOC. Pyrolysis-GC/MS and DRIFT spectroscopy revealed enrichment in lignin in the POM fractions of amended soils with GWS, BIOW and FYM. In the soil receiving MSW compost, the pyrolysate of the POM fraction revealed the presence of plastics originating from the MSW compost. A lower C mineralization during laboratory incubation was found for the POM fractions of amended soils compared with the POM from reference soil. This feature was related to a lower ratio of (furfural+acetic acid) / pyrole pyrolysis products in POM of amended vs. reference plots, indicating a higher degree of recalcitrance.. The POM

  18. Composting and compost utilization: accounting of greenhouse gases and global warming contributions.

    Science.gov (United States)

    Boldrin, Alessio; Andersen, Jacob K; Møller, Jacob; Christensen, Thomas H; Favoino, Enzo

    2009-11-01

    Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (-900 kg CO(2)-equivalents tonne(-1) wet waste (ww)) and a net load (300 kg CO(2)-equivalents tonne( -1) ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.

  19. Investigation and optimization of composting processes--test systems and practical examples

    International Nuclear Information System (INIS)

    Koerner, I.; Braukmeier, J.; Herrenklage, J.; Leikam, K.; Ritzkowski, M.; Schlegelmilch, M.; Stegmann, R.

    2003-01-01

    To determine the optimal course of composting it is useful to carry out experiments. The selection of the right experimental set-up depends on the question of concern. Each set-up is useful for a particular application and has its limits. Two test systems of different scales (up to 1500 ml; up to 100 l) are introduced. The purpose and importance of each system design shall be highlighted by application examples: (1) Suitability of a liquid industrial residue as composting accelerator; (2) Determination of the compost maturity; (3) Behaviour of odor-reducing additives during waste collection and composting; (4) Production of tailor-made compost with respect to Nitrogen (5) Suitability of O 2 -enriched air for acceleration of composting. Small-scale respiration experiments are useful to optimize parameters which have to be adjusted during substrate pre-treatment and composting, with the exception of particle size and temperature, and to reduce the number of variants which have to be investigated in greater detail in larger scale experiments. As all regulation possibilities such as aeration, moistening, turning can be simulated with the technical scale set-up, their complex cooperation can be taken into consideration. Encouraging composting variants can be tested, compared and optimized

  20. Biological testing of a digested sewage sludge and derived composts.

    Science.gov (United States)

    Moreira, R; Sousa, J P; Canhoto, C

    2008-11-01

    Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.

  1. Remediation of metal polluted mine soil with compost: Co-composting versus incorporation

    International Nuclear Information System (INIS)

    Tandy, Susan; Healey, John R.; Nason, Mark A.; Williamson, Julie C.; Jones, Davey L.

    2009-01-01

    Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost. - Co-composting did not provide enhanced stabilization of trace elements over the conventional addition of compost to contaminated land

  2. Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw

    Science.gov (United States)

    Chai, Rushan; Huang, Lidong; Li, Lingling; Gielen, Gerty; Wang, Hailong; Zhang, Yongsong

    2016-01-01

    A holistic approach was followed for utilizing tetracyclines (TCs)-contaminated pig manure, by composting this with rice straw in a greenhouse for CO2 fertilization and composted residue application. After composting, the composted residues can be applied to cropland as a supplemental source of synthetic fertilizers. The objective of this study was to determine the effect of pig manure-rice straw composting on the degradation of TCs in pig manure. The results showed that greenhouse composting significantly accelerated the degradation of TCs. Contents (150 mg·kg−1) of oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC) in the composting feedstock could be completely removed within 42 days for OTC and TC, and 14 days for CTC. However, in the control samples incubated at 25 °C in the dark, concentrations of OTC, TC and CTC only decreased 64.7%, 66.7% and 73.3%, respectively, after 49 days. The degradation rates of TCs in the composting feedstock were in the order of CTC > TC > OTC. During the composting process, CTC dissipated rapidly with the time required for 50% degradation (DT50) and 90% degradation (DT90) of 2.4 and 7.9 days, but OTC was more persistent with DT50 and DT90 values of 5.5 and 18.4 days. On the basis of the results obtained in this study, it could be concluded that pig manure-rice straw composting in a greenhouse can help to accelerate the degradation of TCs in pig manure and make composted residues safer for field application. This technology could be an acceptable practice for greenhouse farmers to utilize TCs-contaminated pig manure. PMID:26927136

  3. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost.

    Science.gov (United States)

    Gabhane, Jagdish; William, S P M Prince; Bidyadhar, Rajnikant; Bhilawe, Priya; Anand, Duraisamy; Vaidya, Atul N; Wate, Satish R

    2012-06-01

    The effect of various additives such as fly ash, phosphogypsum, jaggery, lime, and polyethylene glycol on green waste composting was investigated through assessing their influence on microbial growth, enzymatic activities, organic matter degradation, bulk density, quality of finished compost including gradation test, heavy metal analysis, etc. A perusal of results showed that addition of jaggery and polyethylene glycol were helpful to facilitate composting process as they significantly influenced the growth of microbes and cellulase activity. The quality of finished compost prepared from jaggery and polyethylene glycol added treatments were superior to other composts, wherein reduction in C/N ratio was more than 8% in jaggery treatment. All other parameters of compost quality including gradation test also favored jaggery and polyethylene glycol as the best additives for green waste composting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands.

    Science.gov (United States)

    Rao, Juluri R; Watabe, Miyuki; Stewart, T Andrew; Millar, B Cherie; Moore, John E

    2007-01-01

    In Ireland, conversion of biodegradable farm wastes such as pig manure spent mushroom compost and poultry litter wastes to pelletised fertilisers is a desirable option for farmers. In this paper, results obtained from the composting of pig waste solids (20% w/w) blended with other locally available biodegradable wastes comprising poultry litter (26% w/w), spent mushroom compost (26% w/w), cocoa husks (18% w/w) and moistened shredded paper (10% w/w) are presented. The resulting 6-mo old 'mature' composts had a nutrient content of 2.3% total N, 1.6% P and 3.1% K, too 'low' for direct use as an agricultural fertiliser. Formulations incorporating dried blood or feather meal amendments enriched the organic N-content, reduced the moisture in mature compost mixtures and aided the granulation process. Inclusion of mineral supplements viz., sulphate of ammonia, rock phosphate and sulphate of potash, yielded slow release fertilisers with nutrient N:P:K ratios of 10:3:6 and 3:5:10 that were suited for amenity grasslands such as golf courses for spring or summer application and autumn dressing, respectively. Rigorous microbiological tests carried out throughout the composting, processing and pelletising phases indicated that the formulated organo-mineral fertilisers were free of vegetative bacterial pathogens.

  5. Actinomicetos aislados del compost y su actividad antagonista a fitopatógenos de la papa (Solanum tuberosum spp. andigena Hawkes)

    OpenAIRE

    Pérez-Rojas, Fernanda; León-Quispe, Jorge; Galindo-Cabello, Nadia

    2015-01-01

    Una de las formas de control de fitopatógenos es a través del uso de microorganismos antagonistas. El compost, un producto orgánico es fuente de microorganismos capaces de producir metabolitos secundarios de interés agrícola. Se aislaron y evaluaron mediante cultivos in vitro la capacidad antagonista de 85 actinomicetos frente a fitopatógenos que afectan a Solanum tuberosum. De los aislados, 23.5% tuvieron actividad antagonista a Ralstonia solanacearum, 16.4% a Pectobacterium carotovorum, 43....

  6. RESPUESTA ANTAGÓNICA DE MICROORGANISMOS AISLADOS DE LOS CULTIVOS DE MICROALGAS EN EL LABORATORIO DE CULTIVOS MARINOS

    Directory of Open Access Journals (Sweden)

    Carmen Ruíz Huamán

    2013-10-01

    Full Text Available Durante el 2012, el Laboratorio de Cultivos Marinos obtuvo bacterias aisladas de los cultivos de microalgas. Se trabajó 60 colonias de los cultivos. Se confrontó una a una las colonias aisladas del cultivo de microalgas con las bacterias patógenas tipo ATCC, estas fueron: Flavobacterium psychrophilum, Aeromona hydrophila, Lactococcus garviaceae y Vibrio herveyi. Solo una bacteria tuvo interacción antagónica ya que formó el halo de inhibición.

  7. Effect of the time of application of phosphorus fertilizer on yield and quality parameters of melon crop amended with winery waste compost.

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Cartagena, María Carmen; Villena Gordo, Raquel; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2016-04-01

    In Spain, drip irrigation systems are widely used for horticultural crop production. In drip irrigation systems, emitter clogging has been identified as one of the most important concerns. Clogging is closely related to the quality of the irrigation water and the structure of the emitter flow path, and occurs as a result of multiple physical, biological and chemical factors. So, the use of acid fertilizers (e.g. phosphoric acid) in these systems is common to avoid the emitter clogging. Moreover, in this country the use of exhausted grape marc compost as source of nutrients and organic matter has been identified as a good management option of soil fertility, especially in grape-growing areas with a large generation of wastes from the wine and distillery industries. The purpose of this work was to study the effect of the time of application of phosphorus fertilizer with fertirrigation in a melon crop amended with winery waste compost on yield and quality parameters. During two years, the melon crop was grown under field conditions and beside the control treatment, three doses of compost were applied: 6.7, 13.3 and 20.0 t ha-1. All the compost treatments received 120 kg ha-1 of phosphorus fertilizer (phosphoric acid) for the season varying the time of application: The first year phosphorus application started after male and female flowering, and the second year the application started before flowering. Yield and quality parameters were evaluated to assess the suitability of these practices. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03. Keywords: Phosphorus fertilizer, exhausted grape marc compost, melon crop, yield and quality parameters.

  8. Assessment of heavy metal pollution with applications of sewage sludge and city compost for maximizing crop yields

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Ramachandran, V.; Raghu, K.

    1997-01-01

    Land application of municipal sewage sludge and city compost as organic manures make it imperative to assess heavy-metal pollution in soils and crops. Greenhouse experiments, conducted on maize in a vertisol and an ultisol amended with various doses of dry sewage sludge and city compost from Mumbai, indicated significant increases in dry matter-yields only in the vertisol. Significantly higher concentrations of Zn, Cu, Co, Pb, Ni and Cd were obtained in plants grown in the amended ultisol, but not in the amended vertisol. As Cd is the most toxic, experiments were conducted with four contrasting soils amended with varying doses of Cd-enriched sewage sludge and city compost. Results showed significant reductions in dry-matter yields of maize shoots at the higher rates of sludge or compost in the ultisol and an alfisol, but with no significant effects in the vertisol or an entisol. The levels of Cd and Zn were significantly elevated in plants in all four soil types. There were negative residual effects from the sludge and compost amendments: dry-matter yields of a succeeding maize crop were decreased in the ultisol and alfisol. Experiments with soils amended with sludge enriched with either Cd or Zn at 80 mg kg -1 indicated significant reductions in dry matter in all soils with Cd, but not with Zn. The results demonstrate that sewage sludges and city composts may be effectively used for maximizing crop yields, especially in vertisols and entisols. However, caution has to be exercised when using sludges containing even relatively low levels of Cd, or high levels of Zn, depending upon soil type. (author)

  9. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils.

    Science.gov (United States)

    Gou, Min; Hu, Hang-Wei; Zhang, Yu-Jing; Wang, Jun-Tao; Hayden, Helen; Tang, Yue-Qin; He, Ji-Zheng

    2018-01-15

    Composting has been suggested as a potential strategy to eliminate antibiotic residues and pathogens in livestock manure before its application as an organic fertilizer in agro-ecosystems. However, the impacts of composting on antibiotic resistance genes (ARGs) in livestock manure and their temporal succession following the application of compost to land are not well understood. We examined how aerobic composting affected the resistome profiles of cattle manure, and by constructing laboratory microcosms we compared the effects of manure and compost application to agricultural soils on the temporal succession of a wide spectrum of ARGs. The high-throughput quantitative PCR array detected a total of 144 ARGs across all the soil, manure and compost samples, with Macrolide-Lincosamide-Streptogramin B, aminoglycoside, multidrug, tetracycline, and β-lactam resistance as the most dominant types. Composting significantly reduced the diversity and relative abundance of ARGs and mobile genetic elements (MGEs) in the cattle manure. In the 120-day microcosm incubation, the diversity and abundance of ARGs in manure-treated soils were significantly higher than those in compost-treated soils at the beginning of the experiment. The level of antibiotic resistance rapidly declined over time in all manure- and compost-treated soils, coupled with similar temporal patterns of manure- and compost-derived bacterial communities as revealed by SourceTracker analysis. The network analysis revealed more intensive interactions/associations among ARGs and MGEs in manure-treated soils than in compost-treated soils, suggesting that mobility potential of ARGs was lower in soils amended with compost. Our results provide evidence that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost.

    Science.gov (United States)

    Bryndum, S; Muschler, R; Nigussie, A; Magid, J; de Neergaard, A

    2017-07-01

    Composting is an effective method to recycle biodegradable waste as soil amendment in smallholder farming systems. Although all essential plant nutrients are found in compost, a substantial amount of nitrogen is lost during composting. This study therefore investigated the potential of reducing N losses by (i) delaying the addition of nitrogen-rich substrates (i.e. poultry manure), and (ii) reducing the turning frequency during composting. Furthermore, we tested the effect of compost application method on nitrogen mineralization. Sugarcane-waste was composted for 54days with addition of poultry manure at the beginning (i.e. early addition) or after 21days of composting (delayed addition). The compost pile was then turned either every three or nine days. Composts were subsequently applied to soil as (i) homogeneously mixed, or (ii) stratified, and incubated for 28days to test the effect of compost application on nitrogen mineralization. The results showed that delayed addition of poultry manure reduced total nitrogen loss by 33% and increased mineral nitrogen content by >200% compared with early addition. Similarly, less frequent turning reduced total N loss by 12% compared with frequent turning. Stratified placement of compost did not enhance N mineralization compared to a homogeneous mixing. Our results suggested that simple modifications of the composting process (i.e. delayed addition and/or turning frequency) could significantly reduce N losses and improve the plant-nutritional value of compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Municipal Compost as a Nutrient Source for Organic Crop Production in New Zealand

    Directory of Open Access Journals (Sweden)

    Abie Horrocks

    2016-05-01

    Full Text Available About 1% of New Zealand farmland is managed organically. Nitrogen is the nutrient most likely to limit organic crop production. A potential solution is incorporation of compost to supply N. About 726,000 t of municipal garden and kitchen wastes are sent to landfills annually. Composting offers a means of reducing the impact of landfill wastes on the wider environment. Organically certified compost (N content typically 2% to 2.5% is available from some municipal composting plants. To be effectively used on organic farms, the rate of N release (mineralization must be known. Laboratory incubations were conducted to quantify mineralization of compost N under controlled (temperature and moisture conditions. Nitrogen availability and crop yields from a one-off application of compost (25–100 t·ha−1 were also assessed in two field trials (using cereal and forage crops. The results suggested that a relatively small part (13%–23% of compost N was used by the crops in 3–4 years. Much of this was mineral N present at the time of application. Mineralization rates in the laboratory and field studies were much lower than expected from published work or compost C:N ratio (considered an important indicator of N mineralization potential of composts.

  12. Quality assessment of compost prepared with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Jodar J. R.

    2017-11-01

    Full Text Available One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  13. Quality assessment of compost prepared with municipal solid waste

    Science.gov (United States)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  14. Biochar affected by composting with farmyard manure.

    Science.gov (United States)

    Prost, Katharina; Borchard, Nils; Siemens, Jan; Kautz, Timo; Séquaris, Jean-Marie; Möller, Andreas; Amelung, Wulf

    2013-01-01

    Biochar applications to soils can improve soil fertility by increasing the soil's cation exchange capacity (CEC) and nutrient retention. Because biochar amendment may occur with the applications of organic fertilizers, we tested to which extent composting with farmyard manure increases CEC and nutrient content of charcoal and gasification coke. Both types of biochar absorbed leachate generated during the composting process. As a result, the moisture content of gasification coke increased from 0.02 to 0.94 g g, and that of charcoal increased from 0.03 to 0.52 g g. With the leachate, the chars absorbed organic matter and nutrients, increasing contents of water-extractable organic carbon (gasification coke: from 0.09 to 7.00 g kg; charcoal: from 0.03 to 3.52 g kg), total soluble nitrogen (gasification coke: from not detected to 705.5 mg kg; charcoal: from 3.2 to 377.2 mg kg), plant-available phosphorus (gasification coke: from 351 to 635 mg kg; charcoal: from 44 to 190 mg kg), and plant-available potassium (gasification coke: from 6.0 to 15.3 g kg; charcoal: from 0.6 to 8.5 g kg). The potential CEC increased from 22.4 to 88.6 mmol kg for the gasification coke and from 20.8 to 39.0 mmol kg for the charcoal. There were little if any changes in the contents and patterns of benzene polycarboxylic acids of the biochars, suggesting that degradation of black carbon during the composting process was negligible. The surface area of the biochars declined during the composting process due to the clogging of micropores by sorbed compost-derived materials. Interactions with composting substrate thus enhance the nutrient loads but alter the surface properties of biochars. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Combined application of compost and Bacillus sp. CIK-512 ameliorated the lead toxicity in radish by regulating the homeostasis of antioxidants and lead.

    Science.gov (United States)

    Ahmad, Iftikhar; Akhtar, Muhammad Javed; Mehmood, Shehzad; Akhter, Kalsoom; Tahir, Muhammad; Saeed, Muhammad Farhan; Hussain, Muhammad Baqir; Hussain, Saddam

    2018-02-01

    Lead (Pb) contamination is ubiquitous and usually causes toxicity to plants. Nevertheless, application of compost and plant growth promoting rhizobacteria synergistically may ameliorate the Pb toxicity in radish. The present study assessed the effects of compost and Bacillus sp. CIK-512 on growth, physiology, antioxidants and uptake of Pb in contaminated soil and explored the possible mechanism for Pb phytotoxicity amelioration. Treatments comprised of un-inoculated control, compost, CIK-512, and compost + CIK-512; plants were grown in soil contaminated with Pb (500mgkg -1 ) and without Pb in pot culture. Lead caused reduction in shoot dry biomass, photosynthetic rate, stomatal conductance, relative water contents, whereas enhanced root dry biomass, ascorbate peroxidase, catalase, malondialdehyde and electrolyte leakage in comparison with non-contaminated control. Plants inoculated with strain CIK-512 and compost produced significantly higher dry biomass, photosynthetic rate and stomatal conductance in normal and contaminated soils. Bacterial strain CIK-512 and compost synergy improved growth and physiology of radish in contaminated soil possibly through homeostasis of antioxidant activities, reduced membrane leakage and Pb accumulation in shoot. Possibly, Pb-induced production of reactive oxygen species resulted in increased electrolyte leakage and malondialdehyde contents (r = 0.88-0.92), which led to reduction in growth (r = -0.97) and physiology (r = -0.38 to -0.80), however, such negative effects were ameliorated by the regulation of antioxidants (r = 0.78-0.87). The decreased activity of antioxidants coupled with Pb accumulation in aerial part of the radish indicates the Pb-phytotoxicity amelioration through synergistic application of compost and Bacillus sp. CIK-512. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs.

    Science.gov (United States)

    Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao

    2015-11-01

    Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Hygienization aspects of composting

    OpenAIRE

    Termorshuizen, A.J.; Alsanius, Beatrix

    2016-01-01

    Compost use in agriculture always brings about the risk of introducing plant and human pathogens. • The backbone of the hygienization process consists of temperature, moisture content and chemical compounds formed during composting and activity of antagonists. • Compost produced by proper composting, i.e. a process that produces high temperatures during asufficiently long thermophilic phase can be applied safely. • Farmers should invest in good relationships with compost produce...

  18. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    International Nuclear Information System (INIS)

    Butkovskyi, A.; Ni, G.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G.

    2016-01-01

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  19. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge

    Energy Technology Data Exchange (ETDEWEB)

    Butkovskyi, A., E-mail: andrii.butkovskyi@wur.nl [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Ni, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands); Hernandez Leal, L. [Wetsus, Center of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden (Netherlands); Rijnaarts, H.H.M.; Zeeman, G. [Sub-Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2016-02-13

    Highlights: • Micropollutants removal in the composted UASB sludge ranged from 87% to 99%. • 99% removal of the persistent pharmaceutical diclofenac is achieved. • Triclosan is partly transformed into methyltriclosan that is accumulated in compost. - Abstract: The excess sludge from Up-flow anaerobic sludge bed (UASB) reactor operated on source separated toilet wastewater is a potential source of nutrients and organic matter. It can be further stabilized and dried by composting and applied as a soil amendment. Presence of pathogens, heavy metals and micropollutants in the compost derived from anaerobic sludge is thus undesirable. This paper focuses on removal of micropollutants, typically present in domestic wastewater, via composting of UASB sludge with waste wood. Estrone, diclofenac, ibuprofen, metoprolol, carbamazepine, galaxolide and triclosan were spiked to a mixture of UASB sludge and waste wood. Their concentrations were monitored during 92 days of composting at controlled temperature conditions. All studied micropollutants were removed at various rates with overall removal ranging from 99.9% for ibuprofen, diclofenac and estrone to 87.8% for carbamazepine. Accumulation of methyltriclosan as by-product of triclosan degradation was observed. The prospects and limitations of the integration of a composting process into Source Separated Sanitation concepts are discussed.

  20. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants.

    Science.gov (United States)

    Goswami, Linee; Nath, Anil; Sutradhar, Sweety; Bhattacharya, Satya Sundar; Kalamdhad, Ajay; Vellingiri, Kowsalya; Kim, Ki-Hyun

    2017-09-15

    Utilization of different types of solid wastes through composting is important for environmental sustainability and restoring soil quality. Although drum composting is an efficient technology, the possibility of heavy metal contamination restricts its large-scale use. In this research, a field experiment was conducted to evaluate the impact of water hyacinth drum compost (DC) and traditional vermicompost (VC) on soil quality and crop growth in an agro-ecosystem cultivated intensively with tomato and cabbage as test crops. A substantial improvement in soil health was observed with respect to nutrient availability, physical stability, and microbial diversity due to the application of drum compost and traditional vermicompost. Moreover, soil organic carbon was enriched through increased humic and fulvic acid carbon. Interestingly, heavy metal contamination was less significant in vermicompost-treated soils than in those receiving the other treatments. The use of VC and DC in combination with recommended chemical fertilization effectively stimulated crop growth, yield, product quality, and storage longevity for both tomato and cabbage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Economic evaluation of cereal cropping systems under semiarid conditions: minimum input, organic and conventional Avaliação econômica de sistemas de cultivo de cereias em condições semiáridas: cultivo mínimo, orgânico e convencional

    Directory of Open Access Journals (Sweden)

    Gabriel Pardo

    2009-10-01

    Full Text Available Cropping systems like organic farming, selling products at a higher price and promoting environmental sustainability by reducing fertilizer and pesticides, can be more profitable than conventional systems. An economic evaluation of three cropping systems in a seven year period experiment was performed, using a common rotation (fallow-barley-vetch-durum wheat in a semi-arid rainfed field of Spain. The minimum input system included mouldboard ploughing, cultivator preparation, sowing and harvest. The conventional system involved mineral fertilizer and herbicide treatments, while the organic system involved composted manure and mechanical weed control. The resulting economic margins were highest with the minimum input system, followed by the organic and conventional systems. If the cereal grain from the minimum input system was sold at a higher price on the organic market, this system was the most profitable. Without the price difference, the organic system was as profitable as the conventional one.Sistemas de cultivo como agricultura orgânica, cujos produtos têm custo mais alto, mas que promova sustentabilidade ambiental pela redução do uso de fertilizantes e pesticidas, pode ser mais lucrativo do que sistemas convencionais de cultivo. Efetuou-se uma avaliação econômica de três sistemas de cultivo num período experimental de sete anos, utilizando um sistema comum de rotação (pousio-cevada-ervilhaca-trigo duro, sem irrigação, em um local semi-árido da Espanha. O sistema de cultivo mínimo incluía aração com aiveca, preparo com cultivador, semeadura e colheita. O sistema convencional envolvia tratamentos com herbicidas e fertilizantes minerais, enquanto o sistema orgânico envolvia adubação com composto e controle mecânico de ervas invasoras. O sistema com maior retorno econômico foi o de cultivo mínimo, seguido do orgânico e do convencional. O sistema de cultivo mínimo foi o mais lucrativo quando o cereal foi vendido num pre

  2. Utilization of high temperature compost in space agriculture: the model compost kills Escherichia coli

    Science.gov (United States)

    Oshima, Tairo; Moriya, Toshiyuki; Yoshii, Takahiro

    The author and his colleagues have proposed the use of high temperature composting in space inhabitation. Composting has many advantages over burning in organic waste treatments. Composting is self-heating processes and needs no extra fuel. Composting requires no sophis-ticated equipment such as an incinerator. Composting emits no hazardous gases such as NOx, SOx and dioxines which are often produced by burning. The final product can be used as fer-tilizer in space farm land; resources recycling society can be constructed in space stations and space cities. In addition to these advantages, composting and compost soil may contribute to the environmental cleanup. During composting processes, harmful compounds to agricultural plants and animals can be destroyed. Seeds of weeds can be killed by high heat. Likewise pathogenic microbes in the waste can be eliminated during fermentation inside the composts. Recently we measured the survivability of E. coli in compost. E. coli was used as the represen-tative of the Gram-negative bacteria. Since many pathogenic strains belong to Gram-negative bacteria and Gram-negative bacteria are more resistant to antibiotics than gram-positive bac-teria. When E. coli cells were mixed in the compost pile of which inside temperature reaches up to 75oC, they died within a short period as expected. However, E. coli DNA was detected even after a day in high temperature compost. RNA has a shorter life-span than DNA, but was detected after incubation in compost for several hours. In addition to sterilizing effects due to high temperature, we found our compost soil has E. coli killing activity. When mixed with the compost soil at room temperature, E. coli died gradually. Extract of the compost soil also killed E. coli at room temperature, but it took a few days to eliminate E. coli completely. During the killing process, total number of living bacteria did not change, indicating that the killing activity is limited to some specific

  3. Nitrous oxide flux from landfill leachate-sawdust nitrogenous compost

    International Nuclear Information System (INIS)

    Hui, C.H.; So, M.K.; Lee, C.M.; Chan, G.Y.S.

    2003-01-01

    Composted nitrogenous waste has the potential to produce excessive amounts of nitrous oxide (N 2 O), a potent greenhouse gas that also contributes to stratospheric ozone depletion. In this laboratory study, sawdust was irrigated with varying amounts of landfill leachate with high NH 4 + -N content (3950 mg l -1 ). Physicochemical properties, including the amount of N 2 O produced, were monitored during the composting process over 28 days. A rapid decline in NH 4 + -N in the first 4 days and increasing NO 3 - -N for 11 days was followed by lower but stabilized levels of available-N, even with repeated leachate irrigation. Less than 0.03% of the leachate-applied N was lost as N 2 O. Higher leachate applications as much as tripled N 2 O production, but this represented a lesser proportion overall of the total nitrogen. Addition of glucose to the composting process had no significant effect on N 2 O production. The derived sawdust-leachate compost supported healthy growth of Sesbania rostrata. It is concluded that compost can be produced from sawdust irrigated with landfill leachate without substantial emission of N 2 O, although excessive flux of N 2 O remains about high application rates over longer time periods. (Author)

  4. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    Science.gov (United States)

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow

  5. Composting: Fast 2.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    Composting is a way of using organic wastes from yards and kitchens to help plants grow. This book discusses how composting happens in nature, the classification of composting methods, and their characteristics. Examples of containers for aerobic/anaerobic decomposition are introduced along with sample activities. The process of aerobic/anaerobic…

  6. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  7. The influence of compost addition on the water repellency of brownfield soils

    Science.gov (United States)

    Whelan, Amii; Kechavarzi, Cedric; Sakrabani, Ruben; Coulon, Frederic; Simmons, Robert; Wu, Guozhong

    2010-05-01

    Compost application to brownfield sites, which can facilitate the stabilisation and remediation of contaminants whilst providing adequate conditions for plant growth, is seen as an opportunity to divert biodegradable wastes from landfill and put degraded land back into productive use. However, although compost application is thought to improve soil hydraulic functioning, there is a lack of information on the impact of large amounts of compost on soil water repellency. Water repellency in soils is attributed to the accumulation of hydrophobic organic compounds released as root exudates, fungal and microbial by-products and decomposition of organic matter. It has also been shown that brownfield soils contaminated with petroleum-derived organic contaminants can exhibit strong water repellency, preventing the rapid infiltration of water and leading potentially to surface run off and erosion of contaminated soil. However, hydrophobic organic contaminants are known to become sequestrated by partitioning into organic matter or diffusing into nano- and micropores, making them less available over time (ageing). The effect of large amounts of organic matter addition through compost application on the water repellency of soils contaminated with petroleum-derived organic contaminants requires further investigation. We characterised the influence of compost addition on water repellency in the laboratory by measuring the Water Drop Penetration Time (WDPT), sorptivity and water repellency index through infiltration experiments on soil samples amended with two composts made with contrasting feedstocks (green waste and predominantly meat waste). The treatments consisted of a sandy loam, a clay loam and a sandy loam contaminated with diesel fuel and aged for 3 years, which were amended with the two composts at a rate equivalent to 750t/ha. In addition core samples collected from a brownfield site, amended with compost at three different rates (250, 500 and 750t/ha) in 2007, were

  8. Composting of bio solids by composting tunnels; Compostaje de biosolidos mediante tunes de compostado

    Energy Technology Data Exchange (ETDEWEB)

    Varo, P.; Rodriguez, M.; Prats, D.; Soto, R.; Pastor, B.; Monges, M.

    2003-07-01

    The objective of this work is to study the bio-solid composting process carried out in the composting plant of Aspe (Alicante) by means of open composting tunnels, and to determine the quality of the resulting compost. The parameters under control are temperature. humidity, density, pH, conductivity, organic matter, C/N ratio, ammonium nitride and organic nitrogen. The concentrations of cadmium, chromium, nickel, lead and copper were monitored during the composting process. Observing the parameters analyzed we can conclude that the composting process of the sewage sludge from Aspe procedures a product suitable for agricultural use. The values obtained allow the product resulting from the process to be designated as compost. (Author)

  9. Compost duurzaam ingezet. De Compost Scorekaarten: een instrument voor het afwegen van de waarde van compost

    OpenAIRE

    Schrik, Yannick; Koopmans, Chris

    2015-01-01

    Het duurzame gebruik van een reststof zoals compost hangt sterk samen met de waarde die de compost heeft bij toepassing. Deze publicatie geeft via heldere Compost Score Kaarten inzicht in het vinden van de juiste compostsoort voor het gewenste doel. Of het nu gaat om organischestofvoorziening, verbetering van de bodemstructuur of de nutriëntenvoorziening van gewassen: een bewuste keuze voor de compostsoort en –kwaliteit draagt bij aan een duurzame inzet en duurzaam hergebruik van reststoffen.

  10. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    International Nuclear Information System (INIS)

    Zhang Fabao; Gu Wenjie; Xu Peizhi; Tang Shuanhu; Xie Kaizhi; Huang Xu; Huang Qiaoyi

    2011-01-01

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.

  11. Revamping of entisol soil physical characteristics with compost treatment

    Science.gov (United States)

    Sumono; Loka, S. P.; Nasution, D. L. S.

    2018-02-01

    Physical characteristic of Entisol soil is an important factor for the growth of plant. The aim of this research was to know the effect of compost application on physical characteristics of Entisol soil. The research method used was experimental method with 6 (six) treatments and 3 replications of which K1 = 10 kg Entisol soil without compost, K2 = 9 Kg Entisol soil with 1 kg compost, K3 = 8 kg Entisol soil with 2 kg compost, K4 = 7 kg Entisol soilwith3 kg compost, K5 = 6 kg Entisol soil with 4 kg compost and K6 = 5 kg Entisol soil with 5 kg compost. The observed parameters were soil texture, soil organic matter, soil thickness, porosity, soil pore size, soil permeability and water availability. The results showed that the Entisol soil texture was loamy sand texture, the value of soil organic matter ranged from 0.74% to 4.69%, soil thickness ranged from 13.83 to 20.16 cm, porosity ranged from16% to 37%, soil pore size ranged from 2.859 to 5.493 µm, permeability ranged from 1.24 to 5.64 cm/hour and water availability ranged from 6.67% to 9.12% by each treatment.

  12. Composting of empty fruit bunches in the tower composter - effect of air intake holes

    Science.gov (United States)

    Irvan; Husaini, T.; Trisakti, B.; Batubara, F.; Daimon, H.

    2018-02-01

    The process of composting empty fruit bunches (EFB) by mixing with activated liquid organic fertilizer (ALOF) is an alternative utilization of solid waste generated from palm oil mill. This study aims to find composting techniques of EFB and to obtain degradation data of composting EFB by varying the air intake holes to produce good quality compost. Composting process was carried out by tearing the EFB into four shreds, then put into the tower composter while adding ALOF until it reached the optimum moisture content of 55 -65%. During the composting process, we maintained moisture content at optimum conditions by adding ALOF. Variations of air intake holes area to the outer surface area of the composter are 0/44.314; 72.39/44.314 and 144.78/44.314 (cm2/cm2). Composting is carried out for forty days, however, based on the result, compost began to mature on the 10th day. The results revealed that there was an influence of air intake holes to the composting process. The best degradation of EFB was obtained on the variation of air intake holes 72.39/44.314 (cm2/cm2), pH 8.1, moisture content 79.14%, water holding capacity 60%, electrical conductivity 4.725 dS/m and C/N ratio 20.97.

  13. Cucumber nitrogen utilization as affected by compost levels and nitrogen rates using 15N technique

    International Nuclear Information System (INIS)

    El-Sherif, M.F.; Abdalla, A.A.; Abdalla, M.M.F.; El-Oksh, I.I.

    2005-01-01

    The beneficial effect of compost application to the sandy soil on dry matter production of shoots and fruits as well as its effect on l5N-uptake and nitrogen utilization percent of cucumber plant (Cucumis sativus L.) were studied under field conditions. Two types of natural compost (i.e. sugar cane bagasse (SC) and beet compost (BC)) with three levels (2, 4, 6 ton/fed) in addition to check treatment for each kind of compost (sheep manure with rate of 20 in/fed) combined with three rates of nitrogen fertilizer rates (50, 75, 100% from the recommended rate, i.e. 75 kg /fed) were used. The bagasse compost in both seasons gave a significantly higher response than the beet compost. There was a greet reduction in cucumber dry weight, N yield, Ndff%, FN yield and N utilization % of shoots and fruits as the level of compost application decreased. However, cucumber plants grown on high compost application level (6 ton/fed) were similar in their responses to plants grown on the check treatment. The results of N utilization indicated that the fertilizer utilization by the cucumber shoots and fruits during both seasons was significantly higher for the medium N rate (75% N) in comparison to the lowest fertigation treatment (50% N) and similar to the highest N fertigation rate (100% N). Generally, the results showed that under the experimental conditions to reach an acceptable yield with a high fertilizer utilization, it could be suggested to apply relatively medium rates of N fertigation (56.25 kg N/fed) combined with the high level ofSC compost application (6 t/fed) keeping in mind the regional site conditions

  14. Ammonia emission mitigation in food waste composting: A review.

    Science.gov (United States)

    Wang, Shuguang; Zeng, Yang

    2018-01-01

    Composting is a reliable technology to treat food waste (FW) and produce high quality compost. The ammonia (NH 3 ) emission accounts for the largest nitrogen loss and leads to various environmental impacts. This review introduced the recent progresses on NH 3 mitigation in FW composting. The basic characteristics of FW from various sources were given. Seven NH 3 emission strategies proven effective in the literature were presented. The links between these strategies and the mechanisms of NH 3 production were addressed. Application of hydrothermally treated C rich substrates, biochar or struvite salts had a broad prospect in FW composting if these strategies were proven cost-effective enough. Regulation of nitrogen assimilation and nitrification using biological additive had the potential to achieve NH 3 mitigation but the existing evidence was not enough. In the end, the future prospects highlighted four research topics that needed further investigation to improve NH 3 mitigation and nitrogen conservation in FW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Composting of biological waste. Processes and utilisation; Bioabfallkompostierung. Verfahren und Verwertung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for procesing and utilisation of biological waste by means of composting and spreading on agricultural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises all three reports. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die genannten drei Teilberichte. (orig./SR)

  16. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon.

    Science.gov (United States)

    Oldfield, Thomas L; Sikirica, Nataša; Mondini, Claudio; López, Guadalupe; Kuikman, Peter J; Holden, Nicholas M

    2018-07-15

    This work assessed the potential environmental impact of recycling organic materials in agriculture via pyrolysis (biochar) and composting (compost), as well its combination (biochar-compost blend) versus business-as-usual represented by mineral fertiliser. Life cycle assessment methodology was applied using data sourced from experiments (FP7 project Fertiplus) in three countries (Spain, Italy and Belgium), and considering three environmental impact categories, (i) global warming; (ii) acidification and (iii) eutrophication. The novelty of this analysis is the inclusion of the biochar-compost blend with a focus on multiple European countries, and the inclusion of the acidification and eutrophication impact categories. Biochar, compost and biochar-compost blend all resulted in lower environmental impacts than mineral fertiliser from a systems perspective. Regional differences were found between biochar, compost and biochar-compost blend. The biochar-compost blend offered benefits related to available nutrients and sequestered C. It also produced yields of similar magnitude to mineral fertiliser, which makes its acceptance by farmers more likely whilst reducing environmental impacts. However, careful consideration of feedstock is required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    Science.gov (United States)

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Reduced turning frequency and delayed poultry manure addition reduces N loss from sugarcane compost

    DEFF Research Database (Denmark)

    Bryndum, Sofie; Muschler, R.; Nigatu, Abebe Nigussie

    2017-01-01

    Composting is an effective method to recycle biodegradable waste as soil amendment in smallholder farming systems. Although all essential plant nutrients are found in compost, a substantial amount of nitrogen is lost during composting. This study therefore investigated the potential of reducing N...... losses by (i) delaying the addition of nitrogen-rich substrates (i.e. poultry manure), and (ii) reducing the turning frequency during composting. Furthermore, we tested the effect of compost application method on nitrogen mineralization. Sugarcane-waste was composted for 54days with addition of poultry...... manure at the beginning (i.e. early addition) or after 21days of composting (delayed addition). The compost pile was then turned either every three or nine days. Composts were subsequently applied to soil as (i) homogeneously mixed, or (ii) stratified, and incubated for 28days to test the effect...

  19. Bioremediation of Heavy Metals and Organic Toxicants by Composting

    Directory of Open Access Journals (Sweden)

    Allen V. Barker

    2002-01-01

    Full Text Available Hazardous organic and metallic residues or by-products can enter into plants, soils, and sediments from processes associated with domestic, municipal, agricultural, industrial, and military activities. Handling, ingestion, application to land or other distributions of the contaminated materials into the environment might render harm to humans, livestock, wildlife, crops, or native plants. Considerable remediation of the hazardous wastes or contaminated plants, soils, and sediments can be accomplished by composting. High microbial diversity and activity during composting, due to the abundance of substrates in feedstocks, promotes degradation of xenobiotic organic compounds, such as pesticides, polycyclic aromatic hydrocarbons (PAHs, and polychlorinated biphenyls (PCBs. For composting of contaminated soils, noncontaminated organic matter should be cocomposted with the soils. Metallic pollutants are not degraded during composting but may be converted into organic combinations that have less bioavailability than mineral combinations of the metals. Degradation of organic contaminants in soils is facilitated by addition of composted or raw organic matter, thereby increasing the substrate levels for cometabolism of the contaminants. Similar to the composting of soils in vessels or piles, the on-site addition of organic matter to soils (sheet composting accelerates degradation of organic pollutants and binds metallic pollutants. Recalcitrant materials, such as organochlorines, may not undergo degradation in composts or in soils, and the effects of forming organic complexes with metallic pollutants may be nonpermanent or short lived. The general conclusion is, however, that composting degrades or binds pollutants to innocuous levels or into innocuous compounds in the finished product.

  20. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    International Nuclear Information System (INIS)

    Makan, Abdelhadi

    2015-01-01

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations

  1. Windrow co-composting of natural casings waste with sheep manure and dead leaves

    Energy Technology Data Exchange (ETDEWEB)

    Makan, Abdelhadi, E-mail: abdelhadi.makan@gmail.com

    2015-08-15

    Highlights: • Waste management opportunities in small and medium companies were highlighted. • Pilot scale program for windrow co-composting of natural casings was investigated. • Compost preparation, characterization and application phases were discussed. • Natural casings co-composting has proved more viable and cost effective solution. - Abstract: After studying the waste management opportunities in small and medium companies of natural casings, composting has proved more viable and cost effective solution for the valorization of these types of waste, but its feasibility depends on the final product value. This paper investigated a pilot scale program for the windrow co-composting of natural casings waste with sheep manure and dead leaves incorporation. Processing, characterization and application of the final compost were described and the final compost was analyzed for pathogens, metals, nutrients, maturity, and agronomic parameters. The results showed that all test result levels were below the limits specified in the EPA regulations published in Title 40, Section 503, of the Code of Federal Regulations (40 CFR 503). Moreover, the agronomic value tests which include nutrients, organic matter, pH, electrical conductivity, etc. showed that the compost had high organic-matter content and low salt content, all of which indicate good compost characteristics. The ratio of nitrogen (N), phosphorus (P), and potassium (K), or NPK ratio, was measured at 1.6–0.9–0.7. Reported units are consistent with those found on fertilizer formulations.

  2. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Energy and pressure requirements for compression of swine solid fraction compost

    Directory of Open Access Journals (Sweden)

    Niccolò Pampuro

    2013-09-01

    Full Text Available The excessive amount of pig slurry spread on soil has contributed to nitrate water pollution both in surface and in ground waters, especially in areas classified as vulnerable zones to nitrate in accordance with European Regulation (91/676/CEE. Several techniques have been developed to manage livestock slurries as cheaply and conveniently as possible and to reduce potential risks of environmental pollution. Among these techniques, solid-liquid separation of slurry is a common practice in Italy. The liquid fraction can be used for irrigation and the solid fraction, after aerobic stabilization, produces an organic compost rich in humic substances. However, compost derived from swine solid fraction is a low density material (bulk density less than 500 kgm–3. This makes it costly to transport composted swine solid fraction from production sites to areas where it could be effectively utilized for value-added applications such as in soil fertilization. Densification is one possible way to enhance the storage and transportation of the compost. This study therefore investigates the effect of pressure (20- 110 MPa and pressure application time (5-120 s on the compaction characteristics of compost derived from swine solid fraction. Two different types of material have been used: composted swine solid fraction derived from mechanical separation and compost obtained by mixing the first material with wood chips. Results obtained showed that both the pressure applied and the pressure application time significantly affect the density of the compacted samples; while the specific compression energy is significantly affected only by the pressure. Best predictor equations were developed to predict compact density and the specific compression energy required by the densification process. The specific compression energy values based on the results from this study (6-32 kJkg–1 were significantly lower than the specific energy required to manufacture pellets from

  4. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution.

    Science.gov (United States)

    Tsui, Lo; Roy, William R

    2008-09-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N(2). In contrast, when the corn stillage was pyrolyzed under N(2), the yield was only 22%. The N(2)-BET surface area of corn stillage activated carbon was 439 m(2)/g, which was much greater than the maximum compost char surface area of 72 m(2)/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N(2)-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon.

  5. Heat inactivation of Salmonella spp. in fresh poultry compost by simulating early phase of composting process.

    Science.gov (United States)

    Singh, R; Kim, J; Jiang, X

    2012-05-01

    The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB-R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g(-1). The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come-up time owing to higher ammonia volatilization. Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  6. CHNS ANALYSIS TOWARDS FOOD WASTE IN COMPOSTING

    Directory of Open Access Journals (Sweden)

    Abdul Rahman

    2018-01-01

    Full Text Available High food waste generation in Malaysia that reached up to 15, 000 tonnes per day assign for major problems towards environment, economy and social aspect. Alternative method had been studied for the past years, but composting was seen among the best possible solution to treat this matter. Composting not only has an environmentally method but it also produces a valuable end product that will benefit in agricultural sector. Further studies had been done in this paper to represent their macro and micro nutrient quality as well as their bioavailability towards plant and the analysis of data collected in both CHNS analyser and mathematical method using ultimate analysis. This study also applied enhanced composting process with its segregation, drying, grinding and standard aeration time. Each container has been rotated for 5 minutes yet different resting time was applied which are 25, 55, 155 minutes namely A, B, C and D within 2 hours period. Result shown that overall Carbon (C, Nitrogen (N and Sulphur (S concentration increases as the higher aeration was applied while the Hydrogen vice versa. The highest elemental percentage distribution recorded is carbon (31% while the lowest recorded is S (0.115%. The data collected from Ultimate Analysis was seen not applicable to be use as it has the same content as food waste after composting. The compound molecular formula recorded was C29H7N5S. Regarding ratio of carbon to nitrogen results, it was found that it ranged from 5.39 to 5.71% for different compost treatment under study, where the lowest value of C and N ratio (5.39% for sample C and the highest value (5.71% was obtained for sample B with all has the same C/N ratio which is 6: 1 which suitable range in application of soil amendment. Therefore, this study found a significant relationship between chemical factors and compost formation which contribute to better analysis, especially to food waste management.

  7. Comparison of plant nutrient levels between compost from Sky loo ...

    African Journals Online (AJOL)

    Recent scholars have highlighted the benefit of harvesting compost from eco-san toilets for application as plant nutrients. However, levels of nutrients in eco-san compost may vary depending on the type of toilet and also the type of top soil in a particular geographical region. This study compared levels of nitrogen, ...

  8. Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, Rafael, E-mail: rclemente@cebas.csic.e [Faculty of Sciences, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Hartley, William [Faculty of Sciences, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Riby, Philip [School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Dickinson, Nicholas M.; Lepp, Nicholas W. [Faculty of Sciences, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom)

    2010-05-15

    Application of greenwaste compost to brownfield land is increasingly common in soil and landscape restoration. Previous studies have demonstrated both beneficial and detrimental effects of this material on trace element mobility. A pot experiment with homogenised soil/compost investigated distribution and mobility of trace elements, two years after application of greenwaste compost mulch to shallow soils overlying a former alkali-works contaminated with Pb, Cu and As (approx900, 200 and 500 mg kg{sup -1}, respectively). Compost mulch increased organic carbon and Fe in soil pore water, which in turn increased As and Sb mobilization; this enhanced uptake by lettuce and sunflower. A very small proportion of the total soil trace element pool was in readily-exchangeable form (<0.01% As, <0.001% other trace elements), but the effect of compost on behaviour of metals was variable and ambiguous. It is concluded that greenwaste compost should be applied with caution to multi-element contaminated soils. - Arsenic solubility and bioavailability increases in soil two years after application of greenwaste compost mulch.

  9. Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch

    International Nuclear Information System (INIS)

    Clemente, Rafael; Hartley, William; Riby, Philip; Dickinson, Nicholas M.; Lepp, Nicholas W.

    2010-01-01

    Application of greenwaste compost to brownfield land is increasingly common in soil and landscape restoration. Previous studies have demonstrated both beneficial and detrimental effects of this material on trace element mobility. A pot experiment with homogenised soil/compost investigated distribution and mobility of trace elements, two years after application of greenwaste compost mulch to shallow soils overlying a former alkali-works contaminated with Pb, Cu and As (∼900, 200 and 500 mg kg -1 , respectively). Compost mulch increased organic carbon and Fe in soil pore water, which in turn increased As and Sb mobilization; this enhanced uptake by lettuce and sunflower. A very small proportion of the total soil trace element pool was in readily-exchangeable form (<0.01% As, <0.001% other trace elements), but the effect of compost on behaviour of metals was variable and ambiguous. It is concluded that greenwaste compost should be applied with caution to multi-element contaminated soils. - Arsenic solubility and bioavailability increases in soil two years after application of greenwaste compost mulch.

  10. Analysis of volatile organic compounds in compost samples: A potential tool to determine appropriate composting time.

    Science.gov (United States)

    Zhu, Fengxiang; Pan, Zaifa; Hong, Chunlai; Wang, Weiping; Chen, Xiaoyang; Xue, Zhiyong; Yao, Yanlai

    2016-12-01

    Changes in volatile organic compound contents in compost samples during pig manure composting were studied using a headspace, solid-phase micro-extraction method (HS-SPME) followed by gas chromatography with mass spectrometric detection (GC/MS). Parameters affecting the SPME procedure were optimized as follows: the coating was carbon molecular sieve/polydimethylsiloxane (CAR/PDMS) fiber, the temperature was 60°C and the time was 30min. Under these conditions, 87 compounds were identified from 17 composting samples. Most of the volatile components could only be detected before day 22. However, benzenes, alkanes and alkenes increased and eventually stabilized after day 22. Phenol and acid substances, which are important factors for compost quality, were almost undetectable on day 39 in natural compost (NC) samples and on day 13 in maggot-treated compost (MC) samples. Our results indicate that the approach can be effectively used to determine the composting times by analysis of volatile substances in compost samples. An appropriate composting time not only ensures the quality of compost and reduces the loss of composting material but also reduces the generation of hazardous substances. The appropriate composting times for MC and NC were approximately 22days and 40days, respectively, during the summer in Zhejiang. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Offset project report : Cleanit Greenit aerobic composting project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-02-15

    The Cleanit Greenit site is owned and operated by Cleanit Greenit Composting System Inc. and is a composting facility located in Edmonton, Alberta. The facility has an annual processing capacity of 20,000 tonnes of organic waste and was the first in Canada to compost a large variety of industrial by-products containing hydrocarbons, through controlled blending with other wastes and monitoring of moisture, temperature and pH. The composting process turns organic waste material from industrial, commercial and domestic sources into finished projects, thus removing these materials from conditions where treatment and disposal is often difficult, expensive and environmentally harmful. This protocol document covered the diversion of organic residues from landfill for biological decomposition to a condition sufficiently stable for nuisance-free storage and for safe use in land application. A wide variety of organic residues were considered, including agricultural and agri-food residues; the organic portion of municipal solid waste; food wastes; and forestry and landscaping wastes. The document presented information on the Cleanit Greenit project and discussed the calculation of greenhouse gas emission reductions. An appendix that contained the Cleanit Greenit aerobic composting offset project plan was also provided. tabs., figs.

  12. Composting: a growth market

    International Nuclear Information System (INIS)

    Bueker, D.; Guenther, H.; Komodromos, A.

    1994-01-01

    The paper explains the current state of affairs in composting in Germany from the angles of licensing, engineering, the number and scale of existing and projected plants, the market for compost, and the prospective market for composting plants. (orig.) [de

  13. Nutrients dynamics of co-composting poultry litter with fast food wastes

    International Nuclear Information System (INIS)

    Hayat, A.; Chaudhary, A.N.

    2015-01-01

    Co-composting of poultry litter (PL) and fast food waste (FFW) in different combinations was carried out to explore the nutrient dynamics. The PL and FFW were co-composted in pits of dimensions 2 m*2 m*1.5 m (L*W*D) in ratios of 100:0, 75:25, 50:50, 25:75 and 0:100, respectively, for a period of 105 days. Co-composts of PL and FFW in a 50:50 ratio yielded highest total nitrogen (3.63%), total phosphorus (0.81%), and total potassium (3.40%) levels in the mature compost after 105 days of composting period. Carbon to nitrogen ratio for this combination was 18.33, which is suitable for safe land application. Present study identified PL and FFW co-composting in equal proportions yields maximum N, P and K levels with suitable C:N ratio which may be applied to soils to meet crop nutrient demands and enhanced agricultural productivity. (author)

  14. Alterações em propriedades de solo adubado com doses de composto orgânico sob cultivo de bananeira Changes in soil properties managed with organic compost rates, under banana plant

    Directory of Open Access Journals (Sweden)

    Erval Rafael Damatto Junior

    2006-12-01

    compost; T2 = 98,5 g plant-1 of K2O (43 kg plant-1 of compost; T3 = 197,0 g plant-1 of K2O (86 kg plant-1 of compost; T4 = 290,5 g plant-1 of K2O (129 kg plant-1 of compost; T5 = 394,0 g plant-1 of K2O (172 kg plant-1 of compost. Rates were calculated based on the amount of potassium contained in the compost. The experiment was arranged in a randomized block design, with 5 treatments, 5 replications and 2 plants per plot. Data were submitted to variance analysis and to regression analysis. Four months after the last compost application, the soil was sampled at 20 cm deep and the chemical properties of the soil were evaluated. The organic fertilization increased pH, organic matter, phosphorus, calcium, the sum of bases, CTC, and the base saturation of the soil.

  15. Assessing nitrogen supply potential and influence on growth of lettuce and amaranthus of different aged composts

    International Nuclear Information System (INIS)

    Akhtar, M.J.; Young, I.; Irvine, R.J.; Sturrock, C.

    2010-01-01

    This study assessed the potential of different composts at different maturity stages to supply N and their effect on the vegetative growth of lettuce and Amaranthus. Five composts aged 1, 3, 6, 9, and 12 months, were mixed with soil at the rate of 5%, 10% and 15% then seeded with lettuce and Amaranthus. Results showed that 1, 3 and 6 month aged composts had a negative effect on plant height of lettuce and Amaranthus as 1-15.78% and 4.78 to 29.45% decrease in plant height over control was recorded respectively. On the other hand 9 and 12 month aged composts had a significant positive effect on plant height of lettuce and Amaranthus where 43.48% and 34.8% increase over control was recorded with the application of 15% of 12 month aged compost respectively. A similar effect was observed on fresh biomass of both lettuce and Amaranthus where a 386% and 59.43% increase over control was recorded with the application of 15% of 12 month aged compost respectively. One and three month aged composts revealed a negative effect on N absorption by lettuce whereas 1, 3, 6 and 9 month aged composts had a negative effect on N absorption by Amaranthus. 30.39% and 21.48% increases over control in N absorption by lettuce and Amaranthus respectively were recorded with the application of 15% of 12 month aged compost. (author)

  16. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    Science.gov (United States)

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Compost feedstock characteristics and ratio modelling for organic waste materials co-composting in Malaysia.

    Science.gov (United States)

    Chai, E W; H'ng, P S; Peng, S H; Wan-Azha, W M; Chin, K L; Chow, M J; Wong, W Z

    2013-01-01

    In Malaysia, large amounts of organic materials, which lead to disposal problems, are generated from agricultural residues especially from palm oil industries. Increasing landfill costs and regulations, which limit many types of waste accepted at landfills, have increased the interest in composting as a component of waste management. The objectives of this study were to characterize compost feedstock properties of common organic waste materials available in Malaysia. Thus, a ratio modelling of matching ingredients for empty fruit bunches (EFBs) co-composting using different organic materials in Malaysia was done. Organic waste materials with a C/N ratio of composting. The outcome of this study suggested that the percentage of EFB ranged between 50% and 60%, which is considered as the ideal mixing ratio in EFB co-composting. Conclusively, EFB can be utilized in composting if appropriate feedstock in term of physical and chemical characteristics is coordinated in the co-composting process.

  18. Wat is goede compost?

    NARCIS (Netherlands)

    Willekens, K.; Janmaat, L.

    2014-01-01

    Compost wordt voor meerdere doelen ingezet. Als meststof, maar ook om de organische stofbalans op peil te houden. Maar compost heeft nog meer voordelen. Zo worden aan compost ziektewerende eigenschappen toegekend. Het doel van compostgebruik bepaalt voor een groot deel welke prijs er voor wordt

  19. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  20. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.

    Science.gov (United States)

    Smolinska, Beata

    2015-03-01

    Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.

  1. Substitution of peat, fertiliser and manure by compost in hobby gardening: user surveys and case studies.

    Science.gov (United States)

    Andersen, Jacob K; Christensen, Thomas H; Scheutz, Charlotte

    2010-12-01

    Four user surveys were performed at recycle centres (RCs) in the Municipalities of Aarhus and Copenhagen, Denmark, to get general information on compost use and to examine the substitution of peat, fertiliser and manure by compost in hobby gardening. The average driving distance between the users' households and the RCs was found to be 4.3 km and the average amount of compost picked up was estimated at 800 kg per compost user per year. The application layer of the compost varied (between 1 and 50 cm) depending on the type of use. The estimated substitution (given as a fraction of the compost users that substitute peat, fertiliser and manure with compost) was 22% for peat, 12% for fertiliser and 7% for manure (41% in total) from the survey in Aarhus (n=74). The estimate from the survey in Copenhagen (n=1832) was 19% for peat, 24% for fertiliser and 15% for manure (58% in total). This is the first time, to the authors' knowledge, that the substitution of peat, fertiliser and manure with compost has been assessed for application in hobby gardening. Six case studies were performed as home visits in addition to the Aarhus surveys. From the user surveys and the case studies it was obvious that the total substitution of peat, fertiliser and manure was not 100%, as is often assumed when assigning environmental credits to compost. It was more likely around 50% and thus there is great potential for improvement. It was indicated that compost was used for a lot of purposes in hobby gardening. Apart from substitution of peat, fertiliser and manure, compost was used to improve soil quality and as a filling material (as a substitute for soil). Benefits from these types of application are, however, difficult to assess and thereby quantify. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation.

    Science.gov (United States)

    Quecholac-Piña, Xochitl; García-Rivera, Mariel Anel; Espinosa-Valdemar, Rosa María; Vázquez-Morillas, Alethia; Beltrán-Villavicencio, Margarita; Cisneros-Ramos, Adriana de la Luz

    2017-11-01

    Plastics are widely used in the production of short-life products, which are discarded producing an accumulation of these materials and problems due to their persistence in the environment and waste management systems. Degradable plastics (compostable, oxodegradable) have been presented as an alternative to decrease the negative effect of plastic waste. In this research, the feasibility of degrading a commercially available compostable film and oxodegradable polyethylene, with and without previous abiotic oxidation, is assessed in a home composting system. Reactors (200 L) were used to degrade the plastic films along with a mixture of organic food waste (50 %), mulch (25 %), and dry leaves (25 %), amended with yeast and a solution of brown sugar to increase the speed of the process. The presence of the plastic film did not affect the composting process, which showed an initial increase in temperature and typical profiles for moisture content, pH, with a final C/N of 17.4. After 57 days, the compostable plastic has decreased its mechanical properties in more than 90 %, while the oxodegradable film did not show significant degradation if it was not previously degraded by UV radiation. The use of these plastics should be assessed against the prevailing waste management system in each city or country. In the case of Mexico, which lacks the infrastructure for industrial composting, home composting could be an option to degrade compostable plastics along organic waste. However, more testing is needed in order to set the optimal parameters of the process.

  3. Effect of compost age and composition on the atrazine removal from solution

    Science.gov (United States)

    Tsui, L.; Roy, W.R.

    2007-01-01

    Compost samples from two composting facilities, the Urbana (Illinois) Landscape Recycling Center (ULRC) and Illinois State University (ISU), were selected to examine the effect of compost age on atrazine removal from solution. The ULRC samples were made from yard waste without an additional nitrogen source. The ISU samples were made from yard waste or sawdust with the addition of manure. The 6-month-old ULRC compost had the greater capacity to remove atrazine from solution, which we attributed to its greater organic carbon content. The addition of nitrate into ULRC compost could influence the extent of atrazine removal, but did not have a significant impact on atrazine removal when applied to ISU compost, probably because manure was added to the yard waste to produce the compost. For both ULRC and ISU samples, the presence of sodium azide inhibited atrazine removal, suggesting that microbial activity contributed to the atrazine removal. Metabolic analysis demonstrated that hydroxyatrazine was the major identified metabolite that accumulated in solution before significant ring mineralization could occur. When compared with the ISU compost, the ULRC compost sample had a greater capacity to remove atrazine from solution during the 120 days of study because of the larger humic acid content. The experimental results suggested that less-mature compost may be better suited for environmental applications such as removing atrazine from tile-drainage waters. ?? 2006 Elsevier B.V. All rights reserved.

  4. Effect of compost age and composition on the atrazine removal from solution.

    Science.gov (United States)

    Tsui, Lo; Roy, William R

    2007-01-02

    Compost samples from two composting facilities, the Urbana (Illinois) Landscape Recycling Center (ULRC) and Illinois State University (ISU), were selected to examine the effect of compost age on atrazine removal from solution. The ULRC samples were made from yard waste without an additional nitrogen source. The ISU samples were made from yard waste or sawdust with the addition of manure. The 6-month-old ULRC compost had the greater capacity to remove atrazine from solution, which we attributed to its greater organic carbon content. The addition of nitrate into ULRC compost could influence the extent of atrazine removal, but did not have a significant impact on atrazine removal when applied to ISU compost, probably because manure was added to the yard waste to produce the compost. For both ULRC and ISU samples, the presence of sodium azide inhibited atrazine removal, suggesting that microbial activity contributed to the atrazine removal. Metabolic analysis demonstrated that hydroxyatrazine was the major identified metabolite that accumulated in solution before significant ring mineralization could occur. When compared with the ISU compost, the ULRC compost sample had a greater capacity to remove atrazine from solution during the 120 days of study because of the larger humic acid content. The experimental results suggested that less-mature compost may be better suited for environmental applications such as removing atrazine from tile-drainage waters.

  5. No Effect Level of Co-Composted Biochar on Plant Growth and Soil Properties in a Greenhouse Experiment

    Directory of Open Access Journals (Sweden)

    Hardy Schulz

    2014-01-01

    Full Text Available It is claimed that the addition of biochar to soil improves C sequestration, soil fertility and plant growth, especially when combined with organic fertilizers such as compost. However, little is known about agricultural effects of small amounts of composted biochar. This greenhouse study was carried out to examine effects of co-composted biochar on oat (Avena sativa L. yield in both sandy and loamy soil. The aim of this study was to test whether biochar effects can be observed at very low biochar concentrations. To test a variety of application amounts below 3 Mg biochar ha−1, we co-composted five different biochar concentrations (0, 3, 5, 10 kg Mg−1 compost. The biochar-containing compost was applied at five application rates (10, 50, 100, 150, 250 Mg ha−1 20 cm−1. Effects of compost addition on plant growth, Total Organic Carbon, Ntot, pH and soluble nutrients outweighed the effects of the minimal biochar amounts in the composted substrates so that a no effect level of biochar of at least 3 Mg ha−1 could be estimated.

  6. Composting: Mass Balances and Product Quality

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Christensen, Thomas Højlund; Körner, I.

    2011-01-01

    While the basic processes involved in composting of waste are described in Chapter 9.1 and the main composting technologies are presented in Chapter 9.2, this chapter focuses on mass balances, environmental emissions, unit process inventories and the quality of the compost produced. Understanding...... these issues and being able to account for them is a prerequisite in compost engineering and for establishing and running a successful composting facility. Of specific importance is the final use of the compost product. Use in agriculture is described in Chapter 9.10 and the use of compost in soil amendment...

  7. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality.

    Science.gov (United States)

    Unmar, G; Mohee, R

    2008-10-01

    An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.

  8. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.

    Science.gov (United States)

    Vandecasteele, Bart; Boogaerts, Christophe; Vandaele, Elke

    2016-12-01

    The question was tackled on how the green waste compost industry can optimally apply the available biomass resources for producing both bioenergy by combustion of the woody fraction, and high quality soil improvers as renewable sources of carbon and nutrients. Compost trials with removal of woody biomass before or after composting were run at 9 compost facilities during 3 seasons to include seasonal variability of feedstock. The project focused on the changes in feedstock and the effect on the end product characteristics (both compost and recovered woody biomass) of this woody biomass removal. The season of collection during the year clearly affected the biochemical and chemical characteristics of feedstock, woody biomass and compost. On one hand the effect of removal of the woody fraction before composting did not significantly affect compost quality when compared to the scenario where the woody biomass was sieved from the compost at the end of the composting process. On the other hand, quality of the woody biomass was not strongly affected by extraction before or after composting. The holocellulose:lignin ratio was used in this study as an indicator for (a) the decomposition potential of the feedstock mixture and (b) to assess the stability of the composts at the end of the process. Higher microbial activity in green waste composts (indicated by higher oxygen consumption) and thus a lower compost stability resulted in higher N immobilization in the compost. Removal of woody biomass from the green waste before composting did not negatively affect the compost quality when more intensive composting was applied. The effect of removal of the woody fraction on the characteristics of the green waste feedstock and the extracted woody biomass is depending on the season of collection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of turning frequency on co-composting pig manure and fungus residue.

    Science.gov (United States)

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for

  10. Comparing composts formed by different technological processing

    Science.gov (United States)

    Lyckova, B.; Mudrunka, J.; Kucerova, R.; Glogarova, V.

    2017-10-01

    The presented article compares quality of composts which were formed by different technological processes. The subject to comparison was a compost which was created in a closed fermenter where ideal conditions for decomposition and organic substances conversion were ensured, with compost which was produced in an open box of community composting. The created composts were analysed to determine whether it is more important for the final compost to comply with the composting conditions or better sorting of raw materials needed for compost production. The results of the carried out experiments showed that quality of the resulting compost cannot be determined unequivocally.

  11. Presence of Legionella and Free-Living Amoebae in Composts and Bioaerosols from Composting Facilities

    Science.gov (United States)

    Conza, Lisa; Pagani, Simona Casati; Gaia, Valeria

    2013-01-01

    Several species of Legionella cause Legionnaires’ disease (LD). Infection may occur through inhalation of Legionella or amoebal vesicles. The reservoirs of Legionella are water, soil, potting soil and compost. Some species of free-living amoebae (FLA) that are naturally present in water and soil were described as hosts for Legionella. This study aimed to understand whether or not the composting facilities could be sources of community-acquired Legionella infections after development of bioaerosols containing Legionella or FLA. We looked for the presence of Legionella (by co-culture) and FLA (by culture) in composts and bioaerosols collected at four composting facilities located in southern Switzerland. We investigated the association between the presence of Legionella and compost and air parameters and presence of FLA. Legionella spp. (including L. pneumophila) were detected in 69.3% (61/88) of the composts and FLA (mainly Acanthamoeba, Vermamoeba, Naegleria and Stenamoeba) in 92.0% (81/88). L. pneumophila and L. bozemanii were most frequently isolated. FLA as potential host for Legionella spp. were isolated from 40.9% (36/88) of the composts in all facilities. In Legionella-positive samples the temperature of compost was significantly lower (P = 0.012) than in Legionella-negative samples. Of 47 bioaerosol samples, 19.1% (9/47) were positive for FLA and 10.6% (5/47) for L. pneumophila. Composts (62.8%) were positive for Legionella and FLA contemporaneously, but both microorganisms were never detected simultaneously in bioaerosols. Compost can release bioaerosol containing FLA or Legionella and could represent a source of infection of community-acquired Legionella infections for workers and nearby residents. PMID:23844174

  12. Presence of Legionella and free-living Amoebae in composts and bioaerosols from composting facilities.

    Directory of Open Access Journals (Sweden)

    Lisa Conza

    Full Text Available Several species of Legionella cause Legionnaires' disease (LD. Infection may occur through inhalation of Legionella or amoebal vesicles. The reservoirs of Legionella are water, soil, potting soil and compost. Some species of free-living amoebae (FLA that are naturally present in water and soil were described as hosts for Legionella. This study aimed to understand whether or not the composting facilities could be sources of community-acquired Legionella infections after development of bioaerosols containing Legionella or FLA. We looked for the presence of Legionella (by co-culture and FLA (by culture in composts and bioaerosols collected at four composting facilities located in southern Switzerland. We investigated the association between the presence of Legionella and compost and air parameters and presence of FLA. Legionella spp. (including L. pneumophila were detected in 69.3% (61/88 of the composts and FLA (mainly Acanthamoeba, Vermamoeba, Naegleria and Stenamoeba in 92.0% (81/88. L. pneumophila and L. bozemanii were most frequently isolated. FLA as potential host for Legionella spp. were isolated from 40.9% (36/88 of the composts in all facilities. In Legionella-positive samples the temperature of compost was significantly lower (P = 0.012 than in Legionella-negative samples. Of 47 bioaerosol samples, 19.1% (9/47 were positive for FLA and 10.6% (5/47 for L. pneumophila. Composts (62.8% were positive for Legionella and FLA contemporaneously, but both microorganisms were never detected simultaneously in bioaerosols. Compost can release bioaerosol containing FLA or Legionella and could represent a source of infection of community-acquired Legionella infections for workers and nearby residents.

  13. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil

    NARCIS (Netherlands)

    Sousa, de Ricardo Silva; Santos, Vilma Maria; Melo, de Wanderley Jose; Nunes, Luis Alfredo Pinheiro Leal; Brink, van den Paul J.; Araújo, Ademir Sérgio Ferreira

    2017-01-01

    Composting has been suggested as an efficient method for tannery sludge recycling before its application to the soil. However, the application of composted tannery sludge (CTS) should be monitored to evaluate its effect on the chemical and microbial properties of soil. This study evaluated the

  14. Significant plant growth stimulation by composted as opposed to untreated Biochar

    Science.gov (United States)

    Kammann, Claudia; Messerschmidt, Nicole; Müller, Christoph; Steffens, Diedrich; Schmidt, Hans-Peter; Koyro, Hans-Werner

    2013-04-01

    The application of production-fresh, untreated biochar does not always result in yield improvements, in particular in temperate or boreal soils. Therefore the use of biochar for soil C sequestration, although desirable from a global change mitigation point of view, may never be implemented without proven and economically feasible pathways for biochar effects in agriculture. To investigate earlier reports of the beneficial effects of composting biochar (e.g. Fischer & Glaser, 2012) we conducted a fully replicated (n=3, +/- biochar) large-scale composting study at the Delinat Institute in Arbaz, Switzerland. The materials were manures (bovine, horse and chicken), straw, stone meal and composting was performed with our without +20 vol.% of a woody biochar (German Charcoal GmbH). Interestingly, the rotting temperature was significantly higher in the biochar-compost while C and N were retained to a certain extent. To investigate the effect of composting ("ageing") on biochar effects, a completely randomized full-factorial pot study was carried out in the greenhouse using the pseudo-cereal Chenopodium quinoa. The three factors used in the study were (I) type of biochar addition ("aged", "fresh", or zero BC), (II) addition of compost and (III) low and high application rates of a full NPK-fertilizer (equivalent to 28 and 140 kg N ha-1, NPK + micronutrients) in several doses. The growth medium was a poor loamy sand. Biochars and compost were all added at a rate of 2% (w/w) to the soil. From the start there was a considerable difference between the growth of Quinoa with the fresh compared to the aged biochar. The fresh biochar produced the well-known reduction in plant growth compared to the unamended control. This reduction was alleviated to a certain extent by the addition of either compost and/or increased fertilization. In contrast the co-composted biochar always resulted in a highly significant stimulation of the Quinoa yield (roots, shoots, inflorescences). This

  15. Evaluating of selected parameters of composting process by composting of grape pomace

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2011-01-01

    Full Text Available In Europe, there is annually available 8 million tons of grape pomace. From the viewpoint of waste management, pomace represents biotic waste produced in the FDM (Food–Drink–Milk sector. Composting process represents an effective use of grape pomace. Introduced experiment deals with monitoring of the composting process of grape pomace provided by 2 different variants of different composition of composting piles. Obtained results indicate that dynamics of process is affected by the share of raw materials. According to the temperature curve characteristics, the temperature above 45 °C for at least 5 days was necessary for compost sanitation. Such temperature was achieved in piles with higher proportion of pomace (Var.II. Analysis of results shows that the compost made ​​of grape pomace is a quality organic fertilizer, which may have in addition to agronomic point of view also great hygienic and ecological importance.

  16. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    Science.gov (United States)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  17. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2014-07-01

    Composting is a potential alternative to green waste incineration or deposition in landfills. The effects of the biosurfactant rhamnolipid (RL) (at 0.0%, 0.15%, and 0.30%) and initial compost particle size (IPS) (10, 15, and 25 mm) on a new, two-stage method for composting green waste was investigated. A combination of RL addition and IPS adjustment improved the quality of the finished compost in terms of its physical characteristics, pH, C/N ratio, nutrient content, cellulose and hemicellulose contents, water-soluble carbon (WSC) content, xylanase and CMCase activities, numbers of culturable microorganisms (bacteria, actinomycetes, and fungi), and toxicity to germinating seeds. The production of a stable and mature compost required only 24 days with the optimized two-stage composting method described here rather than the 90-270 days required with traditional composting. The best quality compost was obtained with 0.15% RL and an IPS of 15 mm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system.

    Science.gov (United States)

    Shrestha, Karuna; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Midmore, David J

    2011-09-01

    Microbially enhanced compost extracts ('compost tea') are being used in commercial agriculture as a source of nutrients and for their perceived benefit to soil microbiology, including plant disease suppression. Rumen content material is a waste of cattle abattoirs, which can be value-added by conversion to compost and 'compost tea'. A system for compost extraction and microbial enhancement was characterised. Molasses amendment increased bacterial count 10-fold, while amendment based on molasses and 'fish and kelp hydrolysate' increased fungal count 10-fold. Compost extract incubated at 1:10 (w/v) dilution showed the highest microbial load, activity and humic/fulvic acid content compared to other dilutions. Aeration increased the extraction efficiency of soluble metabolites, and microbial growth rate, as did extraction of compost without the use of a constraining bag. A protocol of 1:10 dilution and aerated incubation with kelp and molasses amendments is recommended to optimise microbial load and fungal-to-bacterial ratio for this inoculum source. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.

    Science.gov (United States)

    Jurak, Edita; Kabel, Mirjam A; Gruppen, Harry

    2014-01-30

    Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Strike It Rich with Classroom Compost.

    Science.gov (United States)

    Jones, Linda L. Cronin

    1992-01-01

    Discusses composting of organic materials as an alternative to landfills. Lists uses of composts and describes details of a simple composting activity for high school students. Includes an information sheet for students and a student data sheet. Suggests other composting activities. (PR)

  1. Amending a loamy sand with three compost types: impact on soil quality

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    indicators of soil physical quality. Soil samples were taken from a field with annual compost applications of 30 m3/ha for 10 yr and various physico-chemical analyses were undertaken. Results show a significant increase in soil organic carbon (21%) with the VFYW and GW compost types. With SM, soil organic...... carbon increased by 16%. Increased soil macroporosity and water content at saturation with a corresponding decrease in bulk density were observed for all compost types. However, quantification of these improvements using existing soil physical quality indicators such as the ‘S-index’, soil air capacity...... are a viable disposal option for these composts, but new indices of quality are needed for the proper characterization of sandy soils....

  2. CHROMIUM IN SOIL ORGANIC MATTER AND COWPEA AFTER FOUR CONSECUTIVE ANNUAL APPLICATIONS OF COMPOSTED TANNERY SLUDGE

    Directory of Open Access Journals (Sweden)

    Mara Lucia Jacinto Oliveira

    2015-02-01

    Full Text Available Tannery sludge contains high concentrations of inorganic elements, such as chromium (Cr, which may lead to environmental pollution and affect human health The behavior of Cr in organic matter fractions and in the growth of cowpea (Vigna unguiculata L. was studied in a sandy soil after four consecutive annual applications of composted tannery sludge (CTS. Over a four-year period, CTS was applied on permanent plots (2 × 5 m and incorporated in the soil (0-20 cm at the rates of 0, 2.5, 5.0, 10.0, and 20.0 Mg ha-1 (dry weight basis. These treatments were replicated four times in a randomized block design. In the fourth year, cowpea was planted and grown for 50 days, at which time we analyzed the Cr concentrations in the soil, in the fulvic acid, humic acid, and humin fractions, and in the leaves, pods, and grains of cowpea. Composted tannery sludge led to an increase in Cr concentration in the soil. Among the humic substances, the highest Cr concentration was found in humin. The application rates of CTS significantly increased Cr concentration in leaves and grains.

  3. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop.

    Science.gov (United States)

    Mantovi, Paolo; Baldoni, Guido; Toderi, Giovanni

    2005-01-01

    To evaluate the effects of repeated sewage sludge applications in comparison to mineral fertilisers on a winter wheat-maize-sugar beet rotation, a field experiment on a silty-loam soil, in the eastern Po Valley (Italy), was carried out since 1988. Municipal-industrial wastewater sludge as anaerobically digested, belt filtered (dewatered), and composted with wheat straw, has been applied at 5 and 10 Mg DM ha(-1)yr(-1). Biosolids gave crop yields similar to the highest mineral fertiliser dressing. However, with the higher rate of liquid and dewatered sludge, excessive N supply was harmful, leading to wheat lodging and poor quality of sugar beet and wheat crops. From this standpoint compost use was safer. Biosolids increased organic matter (OM), total N, and available P in the soil and reduced soil alkalinity, with more evident effects at the highest rate. Compost caused the most pronounced OM top soil accumulation. Significant accumulations of total Zn and Cu were detected in amended top soil, but no other heavy metals (Cd, Cr, Ni, Pb), whose total concentration remained well below the hazard limits. Biosolid applications significantly increased the content of N, P, Zn, and Cu in wheat grain, N and Cu in sugar beet roots, and only Cu in maize grain. The application of biosolids brought about notable benefits to soil fertility but it was associated with possible negative effects on water quality due to increased P availability and on soil ecology due to Zn accumulation.

  4. Evaluation of Composting and the Quality of Compost from the ...

    African Journals Online (AJOL)

    The aerobic composting potential and quality of Source Separated Municipal Solid Waste (SSMSW) was studied using four different treatments for over 80 days. Four different types of treatments using different inoculums were used for the composting of source separated municipal solid waste. The phytotoxicity tests of the ...

  5. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    Science.gov (United States)

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Application of a simplified mathematical model to estimate the effect of forced aeration on composting in a closed system.

    Science.gov (United States)

    Bari, Quazi H; Koenig, Albert

    2012-11-01

    The aeration rate is a key process control parameter in the forced aeration composting process because it greatly affects different physico-chemical parameters such as temperature and moisture content, and indirectly influences the biological degradation rate. In this study, the effect of a constant airflow rate on vertical temperature distribution and organic waste degradation in the composting mass is analyzed using a previously developed mathematical model of the composting process. The model was applied to analyze the effect of two different ambient conditions, namely, hot and cold ambient condition, and four different airflow rates such as 1.5, 3.0, 4.5, and 6.0 m(3) m(-2) h(-1), respectively, on the temperature distribution and organic waste degradation in a given waste mixture. The typical waste mixture had 59% moisture content and 96% volatile solids, however, the proportion could be varied as required. The results suggested that the model could be efficiently used to analyze composting under variable ambient and operating conditions. A lower airflow rate around 1.5-3.0 m(3) m(-2) h(-1) was found to be suitable for cold ambient condition while a higher airflow rate around 4.5-6.0 m(3) m(-2) h(-1) was preferable for hot ambient condition. The engineered way of application of this model is flexible which allows the changes in any input parameters within the realistic range. It can be widely used for conceptual process design, studies on the effect of ambient conditions, optimization studies in existing composting plants, and process control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Yield of Peas Treated with Compost and Chemical Fertilizer Using 15N Technique

    International Nuclear Information System (INIS)

    El-Degwy, S.M.A.

    2011-01-01

    A field experiment was carried out to evaluate the yield of peas treated with organic compost and mineral N fertilizer under sandy soil conditions. The obtained results showed that all the tested vegetative growth parameters, i.e. fresh and dry weight of leaves, root and pods of pea plants, were significantly increased with increasing the levels of mineral N fertilizer from 20 up to 50 kg N ha-1 either solely or in combination with compost. Nitrogen, phosphorus and potassium uptake by pea plants were ranked as follow: chemical N fertilize > compost + chemical N fertilize > compost. Organic additives either alone or in combination with chemical fertilizer had enhanced Ndff uptake by pods over aerial parts and roots while reversible trend was noticed with sole application of chemical fertilizer. Nitrogen derived from compost (Ndfc) and uptake by aerial parts followed by pods were enhanced by addition of organic plus chemical fertilizers comparable to sole addition of organic compost. In other term, chemical fertilizer had enhanced the portion of N derived from organic compost

  8. Composting of Sewage Sludge Using Recycled Matured Compost as a Single Bulking Agent

    Science.gov (United States)

    Zhang, Xiangyang; Ren, Jian; Niu, Huasi; Wu, Xingwu

    2010-11-01

    Pretreatment (bulking agent choice and mixing) is an essential phase of dewatered raw sludge (RS) composting affecting its industrialization significantly. In this paper recycled compost (RC) was chosen as a single bulking agent in the composting experiment instead of other agents such as sawdust, rice straw, MSW, and the mixing machine was developed for mixing of SS and RC. According to the mixing experiment, SS and RC can be mixed uniformly and formed into small particles of 10˜15 mm in diameter, which improved the availability of oxygen during composting. The effect of different volumetric ratios of RS to RC, 1:1 (Exp.1), 1:2 (Exp.2) and 1:4 (Exp.3), on the performance of composting was investigated in detail. Temperature, oxygen consumption rate, organic matter, C/N ratio and moisture content were monitored in each experiment. In despite of low initial C/N of the mixture, intensive fermentation happened in all the experiments. Exp.1 and Exp.2 achieved stability and sanitization, but Exp 1 took more days to accomplish the fermentation. Exp 3 maintained thermophilic temperatures for a shortest time and did not satisfy the necessary sanitation requirements because more RC was recycled. In all experiments, the moisture content of their final composts were too high to be used as bulking agents before extra moisture was reduced. RS: RC = 1:2 (v/v) was the optimum and advisable proportion for the industrialization of sewage sludge composting of, the composting period was about 10 days, and the aeration rate 0.05 m3/(m3ṡmin) was appropriate in this study.

  9. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    The use of vermi-compost in northern Ethiopia is not a common practice. It is, therefore, important to understand the possible impediments through studying its chemical and biological properties and its extra contribution compared to other composting techniques. Four compost types (vermi-compost, conventional compost, ...

  10. Effects of application of groundnut biomass compost on uptake of phosphorus by maize grown on an Ultisol of South Sulawesi

    Directory of Open Access Journals (Sweden)

    Kasifah

    2014-07-01

    Full Text Available Low crop production is acid dryland area of South Sulawesi is due to low availability of P in the soils. One of alternatives that can be performed to overcome the problems of acid soils having high level of exchangeable Al, is through the addition of organic material. In the upland areas in South Sulawesi, crop rice, maize and groundnut crop residues are readily available, but the crop residues are generally only used as animal feed or even burned. This study was aimed to elucidate the effects of groundnut compost on P uptake by maize in Ultisol of Moncongloe, South Sulawesi. Eight kilograms of air dried soil was mixed with compost according to the following treatments; 0, 10, 15, 20, 25, 30, 35 and 40 t compost/ha. All pots received 200 kg/ha KCl and 300 kg Urea/ha as basal fertilizers. Two maize seeds were planted in each pot and thinned to one plant per pot after one week. At harvest maize shoot dry weight and maize root dry weight, length of maize cop, cob weight, cob diameter, weight grains per cob, P uptake by maize, P content in maize grain, soil available P were measured. Results of the study showed that groundnut compost has the ability to improve the availability of P in the soil and increase P uptake by maize grown on an Ultisol of South Sulawesi. Application of 25 t groundnut compost/ha was the optimal rate that can be used to increase P availability in an Ultisol of South Sulawesi.

  11. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting.

    Science.gov (United States)

    Kumari, Priyanka; Lee, Joonhee; Choi, Hong-Lim

    2016-04-01

    We studied airborne contaminants (airborne particulates and odorous compounds) emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC) and aerated static pile composting (SAPC). In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles), volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1) were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS) and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.

  12. Effects of Calcium Superphosphate Additive on Nitrogen Conservation During Dead-pig Composting

    Directory of Open Access Journals (Sweden)

    LEI Ping

    2017-05-01

    Full Text Available To study the effects of calcium superphosphate additive on nitrogen conservation, an experiment of 30 days dead-pig composting was carried out. Three mixtures were treated with different amount of calcium superphosphate additive of 0%(CK, 5%(T1 and 10%(T2. The results showed that each composte temperature higher than 50 ℃ remained above 10 days, meeting the requirements of hygiene index about the compost rotten. The pH of composting with calcium superphosphate was significantly decreased, while NH4+-N, NH3-N, total nitrogen contents were significant higher than the control. 5% and 10% calcium superphosphate addition increased the total nitrogen contents by 10.7%, 10.1%, respectively. The seed germination index(GI of 5% calcium superphosphate addition was up to 101.4% on the 14th day, which was significant higher than the contrast. It demonstrated that calcium superphosphate could accelerate maturity during dead-pig compositng. Thus, calcium superphosphate as an additive in dead-pig composting could decrease nitrogen losses, which would bring prospects of application in dead-pig composting.

  13. Chemical structures and characteristics of animal manures and composts during composting and assessment of maturity indices.

    Directory of Open Access Journals (Sweden)

    Jieying Huang

    Full Text Available Changes in physicochemical characteristics, chemical structures and maturity of swine, cattle and chicken manures and composts during 70-day composting without addition of bulking agents were investigated. Physicochemical characteristics were measured by routine analyses and chemical structures by solid-state 13C NMR and FT-IR. Three manures were of distinct properties. Their changes in physicochemical characteristics, chemical structures, and maturity were different not only from each other but also from those with addition of bulking agents during composting. Aromaticity in chicken manure composts decreased at first, and then increased whereas that in cattle and swine manure composts increased. Enhanced ammonia volatilization occurred without addition of bulking agents. NMR structural information indicated that cattle and chicken composts were relatively stable at day 36 and 56, respectively, but swine manure composts were not mature up to day 70. Finally, the days required for three manures to reach the threshold values of different maturity indices were different.

  14. Composting of organically amended/treated hardwood and softwood sawdust

    International Nuclear Information System (INIS)

    Takyi-Lartey, Rita

    2015-07-01

    Sawdust is a major waste produced by the wood industry. Adding value to sawdust through composting is one of the surest means by which environmental pollution could be minimized. About 500 kg of softwood and hardwood sawdust were separately mixed with mucuna leaves and kitchen waste in the ratio of 3:1:1 on weight basis and heaped using effluent from abattoir to develop composts. Objectives of the study were to monitor changes in the physico-chemical properties, NH4"+ ‒ N, NO3"‒ ‒ N, C:N ratio, minerals N, K, P, microbial load and toxic elements in the composts during a 12 week period. Germination test was also done to evaluate the stability and maturity of the composts developed. Degradation of softwood sawdust compost (SSC) was better in the mesophilic phase while that of hardwood sawdust compost (HSC) occurred in the thermophilic phase. Thus, significantly higher amount of the organic material in SSC was decomposed during the period as compared to HSC. Also, greater percentage of the nitrogen in the initial material of SSC was converted into plant-available inorganic nitrogen (NH4"+ and NO3"‒) than was achieved in HSC. Hence, most of the mineral nitrogen in HSC that was converted was lost, probably in the thermophilic phase. On the contrary, the amount of organic nitrogen contained in the finished composts of both SSC and HSC were adequately good for application to the soil. Additionally, concentrations of pathogenic microorganisms in SSC and HSC products were within acceptable limits in terms of toxicity on growing plants. The softwood sawdust compost was relatively more stable as compared to HSC under the experimental conditions. Concentrations of heavy metals in both SSC and HSC were also within acceptable limits that would cause no toxicity to plants. Also, moisture contents in both SSC and HSC were within the good range (40 - 60%) required for a good compost. Thus both SSC and HSC produced were of good quality. Further research targeting specific

  15. Gross N transformation rates after application of household compost or domestic sewage sludge to agricultural soil

    DEFF Research Database (Denmark)

    Ambus, P.; Kure, L.K.; Jensen, E.S.

    2002-01-01

    Gross N mineralization and immobilization was examined in soil amended with compost and sewage sludge on seven occasions during a year using N-15 pool dilution and enrichment techniques. Gross N mineralization was initially stimulated with both wastes and accelerated through the first 112 days...... of incubation, peaking at 5 mg N.kg(-1).d(-1) with compost compared with 4 mg N.kg(-1).d(-1) in control and sludge-treated soil. The magnitudes of mineralization rates exceeded those of immobilization by on average 6.3 ( compost) and 11.4 ( sludge) times, leading to a persistent net N mineralization cumulating...... up to 160 mg N.kg(-1) soil(compost) and 54 mg N.kg(-1) soil (sludge) over the season from May to November. The numerical model FLUAZ comprehensively predicted rates of gross mineralization and immobilization. Sludge exhibited an early season N-release, whereas compost released only 10% of the N...

  16. Environmental impacts of in-house windrow composting of broiler litter prior to land application in subtropical/semi-arid conditions

    Science.gov (United States)

    Land application to crop and pasture land is a common and effective method of utilizing the resource value of poultry litter. In-house windrow composting of litter is an emerging management practice with the potential to mitigate water quality and nuisance odor concerns associated with land applica...

  17. Meat waste as feedstock for home composting: Effects on the process and quality of compost.

    Science.gov (United States)

    Storino, Francesco; Arizmendiarrieta, Joseba S; Irigoyen, Ignacio; Muro, Julio; Aparicio-Tejo, Pedro M

    2016-10-01

    Home composting is a powerful tool, which is spreading in different parts of the world, to reduce the generation of municipal waste. However, there is debate concerning the appropriateness, in terms of domestic hygiene and safety, of keeping a composter bin in the household deputed to kitchen waste of animal origin, such as meat or fish scraps and pet droppings. The purpose of our work was to study how the addition of meat scraps to household waste influences the composting process and the quality of the final compost obtained. We compared four raw material mixtures, characterized by a different combination of vegetable and meat waste and different ratios of woody bulking agent. Changes in temperature, mass and volume, phenotypic microbial diversity (by Biolog™) and organic matter humification were determined during the process. At the end of the experiment, the four composts were weighed and characterized by physicochemical analysis. In addition, the presence of viable weed seeds was investigated and a germination bioassay was carried out to determine the level of phytotoxicity. Finally, the levels of pathogens (Escherichia coli and Salmonella spp.) were also determined in the final compost. Here we show that the presence of meat waste as raw feedstock for composting in bins can improve the activity of the process, the physicochemical characteristics and maturity of the compost obtained, without significantly affecting its salinity, pH and phytotoxicity. Pathogen levels were low, showing that they can be controlled by an intensive management and proper handling of the composter bins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Utilization of household organic compost in zinc adsorption system

    Science.gov (United States)

    Cundari, Lia; Isvaringga, Nyiayu Dita; Arinda, Yesica Maharani

    2017-11-01

    Zinc (Zn) is one of the heavy metals which is polluted to the environment in an amount greater than 15 mg/L [1]. Zinc contamination caused by the disposal of industrial waste such as batteries, electroplating, paint and other industries. One of the Zinc recovery technique that is relatively inexpensive, simple, high effectiveness and efficiency, and can be regenerated is adsorption using compost. This study has been carried out the preparation of compost from organic household waste and cow manure and its application to Zinc recovery. In this research, the raw material of compost is varied. There is an organic household waste (A1) and a mixture of organic household waste and cow manure with ratio 7:6 (A2). Decomposition of A1 and A2 with addition Effective Microorganism (EM4) requires 21 days, with 3 times inversion. Zinc adsorption is done by using a compost variation of 0.5 g, 1 g, and 2 g in every 100 and 200 mg/L Zn concentration solution. The batch process is applied to analyze the capacity of adsorption. Determination of capacity of adsorption based on the Langmuir, Freundlich, and Temkin isotherm model. Direct observation and spectrophotometry are applied in research methodology. The results show that compost A1 and A2 have fulfilled Indonesian Standart of compost and have the ability to reduce Zinc concentration to 94-96%. It indicates highly recommended biosorbent that can be applied to Zinc adsorption.

  19. Compost: Brown gold or toxic trouble?

    Science.gov (United States)

    Kovacic, D.A.; Cahill, R.A.; Bicki, T.J.

    1992-01-01

    Limited data are available regarding the occurrence of potentially hazardous constituents in raw, uncomposted yard wastes, partially composted yard wastes, and finished compost (15, 16). Environmental monitoring at composting operations or facilities is lacking, and currently published research on the environmental fate of composted yard waste constituents is extremely limited. The cost of thoroughly investigating the fate of toxicants in yard waste may seem needlessly expensive, but it is much less than the cost of cleaning up contaminated sites and groundwater. Could yard waste compost sites become Superfund sites? The cost of a thorough testing program throughout the United States may be several million dollars, but that is only a fraction of the funds spent initiating and developing yard waste composting facilities, let alone the potentially much greater cost of environmental remediation. There is still time to address these problems and to develop sound state and federal guidelines for siting and operating yard waste compost facilities. The rush to implement landfill alternatives such as composting should not be the major driving force in determining legislation governing solid waste management. ?? 1991 American Chemical Society.

  20. Application of a modified OxiTop® respirometer for laboratory composting studies

    OpenAIRE

    Malińska Krystyna

    2016-01-01

    This study applied a modified OxiTop® system to determine the oxygen uptake rate during a 2-day respiration test of selected composting materials at different moisture contents, air-filled porosities and composition of composting mixtures. The modification of the OxiTop® respirometer included replacement and adjustment of a glass vessel (i.e. a 1.9-L glass vessel with wide mouth was used instead of a standard 1-L glass bottle, additionally the twist-off vessel lid was adjusted to attach the m...

  1. Composite Compost Produced from Organic Waste

    Directory of Open Access Journals (Sweden)

    Lăcătuşu Radu

    2016-10-01

    Full Text Available The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33% of each waste, 50% of each of the three wastes separately, the difference being made up in equal amounts (25% of the other two wastes. Composting process was performed in Könemann silos (cubs with side by 1.20m and lasted 60 days, from July 19 until September 16, when the composted material has passed the stages of reduction and oxidation. During composting process, in the reductive stage the material has reached a temperature up to 63°C Celsius, enough heat for its sterilization. Initial material, semi composted and final composted material were been chemical analyzed, especially in terms of macro- and microelements, analytical results revealing high and normal content of such chemicals. Therefore the achieved compost could be used in organic farming systems.

  2. Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation?

    Science.gov (United States)

    Land application of compost has been a promising remediation strategy for soil health and environmental quality, but substantial emissions of greenhouse gases, especially N2O, need to be controlled during making and using compost. Biochar as a bulking agent for composting has bee...

  3. Thermophilic composting of municipal solid waste

    International Nuclear Information System (INIS)

    Elango, D.; Thinakaran, N.; Panneerselvam, P.; Sivanesan, S.

    2009-01-01

    Process of composting has been developed for recycling of organic fraction of municipal solid waste (MSW). The bioreactor design was modified to reduce the composting process time. The main goal of this investigation was to find the optimal value of time period for composting of MSW in thermophilic bioreactor under aerobic condition. The temperature profiles correlated well with experimental data obtained during the maturation process. During this period biological degraders are introduced in to the reactor to accelerate the composting process. The compost materials were analyzed at various stages and the environmental parameters were considered. The final composting materials contained large organic content with in a short duration of 40 days. The quantity of volume reduction of raw MSW was 78%. The test result shows that the final compost material from the thermophilic reactor provides good humus to build up soil characteristics and some basic plant nutrients

  4. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on Composting and incineration of dead-on-farm pigs

    DEFF Research Database (Denmark)

    Hald, Tine

    of biological hazards throughout the farm environment. Major deficiencies were noted in relation to the risk containment. Moreover, a formal HACCP plan was not provided, and some deficiencies were also noted in the identification of interdependent processes. Provided that the deficiencies identified......A method for on-farm processing of Category (Cat) 2 Animal By-Products (ABP) alternative to the ones already approved in the current legislation was assessed. The materials to be treated are placentas and dead-on-farm pigs. The proposed process consists of three sequential steps, i.e. composting......, storage of mature compost and incineration of mature compost in authorized plants. The applicant identified the main biological, physical and chemical hazards that could be present in the material to be treated and in the compost substrate. Since the compost is only intended for incineration the applicant...

  5. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting.

    Science.gov (United States)

    Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang

    2018-03-01

    Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Occupational hygiene of windrow composting. Aumakompostoinnin tyoehygienia

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, K; Wihersaari, M [Technical Research Centre of Finland, Jyvaeskylae (Finland). Combustion and Thermal Engineering Lab.; Huvio, T; Lundstroem, Y [Helsingin kaupungin vesi- ja viemaerilaitos, Helsinki (Finland); Veijalainen, A [Jyvaeskylae Univ. (Finland). Dept. of Chemistry

    1993-01-01

    The occupational air in windrow composting of digested sewage sludge, raw sludge and source separated biowaste was investigated for microbe, endotoxin and dust concentrations and for odour level during turning and sieving of composts. The normal parameters of composting were investigated at the same time. The composting of the source separated biowaste was so vigorous that the drying due to heat generation may have slowed the process. Composting of the digested and the raw sludge took place much more slowly. In all composts, the measured values for heavy metals stayed well below specified norms. The composts were hygienic: no Salmonella bacteria were found in a single sample. The formation of odorous compounds was measured in small composters: more such compounds were formed in the thermophile stage of biowaste composts than in the digested sludge composts. Among the gases that were released, dimethyl sulphide, dimethyl disulphide, e-pinene and limonene clearly exceeded the odour threashould. Endotoxins and dust concentrations in the occupational air were small. Total dust concentrations in the cabs of composting machines at times exceeded the eight-hour HTP concentration for organic dust. Especially in the occupational air of the biowaste and raw sludge composts, the concentrations of bacteria and fungi exceeded 10[sup 2]-10[sup 5] cfu/m[sup 3] during turning. This concentration level may cause respiratory ailments. The identified fungi included members of the genera Aspergillus, Penicillum and Cladosporum, which are associated with allergies. The microbes and dust concentrations measured in this study of windrow composting are comparable to the findings of corresponding studies from other composting plants, landfills and waste treatment plants.

  7. A microbiological study on irradiated sludge composting

    International Nuclear Information System (INIS)

    Pongpat, S.; Hashimoto, Shoji.

    1993-03-01

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author)

  8. A microbiological study on irradiated sludge composting

    Energy Technology Data Exchange (ETDEWEB)

    Pongpat, S. [Office of Atomic Energy for Peace, Bangkok (Thailand); Hashimoto, Shoji

    1993-03-01

    Effect of fermentation temperature on microorganisms in sewage sludge compost and suppressive effect of the compost on Fusarium oxysporum were investigated. Dehydrated sewage sludge was irradiated at 10 kGy by cobalt 60 gamma ray source and fermented at various temperatures with six different seed-composts. It was found that microorganisms showed higher growth in irradiated sludge at the temperature around 30 to 40degC. One of the seed-composts and compost produced from the seed-compost showed the remarkable effects of suppression on F. oxysporum. It can be also observed that the composts produced by lower temperature fermentation showed higher suppression. (author).

  9. Characterization of Odorant Compounds from Mechanical Aerated Pile Composting and Static Aerated Pile Composting

    Directory of Open Access Journals (Sweden)

    Priyanka Kumari

    2016-04-01

    Full Text Available We studied airborne contaminants (airborne particulates and odorous compounds emitted from compost facilities in South Korea. There are primarily two different types of composting systems operating in Korean farms, namely mechanical aerated pile composting (MAPC and aerated static pile composting (SAPC. In this study, we analyzed various particulate matters (PM10, PM7, PM2.5, PM1, and total suspended particles, volatile organic compounds and ammonia, and correlated these airborne contaminants with microclimatic parameters, i.e., temperature and relative humidity. Most of the analyzed airborne particulates (PM7, PM2.5, and PM1 were detected in high concentration at SAPC facilities compered to MAPC; however these differences were statistically non-significant. Similarly, most of the odorants did not vary significantly between MAPC and SAPC facilities, except for dimethyl sulfide (DMS and skatole. DMS concentrations were significantly higher in MAPC facilities, whereas skatole concentrations were significantly higher in SAPC facilities. The microclimate variables also did not vary significantly between MAPC and SAPC facilities, and did not correlate significantly with most of the airborne particles and odorous compounds, suggesting that microclimate variables did not influence their emission from compost facilities. These findings provide insight into the airborne contaminants that are emitted from compost facilities and the two different types of composting agitation systems.

  10. A statistical analysis to assess the maturity and stability of six composts.

    Science.gov (United States)

    Komilis, Dimitrios P; Tziouvaras, Ioannis S

    2009-05-01

    Despite the long-time application of organic waste derived composts to crops, there is still no universally accepted index to assess compost maturity and stability. The research presented in this article investigated the suitability of seven types of seeds for use in germination bioassays to assess the maturity and phytotoxicity of six composts. The composts used in the study were derived from cow manure, sea weeds, olive pulp, poultry manure and municipal solid waste. The seeds used in the germination bioassays were radish, pepper, spinach, tomato, cress, cucumber and lettuce. Data were analyzed with an analysis of variance at two levels and with pair-wise comparisons. The analysis revealed that composts rendered as phytotoxic to one type of seed could enhance the growth of another type of seed. Therefore, germination indices, which ranged from 0% to 262%, were highly dependent on the type of seed used in the germination bioassay. The poultry manure compost was highly phytotoxic to all seeds. At the 99% confidence level, the type of seed and the interaction between the seeds and the composts were found to significantly affect germination. In addition, the stability of composts was assessed by their microbial respiration, which ranged from approximately 4 to 16g O(2)/kg organic matter and from 2.6 to approximately 11g CO(2)-C/kg C, after seven days. Initial average oxygen uptake rates were all less than approximately 0.35g O(2)/kg organic matter/h for all six composts. A high statistically significant correlation coefficient was calculated between the cumulative carbon dioxide production, over a 7-day period, and the radish seed germination index. It appears that a germination bioassay with radish can be a valid test to assess both compost stability and compost phytotoxicity.

  11. Characterization and open windrow composting of MSW in Jodhpur City, Rajasthan, India.

    Science.gov (United States)

    Ambade, Bhushan; Sharma, Sunil; Sharma, Yukti; Sharma, Yagya

    2013-07-01

    Solid waste is sometimes not suitable for direct land application. Processing solid waste through composting converts it to a humus-containing organic material advantageous for agriculture/horticulture use. Major advantages of composting are stabilization of the wastes; substantially reduced C/N ratio and gas formation, and virtually elimination of odors and pathogens. Composting is accomplished under aerobic conditions developing temperatures of 55 degrees C or above. The windrow technique is simple and accomplished easily with standard equipments. The open windrow composting of municipal solid waste (MSW) in windrows was analyzed in this study for six weeks. The raw MSW was introduced to active composting without any source segregations. The moisture content of the MSW dropped from 58.88% to 48.06% and windrow attained a thermophillic temperature for about two weeks. It was observed that the pH, C/N ratio and temperature variations were comparable to that of traditional windrow composting. The peak temperature recorded was 68 degrees C and temperature remained above 60 degrees C for more than three weeks. The volume reduction was obtained by using one-cu.m. cage. The results indicate that the bulk composting could reduce by about 29% the total mass of the waste.

  12. evaluation of selected composted organic sources on potato plant grown in sandy soil using nuclear technique

    International Nuclear Information System (INIS)

    Moursy, A.A.A.

    2008-01-01

    the main point of this study is the evaluation of organic compost as a source of nutrient demand by potatoes cultivated in light texture soil under drip irrigation system. the composted materials either applied alone or in combination with mineral fertilizer have an effective role on potato yields and nutrients management under field scale. so, many objectives were achieved. the valuable results obtained in the present study could be summarized as follows: part one: composting experiment contains ph changes of composted materials, EC changes with time, nitrogen content in composted materials, change of c/n ratio with time, organic matter content of the composted materials, phosphorus content in composted materials,. part two: potato field experiment contains .dry matter yield, tuber dry weight, tuber yield, nutrients uptake by potato varieties,. part three contains . application of 15 N isotope dilution technique, nitrogen derived from fertilizer (Ndff), nitrogen derived from organic compost (% Ndf comp),nitrogen derived from soil (% Ndfs), fertilizer use efficiency (% FUE), 15 N recovered by potatoes.

  13. Comparison normal composting with composting using effective microorganisms for poultry carcasses disposal in poultry farms

    Directory of Open Access Journals (Sweden)

    D. M. Taher

    2009-01-01

    Full Text Available Composting offers a convenient and environmentally acceptable safe, effective method for the disposal of carcasses as an alternative method to burning, burial and rendering. This study was conducted to evaluate the effects of a natural biological products containing an effective microorganisms namily; Lactic acid bacill (Lactobacillus plantarum; L. casei Streptococcus Lactis., Photosynthetic bacteria (Rhodopseudomonas palustris; Rhodobacter sphaeroides,Yeast (Saccharomyces cerevisiae; Candida utilis Toula, Pichia Jadinii, Actinomycetes (Streptomyces albus; S. griseus., and Fermenting fungi (Aspergillus oryzae; Mucor hiemalis in the composting activity of poultry carcasses. The composting stacks constitute multi alternative layers of wood shaves, hay, poultry carcasses and then wood shaves and so on. The layers have been bypassed with plastic tubes for oxygen supply. Moreover, a petri dishes of salmonella and E. coli colonies were introduced within poultry carcasses layer. After 8 days of the experimental period this study follows the physical properties of the composting process according to its odor intesity, color and pH level as well as the bacterial reisolation from the stored colonies. Results indicate that the biological products increase the temperature of the composting stack (66-68° C with a minimal odors as the pH meters recording 5.4 as compared to the control composting stack (52-64° C and pH 6.8 with offender odors. On the other hand ,the biological product inhibit the bacterial reisolation offers since the 10the day of the experiment, however, in the normal composting stack that periods will prolonged till the 17 days of the experiment. Interestingly, the biological product induce high and rapid digestable rate for the poultry carcasses which shown within 25 days of the experiment, in comparison to the normal composting stack which induce that effects in 60 days. In conclusion, the addition of effective microorganism to the

  14. Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat-based potting mixes

    NARCIS (Netherlands)

    Veeken, A.H.M.; Blok, W.J.; Curci, F.; Coenen, G.C.M.; Termorshuizen, A.J.; Hamelers, H.V.M.

    2005-01-01

    Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This

  15. Composting of biological waste. Processes and utilisation. Summary report; Bioabfallkompostierung. Verfahren und Verwertung. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for processing and utilisation of biological waste by means of composting and spreading on agriculataural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die Zusammenfassung der genannten drei Teilberichte. (orig./SR)

  16. Response of Maize Grown on Overburden Soil in a Coal Mining Area without Top Soil to Various Compost Sources

    Directory of Open Access Journals (Sweden)

    Erry Purnomo

    2015-05-01

    Full Text Available Soil in Kalimantan Island is considered infertile. To obtain a reasonable crop yield a high input fertilizer package should be applied. The situation will be worsening when an open pit system of coal mining adopted. Failure in re-arranging the soil layers can result in decreasing soil fertility compared to original soil prior to mining. This study aimed to determine the improvement of soil fertility of a disposal without top soil by using composts from various sources, namely, the public garbage pile, commercial compost, and compost from kitchen waste. The experiment was conducted in a disposal area of a coal mining of PT AI. A series of application rate of compost was set. This was 0, 5, 10, and 20 tonne compost ha-1. A plot with top soil was involved for another control. Maize was selected as the plant indicator to evaluate the effect of treatments applied. It can be concluded that application of composts to reclamation area without top soil significantly improve soil fertility. Among the composts used, K-compost (compost from kitchen waste was the best in improving soil fertility. There were some characters of the compost that had not enough to support maize yield. These were P, K, and pH. Addition of P and K fertilizers and lime material are needed. Of the equation coefficients obtained, the b coefficient of equation belong to K-compost was higher than of the others.

  17. The Learning of Compost Practice in University

    Science.gov (United States)

    Agustina, T. W.; Rustaman, N. Y.; Riandi; Purwianingsih, W.

    2017-09-01

    The compost as one of the topics of the Urban Farming Movement in Bandung city, Indonesia. The preliminary study aims to obtain a description of the performance capabilities and compost products made by students with STREAM (Science-Technology-Religion-Art-Mathematics) approach. The method was explanatory sequential mixed method. The study was conducted on one class of Biology Education students at the one of the universities in Bandung, Indonesia. The sample was chosen purposively with the number of students as many as 44 people. The instruments were making Student Worksheets, Observation Sheets of Performance and Product Assessment, Rubric of Performance and Product, and Field Notes. The indicators of performance assessment rubrics include Stirring of Compost Materials and Composting Technology in accordance with the design. The product assessment rubric are a Good Composting Criteria and Compost Packaging. The result of can be stated most students have good performance. However, the ability to design of compost technology, compost products and the ability to pack compost are still lacking. The implication of study is students of Biology Education require habituation in the ability of designing technology.

  18. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Evaluation of Cadmium, Lead and Zinc Content of Compost Produced in Babol Composting Plant

    Directory of Open Access Journals (Sweden)

    Fatemeh Asgharzadeh

    2014-03-01

    Full Text Available Background and purpose: The most important parameter is heavy metal contents in compost production technology. These heavy metals residue from substances like soap, detergents, cosmetics, packaging, leather and butteries are existed in municipal solid waste. The heavy metals can produce toxin for animal, human and plant. The aim of this research was study of produced compost quality based on heavy metals (Pb, Cd and Zn in Babol compost plant in 2012. Materials and Methods: The present research is a descriptive- cross sectional study in which was performed in six months. Total sample numbers (5 samples were randomly provided from final compost of Babol plant and then after extraction and filtration, the concentration of heavy metals like cadmium, lead and zinc was measured by atomic absorption spectrophotometer PG- 999. Results: In analyzed samples the maximum, minimum and average of cadmium in the final compost were 7.25, 0.47 and 1.9 mg/kg. The maximum, minimum and mean of lead were 239.2, 31.9 and 67.1 mg/kg; in zinc were 972.7, 483.5 and 603.7 mg/kg respectively. Conclusion: The concentration of heavy metals in Babol compost samples was under Iranian national and World Health Organization standards and could be used for different species of plants. However, the usability of compost depends on other parameters such as carbon to nitrogen and other components like glass, plastics and textiles.

  20. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    Energy Technology Data Exchange (ETDEWEB)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-15

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  1. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO 2 kg V S −1 h −1 . Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS 13 C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  2. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The use of composting in bioremediation has received little attention (Potter et al., ..... Counts of microorganisms in the compost during composting. Values are means of three ..... chlorinated pesticides. J. Water Poll. Cont. Fed.

  3. The utilisation of municipal waste compost for the reclamation of anthropogenic soils: implications on C dynamics.

    Science.gov (United States)

    Said-Pullicino, D.; Bol, R.; Gigliotti, G.

    2009-04-01

    The application of municipal waste compost (MWC) and other organic materials may serve to enhance soil fertility and increase C stocks of earthen materials and mine spoils used in land reclamation activities, particularly in the recovery of degraded areas left by exhausted quarries, mines, abandoned industrial zones, degraded natural areas and exhausted landfill sites. Such land management options may serve as a precondition for landscaping and reclamation of degraded areas, reforestation or agriculture. In fact, previous results have shown that compost application to the capping layer of a landfill covering soil significantly enhanced the fertility, evidenced by an improvement in soil structure, porosity and water holding capacity, an increase in the relative proportion of recalcitrant C pools and an increase in soil nutrient content, microbial activity and soil microbial biomass. Proper management of MWC requires a capacity to understand and predict their impacts on C dynamics in the field subsequent to application. Although numerous works deal with the effects of compost application in agricultural systems, little is known on how land rehabilitation practices effect C dynamics in such relatively young soil systems. The estimation of SOC pools and their potential turnover rates in land reclamation activities is fundamental to our understanding of terrestrial C dynamics. In the framework of a long-term field experiment, the objective of this work was to evaluate the temporal and spatial dynamics of compost-derived organic matter with respect to the major processes involved in organic matter cycling in an anthropogenic landfill covering soil originally amended with a single dose of MWC. We investigated long-term organic C dynamics in such systems by collecting samples at different depths over a 10 year chronosequence subsequent to compost application to the top layer of the landfill covering soil. Variations in the stable isotope composition (delta 13C) of the soil

  4. Substrate composition and moisture in composting source-separated human faeces and food waste.

    Science.gov (United States)

    Niwagaba, C; Nalubega, M; Vinnerås, B; Sundberg, C; Jönsson, H

    2009-04-14

    The composting of a faeces/ash mixture and food waste in relative proportions of 1:0, 1:1 and 1:3 was studied in three successive experiments conducted in Kampala, Uganda in 216 L reactors insulated with 75 mm styrofoam or not insulated. The faeces/ash mixture alone exceeded 50 degrees C for composting and ways of decreasing substrate moisture should be investigated. The results obtained are applicable to the management of small- to medium-scale composting of faeces/ash and food waste at household and institution levels, e.g. schools and restaurants.

  5. Compost de guano de gallina en la composición de sustratos para la producción de plantines florales

    Directory of Open Access Journals (Sweden)

    L.A Barbaro

    2013-06-01

    Full Text Available Se evaluaron sustratos formulados con distintas proporciones (20, 50 y 80% de tres tipos de compost de guano de gallina (CGG1, CGG2, CGG3 mezclados con compost de corteza de pino y un sustrato comercial. Los diez tratamientos fueron usados para el cultivo de plantines de Impatiens walleriana y Salviasplendens. Se caracterizó física y químicamente cada sustrato, y sobre los plantines se evaluó sobrevivencia, masa seca y calcio, magnesio, potasio y sodio en la hoja. Los sustratos con 20% y 50% de los tres CGG tuvieron la mayor capacidad de retención de agua, y con 80%, la mayor porosidad de aire. Los sustratos con 50% y 80% presentaron los más altos valores de pH (≥6,6, potasio y sodio. Para las mismas proporciones, CGG2 y CGG3 presentaron valores de CE >1,1 dS cm-1. La mayor masa seca de los plantines se logró para el sustrato comercial, los sustratos con 20% de los tres CGG y con 50% de CGG1. Estos sustratos exhibieron en las hojas una mayor concentración de calcio y magnesio, y menor de potasio. Las mejores características de sustratos para el desarrollo de los plantines evaluados se lograron en los sustratos con 20% de los tres CGG y con 50% del compost CGG1.

  6. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting.

    Science.gov (United States)

    Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue; Luo, Yuan

    2017-10-01

    This study investigated the effect of calcium superphosphate on compost maturity and gaseous emissions during pig manure composting with woody peat as the bulking agent. Two treatments were conducted with or without the addition of calcium superphosphate (10% dry weight of the composting mass), which were denoted as the control and superphosphate-amended treatment, respectively. Results show that the composting temperature of both treatments was higher than 50°C for more than 5days, which is typically required for pathogen destruction during manure composting. Compared to the control treatment, the superphosphate-amended treatment increased the emission of nitrogen oxide, but reduced the emission of methane, ammonia and hydrogen sulfide by approximately 35.5%, 37.9% and 65.5%, respectively. As a result, the total greenhouse gas (GHG) emission during manure composting was reduced by nearly 34.7% with the addition of calcium superphosphate. The addition of calcium superphosphate increased the content of humic acid (indicated by E 4 /E 6 ratio). Nevertheless, the superphosphate-amended treatment postponed the biological degradation of organic matter and produced the mature compost with a higher electrical conductivity in comparison with the control treatment. Copyright © 2017. Published by Elsevier Ltd.

  7. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    Science.gov (United States)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Composting-derived organic coating on biochar enhances its affinity to nitrate

    Science.gov (United States)

    Hagemann, Nikolas; Joseph, Stephen; Conte, Pellegrino; Albu, Mihaela; Obst, Martin; Borch, Thomas; Orsetti, Silvia; Subdiaga, Edisson; Behrens, Sebastian; Kappler, Andreas

    2017-04-01

    Biochar is defined charcoal that is produced by the thermal treatment of biomass in the (partial) absence of oxygen (pyrolysis) for non-oxidative applications, especially in agriculture. Due to its high surface area and porous structure, it is suggested as a beneficial soil amendment to increase crop yields and to tailor biogeochemical cycles in agro-ecosystems to reduce both greenhouse gas emissions and nutrient leaching. While early research focused on single applications of large amounts of biochar (>10 t ha-1), economic and ecological boundaries as well as practical considerations and recent findings shifted the focus towards low-dose (˜1 t ha-1) and potentially repeated applications of nutrient-enriched biochars, i.e. biochar-based fertilizers in the root-zone. Thus, biochar must be "loaded" with nutrients prior to its use as a root-zone amendment. Co-composting is suggested as a superior method, as co-composted biochar was shown to promote plant growth and showed the desired slow release of nutrients such as nitrate ("nitrate capture", Kammann et al., 2015 SR5:11080). However, the underlying mechanisms are not understood and nitrate capture has been quantified only for isolated biochars but not for e.g. biochar-amended composts without prior separation of the biochar. In the present study, we used repeated extractions with 2 M KCl and found that up to 30% of the nitrate present in a biochar-amended compost is captured in biochar, although biochar was amended to the initial composting feedstock (manure) only at 4% (w/w). Additionally, we quantified nitrate capture by pristine biochar after soaking the biochar in NH4NO3 solution in the absence of any additional organic carbon and nitrate capture of separated co-composted biochar. Assuming pseudo-first order kinetics for biochar nitrate release, we found an increase of biochar's affinity to nitrate after co-composting. Spectro-microscopical investigations (scanning transmission electron microscopy with electron

  9. Microbial additives in the composting process

    Directory of Open Access Journals (Sweden)

    Noelly de Queiroz Ribeiro

    Full Text Available ABSTRACT Composting is the process of natural degradation of organic matter carried out by environmental microorganisms whose metabolic activities cause the mineralization and partial humification of substances in the pile. This compost can be beneficially applied to the soil as organic fertilizer in horticulture and agriculture. The number of studies involving microbial inoculants has been growing, and they aim to improve processes such as composting. However, the behavior of these inoculants and other microorganisms during the composting process have not yet been described. In this context, this work aimed to investigate the effects of using a microbial inoculum that can improve the composting process and to follow the bacterial population dynamics throughout the process using the high-resolution melt (HRM technique. To do so, we analysed four compost piles inoculated with Bacillus cereus, Bacillus megaterium, B. cereus + B. megaterium and a control with no inoculum. The analyses were carried out using samples collected at different stages of the process (5th to 110th days. The results showed that the bacterial inocula influenced the process of composting, altering the breakdown of cellulose and hemicelluloses and causing alterations to the temperature and nitrogen levels throughout the composting process. The use of a universal primer (rDNA 16S allowed to follow the microbial succession during the process. However, the design of a specific primer is necessary to follow the inoculum throughout the composting process with more accuracy.

  10. In-vessel composting of household wastes

    International Nuclear Information System (INIS)

    Iyengar, Srinath R.; Bhave, Prashant P.

    2006-01-01

    The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for a period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes

  11. The Fungi in Old Paper Mixed Bio-sludge Compost and Its Metabolite and PGPR Effect

    OpenAIRE

    森本, 正則; 若山, 晃子; 駒井, 功一郎

    2005-01-01

    [Synopsis] Sometime, the compost products made from bio-sludge and containing paper strips, showed plant growth promoting effect by field application. We have evaluated to separating various fungi from biosludge compost that have PGPR (Plant Growth Promoting Rhizobacteria) effect against some crops by inoculating test into the incubation soil. Test fungi separated from the compost using multiple dilution method and colonization on the PDA agar plate. And, the surface of autoclaved oat serial...

  12. Estimating the spatial distribution of field-applied mushroom compost in the Brandywine-Christina River Basin using multispectral remote sensing

    Science.gov (United States)

    Moxey, Kelsey A.

    The world's greatest concentration of mushroom farms is settled within the Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. This industry produces a nutrient-rich byproduct known as spent mushroom compost, which has been traditionally applied to local farm fields as an organic fertilizer and soil amendment. While mushroom compost has beneficial properties, the possible over-application to farm fields could potentially degrade stream water quality. The goal of this study was to estimate the spatial extent and intensity of field-applied mushroom compost. We applied a remote sensing approach using Landsat multispectral imagery. We utilized the soil line technique, using the red and near-infrared bands, to estimate differences in soil wetness as a result of increased soil organic matter content from mushroom compost. We validated soil wetness estimates by examining the spectral response of references sites. We performed a second independent validation analysis using expert knowledge from agricultural extension agents. Our results showed that the soil line based wetness index worked well. The spectral validation illustrated that compost changes the spectral response of soil because of changes in wetness. The independent expert validation analysis produced a strong significant correlation between our remotely-sensed wetness estimates and the empirical ratings of compost application intensities. Overall, the methodology produced realistic spatial distributions of field-applied compost application intensities across the study area. These spatial distributions will be used for follow-up studies to assess the effect of spent mushroom compost on stream water quality.

  13. The abundance and diversity of antibiotic resistance genes in the atmospheric environment of composting plants.

    Science.gov (United States)

    Gao, Min; Qiu, Tianlei; Sun, Yanmei; Wang, Xuming

    2018-07-01

    Composting is considered to reduce the introduction of antimicrobial resistance genes (ARGs) into the environment through land application of manure; however, the possible pollution of ARGs in the atmospheric environment of composting plants is unknown. In this study, 29 air samples including up- and downwind, composting, packaging, and office areas from 4 composting plants were collected. Dynamic concentrations of 22 subtypes of ARGs, class 1 integron (intl1), and 2 potential human pathogenic bacteria (HPB), and bacterial communities were investigated using droplet digital PCR and 16S rRNA gene sequencing, respectively. In this study, intl1 and 22 subtypes of ARGs (except tetQ) were detected in air of composting, packaging, office, and downwind areas. The highest concentration of 15 out of 22 subtypes of ARGs was detected in the packaging areas, and intl1 also had the maximum average concentration of 10 4  copies/m 3 , with up to (1.78 ± 0.49) × 10 -2 copies/16S rRNA copy. Non-metric multi-dimensional scaling of ARGs, potential HPBs, and bacterial components all indicated that the bioaerosol pollutant pattern in packaging areas was most similar to that in composting areas, followed by office, downwind, and upwind areas. The co-occurrence between ARGs and bacterial taxa assessed by Procrustes test, mantel test, and network analysis implied that aerosolized ARG fragments from composting and packaging areas contributed to the compositions of ARG aerosols in office and downwind areas. The results presented here show that atmoshperic environments of composting plants harbor abundant and diverse ARGs, which highlight the urgent need for comprehensive evaluation of potential human health and ecological risks of composts during both production as well as land application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Pile composting of two-phase centrifuged olive husk residues: technical solutions and quality of cured compost.

    Science.gov (United States)

    Alfano, G; Belli, C; Lustrato, G; Ranalli, G

    2008-07-01

    The present work proposed an economically sustainable solution for composting olive humid husks (OHH) and leaves (OL) at a small/medium sized olive oil mill. We planned and set up a composting plant, the prototype taking the form of a simplified low-cost turning machine, and evaluated the use of an inoculum of one year-old composted humid husks (CHH) and sheep manure (SM) to facilitate the starting phase of the process. Trials were carried out using four piles under different experimental conditions (turnover, static, and type of inoculum). The best results were achieved with turnover and an inoculum that induced fast start-up and a correct evolution of the composting process. The final product was a hygienically clean, cured compost.

  15. Composting of food wastes: Status and challenges.

    Science.gov (United States)

    Cerda, Alejandra; Artola, Adriana; Font, Xavier; Barrena, Raquel; Gea, Teresa; Sánchez, Antoni

    2018-01-01

    This review analyses the main challenges of the process of food waste composting and examines the crucial aspects related to the quality of the produced compost. Although recent advances have been made in crucial aspects of the process, such composting microbiology, improvements are needed in process monitoring. Therefore, specific problems related to food waste composting, such as the presence of impurities, are thoroughly analysed in this study. In addition, environmental impacts related to food waste composting, such as emissions of greenhouse gases and odours, are discussed. Finally, the use of food waste compost in soil bioremediation is discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain.

    Science.gov (United States)

    Jeong, Seung Tak; Kim, Gil Won; Hwang, Hyun Young; Kim, Pil Joo; Kim, Sang Yoon

    2018-02-01

    Livestock manure application can stimulate greenhouse gas (GHG) emissions, especially methane (CH 4 ) in rice paddy. The stabilized organic matter (OM) is recommended to suppress CH 4 emission without counting the additional GHG emission during the composting process. To evaluate the effect of compost utilization on the net global warming potential (GWP) of a rice cropping system, the fluxes of GHGs from composting to land application were calculated by a life cycle assessment (LCA) method. The model framework was composed of GHG fluxes from industrial activities and biogenic GHG fluxes from the composting and rice cultivation processes. Fresh manure emitted 30MgCO 2 -eq.ha -1 , 90% and 10% of which were contributed by CH 4 and nitrous oxide (N 2 O) fluxes, respectively, during rice cultivation. Compost utilization decreased net GWP by 25% over that of the fresh manure during the whole process. The composting process increased the GWP of the industrial processes by 35%, but the 60% reduction in CH 4 emissions from the rice paddy mainly influenced the reduction of GWP during the overall process. Therefore, compost application could be a good management strategy to reduce GHG emissions from rice paddy systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Compost Pile Meets the 1990's.

    Science.gov (United States)

    Paddock, Todd

    1991-01-01

    Advocates composting as a valuable alternative to the landfill for waste management. As much as two-thirds of garbage can be composted, and the process has become more cost effective. Some challenges to composting are producing a compost product that will sell and dealing with the odor created by the process. (KS)

  18. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation.

    Science.gov (United States)

    Ren, Xiaoya; Zeng, Guangming; Tang, Lin; Wang, Jingjing; Wan, Jia; Wang, Jiajia; Deng, Yaocheng; Liu, Yani; Peng, Bo

    2018-02-01

    Large numbers of organic pollutants (OPs), such as polycyclic aromatic hydrocarbons, pesticides and petroleum, are discharged into soil, posing a huge threat to natural environment. Traditional chemical and physical remediation technologies are either incompetent or expensive, and may cause secondary pollution. The technology of soil composting or use of compost as soil amendment can utilize quantities of active microbes to degrade OPs with the help of available nutrients in the compost matrix. It is highly cost-effective for soil remediation. On the one hand, compost incorporated into contaminated soil is capable of increasing the organic matter content, which improves the soil environment and stimulates the metabolically activity of microbial community. On the other hand, the organic matter in composts would increase the adsorption of OPs and affect their bioavailability, leading to decreased fraction available for microorganism-mediated degradation. Some advanced instrumental analytical approaches developed in recent years may be adopted to expound this process. Therefore, the study on bioavailability of OPs in soil is extremely important for the application of composting technology. This work will discuss the changes of physical and chemical properties of contaminated soils and the bioavailability of OPs by the adsorption of composting matrix. The characteristics of OPs, types and compositions of compost amendments, soil/compost ratio and compost distribution influence the bioavailability of OPs. In addition, the impact of composting factors (composting temperature, co-substrates and exogenous microorganisms) on the removal and bioavailability of OPs is also studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Composting of cow dung and crop residues using termite mounds as bulking agent.

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Paul, Ranjit K; Das, Sampa; Boruah, R K; Dutta, Amrit K; Das, Dilip K

    2014-10-01

    The present study reports the suitability of termite mounds as a bulking agent for composting with crop residues and cow dung in pit method. Use of 50 kg termite mound with the crop residues (stover of ground nut: 361.65 kg; soybean: 354.59 kg; potato: 357.67 kg and mustard: 373.19 kg) and cow dung (84.90 kg) formed a good quality compost within 70 days of composting having nitrogen, phosphorus and potassium as 20.19, 3.78 and 32.77 g kg(-1) respectively with a bulk density of 0.85 g cm(-3). Other physico-chemical and germination parameters of the compost were within Indian standard, which had been confirmed by the application of multivariate analysis of variance and multivariate contrast analysis. Principal component analysis was applied in order to gain insight into the characteristic variables. Four composting treatments formed two different groups when hierarchical cluster analysis was applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi

    2013-09-01

    In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    Science.gov (United States)

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. © The Author(s) 2015.

  2. Using Biochar composts for improving sandy vineyard soils while reducing the risk of

    Science.gov (United States)

    Kammann, Claudia; Mengel, Jonathan; Mohr, Julia; Muskat, Stefan; Schmidt, Hans-Peter; Löhnertz, Otmar

    2016-04-01

    leaching compared to the control (where nearly all mineral N was lost), the larger application amount in pure compost caused rising nitrate loss rates, likely due to compost mineralization. Interestingly, this was not the case when biochar was included, either co-composted or mixed into the substrates afterwards. However, after three years, the biochar-compost treatment still showed the highest grape yield of all treatments, while the treatment with biochar mixed in after compost production did not have the same effect. The results suggest that biochar-composts, for example produced from vine making residue and greenwaste, may reduce the risk of nitrate leaching while increasing the soil organic content more permanently than other amendments. Genesio, L., Miglietta, F., Baronti, S., Vaccari, F.P., 2015. Biochar increases vineyard Productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agriculture, Ecosystems & Environment 201, 20-25. Kammann, C.I., Schmidt, H.-P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H.-W., Conte, P., Joseph, S., 2015. Plant growth improvement mediated by nitrate capture in cocomposted biochar. Scientific Reports 5, doi: 10.1038/srep11080. Ruysschaert, G., Nelissen, V., Postma, R., Bruun, E., O'Toole, A., Hammond, J., Rödger, J.-M.,Hylander, L., Kihlberg, T., Zwart, K., Hauggaard-Nielsen, H., Shackley, S., 2016. Field applications of pure biochar in the North Sea region and across Europe, in: Shackley, S.,Ruysschaert, G., Zwart, K., Glaser, B. (Eds.), Biochar in European Soils and Agriculture - Science and Practice. Routhledge, Oxon, UK and New York, USA.

  3. Case Study of Survey of Occasional Application of Vinasse in Compost Production in Different Phases (during Production and after Producing Compost, at Waste Resumption Complex of Aradkooh in Tehran

    Directory of Open Access Journals (Sweden)

    A. Hemati

    2016-02-01

    Full Text Available Introduction: Recycling organic wastes has vital roles in sustainable agriculture, reducing pollutants in the environment, and nutrient enrichment of soils. Compost is the product of recycling organic waste through anaerobic treatment, which can be a good alternative.Again the use of chemical fertilizers is inappropriate. Vinasse is brown material and it is a product of industrial production of alcohol from molasses. Vinasse, a by-product of ethanol production from molasses, is a highstrength effluent with a high content of organics, mainly organic acids, reducing substances, cultured matter and glycerol. The wastewater is characterized by high concentrations of potassium, calcium, chloride and sulphate ions, a high content of suspended solids, a high CoD (Chemical oxygen Demand level and a high temperature at the moment of generation.Vinasse can be used as a supplement for enhancing compost fertilizer quality, because it has plenty of organic matter and minerals. This research was done with the purpose of surveying application of vinasse in different levels on indices of compost producing (temperature, microbial population, nitrogen, carbon, the ratio C/N, nitrate, pH and EC and producing time in different phases (during the production and after compost production for 5 months in the waste resumption complex of Aradkooh in Tehran. Materials and Methods: The method used for compost production from solid waste material was ventilating the fixed mass. In this research, the volume of ventilation was 0.6 lit air for 1 lit waste material in a minute.Four different treatments (each three replicates were applied to the compost:C0 without vinasse (control, C1, C2 and C3, respectively 10, 20 and 30 ml vinasse per kg waste material. The following factors were measured during each phase: Total-N was measured by the Kjeldahl method and organic carbon was measured by the Walkley-Black method. Thermometers were used for temperature monitoring at different

  4. Assessment of compost maturity by using an electronic nose.

    Science.gov (United States)

    López, Rafael; Giráldez, Inmaculada; Palma, Alberto; Jesús Díaz, M

    2016-02-01

    The composting process produces and emits hundreds of different gases. Volatile organic compounds (VOCs) can provide information about progress of composting process. This paper is focused on the qualitative and quantitative relationships between compost age, as sign of compost maturity, electronic-nose (e-nose) patterns and composition of compost and composting gas at an industrial scale plant. Gas and compost samples were taken at different depths from composting windrows of different ages. Temperature, classical chemical parameters, O2, CO, combustible gases, VOCs and e-nose profiles were determined and related using principal component analysis (PCA). Factor analysis carried out to a data set including compost physical-chemical properties, pile pore gas composition and composting time led to few factors, each one grouping together standard composting parameters in an easy to understand way. PCA obtained from e-nose profiles allowed the classifying of piles, their aerobic-anaerobic condition, and a rough estimation of the composting time. That would allow for immediate and in-situ assessment of compost quality and maturity by using an on-line e-nose. The e-nose patterns required only 3-4 sensor signals to account for a great percentage (97-98%) of data variance. The achieved patterns both from compost (chemical analysis) and gas (e-nose analysis) samples are robust despite the high variability in feedstock characteristics (3 different materials), composting conditions and long composting time. GC-MS chromatograms supported the patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Impacts of sporulation temperature, exposure to compost matrix and temperature on survival of Bacillus cereus spores during livestock mortality composting.

    Science.gov (United States)

    Stanford, K; Reuter, T; Gilroyed, B H; McAllister, T A

    2015-04-01

    To investigate impact of sporulation and compost temperatures on feasibility of composting for disposal of carcasses contaminated with Bacillus anthracis. Two strains of B. cereus, 805 and 1391, were sporulated at either 20 or 37°C (Sporulation temperature, ST) and 7 Log10 CFU g(-1) spores added to autoclaved manure in nylon bags (pore size 50 μm) or in sealed vials. Vials and nylon bags were embedded into compost in either a sawdust or manure matrix each containing 16 bovine mortalities (average weight 617 ± 33 kg), retrieved from compost at intervals over 217 days and survival of B. cereus spores assessed. A ST of 20°C decreased spore survival by 1·4 log10 CFU g(-1) (P Compost temperatures >55°C reduced spore survival (P compost temperatures were key factors influencing survival of B. cereus spores in mortality compost. Composting may be most appropriate for the disposal of carcasses infected with B. anthracis at ambient temperatures ≤20°C under thermophillic composting conditions (>55°C). © 2015 The Society for Applied Microbiology.

  6. Tea (Camellia sinensis (L.) Kuntze) leaf compost ameliorates the adverse effects of salinity on growth of cluster beans (Cyamopsis tetragonoloba L.)

    International Nuclear Information System (INIS)

    Saeed, R.; Shah, P.; Jahan, B.

    2016-01-01

    The pot experiment was carried out to evaluate the effect of tea compost on plant growth under salinity. Plants were grown in clay pots filled with sandy loam soil and irrigated by saline water (0, 50 and 100mM NaCl) with and without tea compost amendments. Soil evapotranspiration (ET), vegetative and reproductive growth and biochemical parameters were studied in this experiment. ET rate was increased with increasing salinity, whereas, it decreased with application of tea compost under all salinity. Vegetative (shoot height, number of leaves, fresh and dry biomass) and reproductive (number of seeds per plant) growth significantly decline under increasing salinity levels. Tea compost treatment helped in improving all these parameters. Total photosynthetic pigments (chlorophyll a, b, carotenoids and total chlorophyll content) showed reduction under raising salinity levels, while betterment was recorded with application of tea compost. Organic solutes (soluble sugars, proteins, free amino acids and phenolic content) increased with increasing salinity (50-100mM NaCl). Increased soluble sugars were found with tea compost treatment under non-saline control and decreased in salinity. Soluble proteins, amino acids and phenolic content increased with application of tea compost under both control and salinity. It is concluded that tea compost treatment is found to cope with salinity stress and improve plant growth and biochemical parameters by diluting the hazardous effects of salinity. (author)

  7. COP-compost: a software to study the degradation of organic pollutants in composts.

    Science.gov (United States)

    Zhang, Y; Lashermes, G; Houot, S; Zhu, Y-G; Barriuso, E; Garnier, P

    2014-02-01

    Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different (14)C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance

  8. Microbiological and Physico-chemical Analysis of Compost and its ...

    African Journals Online (AJOL)

    microbial counts, the physico-chemical parameters of compost and to assess the ... showed that application of municipal solid waste ... cattle manure and food wastes (leaves of avocado, .... Organic matter is decomposed and transformed to.

  9. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review.

    Science.gov (United States)

    Wu, Shaohua; He, Huijun; Inthapanya, Xayanto; Yang, Chunping; Lu, Li; Zeng, Guangming; Han, Zhenfeng

    2017-07-01

    Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation. Graphical abstract ᅟ.

  10. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    Science.gov (United States)

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Application of Bacillus sp. TAT105 to reduce ammonia emissions during pilot-scale composting of swine manure.

    Science.gov (United States)

    Kuroda, Kazutaka; Tanaka, Akihiro; Furuhashi, Kenich; Nakasaki, Kiyohiko

    2017-12-01

    Thermophilic ammonium-tolerant bacterium Bacillus sp. TAT105 grows and reduces ammonia (NH 3 ) emissions by assimilating ammonium nitrogen during composting of swine feces. To evaluate the efficacy of a biological additive containing TAT105 at reducing NH 3 emissions, composting tests of swine manure on a pilot scale (1.8 m 3 ) were conducted. In the TAT105-added treatment, NH 3 emissions and nitrogen loss were lower than those in the control treatment without TAT105. No significant difference was detected in losses in the weight and volatile solids between the treatments. Concentration of thermophilic ammonium-tolerant bacteria in the compost increased in both treatments at the initial stage of composting. In the TAT105-added treatment, bacterial concentration reached ~10 9 colony-forming units per gram of dry matter, several-fold higher than that in the control and stayed at the same level until the end. These results suggest that TAT105 grows during composting and reduces NH 3 emissions in TAT105-added treatment.

  12. Inside the small-scale composting of kitchen and garden wastes: Thermal performance and stratification effect in vertical compost bins.

    Science.gov (United States)

    Arrigoni, Juan Pablo; Paladino, Gabriela; Garibaldi, Lucas Alejandro; Laos, Francisca

    2018-06-01

    Decentralized composting has been proposed as a best available practice, with a highly positive impact on municipal solid wastes management plans. However, in cold climates, decentralized small-scale composting performance to reach thermophilic temperatures (required for the product sanitization) could be poor, due to a lack of critical mass to retain heat. In addition, in these systems the composting process is usually disturbed when new portions of fresh organic waste are combined with previous batches. This causes modifications in the well-known composting evolution pattern. The objective of this work was to improve the understanding of these technical aspects through a real-scale decentralized composting experience carried out under cold climate conditions, in order to assess sanitization performance and to study the effects of fresh feedstock additions in the process evolution. Kitchen and garden organic wastes were composted in 500 L-static compost bins (without turning) for 244 days under cold climate conditions (Bariloche, NW Patagonia, Argentina), using pine wood shavings in a ratio of 1.5:1 v: v (waste: bulking agent). Temperature profile, stability indicators (microbial activity, carbon and nitrogen contents and ratio) and other variables (pH and electrical conductivity), were monitored throughout the experience. Our results indicate that small-scale composting (average generation rate of 7 kg d -1 ) is viable under cold weather conditions, since thermophilic sanitization temperatures (> 55 °C) were maintained for 3 consecutive days in most of the composting mass, according to available USEPA regulations commonly used as a reference for pathogens control in sewage sludge. On the other hand, stability indicators showed a differentiated organic matter degradation process along the compost bins height. Particularly, in the bottommost composting mix layer the process took a longer period to achieve compost stability than the upper layers, suggesting

  13. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Møller, Jacob

    2009-01-01

    is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting...

  14. Phosphate dynamics on the application of rice straw compost-biochar and phosphate fertilization in rice fields

    International Nuclear Information System (INIS)

    Ania Citraresmini; Taufiq Bachtiar

    2016-01-01

    Soil productivity is determined by soil characteristics itself, which consist of physical, chemical and biological character. The linkage between these three properties can be represented by a single indicator, namely the carbon content in the soil. One of the effects of soil organic matter fulfillment is the availability of soil nutrients, especially to the nutrient that limits the lowland rice production. In this case, P (phosphorus) nutrient become a limiting factor because their numbers are often in abundance but in a form that can not be used by plants. Experiments were carried out with the aim of studying the impact of straw compost application that integrates with Biochar, to the availability of P in lowland soil. The interaction of straw compost + Biochar with PSB inoculation and P sources, become the treatment that being tested in the experiment. Randomized Block Design with factorial pattern is applied as design experiment. As the first factor is the application dose of straw compost + Biochar, consists of 5 levels of treatment : 0; 1; 2; 3; 4 t ha -1 . Second factor is several sources of P, consist of 5 levels of treatment : without P sources (p 0 ); 100 kg ha -1 SP-36 fertilizer (p1); rock phosphate at the dose of 163 kg ha -1 (p 2 ); PSB inoculation at the inoculation dose of 2 kg ha -1 (p 3 ); and rock phosphate inoculated with PSB (p 4 ). The experiment done in the green house of PAIR-BATAN experimental station, Jakarta, on March-July 2014. Phosphorus dynamic as a result of the tested treatments, determined by using radioisotope 32 P technology at the activity of 30 mCi and described clearly on the plant P uptake data of Sidenuk rice plant variety. The experiment result showed that the treatments applied is causing significantly different response on the soil C-organic, the number of PSB populations, 32 P plant counting and plant P uptake derived from several P sources in the plant. (author)

  15. Suppressive composts: microbial ecology links between abiotic environments and healthy plants.

    Science.gov (United States)

    Hadar, Yitzhak; Papadopoulou, Kalliope K

    2012-01-01

    Suppressive compost provides an environment in which plant disease development is reduced, even in the presence of a pathogen and a susceptible host. Despite the numerous positive reports, its practical application is still limited. The main reason for this is the lack of reliable prediction and quality control tools for evaluation of the level and specificity of the suppression effect. Plant disease suppression is the direct result of the activity of consortia of antagonistic microorganisms that naturally recolonize the compost during the cooling phase of the process. Thus, it is imperative to increase the level of understanding of compost microbial ecology and population dynamics. This may lead to the development of an ecological theory for complex ecosystems as well as favor the establishment of hypothesis-driven studies.

  16. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2014-11-01

    This research determined whether the two-stage co-composting can be used to convert green waste (GW) into a useful compost. The GW was co-composted with spent mushroom compost (SMC) (at 0%, 35%, and 55%) and biochar (BC) (at 0%, 20%, and 30%). The combined addition of SMC and BC greatly increased the nutrient contents of the compost product and also improved the compost quality in terms of composting temperature, particle-size distribution, free air space, cation exchange capacity, nitrogen transformation, organic matter degradation, humification, element contents, abundance of aerobic heterotrophs, dehydrogenase activity, and toxicity to germinating seeds. The addition of 35% SMC and 20% BC to GW (dry weight % of initial GW) and the two-stage co-composting technology resulted in the production of the highest quality compost product in only 24 days rather than the 90-270 days required with traditional composting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Comparison of microbially enhanced compost extracts produced from composted cattle rumen content material and from commercially available inocula.

    Science.gov (United States)

    Shrestha, Karuna; Adetutu, Eric M; Shrestha, Pramod; Walsh, Kerry B; Harrower, Keith M; Ball, Andrew S; Midmore, David J

    2011-09-01

    A comparative study was performed on compost extracts prepared from cattle rumen content composted for three and nine months, nine month old compost inoculated with a Nutri-Life 4/20™ inoculum, and two commercial preparations (LivingSoil™ and Nutri-Life 4/20™), all incubated for 48h. Nutri-Life 4/20™ had the highest concentrations of NO(3)(-)-N and K(+)-K, while rumen compost extract had higher humic and fulvic acids concentration. The bacterial and fungal community level functional diversity of three month old compost extract and of LivingSoil™, assessed with Biolog™, were higher than that of nine month old rumen compost extract, with or without Nutri-Life 4/20™ inoculum, or Nutri-Life 4/20™. No difference in fungal diversity was observed between treatments, as indicated by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, however, bacterial diversity was higher in all compost extracts and LivingSoil™ compared to the Nutri-Life 4/20™. Criteria for judging the quality of a microbially enhanced extract are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Thermophilic methanogenic Archaea in compost material: occurrence, persistence and possible mechanisms for their distribution to other environments.

    Science.gov (United States)

    Thummes, Kathrin; Schäfer, Jenny; Kämpfer, Peter; Jäckel, Udo

    2007-12-01

    Since compost is widely used as soil amendment and the fact that during the processing of compost material high amounts of microorganisms are released into the air, we investigated whether compost may act as a carrier for thermophilic methanogens to temperate soils. All eight investigated compost materials showed a clear methane production potential between 0.01 and 0.98 micromol CH(4) g dw(-1)h(-1) at 50 degrees C. Single strand conformation polymorphism (SSCP) and cloning analysis indicated the presence of Methanosarcina thermophila, Methanoculleus thermophilus, and Methanobacterium formicicum. Bioaerosols collected during the turning of a compost pile showed both a highly similar SSCP profile compared to the corresponding compost material and clear methane production during anoxic incubation in selective medium at 50 degrees C. Both observations indicated a considerable release of thermophilic methanogens into the air. To analyse the persistence of compost-borne thermophilic methanogens in temperate oxic soils, we therefore studied their potential activity in compost and compost/soil mixtures, which was brought to a meadow soil, as well as in an agricultural soil fertilised with compost. After 24h anoxic incubation at 50 degrees C, all samples containing compost showed a clear methanogenic activity, even 1 year after application. In combination with the in vitro observed resilience of the compost-borne methanogens against desiccation and UV radiation we assume that compost material acts as an effective carrier for the distribution of thermophilic methanogens by fertilisation and wind.

  19. Temperatures In Compost Landfill Covers As Result Of Methane Oxidation And Compost Respiration

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Merono, A. R.; Pedersen, Rasmus Broen

    2011-01-01

    This study investigated the influence of the temperature on methane (CH4) oxidation and respiration in compost sampled at a full scale biocover implemented at Klintholm landfill exhibiting high temperatures. Compost material was collected at Klintholm landfill and incubated with and without CH4...

  20. Evaluation of compost blankets for erosion control from disturbed lands.

    Science.gov (United States)

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier

  1. Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process.

    Science.gov (United States)

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W; Luo, Feng; Jiang, Xiuping

    2011-06-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 10(7) CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well.

  2. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  3. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    Science.gov (United States)

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  4. Enhancement of Cotton Stalks Composting with Certain Microbial Inoculations

    Directory of Open Access Journals (Sweden)

    Osama Abdel-Twab Seoudi

    2013-01-01

    Full Text Available Effect of inoculation with Phanerochaete chrysosporium and Azotobacter chrococcum microbes on cotton stalks composting was studied in an attempt to achieve rapid maturity and desirable characteristics of produced compost. Composting process was maintained for 16 weeks under aerobic conditions with proper moisture content and turning piles. The C/N ratio of the mixtures was adjusted to about 30:1 before composting using chicken manure. Temperature evolution and its profile were monitored throughout the composting period. Mineralization rates of organic matter and changes in nitrogen content during composting stages were evaluated. Total plate count of mesophilic and thermophilic bacteria, cellulose decomposers and Azotobacter were determined during composting periods. The treatment of cotton stalks inoculated with both P. chrysosporium and Azotobacter gave the most desirable characteristics of the final product with respect to the narrow C/N ratio, high nitrogen content and high numbers of Azotobacter. The phytotoxicity test of compost extracts was evaluated. The use of P. chrysosporium in composting accelerated markedly decomposition process, so that 16 weeks composting enough to produce a stable and mature compost suitable for use as fertilizer while the fertilizer obtained by composting cotton stalks mixed with chicken manure and inoculated with microorganisms is highest quality Compost.

  5. Selección de sistemas agroambientales con potencial uso de compost de biorresiduos municipales

    Directory of Open Access Journals (Sweden)

    Martha Constanza Daza-Torres

    2015-04-01

    Full Text Available Los biorresiduos constituyen la mayor fracción de los residuos sólidos municipales (RSM. El compostaje es una opción promisoria para su manejo, ya que genera un producto (compost de valor agronómico que ayuda a conservar las propiedades del suelo. La previa selección de Sistemas Agroambientales (SA con potencial para el uso de este subproducto, permite orientar el proceso de compostaje hacia la generación de un material que satisfaga los requerimientos de calidad de estos sistemas. En este estudio se evaluó la aplicación de una propuesta metodológica para la selección de los SA, la cual incorpora variables ambientales, técnicas, socioeconómicas e institucionales. La aplicación se realizó en el municipio de Versalles, departamento del Valle del Cauca, Colombia, que cuenta con una planta de compostaje de biorresiduos. El estudio permitió identificar, en su orden, el cultivo de café, áreas con pasturas dedicadas a la ganadería y las áreas degradadas, como los SA con mayor potencial para la aplicación de este compost en la zona de estudio. La aplicación de la herramienta puede permitir a los operadores de las instalaciones del compostaje de biorresiduos la planeación estratégica del proceso, contribuyendo a su mejoramiento y sostenibilidad.

  6. Composting Begins at Home.

    Science.gov (United States)

    Dreckman, George P.

    1994-01-01

    Reports the results of a year-long home composting pilot program run by the city of Madison, Wisconsin. The study was designed to gather data on the amount and type of materials composted by 300 volunteer households and to determine the feasibility of a full-scale program. (LZ)

  7. Effects of spent mushroom compost application on the physicochemical properties of a degraded soil

    Directory of Open Access Journals (Sweden)

    İ. Gümüş

    2017-11-01

    Full Text Available Under field and laboratory conditions, the application of organic amendments has generally shown an improvement in soil physicochemical properties. Here, spent mushroom compost (SMC is proposed as a suitable organic amendment for soil structure restoration. Our study assessed the impact of SMC on the physicochemical properties of a weak-structured and physically degraded soil. The approach involved the establishment of a pot experiment with SMC applications into soil (control, 0.5, 1, 2, 4 and 8 %. Soils were incubated at field capacity (−33 kPa for 21, 42, and 62 days under laboratory conditions. SMC applications into the soil significantly increased the aggregate stability (AS and decreased the modulus of rupture. The application of SMC at rates of 1, 2, 4, and 8 % significantly increased the total nitrogen and soil organic carbon contents of the degraded soil at all incubation periods (p < 0.05. The results obtained in this study indicate that the application of SMC can improve soil physicochemical properties, which may benefit farmers, land managers, and mushroom growers.

  8. Effects of spent mushroom compost application on the physicochemical properties of a degraded soil

    Science.gov (United States)

    Gümüş, İlknur; Şeker, Cevdet

    2017-11-01

    Under field and laboratory conditions, the application of organic amendments has generally shown an improvement in soil physicochemical properties. Here, spent mushroom compost (SMC) is proposed as a suitable organic amendment for soil structure restoration. Our study assessed the impact of SMC on the physicochemical properties of a weak-structured and physically degraded soil. The approach involved the establishment of a pot experiment with SMC applications into soil (control, 0.5, 1, 2, 4 and 8 %). Soils were incubated at field capacity (-33 kPa) for 21, 42, and 62 days under laboratory conditions. SMC applications into the soil significantly increased the aggregate stability (AS) and decreased the modulus of rupture. The application of SMC at rates of 1, 2, 4, and 8 % significantly increased the total nitrogen and soil organic carbon contents of the degraded soil at all incubation periods (p < 0.05). The results obtained in this study indicate that the application of SMC can improve soil physicochemical properties, which may benefit farmers, land managers, and mushroom growers.

  9. Bioaerosols from composting facilities—a review

    Science.gov (United States)

    Wéry, Nathalie

    2014-01-01

    Bioaerosols generated at composting plants are released during processes that involve the vigorous movement of material such as shredding, compost pile turning, or compost screening. Such bioaerosols are a cause of concern because of their potential impact on both occupational health and the public living in close proximity to such facilities. The biological hazards potentially associated with bioaerosol emissions from composting activities include fungi, bacteria, endotoxin, and 1-3 β-glucans. There is a major lack of knowledge concerning the dispersal of airborne microorganisms emitted by composting plants as well as the potential exposure of nearby residents. This is due in part to the difficulty of tracing specifically these microorganisms in air. In recent years, molecular tools have been used to develop new tracers which should help in risk assessments. This review summarizes current knowledge of microbial diversity in composting aerosols and of the associated risks to health. It also considers methodologies introduced recently to enhance understanding of bioaerosol dispersal, including new molecular indicators and modeling. PMID:24772393

  10. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost.

    Science.gov (United States)

    Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao

    2018-04-14

    Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Assessing the Environmental Bene fi ts of Compost Use-on-Land through an LCA Perspective

    DEFF Research Database (Denmark)

    Martínez-Blanco, J.; Lazcano, C.; Boldrin, Alessio

    2013-01-01

    % to increases of 52%. Compost increases 29–63% soil aggregate stability, reducing 5–36% soil loss. Soil bulk density decreases of 0.7–20% after compost application, potentially increasing soil workability. Also, water holding capacity and plant available water can increase by 50% and 34% respectively. Data...... addressed, but suitable impact assessment methodologies were not available. Additional impact categories dealing with ­phosphorus resources, biodiversity, soil losses, and water depletion are needed for a comprehensive assessment of compost application.......), an internationally recognised environmental tool. Nine environmental benefits were identified in an extensive literature review: nutrient supply, carbon sequestration, weed pest and disease suppression, increase in crop yield, decreased soil erosion, retention of soil moisture, increased soil workability, enhanced...

  12. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  13. Measurements of N2O and CH4 from the aerated composting of food waste

    International Nuclear Information System (INIS)

    He, Y.; Sun, T.; Inamori, Y.; Mizuochi, M.; Kong, H.; Iwami, N.

    2000-01-01

    Emissions of N 2 O and CH 4 from an aerated composting system were investigated using small-scale simulated reactors. The results show relatively high emissions of N 2 O at the beginning of composting, in proportion to the application amount of food waste. After 2 days, the N 2 O emission decreased to 0.53 ppmv on average, near to the background level in the atmosphere (0.45 ppmv). The addition of composted cattle manure increased N 2 O emissions not only at the beginning of composting, but also during the later period and resulted in two peak emission curves. Good correlation was observed between the N 2 O concentration at the air outlet and NO 2 - concentration in waste, suggesting a generation pathway for N 2 O from NO 2 - to N 2 O. Methane was only detected in treatments containing composted cattle manure. The high emission of methane illustrates the involvement of anoxic/anaerobic microorganisms with the addition of composted manure. The result suggests the existence of anoxic or anaerobic microsite inside the waste particles even though ventilation was employed during the composting process

  14. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects.

    Science.gov (United States)

    Luo, Yuan; Liang, Jie; Zeng, Guangming; Chen, Ming; Mo, Dan; Li, Guoxue; Zhang, Difang

    2018-01-01

    Compost is commonly used for the growth of plants and the remediation of environmental pollution. It is important to evaluate the quality of compost and seed germination test is a powerful tool to examine the toxicity of compost, which is the most important aspect of the quality. Now the test is widely adopted, but the main problem is that the test results vary with different methods and seed species, which limits the development and application of it. The standardization of methods and the modelization of seeds can contribute to solving the problem. Additionally, according to the probabilistic theory of seed germination, the error caused by the analysis and judgment methods of the test results can be reduced. Here, we reviewed the roles, problems and prospects of the seed germination test in the studies of compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Composting sewage sludge with green waste from tree pruning

    Directory of Open Access Journals (Sweden)

    Sarah Mello Leite Moretti

    2015-10-01

    Full Text Available Sewage sludge (SS has been widely used as organic fertilizer. However, its continuous use can cause imbalances in soil fertility as well as soil-water-plant system contamination. The study aimed to evaluate possible improvements in the chemical and microbiological characteristics of domestic SS, with low heavy metal contents and pathogens, through the composting process. Two composting piles were set up, based on an initial C/N ratio of 30:1, with successive layers of tree pruning waste and SS. The aeration of piles was performed by mechanical turnover when the temperature rose above 65 ºC. The piles were irrigated when the water content was less than 50 %. Composting was conducted for 120 days. Temperature, moisture content, pH, electrical conductivity (EC, carbon and nitrogen contents, and fecal coliforms were monitored during the composting. A reduction of 58 % in the EC of the compost (SSC compared with SS was observed and the pH reduced from 7.8 to 6.6. There was an increase in the value of cation exchange capacity/carbon content (CEC/C and carbon content. Total nitrogen remained constant and N-NO3- + N-NH4+ were immobilised in organic forms. The C/N ratio decreased from 25:1 to 12:1. Temperatures above 55 ºC were observed for 20 days. After 60 days of composting, fecal coliforms were reduced from 107 Most Probable Number per gram of total solids (MPN g−1 to 104 MPN g−1. I one pile the 103 MPN g−1 reached after 90 days in one pile; in another, there was recontamination from 105 to 106 MPN g−1. In SSC, helminth eggs were eliminated, making application sustainable for agriculture purposes.

  16. Composting trial with BioFoam® products in a full scale commercial composting facility

    NARCIS (Netherlands)

    Zee, van der M.

    2015-01-01

    The main objective of the trial was to be able to judge whether BioFoam® material degrades at sufficient rate to be composted together with regular source separated municipal solid biowaste in a full scale industrial composting facility.

  17. Usability study of a vineyard teleoperated compost spreader.

    Science.gov (United States)

    Ferrari, Ester; Cavallo, Eugenio

    2012-01-01

    Teleoperation has been widely applied in modern industry because of a variety of advantages, such as providing replaceable surrogates for humans in dangerous or difficult working environments over long distances. In this paper, a usability evaluation study of a teleoperation system for a compost spreader robotic machine is presented. The machine has been designed for the application of compost in small and stepping parcels of hilly vineyards. Driving and working tasks can be controlled remotely by a portable piloting unit, reducing the risk for the operator in the event of machine overturning. Participants of the study were asked to perform a series of tasks and sub-tasks and to vocalize their thoughts while working with the machine. The tasks were designed to simulate typical user experience. Once all the tasks were accomplished each participant was asked to fill a questionnaire. The evaluation considered aspects such as learnability, ease of use, understandability, controllability, frustration, mental effort, distraction, clarity of presentation, perceived usefulness, temporal efficiency and machine aesthetic. Results show that usability evaluation helped detecting design deficiencies in the teleoperated compost spreader machine.

  18. Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Atsushi, E-mail: asatou@ari.pref.niigata.jp [Niigata Horticultural Research Center, 177 Mano, Seiro, Niigata 957-0111 (Japan); Takeda, Hiroyuki [Niigata Horticultural Research Center, 177 Mano, Seiro, Niigata 957-0111 (Japan); Oyanagi, Wataru [Niigata Livestock Research Center, 178 Tanahire, Sanjo, Niigata 955-0143 (Japan); Nishihara, Eiji [Tottori University, 4-101 Koyama-Minami, Tottori 680-8550 (Japan); Murakami, Masaharu [Soil Environment Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604 (Japan)

    2010-09-15

    A field experiment was conducted to evaluate the efficacy of animal waste compost (AWC) in reducing Cd uptake by spinach (Spinacia oleracea L.). Spinach was grown in a field that had been treated by having cattle, swine, or poultry waste compost incorporated into the soil before each crop throughout 4 years of rotational vegetable production. Cadmium concentration was 34-38% lower in spinach harvested from the AWC-treated soils than in the chemical fertilizer-treated soil. Although the repeated application of swine and poultry compost caused significant P accumulation in the cropped soils, that of cattle compost did not. These results indicate that cattle compost with high affinity for Cd and low P content should be the preferred soil amendment when used to reduce Cd uptake by spinach.

  19. Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost

    International Nuclear Information System (INIS)

    Sato, Atsushi; Takeda, Hiroyuki; Oyanagi, Wataru; Nishihara, Eiji; Murakami, Masaharu

    2010-01-01

    A field experiment was conducted to evaluate the efficacy of animal waste compost (AWC) in reducing Cd uptake by spinach (Spinacia oleracea L.). Spinach was grown in a field that had been treated by having cattle, swine, or poultry waste compost incorporated into the soil before each crop throughout 4 years of rotational vegetable production. Cadmium concentration was 34-38% lower in spinach harvested from the AWC-treated soils than in the chemical fertilizer-treated soil. Although the repeated application of swine and poultry compost caused significant P accumulation in the cropped soils, that of cattle compost did not. These results indicate that cattle compost with high affinity for Cd and low P content should be the preferred soil amendment when used to reduce Cd uptake by spinach.

  20. Experimental evaluation of compost leachates.

    Science.gov (United States)

    2015-09-01

    Compost is often used in raingardens, roadsides, and bioretention systems, not only because of : its beneficial properties on soil quality, but also because compost improves water infiltration and : retains stormwater contaminants. However, when comp...

  1. Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system.

    Science.gov (United States)

    Hu, Zhenhu; Lane, Robert; Wen, Zhiyou

    2009-01-01

    Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients.

  2. Exitoso cultivo in vitro de gametocitos de Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Silvia Blair

    2008-12-01

    Full Text Available Introducción. Los estadios sexuales de Plasmodium falciparum han sido menos estudiados que los estadios asexuales. Al parecer, esto se debe a la carencia de cultivos estandarizados in vitro y a la dificultad de reconocer sus estadios de desarrollo. Estos hechos no permiten el estudio de aspectos biológicos, aspectos metabólicos, expresión de genes y síntesis de proteínas durante los estadios sexuales, temas de interés en la investigación de nuevos medicamentos antipalúdicos, principalmente los aislados de plantas, y la identificación de un potencial blanco contra Plasmodium. Objetivos. Establecer un cultivo in vitro de gametocitos, con la identificación de sus cinco estadios de desarrollo, y asegurar su continua producción. Materiales y métodos. El cultivo in vitro de gametocitos se realizó a partir de la cepa NF54 de P. falciparum en medio RPMI, con determinación de la parasitemia asexual y sexual, adición de glóbulos rojos A-Rh+ sólo el primer día de cultivo y cambio diario del medio con adición de mezcla de gases (90% N2, 5% O2; 5% CO2, asegurándose que el cultivo se mantuviera a 37 °C. Cuando la parasitemia asexual estuvo entre 3% y 5%, se comenzó a agregar el doble de volumen de medio. Resultados. Se obtuvieron gametocitos en estadios I, II y III a partir del día 11 de cultivo y estadios IV y V a partir del día 14 de cultivo. Conclusiones. Se estandarizó un cultivo in vitro para estadios sexuales de P. falciparum que puede usarse para futuros estudios de evaluación de compuestos, naturales o sintéticos, que actúen sobre los gametocitos, lo cual podría permitir el desarrollo de nuevas estrategias de control contra el paludismo.

  3. Composting: Wastes to Resources. 4-H Leader's/Teacher's Guide.

    Science.gov (United States)

    Bonhotal, Jean F.; Krasny, Marianne E.

    This guide is designed for adult volunteer leaders, camp counselors, and teachers who want to set up composting projects with youth. Five sections explore: (1) an introduction to composting with illustrated instructions for making compost; (2) different methods of composting and structures needed for various composting systems; (3) how to identify…

  4. Molecular Analysis of Ammonia-Oxidizing Bacteria of the β Subdivision of the Class Proteobacteria in Compost and Composted Materials

    Science.gov (United States)

    Kowalchuk, George A.; Naoumenko, Zinaida S.; Derikx, Piet J. L.; Felske, Andreas; Stephen, John R.; Arkhipchenko, Irina A.

    1999-01-01

    Although the practice of composting animal wastes for use as biofertilizers has increased in recent years, little is known about the microorganisms responsible for the nitrogen transformations which occur in compost and during the composting process. Ammonia is the principle available nitrogenous compound in composting material, and the conversion of this compound to nitrite in the environment by chemolithotrophic ammonia-oxidizing bacteria is an essential step in nitrogen cycling. Therefore, the distribution of ammonia-oxidizing members of the β subdivision of the class Proteobacteria in a variety of composting materials was assessed by amplifying 16S ribosomal DNA (rDNA) and 16S rRNA by PCR and reverse transcriptase PCR (RT-PCR), respectively. The PCR and RT-PCR products were separated by denaturing gradient gel electrophoresis (DGGE) and were identified by hybridization with a hierarchical set of oligonucleotide probes designed to detect ammonia oxidizer-like sequence clusters in the genera Nitrosospira and Nitrosomonas. Ammonia oxidizer-like 16S rDNA was detected in almost all of the materials tested, including industrial and experimental composts, manure, and commercial biofertilizers. A comparison of the DGGE and hybridization results after specific PCR and RT-PCR suggested that not all of the different ammonia oxidizer groups detected in compost are equally active. amoA, the gene encoding the active-site-containing subunit of ammonia monooxygenase, was also targeted by PCR, and template concentrations were estimated by competitive PCR. Detection of ammonia-oxidizing bacteria in the composts tested suggested that such materials may not be biologically inert with respect to nitrification and that the fate of nitrogen during composting and compost storage may be affected by the presence of these organisms. PMID:9925559

  5. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Danyang; Li, Jijin; Li, Yangyang; Li, Guoxue; Zang, Bing; Li, Yun

    2018-05-01

    The aim of this study was to investigate the gaseous emissions (CH 4 , N 2 O, and NH 3 ) and compost quality during the pig manure composting by adding spent mushroom substrate (SMS) as a bulking agent. The control treatment was also studied using corn stalk (CS) as a bulking agent. The experiment was conducted in a pilot scale composting reactor under aerobic condition with the initial C/N ratio of 20. Results showed that bulking agents significantly affected gaseous emissions and compost quality. Using SMS as a bulking agent improved composting efficiency by shortening the time for maturity. SMS increased germination index and humic acid of the final compost (by 13.44 and 41.94%, respectively) compared with CS. Furthermore, composting with SMS as a bulking agent could reduce nitrogen loss, NH 3 , and N 2 O emissions (by 13.57, 35.56, and 46.48%, respectively) compared with the control. SMS slightly increased CH 4 emission about 1.1 times of the CS. However, a 33.95% decrease in the global warming potential of CH 4 and N 2 O was obtained by adding SMS treatment. These results indicate that SMS is a favorable bulking agent for reducing gaseous emissions and increasing compost quality.

  6. Determining Thermal Inactivation of Escherichia coli O157:H7 in Fresh Compost by Simulating Early Phases of the Composting Process ▿

    Science.gov (United States)

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W.; Luo, Feng; Jiang, Xiuping

    2011-01-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 107 CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of 25:1 and 16:1, respectively, were compared in this study. In the optimal compost mix, E. coli O157:H7 survived for 72, 48, and 24 h in compost with 40% moisture and for 72, 24, and 24 h with 50% moisture at 50, 55, and 60°C, respectively, following 2 days of come-up time (rate of heating up). However, in the suboptimal compost mix, the pathogen survived for 288, 72, and 48 h in compost with 40% moisture and for 240, 72, 24 h in compost with 50% moisture at the same temperatures, respectively. Pathogen survival was longer, with 5 days of come-up time compared with 2 days of come-up. Overall, E. coli O157:H7 was inactivated faster in the compost with 50% moisture than in the compost with 40% at 55 and 60°C. Both moisture and come-up time were significant factors affecting Weibull model parameters. Our results suggest that slow come-up time at the beginning of composting can extend pathogen survival during composting. Additionally, both the C/N ratio and the initial moisture level in the compost mix affect the rate of pathogen inactivation as well. PMID:21498743

  7. Modeling composting kinetics: A review of approaches

    NARCIS (Netherlands)

    Hamelers, H.V.M.

    2004-01-01

    Composting kinetics modeling is necessary to design and operate composting facilities that comply with strict market demands and tight environmental legislation. Current composting kinetics modeling can be characterized as inductive, i.e. the data are the starting point of the modeling process and

  8. Composting of municipal solid wastes in Jujuy (Argentina); Compostaje de residuos solidos urbanos en la provincia de Jujuy, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Santos Romero, E. E.; Boccardo, R.; Kosir, A.; Altamirano, F.; Figliolo, C.; Arias, P.; Aguado, R.; Zankar, G. [Universidad de Jujuy. Argentina (Argentina); Gonzalez Carcedo, S. [Universidad de Burgos (Spain)

    1999-11-01

    The results from a first experience of composting of urban solid waste in Jujuy (Argentine) were shown. The organic part of a solid waste collected from the city San Salvador, was composted during 3 months experience in windrow piles and physico-chemical properties were monitored. The time of composting was diminished by the application of an aqueous aminoacid solution. (Author) 10 refs.

  9. El amaranto, un cultivo que vuelve

    OpenAIRE

    Ciocchini, Florencia

    2013-01-01

    El amaranto (Amaranthus sp.) es un cultivo de verano, oriundo de la región andina de nuestro continente americano. Es considerado un pseudocereal, debido a que sus semillas pueden brindar harina apta para elaborar pan. Contiene mayor porcentaje de proteínas que los cereales. Y su plasticidad agronómica, le confiere la capacidad de adaptación a diversos ambientes, es por ello que la zona de La Plata y alrededores puede ser una posible anfitriona para este cultivo. Facultad de Ciencias Agrar...

  10. Evaluation of Grape Pomace Composting Process

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2014-01-01

    Full Text Available The paper deals with the problems of composting of grape pomace in strip compost piles. The three variants of compost piles formed from grape pomace and vegetables waste, wood chips and mature in varying proportions were tested. Turning of piles was performed using windrow turner PKS 2.8, in which the achieved performance was monitored. On the performance of windrow turner has a significant influence also cross section or width and height of turning piles and the bulk density of ingredients including their moisture. In evaluating, attention has been paid to assessment of selected parameters (temperature, moisture content of the composting process. From the viewpoint of temperature course, the highest temperature reached at the piles in Var. I (64.1 °C and Var. II (55.3 °C. Moisture of compost piles in the individual variants did not differ significantly and ranged between 25–35%.

  11. The effect of urban waste compost applied in a vineyard, olive grove and orange grove on soil proprieties in Mediterranean environment

    Science.gov (United States)

    Novara, Agata; Gristina, Luciano; Bono, Giuseppe; Guaitoli, Fabio; Pasciuta, Giuseppe; Santoro, Antonino

    2013-04-01

    The application to soil of compost produced from urban wastes not only could improve the soil properties but also could be a solution for disposal of large quantities of different refuses. Knowledge on compost characteristic, soil properties as well as on mineral crop nutrition are important to proper management of fertilization with compost and to understanding the impact on C and N dynamics in field. We present the results of soil physical and chemical changes after the application of urban waste compost in three different orchards (vineyard, olive grove, and orange grove) in Mediterranean environment (Sicily). The compost was applied on November 2010 and samples were collected 1 month after application for two years. Soil pH, carbon content, weight of soil aggregate fractions, nitrate content were examined during the trial, comparing with adjacent no fertilized plot. The application of compost caused a decrease in soil organic carbon stock of 14% and 28% after two years in vineyard and orange grove, respectively, while a significant increase under olive grove was registered. Nitrate monitoring showed for all crops high content of Nitrate for most of the year that involved SOC stock depletion. This was not observed in olive grove, where soil received further C input thanks to soil management with cover crop. In two years of observations there were no significant change in soil physic properties.

  12. POTENCIAL DE LAS ABEJAS NATIVAS EN LA POLINIZACIÓN DE CULTIVOS

    OpenAIRE

    JOSE JAVIER QUEZADA-EUAN

    2009-01-01

    RESUMEN En esta nota se discute sobre la polinización de cultivos como una actividad potencial del cultivo de abejas nativas. Palabras clave: abejas nativas, polinación de cultivos ABSTRACT This note refers to the potential of native bees cultivation in crop polinization. Key words: native bees, crop polinization

  13. Development of a process for radiation disinfection and composting of sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, Waichiro; Hashimoto, Shoji; Nishimura, Koichi; Watanabe, Hiromasa; Watanabe, Hiroshi

    1985-05-01

    Radiation disinfection of sewage sludge and composting of the irradiated sludge were studied for a purpose of their safe land application from a viewpoint of environment protection and beneficial utilization of resources. Seasonal changes of total bacterial number and coliform number in sludge cake, those of the dose required for disinfection and the regrowth of bacteria after disinfection were examined. Determination of residual bacteria werealso carried out. The dose for disinfection of coliform was 0.3-0.5 Mrad(3-5 kGy). Fermentation conditions such as temperature, pH, pressure, buking agent and seeds, were studied in addition to continuation and scale-up of the process for aerobic fermentation of irradiated sludge for a purpose of shortening the period for primary fermentation. And conditions for maintaining high oxygen permeability of sludge and deordorization were also investigated. The optimum conditions for composting were shown to be near 7 for pH, 50 0 C for temperature. Composting in a continuous process was studied based on microbiological rate expressions, and it was shown that the composting rate could be estimated from batch-experimental data. Composting in a large scale was investigated by using a small scale fermentor and a computer, and was estimated to have the same rate as in a small scale, when the fermentation conditions were maintained at the optimum. It was also shown that the diameter of sludge grain should be less than about 5 mm to obtain high oxygen permeability of sludge and maintain the fast rate in isothermal composting, and that the evolution of anmonia which is an index of ill-smell would also cease within 3 days under the optimum conditions. The products obtained in the isothermal composting of irradiated sludge were shown to be almost the same as those by usual composting processes using nonirradiated sludges. (J.P.N.)

  14. Biowaste home composting: experimental process monitoring and quality control.

    Science.gov (United States)

    Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo

    2015-04-01

    Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental

  15. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system.

    Science.gov (United States)

    Sun, Zhao-Yong; Zhang, Jing; Zhong, Xiao-Zhong; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2016-05-01

    In the present study, we developed an efficient composting process for the solid fraction of dairy manure (SFDM) using lab-scale systems. We first evaluated the factors affecting the SFDM composting process using different thermophilic phase durations (TPD, 6 or 3days) and aeration rates (AR, 0.4 or 0.2 lmin(-1)kg(-1)-total solid (TS)). Results indicated that a similar volatile total solid (VTS) degradation efficiency (approximately 60%) was achieved with a TPD of 6 or 3days and an AR of 0.4 l min(-1) kg(-1)-TS (hereafter called higher AR), and a TPD of 3days resulted in less N loss caused by ammonia stripping. N loss was least when AR was decreased to 0.2 l min(-1) kg(-1)-TS (hereafter called lower AR) during the SFDM composting process. However, moisture content (MC) in the composting pile increased at the lower AR because of water production by VTS degradation and less water volatilization. Reduced oxygen availability caused by excess water led to lower VTS degradation efficiency and inhibition of nitrification. Adding sawdust to adjust the C/N ratio and decrease the MC improved nitrification during the composing processes; however, the addition of increasing amounts of sawdust decreased NO3(-) concentration in matured compost. When an improved composting reactor with a condensate removal and collection system was used for the SFDM composting process, the MC of the composting pile was significantly reduced, and nitrification was detected 10-14days earlier. This was attributed to the activity of ammonia-oxidizing bacteria (AOB). Highly matured compost could be generated within 40-50days. The VTS degradation efficiency reached 62.0% and the final N content, NO3(-) concentration, and germination index (GI) at the end of the composting process were 3.3%, 15.5×10(3)mg kg(-1)-TS, and 112.1%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. An Overview of Organic Waste in Composting

    Directory of Open Access Journals (Sweden)

    Kadir Aeslina Abdul

    2016-01-01

    Full Text Available This paper reviewed studies on the composting process of organic waste. Organic wastes are wastes that easily biodegradable. These wastes are produced from many sources such as agricultural waste, market waste, kitchen waste, urban solid food wastes and municipal solid waste. Without proper management, these waste could create several environment problem. Therefore, composting is the best low cost alternative solution to overcome this problem. Composting method can degrade all types of organic wastes like fruits, vegetables, plants, yard wastes and others. The composition from organic waste that could be used as nutrients for crops, soil additive and for environmental management. However, many factors can contribute to the quality of the compost products as different types of organic wastes have different concentrations of nutrients, nitrogen, phosphorous and potassium (N, P, K which are the common macro nutrients present in fertilizers. The presences of heavy metals show how composts can be applied to soils without contributing any ill effect. In term of the factor affecting the composting process, temperature, pH, moisture contents and carbon nitrogen ratio (C:N are the main parameters that contribute to the efficiency of the composting process.

  17. Utilization of crops residues as compost and biochar for improving soil physical properties and upland rice productivity

    Directory of Open Access Journals (Sweden)

    J. Barus

    2016-07-01

    Full Text Available The abundance of crops waste in the agricultural field can be converted to organic fertilizer throughout the process of composting or pyrolysis to return back into the soil. The study aimed to elucidate the effect of compost and biochar application on the physical properties and productivity of upland rice at Village of Sukaraja Nuban, Batanghari Nuban Sub district, East Lampung Regency in 2015. The amendment treatments were A. control; B. 10 t rice husk biochar/ ha; C. 10 t maize cob biochar/ha; D. 10 t straw compost/ha; E. 10 t stover compost/ha, F. 10 t rice husk biochar/ha + 10 t straw compost/ha; F. 10 t maize cob biochar/ha + 10 t maize stover compost/ha. The treatments were arranged in randomized block design with four replicates. The plot size for each treatment was 10 x 20 m. After incubation for about one month, undisturbed soil samples were taken using copper ring at 10–20 cm depth for laboratory analyzes. Analyses of soil physical properties included bulk density, particle density, total porosity, drainage porosity, and soil water condition. Plant observations conducted at harvest were plant height, number of panicle, number of grain/panicle, and grain weight/plot. Results of the study showed that biochar and compost improved soil physical properties such as bulk density, total porosity, fast drainage pores, water content, and permeability of soil. The combination of rice husk biochar and straw compost gave better effect than single applications on rice production components (numbers of panicle and grains of rice, and gave the highest yield of 4.875 t/ha.

  18. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    International Nuclear Information System (INIS)

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-01-01

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH 4 and NH 3 emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH 4 , N 2 O, and NH 3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH 4 emissions (by 85.8% and 80.5%, respectively) and decreased NH 3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N 2 O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively

  19. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Beijing Municipal Research Institute of Environmental Protection, Beijing 100037 (China); Li, Guoxue, E-mail: yangfan19870117@126.com [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China); Shi, Hong; Wang, Yiming [College of Resources and Environmental Science, China Agricultural University, Beijing 100193 (China)

    2015-02-15

    Highlights: • Effect of phosphogypsum and superphosphate on composting gas emissions was studied. • The reduction mechanisms of composting gas were clarified in this study. • No negative effect was caused on maturity with phosphogypsum and superphosphate. • CH{sub 4} and NH{sub 3} emission was decreased with phosphogypsum and superphosphate addition. • GHG decreased by 17.4% and 7.3% with phosphogypsum and superphosphate addition. - Abstract: This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH{sub 4}, N{sub 2}O, and NH{sub 3} were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH{sub 4} emissions (by 85.8% and 80.5%, respectively) and decreased NH{sub 3} emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N{sub 2}O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively.

  20. Influence of composting techniques on microbial succession ...

    African Journals Online (AJOL)

    pH also stabilized as the composting process progressed in the pit. Good quality compost was obtained in 5 weeks when PACT was used. Conventional pit method lasted over several weeks. Key Words: Municipal wastes; passive aeration; pit composting; temperature; microbial succession. African Journal of Biotechnology ...

  1. PRACTICAL SIMULATION OF COMPOSTING IN THE LABORATORY

    Science.gov (United States)

    A closed incubation system was developed for laboratory simulation of composting conditions at the interior of a large compost pile. A conductive heat flux control system (CHFC) was used to adjust the temperature of the internal wall to that of the compost center and compensate f...

  2. Leachability and phytoavailability of nitrogen, phosphorus, and potassium from different bio-composts under chloride- and sulfate-dominated irrigation water.

    Science.gov (United States)

    Ahmad, Zahoor; Yamamoto, Sadahiro; Honna, Toshimasa

    2008-01-01

    Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.

  3. Assessment of bacterial diversity during composting of agricultural byproducts

    Science.gov (United States)

    2013-01-01

    Background Composting is microbial decomposition of biodegradable materials and it is governed by physicochemical, physiological and microbiological factors. The importance of microbial communities (bacteria, actinomycetes and fungi) during composting is well established. However, the microbial diversity during composting may vary with the variety of composting materials and nutrient supplements. Therefore, it is necessary to study the diversity of microorganisms during composting of different agricultural byproducts like wheat bran, rice bran, rice husk, along with grass clippings and bulking agents. Here it has been attempted to assess the diversity of culturable bacteria during composting of agricultural byproducts. Results The culturable bacterial diversity was assessed during the process by isolating the most prominent bacteria. Bacterial population was found to be maximum during the mesophilic phase, but decreased during the thermophilic phase and declined further in the cooling and maturation phase of composting. The bacterial population ranged from 105 to 109 cfu g-1 compost. The predominant bacteria were characterized biochemically, followed by 16S rRNA gene sequencing. The isolated strains, both Gram-positive and Gram-negative groups belonged to the order Burkholderiales, Enterobacteriales, Actinobacteriales and Bacillales, which includes genera e.g. Staphylococcus, Serratia, Klebsiella, Enterobacter, Terribacillus, Lysinibacillus Kocuria, Microbacterium, Acidovorax and Comamonas. Genera like Kocuria, Microbacterium, Acidovorax, Comamonas and some new species of Bacillus were also identified for the first time from the compost made from agricultural byproducts. Conclusion The use of appropriate nitrogen amendments and bulking agents in composting resulted in good quality compost. The culture based strategy enabled us to isolate some novel bacterial isolates like Kocuria, Microbacterium, Acidovorax and Comamonas first time from agro-byproducts compost

  4. TPK Sarimukti, Cipatat, West Bandung compost toxicity test using Allium test

    Energy Technology Data Exchange (ETDEWEB)

    Wardini, Trimurti Hesti; Notodarmojo, Peni Astrini [Biology Study Program, School of Life Science and Technology, Bandung Institute of Technology (Indonesia)

    2015-09-30

    TPK Sarimukti, Cipatat, West Bandung produced 2 kinds of compost from traditional market waste, liquid and solid compost. The aim of this research is to evaluate toxicity of compost produced in TPK Sarimukti using shallots (Allium cepa). Tests carried out by treated shallots with liquid compost (2,5%, 5%, 10% and 12,5% (w/v)) or solid compost (25%, 50%, 75% and 100% (w/v)) for 48 hours. Results showed reduced root growth rate and mitotic index (MI) in accordance with increased concentrations of compost. Sub lethal concentrations are liquid compost 5% and 10% and solid compost 75%. Lethal concentrations are liquid compost 12,5 % and solid compost 100%. Micronuclei (MN) increased with increase in liquid compost concentration. MN found at very high frequencies in highest solid compost concentration (100%), but very low at lower concentrations. Cells with binuclei and cell necrosis increased with increasing concentrations of given compost. Nuclear anomalies (NA) found in high frequency in 75% and 100% solid compost. Based on research, we can conclude that liquid compost is more toxic because it can reduce MI and root growth rate at lower concentrations than solid compost. Both types of compost have genotoxic properties because it can induce chromosome aberration (CA), MN, binuclei and NA formation.

  5. Comparative Analysis of the Possibility to Use Urban Organic Waste for Compost or Biogas Productions. Application to Rosario City, Argentina

    Science.gov (United States)

    Piacentini, Rubén D.; Vega, Marcelo

    2017-10-01

    The city waste is one of the main urban problems to be solved, since they generate large impacts on the environment, like use of land, contamination of the soil, water and air, and human diseases, among others. In Rosario city, placed in the Argentina Humid Pampa and having about 1 million inhabitants, the Municipality is developing different strategies in order to reduce the waste impact (295 000 Tons in 2016). One of the most important actions was the construction of the Bella Vista compost plant in 2012 (within the largest in South America). In the present work we analysed the possibility to use urban organic waste (that for Rosario city represents about 58% of the total waste in the last years) for: a) compost production and b) biogas production, with compost as a by-product. We determined the produced compost and biogas and the corresponding greenhouse gases (GHG) emissions, considering three possible scenarios: A reference scenario (Sr ) where 24 100 Tons of urban solid waste per year is transported from the city houses and buildings to a transfer landfill and then to the a final disposal landfill; a scenario number one (S1 ) in which the same fraction of waste is transported to the Compost plant and transformed to compost and a scenario number two (S2 ) where the same quantity of waste is used for the production of biogas (and compost). Applying the IPCC 2006 Model, we compare the results of the annual GHG emissions, in order to select the best alternative: to expand the Compost plant or to build a Biogas (plus compost) plant. We also discussed the extension of the present analysis to the situation in which all the capability of the Compost plant (25% of the 2016 waste production of the city) is used and the impact these plants are having for a better quality of life of persons involved in the informal waste activity.

  6. The presence of insect at composting

    Science.gov (United States)

    Mudruňka, J.; Lyčková, B.; Kučerová, R.; Glogarová, V.; Závada, J.; Gibesová, B.; Takač, D.

    2017-10-01

    During composting biodegradable waste, microbic organisms reproduce massively, most of which belong to serious biopathogens which are able to penetrate various environmental layers. Their vector species include dipterous insect (Diptera) which reaches considerable amounts in composting plant premises as well as home composting units, mainly during summer months. Therefore measures must be taken to eliminate or reduce this unwanted phenomenon (sanitisation, disinfection). For evaluating obtained results, relative abundance calculation was chosen.

  7. La sanidad del cultivo de "fabes": medidas preventivas

    OpenAIRE

    anonymous

    2009-01-01

    El cultivo de judía grano "Faba Granja Asturiana" está originando importantes expectativas en el sector agrario asturiano. Para conseguir resultados económicos satisfactorios es imprescindible afrontar un cultivo bajo técnicas modernas de abonado, entutorado, herbicidas, riego y otras. Principado de Asturias, Consejería de Medio Rural y Pesca.

  8. Effects of compost age on the release of nutrients

    Directory of Open Access Journals (Sweden)

    Bilal B. Al-Bataina

    2016-09-01

    Full Text Available Composted organic materials are applied to help restore disturbed soils, speed revegetation, and control erosion; these changes are generally beneficial for stormwater quality. Ensuring that nutrient release from compost is adequate for plant needs without degrading stormwater quality is important since composts release nitrogen at variable rates (1–3% of total N/yr and the leaching process can extend for many years. The aim of this work was to understand the effect of compost age on the extent and rates of nitrogen release by conducting detailed rainfall simulation studies of one compost type at three different ages. Models describing temporal changes in nitrogen release to runoff during a single storm and across multiple storms were developed and applied to the runoff data. Nitrogen content (% and bulk density of compost increased with the increase in compost age and total nitrogen release decreased with increasing compost age. The three rain simulations (storms performed on each of the three compost ages show that nitrogen release declined each day of the repeated daily storms. A first-order kinetic model was used to estimate the amount of nitrogen remaining on compost after several storms.

  9. Disease suppression and phytosanitary aspects of compost

    NARCIS (Netherlands)

    Rijn, van E.

    2007-01-01

    Western Europe, approximately 25% of the 200 million tons of municipal solid waste that is generated each year is of organic origin and therefore compostable. Presently 35% of this organic waste is composted, resulting in 9 million tons of compost, and used mainly in agriculture,

  10. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    Science.gov (United States)

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  11. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    Het onderhavige onderzoek is een eerste verkenning geweest naar de aanwezigheid van organische microverontreinigingen in gft-compost. In deze rapportage is een indicatieve vergelijking van de gehalten in compost met de streefwaarden voor bodem (H=20%) gemaakt. Mede op basis van dit onderzoek

  12. The role of cow dung and kitchen manure composts and their non-aerated compost teas in reducing the incidence of foliar diseases of Lycopersicon esculentum (Mill

    Directory of Open Access Journals (Sweden)

    A. Ngakou

    2014-06-01

    Full Text Available Compost teas are fermented watery extracts of composted materials used for their beneficial effect on plants. A study was conducted in the field to compare the efficacy of cow dung and kitchen manure composts and their derived non-aerated compost teas on disease symptoms expression and severity of Lycopersicon esculentum. The experimental layout was a complete randomised block design comprising six treatments, each of which was repeated three times: the negative control plot (Tm-; the positive control or fungicide plot (Tm+; the cow dung compost plot (Cpi; the kitchen manure compost plot (Cpii; the compost tea derived cow dung plot (Tci; and the compost tea derived kitchen manure plot (Tcii. Compost tea derived cow dung was revealed to be richer in elemental nutrients (N, P, K than compost tea from kitchen manure, and significantly (p < 0.0001 enhanced fruit yield per plant. Similarly, the two composts and their derived compost teas significantly (p < 0.0001 reduced the incidence and severity of disease symptoms compared to the controls, with the highest efficacy accounting for cow dung compost and compost tea. Although the non-aerated compost teas were not amended with micro-organisms, these results suggest that the two compost teas in use were rich enough in microbial pathogen antagonists, and therefore, are perceived as potential alternatives to synthetic chemical fungicides. Future work will attempt to identify these microbial antagonists with highly suppressive activity in the non-aerated compost teas.

  13. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    Science.gov (United States)

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-04-01

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Bacterial diversity at different stages of the composting process

    Directory of Open Access Journals (Sweden)

    Paulin Lars

    2010-03-01

    Full Text Available Abstract Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.

  15. Assessing Soil Nutrient Additions through Different Composting ...

    African Journals Online (AJOL)

    Bheema

    is potentially better growth medium amendment when compared with traditional compost types. The use of vermi-compost is, therefore, very helpful in terms of providing beneficial soil nutrients as compared to other compost types. In contrast to the other chemical and biological properties, the highest pH was recorded in the.

  16. Immobilisation of lead and zinc in contaminated soil using compost derived from industrial eggshell.

    Science.gov (United States)

    Soares, Micaela A R; Quina, Margarida J; Quinta-Ferreira, Rosa M

    2015-12-01

    This study aims to evaluate the capacity of a compost obtained by co-composting of industrial eggshell (CES) to immobilise lead (Pb) and zinc (Zn) in an acidic soil contaminated by mining activities. Mature compost without eggshell (CWES) and natural eggshell (ES) were also tested as soil amendments for comparison purposes. Three different application rates were used for each material, ensuring the same quantity in terms of neutralizing capacity. Incubation experiments were conducted under controlled conditions and CO2 emissions monitored for 94 days. The environmental availability of Pb and Zn in the amended soil was assessed and bioassays were performed at the end of the incubation period. When eggshells were present, the CES compost raised the soil pH to values higher than 6 and reduced the soil mobile fraction for both Pb and Zn, in more than 95%. Soil toxicity towards Vibrio fischeri was also suppressed and environmental risk decreased to "low level". However, the immobilisation in the acid insoluble soil component was significantly achieved only for Zn. In addition, regarding soil carbon dynamics the CO2-C emissions were enhanced, mainly in the case of the highest rate of amendment. Both first order-E and parallel first order models may adequately describe the kinetic data of CO2-C cumulative release. Without eggshells, the CWES compost revealed limited effect on heavy metals immobilisation, likely due to its small capacity to correct soil acidity, at lower application rates. Using solely eggshells, the ES waste had similar outcomes when compared with CES, but at the higher application rate, CO2 emissions were enhanced with the eggshell compost due to the contribution of biotic carbon present therein. Therefore, this study points out that CES is an effective liming material and may be used for in situ remediation of contaminated soil with Pb and Zn. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    Science.gov (United States)

    Smith, Stephen R

    2009-01-01

    The content, behaviour and significance of heavy metals in composted waste materials is important from two potentially conflicting aspects of environmental legislation in terms of: (a) defining end-of-waste criteria and increasing recycling of composted residuals on land and (b) protecting soil quality by preventing contamination. This review examines the effects of heavy metals in compost and amended soil as a basis for achieving a practical and sustainable balance between these different policy objectives, with particular emphasis on agricultural application. All types of municipal solid waste (MSW) compost contain more heavy metals than the background concentrations present in soil and will increase their contents in amended soil. Total concentrations of heavy metals in source-segregated and greenwaste compost are typically below UK PAS100 limits and mechanical segregated material can also comply with the metal limits in UK PAS100, although this is likely to be more challenging. Zinc and Pb are numerically the elements present in the largest amounts in MSW-compost. Lead is the most limiting element to use of mechanically-segregated compost in domestic gardens, but concentrations are typically below risk-based thresholds that protect human health. Composted residuals derived from MSW and greenwaste have a high affinity for binding heavy metals. There is general consensus in the scientific literature that aerobic composting processes increase the complexation of heavy metals in organic waste residuals, and that metals are strongly bound to the compost matrix and organic matter, limiting their solubility and potential bioavailability in soil. Lead is the most strongly bound element and Ni the weakest, with Zn, Cu and Cd showing intermediate sorption characteristics. The strong metal sorption properties of compost produced from MSW or sewage sludge have important benefits for the remediation of metal contaminated industrial and urban soils. Compost and sewage sludge

  18. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    Science.gov (United States)

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    Science.gov (United States)

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  20. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    Directory of Open Access Journals (Sweden)

    Beatriz Temporal-Lara

    2016-11-01

    Full Text Available Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine for proper maturation of the compost. Adequate (near real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68, humification ratio (RPD = 2.23, total exchangeable carbon (RPD = 2.07 and total organic carbon (RPD = 1.66 with a modular and cost-effective visible and near infrared (VNIR spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  1. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting.

    Science.gov (United States)

    Nikaeen, Mahnaz; Nafez, Amir Hossein; Bina, Bijan; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-05-01

    The objective of this work was to study the evolution of physico-chemical and microbial parameters in the composting process of sewage sludge (SS) with pruning wastes (PW) in order to compare these parameters with respect to their applicability in the evaluation of organic matter (OM) stabilization. To evaluate the composting process and organic matter stability, different microbial activities were compared during composting of anaerobically digested SS with two volumetric ratios, 1:1 and 3:1 of PW:SS and two aeration techniques including aerated static piles (ASP) and turned windrows (TW). Dehydrogenase activity, fluorescein diacetate hydrolysis, and specific oxygen uptake rate (SOUR) were used as microbial activity indices. These indices were compared with traditional parameters, including temperature, pH, moisture content, organic matter, and C/N ratio. The results showed that the TW method and 3:1 (PW:SS) proportion was superior to the ASP method and 1:1 proportion, since the former accelerate the composting process by catalyzing the OM stabilization. Enzymatic activities and SOUR, which reflect microbial activity, correlated well with temperature fluctuations. Based on these results it appears that SOUR and the enzymatic activities are useful parameters to monitor the stabilization of SS compost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mass and element balance in food waste composting facilities.

    Science.gov (United States)

    Zhang, Huijun; Matsuto, Toshihiko

    2010-01-01

    The mass and element balance in municipal solid waste composting facilities that handle food waste was studied. Material samples from the facilities were analyzed for moisture, ash, carbon, nitrogen, and the oxygen consumption of compost and bulking material was determined. Three different processes were used in the food waste composting facilities: standard in-vessel composting, drying, and stand-alone composting machine. Satisfactory results were obtained for the input/output ash balance despite several assumptions made concerning the quantities involved. The carbon/nitrogen ratio and oxygen consumption values for compost derived only from food waste were estimated by excluding the contribution of the bulking material remaining in the compost product. These estimates seemed to be suitable indices for the biological stability of compost because there was a good correlation between them, and because the values seemed logical given the operating conditions at the facilities. 2010 Elsevier Ltd. All rights reserved.

  3. Microbiological analysis of composts produced on South Carolina poultry farms.

    Science.gov (United States)

    Shepherd, M W; Liang, P; Jiang, X; Doyle, M P; Erickson, M C

    2010-06-01

    The purpose of this study was to determine whether the methods used in compost operations of small and medium-sized poultry farms resulted in the production of an amendment free of foodborne pathogens. Nine compost heaps on five South Carolina poultry farms were surveyed at different stages of the composting process. Compost samples were analysed for coliforms and enriched for Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes. The waste materials and composting practices differed among the surveyed farms. On two farms, new materials were added to heaps that had previously completed the active composting phase. Five compost heaps did not reach an internal temperature of 55 degrees C, and c. 62% of all internal samples in the first composting phase contained moisture contents poultry wastes. This research provides information regarding the effectiveness of the composting practices and microbiological quality of poultry compost produced by small- and medium-sized farms. Ensuring the safety of compost that may be applied to soils should be an integral part of preharvest food safety programme.

  4. Microbiological characteristics of bioaerosol at the composting plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2013-01-01

    Full Text Available The diversion of biodegradable waste from landfill is of key importance in developing a sustainable waste strategy for the next decade and beyond. The proliferation of waste treatment technologies such as mechanical biological treatment, anaerobic digestion and composting will be paramount in achieving this strategic goal. Composting plant is one of the end technology, which is widely used in waste processing of the biodegradable waste. These wastes originate from the maintenance of green areas in the cities and the municipalities and from the separatelly collected biodegradable waste from the citizens. There is also possible to process other biodegradable materials whose origin may be in other technologies of waste management at the composting plant. The most commonly used technology of composting is windrow system. Technological operations, which are necessary for the proper conduct of the composting process, may have negative influence on the environment in the immediate vicinity of composting plant. As pollutants we can mark particular odor and microorganisms. The largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic thermotolerant fungi. The amount of thermophillic actinomycetes ranged from 10 to 84.000 CFU∙m−3 (colony forming units per m3. Furthermore, it was confirmed that the maximum air contamination has been found during aeration of windrow by compost turner and during the sieving of the mature compost. For each indicator, the increase in concentrations due to the turning of compost windrow as compared to the background concentration obtained in natural environments and upwind of composting plants was determined. At a distance of 150 m from the composting plant, only low numbers of indicator organisms at a regular occurrence in the air has been found.

  5. Utilisation of composted night soil in fish production

    Energy Technology Data Exchange (ETDEWEB)

    Polprasert, C.

    1984-01-01

    The stabilisation of human night soil mixed with water hyacinth (Eichhornia crassipes) and vegetable leaves by a simple composting method was found to be effective. This composting method did not require mechanical aeration or pile turning, but could retain most of the valuable nutrients and inactivate a large portion of micro-organisms present in the compost piles. A considerable yield of Tilapia could be obtained when the composted product was applied as feed to fish ponds. A discussion is included of the technical feasibility and the microbiological aspects of the integrated scheme of compost-fed fish ponds.

  6. Studyof Wastewater and Compost Effects on Some of Soil Physical and Chemical Characteristics

    Directory of Open Access Journals (Sweden)

    M. Shakarami

    2016-09-01

    Full Text Available Introduction: Arid and semi-arid areas are confronting increasing water shortages. In these regions of the world, planners are being forced to consider other water sources that could be used economically and effectively to promote further development. Wastewater is the only potential water source, which will increase as the population grows and the demand on freshwater increases. Composting municipal solid wastes (MSW and sewage sludge is a good way to reduce the amount of wastes generated in densely populated areas. Municipal solid waste production in Asia in 1998 was 0.76 million tons per day, with an annual growth rate of 2- 3% in developing countries and 3.2- 4.5% in developed countries. (MSW compost is increasingly used in agriculture not only as a soil conditioner but also as a fertilizer. Despite the growing interest in wastewater and compost usage, excessive application of them may have some harmful effects such as human health problems, runoff and leaching of nutrients to surface and groundwater, undesirable chemical constituents, pathogens, accumulations of heavy metals in plants and soils, negative environmental and health impacts. So, using of wastewater and compost application should be under controlled conditions that minimize health risks of agricultural products. Materials and Methods: This study was conducted in greenhouse of Bu-Ali Sina as a factorial completely randomized design to evaluate the effects of wastewater and compost on physical and chemical properties of soil. The factors included four types of watering: raw wastewater (W1, treated wastewater (W2 combined 50% of raw wastewater and fresh water (W3 and tap water (W4 and also four compost levels: 0 (C1, 40 (C2, 80 (C3 and 120 tha-1 (C4. Therefore, 16 treatments (W1C1 to W4C4 were considered for investigation. It is noted that Compost added and mixed just with top layer of the soil. 48 volumetric lysimeters were applied as Cultivation beds (26 × 30 × 30 cm. The soil

  7. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Hirai, Hidehira

    2017-07-01

    The effects of inoculating the mesophilic yeast Pichia kudriavzevii RB1, which is able to degrade organic acids, on organic matter degradation in composting were elucidated. When model food waste with high carbohydrate content (C/N=22.3) was used, fluctuation in the inoculated yeast cell density was observed, as well as fluctuation in the composting temperature until day 5 when the temperature rose to 60°C, which is lethal for the yeast. After the decrease in yeast, acetic acid accumulated to levels as high as 20mg/g-ds in the composting material and vigorous organic matter degradation was inhibited. However, by maintaining the temperature at 40°C for 2days during the heating phase in the early stage of composting, both the organic acids originally contained in the raw material and acetic acid produced during the heating phase were degraded by the yeast. The concentration of acetic acid was kept at a relatively low level (10.1mg/g-ds at the highest), thereby promoting the degradation of organic matter by other microorganisms and accelerating the composting process. These results indicate that temperature control enhances the effects of microbial inoculation into composts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Copper and Zinc Uptake by Pakchoi and Rice as Affected by Applying Manure Compost with Different Levels of Cu and Zn Concentrations

    Directory of Open Access Journals (Sweden)

    Huang T. H.

    2013-04-01

    Full Text Available Cu and Zn are frequently added to livestock diets as additives to increase feed efficiency and production. This practice resulted in the higher contents of Cu and Zn in excrement of livestock. The aim of this study is to evaluate the effect of Cu and Zn concentration of manure compost and its application rates on the production and quality of pakchoi and rice. The pot experiments were conducted and the six manure compost were applied at 3 rates (20, 40, and 80 ton/ha, including the control and chemical fertilizer treatments. Results showed that the yield of the crops was enhanced by the compost application, and the Cu and Zn concentration in the edible part of crops were in normal range (pakchoi: Cu 1.8-10.4 mg/kg, Zn 39-160 mg/kg; rice grain: Cu 0.6-4.0 mg/kg, Zn 58-79 mg/kg. The potential risk of long-term manure compost application on soil quality was also evaluated. The total Zn concentration in soils may reach the regulation standard after 22 years of manure compost application at the rate of 40 ton/ha/year.

  9. Soil bioassays as tools for sludge compost quality assessment

    International Nuclear Information System (INIS)

    Domene, Xavier; Sola, Laura; Ramirez, Wilson; Alcaniz, Josep M.; Andres, Pilar

    2011-01-01

    Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts.

  10. Impact of level and source of compost based organic material on the productivity of autumn maize (zea mays l.)

    International Nuclear Information System (INIS)

    Iqbal, S.; Khan, H.Z.; Ehsanullah, A.

    2014-01-01

    Organic manure from different sources could be an effective substitute of chemical fertilizers. Therefore, the present study compares the effect of varying level (0, 2, 4, 6, 8, 10 t ha/sup -1/) of two types of compost, i.e poultry manure compost (PM compost) and press-mud compost (PrM compost) on the yield of maize. The experiment was conducted at Agronomic Research Area, University of Agriculture Faisalabad, Pakistan for two consecutive years 2011 and 2012. Results of this study revealed that all the levels and sources of compost based organic material had significant effect on the yield and yield parameters of autumn maize. Maximum plant height, cob diameter, cob length, cob weight, number of grain rows per cob, number of grains per cob, 1000-grain weight biological yield, grain yield and harvest index were produced by the application of 10 t ha/sup -1/ PM compost. Whereas, the number of cobs per plant was not significantly affected by level and source of compost based organic material. It was concluded that 10 t ha/sup -1/ PM compost could be used lucratively for optimizing maize yield. (author)

  11. Compost made of organic wastes suppresses fusariosis

    Science.gov (United States)

    Kuryntseva, Polina; Galitskaya, Polina; Biktasheva, Liliya; Selivanovkaya, Svetlana

    2017-04-01

    Fungal plant diseases cause dramatic yield losses worldwide. Usually, pesticides are used for soil sanitation, and it results in practically pest-free soils, although pesticides cause a biological vacuum, which present many horticultural disadvantages. Suppressive composts, which possess both fertilizing properties for plants and inhibiting properties for plant pathogens, represent an effective and environmentally friendly alternative to conventional pesticides. In this study, composts obtained from agricultural organic wastes were applied to suppress Fusarium oxysporum of tomato plants in model experiments. Composts were made of mixtures of the widespread organic wastes sampled in Tatarstan (Russia): straw (SW), corn wastes (CW), chicken manure (ChM), cattle manure (CM) and swine manure (SM). 11 two- and three-component mixtures were prepared to obtain the optimal carbon-nitrogen, moisture and pH balances, and composted for 210 days. It was found that the thermophilic phase of composting in all the mixtures lasted from 2 to 35 days, and was characterized by significant fluctuations in temperature, i.e. from 27°C to 59°C. In the initial mixtures, the dissolved organic carbon (DOC) content was between 10 and 62 mg kg-1; it fell significantly on day 13, and then continuously decreased up to day 102, and subsequently remained low. For all the mixtures, maximal respiration activity was observed in the beginning of composting (231.9 mg CO2-C g-1 day-1). After 23 days, this parameter decreased significantly, and fluctuations subsided. The phytotoxicity of the initial compost mixtures varied from 18% (SW+SM) to 100% (CW+ChM+SM, CW+ChM); however, the trends in the dynamics were similar. After 120 days of composting, 5 of 11 samples were not phytotoxic. After 120 days of composting, each mixture was divided into two parts; one was inoculated with a biopreparation consisting of four microbial strains (Trichoderma asperellum, Pseudomonas putida, Pseudomonas fluorescens and

  12. Dynamics of copper and tetracyclines during composting of water hyacinth biomass amended with peat or pig manure.

    Science.gov (United States)

    Lu, Xin; Liu, Lizhu; Fan, Ruqin; Luo, Jia; Yan, Shaohua; Rengel, Zed; Zhang, Zhenhua

    2017-10-01

    Composting is one of the post-treatment methods for phytoremediation plants. Due to a high potential of water hyacinth to accumulate pollutants, the physicochemical parameters, microbial activity as well as fates of copper (Cu) and tetracyclines (TCs) were investigated for the different amended water hyacinth biomass harvested from intensive livestock and poultry wastewater, including unamended water hyacinth (W), water hyacinth amended with peat (WP), and water hyacinth amended with pig manure (WPM) during the composting process. Pig manure application accelerated the composting process as evidenced by an increase of temperature, electrical conductivity (EC), NH 4 -N, as well as functional diversity of microbial communities compared to W and WP treatments. Composting process was slowed down by high Cu, but not by TCs. The addition of peat significantly increased the residual fraction of Cu, while pig manure addition increased available Cu concentration in the final compost. Cu could be effectively transformed into low available (oxidizable) and residual fractions after fermentation. In contrast, less than 0.5% of initial concentrations of TCs were determined at the end of 60-day composting for all treatments in the final composts. The dissipation of TCs was accelerated by the high Cu concentration during composting. Therefore, composting is an effective method for the post-treatment and resource utilization of phytoremediation plants containing Cu and/or TCs.

  13. Organische microverontreinigingen in gft-compost

    NARCIS (Netherlands)

    Rood GA; LAE

    1994-01-01

    The current investigation represented an initial survey on the presence of organic contaminants in Bio-waste compost (garden, fruit and vegetable wast). This report provides an indicative comparison between the pollution levels in compost and the target value for soil (H=20%). Partly based on this

  14. The evaluation of stability and maturity during the composting of cattle manure.

    Science.gov (United States)

    Gómez-Brandón, María; Lazcano, Cristina; Domínguez, Jorge

    2008-01-01

    We examined chemical, microbiological and biochemical parameters in order to assess their effectiveness as stability and maturity indicators during the composting process of cattle manure. The composting material obtained after 15 d in trenches and at different times during the maturation phase (i.e. 80, 180 and 270 d) were analyzed. We found that the material collected at the end of the active phase was inadequate to be applied to soil as organic amendment due to its high content of NH4+, its high level of phytotoxicity and the low degree of organic matter stability. After a maturation period of 80 d, the stability of the sample increased. This was shown by a reduction in the dissolved organic carbon (DOC) content and NH4+ concentration and also by a reduction in the microbial activity and biomass; however, 180 d of composting were not sufficient to reduce the phytotoxicity to levels consistent for a safe soil application. Among the various parameters studied, the change in DOC with composting time gave a good indication of stability.

  15. Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate 'masking'

    Science.gov (United States)

    Taha, M. P. M.; Drew, G. H.; Tamer Vestlund, A.; Aldred, D.; Longhurst, P. J.; Pollard, S. J. T.

    Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days' incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilities.

  16. Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges.

    Science.gov (United States)

    Barrena, Raquel; Pagans, Estel la; Artola, Adriana; Vázquez, Felícitas; Sánchez, Antoni

    2007-06-01

    Production of waste hair in the leather manufacturing industry is increasing every year due to the adoption of hair-save unhairing techniques, leaving the tanners with the problem of coping with yet another solid by-product. Numerous potential strategies for hair utilisation have been proposed. However, the use of hair waste as agricultural fertiliser is one of its most promising applications due to the high nitrogen content of hair. Agricultural value of hair can be increased by composting. This paper deals with the composting of hair from the unhairing of bovine hide. Results indicated that hair cannot be either composted on its own or co-composted with de-inking sludge, a chemical complementary co-substrate. However, good results were obtained when co-composted with raw sludge from a municipal wastewater treatment plant at hair:raw sludge weight ratios 1:1, 1:2 and, 1:4 in lab scale and pilot plant scale composters. In all cases, a more stable product was achieved at the end of the process. Composting in the pilot plant composter was effectively monitored using Static Respiration Indices determined at process temperature at sampling (SRI(T)) and at 37 degrees C (SRI(37)). Notably, SRI(T) values were more sensitive to changes in the biological activity. In contrast, Respiratory Quotient (RQ) values were not adequate to follow the development of the process.

  17. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council microbial detection methods in finished compost and regrowth potential of Salmonella spp. and Escherichia coli O157:H7 in finished compost.

    Science.gov (United States)

    Reynnells, Russell; Ingram, David T; Roberts, Cheryl; Stonebraker, Richard; Handy, Eric T; Felton, Gary; Vinyard, Bryan T; Millner, Patricia D; Sharma, Manan

    2014-07-01

    Bacterial pathogens may survive and regrow in finished compost due to incomplete thermal inactivation during or recontamination after composting. Twenty-nine finished composts were obtained from 19 U.S. states and were separated into three broad feedstock categories: biosolids (n=10), manure (n=4), and yard waste (n=15). Three replicates of each compost were inoculated with ≈ 1-2 log CFU/g of nonpathogenic Escherichia coli, Salmonella spp., and E. coli O157:H7. The U.S. Environmental Protection Agency's (EPA) protocols and U.S. Composting Council's (USCC) Test Methods for the Examination of Composting and Compost (TMECC) were compared to determine which method recovered higher percentages of inoculated E. coli (representing fecal coliforms) and Salmonella spp. from 400-g samples of finished composts. Populations of Salmonella spp. and E. coli O157:H7 were determined over 3 days while stored at 25°C and compared to physicochemical parameters to predict their respective regrowth potentials. EPA Method 1680 recovered significantly (p=0.0003) more inoculated E. coli (68.7%) than TMECC 07.01 (48.1%) due to the EPA method using more compost in the initial homogenate, larger transfer dilutions, and a larger most probable number scheme compared to TMECC 07.01. The recoveries of inoculated Salmonella spp. by Environmental Protection Agency Method 1682 (89.1%) and TMECC 07.02 (72.4%) were not statistically significant (p=0.44). The statistically similar recovery percentages may be explained by the use of a nonselective pre-enrichment step used in both methods. No physicochemical parameter (C:N, moisture content, total organic carbon) was able to serve as a sole predictor of regrowth of Salmonella spp. or E. coli O157:H7 in finished compost. However, statistical analysis revealed that the C:N ratio, total organic carbon, and moisture content all contributed to pathogen regrowth potential in finished composts. It is recommended that the USCC modify TMECC protocols to test

  18. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  19. Air filled porosity in composting processes

    International Nuclear Information System (INIS)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-01-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  20. Composite Compost Produced from Organic Waste

    OpenAIRE

    Lăcătuşu Radu; Căpăţână Romeo; Lăcătuşu Anca-Rovena

    2016-01-01

    The soil fertilization in ecological agriculture is done mostly using organic fertilizers. Some of them are prepared as compost from waste, but other haven’t, until now, any recycling possibility. In this context, for the preparation of new types of compost, we used three type of waste: sewage sludge from waste water treatment, marine algae and farmyard manure. We have made four different composting variants, each consisting of different proportions of the three waste: equal parts (33.33%) of...

  1. Survival of generic E. coli and Listeria spp. populations in dairy compost- and poultry litter compost-amended soils in the Northeastern United States

    Science.gov (United States)

    Introduction:The FDA FSMA standards stipulate composting conditions that meet acceptable treatments for use of manure/poultry litter-based biological soil amendments of animal origin (BSAAO). Application of FSMA-compliant BSAAO to soils for production of fresh produce is expected to result in reduc...

  2. Biodegradable and compostable alternatives to conventional plastics

    Science.gov (United States)

    Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.

    2009-01-01

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060

  3. Biodegradable and compostable alternatives to conventional plastics.

    Science.gov (United States)

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  4. Optimization of control parameters for petroleum waste composting

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Composting is being widely employed in the treatment of petroleum waste. The purpose of this study was to find the optimum control parameters for petroleum waste in-vessel composting. Various physical and chemical parameters were monitored to evaluate their influence on the microbial communities present in composting. The CO2 evolution and the number of microorganisms were measured as theactivity of composting. The results demonstrated that the optimum temperature, pH and moisture content were 56.5-59.5, 7.0-8.5 and 55%-60%, respectively. Under the optimum conditions, the removal efficiency of petroleum hydrocarbon reached 83.29% after 30 days composting.

  5. Turnover of manure 15N-labelled ammonium during composting and soil application as affected by lime and superphosphate addition

    DEFF Research Database (Denmark)

    Tran, Tien Minh; Luxhøi, Jesper; Jensen, Lars Stoumann

    2012-01-01

    ). The NH4-N pool in the pig manure was initially labeled with 15N to determine the fate of manure NH4-N during composting. The composts were subsequently applied to soil to investigate the effects on soil mineral N and to trace the 15N during 60 d of incubation at 25°C. Of the initial manure 15NH4-N......, approximately 30, 90, and 20% was lost by NH3 volatilization during composting in the Straw, Lime, and SSP treatments, respectively. Concurrently, 62, 16, and 41% of initial 15NH4-N was immobilized in the respective treatments. When the composts were applied to soil, the mineral N in soil with SSP compost...... or effectively in balance. In soil with Lime compost, net N immobilization was strong in the fi rst 10 d, but then net N mineralization dominated the remaining period of soil incubation. Overall, adding lime before composting reduced the NH4-N content in the compost and the amount available in soil, while adding...

  6. Co-composting of livestock manure with rice straw: characterization and establishment of maturity evaluation system.

    Science.gov (United States)

    Qian, Xiaoyong; Shen, Genxiang; Wang, Zhenqi; Guo, Chunxia; Liu, Yangqing; Lei, Zhongfang; Zhang, Zhenya

    2014-02-01

    Composting is considered to be a primary treatment method for livestock manure and rice straw, and high degree of maturity is a prerequisite for safe land application of the composting products. In this study pilot-scale experiments were carried out to characterize the co-composting process of livestock manure with rice straw, as well as to establish a maturity evaluation index system for the composts obtained. Two pilot composting piles with different feedstocks were conducted for 3 months: (1) swine manure and rice straw (SM-RS); and (2) dairy manure and rice straw (DM-RS). During the composting process, parameters including temperature, moisture, pH, total organic carbon (TOC), organic matter (OM), different forms of nitrogen (total, ammonia and nitrate), and humification index (humic acid and fulvic acid) were monitored in addition to germination index (GI), plant growth index (PGI) and Solvita maturity index. OM loss followed the first-order kinetic model in both piles, and a slightly faster OM mineralization was achieved in the SM-RS pile. Also, the SM-RS pile exhibited slightly better performance than the DM-RS according to the evolutions of temperature, OM degradation, GI and PGI. The C/N ratio, GI and PGI could be included in the maturity evaluation index system in which GI>120% and PGI>1.00 signal mature co-composts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Changes in the microbial communities during co-composting of digestates☆

    Science.gov (United States)

    Franke-Whittle, Ingrid H.; Confalonieri, Alberto; Insam, Heribert; Schlegelmilch, Mirko; Körner, Ina

    2014-01-01

    Anaerobic digestion is a waste treatment method which is of increasing interest worldwide. At the end of the process, a digestate remains, which can gain added value by being composted. A study was conducted in order to investigate microbial community dynamics during the composting process of a mixture of anaerobic digestate (derived from the anaerobic digestion of municipal food waste), green wastes and a screened compost (green waste/kitchen waste compost), using the COMPOCHIP microarray. The composting process showed a typical temperature development, and the highest degradation rates occurred during the first 14 days of composting, as seen from the elevated CO2 content in the exhaust air. With an exception of elevated nitrite and nitrate levels in the day 34 samples, physical–chemical parameters for all compost samples collected during the 63 day process indicated typical composting conditions. The microbial communities changed over the 63 days of composting. According to principal component analysis of the COMPOCHIP microarray results, compost samples from the start of the experiment were found to cluster most closely with the digestate and screened compost samples. The green waste samples were found to group separately. All starting materials investigated were found to yield fewer and lower signals when compared to the samples collected during the composting experiment. PMID:24456768

  8. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Adrian M., E-mail: adrian.bass@glasgow.ac.uk [Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Queensland 4870 (Australia); Bird, Michael I. [Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Queensland 4870 (Australia); Kay, Gavin [Terrain Natural Resource Management, 2 Stitt Street, Innisfail, Queensland 4860 (Australia); Muirhead, Brian [Northern Gulf Resource Management Group, 317 Byrnes Street, Mareeba, Queensland 4880 (Australia)

    2016-04-15

    ABSTRACT: The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO{sub 3}, NH{sub 4} and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO{sub 2} was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N{sub 2}O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N{sub 2}O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. - Highlights: • Biochar and compost amendment has potential to improve tropical agriculture. • We monitored soil health, gas fluxes and crop yield under biochar and compost. • Biochar improved soil nutrient content, water retention and reduced N{sub 2}O emissions. • Biochar significantly reduced banana yield performance and did not affect papaya yield. • Organic amendment is not an ‘always win’ scenario for tropical

  9. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems

    International Nuclear Information System (INIS)

    Bass, Adrian M.; Bird, Michael I.; Kay, Gavin; Muirhead, Brian

    2016-01-01

    ABSTRACT: The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO_3, NH_4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO_2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N_2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N_2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. - Highlights: • Biochar and compost amendment has potential to improve tropical agriculture. • We monitored soil health, gas fluxes and crop yield under biochar and compost. • Biochar improved soil nutrient content, water retention and reduced N_2O emissions. • Biochar significantly reduced banana yield performance and did not affect papaya yield. • Organic amendment is not an ‘always win’ scenario for tropical agriculture.

  10. Composting as a waste treatment technology: composting of sweet sorghum bagasse with different nitrogen sources

    International Nuclear Information System (INIS)

    Vicente, J.; Carrasco, J.E.; Negro, M.J.

    1996-01-01

    The purpose of this work is to study the aerobic solid fermentation of sweet sorghum bagasse in mixture with other additives as nitrogen sources to evaluate the utilization of this material as a substrate for composting. The characteristics of sweet sorghum bagasse, a material extremely low in nutrients as a consequence of sugar juice extraction but with a high organic carbon content, suggest that it may be possible to compost it with other organic wastes nitrogen rich, since this is an indispensable element for the protein synthesis of the microbial biomass which determines the fermentation process. Several additives, including different types of agricultural residues, residues from beer industries, industrial cellulases, an enzymatic commercial product for activation of composting, domestic sewage sludge as well as some inorganic sources, were used in the experiences. The additives were utilized in doses of 1,5 and 10% (in some case 0.1 and 1% by weight), and the final C/N ratio of the mixtures was adjusted to 30 with NH4NO3. taking to account the nitrogen content of the additives. The experiment was carried out in a constant chamber at 37degree centigree and lasted for two month. Best quality composts from a fertilizer perspective were obtained utilizing spillages and grain bagasse (beer industry residue) as a nitrogen sources. On the contrary the use of KNO3 as nitrogen source showed a relatively unfavourable effect on the composting. The results obtained show the suitability of sweet sorghum bagasse to be used as a carbon substrate for composting in mixtures with variety of nitrogen sources. (Author) 15 refs

  11. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis.

    Science.gov (United States)

    Sun, Wei; Huang, Guo H; Zeng, Guangming; Qin, Xiaosheng; Yu, Hui

    2011-03-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH₄+-N concentration>Moisture content>Ash Content>Mean Temperature>Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Effects of Chemical Fertilizer, Algea Compost and Zeolite on Green Bean Yield

    Directory of Open Access Journals (Sweden)

    Aysun Türkmen

    2017-03-01

    Full Text Available The present study used chemical fertilizer, brown algae compost and zeolite carried out in the field of Giresun Hazelnut Research Center between May-November 2014 in pots according to randomized blog design as three replicate each. Treatment groups were consist of eight different combinations as follow; G1-Control, G2-Zeolite, G3-Compost, G4-Chemical Fertilizer, G5-Zeolite+Compost, G6-Zeolite+Chemical Fertilizer, G7-Compost+ Chemical Fertilizer, G8-Compost+Zeolite+ Chemical Fertilizer. The brown algae (Cystoseira sp. were used as compost material. These combinations were applied to green beans (Phaseolus vulgaris. The green beans were seeded by hand to arrange planting depth of 5-6 cm and 20 seeds/m2. Except control group, each treatment was added fertilizers as 50 g zeolite, 50 g compost, and 25 g chemical according to treatment design. Half of the chemical fertilizers were added at seeding time and the rest after two weeks. Collected soil samples were analyzed right after harvest, the greatest values of treatment groups were determined as; Carbon% G1: 5.08, nitrogen G3: 0.09 ppm, sodium G5: 139 ppm, potassium G6 and G8: 5 ppm, magnesium G2: 1865 ppm, calcium G6: 8.33 ppm, manganese G2: 359 ppm, iron G6 : 16070 ppm, cobalt G6 and G7: 7.91 ppm, copper G2: 17.5 ppm, zinc G8: 28.0 ppm, selenium G7: 4.17 ppm, cadmium G5: 0.08 ppm, lead G4: 5.31 ppm. The greatest harvest value as g/m2 was obtained from zeolite only group G2 with 273 while the lowest was obtained from Compost only group G3 with 113 g/m2, obviously showing the effectiveness of zeolite only application moreover, also thinking that better results may get if the present study run for longer period.

  13. Bioremediation of diesel oil-contaminated soil by composting with biowaste

    International Nuclear Information System (INIS)

    Gestel, Kristin van; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-01-01

    Composting of biowaste and diesel contaminated-soil is an efficient bioremediation method, with mature compost as a usable end product. - Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature

  14. Removal of five fluoroquinolone antibiotics during broiler manure composting.

    Science.gov (United States)

    Yang, Bing; Meng, Lei; Xue, Nandong

    2018-02-01

    Composting is a cost-effective approach for the removal of antibiotics from the environment; however, the consequence of this approach on fluoroquinolone antibiotics is limited. The fate of five representative fluoroquinolone antibiotics, namely ciprofloxacin, enrofloxacin, lomefloxacin, norfloxacin, and sarafloxacin, was investigated in a pilot-scale composting of broiler manure over 42 days. The effect of antibiotic concentrations (at a dose of 15, 30, or 60 mg/kg for each and a control without antibiotic addition) on the composting process was also assessed. The 42-day composting showed 45.3-75.4% of antibiotic removal with species-specific patterns. However, the observed variations in such removal among both antibiotics concentrations and composting times were not significant in most cases, possibly indicating a slight side-effect of the tested antibiotic concentrations on the composting process. To the best of our knowledge, this study is among few studies with a focus on the persistence of fluoroquinolone antibiotics during a pilot-scale composting, which warrants further study in regards to the mechanism underlying the removal of these compounds during composting.

  15. Status of compost usage and its performance on vegetable production in Monga areas of Bangladesh

    Directory of Open Access Journals (Sweden)

    G.K.M.M. Rahman

    2014-12-01

    Full Text Available The present study was carried out to assess the existing status of compost usage on vegetable production and determine the overall effect of household waste compost (HWC on growth and yield of vegetables and enhancement of soil fertility in the monga areas of Bangladesh. A field survey was conducted on 152 sampled farmers during 2010 to 2011. Questionnaire containing both closed and open-ended questions were used to assess existing production practices of vegetables using compost in both homestead and field conditions. Three field trials at Badargonj and Kawnia upazilas of Rangpur district were conducted taking four treatments i.e. control, recommended doses (RD of fertilizers, HWC at the rate of 10 tha-1, and HWC 10 t ha-1 plus RD as IPNS based with Lal shak, Palong shak, Pui shak and Tomato. Base line survey results indicated inadequate knowledge of the farmers on use and preparation of the household waste compost. Yield data of all vegetables i.e. Tomato, Lal shak, Palong shak and Pui shak indicated that the combined application of nutrients using organic and inorganic sources were significantly better than that of solitary application of inorganic fertilizers. The potential of household waste compost applied @ 10 t ha-1 along with inorganic fertilizers applied was found highly satisfactory in producing Tomato, where yield was recorded 75 t ha-1 in the study area. The fresh yield of Palong shak was found 16 t ha-1 when recommended doses of inorganic fertilizers were applied, but it was about 19 t ha-1 under combined application of HWC @ 10 t ha-1 and inorganic fertilizers following IPNS concept. The fresh yield of Pui shak was found about 49 t ha-1 under combined application of organic and inorganic nutrients. Considering the availability and costs of different composts, it is evinced that HWC contained good amount of NPK which indicates its potentiality to be used as a soil amendment, improving soil fertility and crop productivity. It can be

  16. Effect of organic waste compost on the crop productivity and soil quality

    Science.gov (United States)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; pstatistically non-significant (F=3.2; p=0.07). Residual effect of compost is decreasing year-by-year as expected. In

  17. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato

    Energy Technology Data Exchange (ETDEWEB)

    Entry, James A. [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States)]. E-mail: jentry@nwisrl.ars.usda.gov; Leytem, April B. [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States); Verwey, Sheryl [USDA Agricultural Research Service, Northwest Irrigation and Soils Research Laboratory, 3793 North, 3600 East, Kimberly, ID 83341 (United States)

    2005-11-15

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al{sub 2}(SO{sub 4}){sub 3}) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min. - Solid dairy manure and dairy compost, with and without alum, had different effects.

  18. Influence of solid dairy manure and compost with and without alum on survival of indicator bacteria in soil and on potato

    International Nuclear Information System (INIS)

    Entry, James A.; Leytem, April B.; Verwey, Sheryl

    2005-01-01

    We measured Escherichia coli, Enterococcus spp. and fecal coliform numbers in soil and on fresh potato skins after addition of solid dairy manure and dairy compost with and without alum (Al 2 (SO 4 ) 3 ) treatment 1, 7, 14, 28, 179 and 297 days after application. The addition of dairy compost or solid dairy manure at rates to meet crop phosphorus uptake did not consistently increase E. coli and Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil sample after the first sampling day. Seven, 14, 28, 179 and 297 days after solid dairy waste and compost and alum were applied to soil, alum did not consistently affect Enterococcus spp. and fecal coliform bacteria in the soil. We did not detect E. coli in any soil, fresh potato skin or potato wash-water at 214 days after dairy manure or compost application regardless of alum treatment. Dairy compost or solid dairy manure application to soil at rates to meet crop phosphorus uptake did not consistently increase Enterococcus spp. and fecal coliform numbers in bulk soil. Solid dairy manure application to soil at rates to meet crop phosphorus uptake, increased Enterococcus spp. and fecal coliform numbers in potato rhizosphere soil. However, fresh potato skins had higher Enterococcus spp. and fecal coliform numbers when solid dairy manure was added to soil compared to compost, N and P inorganic fertilizer and N fertilizer treatments. We did not find any E. coli, Enterococcus or total coliform bacteria on the exterior of the tuber, within the peel or within a whole baked potato after microwave cooking for 5 min. - Solid dairy manure and dairy compost, with and without alum, had different effects

  19. IMPACT OF LIME, BIOMASS ASH AND COMPOST AS WELL AS PREPARATION OF EM APPLICATIONS ON GRAIN YIELD AND YIELD COMPONENTS OF WHEAT

    Directory of Open Access Journals (Sweden)

    Sławomir Stankowski

    2014-10-01

    Full Text Available Field experiment was conducted in 2013 in Duninowo (54o539’ N, 16o830’ E. The experimental factors were: I. factor - 6 variants of fertilization, and II. - two level of EM preparations. The aim of this study was to evaluate the impact of ash from biomass by comparing its effect with the calcium fertilizer and compost BIOTOPE in conjunction with the preparation of microbiological Effective Microorganisms (EM. The impact of ash from biomass introduced into the soil on yield and yield structure and physiological parameters of spring wheat was analyzed No significant impact of the various variants of fertilizer application on the yielding of spring wheat cv.Bombona was confirmed. As a result of the form of compost fertilizer BIOTOPE, an increase in the content of chlorophyll in leaves of wheat cv Bombona (SPAD and the size of canopy assimilation area per unit area of the field (LAI. The application of EM did not affect the physiological parameters (yield, the number of ears per area unit, SPAD, LAI characterizing the spring wheat cv. Bombona.

  20. Efectos de un cultivo de cobertura invernal consociado sobre la dinámica hídrica y la producción del cultivo estival en la región central de Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    L Pietrarelli

    2014-06-01

    Full Text Available La incorporación de cultivos de cobertura es una práctica agroecológica que actúa sobre los problemas generados por la simplificación productiva. Se estudiaron los efectos de un cultivo de cobertura invernal consociado de Vicia dacycarpa y Trititicum secale sobre la dinámica hídrica y el rendimiento del cultivo de soja. La experiencia se desarrolló en sistemas de producción agrícola, en Lozada (Córdoba, Argentina. El diseño experimental fue de bloques completamente aleatorizados (tres sistemas productivos con dos tratamientos: barbecho y cultivo de cobertura en la secuencia soja-soja. Se calcularon la humedad gravimétrica, volumétrica, disponibilidad de agua útil y porcentaje de agua útil hasta 100 cm, a la siembra del cultivo de cobertura, al momento de su secado y a la siembra del cultivo estival. Se determinó biomasa del cultivo de cobertura y del cultivo de soja posterior. Si bien el contenido hídrico del suelo del cultivo de cobertura al momento del secado fue menor que el testigo, no provocó un efecto negativo en el rendimiento de la soja. Con suficiente precipitación primaveral se logra una acumulación aceptable de biomasa del cultivo de cobertura y una mayor eficiencia en la recarga del perfil superior al momento de la siembra del cultivo estival.

  1. Disposal and utilization of broiler slaughter waste by composting

    Directory of Open Access Journals (Sweden)

    N Bharathy

    2012-12-01

    Full Text Available Aim: To know the feasibility of hygienic and environmentally safe method of disposal of broiler slaughter house waste with coir pith and caged layer manure. Materials and Methods: Compost bins (4 feet x 4 feet x 4 feet were established with concrete blocks with air holes to facilitate aerobic composting. The broiler slaughter waste and coconut coir pith waste were collected from the local market, free of cost. The caged layer manure available from poultry farms were utilized as manure substrate. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated (USDA-NRCS, 2000. Two control bins were maintained simultaneously, using caged layer manure with coir pith waste and water in a ratio of 0.8:3:1.2 (T and another one bin using caged layer manure alone(T . 2 3 Results: At the end of composting, moisture content, weight and the Volume of the compost were reduced significantly (P<0.01, pH, EC, TDS, total organic carbon and total nitrogen content were also significantly (P<0.01 reduced at the finishing of composting. Calcium, phosphorous and potassium content was progressively increased during composting period. The finished compost contains undetectable level of salmonella. Cowpea and sorghum seeds showed positive germination percentage when this finished compost was used. It indicated that all of the finished compost was free from phytotoxin substances. Conclusion: The results indicated that, composting of slaughter waste combined with coir pith waste may be a hygienic and environmentally safe method of disposal of broiler slaughter house waste [Vet. World 2012; 5(6.000: 359-361

  2. Determination of an empirical formula for organic composition of mature compost produced in Isfahan-Iran composting plant in 2013

    Directory of Open Access Journals (Sweden)

    Parvin Razmjoo

    2015-01-01

    Full Text Available Aims: The aims of this study were to analyze the carbon, hydrogen, nitrogen, sulfur, and oxygen (CHNS-O content of compost derived from Isfahan-Iran municipal solid waste using thermal elemental analyzer and to develop an approximate empirical chemical formula for the organic fraction of the mature compost as a function of its elemental composition. Materials and Methods: The compost samples (1 kg were collected from different parts of the windrows and thoroughly mixed in accordance with standard methods. After drying and milling, each sample was introduced to an elemental analyzer to measure their CHNS-O contents. The moisture content, temperature, and pH value were also monitored in three different windrows during the process. Results: An approximate chemical empirical formula calculated for the organic fraction of the compost was: C 204 H 325 O 85 N 77 S. Conclusion: According to this formula, it appears that the mature compost produced in the site contains higher value of nondegradable nitrogen, which leads to a lower total C/N ratio. Therefore, improving the primary separation of raw material in the composting plant particularly severance of plastic materials can result in an optimum C/N ratio.

  3. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council... Escherichia coli O157:H7 in finished compost

    Science.gov (United States)

    Composting management or conditions that result in inadequate exposure of the compostable materials to destructive time-temperature regimens can result in survival of enteric human pathogens. Bacterial pathogens, such as Escherichia coli O157:H7 and Salmonella spp., can regrow in finished compost. ...

  4. Monitoring of biopile composting of oily sludge.

    Science.gov (United States)

    Kriipsalu, Mait; Nammari, Diauddin

    2010-05-01

    This paper describes a bioreactor set-up used to simulate degradation of petroleum hydrocarbons in a static biopile. The large-scale test was performed in a 28 m(3) custom-designed reactor. Oily sludge (40% by weight, having 7% dry matter [DM], and hydrocarbons C(10)-C(40) 160,000 mg kg(-1) DM) was mixed with organic-rich amendments - mature oil-compost (40%) and garden waste compost (20%). Within the reactor, the temperature and soil gases were monitored continuously during 370 days via 24 measurement points. Also, moisture content was continuously recorded and airflow through compost mix occasionally measured. Three-dimensional ordinary kriging spatial models were created to describe the dynamic variations of temperature, air distribution, and hydrocarbon concentration. There were large temperature differences in horizontal and vertical sections during initial months of composting only. Water content of the mixture was uneven by layers, referring on relocation of moisture due to aeration and condensation. The air distribution through the whole reactor varied largely despite of continuous aeration, while the concentration of O(2) was never reduced less than 1-2% on average. The results showed that composting of sludge using force-aerated static biopile technology was justified during the first 3-4 months, after which the masses could be re-mixed and heaped for further maturation in low-tech compost windrows. After 370 days of treatment, the content of hydrocarbons (C( 10)-C(40)) in the compost mixture was reduced by 68.7%.

  5. HEAVY METAL ASPECTS OF COMPOST USE

    Science.gov (United States)

    Composts prepared from municipal solid waste, biosolids, food processing wastes, manures, yard debris, and agricultural byproducts and residues are increasingly available for agricultural use. Although many benefits are possible from use of composts, these products must be safe f...

  6. Isolation and screening phosphate solubilizers from composts as biofertilizer

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim; Latiffah Norddin; Abdul Razak Ruslan

    2006-01-01

    Phosphate solubilizers are miroorganisms that able to solubilize insoluble inorganic phosphate compounds or hydrolyze organic phosphate to inorganic P. Therefore make the P to be available for plant and consequently enhance plant growth and yield. Recently, phosphate solubilizing microorganisms has been shown to play an important role in the biofertilizer industry. Fifty-one bacterial were isolated from eleven composts. Most of the phosphate solubilizers were isolated from natural farming composted compost and normal composting compost. This shows that both of these composts are more suitable to use for phosphate solubilizer isolation compare commercial composts. Fourteen of the isolates were found to be phosphate solubilizers. These isolates produced a clear zone on the phosphate agar plates, showing their potential as biofertilizer. AP3 was significantly produced the largest clear zone compared with other isolates. This indicates that isolate AP 3 could be a good phosphate solubilizer. Thus, their effectiveness in the greenhouse and field should be evaluated. (Author)

  7. Emission of Gases during Composting of Solid Waste

    Directory of Open Access Journals (Sweden)

    Dajana Kučić

    2017-10-01

    Full Text Available Composting is a biochemical process converting organic components into stable compost with release of heat, water, CO2 and NH3. The objective of this work was to determine the amount of CO2 and NH3 in the exhaust gases during composting of tobacco waste (TW and mixture of tobacco and grape waste (TGW. The cumulative evolved CO2 during 21 days of composting of TW and TGW, per mass of volatile matter, was 94.01 g kg−1 and 208.18 g kg−1, respectively, and cumulative evolved NH3 during composting of TW and TGW, per mass of volatile matter, was 504.81 mg kg−1 and 122.45 mg kg−1, respectively.

  8. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting.

    Science.gov (United States)

    Yang, Fan; Li, Guoxue; Shi, Hong; Wang, Yiming

    2015-02-01

    This study investigated the effects of phosphogypsum and superphosphate on the maturity and gaseous emissions of composting kitchen waste. Two amended compost treatments were conducted using phosphogypsum and superphosphate as additives with the addition of 10% of initial raw materials (dry weight). A control treatment was also studied. The treatments were conducted under aerobic conditions in 60-L reactors for 35 days. Maturity indexes were determined, and continuous measurements of CH4, N2O, and NH3 were taken. Phosphogypsum and superphosphate had no negative effects on compost maturity, although superphosphate inhibited the temperature rise in the first few days. The addition of phosphogypsum and superphosphate drastically reduced CH4 emissions (by 85.8% and 80.5%, respectively) and decreased NH3 emissions (by 23.5% and 18.9%, respectively). However, a slight increase in N2O emissions (by 3.2% and 14.8%, respectively) was observed. Composting with phosphogypsum and superphosphate reduced total greenhouse gas emissions by 17.4% and 7.3% respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis

    International Nuclear Information System (INIS)

    Sun Wei; Huang, Guo H.; Zeng Guangming; Qin Xiaosheng; Yu Hui

    2011-01-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH 4 + -N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. - Research Highlights: → A genetic algorithm aided stepwise cluster analysis method in food waste composting. → Nonlinear relationships between the selected state variables and the C/N ratio. → Introduced proxy tables save around 70% computational

  10. Quantitative effects of composting state variables on C/N ratio through GA-aided multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wei [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Huang, Guo H., E-mail: huangg@iseis.org [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); MOE Key Laboratory of Regional Energy Systems Optimization, Sino-Canada Energy and Environmental Research Academy, North China Electric Power University, Beijing, 102206 (China); Zeng Guangming [MOE Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082 (China); Qin Xiaosheng [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yu Hui [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

    2011-03-01

    It is widely known that variation of the C/N ratio is dependent on many state variables during composting processes. This study attempted to develop a genetic algorithm aided stepwise cluster analysis (GASCA) method to describe the nonlinear relationships between the selected state variables and the C/N ratio in food waste composting. The experimental data from six bench-scale composting reactors were used to demonstrate the applicability of GASCA. Within the GASCA framework, GA searched optimal sets of both specified state variables and SCA's internal parameters; SCA established statistical nonlinear relationships between state variables and the C/N ratio; to avoid unnecessary and time-consuming calculation, a proxy table was introduced to save around 70% computational efforts. The obtained GASCA cluster trees had smaller sizes and higher prediction accuracy than the conventional SCA trees. Based on the optimal GASCA tree, the effects of the GA-selected state variables on the C/N ratio were ranged in a descending order as: NH{sub 4}{sup +}-N concentration > Moisture content > Ash Content > Mean Temperature > Mesophilic bacteria biomass. Such a rank implied that the variation of ammonium nitrogen concentration, the associated temperature and the moisture conditions, the total loss of both organic matters and available mineral constituents, and the mesophilic bacteria activity, were critical factors affecting the C/N ratio during the investigated food waste composting. This first application of GASCA to composting modelling indicated that more direct search algorithms could be coupled with SCA or other multivariate analysis methods to analyze complicated relationships during composting and many other environmental processes. - Research Highlights: {yields} A genetic algorithm aided stepwise cluster analysis method in food waste composting. {yields} Nonlinear relationships between the selected state variables and the C/N ratio. {yields} Introduced proxy tables

  11. Yield, nutrient utilization and soil properties in a melon crop amended with wine-distillery waste compost

    Science.gov (United States)

    Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; Castellanos Serrano, María Teresa

    2014-05-01

    In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed. With this information, an integrated analysis was carried out with the aim to evaluate the suitability of this compost as organic

  12. Cultivo de la Quina [Cínchona] en Guatemala

    Directory of Open Access Journals (Sweden)

    Popenoe Wilson

    1942-08-01

    Full Text Available A mediados del siglo pasado, el rápido incremento que tomó la destrucción de los bosques de quina (Cínchona de los Andes y el aumento del valor de la quinina para el tratamiento de la malaria, dió por resultado la introducción del cultivo de Cínchona en los dominios tropicales de la Gran Bretaña y Holanda. Respecto a estos cultivos el mundo recuerda con gratitud a hombres como Weddell y Markham, quienes estudiaron estos árboles en sus hogares nativos, habiendo insistido en la iniciación de tal empresa. El interés que promovió el cultivo de Cínchona por los años de 1850 y 1860 en adelante, parece que repercutió en muchas regiones, siendo Guatemala una de ellas.

  13. Methodological interference of biochar in the determination of extracellular enzyme activities in composting samples

    Science.gov (United States)

    Jindo, K.; Matsumoto, K.; García Izquierdo, C.; Sonoki, T.; Sanchez-Monedero, M. A.

    2014-07-01

    Biochar application has received increasing attention as a means to trap recalcitrant carbon and enhance soil fertility. Hydrolytic enzymatic assays, such as β-glucosidase and phosphatase activities, are used for the assessment of soil quality and composting process, which are based on use of p-nitrophenol (PNP) derivatives as substrate. However, sorption capacity of biochar can interfere with colorimetric determination of the hydrolysed PNP, either by the sorption of the substrate or the reaction product of hydrolysis into biochar surface. The aim of the present work is to study the biochar sorption capacity for PNP in biochar-blended composting mixtures in order to assess its impact on the estimation of the colorimetric-based enzymatic assays. A retention test was conducted by adding a solution of known amounts of PNP in universal buffer solution (pH = 5, 6.5 and 11, corresponding to the β-glucosidase, acid and alkaline phosphatase activity assays, respectively), in samples taken at the initial stage and after maturation stage from four different composting piles (two manure composting piles; PM: poultry manure, CM: cow manure and two other similar piles containing 10% of additional biochar (PM + B, CM + B)). The results show that biochar-blended composts (PM + B, CM + B) generally exhibited low enzymatic activities, compared to manure compost without biochar (PM, CM). In terms of the difference between the initial and maturation stage of composting process, the PNP retention in biochar was shown higher at maturation stage, caused most probably by an enlarged proportion of biochar inside compost mixture after the selective degradation of easily decomposable organic matter. TThe retention of PNP on biochar was influenced by pH dependency of sorption capacity of biochar and/or PNP solubility, since PNP was more efficiently retained by biochar at low pH values (5 and 6.5) than at high pH values (11).

  14. Steep cut slope composting : field trials and evaluation : project summary report.

    Science.gov (United States)

    2011-04-01

    This project is a continuation of earlier work performed by Montana State University (Jennings et al. 2007) evaluating compost application on, and incorporation into, soils on steep cut slopes for the Montana Department of Transportation (MDT). The e...

  15. Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil.

    Science.gov (United States)

    Zhang, Xu; Zhao, Yue; Zhu, Longji; Cui, Hongyang; Jia, Liming; Xie, Xinyu; Li, Jiming; Wei, Zimin

    2017-12-01

    In order to improve soil quality, reduce wastes and mitigate climate change, it is necessary to understand the balance between soil organic carbon (SOC) accumulation and depletion under different organic waste compost amended soils. The effects of proportion (5%, 15%, 30%), compost type (sewage sludge (SS), tomato stem waste (TSW), municipal solid waste (MSW), kitchen waste (KW), cabbage waste (CW), peat (P), chicken manure (CM), dairy cattle manure (DCM)) and the black soil (CK). Their initial biochemical composition (carbon, nitrogen, C:N ratio) on carbon (C) mineralization in soil amended compost have been investigated. The CO 2 -C production of different treatments were measured to indicate the levels of carbon (C) mineralization during 50d of laboratory incubation. And the one order E model (M1E) was used to quantify C mineralization kinetics. The results demonstrated that the respiration and C mineralization of soil were promoted by amending composts. The C mineralization ability increased when the percentage of compost added to the soil also increased and affected by compost type in the order CM>KW, CW>SS, DCM, TSW>MSW, P>CK at the same amended level. Based on the values of C 0 and k 1 from M1E model, a management method in agronomic application of compost products to the precise fertilization was proposed. The SS, DCM and TSW composts were more suitable in supplying fertilizer to the plant. Otherwise, The P and MSW composts can serve the purpose of long-term nutrient retention, whereas the CW and KW composts could be used as soil remediation agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impacts of delayed addition of N-rich and acidic substrates on nitrogen loss and compost quality during pig manure composting.

    Science.gov (United States)

    Jiang, Jishao; Kang, Kang; Chen, Dan; Liu, Ningning

    2018-02-01

    Delayed addition of Nitrogen (N)-rich and acidic substrates was investigated to evaluate its effects on N loss and compost quality during the composting process. Three different delayed adding methods of N-rich (pig manure) and acidic substrates (phosphate fertilizer and rotten apples) were tested during the pig manure and wheat straw is composting. The results showed that delayed addition of pig manure and acidic materials led two temperature peaks, and the durations of two separate thermophilic phase were closely related to the amount of pig manure. Delayed addition reduced total N loss by up to 14% when using superphosphate as acidic substrates, and by up to 12% when using rotten apples as acidic substrates, which is mainly due to the decreased NH 3 emissions. At the end of composting, delayed the addition of pig manure caused a significant increase in the HS (humus substance) content, and the highest HS content was observed when 70% of the pig manure was applied at day 0 and the remaining 30% was applied on day 27. In the final compost, the GI in all treatments almost reached the maturity requirement by exceeding 80%. The results suggest that delayed addition of animal manure and acidic substrates could prevent the N loss during composting and improve the compost quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost.

    Science.gov (United States)

    Kumar Awasthi, Mukesh; Wang, Meijing; Pandey, Ashok; Chen, Hongyu; Kumar Awasthi, Sanjeev; Wang, Quan; Ren, Xiuna; Hussain Lahori, Altaf; Li, Dong-Sheng; Li, Ronghua; Zhang, Zengqiang

    2017-10-01

    In the present study, biochar combined with a higher dosage of zeolite (Z) and biochar (B) alone were applied as additives for dewatered fresh sewage sludge (DFSS) composting using 130-L working volume lab-scale reactors. We first observed that the addition of a mixture of B and Z to DFSS equivalent to 12%B+10% (Z-1), 15% (Z-2) and 30% (Z-3) zeolite (dry weight basis) worked synergistically as an amendment and increased the composting efficiency compared with a treatment of 12%B alone amended and a control without any amendment. In a composting reactor, the addition of B+Z may serve as a novel approach for improving DFSS composting and the quality of the end product in terms of the temperature, water-holding capacity, CO 2 emissions, electrical conductivity, water-soluble and total macro-nutrient content and phytotoxicity. The results indicated that during the thermophilic phase, dissolved organic carbon, NH 4 + -N and NO 3 - -N increased drastically in all biochar amended treatments, whereas considerably low water-soluble nutrients were observed in the control treatment throughout and at the end of the composting. Furthermore, the maturity parameters and dissolved organic carbon (DOC) indicated that compost with 12%B+15%Z became more mature and humified within 35days of DFSS composting, with the maturity parameters, such as CO 2 evolution and the concentration of NH 4 + -N in the compost, being within the permissible limits of organic farming in contrast to the control. Furthermore, at the end of composting, the addition of higher dosage of biochar (12%) alone and 12% B+Z lowered the pH by 7.15 to 7.86 and the electrical conductivity by 2.65 to 2.95mScm -1 as compared to the control, while increased the concentrations of water-soluble nutrients (gkg -1 ) including available phosphorus, sodium and potassium. In addition, greenhouse experiments demonstrated that the treatment of 150kgha -1 biochar combined with zeolite and that of 12%B alone improved the yield of

  18. Greenhouse gas emissions from food and garden waste composting

    OpenAIRE

    Ermolaev, Evgheni

    2015-01-01

    Composting is a robust waste treatment technology. Use of finished compost enables plant nutrient recycling, carbon sequestration, soil structure improvement and mineral fertiliser replacement. However, composting also emits greenhouse gases (GHG) such as methane (CH₄) and nitrous oxide (N₂O) with high global warming potential (GWP). This thesis analysed emissions of CH₄ and N₂O during composting as influenced by management and process conditions and examined how these emissions could be ...

  19. Identification of predictor parameters to determine agro-industrial compost suppressiveness against Fusarium oxysporum and Phytophthora capsici diseases in muskmelon and pepper seedlings.

    Science.gov (United States)

    Blaya, Josefa; Lloret, Eva; Ros, Margarita; Pascual, Jose Antonio

    2015-05-01

    The lack of reliable prediction tools for evaluation of the level and specificity of compost suppressiveness limits its application. In our study, different chemical, biological and microbiological parameters were used to evaluate their potential use as a predictor parameter for the suppressive effect of composts against Fusarium oxysporum f. sp. melonis (FOM) and Phytophthora capsici (P. capsici) in muskmelon and pepper seedlings respectively. Composts were obtained from artichoke sludge, chopped vineyard pruning waste and various agro-industrial wastes (C1: blanched artichokes; C2: garlic waste; C3: dry olive cake). Compost C3 proved to offer the highest level of resistance against FOM, and compost C2 the highest level of resistance against P. capsici. Analysis of phospholipid fatty acids isolated from compost revealed that the three composts showed different microbial community structures. Protease, NAGase and chitinase activities were significantly higher in compost C3, as was dehydrogenase activity in compost C2. The use of specific parameters such as general (dehydrogenase activity) and specific enzymatic activities (protease, NAGase and chitinase activities) may be useful to predict compost suppressiveness against both pathogens. The selection of raw materials for agro-industrial composts is important in controlling Fusarium wilt and Phytophthora root rot. © 2014 Society of Chemical Industry.

  20. Biodegradation of Lignocelluloses in Sewage Sludge Composting and Vermicomposting

    Directory of Open Access Journals (Sweden)

    Hosein Alidadi

    2012-08-01

    Full Text Available Please cite this article as: Alidadi H, Najafpour AA, Vafaee A, Parvaresh A, Peiravi R. Biodegradation of lignocelluloses in sewage sludge composting and vermicomposting. Arch Hyg Sci 2012;1(1:1-5.   Aims of the Study: The aim of this study was to determine the amount of lignin degradation and biodegradation of organic matter and change of biomass under compost and vermicomposting of sewage sludge. Materials & Methods: Sawdust was added to sewage sludge at 1:3 weight bases to Carbon to Nitrogen ratio of 25:1 for composting or vermicomposting. Lignin and volatile solids were determined at different periods, of 0, 10, 30, 40 and 60 days of composting or vermicomposting period to determine the biodegradation of lignocellulose to lignin. Results were expressed as mean of two replicates and the comparisons among means were made using the least significant difference test calculated (p <0.05. Results: After 60 days of experiment period, the initial lignin increased from 3.46% to 4.48% for compost and 3.46% to 5.27% for vermicompost. Biodegradation of lignocellulose was very slow in compost and vermicompost processes. Vermicomposting is a much faster process than compost to convert lignocellulose to lignin (p <0.05. Conclusions: The organic matter losses in sewage sludge composting and vermicomposting are due to the degradation of the lignin fractions. By increasing compost age, the amount of volatile solids will decrease.

  1. Study on NPK Performance in Food Waste Composting by Using Agricultural Fermentation

    Directory of Open Access Journals (Sweden)

    Jamaludin Siti Noratifah

    2017-01-01

    Full Text Available Food waste represents almost 60% from the total municipal solid waste disposed in the landfill. Alternative disposal method for food waste could be conducted by using composting method. In this study, investigationon food waste composting by using agricultural fermentation was carried out to find out the performance of the compost. Two types of compost were produced which were commercial compost and research compost and total of 8 reactors were tested during this study. Research compost consist of coconut fiber (decomposing medium and the combination of salt and breadfruit peels as the fermentation liquid, while rice husk was used as decomposing medium for commercial compost along with fermented soybeanand brown sugar as fermentation liquid. Physical and chemical parameters which are temperature, pH value, moisture content, Total Nitrogen (N, Total Phosphorus (P and Potassium (K concentration were determined. Based on the results of 20 weeks composting, the overall temperature range from 27 °C to 45 °C which shown the active phase for composting occurred. On the other hand, during the period of composting, most of the pH value in each reactor is above 5 and approximately at neutral. This shown that the microbial respiration in the composting reactor was inhibited and had approached the mature phase. As for NPK content, Total Nitrogen value range from 98 ppm to 2268 ppm for commercial compost, while 84 ppm to 2240 ppm for research compost. Total Phosphorus has the values of0.871 ppm to 11.615 ppm for commercial compost and 1.785 ppm to 14.143 ppm for research compost. On the other hand, result for potassium is from 91.85 ppm to 645.55 ppm for commercial compost and from 133.95 ppm to 686.2 ppm for research compost. As a conclusion from the results obtained, the compost in this study is sufficient to be use for agricultural purposes and the best performance of NPK value was demonstrated by Reactor C2 from research compost.

  2. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment

    DEFF Research Database (Denmark)

    Christel, Wibke; Bruun, Sander; Magid, Jakob

    2014-01-01

    The alteration of easily available phosphorus (P) from the separated solid fraction of pig slurry by composting and thermal processing (pyrolysis or combustion at 300-1000. °C) was investigated by water and acidic extractions and the diffusive gradients in thin films (DGT) technique. Temporal...... changes in P availability were monitored by repeated DGT application in three amended temperate soils over 16. weeks. P availability was found to decrease in the order: drying. >. composting. >. pyrolysis. >. combustion with increasing degree of processing. Water extractions suggested that no P would....... Composting and thermal treatment produced a slow-release P fertilizer, with P availability being governed by abiotic and biotic mechanisms....

  3. Compost production from municipal wastes of Canadian mining towns

    International Nuclear Information System (INIS)

    Jongejan, A.

    1983-01-01

    A summary of results of experiements on composting mumicipal wastes, and an overview of a type of composting process that could be used in small Canadian mining towns are given. The process is a means of waste disposal designed to produce compost. Compost can be used for the revegetation of mine-mill tailings as its sorptive properties complement the chemical action of inorganic fertilizers. The possibility of using compost instead of peat in water pollution-abatement processes can be considered. Difficulties that can be expected if a windrow composting process is continued during the low ambient-temperatures of Canadian winters can be avoided by storing the garbage-sewage mixture as hydraulically-compacted briquettes. Degradation of the briquettes takes place during mild-temperature periods without producing the foul odors of heaped garbage. A tentative plan for composting plant is presented as an illustration of the applicatin of the experimental results in a practical process. Because the process is a means of waste disposal, costs have to be divided between the municipality and the mining industry

  4. Greenhouse gas emissions from green waste composting windrow.

    Science.gov (United States)

    Zhu-Barker, Xia; Bailey, Shannon K; Paw U, Kyaw Tha; Burger, Martin; Horwath, William R

    2017-01-01

    The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH 4 emission of 254±76gCday -1 dry weight (DW) Mg -1 and lowest average N 2 O emission of 152±21mgNday -1 DW Mg -1 compared to the other seasonal piles. The highest N 2 O emissions (342±41mgNday -1 DW Mg -1 ) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O 2 ) concentration and moisture content were the most consistent factors predicting N 2 O and CH 4 emissions from all seasonal compost piles. Compared to N 2 O, CH 4 was a higher contributor to the overall global warming potential (GWP) expressed as CO 2 equivalents (CO 2 eq.). Therefore, CH 4 mitigation practices, such as increasing O 2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000Mg of CO 2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Quality of compost from composting plant in Puerto Real (Cadiz, Spain); Calidad del compost procedente de la planta de compostaje de Puerto Real (Cadiz)

    Energy Technology Data Exchange (ETDEWEB)

    Godillo Romero, M. D.; Quiroga Alonso, J. M.; Garrido Perez, C.; Rodriguez Barros, R.; Sales Marquez, D. [Universidad de Cadiz (Spain)

    2000-07-01

    The compost taken from the Compost Plant, treating urban solid residues from the Consorcio Bahia de Cadiz in the municipal district of Puerto Real, Cadiz, has been analysed for its particular qualities over the years 1990-1996. With this in mind we have determined the most important of parameters with a view to defining the quality of this organic fertilizer extracted from urban solid residues (USR): pH, conductivity, rejection through net meshing, humidity, organic matter, carbon, nitrogen, C/N relationship, cadmium, copper, nickel, lead, tin, zinc and mercury. The compost gathered complies with the established legal requisites concerning fertilizers and their related substances. The quality in the first years of this study is better due possibly to the construction of the bio-recycling plant leaving the latter as a holding plant. (Author)

  6. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting.

    Science.gov (United States)

    Li, Shuyan; Li, Jijin; Yuan, Jing; Li, Guoxue; Zang, Bing; Li, Yangyang

    2017-07-01

    The aim of this study was to investigate the influence of inoculants on compost stability, maturity and enzyme activities during composting of chicken manure and cornstalk. Two microbial inoculants (originated from aerobic municipal sludge and municipal solid waste, respectively) were used in composting at the rate of 0.3% of initial raw materials (wet weight). No microbial inoculums were added to the control. The experiment was conducted under aerobic conditions for 53 days. The results show that enzyme activity is an important index to comprehensively evaluate the composting stability and maturity. Microbes originated from sludge works best in terms of composting stability and maturity (C:N ratio decreased from 15.5 to 10, and germination index increased to 109%). Microbial inoculums originated from sludge and municipal solid waste extended the time of thermophilic phase for 11 and 7 days, respectively. Microbial inoculums originated from sludge and MSW significantly increased the average of catalase activity (by 15.0% and 12.1%, respectively), urease activity (by 21.5% and 12.2%, respectively) and cellulase activity (by 32.1% and 26.1%, respectively) during composting.

  7. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    Science.gov (United States)

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Tratamentos térmicos do calxisto para uso como camada de cobertura no cultivo de Agaricus brasiliensis Thermal treatments on lime schist casing layer for Agaricus brasiliensis cultivation

    Directory of Open Access Journals (Sweden)

    Nelson Barros Colauto

    2010-07-01

    Full Text Available A escolha da camada de cobertura é uma das mais importantes etapas do cultivo de Agaricus brasiliensis. Apesar dessa importância, poucos estudos relatam o uso de diferentes tratamentos térmicos para o controle da microbiota em camadas de cobertura alternativas. Assim, o objetivo deste trabalho foi avaliar o efeito da pasteurização e da autoclavagem do material alternativo calxisto para utilização como camada de cobertura no cultivo de A. brasiliensis. O fungo foi inicialmente crescido em grãos de trigo e transferido para meio de cultivo previamente compostado. Após a completa colonização, a camada de cobertura (calxisto pasteurizada ou autoclavada foi adicionada. Avaliaram-se a eficiência biológica, o número e a biomassa de cogumelos produzidos e o fluxo de produção. Concluiu-se que a camada de cobertura com calxisto autoclavado reduzem o tempo de produção, a eficiência biológica e o número e a biomassa de cogumelos cultivados. Entretanto, a camada de cobertura com o calxisto pasteurizado é a mais eficiente para o cultivo de A. brasiliensis.Casing layer choice is one of the most important phases on Agaricus brasiliensis cultivation. Besides the importance of it few studies report the use of different heat treatments to control the microbiota in alternative casing layers. Thus, the objective of this work was to evaluate the effect of pasteurized or autoclaved lime schist as an alternative casing layer on A. brasiliensis cultivation. The fungus was previously grown on wheat grains and transferred to a substratum previously composted. After substratum mycelium colonization a pasteurized or autoclaved lime schist casing layer was added on. It was evaluated the biological efficiency, the number and mass of produced mushroom and the production flush along cultivation. It was concluded that autoclaved lime schist casing layer decreases period of production, biological efficiency, number and mass of cultivated mushrooms. However

  9. EVALUATION OF THE BIOSOLIDS COMPOST MATURITY IN SOUTH ISFAHAN WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    H. Alidadi, A. R. Parvaresh, M. R. Shahmansouri, H. Pourmoghadas

    2008-04-01

    Full Text Available The composting process is a useful method of producing a stabilized material that can be used as a source of nutrients and soil conditioner. Maturity of compost is essential for its optimal use as a soil amendment and a source of plant nutrients as well. Immature composts pose problems of malodors and flies and phytotoxicity and pollution during use. Stability and maturity both are required for compost quality control. Compost maturity tests can be classified into physical, chemical, plant, and microbial activity assays. In this study, several methods of evaluating the stability and maturity of composted biosolids were compared based on chemical and biological properties. The sludge used of windrow composting was obtained from the drying beds of South Isfahan wastewater treatment plant. The results showed that, C/N ratio after 100 days of composting reached to 15/1; NH4/NO3 ratio decreased with increase of the time dewatered sludge compost, which this loss is 57.3%. The content of volatile solids, 28.8% decreased with composting time. The number of fecal coliforms in the initial sewage sludge compost was 17.9´106 and at the end of composting was 898MPN/g of total solids and the compost process provided class A pathogen criteria. Use of chemical and biological parameters exhibited three phases: rapid decomposition (day 40, stabilization (day 80 and maturation (day 100 in biosolids compost. Thus, the biosolid compost was mature and ready for use as an agricultural substrate after about 100 days of composting.

  10. Conditions for energy generation as an alternative approach to compost utilization.

    Science.gov (United States)

    Raclavska, H; Juchelkova, D; Skrobankova, H; Wiltowski, T; Campen, A

    2011-01-01

    Very strict limits constrain the current possibilities for compost utilization in agriculture and for land reclamation, thus creating a need for other compost utilization practices. A favourable alternative can be compost utilization as a renewable heat source - alternative fuel. The changes of the basic physical-chemical parameters during the composting process are evaluated. During the composting process, energy losses of 920 kJ/kg occur, caused by carbohydrate decomposition (loss of 12.64% TOC). The net calorific value for mature compost was 11.169 kJ/kg dry matter. The grain size of compost below 0.045 mm has the highest ash content. The energetic utilization of compost depended on moisture, which can be influenced by paper addition or by prolonging the time of maturation to six months.

  11. Trichoderma harzianum T-78 supplementation of compost stimulates the antioxidant defence system in melon plants.

    Science.gov (United States)

    Bernal-Vicente, Agustina; Pascual, José A; Tittarelli, Fabio; Hernández, José A; Diaz-Vivancos, Pedro

    2015-08-30

    Compost is emerging as an alternative plant growing medium in efforts to achieve more sustainable agriculture. The addition of specific microorganisms such as Trichoderma harzianum to plant growth substrates increases yields and reduces plant diseases, but the mechanisms of such biostimulants and the biocontrol effects are not yet fully understood. In this work we investigated how the addition of citrus and vineyard composts, either alone or in combination with T. harzianum T-78, affects the antioxidant defence system in melon plants under nursery conditions. Compost application and/or Trichoderma inoculation modulated the antioxidant defence system in melon plants. The combination of citrus compost and Trichoderma showed a biostimulant effect that correlated with an increase in ascorbate recycling enzymes (monodehydroascorbate reductase, dehydroascorbate reductase) and peroxidase. Moreover, the inoculation of both composts with Trichoderma increased the activity of antioxidant enzymes, especially those involved in ascorbate recycling. Based on the long-established relationship between ascorbic acid and plant defence responses as well as plant growth and development, it can be suggested that ascorbate recycling activities play a major role in the protection provided by Trichoderma and its biostimulant effect and that these outcomes are linked to increases in antioxidant enzymes. We can conclude that the combination of citrus compost and T. harzianum T-78 constitutes a viable, environmentally friendly strategy for improving melon plant production. © 2014 Society of Chemical Industry.

  12. Effect of Composting Parameters on the Power Performance of Solid Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chin-Tsan Wang

    2015-09-01

    Full Text Available Nowadays, solid organic waste is of major environmental concern and is reaching critical levels worldwide. Currently, a form of natural decomposition, known as composting technology, is widely used to deal with organic waste. This method is applied to enhance the performance of solid microbial fuel cells (SMFCs in this study. Operational composting parameters (carbon/nitrogen ratio, moisture content and pH value are investigated to explore the optimal power performance of solid microbial fuel cells (SMFCs. Results indicate that the carbon/nitrogen ratio and the moisture content displayed the most significant impact on SMFCs. When the carbon/nitrogen ratio is 31.4 and moisture content is 60%, along with a pH value of 6–8, a better SMFC power performance would be obtained. These findings would provide positive information regarding the application of compost in SMFCs.

  13. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    Science.gov (United States)

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  14. Determining Thermal Inactivation of Escherichia coli O157:H7 in Fresh Compost by Simulating Early Phases of the Composting Process ▿

    OpenAIRE

    Singh, Randhir; Kim, Jinkyung; Shepherd, Marion W.; Luo, Feng; Jiang, Xiuping

    2011-01-01

    A three-strain mixture of Escherichia coli O157:H7 was inoculated into fresh dairy compost (ca. 107 CFU/g) with 40 or 50% moisture and was placed in an environmental chamber (ca. 70% humidity) that was programmed to ramp from room temperature to selected composting temperatures in 2 and 5 days to simulate the early composting phase. The surviving E. coli O157:H7 population was analyzed by direct plating and enrichment. Optimal and suboptimal compost mixes, with carbon/nitrogen (C/N) ratios of...

  15. [Interaction Between Sulfonamide Antibiotics Fates and Chicken Manure Composting].

    Science.gov (United States)

    Lin, Hui; Wang, Jian-mei; Sun, Wan-chun; Fu, Jian-rong; Chen, Hong-jin; Ma, Jun-wei

    2016-05-15

    Based on aerobic manure composting with or without the addition of a mixture of sulfadimethoxine SM2 and sulfamonomethoxine SMM (1:1, m/m), changes in the physic-chemical properties of manure compost, the microbial community physiological profiles, the antibiotics concentration and the abundances of five antibiotic resistance genes (ARGs) during the composting were tracked. The results indicated that the introduction of sulfonamide antibiotics led to inhibition on the basal respiration of manure compost during the early composting period, delayed the formation of thermophilic temperature and reduced the conversion of nutrients such as organic matter, ammonia nitrogen and nitrate nitrogen. Meanwhile, the introduction of sulfonamide antibiotics dramatically affected the physiological profile of microbial community in manure in the middle stage of composting. HPLC-MS/MS results showed that both SMM and SM2 in manure were completely degraded within 14 days, while the degradation rate of SMM was faster than that of SM2. For both composting treatments with or without addition of exogenous antibiotics, the relative abundance of sull and sul2 showed an initial decline in the first 14 or 21 days and a slight increase thereafter. The addition of exogenous antibiotics showed insignificant enhancement on increasing the relative abundance of sul1 and IntI1 in manure, but resulted in an apparent increase in sul2 relative abundance. Although the fates of tetQ and tetW during composting were different from that of sulfonamide ARGs, the introduction of sulfonamide antibiotics into manure increased the relative abundance of tetracycline ARGs. Redundancy analysis indicated that composting temperature correlated negatively with sul1, sul2 and IntI1 relative abundance in manure but had no obvious relationship with tetQ and tetW relative abundance. All the ARGs detected in this work correlated negatively with C/N ratio and the nitrate nitrogen concentration of manure compost but

  16. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2012-07-01

    Full Text Available Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, coffee hulls, which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase and the finished product (mature phase. The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (groub I.1b, in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have signifcant effects on its performanc as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities with nitrification in these systems.

  17. Valorization of beer brewing wastes by composting

    OpenAIRE

    Silva, Maria Elisabete; Brás, Isabel

    2017-01-01

    The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored b...

  18. Evaluation on the effects of P. ostreatus spent mushroom compost ...

    African Journals Online (AJOL)

    Realization in minimizing production cost for in vitro culture had brought to a study on application of P. ostreatus spent mushroom compost (SMC). Sterile nodal explants was inoculated on different treatments with 15 replicates each. Treatments were MS medium supplemented with different concentrations of SMC (1 and 2 ...

  19. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Li, Jiao; Guo, Di; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Sun, Xining; Zhang, Zengqiang

    2017-08-01

    The influence of biochar amended dewatered fresh sewage sludge (DFSS)-wheat straw co-composting on nutrients transformation and end products quality was investigated. This is the first study to examine the biochar applied compost quality with different kgha -1 TKN on Brassica rapa L. growth. Seven mixtures were composted over 8-weeks period in 130-L reactor using the same DFSS with different concentration of biochar (2%, 4%, 6%, 8%, 12% and 18% on dry weight basis) and without additive added treatment served as control. The results indicated that compost with 8-12% biochar became more humified within 35days of composting, and the compost maturity parameters also showed that this could be much more feasible approach to increased water-soluble nutrients including NO 3 , DOC, DON, PO 4 3- , K + and Na + , but bioavailability of Cu, Zn, Ni and Pb content reduced as compared to control. Finally, results showed that 8-12% biochar was recommended for DFSS composting and 150kgha -1 TKN of compost dosages for organic farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of composted tobacco waste and farmyard manure on some soil physical properties and lettuce yield

    OpenAIRE

    Çerçioğlu, Melis; Okur, Bülent; Delibacak, Sezai; Ongun, Ali Rıza

    2008-01-01

    This research was held in Agriculture Faculty of Ege University Menemen Investigation and Practise Farmyard. Tobacco waste gathered from cigarette industry were composted and applied to the soil together with farmyard manure. lettuce (Lactuca sativa L. var. capitata) was grown as test plant. No mineral fertilizers or pestisides were applied. The effects of composted tobacco wastes and farmyard manures on soil physical properties and lettuce yield were investigated. All application...

  1. Assessment of compost for suppression of Fusarium oxysporum and ...

    African Journals Online (AJOL)

    The present research was conducted to evaluate the compost effectiveness on Zea mays and Hibiscus sabdarriffa under Fusarium wilt disease. Compost physical, chemical and biological characters were monitored weekly during the ripening process. Both coliform and nematode were tested. Finally, the effect of compost ...

  2. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting.

    Science.gov (United States)

    Wei, Yuquan; Zhao, Yue; Fan, Yuying; Lu, Qian; Li, Mingxiao; Wei, Qingbin; Zhao, Yi; Cao, Zhenyu; Wei, Zimin

    2017-10-01

    This study aimed to assess the effect of phosphate-solubilizing bacteria (PSB) application and inoculation methods on rock phosphate (RP) solubilization and bacterial community during composting. The results showed that PSB inoculation in different stages of composting, especially both in the beginning and cooling stages, not only improved the diversity and abundance of PSB and bacterial community, but also distinctly increased the content of potential available phosphorus. Redundancy analysis indicated that the combined inoculation of PSB in the initial stage with higher inoculation amount and in the cooling stage with lower inoculation amount was the best way to improve the inoculation effect and increase the solubilization and utilization of RP during composting. Besides, we suggested three methods to improve phosphorus transformation and long-term utilization efficiency in composts based on biological fixation of phosphates by humic substance and phosphate-accumulating organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Polluted land areas purified by composting

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, A.L.; Nikula, A.

    1996-11-01

    Restoration of polluted land and development of purification methods are among the most topical environment protection issues, IVO, too, has participated in research on microbiological purification methods. The biodegrability of creosote, and agent used for impregnation of wooden power line poles, was tested in the laboratory in 1993-94. The tests revealed that soil polluted by creosote can be cleansed efficiently. In Petaejaevesi, central Finland, the results are being applied in the composting of land masses polluted by creosote. The composting, which began in summer 1995, has succeeded in line with expectations: The content of deleterious compounds fell by half after only a couple of months of composting. (orig.)

  4. Growth and yield of cucumber as influenced by compost and nitrogen fertilizer in sandy soils using the nuclear technique for determination of nitrogen

    International Nuclear Information System (INIS)

    El-Sherif, M.F.A.

    2005-01-01

    this study was carried out during the period from 2002 to 2003 seasons, at the department of plant research, Nuclear Research Center (NRC,) Atomic Energy Authority (AEA), Egypt, on cucumber plants c.v. dp007 F1 (wafer). the main objective of this work was to study the effect of compost type, application level and nitrogen rate on vegetative growth, chemical composition, early and total yield and to determine the fertilizer nitrogen uptake and utilization by the cucumber plant and its parts, i.e., shoots and fruits . results revealed that the sugar cane bagasse compost (SC) gave a significantly higher response with most vegetative growth expressed as plant length, leaf number and dry weight of cucumber plant, compared with beet compost (BC). the application of compost from 2 up to 6 ton/fed

  5. Continuous feed, on-site composting of kitchen garbage.

    Science.gov (United States)

    Hwang, Eung-Ju; Shin, Hang-Sik; Tay, Joo-Hwa

    2002-04-01

    Kitchen garbage generated at a school cafeteria was treated and stabilised in a controlled on-site composting unit for volume reduction and on-site utilisation of processed garbage. The on-site composter was fed with the garbage on a daily basis during the two-months experimental period. Compost was not removed from the unit but was entirely reused as a bulking agent in order to minimise the need for additional bulking agent and compost handling. Performance of the composter tinder this condition was investigated. Most of the easily degradable organic matter (EDM) in the garbage was biodegraded rapidly, and the final product had a low content of EDM. Lipids, total sugar, and hemi-cellulose were degraded 96%, 81%, and 66% respectively. Free air space (FAS) was higher than 0.5 all the time, so accumulation of dry matter in the unit was not significant in reducing reaction efficiency. Other reaction parameters such as pH and MC were kept within a suitable range; however, it was advisable to maintain MC at over 46%. As a result, this method of operation was able to stabilise the garbage with low sawdust demand and little compost production.

  6. Evaluation of maifanite and silage as amendments for green waste composting.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang

    2018-04-23

    Composting is a popular method for recycling organic solid wastes including agricultural and forestry residues. However, traditional composting method is time consuming, generates foul smells, and produces an immature product. The effects of maifanite (MF; at 0%, 8.5%, and 13.5%) and/or silage (SG; at 0%, 25%, and 45%) as amendments on an innovative, two-stage method for composting green waste (GW) were investigated. The combined addition of MF and SG greatly improved composting conditions, reduced composting time, and enhanced compost quality in terms of composting temperature, bulk density, water-holding capacity, void ratio, pH, cation exchange capacity, ammonia nitrogen content, dissolved organic carbon content, crude fibre degradation, microbial numbers, enzyme activities, nutrient contents, and phytotoxicity. The two-stage composting of GW with 8.5% MF and 45% SG generated the highest quality and the most mature compost product and did so in only 21 days. With the optimized composting, the degradation rate of cellulose and hemicellulose reached 46.3 and 82.3%, respectively, and the germination index of Chinese cabbage and lucerne was 153 and 172%, respectively, which were all far higher than values obtained with the control. The combined effects of MF and SG on GW composting have not been previously explored, and this study therefore provided new and practical information. The comprehensive analyses of compost properties during and at the end of the process provided insight into underlying mechanisms. The optimized two-stage composting method may be a viable and sustainable alternative for GW management in that it converts the waste into a useful product. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. High rate composting of herbal pharmaceutical industry solid waste.

    Science.gov (United States)

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  8. Compost and biochar alter mycorrhization, tomato root exudation and development of Fusarium oxysporum f. sp. lycopersici

    Directory of Open Access Journals (Sweden)

    Adnan eAkhter

    2015-07-01

    Full Text Available Soil amendments like compost and biochar are known to affect soil properties, plant growth as well as soil borne plant pathogens. Complex interactions based on microbial activity and abiotic characteristics are supposed to be responsible for suppressive properties of certain substrates, however, the specific mechanisms of action are still widely unknown. In the present study, the main focus was on the development of the soil borne pathogen, Fusarium oxysporum f.sp. lycopersici (Fol in tomato (Solanum lycopersicum L. and changes in root exudates of tomato plants grown in different soil substrate compositions, such as compost (Comp alone at application rate of 20 % (v/v, and in combination with wood biochar (WB; made from beech wood chips or green waste biochar (GWB, made from garden waste residues at application rate of 3 % (v/v, and/or with additional arbuscular mycorrhizal fungi (AMF. The association of GWB and AMF had a positive effect on tomato plants growth unlike to the plants grown in WB containing soil substrate. The AMF root colonization was not enhanced by the addition of WB or GWB in the soil substrate, though bio-protective effect of mycorrhization was evident in both biochar amended treatments against Fol. Compost and biochars altered root exudates differently, which is evident from variable response of in vitro growth and development of Fol. The microconidia germination was highest under in root exudates from plants grown in the soil containing compost and GWB, whereas root exudates of plants from substrate containing WB suppressed the mycelial growth and development of Fol. In conclusion, the plant growth response and disease suppression in biochar containing substrates with additional AMF was affected by the feedstock type. Moreover, application of compost and biochars in the soil influence the quality and composition of root exudates with respect to their effects on soil-dwelling fungi.

  9. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers.

    Science.gov (United States)

    Sharma, Manan; Reynnells, Russell

    2016-08-01

    Biological soil amendments (BSAs) such as manure and compost are frequently used as organic fertilizers to improve the physical and chemical properties of soils. However, BSAs have been known to be a reservoir for enteric bacterial pathogens such as enterohemorrhagic Escherichia coli (EHEC), Salmonella spp., and Listeria spp. There are numerous mechanisms by which manure may transfer pathogens to growing fruits and vegetables, and several outbreaks of infections have been linked to manure-related contamination of leafy greens. In the United States several commodity-specific guidelines and current and proposed federal rules exist to provide guidance on the application of BSAs as fertilizers to soils, some of which require an interval between the application of manure to soils and the harvest of fruits and vegetables. This review examines the survival, persistence, and regrowth/resuscitation of bacterial pathogens in manure, biosolids, and composts. Moisture, along with climate and the physicochemical properties of soil, manure, or compost, plays a significant role in the ability of pathogens to persist and resuscitate in amended soils. Adaptation of enteric bacterial pathogens to the nonhost environment of soils may also extend their persistence in manure- or compost-amended soils. The presence of antibiotic-resistance genes in soils may also be increased by manure application. Overall, BSAs applied as fertilizers to soils can support the survival and regrowth of pathogens. BSAs should be handled and applied in a manner that reduces the prevalence of pathogens in soils and the likelihood of transfer of food-borne pathogens to fruits and vegetables. This review will focus on two BSAs-raw manure and composted manure (and other feedstocks)-and predominantly on the survival of enteric bacterial pathogens in BSAs as applied to soils as organic fertilizers.

  10. Temperature profiles of Agaricus bisporus in composting stages and ...

    African Journals Online (AJOL)

    Three compost formulas using different activator materials were prepared for Agaricus bisporus cultivation. A locally available casing material known as peat of Bolu district and its different combinations with perlite were used. Temperature profiles of all mixtures during composting were measured at every composting stages ...

  11. Heavy metals and yield of cowpea cultivated under composted tannery sludge amendment

    Directory of Open Access Journals (Sweden)

    Iuna Carmo Ribeiro Gonçalves

    2014-04-01

    Full Text Available The study aimed to evaluate the phytoavailability of heavy metals (Cr, Cd, Ni and Pb concentrations in leaves and grains, and yield of cowpea (Vigna unguiculata L grown in soil amended with composted tannery sludge (CTS for two consecutive years. The experiments were carried out in 2009 and 2010 in soil amended with CTS at 0, 5, 10, 20, and 40 Mg ha-1. The CTS amendment rates applied were above 10 Mg ha-1, increased Cr concentrations in cowpea leaves. There were not increases in the heavy metals concentrations in cowpea grains after two years. In 2009, the application of CTS amendment did not promote increase in plant yield. However, in 2010, CTS amendment at 10 and 20 Mg ha-1 increased cowpea yield. The amendment of composted tannery sludge linearly increased linearly the concentration of Cr in the leaves of cowpea after two years. Composted tannery sludge promoted increases in cowpea yield.

  12. Stability measurements of compost trough electrolytic respirometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-07-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  13. Stability measurements of compost trough electrolytic respirometry

    International Nuclear Information System (INIS)

    Sanchez-Arias, V.; Fernandez, F. J.; Rodriguez, L.; Villasenor, J.

    2009-01-01

    An experimental technique for compost stability measurements based on electrolytic respirometry was optimized and subsequently applied to a composting process. Anaerobically digested sewage sludge mixed with reed was composted during 90 days in a pilot scale rotary drum with forced aeration. Periodic solid samples were taken, and a previously optimized respirometric procedure was applied to them in order to measure the oxygen consumption. The resirometric experiments were made directly with a few grams of solid samples, optimum moisture and 37 degree centigrade during 96h. (Author)

  14. Variation in microbial population during composting of agro-industrial waste.

    Science.gov (United States)

    Coelho, Luísa; Reis, Mário; Dionísio, Lídia

    2013-05-01

    Two compost piles were prepared, using two ventilation systems: forced ventilation and ventilation through mechanical turning. The material to compost was a mixture of orange waste, olive pomace, and grass clippings (2:1:1 v/v). During the composting period (375 days), samples were periodically taken from both piles, and the enumeration of fungi, actinomycetes, and heterotrophic bacteria was carried out. All studied microorganisms were incubated at 25 and 55 °C after inoculation in appropriate growth media. Fungi were dominant in the early stages of both composting processes; heterotrophic bacteria proliferated mainly during the thermophilic stage, and actinomycetes were more abundant in the final stage of the composting process. Our results showed that the physical and chemical parameters: temperature, pH, moisture, and aeration influenced the variation of the microbial population along the composting process. This study demonstrated that composting of these types of wastes, despite the prolonged mesophilic stage, provided an expected microbial variation.

  15. Onderzoek naar de herkomst van zware metalen en organische stoffen in GFT-compost. Deel I.1 Kwaliteit van GFT-compost

    OpenAIRE

    Dekker PM; LAE

    1995-01-01

    GFT-compost, afkomstig van gescheiden ingezameld huishoudelijk afval, voldoet in de regel niet aan de kwaliteitseisen van zeer schone compost (AmvB BOOM). In het component-onderzoek wordt nagegaan of de belastende stoffen afkomstig zijn van bepaalde componenten in GFT, zodat deze componenten eventueel buiten de gescheiden inzameling van GFT kunnen worden gehouden. Voor elk onderzocht composteerbedrijf is het gemiddelde metaalgehalte in GFT-compost gerelateerd aan de normen voor schone en zeer...

  16. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    International Nuclear Information System (INIS)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup; Kim, Dong-Ho

    2007-01-01

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10 5 to 10 7 CFU/ml and 0 to 10 3 CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10 2 CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10 7 CFU/g) were eliminated by irradiation at 3 kGy. Approximate D 10 values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts

  17. Passively Aerated Composting of Straw-Rich Organic Pig Manure

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Szanto, G.; Hamelers, H.V.M.

    2002-01-01

    In this study pig manure from organic farming systems is composted with passive aeration. Effectiveness of the composting process strongly depended on the density of the compost. Best results were observed at a density of 700 kg/m3, where both aerobic degradation and drying were adequate and

  18. The effects of compost prepared from waste material of banana plants on the nutrient contents of banana leaves.

    Science.gov (United States)

    Doran, Ilhan; Sen, Bahtiyar; Kaya, Zülküf

    2003-10-01

    In this study, the possible utilization of removed shoots and plant parts of banana as compost after fruit harvest were investigated. Three doses (15-30-45 kg plan(-1)) of the compost prepared from the clone of Dwarf Cavendish banana were compared with Farmyard manure (50 kg plant(-1), Mineral fertilizers (180 g N + 150 g P + 335 g K plant(-1)) and Farmyard manure + Mineral fertilizers (25 kg FM + 180 g N + 150 g P + 335 g K plant(-1)) which determined positive effects on the nutrient contents of banana leaves. The banana plants were grown under a heated glasshouse and in a soil with physical and chemical properties suitable for banana growing. The contents of N, P, K and Mg in compost and in farmyard manure were found to be similar. Nitrogen, phosphorus and potassium contents of leaves in all applications except control, and Ca, Mg, Fe, Zn, Mn, Cu contents in all applications were determined between optimum levels of reference values. There were positive correlations among some nutrient contents of leaves, growth, yield and fruit quality characteristics. Farmyard manure, Farmyard manure + Mineral fertilizers and 45 kg plant(-1) of compost increased the nutrient contents of banana leaves. According to obtained results, 45 kg plant(-1) of compost was determined more suitable in terms of economical production and organic farming than the other fertiliser types.

  19. Composting and comerzialization of compost from organic wastes in Vitoria- Gasteiz (Spain); Estrategia de compostaje y comercializacion de compost de la fraccion organica de RSU para Vitoria-Gastez

    Energy Technology Data Exchange (ETDEWEB)

    Gil Franco, R.; Cebrian Otsoa, M.

    1997-12-31

    In the experience of the selective recovery in Vitoria-Gasteiz, were obtained a seria of conclusions about the best way to made the composting of the MSM`s organic part, alone or mixed with water treatment sludges, in addition to the possible actions in order to commercialize the obtained compost. (Author)

  20. Biopesticide effect of green compost against fusarium wilt on melon plants.

    Science.gov (United States)

    Ros, M; Hernandez, M T; Garcia, C; Bernal, A; Pascual, J A

    2005-01-01

    The biopesticide effect of four green composts against fusarium wilt in melon plants and the effect of soil quality in soils amended with composts were assayed. The composts consisted of pruning wastes, with or without addition of coffee wastes (3/1 and 4/1, dry wt/dry wt) or urea (1000/1, dry wt/dry wt). In vitro experiments suggested the biopesticide effect of the composts against Fusarium oxysporum, while only the compost of pine bark and urea (1000/1dry wt/dry wt) had an abiotic effect. Melon plant growth with composts and F. oxysporum was one to four times greater than in the non-amended soil, although there was no significant decrease in the level of the F. oxysporum in the soil. The addition of composts to the soil also improved its biological quality, as assessed by microbiological and biochemical parameters: ATP and hydrolases involved in the P (phosphatase), C (beta-glucosidase) and N (urease) cycles. Green composts had greater beneficial characteristics, improved plant growth and controlled fusarium wilt in melon plants. These composts improve the soil quality of semi-arid agricultural soils. Biotic and abiotic factors from composts have been tested as responsible of their biopesticide activity against fusarium wilt.

  1. Aerobic Food Waste Composting: Measurement of Green House Gases

    Science.gov (United States)

    Chung, J.

    2016-12-01

    Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.

  2. Toepassingsmogelijkheden van compostering in de ecologische varkenshouderij : een milieutechnische benadering

    OpenAIRE

    Hilkens, W.

    1993-01-01

    Student report in which the possibilities of composting for a pig farming system in Gemert, The Netherlands, with an ecological basis, are investigated. The process of composting and different composting systems were evaluated

  3. Accelerated In-vessel Composting for Household Waste

    Science.gov (United States)

    Bhave, Prashant P.; Joshi, Yadnyeshwar S.

    2017-12-01

    Composting at household level will serve as a viable solution in managing and treating the waste efficiently. The aim of study was to design and study household composting reactors which would treat the waste at source itself. Keeping this aim in mind, two complete mix type aerobic reactors were fabricated. A comparative study between manually operated and mechanically operated reactor was conducted which is the value addition aspect of present study as it gives an effective option of treatment saving the time and manpower. Reactors were loaded with raw vegetable waste and cooked food waste i.e. kitchen waste for a period of 30 days after which mulch was allowed to mature for 10 days. Mulch was analyzed for its C/N ratio, nitrate, phosphorous, potassium and other parameters to determine compost quality, every week during its period of operation. The results showed that compost obtained from both the reactors satisfied almost all compost quality criteria as per CPHEEO manual on municipal solid waste management and thus can be used as soil amendment to increase the fertility of soil.In terms of knowledge contribution, this study puts forth an effective way of decentralized treatment.

  4. The Early Years: Composting with Children

    Science.gov (United States)

    Ashbrook, Peggy

    2016-01-01

    "Composting" is a way to purposefully use the process of decay to break down organic materials in a location where the resulting mixture can be harvested for enriching garden soil. The large body of literature about the science of composting provides many options for early childhood educators to choose from to incorporate into their…

  5. Passive aeration composting of chicken litter: effects of aeration pipe orientation and perforation size on losses of compost elements.

    Science.gov (United States)

    Ogunwande, Gbolabo A; Osunade, James A

    2011-01-01

    A passive aeration composting study was undertaken to investigate the effects of aeration pipe orientation (PO) and perforation size (PS) on some physico-chemical properties of chicken litter (chicken manure + sawdust) during composting. The experimental set up was a two-factor completely randomised block design with two pipe orientations: horizontal (Ho) and vertical (Ve), and three perforation sizes: 15, 25 and 35 mm diameter. The properties monitored during composting were pile temperature, moisture content (MC), pH, electrical conductivity (EC), total carbon (C(T)), total nitrogen (N(T)) and total phosphorus (P(T)). Moisture level in the piles was periodically replenished to 60% for efficient microbial activities. The results of the study showed that optimum composting conditions (thermophilic temperatures and sanitation requirements) were attained in all the piles. During composting, both PO and PS significantly affected pile temperature, moisture level, pH, C(T) loss and P(T) gain. EC was only affected by PO while N(T) was affected by PS. Neither PO nor PS had a significant effect on the C:N ratio. A vertical pipe was effective for uniform air distribution, hence, uniform composting rate within the composting pile. The final values showed that PO of Ve and PS of 35 mm diameter resulted in the least loss in N(T). The PO of Ho was as effective as Ve in the conservation of C(T) and P(T). Similarly, the three PSs were equally effective in the conservation of C(T) and P(T). In conclusion, the combined effects of PO and PS showed that treatments Ve35 and Ve15 were the most effective in minimizing N(T) loss. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Environmental Aspects Of Home Composting Of Organic Household Waste

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Andersen, Jacob Kragh; Christensen, Thomas Højlund

    2011-01-01

    Six composting units were monitored during a two-year long experimental campaign. Data regarding chemical compositions of waste inputs and outputs, gaseous emissions and leachate productions were collected, organized in mass balances and assessed by means of LCA. The management of the home...... composting unit was very relevant for the environmental performance of home composting, as the turning frequency influence the emissions of CH4 which is the main responsible for potential impacts on global warming. Results showed that overall home composting has low environmental impacts (between -2 and 16 m...

  7. Composting and water pollution; Kompostointi vesistoen kuormittajana

    Energy Technology Data Exchange (ETDEWEB)

    Ettala, M. [Kuopio Univ. (Finland)

    2000-07-01

    The composting of biowaste collected separately is becoming increasingly common. However, numerous structural and operational problems are involved. The study deals with the water and nitrogen balances in composting, demonstrating a substantial nitrogen load on waters due to the practice. (orig.)

  8. Nutritional analysis of some composted and non-composted ...

    African Journals Online (AJOL)

    Student

    2013-05-08

    May 8, 2013 ... Key words: Wood ear mushrooms, fresh and composted agricultural wastes, wheat bran, Kenya. ... substrate, especially the C : N ratio which is attained by getting the right ... was excess water, sun drying was done followed by a squeeze test ..... dependent on free circulation of moisture and air in the.

  9. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    OpenAIRE

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; G?mez, Ignacio; Navarro-Pedre?o, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (ne...

  10. School Compost Programs: Pathways to Success

    Science.gov (United States)

    Schumpert, Kary; Dietz, Cyndra

    2012-01-01

    After the oft-repeated three Rs (reduce, reuse, recycle) comes the lesser-known but equally important fourth R: rot. In this case, rot means compost. Classrooms, schools, and school districts can use a number of methods to establish a compost program. The finished product is a valuable soil amendment that adds fertility to local farmland, school…

  11. Application of Spent Mushroom Compost and Mycorrhiza on Yield and Yield Components of Garlic (Allium sativum L. in the Low Input Cropping System

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2017-10-01

    , manganese and copper and water. In return, the plant provides carbohydrates for the fungi. Materials and methods In order to study the effect of mushroom compost and mycorrhiza on yield of garlic (Allium sativum L., a split plot experiment based on RCBD design with three replications was conducted in 2010-11 growing season in research farm of Ferdowsi University of Mashhad, Iran. Mycorrhiza (Glomus mosseae (use and non-use and spent mushroom compost levels (SMC (0, 20, 40, 60, 80, 100 t ha-1 were considered as the main and sub factors. In order to determine the physic-chemical properties of soil, sampling was done at a depth of 0 to 30 cm. Distance on and between rows was considered 10 and 20 cm, respectively. In order to weeds control, manual weeding was done three times. At the end of the growing season, economic yield, biological yield, plant height, shoot dry weight, bulb diameter, bulblet weight per plant, bulblet volume per plant and bulblet number per plant were measured. Analysis of variance was done with SAS Ver 9.1 software. Result and discussion The results showed that the effect of different levels of mushroom compost was significant on the most studied traits, but mycorrhiza had no significant effect on yield and yield components of garlic. Based on the results, highest diameter and length of the bulb and bulblets were observed in application of 100 t ha-1 SMC. The highest economic yield (12760 kg ha-1 was observed in application of 100 t ha-1 SMC, so that the application of SMC increased economic yield by 48 percent compared to control. The highest dry matter production and harvest index also were observed in application of 100 t ha-1 SMC. Organic and biological fertilizers are among the most significant resources for development of agricultural soil quality and increase in the yield of different medicinal plants. It has been reported that this ecological inputs provide favorable conditions for plant growth and development through improvement of physical

  12. Utilización de compost agotado de champiñón como capa de coberturas en nuevos ciclos de producción Using spent mushroom substrate as casing layers in new growing cycles

    Directory of Open Access Journals (Sweden)

    Arturo Pardo-Giménez

    2010-10-01

    Full Text Available El objetivo de este trabajo fue evaluar el comportamiento agronómico de seis mezclas de cobertura, elaboradas a partir de sustrato postcultivo del champiñón Agaricus bisporus, en nuevos ciclos de cultivo. Los resultados obtenidos mostraron la viabilidad de la reintroducción del sustrato en nuevos ciclos de cultivo, ya sea como material de base único, si se somete a un proceso de lavado para eliminar sales solubles, o bien mezclado con otros materiales de baja conductividad, como es el caso de la turba rubia o la fibra de coco. Se destacan los altos valores de eficiencia biológica registrados, que llegaron hasta los 100 kg kg-1 de compost, similares a los proporcionados por los testigos, y los altos valores relativos observados (con respecto a los testigos en el contenido en materia seca de los carpóforos cosechados con algunas de las nuevas coberturas elaboradas. Esta reutilización del compost constituye una alternativa interesante, con vistas a reemplazar a las tierras y a los sustratos orgánicos utilizados habitualmente como cobertura, con la doble ventaja de disminuir los costos de elaboración y el impacto ambiental.The objective of this work was to evaluate the agronomic behaviour of six mixtures of casing, prepared from spent mushroom substrate (SMS, in new production cycles of Agaricus bisporus. The results obtained showed the feasibility of reuse of the SMS in new cultivation cycles when used alone by submitting it to a washing process to remove soluble salts, or mixed with other materials of low conductivity, such as Sphagnum peat or coconut fiber pith. The high values of biological efficiency recorded up to 100 kg kg-1 compost, similar to that of the controls, and the same high values observed in the dry matter content of the mushrooms harvested with some of the new casing layers prepared must be highlighted. The suggested use for SMS is an important alternative to consider, in order to replace soils and other organic

  13. Evaluation of Composting and the Quality of Compost from the ...

    African Journals Online (AJOL)

    Michael Horsfall

    3Addis Ababa University, Faculty of Sciences, Environmental Science Program, P.O.Box:1176, Addis ... practices of solid waste management of the city. ..... Basic Principles for composting of ... (http://www.extension.umn.edu/distribution/natu.

  14. Influencia de la materia orgánica y Azotobacter nigricans en un cultivo de Stevia rebaudiana B

    Directory of Open Access Journals (Sweden)

    Daniel Borda-Molina

    2011-12-01

    Full Text Available Influence of organic matter and Azotobacter nigricans on a Stevia rebaudiana B. plantation Stevia rebaudiana is a plant thataccumulates a non-caloric sweetener compound known as stevioside. This crop is traditionally fertilized with chemicals that areharmful for the ecosystem, forcing to find organic alternatives to mitigate this damage. Objective. To study the effect of organic matterand an Azotobacter nigricans-based bio-fertilizer on a Stevia rebaudiana plantation grown in acidic soil in the Department of Meta,Colombia. Materials and methods. Five treatments were established: T1 and T2 with the application of home organic waste compostat concentrations of 15 and 30 ton ha-1. T3 and T4 with the same compost concentrations and inoculating the A. nigricans bio-fertilizer.T5 contained the bio-fertilizer alone. The control consisted of the application of the Bokashi compost under the usual conditions ofcultivation. Plant growth was assessed by biomass increase measured as dry weight, production, and leaf area. The physicochemicalanalysis of soil included: percentage of organic carbon, water content, and pH. Results. The inoculation of the bio-fertilizer produced an increase in the rate of mineralization of compost, reaching a final 4.85% of OC between 90 and 180 days after inoculation. There were significant (p< 0.05 differences between biomass production with T2 (1,538 kg ha-1 and the control (477 kg ha-1. Regarding the soluble solid content, T1, T3 and T4 showed the highest °Brix values (12.4, 12.35 and 12.15, respectively. Conclusions. The concentration of 30 ton ha-1 produced the highest biomass production and the application of the biofertilizer showed a positive correlation with compost mineralization and glucoside synthesis.

  15. Ozone aeration impact on the maturation phase in the process of green waste composting

    Directory of Open Access Journals (Sweden)

    Gliniak Maciej

    2018-01-01

    Full Text Available The paper presents work results on optimization of stabilization phase in the biomass composting process. In these studies, it was examined the influence of two doses of ozone (10 and 20 mgO3·dm-3 in the air used for aeration of stabilization. The results showed the ability to reduce compost maturation time by more than 50%. Application of these ozone doses resulted in a reduction of organic matter content in the stabilizer by 30 to 60%, while reduction of moisture in the material by 20%.

  16. A process-based model for cattle manure compost windrows: Model performance and application

    Science.gov (United States)

    A model was developed and incorporated in the Integrated Farm System Model (IFSM, v.4.3) that simulates important processes occurring during windrow composting of manure. The model, documented in an accompanying paper, predicts changes in windrow properties and conditions and the resulting emissions...

  17. Legionella spp. in UK composts--a potential public health issue?

    Science.gov (United States)

    Currie, S L; Beattie, T K; Knapp, C W; Lindsay, D S J

    2014-04-01

    Over the past 5 years, a number of cases of legionellosis in Scotland have been associated with compost use; however, studies investigating sources of infection other than water systems remain limited. This study delivers the first comprehensive survey of composts commonly available in the UK for the presence of Legionella species. Twenty-two store-bought composts, one green-waste compost and one home-made compost were tested for Legionella by culture methods on BCYE-α medium, and the findings were confirmed by macrophage infectivity potentiator (mip) speciation. Twenty-two of the samples were retested after an enrichment period of 8 weeks. In total, 15 of 24 composts tested positive for Legionella species, a higher level of contamination than previously seen in Europe. Two isolates of Legionella pneumophila were identified, and Legionella longbeachae serogroup 1 was found to be one of the most commonly isolated species. L. longbeachae infection would not be detected by routine Legionella urinary antigen assay, so such testing should not be used as the sole diagnostic technique in atypical pneumonia cases, particularly where there is an association with compost use. The occurrence of Legionella in over half of the samples tested indicates that compost could pose a public health risk. The addition of general hygiene warnings to compost packages may be beneficial in protecting public health. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  18. Reduction of pathogenic bacteria in organic compost using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hye-Jeong; Lim, Sang-Yong; Song, Hyun-Pa; Kim, Byung-Keun; Chung, Byung-Yeoup [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of); Kim, Dong-Ho [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Chonbuk, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2007-11-15

    Organic compost is a useful fertilizer for organic farming. However, it poses a microbiological hazard to the farm products because most of the composts are originated from excremental matters of domestic animals. In this study, the radiation treatment was performed to improve microbiological safety of organic compost and the effectiveness of gamma irradiation for inactivating Salmonella Typhimurium and Escherichia coli was investigated. The total aerobic and coliform bacteria in the 16 commercial composts were ranged from 10{sup 5} to 10{sup 7} CFU/ml and 0 to 10{sup 3} CFU/ml, respectively. All coliform bacteria in the composts were eliminated by irradiation at a dose of 3 kGy, while about 10{sup 2} CFU/ml of the total aerobic bacteria were survived up to 10 kGy. In the artificial inoculation test, the test organisms (inoculated at 10{sup 7} CFU/g) were eliminated by irradiation at 3 kGy. Approximate D{sub {sub 1}{sub 0}} values of Salmonella Typhimurium and E. coli in the compost were 0.40 and 0.25 kGy, respectively. In the cultivation test, the test organisms of the compost had transfer a lettuce leaves. The growth pattern of lettuce was not different between irradiated and non-irradiated composts.

  19. Reproducibility of suppression of Pythium wilt of cucumber by compost

    Directory of Open Access Journals (Sweden)

    Mauritz Vilhelm Vestberg

    2014-10-01

    Full Text Available There is increasing global interest in using compost to suppress soil-borne fungal and bacterial diseases and nematodes. We studied the reproducibility of compost suppressive capacity (SC against Pythium wilt of cucumber using nine composts produced by the same composting plant in 2008 and 2009. A bioassay was set up in a greenhouse using cucumber inoculated with two strains of Pythium. The composts were used as 20% mixtures (v:v of a basic steam-sterilized light Sphagnum peat and sand (3:1, v:v. Shoot height was measured weekly during the 5-week experiment. At harvest, the SC was calculated as the % difference in shoot dry weight (DW between non-inoculated and inoculated cucumbers. The SC was not affected by year of production (2008 or 2009, indicating reproducibility of SC when the raw materials and the composting method are not changed. Differences in shoot height were not as pronounced as those for shoot DW. The results were encouraging, but further studies are still needed for producing compost with guaranteed suppressiveness properties.

  20. Effect of compost and humic acid in mobility and concentration of cadmium and chromium in soil and plant

    Directory of Open Access Journals (Sweden)

    A. Chaab

    2016-12-01

    Full Text Available The effect of compost and humic acid in mobility and concentration of cadmium and chromium in contaminated soil were investigated. Experiment was carried out with three levels of soil cadmium and chromium and two organic matters (compost and humic acid. The study was performed in a randomized complete block design with 3 replicates. Results indicated that application of organic substances enhanced movement of cadmium and chromium in soil column. Humic acid is more effective than compost on the mobility of cadmium and chromium in soil. Mobility of cadmium and chromium in the lower depths of soil column were increased. Cadmium and chromium concentration in shoots and roots enhanced due to increasing those concentration in soil and application of organic substances. Increase in cadmium in shoots can be attributed to the high mobility of this element in maize plant. Maize root chromium concentration was greater than shoot chromium concentration. Humic acid was more effective than compost as cadmium and chromium concentration in root and shoot was concerned. Low mobility of chromium in plant and accumulation of chromium in roots can be reasons of decreasing of chromium concentration in shoot of plant and its bioaccumulation.

  1. Characterization of composting mixtures and compost of rabbit by-products to obtain a quality product and plant proposal for industrial production.

    Science.gov (United States)

    Bianchi, Biagio; Papajova, Ingrid; Tamborrino, Rosanna; Ventrella, Domenico; Vitti, Carolina

    2015-01-01

    In this study we have observed the effects of using rabbit manure and slaughtering by-products in a composting process. Three piles of this material, 4700 kg each, with different amount and C/N ratio, have been investigated and experimental tests were carried out in an industrial horizontal axe reactor using a prototype of turning machine. The composting time lasted 85 days; 2 experimental cycles were conducted: one in Winter and one in Summer. In the Winter test, mesophilic reaction started only in the control mixture (animal manure + slaughtering by-products without straw). It is noteworthy that, the 3 investigated mixtures produced soil amendment by compost with good agronomical potential but with parameters close to the extreme limits of the law. In the Summer test, there was thermophilic fermentation in all mixtures and a better quality compost was obtained, meeting all the agronomic and legislative constraints. For each pile, we examined the progression of fermentation process and thus the plant limitations that did not allow a correct composting process. The results obtained in this study are useful for the development of appropriate mixtures, machines, and plants assuring continuance and reliability in the composting of the biomass coming from rabbit industry.

  2. Effects of Sludge Compost on EC value of Saline Soil and Plant Height of Medicago

    Science.gov (United States)

    Sun, Chongyang; Zhao, Ke; Chen, Xing; Wang, Xiaohui

    2017-12-01

    In this study, the effects of sludge composting on the EC value of saline soil and the response to Medicago plant height were studied by planting Medicago with pots for 45 days in different proportions as sludge composting with saline soil. The results showed that the EC value of saline soil did not change obviously with the increase of fertilization ratio,which indicated that the EC value of saline soil was close to that of the original soil. The EC decreased by 31.45% at fertilization ratio of 40%. The height of Medicago reached the highest at 40% fertilization ratio, and that was close to 60% fertilization ratio, and the difference was significant with other treatments. By comprehensive analyse and compare,the optimum application rate of sludge compost was 40% under this test condition.

  3. Delayed addition of nitrogen-rich substrates during composting of municipal waste: Effects on nitrogen loss, greenhouse gas emissions and compost stability.

    Science.gov (United States)

    Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas

    2017-01-01

    Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting.

    Science.gov (United States)

    Liu, Ling; Wang, Shuqi; Guo, Xiaoping; Zhao, Tingning; Zhang, Bolin

    2018-03-01

    A comprehensive characterization of the bacterial diversity associated to thermophilic stages of green waste composting was achieved. In this study, eight different treatments (T1-T8) and three replicated lab-scale green waste composting were carried out to compare the effect of the cellulase (i.e. 0, 2%), microbial inoculum (i.e. 0, 2 and 4%) and particle size (i.e. 2 and 5 mm) on bacterial community structure. Physicochemical properties and bacterial communities of T1-T8 composts were observed, and the bacterial structure and diversity were examined by high-throughput sequencing via a MiSeq platform. The results showed that the most abundant phyla among the treatments were the Firmicutes, Chloroflexi and Proteobacteria. The shannon index and non-metric multidimensional scaling (NMDS) showed higher bacterial abundance and diversity at the metaphase of composting. Comparing with 5-mm treatments, particle size of 2-mm had a richer diversity of bacterial communities. The addition of cellulase and a microbial inoculum could promote the fermentation temperature, reduce the compost pH and C/N ratio and result in higher GI index. The humic substance (HS) and humic acid (HA) contents for 2-mm particle size treatments were higher than those of 5-mm treatments. Canonical correspondence analysis suggested that differences in bacterial abundance and diversity significantly correlated with HA, E 4 /E 6 and temperature, and the relationship between bacterial diversity and environmental parameters was affected by composting stages. Based on these results, the application of cellulase to promote green waste composting was feasible, and particle size was identified as a potential control of composting physicochemical properties and bacterial diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. In-Vessel Co-Composting of Food Waste Employing Enriched Bacterial Consortium.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Wang, Meijing; Chen, Hongyu; Ren, Xiuna; Zhao, Junchao; Zhang, Zengqiang

    2018-03-01

    The aim of the present study is to develop a good initial composting mix using a bacterial consortium and 2% lime for effective co-composting of food waste in a 60-litre in-vessel composter. In the experiment that lasted for 42 days, the food waste was first mixed with sawdust and 2% lime (by dry mass), then one of the reactors was inoculated with an enriched bacterial consortium, while the other served as control. The results show that inoculation of the enriched natural bacterial consortium effectively overcame the oil-laden co-composting mass in the composter and increased the rate of mineralization. In addition, CO 2 evolution rate of (0.81±0.2) g/(kg·day), seed germination index of (105±3) %, extractable ammonium mass fraction of 305.78 mg/kg, C/N ratio of 16.18, pH=7.6 and electrical conductivity of 3.12 mS/cm clearly indicate that the compost was well matured and met the composting standard requirements. In contrast, control treatment exhibited a delayed thermophilic phase and did not mature after 42 days, as evidenced by the maturity parameters. Therefore, a good composting mix and potential bacterial inoculum to degrade the oil are essential for food waste co-composting systems.

  6. In-Vessel Co-Composting of Food Waste Employing Enriched Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi

    2018-01-01

    Full Text Available The aim of the present study is to develop a good initial composting mix using a bacterial consortium and 2 % lime for effective co-composting of food waste in a 60-litre in-vessel composter. In the experiment that lasted for 42 days, the food waste was first mixed with sawdust and 2 % lime (by dry mass, then one of the reactors was inoculated with an enriched bacterial consortium, while the other served as control. The results show that inoculation of the enriched natural bacterial consortium effectively overcame the oil-laden co-composting mass in the composter and increased the rate of mineralization. In addition, CO2 evolution rate of (0.81±0.2 g/(kg·day, seed germination index of (105±3 %, extractable ammonium mass fraction of 305.78 mg/kg, C/N ratio of 16.18, pH=7.6 and electrical conductivity of 3.12 mS/cm clearly indicate that the compost was well matured and met the composting standard requirements. In contrast, control treatment exhibited a delayed thermophilic phase and did not mature after 42 days, as evidenced by the maturity parameters. Therefore, a good composting mix and potential bacterial inoculum to degrade the oil are essential for food waste co-composting systems.

  7. Composting of sugar cane bagasse by Bacillus strains

    African Journals Online (AJOL)

    mamita

    2017-01-18

    Jan 18, 2017 ... The inoculated composts presented higher enzymatic activities than control compost, .... bacteria were determined by the plate pouring technique using ..... emissions of carbon dioxide, ammonia and nitrous oxide from.

  8. El cultivo de la uchuva (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Lucy Marley Ruiz Gaitan

    2018-04-01

    Full Text Available La uchuva (Physalis peruviana L., es una planta herbácea que tiene una amplia distribución en américa del sur, actualmente se cultiva en Perú, Colombia, Bolivia, Ecuador, California, Sudáfrica, Kenia, Egipto, el Caribe, Asia, Hawái y Costa Rica. Colombia se ha situado cómo el mayor productor y exportador a nivel mundial lo que hace que el cultivo de la uchuva se destaque como un potencial de desarrollo promisorio para las diferentes regiones productoras del país, esto se debe a los excelentes precios del mercado extranjero y la viabilidad de la fruta en pos cosecha. La uchuva es un cultivo que requiere labores agronómicas tales como la poda, fertilización, tutorado, y además de esto condiciones ambientales determinadas para su óptimo desarrollo. Los distintos derivados de esta baya se comercializan con facilidad además de todos los beneficios que aportan al cuerpo. Palabras clave: Cultivo, uchuva, exportación, labores agronómicas.

  9. Degradation of morphine in opium poppy processing waste composting.

    Science.gov (United States)

    Wang, Yin Quan; Zhang, Jin Lin; Schuchardt, Frank; Wang, Yan

    2014-09-01

    To investigate morphine degradation and optimize turning frequency in opium poppy processing waste composting, a pilot scale windrow composting trial was run for 55 days. Four treatments were designed as without turning (A1), every 5 days turning (A2), every 10 days turning (A3) and every 15 days turning (A4). During composting, a range of physicochemical parameters including the residual morphine degradation, temperature, pH, and the contents of total C, total N, total P and total K were investigated. For all treatments, the residual morphine content decreased below the detection limit and reached the safety standards after day 30 of composting, the longest duration of high temperature (⩾50 °C) was observed in A3, pH increased 16.9-17.54%, total carbon content decreased 15.5-22.5%, C/N ratio reduced from 46 to 26, and the content of total phosphorus and total potassium increased slightly. The final compost obtained by a mixture of all four piles was up to 55.3% of organic matter, 3.3% of total nutrient (N, P2O5 and K2O) and 7.6 of pH. A turning frequency of every ten days for a windrow composting of opium poppy processing waste is recommended to produce homogenous compost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Intelligent composting assisted by a wireless sensing network.

    Science.gov (United States)

    López, Marga; Martinez-Farre, Xavier; Casas, Oscar; Quilez, Marcos; Polo, Jose; Lopez, Oscar; Hornero, Gemma; Pinilla, Mirta R; Rovira, Carlos; Ramos, Pedro M; Borges, Beatriz; Marques, Hugo; Girão, Pedro Silva

    2014-04-01

    Monitoring of the moisture and temperature of composting process is a key factor to obtain a quality product beyond the quality of raw materials. Current methodologies for monitoring these two parameters are time consuming for workers, sometimes not sufficiently reliable to help decision-making and thus are ignored in some cases. This article describes an advance on monitoring of composting process through a Wireless Sensor Network (WSN) that allows measurement of temperature and moisture in real time in multiple points of the composting material, the Compo-ball system. To implement such measurement capabilities on-line, a WSN composed of multiple sensor nodes was designed and implemented to provide the staff with an efficient monitoring composting management tool. After framing the problem, the objectives and characteristics of the WSN are briefly discussed and a short description of the hardware and software of the network's components are presented. Presentation and discussion of practical issues and results obtained with the WSN during a demonstration stage that took place in several composting sites concludes the paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Bioremediation of oil-contaminated soils by composting

    Science.gov (United States)

    Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.

    2009-08-01

    Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.

  12. Effect of simultaneous application of mycorrhiza with compost, vermicompost and sulfural geranole on some quantitative and qualitative characteristics of sesame (Sesamum indicum L. in a low input cropping system

    Directory of Open Access Journals (Sweden)

    P rezvani moghaddam

    2016-03-01

    Full Text Available Introduction In recent years, by increasing human knowledge and using different technology on food production, human concerns have increased on safety of food products especially medicinal crops. In order to achieve healthy food production, application of ecological inputs such as organic and biological fertilizers are inevitable. Organic fertilizers are fertilizer compounds that contain one or more kinds of organic matter. They can improve the soil ability to hold water and nutrients. They create a beneficial environment for earthworms and microbial organisms that break the soil down into rich, fine humus (Motta & Magggiore, 2013. Compost is organic matter that has been decomposed and recycled as a fertilizer and soil amendment. Compost can greatly enhance the physical structure of soil. The addition of compost may provide greater drought resistance and more efficient water utilization. Vermicompost is the final product of composting organic material using different types of worms, such as red wigglers or earthworms, to create a homogenized blend of decomposed vegetable and food waste, bedding materials and manure. Vermicompost helps store nutrients and keeps them safe from leaching and irrigation, functioning to balance hormones within plant physiology, and adding beneficial biology to soil (Raja Sekar & Karmegan, 2010. Mycorrhiza arbuscular fungi are other coexist microorganisms that improves soil fertility, nutrients cycling and agroecosystem health. Mycorrhizal fungi are the most abundant organisms in agricultural soils. Many researchers have pointed to the positive roles of mycorrhizal fungi on plants growth characteristics. Despite of many researches on the effect of organic and biological fertilizers on different crops, information on the effects of these fertilizers for many medicinal plants is scarce, therefore, in this study the effect of simultaneous application of mycorrhiza with compost, vermicompost and sulfural geranole on some

  13. Struvite for composting of agricultural wastes with termite mound: Utilizing the unutilized.

    Science.gov (United States)

    Karak, Tanmoy; Sonar, Indira; Nath, Jyoti Rani; Paul, Ranjit Kumar; Das, Sampa; Boruah, Romesh Kumar; Dutta, Amrit Kumar; Das, Kuntal

    2015-01-01

    Although, compost is the store house of different plant nutrients, there is a concern for low amount of major nutrients especially nitrogen content in prepared compost. The present study deals with preparation of compost by using agricultural wastes with struvite (MgNH4PO4·6H2O) along with termite mound. Among four composting mixtures, 50kg termite mound and 2.5kg struvite with crop residues (stover of ground nut: 361.65kg; soybean: 354.59kg; potato: 357.67kg and mustard: 373.19kg) and cow dung (84.90kg) formed a good quality compost within 70days of composting having nitrogen, phosphorus and potassium as 21.59, 3.98 and 34.6gkg(-1), respectively. Multivariate analysis of variance revealed significant differences among the composts. The four composts formed two (pit 1, pit 2 and pit 3, pit 4) different groups. Two principal components expressed more than 97% of the total variability. Hierarchical cluster analysis resulted two homogeneous groups of composts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. [Effect of composting organic fertilizer supplies on hexachlorobenzene dechlorination in paddy soils].

    Science.gov (United States)

    Liu, Cui-Ying; Jiang, Xin

    2013-04-01

    A rice pot experiment was conducted in two soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). Three treatments including control and additions of 1% or 2% composting organic fertilizer were designed for each soil. The objective of this research was to evaluate the reductive dechlorination of hexachlorobenzene (HCB) as affected by organic fertilizer supplies in planted paddy soils, and to analyze the relationship between methane production and HCB dechlorination. The results showed that the HCB residues were decreased by 28.6%-30.1% of the initial amounts in Ac, and 47.3% -61.0% in An after 18 weeks of experiment. The amount of HCB and its metabolite uptake by rice plants was only a few thousandths of the initial HCB amount in soils. The main product of HCB dechlorination was pentachlorobenzene (PeCB). The rates of HCB dechlorination in An were higher than those in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. The applications of both 1% and 2% composting organic fertilizer showed significant inhibition on PeCB production after the 6th and 10th week in Ac and An, respectively. In both tested soils, no significant difference of PeCB production rates was observed between the applications of 1% and 2% composting organic fertilizer. The role of methanogenic bacteria in HCB dechlorination was condition-dependent.

  15. Cultivo de las microalgas dulceacuícolas Kirchneriella obesa, Scenedesmus quadricauda y Chlorococcum infusorium empleando tres medios de cultivo

    Directory of Open Access Journals (Sweden)

    A. A. Ortega-Salas

    2012-01-01

    Full Text Available Se cultivaron las microalgas dulceacuícolas Kirchneriella obesa (G. S. West Schmidle 1893, Scenedesmus quadricauda (Chodat, Turpin Bréb 1835 y Chlorococcum infusorium (Schrank Meneghini 1842, con el propósito comparar las tasas de crecimiento y su rendimiento en tres medios de cultivo, el F/2 de Guillard, Fert I y Fert II. El agua utilizada se pasó en filtros de cinco, uno y 0.45 mm, y se trató con luz ultravioleta. La temperatura varió de 24 a 25°C. Se cultivaron en un sistema de volumen creciente a partir de recipientes de 62.5 mL, duplicando el medio de cultivo cada 24 h, con el fin de completar 32 L en nueve días. Cada 24 h se obtuvieron tres muestras de 1 a 10 mL del cultivo, se preservaron en una solución de lugol y se calculó la concentración de las microalgas cada 24 h. El número total de células de las tres especies aumentó de manera exponencial hasta el final de los experimentos en los medios de cultivo F/2 y Fert I; esto no fue así con el medio Fert II, en el cual la tasa de duplicación y el número total de divisiones fueron más bajas. El medio F/2 y el Fert I ofrecieron mejores resultados que el Fert II. Los medios Fert I y Fert II tienen un valor económico más bajo que el medio F/2. El crecimiento y el rendimiento fueron mejores con el medio F/2, seguido por FI y FII.

  16. Effect of commercial mineral-based additives on composting and compost quality.

    Science.gov (United States)

    Himanen, M; Hänninen, K

    2009-08-01

    The effectiveness of two commercial additives meant to improve the composting process was studied in a laboratory-scale experiment. Improver A (sulphates and oxides of iron, magnesium, manganese, and zinc mixed with clay) and B (mixture of calcium hydroxide, peroxide, and oxide) were added to source-separated biowaste:peat mixture (1:1, v/v) in proportions recommended by the producers. The composting process (T, emissions of CO(2), NH(3), and CH(4)) and the quality of the compost (pH, conductivity, C/N ratio, water-soluble NH(4)-N and NO(3)-N, water- and NaOH-soluble low-weight carboxylic acids, nutrients, heavy metals and phytotoxicity to Lepidium sarivum) were monitored during one year. Compared with the control, the addition of improver B increased pH by two units, led to an earlier elimination of water-soluble ammonia, an increase in nitrates, a 10-fold increase in concentrations of acetic acid, and shortened phytotoxicity period by half; as negative aspect it led to volatilization of ammonia. The addition of improver A led to a longer thermophilic stage by one week and lower concentrations of low-weight carboxylic acids (both water- and NaOH-extractable) with formic and acetic of similar amounts, however, most of the aspects claimed by the improver's producer were not confirmed in this trial.

  17. Windrow composting as an option for disposal and utilization of dead birds

    Directory of Open Access Journals (Sweden)

    G. Vinodkumar

    2014-06-01

    Full Text Available Aim: The present study was undertaken to ascertain the feasibility of windrow composting as an environmentally safe and bio-secure disposal method of poultry manure and mortalities. Materials and Methods: Poultry dead birds and cage layer manure were collected from the commercial poultry farms and coir pith was obtained from coir fiber extraction unit. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated. Two treatment windrow groups (T1- Dead birds + Cage layer manure + Coir pith, T2- Cage layer manure + Coir pith in replication were fabricated. Physical chemical and biological parameters of compost were analyzed. Results: Temperature profile ensured maximum pathogen and parasite reduction. Reduction in moisture content, weight, volume, total organic carbon, and progressive increase in total ash, calcium, phosphorus and potassium content as the composting proceeded, were indicative of organic matter degradation and mineralization. Favourable C:N ratio and germination index indicated compost maturity and absence of any phytotoxins in finished compost. The finished compost had undetectable level of Salmonella. There was no odour and fly menace throughout the composting experiment. Conclusion: Windrow composting of poultry waste can be considered as a biologically and environmentally safe disposal option with recycling of nutrients in the form of compost.

  18. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    Science.gov (United States)

    Galitskaya, Polina; Biktasheva, Liliya; Saveliev, Anatoly; Grigoryeva, Tatiana; Boulygina, Eugenia; Selivanovskaya, Svetlana

    2017-01-01

    Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil) and one discriminate component (sewage sludges of different origin) were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2) x 106 and (0.4±0.0) x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0) x105 and (6.1±0.2) x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was concluded that the

  19. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Polina Galitskaya

    Full Text Available Composting is viewed as one of the primary methods to treat organic wastes. Co-composting may improve the efficiency of this treatment by establishing the most suitable conditions for decomposers than those present in the individual wastes. Given that bacteria and fungi are the driving agents of composting, information about the composition of their communities and dynamics during composting may improve reproducibility, performance and quality of the final compost as well as help to evaluate the potential human health risk and the choice of the most appropriate application procedure. In this study, the co-composting of mixtures containing two similar components (organic fraction of municipal solid waste and sawdust polluted by oil and one discriminate component (sewage sludges of different origin were investigated. Bacterial and fungal community successions in the two mixtures were analyzed during the composting process by determining the change in their structural dynamics using qPCR and 454 pyrosequencing methods in a lab experiment for a period of 270 days. During the initial composting stage, the number of 16S bacterial copies was (3.0±0.2 x 106 and (0.4±0.0 x 107 g-1, and the Rhodospiralles and Lactobacialles orders dominated. Fungal communities had (2.9±0.0 x105 and (6.1±0.2 x105 ITS copies g-1, and the Saccharomycetales order dominated. At the end of the thermophilic stage on the 30th day of composting, bacterial and fungal communities underwent significant changes: dominants changed and their relative abundance decreased. Typical compost residents included Flavobacteriales, Chitinophagaceae and Bacterioidetes for bacteria and Microascaceae, Dothideomycetes, Eurotiomycetes, Sordariomycetes, and Agaricomycetes for fungi. During the later composting stages, the dominating taxa of both bacterial and fungal communities remained, while their relative abundance decreased. In accordance with the change in the dominating OTUs, it was

  20. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    Science.gov (United States)

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of the raw materials and mixing ratio of composted wastes on the dynamic of organic matter stabilization and nitrogen availability in composts of Sub-Saharan Africa.

    Science.gov (United States)

    Kaboré, Théodore Wind-Tinbnoma; Houot, Sabine; Hien, Edmond; Zombré, Prosper; Hien, Victor; Masse, Dominique

    2010-02-01

    The effect of raw materials and their proportions in initial mixtures on organic matter (OM) stabilization and nitrogen (N) availability during pit composting in Sub-Saharan Africa was assessed using biochemical fractionation and laboratory incubations to characterize composts sampled throughout the composting process. Stabilization of OM occurred more rapidly in mixtures with slaughter-house wastes, it was progressive in mixture with household refuses while tree leaves compost remained unstable. Carbon mineralization from compost samples was positively correlated to water soluble and hemicellulose-like organic fractions. Mixtures containing large proportions of household refuses reached the highest stability and total N but available N remained weak. Slaughter-house wastes in the initial mixtures made possible to reach good OM stabilization and the largest N availability. The nature of initial mixing influenced composting parameters, OM stabilization and N availability. It is suggested mixing household refuses and slaughter-house wastes with tree leaves to reach better amending and fertilizer qualities of composts.

  2. Mejora en los calendarios de cultivo para agricultura de secano en ceja de selva

    Directory of Open Access Journals (Sweden)

    Enrique Meseth

    2014-01-01

    Full Text Available Estetrabajo tuvocomo objetivo mejorar el manejo del agua para la agricultura en Vilcabambay similaresregiones en la ceja de selva, mediante eficientes calendarios de cultivo que permitan satisfacer las necesidadesde agua utilizando agricultura de secano, a fin de maximizar el rendimiento de los cultivos. Para ello se llevó acabo dos estudios de campo durante la temporada seca en septiembre de 2012 y la temporada de lluvias enfebrero de 2013 para medir el caudal de ríos y canales; asimismo se analizaron 19 muestras del suelo,presentando texturas franco y franco arenoso. Se utilizó datos delclima, cultivos y suelo para calcular lasnecesidades de agua en los cultivos y las necesidades de riego con el programa Cropwat, indicando que laevapotranspiración de cultivos es baja debido a la humedad y temperatura fría. Los cultivos no requieren riegodurante la temporada de lluvias, dediciembre aabril, sin embargo durante la temporada seca existennecesidades de riego, con una capacidad de flujo máximo de 1,72 l s-1en mayo. La capacidad de flujo puedeser satisfecha por riachuelos y manantiales con caudales de 2 a 6 l s-1en la misma temporada. Los resultadosde la investigación indican que es posible practicar la agricultura de secano, regando la tierra antes de lasiembra para que el rendimiento de los cultivos no sea afectado, caso contrario algunas cosechas comoverduras y papas se reducirían en un 4,7% y 1,4% respectivamente. Para minimizar estos efectos, se sugieresembrar ambos cultivos un mes más tarde de lo acostumbrado, adaptando su periodo de crecimiento a latemporada de lluvias.

  3. Chinese medicinal herbal residues as a bulking agent for food waste composting.

    Science.gov (United States)

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2018-02-01

    This study aimed to co-compost Chinese medicinal herbal residues (CMHRs) as the bulking agent with food waste (FW) to develop a high value antipathogenic compost. The FW, sawdust (SD) and CMHRs were mixed at three different mixing ratios, 5:5:1, 2:2:1 and 1:1:1 on dry weight basis. Lime at 2.25% was added to the composting mix to buffer the pH during the composting. A control without lime addition was also included. The mixtures were composted in 20-L in-vessel composters for 56 days. A maximum of 67.2% organic decomposition was achieved with 1:1:1 mixing ratio within 8 weeks. The seed germination index was 157.2% in 1:1:1 mixing ratio, while other ratios showed compost food waste at the dry weight ratio of 1:1:1 (FW: SD: CMHRs) was recommended for FW-CMHRs composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The distribution of active β-glucosidase-producing microbial communities in composting.

    Science.gov (United States)

    Zang, Xiangyun; Liu, Meiting; Wang, Han; Fan, Yihong; Zhang, Haichang; Liu, Jiawen; Xing, Enlu; Xu, Xiuhong; Li, Hongtao

    2017-12-01

    The composting ecosystem is a suitable source for the discovery of novel microorganisms and secondary metabolites. Cellulose degradation is an important part of the global carbon cycle, and β-glucosidases complete the final step of cellulose hydrolysis by converting cellobiose to glucose. This work analyzes the succession of β-glucosidase-producing microbial communities that persist throughout cattle manure - rice straw composting, and evaluates their metabolic activities and community advantage during the various phases of composting. Fungal and bacterial β-glucosidase genes belonging to glycoside hydrolase families 1 and 3 (GH1 and GH3) amplified from DNA were classified and gene abundance levels were analyzed. The major reservoirs of β-glucosidase genes were the fungal phylum Ascomycota and the bacterial phyla Firmicutes, Actinobacteria, Proteobacteria, and Deinococcus-Thermus. This indicates that a diverse microbial community utilizes cellobiose. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting; there was a shift to Actinomycetes in the maturing stage. Proteobacteria accounted for the highest proportions during the heating and thermophilic phases of composting. By contrast, the fungal phylum Ascomycota was a minor microbial community constituent in thermophilic phase of composting. Combined with the analysis of the temperature, cellulose degradation rate and the carboxymethyl cellulase and β-glucosidase activities showed that the bacterial GH1 family β-glucosidase genes make greater contribution in cellulose degradation at the later thermophilic stage of composting. In summary, even GH1 bacteria families β-glucosidase genes showing low abundance in DNA may be functionally important in the later thermophilic phase of composting. The results indicate that a complex community of bacteria and fungi expresses β-glucosidases in compost. Several

  5. Improvements in a Universal Composting Machine

    Directory of Open Access Journals (Sweden)

    Hristo Beloev

    2015-01-01

    Full Text Available Designed in Bulgaria for the needs of organic, environmentally-friendly and conventional agriculture, the universal composting machine requires to be attached to the front of tractors when being used in aggregates. However, it is rare to find such tractors. What is more, tractors with front – shaft power take almost do not exist. For this reason the universal composting machine is rather limited from a technological point of view despite its capacity and this made it necessary to improve it through the development and testing of a hydraulic power drive system. The purpose of the present study is to discuss the technical and technological changes in the design of the composting machine which have resulted in increased performance under conditions of sustainable agriculture in Bulgaria.

  6. Simple technologies for on-farm composting of cattle slurry solid fraction

    International Nuclear Information System (INIS)

    Brito, L.M.; Mourão, I.; Coutinho, J.; Smith, S.R.

    2012-01-01

    Highlights: ► Simple management techniques were examined for composting slurry solid fraction. ► Composting slurry solids was effective without bulking agents, turning or rewetting. ► Maximum rates of organic matter destruction were observed in short piles. ► Thermophilic temperatures in tall piles maximised sanitation and moisture reduction. ► The simple compost management approach maximised N retention and agronomic value. - Abstract: Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animal slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4 m 3 h −1 and 1 m 3 h −1 and composted in tall (1.7 m) and short (1.2 m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62–64 °C) were measured in tall piles compared to short piles (52 °C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520–660 g kg −1 dry solids and the net loss of OM significantly (P 4 + and increased concentrations of NO 3 - in SF composts. The results indicated that minimum intervention composting of SF in static piles over 168 days can produce agronomically effective organic soil amendments containing significant amounts of OM (772–856 g kg −1 ) and plant nutrients. The

  7. Fertilización de base en un cultivo inicial de pecan con dos marcos de plantación de alta densidad Effect of different fertilization strategies on pecan growth parameters under two high density plantation frames

    Directory of Open Access Journals (Sweden)

    Lidia Giuffré

    2011-07-01

    Full Text Available El pecán, Carya illinoensis Koch, es una especie cuyo fruto es reconocido como un alimento altamente saludable. Su cultivo se encuentra en expansión en la Argentina pero existen muy pocas investigaciones sobre fertilización y sistemas de plantación. Los objetivos del trabajo fueron caracterizar algunas propiedades físico-químicas y químicas de un suelo en el que se inicia un cultivo de pecán, y comparar tratamientos de fertilización de base (FB en dos marcos de plantación de alta densidad (MP. Se realizó una plantación de pecán en Villanueva (provincia de Buenos Aires, sobre un suelo Hapludol taptoárgico, con dos marcos de plantación: 10 x 10 m (marco real: MR y 8 x 8 m (tresbolillo: TR. El diseño del experimento fue en parcelas divididas con cuatro repeticiones. La parcela principal fueron los dos marcos de plantación, y las subparcelas fueron los distintos tratamientos de fertilización base: Compost (C, Fósforo (P, Nitrógeno (N y Control sin fertilización base (T. Las determinaciones para evaluar el crecimiento de las plantas de pecán fueron: la altura de las plantas y el diámetro del tronco. Con respecto a la fertilidad del suelo, la fertilización fosforada y el agregado de compost permitieron aumentar significativamente los niveles de P-Bray. El tratamiento con fertilización orgánica: compost, presentó un incremento significativo en altura de los pecanes en el marco de plantación 8 x 8 m, que no se manifestó en ningún caso en los diámetros del tronco, con una interacción MP x FB significativa (P=0,01 para la variación de altura al primer año. La variación del volumen del árbol durante el año de experimentación no presentó efectos significativos según el marco de plantación ni la fertilización base aplicada.The fruit of the pecan tree, Carya illinoensis Koch, is considered a very healthy food. In Argentina, pecan cultivation has been expanding rapidly but very little research has been conducted on

  8. Steep cut slope composting : field trials and evaluation.

    Science.gov (United States)

    2011-04-01

    Three different depths of compost and five compost retention techniques were tested to determine : their efficacy and cost effectiveness for increasing the establishment of native grass seedings and decreasing : erosion on steep roadside cut slopes i...

  9. Effect of Initial Moisture Content on the in-Vessel Composting Under Air Pressure of Organic Fraction of MunicipalSolid Waste in Morocco

    Directory of Open Access Journals (Sweden)

    Abdelhadi Makan

    2013-01-01

    Full Text Available This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  10. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco.

    Science.gov (United States)

    Makan, Abdelhadi; Assobhei, Omar; Mountadar, Mohammed

    2013-01-03

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts.For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times.This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  11. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    Directory of Open Access Journals (Sweden)

    Mountadar Mohammed

    2013-01-01

    Full Text Available Abstract This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications.

  12. Swine manure composting by means of experimental turning equipment.

    Science.gov (United States)

    Chiumenti, A; Da Borso, F; Rodar, T; Chiumenti, R

    2007-01-01

    The purpose of research was to test the effectiveness of a prototype of a turning machine and to evaluate the feasability of a farm-scale composting process of the solid fraction of swine manure. A qualitative evaluation of the process and final product was made by monitoring the following parameters: process temperature, oxygen concentration inside the biomass, gaseous emissions (CH4, CO2, NH3, N2O), respiration index, humification index, total and volatile solids, carbon and nitrogen, pH and microbial load. The prototype proved to be very effective from a technical-operational point of view. The composting process exhibited a typical time-history, characterised by a thermophilic phase followed by a curing phase [Chiumenti, A., Chiumenti, R., Diaz, L.F., Savage, G.M., Eggerth, L.L., Goldstein, N., 2005. Modern Composting Technologies. BioCycle-JG Press, Emmaus, PA, USA]. Gas emissions from compost the windrow were more intense during the active phase of the process and showed a decreasing trend from the thermophilic to the curing phase. The final compost was characterized by good qualitative characteristics, a significant level of humification [Rossi, L., Piccinini, S., 1999. La qualità agronomica dei compost derivanti da liquami suinicoli. (Agronomic quality of swine manure compost). L'informatore Agrario 38, 29-31] and no odor emissions. This method of managing manure represents an effective, low cost approach that could be an interesting opportunity for swine farms.

  13. Feasibility of Using Phytoextraction to Remediate a Compost-Based Soil Contaminated with Cadmium.

    Science.gov (United States)

    Parisien, Michele A; Rutter, Allison; Zeeb, Barbara A

    2015-01-01

    Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site.

  14. Part project 1. Methods and concepts of biological waste composting. Comparison - evaluation - recommendations; Teilbericht 1. Verfahren und Konzepte der Bioabfallkompostierung. Vergleich - Bewertung - Empfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A; Helm, M; Schoen, H [Bayerische Landesanstalt fuer Landtechnik der Technischen Univ. Muenchen-Weihenstephan (Germany)

    1998-12-31

    Topics of this article are: composting of biological wastes; techniques, operation modes, regional concepts, engineering, hygienical, ecological, economical aspects. (SR) gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Das uebergeordnete Ziel des Weihenstephaner Verbundvorhabens bestand darin, fachliche Grundlagen und Entscheidungshilfen fuer den Bereich der Kompostierung und der Verwertung von biogenen Reststoffen, insbesondere der getrennt erfassten organischen Abfaelle aus den Haushaltungen (Bioabfall), zu schaffen. In diesem Rahmen sollen sowohl verschiedene Verfahren und Techniken der Kompostierung als auch regionale Konzepte hinsichtlich verfahrenstechnischer, hygienischer, oekologischer, oekonomischer und die Entsorgungssicherheit betreffender Aspekte untersucht und bewertet werden. (orig./SR)

  15. Part project 1. Methods and concepts of biological waste composting. Comparison - evaluation - recommendations; Teilbericht 1. Verfahren und Konzepte der Bioabfallkompostierung. Vergleich - Bewertung - Empfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Helm, M.; Schoen, H. [Bayerische Landesanstalt fuer Landtechnik der Technischen Univ. Muenchen-Weihenstephan (Germany)

    1997-12-31

    Topics of this article are: composting of biological wastes; techniques, operation modes, regional concepts, engineering, hygienical, ecological, economical aspects. (SR) gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Das uebergeordnete Ziel des Weihenstephaner Verbundvorhabens bestand darin, fachliche Grundlagen und Entscheidungshilfen fuer den Bereich der Kompostierung und der Verwertung von biogenen Reststoffen, insbesondere der getrennt erfassten organischen Abfaelle aus den Haushaltungen (Bioabfall), zu schaffen. In diesem Rahmen sollen sowohl verschiedene Verfahren und Techniken der Kompostierung als auch regionale Konzepte hinsichtlich verfahrenstechnischer, hygienischer, oekologischer, oekonomischer und die Entsorgungssicherheit betreffender Aspekte untersucht und bewertet werden. (orig./SR)

  16. Onderzoek naar de herkomst van zware metalen en organische stoffen in GFT-compost. Deel I.1 Kwaliteit van GFT-compost

    NARCIS (Netherlands)

    Dekker PM; LAE

    1995-01-01

    GFT-compost, afkomstig van gescheiden ingezameld huishoudelijk afval, voldoet in de regel niet aan de kwaliteitseisen van zeer schone compost (AmvB BOOM). In het component-onderzoek wordt nagegaan of de belastende stoffen afkomstig zijn van bepaalde componenten in GFT, zodat deze componenten

  17. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    Science.gov (United States)

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  18. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity.

    Science.gov (United States)

    Hachicha, Ridha; Rekik, Olfa; Hachicha, Salma; Ferchichi, Mounir; Woodward, Steve; Moncef, Nasri; Cegarra, Juan; Mechichi, Tahar

    2012-07-01

    The co-composting of spent coffee grounds, olive mill wastewater sludge and poultry manure was investigated on a semi-industrial scale. In order to reduce the toxicity of the phenolic fraction and to improve the degree of composting humification, composts were inoculated with the white-rot fungus Trametes versicolor in the early stages of the maturation phase. During composting, a range of physico-chemical parameters (temperature and both organic matter and C/N reduction), total organic carbon, total nitrogen, elemental composition, lignin degradation and spectroscopic characteristics of the humic acids (HAs) were determined; impacts of the composting process on germination index of Hordeum vulgare and Lactuca sativa were assessed. The coffee waste proved to be a highly compostable feedstock, resulting in mature final compost with a germination index of 120% in less than 5 months composting. In addition, inoculation with T. versicolor led to a greater degree of aromatization of HA than in the control pile. Moreover, in the inoculated mixture, lignin degradation was three times greater and HA increased by 30% (P<0.05), compared to the control pile. In the T. versicolor inoculated mixture, the averages of C and N were significantly enhanced in the HA molecules (P<0.05), by 26% and 22%, respectively. This improvement in the degree of humification was confirmed by the ratio of optical densities of HA solutions at 465 and 665 nm which was lower for HA from the treated mixture (4.5) than that from the control pile (5.4). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. EVALUACIÓN DE ABONOS ORGÁNICOS UTILIZANDO COMO INDICADORES PLANTAS DE LECHUGA Y REPOLLO EN POPAYAN, CAUCA

    Directory of Open Access Journals (Sweden)

    JUAN MANUEL MUÑOZ C

    Full Text Available Este estudio tuvo por objeto de evaluar abonos orgánicos provenientes de residuos de cosecha y plazas de mercado de Popayán, utilizando plantas de repollo y lechuga. Se recolectaron residuos de fincas de café y plazas de mercados de Popayán, se elaboraron pilas de compost separadamente y se analizó cada compost para determinar contenido de nutrientes. Se aplicó compost en dos etapas de cultivo como fertilizante. Se utilizó un diseño completamente al azar con tres tratamientos y tres repeticiones, T0: Testigo, sin abono; T1: compost elaborado de pulpa de café, troncho de plátano y gallinaza y T2: compost elaborado con residuos de plazas de mercado. Las pruebas físico-químicas del compost cumplieron la norma NTC 5167 y la diferencia radicó en que T1 es fuente de K y P y T2 de N; la aplicación del compost al suelo mejoró pH, M.O y CIC; la ganancia promedio en peso para los cultivos supero el 300%; los análisis microbiológicos cumplieron los parámetros de INVIMA de control y vigilancia de calidad de productos alimenticios. Se concluyó que los materiales utilizados para producción de compost influyen en las propiedades físico-químicas del abono orgánico y los compostajes cumplieron con 15 parámetros de la norma NTC 5167.

  20. Waste utilization of red snapper (Lutjanus sp.) fish bone to improve phosphorus contents in compost

    Science.gov (United States)

    Ramadhani, S.; Iswanto, B.; Purwaningrum, P.

    2018-01-01

    The purpose of this research is to get the idea that bone waste will be the P content enhancer in compost so that the compost produced meets the standard P levels specified in SNI 19-7030-2004 which regulating compost quality standard. Nutrient levels were obtained in fish bone meal (FBM) are C (3.35%), N (0.48%), P (30.90%) and K (0.02%). Effects of fish bone meal to the rising levels of P in the compost has been known. P levels of compost B, C, D, and E increased at 428.57; 542.85; 657.14 and 914.28% against the compost A (blank). FBM ideal addition indicated in compost B, as much as 15 gr, with a P content of 0.37% and has been passed according standards (0.10% for P). C/N ratio decreased over the 21 days period of composting, with the greatest decline was compost E with a ratio of 16:1. Highest nitrogen (N) levels recorded respectively in compost B and C with value of 1.09% and the lowest of recorded N content was compost A, D and E (1.08%). N content in all samples of compost were eligible minimum N of 0.40%. Carbon (C) is the highest recorded in compost B; 20.20% and the lowest in the compost E; 17.34%. Highest and lowest C levels on the compost has met the minimum C of 9.80%. Composting is done in a bucket as an aerobic composter (with air holes), compost pile turnover for each sample is controlled as much as once/2 days. Mesophilic period (23-450C) occurs during the 21-day period of composting. Compost B has P content of 0.37%, so it has fulfilled the provisions of SNI 19-7030-2004 about the recommended compost standard.

  1. Long-term simulations of water and isoproturon dynamics in a heterogeneous soil receiving different urban waste composts

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine

    2016-04-01

    Implementing various compost amendments and tillage practices has a large influence on soil structure and can create heterogeneities at the plot/field scale. While tillage affects soil physical properties, compost application influences also chemical properties like pesticide sorption and degradation. A long-term field experiment called "QualiAgro" (https://www6.inra.fr/qualiagro_eng/), conducted since 1998 aims at characterizing the agronomic value of urban waste composts and their environmental impacts. A modeling study was carried out using HYDRUS-2D for the 2004-2010 period to confront the effects of two different compost types combined with the presence of heterogeneities due to tillage in terms of water and isoproturon dynamics in soil. A municipal solid waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have been applied to experimental plots and compared to a control plot without any compost addition (CONT). Two wick lysimeters, 5 TDR probes, and 7 tensiometers were installed per plot to monitor water and isoproturon dynamics. In the ploughed layer, four zones with differing soil structure were identified: compacted clods (Δ), non-compacted soil (Γ), interfurrows (IF), and the plough pan (PP). These different soil structural zones were implemented into HYDRUS-2D according to field observation and using measured soil hydraulic properties. Lysimeter data showed (2004 -2010 period) that the CONT plot had the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and SGW plot (979 mm). HYDRUS-2D was able to describe cumulative water outflow after calibration of soil hydraulic properties, for the whole 2004-2010 period with a model efficiency value of 0.99 for all three plots. Isoproturon leaching showed had the largest cumulative value in the CONT plot (21.31 μg) while similar cumulated isoproturon leachings were measured in the SGW (0.663 μg) and MSW (0.245 μg) plots. The model was able to simulate

  2. Composting in small laboratory pilots: Performance and reproducibility

    International Nuclear Information System (INIS)

    Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.; Houot, S.

    2012-01-01

    Highlights: ► We design an innovative small-scale composting device including six 4-l reactors. ► We investigate the performance and reproducibility of composting on a small scale. ► Thermophilic conditions are established by self-heating in all replicates. ► Biochemical transformations, organic matter losses and stabilisation are realistic. ► The organic matter evolution exhibits good reproducibility for all six replicates. - Abstract: Small-scale reactors ( 2 consumption and CO 2 emissions, and characterising the biochemical evolution of organic matter. A good reproducibility was found for the six replicates with coefficients of variation for all parameters generally lower than 19%. An intense self-heating ensured the existence of a spontaneous thermophilic phase in all reactors. The average loss of total organic matter (TOM) was 46% of the initial content. Compared to the initial mixture, the hot water soluble fraction decreased by 62%, the hemicellulose-like fraction by 68%, the cellulose-like fraction by 50% and the lignin-like fractions by 12% in the final compost. The TOM losses, compost stabilisation and evolution of the biochemical fractions were similar to observed in large reactors or on-site experiments, excluding the lignin degradation, which was less important than in full-scale systems. The reproducibility of the process and the quality of the final compost make it possible to propose the use of this experimental device for research requiring a mass reduction of the initial composted waste mixtures.

  3. Solid State Culture Conditions for Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    N.A. Kabbashi

    2012-10-01

    Full Text Available Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginning of the composting process, and decreased considerably to 8.2  103, 8.1  103, 8.5  103, 8.0  103,and 8.4  103 bacteria/g, respectively for experiments T1 to T5. This decrease was presumably the result of raising temperature. The phase of hygienisation was marked by a very significant decrease in the number of E. coli cells (1.8  107, to 3.7  103, 3.8  103, 3.3  103, 3.2  103, and 3.6  103 bacteria/g for T1 to T5 experiments, respectively: A second aspect was the investigation of a possible reduction of hazardous pollutants.  The highest concentration was for Fe and the lowest for Pb, showing that Fe is the most loosely bound to the sewage sludge organic matrix and Pb the most strongly bound, the Cd reduction by composting was more than 50%.Keywords: Sewage sludge, compost, horizontal drum bioreactor, hazardous.

  4. Process of composting; Proceso de compostaje envital

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, D.; Ibanez, E.; Sanchez, F.

    1998-12-31

    Update, the european region uses three methods for Municipal Solid Wastes treatment: landfilling, incineration with energy recovery and composting. This last one is being used more and more lately. This is because of the separated collection that makes easier to give an adequate treatment to the organic fraction of MSW, like composting. (Author)

  5. Diversity of Ammonia Oxidizing Archaea in Tropical Compost Systems

    OpenAIRE

    Vidya eDe Gannes; Gaius eEudoxie; David H Dyer; William James Hickey

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the p...

  6. Universal ligation-detection-reaction microarray applied for compost microbes

    Directory of Open Access Journals (Sweden)

    Romantschuk Martin

    2008-12-01

    Full Text Available Abstract Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities.

  7. Polemics on Ethical Aspects in the Compost Business.

    Science.gov (United States)

    Maroušek, Josef; Hašková, Simona; Zeman, Robert; Žák, Jaroslav; Vaníčková, Radka; Maroušková, Anna; Váchal, Jan; Myšková, Kateřina

    2016-04-01

    This paper focuses on compost use in overpasses and underpasses for wild animals over roads and other similar linear structures. In this context, good quality of compost may result in faster and more resistant vegetation cover during the year. Inter alia, this can be interpreted also as reduction of damage and saving lives. There are millions of tones of plant residue produced every day worldwide. These represent prospective business for manufacturers of compost additives called "accelerators". The opinions of the sale representatives' with regards to other alternatives of biowaste utilization and their own products were reviewed. The robust analyzes of several "accelerated" composts revealed that the quality was generally low. Only two accelerated composts were somewhat similar in quality to the blank sample that was produced according to the traditional procedure. Overlaps between the interests of decision makers on future soil fertility were weighed against the preferences on short-term profit. Possible causes that allowed the boom of these underperforming products and the possible consequences are also discussed. Conclusions regarding the ethical concerns on how to run businesses with products whose profitability depends on weaknesses in the legal system and customer unawareness are to follow.

  8. Biological efficiency of Agaricus brasiliensis cultivated in compost with nitrogen concentrations Eficiência biológica de Agaricus brasiliensis em composto com concentrações de nitrogênio

    Directory of Open Access Journals (Sweden)

    Félix G de Siqueira

    2011-06-01

    Full Text Available The production of compost is one of the most important steps for the cultivation of any species of mushroom. For the Agaricus species, this step is even more complex because it depends on the performance of different microorganisms that act on the substrate, turning it into selective compost that promotes the growth of the fungus to be cultivated. Among the various factors that affect the microbial activity, the initial concentration of nitrogen is considered one of the most important. Due to the lack of conclusive studies about that, the aim of this study was to evaluate the productivity and biological efficiency of Agaricus brasiliensis in compost prepared with different initial concentrations of nitrogen, according to the composting methodology and to the conventional pasteurization techniques (phase I and II. Three initial nitrogen concentrations (w/w (T1= 1.0%; T2= 1.5%; and T3= 2.0% were tested and mycelial growth was determined in terms of mm/day for all treatments. The productivity and biological efficiency were also determined. The most efficient initial concentrations of nitrogen were of 1.0% and 1.5%. This concentration of N in the compost permitted a faster development of the mushroom with higher productivity when compared to the results obtained with the application of 2% of nitrogen.A produção do composto é uma das etapas mais importantes para o cultivo de qualquer espécie de cogumelo. Para as espécies Agaricus, essa etapa é ainda mais complexa, porque depende da atuação de diferentes microrganismos que atuam sobre o substrato, transformando-o em um composto seletivo que favorece o crescimento do fungo a ser cultivado. Dentre os diversos fatores que afetam essa atividade microbiana, a concentração inicial de nitrogênio é considerada uma das mais importantes. Em função da falta de estudos conclusivos a respeito, este trabalho teve por objetivo avaliar a produtividade e eficiência biológica de Agaricus brasiliensis em

  9. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems.

    Science.gov (United States)

    Bass, Adrian M; Bird, Michael I; Kay, Gavin; Muirhead, Brian

    2016-04-15

    The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO3, NH4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Housefly maggot-treated composting as sustainable option for pig manure management.

    Science.gov (United States)

    Zhu, Feng-Xiang; Yao, Yan-Lai; Wang, Su-Juan; Du, Rong-Guang; Wang, Wei-Ping; Chen, Xiao-Yang; Hong, Chun-Lai; Qi, Bing; Xue, Zhi-Yong; Yang, Hong-Quan

    2015-01-01

    In traditional composting, large amounts of bulking agents must be added to reduce the moisture of pig manure, which increases the cost of composting and dilutes the N, P and K content in organic fertilizers. In this study, maggot treatment was used in composting instead of bulking agents. In experiment of selecting an optimal inoculum level for composting, the treatment of 0.5% maggot inoculum resulted in the maximum yield of late instar maggots, 11.6% (maggots weight/manure weight). The manure residue became noticeably granular by day 6 and its moisture content was below 60%, which was suitable for further composting without bulking agents. Moreover, in composting experiment with a natural compost without maggot inoculum and maggot-treated compost at 0.5% inoculum level, there were no significant differences in nutrient content between the two organic fertilizers from the two treatments (paired Student's t15=1.0032, P=0.3317). Therefore, maggot culturing did not affect the characteristics of the organic fertilizer. The content of TNPK (total nitrogen+total phosphorus+total potassium) in organic fertilizer from maggot treatment was 10.72% (dry weight), which was far more than that of organic fertilizer made by conventional composting with bulking agents (about 8.0%). Dried maggots as feed meet the national standard (GB/T19164-2003) for commercial fish meal in China, which contained 55.32 ± 1.09% protein; 1.34 ± 0.02% methionine; 4.15 ± 0.10% lysine. This study highlights housefly maggot-treated composting can be considered sustainable alternatives for pig manure management to achieve high-quality organic fertilizer and maggots as feed without bulking agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Repeated research of biodegradability of plastics materials in real composting conditions

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2013-01-01

    Full Text Available The aim of this paper was to verify information obtained by repeated research provide in 2011 and 2012 in real composting conditions and check information about biodegradability of plastics bags in real composting conditions. In both cases samples were placed into frames and inserted into one clamp within the compost pile to investigate the biodegradation. The plastics bags were obtained from chain stores in the Czech Republic and Poland. The shopping bags were made of HDPE with the TDPA additive (sample 2, PP with an addition of pro-oxidants (d2w (sample 1, 3 and materials certified as compostable (starch, polycaprolactone (sample 4, 5, 6, 7. Control sample (cellulose filtering paper, sample 8 was to check the potential of biological decomposition in the tested environment. At the end of the 15-week experimental period it was found that the polyethylene samples with the additive (sample 1, 2, 3 had not been decomposed, their colour had not changed and that no degradation neither physical changes had occurred (did not biodegrade. Samples certified as compostable (sample 4, 5, 6, 7 were decomposed. The results at the municipal compost facility demonstrate that the compostable plastics biodegrade and polyethylene samples with the additive did not biodegrade in compost.

  12. Effect Various Combination of Organic Waste on Compost Quality

    Directory of Open Access Journals (Sweden)

    Hapsoh

    2015-01-01

    Full Text Available Municipal solid waste and agricultural waste have different ratio C/N and nutrients contents. They can be used as compost row materials. The purpose of the research was to get an optimum combination of both wastes to improve compost quality, to meet the Indonesian National Standard 19-7030-2004. Composting process use pots. The treatments were twelve combination of municipal solid waste (garbage market, household waste, restaurant waste and agricultural waste (rice straw, empty fruit bunches of oil palm, cassava peel, banana skin with a ratio of 1:1 and enriche by chicken manure, cow manure, wood ash and cellulolytic microorganisme. The treatment were replicated three times. The results showd that the nutrients content of compost were 0.77 to 1.19% nitrogen, 0.23 to 0.30% phosphorus, 0.46 to 0.69% potassium and 15.48 to 34.69% organic matter. The combination of agricultural waste and municipal solid waste affected the quality of compost. Compost that meets SNI 19-7030-2004 is a combination of rice straw+market waste that contains 1.12% nitrogen, 0.28% phosphorus, 0.63% potassium, ratio C/N 19.50, pH 7.42, and organic matters 37.65%.

  13. Greenhouse gas emissions from home composting of organic household waste

    International Nuclear Information System (INIS)

    Andersen, J.K.; Boldrin, A.; Christensen, T.H.; Scheutz, C.

    2010-01-01

    The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week -1 and the temperature inside the composting units was in all cases only a few degrees (2-10 o C) higher than the ambient temperature. The emissions of methane (CH 4 ) and nitrous oxide (N 2 O) were quantified as 0.4-4.2 kg CH 4 Mg -1 input wet waste (ww) and 0.30-0.55 kg N 2 O Mg -1 ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH 4 and N 2 O emissions) of 100-239 kg CO 2 -eq. Mg -1 ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH 4 during mixing which was estimated to 8-12% of the total CH 4 emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg -1 ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO 2 -eq. Mg -1 ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

  14. Nitrogen conservation and acidity control during food wastes composting through struvite formation.

    Science.gov (United States)

    Wang, Xuan; Selvam, Ammaiyappan; Chan, Manting; Wong, Jonathan W C

    2013-11-01

    One of the main problems of food waste composting is the intensive acidification due to initial rapid fermentation that retards decomposition efficiency. Lime addition overcame this problem, but resulted in significant loss of nitrogen as ammonia that reduces the nutrient contents of composts. Therefore, this study investigated the feasibility of struvite formation as a strategy to control pH and reduce nitrogen loss during food waste composting. MgO and K2HPO4 were added to food waste in different molar ratios (P1, 1:1; P2, 1:2), and composted in 20-L composters. Results indicate that K2HPO4 buffered the pH in treatment P2 besides supplementing phosphate into the compost. In P2, organic decomposition reached 64% while the formation of struvite effectively reduced the nitrogen loss from 40.8% to 23.3% during composting. However, electrical conductivity of the compost increased due to the addition of Mg and P salts that requires further investigation to improve this technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Composting toilets as a sustainable alternative to urban sanitation – A review

    International Nuclear Information System (INIS)

    Anand, Chirjiv K.; Apul, Defne S.

    2014-01-01

    Highlights: • Composting toilets can be an alternative to flush based sanitation. • Many different composting toilet designs are available. • Composting is affected by moisture content, temperature, carbon to nitrogen ratio. • There are many barriers to composting toilets. • Research is needed in science based design of composting toilets. - Abstract: In today’s flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50–60%), temperature (40–65 °C), carbon to nitrogen ratio (25–35), pH (5.5–8.0), and porosity (35–50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature–time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and

  16. Composting toilets as a sustainable alternative to urban sanitation – A review

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Chirjiv K., E-mail: chirjiv@gmail.com; Apul, Defne S., E-mail: defne.apul@utoledo.edu

    2014-02-15

    Highlights: • Composting toilets can be an alternative to flush based sanitation. • Many different composting toilet designs are available. • Composting is affected by moisture content, temperature, carbon to nitrogen ratio. • There are many barriers to composting toilets. • Research is needed in science based design of composting toilets. - Abstract: In today’s flush based urban sanitation systems, toilets are connected to both the centralized water and wastewater infrastructures. This approach is not a sustainable use of our water and energy resources. In addition, in the U.S., there is a shortfall in funding for maintenance and upgrade of the water and wastewater infrastructures. The goal of this paper was to review the current knowledge on composting toilets since this technology is decentralized, requires no water, creates a value product (fertilizer) and can possibly reduce the burden on the current infrastructure as a sustainable sanitation approach. We found a large variety of composting toilet designs and categorized the different types of toilets as being self contained or central; single or multi chamber; waterless or with water/foam flush, electric or non-electric, and no-mix or combined collection. Factors reported as affecting the composting process and their optimum values were identified as; aeration, moisture content (50–60%), temperature (40–65 °C), carbon to nitrogen ratio (25–35), pH (5.5–8.0), and porosity (35–50%). Mass and energy balance models have been created for the composting process. However there is a literature gap in the use of this knowledge in design and operation of composting toilets. To evaluate the stability and safety of compost for use as fertilizer, various methods are available and the temperature–time criterion approach is the most common one used. There are many barriers to the use of composting toilets in urban settings including public acceptance, regulations, and lack of knowledge and

  17. Exploration of Rice Husk Compost as an Alternate Organic Manure to Enhance the Productivity of Blackgram in Typic Haplustalf and Typic Rhodustalf

    Directory of Open Access Journals (Sweden)

    Subramanium Thiyageshwari

    2018-02-01

    Full Text Available The present study was aimed at using cellulolytic bacterium Enhydrobacter and fungi Aspergillus sp. for preparing compost from rice husk (RH. Further, the prepared compost was tested for their effect on blackgram growth promotion along with different levels of recommended dose of fertilizer (RDF in black soil (typic Haplustalf and red soil (typic Rhodustalf soil. The results revealed that, inoculation with lignocellulolytic fungus (LCF Aspergillus sp. @ 2% was considered as the most efficient method of composting within a short period. Characterization of composted rice husk (CRH was examined through scanning electron microscope (SEM for identifying significant structural changes. At the end of composting, N, P and K content increased with decrease in CO2 evolution, C:N and C:P ratios. In comparison to inorganic fertilization, an increase in grain yield of 16% in typic Haplustalf and 17% in typic Rhodustalf soil over 100% RDF was obtained from the integrated application of CRH@ 5 t ha−1 with 50% RDF and biofertilizers. The crude protein content was maximum with the combined application of CRH, 50% RDF and biofertilizers of 20% and 21% in typic Haplustalf and typic Rhodustalf soils, respectively. Nutrient rich CRH has proved its efficiency on crop growth and soil fertility.

  18. Effectiveness of three bulking agents for food waste composting

    International Nuclear Information System (INIS)

    Adhikari, Bijaya K.; Barrington, Suzelle; Martinez, Jose; King, Susan

    2009-01-01

    Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment

  19. Utilization of Chicken Excretions as Compost Manure in Bolu

    Directory of Open Access Journals (Sweden)

    Cihat Kütük

    2013-11-01

    Full Text Available Turkish agricultural soils are insufficient with regard to organic matter content. Likewise, organic matter amounts in agricultural areas of Bolu are low. The benefits of organic matter to physical, chemical and biologic properties of soils are known for very long time. On the other hand, huge amount of chicken excretions are produced in Turkey with increased chicken production recently, and this result in substantial health and environmental problems. Amount of chicken excretions are estimated about 10 000 000 tons in Turkey. In Bolu, these amounts of chicken excretions are 300 000 tons per year. The most appropriate way to solve this question is to transform chicken excretions to organic manure and apply to agricultural fields. Composting is basic process for transforming of chicken excretions to organic manure. Composting is the aerobic decomposition of organic materials in the thermophilic temperature range of 40-65 °C. There are two essential methods in composting. One of them is traditional method taking much time and producing low grade manure. Another is rapid composting method taking less time and producing high grade manure under more controlled conditions. Rapid composting methods which are more acceptable as commercially in the world are windrow, rectangular agitated beds and rotating drum, respectively Selection of appropriate method is depending on composting material, environmental and economical conditions. Chicken excretions occurring large amounts in Bolu must be transformed to organic manure by means of a suitable composting method and used in agriculture. Because, chicken manure is an important resource for sustainable agriculture in Turkey and it should be evaluated.

  20. Concentration and speciation of heavy metals in six different sewage sludge-composts

    International Nuclear Information System (INIS)

    Cai Quanying; Mo Cehui; Wu Qitang; Zeng Qiaoyun; Katsoyiannis, Athanasios

    2007-01-01

    This study presents the concentrations and speciation of heavy metals (HMs) in six different composts of sewage sludges deriving from two wastewater treatment plants in China. After 56 days of sludge composting with rice straw at a low C/N ratio (13:1), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were enriched in sludge composts, exhibiting concentrations that varied from 0.75 to 2.0, 416 to 458, 66 to 168 and 1356 to 1750 mg kg -1 dry weight (d.w.), respectively. The concentrations increased by 12-60% for Cd, 8-17% for Cu, 15-43% for Pb and 14-44% for Zn compared to those in sewage sludges. The total concentrations of individual or total elements in the final composts exceeded the maximum permissible limits proposed for compost or fertilizer. In all the final composts, more than 70% of total Cu was associated with organic matter-bound fraction, while Zn was mainly concentrated in exchangeable and Fe-Mn oxide-bound fractions which implied the high mobility and bioavailability. Continuously aerated composting treatment exhibited better compost quality and lower potential toxicity of HMs, whereas inoculant with microorganism and enzyme spiked during composting had no obvious advantage on humification of organic matter and on reducing HM mobility and bioavailability

  1. Production of oil palm empty fruit bunch compost for ornamental plant cultivation

    Science.gov (United States)

    Trisakti, B.; Mhardela, P.; Husaini, T.; Irvan; Daimon, H.

    2018-02-01

    The aim of this research was to produce the oil palm empty fruit bunch (EFB) compost for ornamental plant cultivation. EFB compost was produced by chopping fresh EFB into 1-3 cm pieces, inserting the pieces into basket composter (33 cm W × 28 cm L × 40 cm H), and adding activated liquid organic fertilizer (ALOF) until moisture content (MC) in the range of 55-65%. During composting, the compost pile was turned every 3 days and the MC was maintained at 55-65% range by adding the ALOF. The compost processed was then mixed with sand and rice husk with a ratio of 1:1:1; 1:3:1; 1:0:1 and was used as a potting medium for planting some valuable ornamental plants i.e. cactus (cactaceae), sansevieria, and anthurium. Composting was carried out for 40 days and the compost characteristic were pH 9.0; MC 52.59%; WHC 76%; CN ratio 12.15; N 1.96%; P 0.58%; and K 0.95%. The compost-sand-husk rice mixture can be used as a growing medium where the best ratio for cactus, sansevieria, and anthurium was 1:3:1; 1:1:1; and 1:0:1, respectively.

  2. Compost versus vermicompost as substrate constituents for rooting shrub cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Fornes, F.; Mendoza-Hernandez, D.; Belda, R. M.

    2013-06-01

    The feasibility of composted (C), composted plus vermicomposted (V1) and straight vermicomposted (V2) tomato crop waste as component of rooting media for Euonymus japonicus Microphylla and Lavandula angustifolia vegetative propagation was studied. Mixes of C, V1 and V2 with coir fibre (CF) at the proportions 100:0, 75:25, 50:50, 25:75, 0:100 (v:v) were assayed. Physical, physico-chemical and nutritional characteristics of all materials and mixes were determined and correlated with cutting rooting and growth performances. The compost and the two vermicomposts were markedly different from CF. They had higher bulk density and lower total porosity than CF. Compost had lower water-holding capacity and shrinkage in response to drying than vermicomposts and CF. Compost and vermicomposts were alkaline materials whilst CF was almost neutral. Electrical conductivity (EC) was low in CF and vermicomposts, and high in compost due to the high mineral contents, mainly of K+, SO{sub 4} {sup 2}- and Na+ in this material. EC and the ions contributing to it (K+, SO{sub 4} {sup 2}-, Na+) showed highly significative inverse correlations with rooting percentage for the two species and with root and shoot growth but only for E. japonicus. Due to its high EC, compost C (average rooting = 22.5%) performed worse than vermicomposts V1 (av. rooting = 97%) and V2 (av. rooting = 98%) whilst the latter performed similarly to CF control (av. rooting = 100%). Thus vermicomposts appeared to be more appropriate than compost as rooting media constituent. (Author) 39 refs.

  3. Compost versus vermicompost as substrate constituents for rooting shrub cuttings

    Directory of Open Access Journals (Sweden)

    F. Fornes

    2013-04-01

    Full Text Available The feasibility of composted (C, composted plus vermicomposted (V1 and straight vermicomposted (V2 tomato crop waste as component of rooting media for Euonymus japonicus ‘Microphylla’ and Lavandula angustifolia vegetative propagation was studied. Mixes of C, V1 and V2 with coir fibre (CF at the proportions 100:0, 75:25, 50:50, 25:75, 0:100 (v:v were assayed. Physical, physico chemical and nutritional characteristics of all materials and mixes were determined and correlated with cutting rooting and growth performances. The compost and the two vermicomposts were markedly different from CF. They had higher bulk density and lower total porosity than CF. Compost had lower water holding capacity and shrinkage in response to drying than vermicomposts and CF. Compost and vermicomposts were alkaline materials whilst CF was almost neutral. Electrical conductivity (EC was low in CF and vermicomposts, and high in compost due to the high mineral contents, mainly of K+, SO42– and Na+ in this material. EC and the ions contributing to it (K+, SO42–, Na+ showed highly significative inverse correlations with rooting percentage for the two species and with root and shoot growth but only for E. japonicus. Due to its high EC, compost C (average rooting = 22.5% performed worse than vermicomposts V1 (av. rooting = 97% and V2 (av. rooting = 98% whilst the latter performed similarly to CF control (av. rooting = 100%. Thus vermicomposts appeared to be more appropriate than compost as rooting media constituent.

  4. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils.

    Science.gov (United States)

    Cao, Yune; Gao, Yanming; Qi, Yanbin; Li, Jianshe

    2018-03-01

    Excessive fertilization is a common agricultural practice that has largely reduced soil nutrient retention capacity and led to nutrient leaching in China. To reduce nutrient leaching, in this study, we evaluated the application of biochar, compost, and biochar-compost on soil properties, leaching water quality, and cucumber plant growth in soils with different nutrient levels. In general, the concentrations of nutrients and heavy metals in leaching water were higher under high-nutrient conditions than under low-nutrient conditions. Both biochar and compost efficiently enhanced soil cation exchange capacity (CEC), water holding capacity (WHC), and microbial biomass carbon (MBC), nitrogen (MBN), and phosphorus (MBP), reduced the potential leaching of nutrients and heavy metals, and improved plant growth. The efficiency of biochar and compost in soil CEC, WHC, MBC, MBN, and MBP and plant growth was enhanced when applied jointly. In addition, biochar and biochar-enhanced compost efficiently suppressed plant-parasitic nematode infestation in a soil with high levels of both N and P. Our results suggest that biochar-enhanced compost can reduce the potential environmental risks in excessively fertilized vegetable soils.

  5. Composted manure application promotes long-term invasion of semi-arid rangeland by Bromus tectorum

    Science.gov (United States)

    Composted organic matter derived from sewage treatment facilities or livestock manure from feedlots is often applied to rangelands of western North America to increase soil fertility, forage production, forage quality, and soil carbon (C) storage. This practice can have a number of undesirable side ...

  6. Summary Report for Evaluation of Compost Sample Drying Methods

    National Research Council Canada - National Science Library

    Frye, Russell

    1994-01-01

    .... Previous work in Support of these efforts developed a compost sample preparation scheme, consisting of air drying followed by milling, to reduce analytical variability in the heterogeneous compost matrix...

  7. Effect of organic waste compost and microbial activity on the growth ...

    African Journals Online (AJOL)

    One of the major problems of agricultural soils in the coastal areas of the Niger Delta is the low organic matter content. Therefore, land application of composted organic material as a fertilizer source not only provides essential nutrients to plants, it also improves soil quality and effectively disposes soil wastes. In this study ...

  8. Simple technologies for on-farm composting of cattle slurry solid fraction

    Energy Technology Data Exchange (ETDEWEB)

    Brito, L.M., E-mail: miguelbrito@esa.ipvc.pt [Escola Superior Agraria, Instituto Politecnico de Viana do Castelo, Refoios, 4990-706 Ponte de Lima (Portugal) and Mountain Research Centre (CIMO), IPB, Campus de St Apolonia, Apartado 1172, 5301-855 Braganca (Portugal); Mourao, I. [Escola Superior Agraria, Instituto Politecnico de Viana do Castelo, Refoios, 4990-706 Ponte de Lima (Portugal) and Mountain Research Centre (CIMO), IPB, Campus de St Apolonia, Apartado 1172, 5301-855 Braganca (Portugal); Coutinho, J., E-mail: j_coutin@utad.pt [C. Quimica, DeBA, EC Vida e Ambiente, Universidade de Tras-os-Montes e Alto Douro, ap 1013, 5001-911 Vila Real (Portugal); Smith, S.R., E-mail: s.r.smith@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ (United Kingdom)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Simple management techniques were examined for composting slurry solid fraction. Black-Right-Pointing-Pointer Composting slurry solids was effective without bulking agents, turning or rewetting. Black-Right-Pointing-Pointer Maximum rates of organic matter destruction were observed in short piles. Black-Right-Pointing-Pointer Thermophilic temperatures in tall piles maximised sanitation and moisture reduction. Black-Right-Pointing-Pointer The simple compost management approach maximised N retention and agronomic value. - Abstract: Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animal slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4 m{sup 3} h{sup -1} and 1 m{sup 3} h{sup -1} and composted in tall (1.7 m) and short (1.2 m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62-64 Degree-Sign C) were measured in tall piles compared to short piles (52 Degree-Sign C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520-660 g kg{sup -1} dry solids and the net loss of OM significantly (P < 0.001) increased nutrient concentrations during the composting period. An advanced degree of stabilization of the SF was indicated by low final

  9. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    International Nuclear Information System (INIS)

    Zhang, Lu; Sun, Xiangyang

    2015-01-01

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL

  10. Effects of earthworm casts and zeolite on the two-stage composting of green waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lu, E-mail: zhanglu1211@gmail.com; Sun, Xiangyang, E-mail: xysunbjfu@gmail.com

    2015-05-15

    Highlights: • Earthworm casts (EWCs) and clinoptilolite (CL) were used in green waste composting. • Addition of EWCs + CL improved physico-chemical and microbiological properties. • Addition of EWCs + CL extended the duration of thermophilic periods during composting. • Addition of EWCs + CL enhanced humification, cellulose degradation, and nutrients. • Combined addition of 0.30% EWCs + 25% CL reduced composting time to 21 days. - Abstract: Because it helps protect the environment and encourages economic development, composting has become a viable method for organic waste disposal. The objective of this study was to investigate the effects of earthworm casts (EWCs) (at 0.0%, 0.30%, and 0.60%) and zeolite (clinoptilolite, CL) (at 0%, 15%, and 25%) on the two-stage composting of green waste. The combination of EWCs and CL improved the conditions of the composting process and the quality of the compost products in terms of the thermophilic phase, humification, nitrification, microbial numbers and enzyme activities, the degradation of cellulose and hemicellulose, and physico-chemical characteristics and nutrient contents of final composts. The compost matured in only 21 days with the optimized two-stage composting method rather than in the 90–270 days required for traditional composting. The optimal two-stage composting and the best quality compost were obtained with 0.30% EWCs and 25% CL.

  11. Cultivos transgénicos en Argentina : mitos y realidades

    OpenAIRE

    Cantamutto, Miguel; Poverene, Mónica

    2003-01-01

    Cantamutto, M., Poverene, M. (2003). Cultivos transgénicos en Argentina: mitos y realidades. Redes, 10(20), 171-181. La producción creciente de cultivos transgénicos en la Argentina es observada con preocupación por la población debido a que aparecen cada vez más voces planteando dudas y amenazas acerca de las consecuencias del uso de esta tecnología, que incluso se atribuye a oscuras manipulaciones políticas. ¿Tienen fundamento esos conceptos? ¿A qué aspectos del uso de organismos genétic...

  12. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes.

    Science.gov (United States)

    Wang, Cheng; Dong, Da; Strong, P J; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-08-16

    Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases that are distinguished by the temperature resulting from microbial activity, namely the mesophilic, thermophilic, cooling, and maturing phases. In this study, changes of resistome expression were determined and related to active microbiome profiles during the dynamic composting process. This was achieved by integrating metagenomic and time series metatranscriptomic data for the evolving microbial community during composting. Composting noticeably reduced the aggregated expression level of the manure resistome, which primarily consisted of genes encoding for tetracycline, vancomycin, fluoroquinolone, beta-lactam, and aminoglycoside resistance, as well as efflux pumps. Furthermore, a varied transcriptional response of resistome to composting at the ARG levels was highlighted. The expression of tetracycline resistance genes (tetM-tetW-tetO-tetS) decreased during composting, where distinctive shifts in the four phases of composting were related to variations in antibiotic concentration. Composting had no effect on the expression of sulfonamide and fluoroquinolone resistance genes, which increased slightly during the thermophilic phase and then decreased to initial levels. As indigenous populations switched greatly throughout the dynamic composting, the core resistome persisted and their reservoir hosts' composition was significantly correlated with dynamic active microbial phylogenetic structure. Hosts for sulfonamide and fuoroquinolone resistance genes changed notably in phylognetic structure

  13. A process-based model for cattle manure compost windrows: Model description

    Science.gov (United States)

    Composting is an alternative management practice for handling and storing manure in intensive cattle production systems. With composting, cattle manure is converted into a soil amendment with improved nutrient and physical properties and is easier to handle. Despite its benefits, composting can prod...

  14. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Marta García-Albacete

    2014-01-01

    Full Text Available New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste’s wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems.

  15. Risk of Leaching in Soils Amended by Compost and Digestate from Municipal Solid Waste

    Science.gov (United States)

    Tarquis, Ana M.; Cartagena, M. Carmen

    2014-01-01

    New European directives have proposed the direct application of compost and digestate produced from municipal solid wastes as organic matter sources in agricultural soils. Therefore information about phosphorus leaching from these residues when they are applied to the soil is increasingly important. Leaching experiments were conducted to determine the P mobility in compost and digestate mixtures, supplying equivalent amounts to 100 kg P ha−1 to three different types of soils. The tests were performed in accordance with CEN/TS 14405:2004 analyzing the maximum dissolved reactive P and the kinetic rate in the leachate. P biowaste fractionation indicated that digestate has a higher level of available P than compost has. In contrast, P losses in leaching experiments with soil-compost mixtures were higher than in soil-digestate mixtures. For both wastes, there was no correlation between dissolved reactive P lost and the water soluble P. The interaction between soil and biowaste, the long experimentation time, and the volume of leachate obtained caused the waste's wettability to become an influential parameter in P leaching behavior. The overall conclusion is that kinetic data analysis provides valuable information concerning the sorption mechanism that can be used for predicting the large-scale behavior of soil systems. PMID:25003139

  16. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.

    Science.gov (United States)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2014-11-15

    Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic

  17. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems.

    Science.gov (United States)

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H; Hickey, William J

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, and coffee hulls), which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase) and the finished product (mature phase). The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (group I.1b), in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have significant effects on its performance as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities) with nitrification in these systems.

  18. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  19. Recycling Pig Slurry Solid Fraction Compost as a Sound Absorber

    Directory of Open Access Journals (Sweden)

    Niccolò Pampuro

    2018-01-01

    Full Text Available The aim of this investigation was to determine the physical and acoustical properties of compacts made from composted pig slurry solid fraction (SF in order to assess the potential to recycle this agricultural waste as a sound absorber. The compacts were obtained by compression. The physical parameters investigated were bulk density, durability, and particle size distribution. The acoustical features of the compacts were studied with an impedance tube device in order to verify the acoustic absorption coefficient. Two composts were prepared: pig SF compost without a bulking agent (SSFC and pig SF compost with wood chips as a bulking agent (WCC. The study’s results indicated that compost particles dimension played a key role in the physical and acoustical properties of the compacts: the smaller the particles, the higher the physical and acoustical properties of the compacts. The densification process increased the bulk density of the investigated composts up to 690 kg m−3 for SSFC and 660 kg m−3 for WWC, with, respectively, medium (77.9% and low (66.5% durability. The addition of woody bulking agent significantly reduced the absorption coefficient: the best results, in terms of potential use as a sound absorber, were observed for compacts made from composted pig slurry solid fraction without the addition of wood chips.

  20. Using broiler litter and swine manure lagoon effluent in sawdust-based swine mortality composts: Effects on nutrients, bacteria, and gaseous emissions

    International Nuclear Information System (INIS)

    McLaughlin, M.R.; Brooks, J.P.; Adeli, A.; Miles, D.M.

    2015-01-01

    Disposition of mortalities challenges confined animal feeding operations (CAFOs), especially sow (farrowing) farms, which experience mortalities daily. Regulations and transportation costs may preclude incineration, landfill burial, and rendering; therefore, swine CAFOs in Mississippi in the Mid-South U.S. often compost mortalities. In this study, a farm-standard composting mix of sawdust (S) and water (W) was compared with mixes where N was supplied by broiler litter (L) and water was replaced with swine lagoon effluent (E). The objective was to assess the effects of these manure byproducts: 1) on nutrients and bacteria in composts destined for land application; and 2) on emissions of ammonia and greenhouse gases. Three replications of four mixes (SW, SLW, SE, SLE) were compared in microcosms comprising modified plastic recycling bins. The experiment was repeated three times in different seasons in one year. Mixes were compared for differences in temperature, water content, nutrients (C, N, P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn), bacteria (Gram −, Gram +, Clostridium perfringens, Salmonella, Listeria, Escherichia coli), and emissions (NH 3 , CO 2 , CH 4 , N 2 O). Litter addition increased composting temperatures initially and after aerations; increased nutrient concentrations, except C, in start mixes and all except C and N, in finish mixes; increased Gram + bacteria, Salmonella, and E. coli in start mixes, but only Gram+s in finish mixes; and increased emissions. Effluent addition increased early composting temperatures; had no effect on nutrients or bacteria, except increased C. perfringens in start, but not finish mixes; and had no effect on emissions. Nutrients in finish composts did not differ among mixes for N (average 3.3%), but litter composts had more P and K, and lower N:P than composts without litter. Improving mortality composting is of global importance as increasing livestock populations and intensive animal production systems require practical, safe